xref: /linux/mm/internal.h (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/tracepoint-defs.h>
17 
18 struct folio_batch;
19 
20 /*
21  * The set of flags that only affect watermark checking and reclaim
22  * behaviour. This is used by the MM to obey the caller constraints
23  * about IO, FS and watermark checking while ignoring placement
24  * hints such as HIGHMEM usage.
25  */
26 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
27 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
28 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
29 			__GFP_NOLOCKDEP)
30 
31 /* The GFP flags allowed during early boot */
32 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
33 
34 /* Control allocation cpuset and node placement constraints */
35 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
36 
37 /* Do not use these with a slab allocator */
38 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
39 
40 /*
41  * Different from WARN_ON_ONCE(), no warning will be issued
42  * when we specify __GFP_NOWARN.
43  */
44 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
45 	static bool __section(".data.once") __warned;			\
46 	int __ret_warn_once = !!(cond);					\
47 									\
48 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
49 		__warned = true;					\
50 		WARN_ON(1);						\
51 	}								\
52 	unlikely(__ret_warn_once);					\
53 })
54 
55 void page_writeback_init(void);
56 
57 /*
58  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
59  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
60  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
61  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
62  */
63 #define ENTIRELY_MAPPED		0x800000
64 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
65 
66 /*
67  * Flags passed to __show_mem() and show_free_areas() to suppress output in
68  * various contexts.
69  */
70 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
71 
72 /*
73  * How many individual pages have an elevated _mapcount.  Excludes
74  * the folio's entire_mapcount.
75  *
76  * Don't use this function outside of debugging code.
77  */
78 static inline int folio_nr_pages_mapped(const struct folio *folio)
79 {
80 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
81 }
82 
83 /*
84  * Retrieve the first entry of a folio based on a provided entry within the
85  * folio. We cannot rely on folio->swap as there is no guarantee that it has
86  * been initialized. Used for calling arch_swap_restore()
87  */
88 static inline swp_entry_t folio_swap(swp_entry_t entry,
89 		const struct folio *folio)
90 {
91 	swp_entry_t swap = {
92 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
93 	};
94 
95 	return swap;
96 }
97 
98 static inline void *folio_raw_mapping(const struct folio *folio)
99 {
100 	unsigned long mapping = (unsigned long)folio->mapping;
101 
102 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
103 }
104 
105 #ifdef CONFIG_MMU
106 
107 /* Flags for folio_pte_batch(). */
108 typedef int __bitwise fpb_t;
109 
110 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
111 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
112 
113 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
114 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
115 
116 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
117 {
118 	if (flags & FPB_IGNORE_DIRTY)
119 		pte = pte_mkclean(pte);
120 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
121 		pte = pte_clear_soft_dirty(pte);
122 	return pte_wrprotect(pte_mkold(pte));
123 }
124 
125 /**
126  * folio_pte_batch - detect a PTE batch for a large folio
127  * @folio: The large folio to detect a PTE batch for.
128  * @addr: The user virtual address the first page is mapped at.
129  * @start_ptep: Page table pointer for the first entry.
130  * @pte: Page table entry for the first page.
131  * @max_nr: The maximum number of table entries to consider.
132  * @flags: Flags to modify the PTE batch semantics.
133  * @any_writable: Optional pointer to indicate whether any entry except the
134  *		  first one is writable.
135  * @any_young: Optional pointer to indicate whether any entry except the
136  *		  first one is young.
137  * @any_dirty: Optional pointer to indicate whether any entry except the
138  *		  first one is dirty.
139  *
140  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
141  * pages of the same large folio.
142  *
143  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
144  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
145  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
146  *
147  * start_ptep must map any page of the folio. max_nr must be at least one and
148  * must be limited by the caller so scanning cannot exceed a single page table.
149  *
150  * Return: the number of table entries in the batch.
151  */
152 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
153 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
154 		bool *any_writable, bool *any_young, bool *any_dirty)
155 {
156 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
157 	const pte_t *end_ptep = start_ptep + max_nr;
158 	pte_t expected_pte, *ptep;
159 	bool writable, young, dirty;
160 	int nr;
161 
162 	if (any_writable)
163 		*any_writable = false;
164 	if (any_young)
165 		*any_young = false;
166 	if (any_dirty)
167 		*any_dirty = false;
168 
169 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
170 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
171 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
172 
173 	nr = pte_batch_hint(start_ptep, pte);
174 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
175 	ptep = start_ptep + nr;
176 
177 	while (ptep < end_ptep) {
178 		pte = ptep_get(ptep);
179 		if (any_writable)
180 			writable = !!pte_write(pte);
181 		if (any_young)
182 			young = !!pte_young(pte);
183 		if (any_dirty)
184 			dirty = !!pte_dirty(pte);
185 		pte = __pte_batch_clear_ignored(pte, flags);
186 
187 		if (!pte_same(pte, expected_pte))
188 			break;
189 
190 		/*
191 		 * Stop immediately once we reached the end of the folio. In
192 		 * corner cases the next PFN might fall into a different
193 		 * folio.
