1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/tracepoint-defs.h> 17 18 struct folio_batch; 19 20 /* 21 * The set of flags that only affect watermark checking and reclaim 22 * behaviour. This is used by the MM to obey the caller constraints 23 * about IO, FS and watermark checking while ignoring placement 24 * hints such as HIGHMEM usage. 25 */ 26 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 27 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 28 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 29 __GFP_NOLOCKDEP) 30 31 /* The GFP flags allowed during early boot */ 32 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 33 34 /* Control allocation cpuset and node placement constraints */ 35 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 36 37 /* Do not use these with a slab allocator */ 38 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 39 40 /* 41 * Different from WARN_ON_ONCE(), no warning will be issued 42 * when we specify __GFP_NOWARN. 43 */ 44 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 45 static bool __section(".data.once") __warned; \ 46 int __ret_warn_once = !!(cond); \ 47 \ 48 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 49 __warned = true; \ 50 WARN_ON(1); \ 51 } \ 52 unlikely(__ret_warn_once); \ 53 }) 54 55 void page_writeback_init(void); 56 57 /* 58 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 59 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit 60 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 61 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 62 */ 63 #define ENTIRELY_MAPPED 0x800000 64 #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) 65 66 /* 67 * Flags passed to __show_mem() and show_free_areas() to suppress output in 68 * various contexts. 69 */ 70 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 71 72 /* 73 * How many individual pages have an elevated _mapcount. Excludes 74 * the folio's entire_mapcount. 75 * 76 * Don't use this function outside of debugging code. 77 */ 78 static inline int folio_nr_pages_mapped(const struct folio *folio) 79 { 80 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 81 } 82 83 /* 84 * Retrieve the first entry of a folio based on a provided entry within the 85 * folio. We cannot rely on folio->swap as there is no guarantee that it has 86 * been initialized. Used for calling arch_swap_restore() 87 */ 88 static inline swp_entry_t folio_swap(swp_entry_t entry, 89 const struct folio *folio) 90 { 91 swp_entry_t swap = { 92 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)), 93 }; 94 95 return swap; 96 } 97 98 static inline void *folio_raw_mapping(const struct folio *folio) 99 { 100 unsigned long mapping = (unsigned long)folio->mapping; 101 102 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 103 } 104 105 #ifdef CONFIG_MMU 106 107 /* Flags for folio_pte_batch(). */ 108 typedef int __bitwise fpb_t; 109 110 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ 111 #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0)) 112 113 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ 114 #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1)) 115 116 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) 117 { 118 if (flags & FPB_IGNORE_DIRTY) 119 pte = pte_mkclean(pte); 120 if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) 121 pte = pte_clear_soft_dirty(pte); 122 return pte_wrprotect(pte_mkold(pte)); 123 } 124 125 /** 126 * folio_pte_batch - detect a PTE batch for a large folio 127 * @folio: The large folio to detect a PTE batch for. 128 * @addr: The user virtual address the first page is mapped at. 129 * @start_ptep: Page table pointer for the first entry. 130 * @pte: Page table entry for the first page. 131 * @max_nr: The maximum number of table entries to consider. 132 * @flags: Flags to modify the PTE batch semantics. 133 * @any_writable: Optional pointer to indicate whether any entry except the 134 * first one is writable. 135 * @any_young: Optional pointer to indicate whether any entry except the 136 * first one is young. 137 * @any_dirty: Optional pointer to indicate whether any entry except the 138 * first one is dirty. 139 * 140 * Detect a PTE batch: consecutive (present) PTEs that map consecutive 141 * pages of the same large folio. 142 * 143 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, 144 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and 145 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). 146 * 147 * start_ptep must map any page of the folio. max_nr must be at least one and 148 * must be limited by the caller so scanning cannot exceed a single page table. 149 * 150 * Return: the number of table entries in the batch. 151 */ 152 static inline int folio_pte_batch(struct folio *folio, unsigned long addr, 153 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, 154 bool *any_writable, bool *any_young, bool *any_dirty) 155 { 156 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); 157 const pte_t *end_ptep = start_ptep + max_nr; 158 pte_t expected_pte, *ptep; 159 bool writable, young, dirty; 160 int nr; 161 162 if (any_writable) 163 *any_writable = false; 164 if (any_young) 165 *any_young = false; 166 if (any_dirty) 167 *any_dirty = false; 168 169 VM_WARN_ON_FOLIO(!pte_present(pte), folio); 170 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); 171 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); 172 173 nr = pte_batch_hint(start_ptep, pte); 174 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); 175 ptep = start_ptep + nr; 176 177 while (ptep < end_ptep) { 178 pte = ptep_get(ptep); 179 if (any_writable) 180 writable = !!pte_write(pte); 181 if (any_young) 182 young = !!pte_young(pte); 183 if (any_dirty) 184 dirty = !!pte_dirty(pte); 185 pte = __pte_batch_clear_ignored(pte, flags); 186 187 if (!pte_same(pte, expected_pte)) 188 break; 189 190 /* 191 * Stop immediately once we reached the end of the folio. In 192 * corner cases the next PFN might fall into a different 193 * folio. 194 */ 195 if (pte_pfn(pte) >= folio_end_pfn) 196 break; 197 198 if (any_writable) 199 *any_writable |= writable; 200 if (any_young) 201 *any_young |= young; 202 if (any_dirty) 203 *any_dirty |= dirty; 204 205 nr = pte_batch_hint(ptep, pte); 206 expected_pte = pte_advance_pfn(expected_pte, nr); 207 ptep += nr; 208 } 209 210 return min(ptep - start_ptep, max_nr); 211 } 212 213 /** 214 * pte_move_swp_offset - Move the swap entry offset field of a swap pte 215 * forward or backward by delta 216 * @pte: The initial pte state; is_swap_pte(pte) must be true and 217 * non_swap_entry() must be false. 218 * @delta: The direction and the offset we are moving; forward if delta 219 * is positive; backward if delta is negative 220 * 221 * Moves the swap offset, while maintaining all other fields, including 222 * swap type, and any swp pte bits. The resulting pte is returned. 223 */ 224 static inline pte_t pte_move_swp_offset(pte_t pte, long delta) 225 { 226 swp_entry_t entry = pte_to_swp_entry(pte); 227 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry), 228 (swp_offset(entry) + delta))); 229 230 if (pte_swp_soft_dirty(pte)) 231 new = pte_swp_mksoft_dirty(new); 232 if (pte_swp_exclusive(pte)) 233 new = pte_swp_mkexclusive(new); 234 if (pte_swp_uffd_wp(pte)) 235 new = pte_swp_mkuffd_wp(new); 236 237 return new; 238 } 239 240 241 /** 242 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte. 243 * @pte: The initial pte state; is_swap_pte(pte) must be true and 244 * non_swap_entry() must be false. 245 * 246 * Increments the swap offset, while maintaining all other fields, including 247 * swap type, and any swp pte bits. The resulting pte is returned. 248 */ 249 static inline pte_t pte_next_swp_offset(pte_t pte) 250 { 251 return pte_move_swp_offset(pte, 1); 252 } 253 254 /** 255 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries 256 * @start_ptep: Page table pointer for the first entry. 257 * @max_nr: The maximum number of table entries to consider. 258 * @pte: Page table entry for the first entry. 259 * 260 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs 261 * containing swap entries all with consecutive offsets and targeting the same 262 * swap type, all with matching swp pte bits. 263 * 264 * max_nr must be at least one and must be limited by the caller so scanning 265 * cannot exceed a single page table. 266 * 267 * Return: the number of table entries in the batch. 268 */ 269 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte) 270 { 271 pte_t expected_pte = pte_next_swp_offset(pte); 272 const pte_t *end_ptep = start_ptep + max_nr; 273 pte_t *ptep = start_ptep + 1; 274 275 VM_WARN_ON(max_nr < 1); 276 VM_WARN_ON(!is_swap_pte(pte)); 277 VM_WARN_ON(non_swap_entry(pte_to_swp_entry(pte))); 278 279 while (ptep < end_ptep) { 280 pte = ptep_get(ptep); 281 282 if (!pte_same(pte, expected_pte)) 283 break; 284 285 expected_pte = pte_next_swp_offset(expected_pte); 286 ptep++; 287 } 288 289 return ptep - start_ptep; 290 } 291 #endif /* CONFIG_MMU */ 292 293 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 294 int nr_throttled); 295 static inline void acct_reclaim_writeback(struct folio *folio) 296 { 297 pg_data_t *pgdat = folio_pgdat(folio); 298 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 299 300 if (nr_throttled) 301 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 302 } 303 304 static inline void wake_throttle_isolated(pg_data_t *pgdat) 305 { 306 wait_queue_head_t *wqh; 307 308 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 309 if (waitqueue_active(wqh)) 310 wake_up(wqh); 311 } 312 313 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf); 314 vm_fault_t do_swap_page(struct vm_fault *vmf); 315 void folio_rotate_reclaimable(struct folio *folio); 316 bool __folio_end_writeback(struct folio *folio); 317 void deactivate_file_folio(struct folio *folio); 318 void folio_activate(struct folio *folio); 319 320 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 321 struct vm_area_struct *start_vma, unsigned long floor, 322 unsigned long ceiling, bool mm_wr_locked); 323 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 324 325 struct zap_details; 326 void unmap_page_range(struct mmu_gather *tlb, 327 struct vm_area_struct *vma, 328 unsigned long addr, unsigned long end, 329 struct zap_details *details); 330 331 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 332 unsigned int order); 333 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 334 static inline void force_page_cache_readahead(struct address_space *mapping, 335 struct file *file, pgoff_t index, unsigned long nr_to_read) 336 { 337 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 338 force_page_cache_ra(&ractl, nr_to_read); 339 } 340 341 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 342 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 343 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 344 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 345 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 346 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 347 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 348 loff_t end); 349 long mapping_evict_folio(struct address_space *mapping, struct folio *folio); 350 unsigned long mapping_try_invalidate(struct address_space *mapping, 351 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 352 353 /** 354 * folio_evictable - Test whether a folio is evictable. 355 * @folio: The folio to test. 356 * 357 * Test whether @folio is evictable -- i.e., should be placed on 358 * active/inactive lists vs unevictable list. 359 * 360 * Reasons folio might not be evictable: 361 * 1. folio's mapping marked unevictable 362 * 2. One of the pages in the folio is part of an mlocked VMA 363 */ 364 static inline bool folio_evictable(struct folio *folio) 365 { 366 bool ret; 367 368 /* Prevent address_space of inode and swap cache from being freed */ 369 rcu_read_lock(); 370 ret = !mapping_unevictable(folio_mapping(folio)) && 371 !folio_test_mlocked(folio); 372 rcu_read_unlock(); 373 return ret; 374 } 375 376 /* 377 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 378 * a count of one. 379 */ 380 static inline void set_page_refcounted(struct page *page) 381 { 382 VM_BUG_ON_PAGE(PageTail(page), page); 383 VM_BUG_ON_PAGE(page_ref_count(page), page); 384 set_page_count(page, 1); 385 } 386 387 /* 388 * Return true if a folio needs ->release_folio() calling upon it. 389 */ 390 static inline bool folio_needs_release(struct folio *folio) 391 { 392 struct address_space *mapping = folio_mapping(folio); 393 394 return folio_has_private(folio) || 395 (mapping && mapping_release_always(mapping)); 396 } 397 398 extern unsigned long highest_memmap_pfn; 399 400 /* 401 * Maximum number of reclaim retries without progress before the OOM 402 * killer is consider the only way forward. 