194 		 */
195 		if (pte_pfn(pte) >= folio_end_pfn)
196 			break;
197 
198 		if (any_writable)
199 			*any_writable |= writable;
200 		if (any_young)
201 			*any_young |= young;
202 		if (any_dirty)
203 			*any_dirty |= dirty;
204 
205 		nr = pte_batch_hint(ptep, pte);
206 		expected_pte = pte_advance_pfn(expected_pte, nr);
207 		ptep += nr;
208 	}
209 
210 	return min(ptep - start_ptep, max_nr);
211 }
212 
213 /**
214  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
215  *	 forward or backward by delta
216  * @pte: The initial pte state; is_swap_pte(pte) must be true and
217  *	 non_swap_entry() must be false.
218  * @delta: The direction and the offset we are moving; forward if delta
219  *	 is positive; backward if delta is negative
220  *
221  * Moves the swap offset, while maintaining all other fields, including
222  * swap type, and any swp pte bits. The resulting pte is returned.
223  */
224 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
225 {
226 	swp_entry_t entry = pte_to_swp_entry(pte);
227 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
228 						   (swp_offset(entry) + delta)));
229 
230 	if (pte_swp_soft_dirty(pte))
231 		new = pte_swp_mksoft_dirty(new);
232 	if (pte_swp_exclusive(pte))
233 		new = pte_swp_mkexclusive(new);
234 	if (pte_swp_uffd_wp(pte))
235 		new = pte_swp_mkuffd_wp(new);
236 
237 	return new;
238 }
239 
240 
241 /**
242  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
243  * @pte: The initial pte state; is_swap_pte(pte) must be true and
244  *	 non_swap_entry() must be false.
245  *
246  * Increments the swap offset, while maintaining all other fields, including
247  * swap type, and any swp pte bits. The resulting pte is returned.
248  */
249 static inline pte_t pte_next_swp_offset(pte_t pte)
250 {
251 	return pte_move_swp_offset(pte, 1);
252 }
253 
254 /**
255  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
256  * @start_ptep: Page table pointer for the first entry.
257  * @max_nr: The maximum number of table entries to consider.
258  * @pte: Page table entry for the first entry.
259  *
260  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
261  * containing swap entries all with consecutive offsets and targeting the same
262  * swap type, all with matching swp pte bits.
263  *
264  * max_nr must be at least one and must be limited by the caller so scanning
265  * cannot exceed a single page table.
266  *
267  * Return: the number of table entries in the batch.
268  */
269 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
270 {
271 	pte_t expected_pte = pte_next_swp_offset(pte);
272 	const pte_t *end_ptep = start_ptep + max_nr;
273 	pte_t *ptep = start_ptep + 1;
274 
275 	VM_WARN_ON(max_nr < 1);
276 	VM_WARN_ON(!is_swap_pte(pte));
277 	VM_WARN_ON(non_swap_entry(pte_to_swp_entry(pte)));
278 
279 	while (ptep < end_ptep) {
280 		pte = ptep_get(ptep);
281 
282 		if (!pte_same(pte, expected_pte))
283 			break;
284 
285 		expected_pte = pte_next_swp_offset(expected_pte);
286 		ptep++;
287 	}
288 
289 	return ptep - start_ptep;
290 }
291 #endif /* CONFIG_MMU */
292 
293 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
294 						int nr_throttled);
295 static inline void acct_reclaim_writeback(struct folio *folio)
296 {
297 	pg_data_t *pgdat = folio_pgdat(folio);
298 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
299 
300 	if (nr_throttled)
301 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
302 }
303 
304 static inline void wake_throttle_isolated(pg_data_t *pgdat)
305 {
306 	wait_queue_head_t *wqh;
307 
308 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
309 	if (waitqueue_active(wqh))
310 		wake_up(wqh);
311 }
312 
313 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
314 vm_fault_t do_swap_page(struct vm_fault *vmf);
315 void folio_rotate_reclaimable(struct folio *folio);
316 bool __folio_end_writeback(struct folio *folio);
317 void deactivate_file_folio(struct folio *folio);
318 void folio_activate(struct folio *folio);
319 
320 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
321 		   struct vm_area_struct *start_vma, unsigned long floor,
322 		   unsigned long ceiling, bool mm_wr_locked);
323 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
324 
325 struct zap_details;
326 void unmap_page_range(struct mmu_gather *tlb,
327 			     struct vm_area_struct *vma,
328 			     unsigned long addr, unsigned long end,
329 			     struct zap_details *details);
330 
331 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
332 		unsigned int order);
333 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
334 static inline void force_page_cache_readahead(struct address_space *mapping,
335 		struct file *file, pgoff_t index, unsigned long nr_to_read)
336 {
337 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
338 	force_page_cache_ra(&ractl, nr_to_read);
339 }
340 
341 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
342 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
343 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
344 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
345 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
346 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
347 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
348 		loff_t end);
349 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
350 unsigned long mapping_try_invalidate(struct address_space *mapping,
351 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
352 
353 /**
354  * folio_evictable - Test whether a folio is evictable.
355  * @folio: The folio to test.
356  *
357  * Test whether @folio is evictable -- i.e., should be placed on
358  * active/inactive lists vs unevictable list.
359  *
360  * Reasons folio might not be evictable:
361  * 1. folio's mapping marked unevictable
362  * 2. One of the pages in the folio is part of an mlocked VMA
363  */
364 static inline bool folio_evictable(struct folio *folio)
365 {
366 	bool ret;
367 
368 	/* Prevent address_space of inode and swap cache from being freed */
369 	rcu_read_lock();
370 	ret = !mapping_unevictable(folio_mapping(folio)) &&
371 			!folio_test_mlocked(folio);
372 	rcu_read_unlock();
373 	return ret;
374 }
375 
376 /*
377  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
378  * a count of one.
379  */
380 static inline void set_page_refcounted(struct page *page)
381 {
382 	VM_BUG_ON_PAGE(PageTail(page), page);
383 	VM_BUG_ON_PAGE(page_ref_count(page), page);
384 	set_page_count(page, 1);
385 }
386 
387 /*
388  * Return true if a folio needs ->release_folio() calling upon it.
389  */
390 static inline bool folio_needs_release(struct folio *folio)
391 {
392 	struct address_space *mapping = folio_mapping(folio);
393 
394 	return folio_has_private(folio) ||
395 		(mapping && mapping_release_always(mapping));
396 }
397 
398 extern unsigned long highest_memmap_pfn;
399 
400 /*
401  * Maximum number of reclaim retries without progress before the OOM
402  * killer is consider the only way forward.
403  */
404 #define MAX_RECLAIM_RETRIES 16
405 
406 /*
407  * in mm/vmscan.c:
408  */
409 bool isolate_lru_page(struct page *page);
410 bool folio_isolate_lru(struct folio *folio);
411 void putback_lru_page(struct page *page);
412 void folio_putback_lru(struct folio *folio);
413 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
414 
415 /*
416  * in mm/rmap.c:
417  */
418 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
419 
420 /*
421  * in mm/page_alloc.c
422  */
423 #define K(x) ((x) << (PAGE_SHIFT-10))
424 
425 extern char * const zone_names[MAX_NR_ZONES];
426 
427 /* perform sanity checks on struct pages being allocated or freed */
428 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
429 
430 extern int min_free_kbytes;
431 
432 void setup_per_zone_wmarks(void);
433 void calculate_min_free_kbytes(void);
434 int __meminit init_per_zone_wmark_min(void);
435 void page_alloc_sysctl_init(void);
436 
437 /*
438  * Structure for holding the mostly immutable allocation parameters passed
439  * between functions involved in allocations, including the alloc_pages*
440  * family of functions.
441  *
442  * nodemask, migratetype and highest_zoneidx are initialized only once in
443  * __alloc_pages() and then never change.
444  *
445  * zonelist, preferred_zone and highest_zoneidx are set first in
446  * __alloc_pages() for the fast path, and might be later changed
447  * in __alloc_pages_slowpath(). All other functions pass the whole structure
448  * by a const pointer.
449  */
450 struct alloc_context {
451 	struct zonelist *zonelist;
452 	nodemask_t *nodemask;
453 	struct zoneref *preferred_zoneref;
454 	int migratetype;
455 
456 	/*
457 	 * highest_zoneidx represents highest usable zone index of
458 	 * the allocation request. Due to the nature of the zone,
459 	 * memory on lower zone than the highest_zoneidx will be
460 	 * protected by lowmem_reserve[highest_zoneidx].