403 */ 404 #define MAX_RECLAIM_RETRIES 16 405 406 /* 407 * in mm/vmscan.c: 408 */ 409 bool isolate_lru_page(struct page *page); 410 bool folio_isolate_lru(struct folio *folio); 411 void putback_lru_page(struct page *page); 412 void folio_putback_lru(struct folio *folio); 413 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 414 415 /* 416 * in mm/rmap.c: 417 */ 418 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 419 420 /* 421 * in mm/page_alloc.c 422 */ 423 #define K(x) ((x) << (PAGE_SHIFT-10)) 424 425 extern char * const zone_names[MAX_NR_ZONES]; 426 427 /* perform sanity checks on struct pages being allocated or freed */ 428 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 429 430 extern int min_free_kbytes; 431 432 void setup_per_zone_wmarks(void); 433 void calculate_min_free_kbytes(void); 434 int __meminit init_per_zone_wmark_min(void); 435 void page_alloc_sysctl_init(void); 436 437 /* 438 * Structure for holding the mostly immutable allocation parameters passed 439 * between functions involved in allocations, including the alloc_pages* 440 * family of functions. 441 * 442 * nodemask, migratetype and highest_zoneidx are initialized only once in 443 * __alloc_pages() and then never change. 444 * 445 * zonelist, preferred_zone and highest_zoneidx are set first in 446 * __alloc_pages() for the fast path, and might be later changed 447 * in __alloc_pages_slowpath(). All other functions pass the whole structure 448 * by a const pointer. 449 */ 450 struct alloc_context { 451 struct zonelist *zonelist; 452 nodemask_t *nodemask; 453 struct zoneref *preferred_zoneref; 454 int migratetype; 455 456 /* 457 * highest_zoneidx represents highest usable zone index of 458 * the allocation request. Due to the nature of the zone, 459 * memory on lower zone than the highest_zoneidx will be 460 * protected by lowmem_reserve[highest_zoneidx]. 461 * 462 * highest_zoneidx is also used by reclaim/compaction to limit 463 * the target zone since higher zone than this index cannot be 464 * usable for this allocation request. 465 */ 466 enum zone_type highest_zoneidx; 467 bool spread_dirty_pages; 468 }; 469 470 /* 471 * This function returns the order of a free page in the buddy system. In 472 * general, page_zone(page)->lock must be held by the caller to prevent the 473 * page from being allocated in parallel and returning garbage as the order. 474 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 475 * page cannot be allocated or merged in parallel. Alternatively, it must 476 * handle invalid values gracefully, and use buddy_order_unsafe() below. 477 */ 478 static inline unsigned int buddy_order(struct page *page) 479 { 480 /* PageBuddy() must be checked by the caller */ 481 return page_private(page); 482 } 483 484 /* 485 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 486 * PageBuddy() should be checked first by the caller to minimize race window, 487 * and invalid values must be handled gracefully. 488 * 489 * READ_ONCE is used so that if the caller assigns the result into a local 490 * variable and e.g. tests it for valid range before using, the compiler cannot 491 * decide to remove the variable and inline the page_private(page) multiple 492 * times, potentially observing different values in the tests and the actual 493 * use of the result. 494 */ 495 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 496 497 /* 498 * This function checks whether a page is free && is the buddy 499 * we can coalesce a page and its buddy if 500 * (a) the buddy is not in a hole (check before calling!) && 501 * (b) the buddy is in the buddy system && 502 * (c) a page and its buddy have the same order && 503 * (d) a page and its buddy are in the same zone. 504 * 505 * For recording whether a page is in the buddy system, we set PageBuddy. 506 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 507 * 508 * For recording page's order, we use page_private(page). 509 */ 510 static inline bool page_is_buddy(struct page *page, struct page *buddy, 511 unsigned int order) 512 { 513 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 514 return false; 515 516 if (buddy_order(buddy) != order) 517 return false; 518 519 /* 520 * zone check is done late to avoid uselessly calculating 521 * zone/node ids for pages that could never merge. 522 */ 523 if (page_zone_id(page) != page_zone_id(buddy)) 524 return false; 525 526 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 527 528 return true; 529 } 530 531 /* 532 * Locate the struct page for both the matching buddy in our 533 * pair (buddy1) and the combined O(n+1) page they form (page). 534 * 535 * 1) Any buddy B1 will have an order O twin B2 which satisfies 536 * the following equation: 537 * B2 = B1 ^ (1 << O) 538 * For example, if the starting buddy (buddy2) is #8 its order 539 * 1 buddy is #10: 540 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 541 * 542 * 2) Any buddy B will have an order O+1 parent P which 543 * satisfies the following equation: 544 * P = B & ~(1 << O) 545 * 546 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER 547 */ 548 static inline unsigned long 549 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 550 { 551 return page_pfn ^ (1 << order); 552 } 553 554 /* 555 * Find the buddy of @page and validate it. 556 * @page: The input page 557 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 558 * function is used in the performance-critical __free_one_page(). 559 * @order: The order of the page 560 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 561 * page_to_pfn(). 562 * 563 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 564 * not the same as @page. The validation is necessary before use it. 565 * 566 * Return: the found buddy page or NULL if not found. 