461 	 *
462 	 * highest_zoneidx is also used by reclaim/compaction to limit
463 	 * the target zone since higher zone than this index cannot be
464 	 * usable for this allocation request.
465 	 */
466 	enum zone_type highest_zoneidx;
467 	bool spread_dirty_pages;
468 };
469 
470 /*
471  * This function returns the order of a free page in the buddy system. In
472  * general, page_zone(page)->lock must be held by the caller to prevent the
473  * page from being allocated in parallel and returning garbage as the order.
474  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
475  * page cannot be allocated or merged in parallel. Alternatively, it must
476  * handle invalid values gracefully, and use buddy_order_unsafe() below.
477  */
478 static inline unsigned int buddy_order(struct page *page)
479 {
480 	/* PageBuddy() must be checked by the caller */
481 	return page_private(page);
482 }
483 
484 /*
485  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
486  * PageBuddy() should be checked first by the caller to minimize race window,
487  * and invalid values must be handled gracefully.
488  *
489  * READ_ONCE is used so that if the caller assigns the result into a local
490  * variable and e.g. tests it for valid range before using, the compiler cannot
491  * decide to remove the variable and inline the page_private(page) multiple
492  * times, potentially observing different values in the tests and the actual
493  * use of the result.
494  */
495 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
496 
497 /*
498  * This function checks whether a page is free && is the buddy
499  * we can coalesce a page and its buddy if
500  * (a) the buddy is not in a hole (check before calling!) &&
501  * (b) the buddy is in the buddy system &&
502  * (c) a page and its buddy have the same order &&
503  * (d) a page and its buddy are in the same zone.
504  *
505  * For recording whether a page is in the buddy system, we set PageBuddy.
506  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
507  *
508  * For recording page's order, we use page_private(page).
509  */
510 static inline bool page_is_buddy(struct page *page, struct page *buddy,
511 				 unsigned int order)
512 {
513 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
514 		return false;
515 
516 	if (buddy_order(buddy) != order)
517 		return false;
518 
519 	/*
520 	 * zone check is done late to avoid uselessly calculating
521 	 * zone/node ids for pages that could never merge.
522 	 */
523 	if (page_zone_id(page) != page_zone_id(buddy))
524 		return false;
525 
526 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
527 
528 	return true;
529 }
530 
531 /*
532  * Locate the struct page for both the matching buddy in our
533  * pair (buddy1) and the combined O(n+1) page they form (page).
534  *
535  * 1) Any buddy B1 will have an order O twin B2 which satisfies
536  * the following equation:
537  *     B2 = B1 ^ (1 << O)
538  * For example, if the starting buddy (buddy2) is #8 its order
539  * 1 buddy is #10:
540  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
541  *
542  * 2) Any buddy B will have an order O+1 parent P which
543  * satisfies the following equation:
544  *     P = B & ~(1 << O)
545  *
546  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
547  */
548 static inline unsigned long
549 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
550 {
551 	return page_pfn ^ (1 << order);
552 }
553 
554 /*
555  * Find the buddy of @page and validate it.
556  * @page: The input page
557  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
558  *       function is used in the performance-critical __free_one_page().
559  * @order: The order of the page
560  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
561  *             page_to_pfn().
562  *
563  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
564  * not the same as @page. The validation is necessary before use it.
565  *
566  * Return: the found buddy page or NULL if not found.
567  */
568 static inline struct page *find_buddy_page_pfn(struct page *page,
569 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
570 {
571 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
572 	struct page *buddy;
573 
574 	buddy = page + (__buddy_pfn - pfn);
575 	if (buddy_pfn)
576 		*buddy_pfn = __buddy_pfn;
577 
578 	if (page_is_buddy(page, buddy, order))
579 		return buddy;
580 	return NULL;
581 }
582 
583 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
584 				unsigned long end_pfn, struct zone *zone);
585 
586 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
587 				unsigned long end_pfn, struct zone *zone)
588 {
589 	if (zone->contiguous)
590 		return pfn_to_page(start_pfn);
591 
592 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
593 }
594 
595 void set_zone_contiguous(struct zone *zone);
596 
597 static inline void clear_zone_contiguous(struct zone *zone)
598 {
599 	zone->contiguous = false;
600 }
601 
602 extern int __isolate_free_page(struct page *page, unsigned int order);
603 extern void __putback_isolated_page(struct page *page, unsigned int order,
604 				    int mt);
605 extern void memblock_free_pages(struct page *page, unsigned long pfn,
606 					unsigned int order);
607 extern void __free_pages_core(struct page *page, unsigned int order);
608 
609 /*
610  * This will have no effect, other than possibly generating a warning, if the
611  * caller passes in a non-large folio.
612  */
613 static inline void folio_set_order(struct folio *folio, unsigned int order)
614 {
615 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
616 		return;
617 
618 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
619 #ifdef CONFIG_64BIT
620 	folio->_folio_nr_pages = 1U << order;
621 #endif
622 }
623 
624 void folio_undo_large_rmappable(struct folio *folio);
625 
626 static inline struct folio *page_rmappable_folio(struct page *page)
627 {
628 	struct folio *folio = (struct folio *)page;
629 
630 	if (folio && folio_test_large(folio))
631 		folio_set_large_rmappable(folio);
632 	return folio;
633 }
634 
635 static inline void prep_compound_head(struct page *page, unsigned int order)
636 {
637 	struct folio *folio = (struct folio *)page;
638 
639 	folio_set_order(folio, order);
640 	atomic_set(&folio->_large_mapcount, -1);
641 	atomic_set(&folio->_entire_mapcount, -1);
642 	atomic_set(&folio->_nr_pages_mapped, 0);
643 	atomic_set(&folio->_pincount, 0);
644 	if (order > 1)
645 		INIT_LIST_HEAD(&folio->_deferred_list);
646 }
647 
648 static inline void prep_compound_tail(struct page *head, int tail_idx)
649 {
650 	struct page *p = head + tail_idx;
651 
652 	p->mapping = TAIL_MAPPING;
653 	set_compound_head(p, head);
654 	set_page_private(p, 0);
655 }
656 
657 extern void prep_compound_page(struct page *page, unsigned int order);
658 
659 extern void post_alloc_hook(struct page *page, unsigned int order,
660 					gfp_t gfp_flags);
661 extern bool free_pages_prepare(struct page *page, unsigned int order);
662 
663 extern int user_min_free_kbytes;
664 
665 void free_unref_page(struct page *page, unsigned int order);
666 void free_unref_folios(struct folio_batch *fbatch);
667 
668 extern void zone_pcp_reset(struct zone *zone);
669 extern void zone_pcp_disable(struct zone *zone);
670 extern void zone_pcp_enable(struct zone *zone);
671 extern void zone_pcp_init(struct zone *zone);
672 
673 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
674 			  phys_addr_t min_addr,
675 			  int nid, bool exact_nid);
676 
677 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
678 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
679 
680 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
681 
682 /*
683  * in mm/compaction.c
684  */
685 /*
686  * compact_control is used to track pages being migrated and the free pages
687  * they are being migrated to during memory compaction. The free_pfn starts
688  * at the end of a zone and migrate_pfn begins at the start. Movable pages
689  * are moved to the end of a zone during a compaction run and the run
690  * completes when free_pfn <= migrate_pfn
691  */
692 struct compact_control {
693 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
694 	struct list_head migratepages;	/* List of pages being migrated */
695 	unsigned int nr_freepages;	/* Number of isolated free pages */
696 	unsigned int nr_migratepages;	/* Number of pages to migrate */
697 	unsigned long free_pfn;		/* isolate_freepages search base */
698 	/*
699 	 * Acts as an in/out parameter to page isolation for migration.
700 	 * isolate_migratepages uses it as a search base.
701 	 * isolate_migratepages_block will update the value to the next pfn
702 	 * after the last isolated one.
703 	 */
704 	unsigned long migrate_pfn;
705 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
706 	struct zone *zone;
707 	unsigned long total_migrate_scanned;
708 	unsigned long total_free_scanned;
709 	unsigned short fast_search_fail;/* failures to use free list searches */
710 	short search_order;		/* order to start a fast search at */
711 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
712 	int order;			/* order a direct compactor needs */
713 	int migratetype;		/* migratetype of direct compactor */
714 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
715 	const int highest_zoneidx;	/* zone index of a direct compactor */
716 	enum migrate_mode mode;		/* Async or sync migration mode */
717 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
718 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
719 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
720 	bool direct_compaction;		/* False from kcompactd or /proc/... */
721 	bool proactive_compaction;	/* kcompactd proactive compaction */
722 	bool whole_zone;		/* Whole zone should/has been scanned */
723 	bool contended;			/* Signal lock contention */
724 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
725 					 * when there are potentially transient
726 					 * isolation or migration failures to
727 					 * ensure forward progress.