567 */ 568 static inline struct page *find_buddy_page_pfn(struct page *page, 569 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 570 { 571 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 572 struct page *buddy; 573 574 buddy = page + (__buddy_pfn - pfn); 575 if (buddy_pfn) 576 *buddy_pfn = __buddy_pfn; 577 578 if (page_is_buddy(page, buddy, order)) 579 return buddy; 580 return NULL; 581 } 582 583 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 584 unsigned long end_pfn, struct zone *zone); 585 586 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 587 unsigned long end_pfn, struct zone *zone) 588 { 589 if (zone->contiguous) 590 return pfn_to_page(start_pfn); 591 592 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 593 } 594 595 void set_zone_contiguous(struct zone *zone); 596 597 static inline void clear_zone_contiguous(struct zone *zone) 598 { 599 zone->contiguous = false; 600 } 601 602 extern int __isolate_free_page(struct page *page, unsigned int order); 603 extern void __putback_isolated_page(struct page *page, unsigned int order, 604 int mt); 605 extern void memblock_free_pages(struct page *page, unsigned long pfn, 606 unsigned int order); 607 extern void __free_pages_core(struct page *page, unsigned int order, 608 enum meminit_context context); 609 610 /* 611 * This will have no effect, other than possibly generating a warning, if the 612 * caller passes in a non-large folio. 613 */ 614 static inline void folio_set_order(struct folio *folio, unsigned int order) 615 { 616 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 617 return; 618 619 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 620 #ifdef CONFIG_64BIT 621 folio->_folio_nr_pages = 1U << order; 622 #endif 623 } 624 625 void __folio_undo_large_rmappable(struct folio *folio); 626 static inline void folio_undo_large_rmappable(struct folio *folio) 627 { 628 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) 629 return; 630 631 /* 632 * At this point, there is no one trying to add the folio to 633 * deferred_list. If folio is not in deferred_list, it's safe 634 * to check without acquiring the split_queue_lock. 635 */ 636 if (data_race(list_empty(&folio->_deferred_list))) 637 return; 638 639 __folio_undo_large_rmappable(folio); 640 } 641 642 static inline struct folio *page_rmappable_folio(struct page *page) 643 { 644 struct folio *folio = (struct folio *)page; 645 646 if (folio && folio_test_large(folio)) 647 folio_set_large_rmappable(folio); 648 return folio; 649 } 650 651 static inline void prep_compound_head(struct page *page, unsigned int order) 652 { 653 struct folio *folio = (struct folio *)page; 654 655 folio_set_order(folio, order); 656 atomic_set(&folio->_large_mapcount, -1); 657 atomic_set(&folio->_entire_mapcount, -1); 658 atomic_set(&folio->_nr_pages_mapped, 0); 659 atomic_set(&folio->_pincount, 0); 660 if (order > 1) 661 INIT_LIST_HEAD(&folio->_deferred_list); 662 } 663 664 static inline void prep_compound_tail(struct page *head, int tail_idx) 665 { 666 struct page *p = head + tail_idx; 667 668 p->mapping = TAIL_MAPPING; 669 set_compound_head(p, head); 670 set_page_private(p, 0); 671 } 672 673 extern void prep_compound_page(struct page *page, unsigned int order); 674 675 extern void post_alloc_hook(struct page *page, unsigned int order, 676 gfp_t gfp_flags); 677 extern bool free_pages_prepare(struct page *page, unsigned int order); 678 679 extern int user_min_free_kbytes; 680 681 void free_unref_page(struct page *page, unsigned int order); 682 void free_unref_folios(struct folio_batch *fbatch); 683 684 extern void zone_pcp_reset(struct zone *zone); 685 extern void zone_pcp_disable(struct zone *zone); 686 extern void zone_pcp_enable(struct zone *zone); 687 extern void zone_pcp_init(struct zone *zone); 688 689 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 690 phys_addr_t min_addr, 691 int nid, bool exact_nid); 692 693 void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 694 unsigned long, enum meminit_context, struct vmem_altmap *, int); 695 696 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 697 698 /* 699 * in mm/compaction.c 700 */ 701 /* 702 * compact_control is used to track pages being migrated and the free pages 703 * they are being migrated to during memory compaction. The free_pfn starts 704 * at the end of a zone and migrate_pfn begins at the start. Movable pages 705 * are moved to the end of a zone during a compaction run and the run 706 * completes when free_pfn <= migrate_pfn 707 */ 708 struct compact_control { 709 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ 710 struct list_head migratepages; /* List of pages being migrated */ 711 unsigned int nr_freepages; /* Number of isolated free pages */ 712 unsigned int nr_migratepages; /* Number of pages to migrate */ 713 unsigned long free_pfn; /* isolate_freepages search base */ 714 /* 715 * Acts as an in/out parameter to page isolation for migration. 716 * isolate_migratepages uses it as a search base. 717 * isolate_migratepages_block will update the value to the next pfn 718 * after the last isolated one. 719 */ 720 unsigned long migrate_pfn; 721 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 722 struct zone *zone; 723 unsigned long total_migrate_scanned; 724 unsigned long total_free_scanned; 725 unsigned short fast_search_fail;/* failures to use free list searches */ 726 short search_order; /* order to start a fast search at */ 727 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 728 int order; /* order a direct compactor needs */ 729 int migratetype; /* migratetype of direct compactor */ 730 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 731 const int highest_zoneidx; /* zone index of a direct compactor */ 732 enum migrate_mode mode; /* Async or sync migration mode */ 733 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 734 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 735 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 736 bool direct_compaction; /* False from kcompactd or /proc/... */ 737 bool proactive_compaction; /* kcompactd proactive compaction */ 738 bool whole_zone; /* Whole zone should/has been scanned */ 739 bool contended; /* Signal lock contention */ 740 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 741 * when there are potentially transient 742 * isolation or migration failures to 743 * ensure forward progress. 744 */ 745 bool alloc_contig; /* alloc_contig_range allocation */ 746 }; 747 748 /* 749 * Used in direct compaction when a page should be taken from the freelists 750 * immediately when one is created during the free path. 751 */ 752 struct capture_control { 753 struct compact_control *cc; 754 struct page *page; 755 }; 756 757 unsigned long 758 isolate_freepages_range(struct compact_control *cc, 759 unsigned long start_pfn, unsigned long end_pfn); 760 int 761 isolate_migratepages_range(struct compact_control *cc, 762 unsigned long low_pfn, unsigned long end_pfn); 763 764 int __alloc_contig_migrate_range(struct compact_control *cc, 765 unsigned long start, unsigned long end, 766 int migratetype); 767 768 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 769 void init_cma_reserved_pageblock(struct page *page); 770 771 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 772 773 int find_suitable_fallback(struct free_area *area, unsigned int order, 774 int migratetype, bool only_stealable, bool *can_steal); 775 776 static inline bool free_area_empty(struct free_area *area, int migratetype) 777 { 778 return list_empty(&area->free_list[migratetype]); 779 } 780 781 /* 782 * These three helpers classifies VMAs for virtual memory accounting. 