728 					 */
729 	bool alloc_contig;		/* alloc_contig_range allocation */
730 };
731 
732 /*
733  * Used in direct compaction when a page should be taken from the freelists
734  * immediately when one is created during the free path.
735  */
736 struct capture_control {
737 	struct compact_control *cc;
738 	struct page *page;
739 };
740 
741 unsigned long
742 isolate_freepages_range(struct compact_control *cc,
743 			unsigned long start_pfn, unsigned long end_pfn);
744 int
745 isolate_migratepages_range(struct compact_control *cc,
746 			   unsigned long low_pfn, unsigned long end_pfn);
747 
748 int __alloc_contig_migrate_range(struct compact_control *cc,
749 					unsigned long start, unsigned long end,
750 					int migratetype);
751 
752 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
753 void init_cma_reserved_pageblock(struct page *page);
754 
755 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
756 
757 int find_suitable_fallback(struct free_area *area, unsigned int order,
758 			int migratetype, bool only_stealable, bool *can_steal);
759 
760 static inline bool free_area_empty(struct free_area *area, int migratetype)
761 {
762 	return list_empty(&area->free_list[migratetype]);
763 }
764 
765 /*
766  * These three helpers classifies VMAs for virtual memory accounting.
767  */
768 
769 /*
770  * Executable code area - executable, not writable, not stack
771  */
772 static inline bool is_exec_mapping(vm_flags_t flags)
773 {
774 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
775 }
776 
777 /*
778  * Stack area (including shadow stacks)
779  *
780  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
781  * do_mmap() forbids all other combinations.
782  */
783 static inline bool is_stack_mapping(vm_flags_t flags)
784 {
785 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
786 }
787 
788 /*
789  * Data area - private, writable, not stack
790  */
791 static inline bool is_data_mapping(vm_flags_t flags)
792 {
793 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
794 }
795 
796 /* mm/util.c */
797 struct anon_vma *folio_anon_vma(struct folio *folio);
798 
799 #ifdef CONFIG_MMU
800 void unmap_mapping_folio(struct folio *folio);
801 extern long populate_vma_page_range(struct vm_area_struct *vma,
802 		unsigned long start, unsigned long end, int *locked);
803 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
804 		unsigned long end, bool write, int *locked);
805 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
806 			       unsigned long bytes);
807 
808 /*
809  * NOTE: This function can't tell whether the folio is "fully mapped" in the
810  * range.
811  * "fully mapped" means all the pages of folio is associated with the page
812  * table of range while this function just check whether the folio range is
813  * within the range [start, end). Function caller needs to do page table
814  * check if it cares about the page table association.
815  *
816  * Typical usage (like mlock or madvise) is:
817  * Caller knows at least 1 page of folio is associated with page table of VMA
818  * and the range [start, end) is intersect with the VMA range. Caller wants
819  * to know whether the folio is fully associated with the range. It calls
820  * this function to check whether the folio is in the range first. Then checks
821  * the page table to know whether the folio is fully mapped to the range.
822  */
823 static inline bool
824 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
825 		unsigned long start, unsigned long end)
826 {
827 	pgoff_t pgoff, addr;
828 	unsigned long vma_pglen = vma_pages(vma);
829 
830 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
831 	if (start > end)
832 		return false;
833 
834 	if (start < vma->vm_start)
835 		start = vma->vm_start;
836 
837 	if (end > vma->vm_end)
838 		end = vma->vm_end;
839 
840 	pgoff = folio_pgoff(folio);
841 
842 	/* if folio start address is not in vma range */
843 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
844 		return false;
845 
846 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
847 
848 	return !(addr < start || end - addr < folio_size(folio));
849 }
850 
851 static inline bool
852 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
853 {
854 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
855 }
856 
857 /*
858  * mlock_vma_folio() and munlock_vma_folio():
859  * should be called with vma's mmap_lock held for read or write,
860  * under page table lock for the pte/pmd being added or removed.
861  *
862  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
863  * the end of folio_remove_rmap_*(); but new anon folios are managed by
864  * folio_add_lru_vma() calling mlock_new_folio().
865  */
866 void mlock_folio(struct folio *folio);
867 static inline void mlock_vma_folio(struct folio *folio,
868 				struct vm_area_struct *vma)
869 {
870 	/*
871 	 * The VM_SPECIAL check here serves two purposes.
872 	 * 1) VM_IO check prevents migration from double-counting during mlock.
873 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
874 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
875 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
876 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
877 	 */
878 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
879 		mlock_folio(folio);
880 }
881 
882 void munlock_folio(struct folio *folio);
883 static inline void munlock_vma_folio(struct folio *folio,
884 					struct vm_area_struct *vma)
885 {
886 	/*
887 	 * munlock if the function is called. Ideally, we should only
888 	 * do munlock if any page of folio is unmapped from VMA and
889 	 * cause folio not fully mapped to VMA.
890 	 *
891 	 * But it's not easy to confirm that's the situation. So we
892 	 * always munlock the folio and page reclaim will correct it
893 	 * if it's wrong.
894 	 */
895 	if (unlikely(vma->vm_flags & VM_LOCKED))
896 		munlock_folio(folio);
897 }
898 
899 void mlock_new_folio(struct folio *folio);
900 bool need_mlock_drain(int cpu);
901 void mlock_drain_local(void);
902 void mlock_drain_remote(int cpu);
903 
904 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
905 
906 /**
907  * vma_address - Find the virtual address a page range is mapped at
908  * @vma: The vma which maps this object.
909  * @pgoff: The page offset within its object.
910  * @nr_pages: The number of pages to consider.
911  *
912  * If any page in this range is mapped by this VMA, return the first address
913  * where any of these pages appear.  Otherwise, return -EFAULT.
914  */
915 static inline unsigned long vma_address(struct vm_area_struct *vma,
916 		pgoff_t pgoff, unsigned long nr_pages)
917 {
918 	unsigned long address;
919 
920 	if (pgoff >= vma->vm_pgoff) {
921 		address = vma->vm_start +
922 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
923 		/* Check for address beyond vma (or wrapped through 0?) */
924 		if (address < vma->vm_start || address >= vma->vm_end)
925 			address = -EFAULT;
926 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
927 		/* Test above avoids possibility of wrap to 0 on 32-bit */
928 		address = vma->vm_start;
929 	} else {
930 		address = -EFAULT;
931 	}
932 	return address;
933 }
934 
935 /*
936  * Then at what user virtual address will none of the range be found in vma?
937  * Assumes that vma_address() already returned a good starting address.
938  */
939 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
940 {
941 	struct vm_area_struct *vma = pvmw->vma;
942 	pgoff_t pgoff;
943 	unsigned long address;
944 
945 	/* Common case, plus ->pgoff is invalid for KSM */
946 	if (pvmw->nr_pages == 1)
947 		return pvmw->address + PAGE_SIZE;
948 
949 	pgoff = pvmw->pgoff + pvmw->nr_pages;
950 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
951 	/* Check for address beyond vma (or wrapped through 0?) */
952 	if (address < vma->vm_start || address > vma->vm_end)
953 		address = vma->vm_end;
954 	return address;
955 }
956 
957 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
958 						    struct file *fpin)
959 {
960 	int flags = vmf->flags;
961 
962 	if (fpin)
963 		return fpin;
964 
965 	/*
966 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
967 	 * anything, so we only pin the file and drop the mmap_lock if only
968 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
969 	 */
970 	if (fault_flag_allow_retry_first(flags) &&
971 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
972 		fpin = get_file(vmf->vma->vm_file);
973 		release_fault_lock(vmf);
974 	}
975 	return fpin;
976 }
977 #else /* !CONFIG_MMU */
978 static inline void unmap_mapping_folio(struct folio *folio) { }
979 static inline void mlock_new_folio(struct folio *folio) { }
980 static inline bool need_mlock_drain(int cpu) { return false; }
981 static inline void mlock_drain_local(void) { }
982 static inline void mlock_drain_remote(int cpu) { }
983 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
984 {
985 }
986 #endif /* !CONFIG_MMU */
987 
988 /* Memory initialisation debug and verification */
989 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
990 DECLARE_STATIC_KEY_TRUE(deferred_pages);
991 
992 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
993 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
994 
995 enum mminit_level {
996 	MMINIT_WARNING,
997 	MMINIT_VERIFY,
998 	MMINIT_TRACE
999 };
1000 
1001 #ifdef CONFIG_DEBUG_MEMORY_INIT
1002 
1003 extern int mminit_loglevel;
1004 
1005 #define mminit_dprintk(level, prefix, fmt, arg...) \
1006 do { \
1007 	if (level < mminit_loglevel) { \
1008 		if (level <= MMINIT_WARNING) \
1009 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1010 		else \
1011 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1012 	} \
1013 } while (0)
1014 
1015 extern void mminit_verify_pageflags_layout(void);
1016 extern void mminit_verify_zonelist(void);
1017 #else
1018 
1019 static inline void mminit_dprintk(enum mminit_level level,
1020 				const char *prefix, const char *fmt, ...)