783 */ 784 785 /* 786 * Executable code area - executable, not writable, not stack 787 */ 788 static inline bool is_exec_mapping(vm_flags_t flags) 789 { 790 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 791 } 792 793 /* 794 * Stack area (including shadow stacks) 795 * 796 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 797 * do_mmap() forbids all other combinations. 798 */ 799 static inline bool is_stack_mapping(vm_flags_t flags) 800 { 801 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 802 } 803 804 /* 805 * Data area - private, writable, not stack 806 */ 807 static inline bool is_data_mapping(vm_flags_t flags) 808 { 809 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 810 } 811 812 /* mm/util.c */ 813 struct anon_vma *folio_anon_vma(struct folio *folio); 814 815 #ifdef CONFIG_MMU 816 void unmap_mapping_folio(struct folio *folio); 817 extern long populate_vma_page_range(struct vm_area_struct *vma, 818 unsigned long start, unsigned long end, int *locked); 819 extern long faultin_page_range(struct mm_struct *mm, unsigned long start, 820 unsigned long end, bool write, int *locked); 821 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 822 unsigned long bytes); 823 824 /* 825 * NOTE: This function can't tell whether the folio is "fully mapped" in the 826 * range. 827 * "fully mapped" means all the pages of folio is associated with the page 828 * table of range while this function just check whether the folio range is 829 * within the range [start, end). Function caller needs to do page table 830 * check if it cares about the page table association. 831 * 832 * Typical usage (like mlock or madvise) is: 833 * Caller knows at least 1 page of folio is associated with page table of VMA 834 * and the range [start, end) is intersect with the VMA range. Caller wants 835 * to know whether the folio is fully associated with the range. It calls 836 * this function to check whether the folio is in the range first. Then checks 837 * the page table to know whether the folio is fully mapped to the range. 838 */ 839 static inline bool 840 folio_within_range(struct folio *folio, struct vm_area_struct *vma, 841 unsigned long start, unsigned long end) 842 { 843 pgoff_t pgoff, addr; 844 unsigned long vma_pglen = vma_pages(vma); 845 846 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); 847 if (start > end) 848 return false; 849 850 if (start < vma->vm_start) 851 start = vma->vm_start; 852 853 if (end > vma->vm_end) 854 end = vma->vm_end; 855 856 pgoff = folio_pgoff(folio); 857 858 /* if folio start address is not in vma range */ 859 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) 860 return false; 861 862 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 863 864 return !(addr < start || end - addr < folio_size(folio)); 865 } 866 867 static inline bool 868 folio_within_vma(struct folio *folio, struct vm_area_struct *vma) 869 { 870 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); 871 } 872 873 /* 874 * mlock_vma_folio() and munlock_vma_folio(): 875 * should be called with vma's mmap_lock held for read or write, 876 * under page table lock for the pte/pmd being added or removed. 877 * 878 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at 879 * the end of folio_remove_rmap_*(); but new anon folios are managed by 880 * folio_add_lru_vma() calling mlock_new_folio(). 881 */ 882 void mlock_folio(struct folio *folio); 883 static inline void mlock_vma_folio(struct folio *folio, 884 struct vm_area_struct *vma) 885 { 886 /* 887 * The VM_SPECIAL check here serves two purposes. 888 * 1) VM_IO check prevents migration from double-counting during mlock. 889 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 890 * is never left set on a VM_SPECIAL vma, there is an interval while 891 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 892 * still be set while VM_SPECIAL bits are added: so ignore it then. 893 */ 894 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) 895 mlock_folio(folio); 896 } 897 898 void munlock_folio(struct folio *folio); 899 static inline void munlock_vma_folio(struct folio *folio, 900 struct vm_area_struct *vma) 901 { 902 /* 903 * munlock if the function is called. Ideally, we should only 904 * do munlock if any page of folio is unmapped from VMA and 905 * cause folio not fully mapped to VMA. 906 * 907 * But it's not easy to confirm that's the situation. So we 908 * always munlock the folio and page reclaim will correct it 909 * if it's wrong. 910 */ 911 if (unlikely(vma->vm_flags & VM_LOCKED)) 912 munlock_folio(folio); 913 } 914 915 void mlock_new_folio(struct folio *folio); 916 bool need_mlock_drain(int cpu); 917 void mlock_drain_local(void); 918 void mlock_drain_remote(int cpu); 919 920 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 921 922 /** 923 * vma_address - Find the virtual address a page range is mapped at 924 * @vma: The vma which maps this object. 925 * @pgoff: The page offset within its object. 926 * @nr_pages: The number of pages to consider. 927 * 928 * If any page in this range is mapped by this VMA, return the first address 929 * where any of these pages appear. Otherwise, return -EFAULT. 930 */ 931 static inline unsigned long vma_address(struct vm_area_struct *vma, 932 pgoff_t pgoff, unsigned long nr_pages) 933 { 934 unsigned long address; 935 936 if (pgoff >= vma->vm_pgoff) { 937 address = vma->vm_start + 938 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 939 /* Check for address beyond vma (or wrapped through 0?) */ 940 if (address < vma->vm_start || address >= vma->vm_end) 941 address = -EFAULT; 942 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 943 /* Test above avoids possibility of wrap to 0 on 32-bit */ 944 address = vma->vm_start; 945 } else { 946 address = -EFAULT; 947 } 948 return address; 949 } 950 951 /* 952 * Then at what user virtual address will none of the range be found in vma? 953 * Assumes that vma_address() already returned a good starting address. 954 */ 955 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 956 { 957 struct vm_area_struct *vma = pvmw->vma; 958 pgoff_t pgoff; 959 unsigned long address; 960 961 /* Common case, plus ->pgoff is invalid for KSM */ 962 if (pvmw->nr_pages == 1) 963 return pvmw->address + PAGE_SIZE; 964 965 pgoff = pvmw->pgoff + pvmw->nr_pages; 966 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 967 /* Check for address beyond vma (or wrapped through 0?) */ 968 if (address < vma->vm_start || address > vma->vm_end) 969 address = vma->vm_end; 970 return address; 971 } 972 973 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 974 struct file *fpin) 975 { 976 int flags = vmf->flags; 977 978 if (fpin) 979 return fpin; 980 981 /* 982 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 983 * anything, so we only pin the file and drop the mmap_lock if only 984 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 985 */ 986 if (fault_flag_allow_retry_first(flags) && 987 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 988 fpin = get_file(vmf->vma->vm_file); 989 release_fault_lock(vmf); 990 } 991 return fpin; 992 } 993 #else /* !CONFIG_MMU */ 994 static inline void unmap_mapping_folio(struct folio *folio) { } 995 static inline void mlock_new_folio(struct folio *folio) { } 996 static inline bool need_mlock_drain(int cpu) { return false; } 997 static inline void mlock_drain_local(void) { } 998 static inline void mlock_drain_remote(int cpu) { } 999 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 1000 { 1001 } 1002 #endif /* !CONFIG_MMU */ 1003 1004 /* Memory initialisation debug and verification */ 1005 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1006 DECLARE_STATIC_KEY_TRUE(deferred_pages); 1007 1008 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 1009 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1010 1011 enum mminit_level { 1012 MMINIT_WARNING, 1013 MMINIT_VERIFY, 1014 MMINIT_TRACE 1015 }; 1016 1017 #ifdef CONFIG_DEBUG_MEMORY_INIT 1018 1019 extern int mminit_loglevel; 1020 1021 #define mminit_dprintk(level, prefix, fmt, arg...) \ 1022 do { \ 1023 if (level < mminit_loglevel) { \ 1024 if (level <= MMINIT_WARNING) \ 1025 pr_warn("mminit::" prefix " " fmt, ##arg); \ 1026 else \ 1027 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 1028 } \ 1029 } while (0) 1030 1031 extern void mminit_verify_pageflags_layout(void); 1032 extern void mminit_verify_zonelist(void); 1033 #else 1034 1035 static inline void mminit_dprintk(enum mminit_level level, 1036 const char *prefix, const char *fmt, ...) 1037 { 1038 } 1039 1040 static inline void mminit_verify_pageflags_layout(void) 1041 { 1042 } 1043 1044 static inline void mminit_verify_zonelist(void) 1045 { 1046 } 1047 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 1048 1049 #define NODE_RECLAIM_NOSCAN -2 1050 #define NODE_RECLAIM_FULL -1 1051 #define NODE_RECLAIM_SOME 0 1052 #define NODE_RECLAIM_SUCCESS 1 1053 1054 #ifdef CONFIG_NUMA 1055 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 1056 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 1057 #else 1058 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 1059 unsigned int order) 1060 { 1061 return NODE_RECLAIM_NOSCAN; 1062 } 1063 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 1064 { 1065 return NUMA_NO_NODE; 1066 } 1067 #endif 1068 1069 /* 1070 * mm/memory-failure.c 1071 */ 1072 void shake_folio(struct folio *folio); 1073 extern int hwpoison_filter(struct page *p); 1074 1075 extern u32 hwpoison_filter_dev_major; 1076 extern u32 hwpoison_filter_dev_minor; 1077 extern u64 hwpoison_filter_flags_mask; 1078 extern u64 hwpoison_filter_flags_value; 1079 extern u64 hwpoison_filter_memcg; 1080 extern u32 hwpoison_filter_enable; 1081 #define MAGIC_HWPOISON 0x48575053U /* HWPS */ 1082 void SetPageHWPoisonTakenOff(struct page *page); 1083 void ClearPageHWPoisonTakenOff(struct page *page); 1084 bool take_page_off_buddy(struct page *page); 1085 bool put_page_back_buddy(struct page *page); 1086 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 1087 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 1088 struct vm_area_struct *vma, struct list_head *to_kill, 1089 unsigned long ksm_addr); 1090 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); 1091 1092 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 1093 unsigned long, unsigned long, 1094 unsigned long, unsigned long); 1095 1096 extern void set_pageblock_order(void); 1097 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private); 1098 unsigned long reclaim_pages(struct list_head *folio_list); 1099 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1100 struct list_head *folio_list); 1101 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1102 #define ALLOC_WMARK_MIN WMARK_MIN 1103 #define ALLOC_WMARK_LOW WMARK_LOW 1104 #define ALLOC_WMARK_HIGH WMARK_HIGH 1105 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1106 1107 /* Mask to get the watermark bits */ 1108 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1109 1110 /* 1111 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 1112 * cannot assume a reduced access to memory reserves is sufficient for 1113 * !MMU 1114 */ 1115 #ifdef CONFIG_MMU 1116 #define ALLOC_OOM 0x08 1117 #else 1118 #define ALLOC_OOM ALLOC_NO_WATERMARKS 1119 #endif 1120 1121 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 1122 * to 25% of the min watermark or 1123 * 62.5% if __GFP_HIGH is set. 1124 */ 1125 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 1126 * of the min watermark. 1127 */ 1128 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1129 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 1130 #ifdef CONFIG_ZONE_DMA32 1131 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 1132 #else 1133 #define ALLOC_NOFRAGMENT 0x0 1134 #endif 1135 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 1136 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 1137 1138 /* Flags that allow allocations below the min watermark. */ 1139 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 1140 1141 enum ttu_flags; 1142 struct tlbflush_unmap_batch; 1143 1144 1145 /* 1146 * only for MM internal work items which do not depend on 1147 * any allocations or locks which might depend on allocations 1148 */ 1149 extern struct workqueue_struct *mm_percpu_wq; 1150 1151 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1152 void try_to_unmap_flush(void); 1153 void try_to_unmap_flush_dirty(void); 1154 void flush_tlb_batched_pending(struct mm_struct *mm); 1155 #else 1156 static inline void try_to_unmap_flush(void) 1157 { 1158 } 1159 static inline void try_to_unmap_flush_dirty(void) 1160 { 1161 } 1162 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 1163 { 1164 } 1165 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 1166 1167 extern const struct trace_print_flags pageflag_names[]; 1168 extern const struct trace_print_flags pagetype_names[]; 1169 extern const struct trace_print_flags vmaflag_names[]; 1170 extern const struct trace_print_flags gfpflag_names[]; 1171 1172 static inline bool is_migrate_highatomic(enum migratetype migratetype) 1173 { 1174 return migratetype == MIGRATE_HIGHATOMIC; 1175 } 1176 1177 void setup_zone_pageset(struct zone *zone); 1178 1179 struct migration_target_control { 1180 int nid; /* preferred node id */ 1181 nodemask_t *nmask; 1182 gfp_t gfp_mask; 1183 enum migrate_reason reason; 1184 }; 1185 1186 /* 1187 * mm/filemap.c 1188 */ 1189 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 1190 struct folio *folio, loff_t fpos, size_t size); 1191 1192 /* 1193 * mm/vmalloc.c 1194 */ 1195 #ifdef CONFIG_MMU 1196 void __init vmalloc_init(void); 1197 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1198 pgprot_t prot, struct page **pages, unsigned int page_shift); 1199 #else 1200 static inline void vmalloc_init(void) 1201 { 1202 } 1203 1204 static inline 1205 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1206 pgprot_t prot, struct page **pages, unsigned int page_shift) 1207 { 1208 return -EINVAL; 1209 } 1210 #endif 1211 1212 int __must_check __vmap_pages_range_noflush(unsigned long addr, 1213 unsigned long end, pgprot_t prot, 1214 struct page **pages, unsigned int page_shift); 1215 1216 void vunmap_range_noflush(unsigned long start, unsigned long end); 1217 1218 void __vunmap_range_noflush(unsigned long start, unsigned long end); 1219 1220 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, 1221 unsigned long addr, int page_nid, int *flags); 1222 1223 void free_zone_device_folio(struct folio *folio); 1224 int migrate_device_coherent_page(struct page *page); 1225 1226 /* 1227 * mm/gup.c 1228 */ 1229 int __must_check try_grab_folio(struct folio *folio, int refs, 1230 unsigned int flags); 1231 1232 /* 1233 * mm/huge_memory.c 1234 */ 1235 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1236 pud_t *pud, bool write); 1237 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1238 pmd_t *pmd, bool write); 1239 1240 /* 1241 * mm/mmap.c 1242 */ 1243 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1244 struct vm_area_struct *vma, 1245 unsigned long delta); 1246 1247 enum { 1248 /* mark page accessed */ 1249 FOLL_TOUCH = 1 << 16, 1250 /* a retry, previous pass started an IO */ 1251 FOLL_TRIED = 1 << 17, 1252 /* we are working on non-current tsk/mm */ 1253 FOLL_REMOTE = 1 << 18, 1254 /* pages must be released via unpin_user_page */ 1255 FOLL_PIN = 1 << 19, 1256 /* gup_fast: prevent fall-back to slow gup */ 1257 FOLL_FAST_ONLY = 1 << 20, 1258 /* allow unlocking the mmap lock */ 1259 FOLL_UNLOCKABLE = 1 << 21, 1260 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ 1261 FOLL_MADV_POPULATE = 1 << 22, 1262 }; 1263 1264 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ 1265 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ 1266 FOLL_MADV_POPULATE) 1267 1268 /* 1269 * Indicates for which pages that are write-protected in the page table, 1270 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 1271 * GUP pin will remain consistent with the pages mapped into the page tables 1272 * of the MM. 1273 * 1274 * Temporary unmapping of PageAnonExclusive() pages or clearing of 1275 * PageAnonExclusive() has to protect against concurrent GUP: 1276 * * Ordinary GUP: Using the PT lock 1277 * * GUP-fast and fork(): mm->write_protect_seq 1278 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 1279 * folio_try_share_anon_rmap_*() 1280 * 1281 * Must be called with the (sub)page that's actually referenced via the 1282 * page table entry, which might not necessarily be the head page for a 1283 * PTE-mapped THP. 1284 * 1285 * If the vma is NULL, we're coming from the GUP-fast path and might have 1286 * to fallback to the slow path just to lookup the vma. 1287 */ 1288 static inline bool gup_must_unshare(struct vm_area_struct *vma, 1289 unsigned int flags, struct page *page) 1290 { 1291 /* 1292 * FOLL_WRITE is implicitly handled correctly as the page table entry 1293 * has to be writable -- and if it references (part of) an anonymous 1294 * folio, that part is required to be marked exclusive. 1295 */ 1296 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 1297 return false; 1298 /* 1299 * Note: PageAnon(page) is stable until the page is actually getting 1300 * freed. 1301 */ 1302 if (!PageAnon(page)) { 1303 /* 1304 * We only care about R/O long-term pining: R/O short-term 1305 * pinning does not have the semantics to observe successive 1306 * changes through the process page tables. 1307 */ 1308 if (!(flags & FOLL_LONGTERM)) 1309 return false; 1310 1311 /* We really need the vma ... */ 1312 if (!vma) 1313 return true; 1314 1315 /* 1316 * ... because we only care about writable private ("COW") 1317 * mappings where we have to break COW early. 1318 */ 1319 return is_cow_mapping(vma->vm_flags); 1320 } 1321 1322 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ 1323 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) 1324 smp_rmb(); 1325 1326 /* 1327 * Note that PageKsm() pages cannot be exclusive, and consequently, 1328 * cannot get pinned. 1329 */ 1330 return !PageAnonExclusive(page); 1331 } 1332 1333 extern bool mirrored_kernelcore; 1334 extern bool memblock_has_mirror(void); 1335 1336 static __always_inline void vma_set_range(struct vm_area_struct *vma, 1337 unsigned long start, unsigned long end, 1338 pgoff_t pgoff) 1339 { 1340 vma->vm_start = start; 1341 vma->vm_end = end; 1342 vma->vm_pgoff = pgoff; 1343 } 1344 1345 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1346 { 1347 /* 1348 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1349 * enablements, because when without soft-dirty being compiled in, 1350 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1351 * will be constantly true. 1352 */ 1353 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1354 return false; 1355 1356 /* 1357 * Soft-dirty is kind of special: its tracking is enabled when the 1358 * vma flags not set. 1359 */ 1360 return !(vma->vm_flags & VM_SOFTDIRTY); 1361 } 1362 1363 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd) 1364 { 1365 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd); 1366 } 1367 1368 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte) 1369 { 1370 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte); 1371 } 1372 1373 static inline void vma_iter_config(struct vma_iterator *vmi, 1374 unsigned long index, unsigned long last) 1375 { 1376 __mas_set_range(&vmi->mas, index, last - 1); 1377 } 1378 1379 static inline void vma_iter_reset(struct vma_iterator *vmi) 1380 { 1381 mas_reset(&vmi->mas); 1382 } 1383 1384 static inline 1385 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 1386 { 1387 return mas_prev_range(&vmi->mas, min); 1388 } 1389 1390 static inline 1391 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 1392 { 1393 return mas_next_range(&vmi->mas, max); 1394 } 1395 1396 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 1397 unsigned long max, unsigned long size) 1398 { 1399 return mas_empty_area(&vmi->mas, min, max - 1, size); 1400 } 1401 1402 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 1403 unsigned long max, unsigned long size) 1404 { 1405 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 1406 } 1407 1408 /* 1409 * VMA Iterator functions shared between nommu and mmap 1410 */ 1411 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 1412 struct vm_area_struct *vma) 1413 { 1414 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 1415 } 1416 1417 static inline void vma_iter_clear(struct vma_iterator *vmi) 1418 { 1419 mas_store_prealloc(&vmi->mas, NULL); 1420 } 1421 1422 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1423 { 1424 return mas_walk(&vmi->mas); 1425 } 1426 1427 /* Store a VMA with preallocated memory */ 1428 static inline void vma_iter_store(struct vma_iterator *vmi, 1429 struct vm_area_struct *vma) 1430 { 1431 1432 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1433 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 1434 vmi->mas.index > vma->vm_start)) { 1435 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 1436 vmi->mas.index, vma->vm_start, vma->vm_start, 1437 vma->vm_end, vmi->mas.index, vmi->mas.last); 1438 } 1439 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 1440 vmi->mas.last < vma->vm_start)) { 1441 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 1442 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 1443 vmi->mas.index, vmi->mas.last); 1444 } 1445 #endif 1446 1447 if (vmi->mas.status != ma_start && 1448 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1449 vma_iter_invalidate(vmi); 1450 1451 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1452 mas_store_prealloc(&vmi->mas, vma); 1453 } 1454 1455 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1456 struct vm_area_struct *vma, gfp_t gfp) 1457 { 1458 if (vmi->mas.status != ma_start && 1459 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1460 vma_iter_invalidate(vmi); 1461 1462 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1463 mas_store_gfp(&vmi->mas, vma, gfp); 1464 if (unlikely(mas_is_err(&vmi->mas))) 1465 return -ENOMEM; 1466 1467 return 0; 1468 } 1469 1470 /* 1471 * VMA lock generalization 1472 */ 1473 struct vma_prepare { 1474 struct vm_area_struct *vma; 1475 struct vm_area_struct *adj_next; 1476 struct file *file; 1477 struct address_space *mapping; 1478 struct anon_vma *anon_vma; 1479 struct vm_area_struct *insert; 1480 struct vm_area_struct *remove; 1481 struct vm_area_struct *remove2; 1482 }; 1483 1484 void __meminit __init_single_page(struct page *page, unsigned long pfn, 1485 unsigned long zone, int nid); 1486 1487 /* shrinker related functions */ 1488 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, 1489 int priority); 1490 1491 #ifdef CONFIG_64BIT 1492 static inline int can_do_mseal(unsigned long flags) 1493 { 1494 if (flags) 1495 return -EINVAL; 1496 1497 return 0; 1498 } 1499 1500 bool can_modify_mm(struct mm_struct *mm, unsigned long start, 1501 unsigned long end); 1502 bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start, 1503 unsigned long end, int behavior); 1504 #else 1505 static inline int can_do_mseal(unsigned long flags) 1506 { 1507 return -EPERM; 1508 } 1509 1510 static inline bool can_modify_mm(struct mm_struct *mm, unsigned long start, 1511 unsigned long end) 1512 { 1513 return true; 1514 } 1515 1516 static inline bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start, 1517 unsigned long end, int behavior) 1518 { 1519 return true; 1520 } 1521 #endif 1522 1523 #ifdef CONFIG_SHRINKER_DEBUG 1524 static inline __printf(2, 0) int shrinker_debugfs_name_alloc( 1525 struct shrinker *shrinker, const char *fmt, va_list ap) 1526 { 1527 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 1528 1529 return shrinker->name ? 0 : -ENOMEM; 1530 } 1531 1532 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1533 { 1534 kfree_const(shrinker->name); 1535 shrinker->name = NULL; 1536 } 1537 1538 extern int shrinker_debugfs_add(struct shrinker *shrinker); 1539 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1540 int *debugfs_id); 1541 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1542 int debugfs_id); 1543 #else /* CONFIG_SHRINKER_DEBUG */ 1544 static inline int shrinker_debugfs_add(struct shrinker *shrinker) 1545 { 1546 return 0; 1547 } 1548 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, 1549 const char *fmt, va_list ap) 1550 { 1551 return 0; 1552 } 1553 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1554 { 1555 } 1556 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1557 int *debugfs_id) 1558 { 1559 *debugfs_id = -1; 1560 return NULL; 1561 } 1562 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1563 int debugfs_id) 1564 { 1565 } 1566 #endif /* CONFIG_SHRINKER_DEBUG */ 1567 1568 /* Only track the nodes of mappings with shadow entries */ 1569 void workingset_update_node(struct xa_node *node); 1570 extern struct list_lru shadow_nodes; 1571 1572 struct unlink_vma_file_batch { 1573 int count; 1574 struct vm_area_struct *vmas[8]; 1575 }; 1576 1577 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *); 1578 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *, struct vm_area_struct *); 1579 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *); 1580 1581 #endif /* __MM_INTERNAL_H */ 1582