1021 {
1022 }
1023 
1024 static inline void mminit_verify_pageflags_layout(void)
1025 {
1026 }
1027 
1028 static inline void mminit_verify_zonelist(void)
1029 {
1030 }
1031 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1032 
1033 #define NODE_RECLAIM_NOSCAN	-2
1034 #define NODE_RECLAIM_FULL	-1
1035 #define NODE_RECLAIM_SOME	0
1036 #define NODE_RECLAIM_SUCCESS	1
1037 
1038 #ifdef CONFIG_NUMA
1039 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1040 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1041 #else
1042 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1043 				unsigned int order)
1044 {
1045 	return NODE_RECLAIM_NOSCAN;
1046 }
1047 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1048 {
1049 	return NUMA_NO_NODE;
1050 }
1051 #endif
1052 
1053 /*
1054  * mm/memory-failure.c
1055  */
1056 void shake_folio(struct folio *folio);
1057 extern int hwpoison_filter(struct page *p);
1058 
1059 extern u32 hwpoison_filter_dev_major;
1060 extern u32 hwpoison_filter_dev_minor;
1061 extern u64 hwpoison_filter_flags_mask;
1062 extern u64 hwpoison_filter_flags_value;
1063 extern u64 hwpoison_filter_memcg;
1064 extern u32 hwpoison_filter_enable;
1065 
1066 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1067         unsigned long, unsigned long,
1068         unsigned long, unsigned long);
1069 
1070 extern void set_pageblock_order(void);
1071 unsigned long reclaim_pages(struct list_head *folio_list);
1072 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1073 					    struct list_head *folio_list);
1074 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1075 #define ALLOC_WMARK_MIN		WMARK_MIN
1076 #define ALLOC_WMARK_LOW		WMARK_LOW
1077 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1078 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1079 
1080 /* Mask to get the watermark bits */
1081 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1082 
1083 /*
1084  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1085  * cannot assume a reduced access to memory reserves is sufficient for
1086  * !MMU
1087  */
1088 #ifdef CONFIG_MMU
1089 #define ALLOC_OOM		0x08
1090 #else
1091 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1092 #endif
1093 
1094 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1095 				       * to 25% of the min watermark or
1096 				       * 62.5% if __GFP_HIGH is set.
1097 				       */
1098 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1099 				       * of the min watermark.
1100 				       */
1101 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1102 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1103 #ifdef CONFIG_ZONE_DMA32
1104 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1105 #else
1106 #define ALLOC_NOFRAGMENT	  0x0
1107 #endif
1108 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1109 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1110 
1111 /* Flags that allow allocations below the min watermark. */
1112 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1113 
1114 enum ttu_flags;
1115 struct tlbflush_unmap_batch;
1116 
1117 
1118 /*
1119  * only for MM internal work items which do not depend on
1120  * any allocations or locks which might depend on allocations
1121  */
1122 extern struct workqueue_struct *mm_percpu_wq;
1123 
1124 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1125 void try_to_unmap_flush(void);
1126 void try_to_unmap_flush_dirty(void);
1127 void flush_tlb_batched_pending(struct mm_struct *mm);
1128 #else
1129 static inline void try_to_unmap_flush(void)
1130 {
1131 }
1132 static inline void try_to_unmap_flush_dirty(void)
1133 {
1134 }
1135 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1136 {
1137 }
1138 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1139 
1140 extern const struct trace_print_flags pageflag_names[];
1141 extern const struct trace_print_flags pagetype_names[];
1142 extern const struct trace_print_flags vmaflag_names[];
1143 extern const struct trace_print_flags gfpflag_names[];
1144 
1145 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1146 {
1147 	return migratetype == MIGRATE_HIGHATOMIC;
1148 }
1149 
1150 void setup_zone_pageset(struct zone *zone);
1151 
1152 struct migration_target_control {
1153 	int nid;		/* preferred node id */
1154 	nodemask_t *nmask;
1155 	gfp_t gfp_mask;
1156 	enum migrate_reason reason;
1157 };
1158 
1159 /*
1160  * mm/filemap.c
1161  */
1162 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1163 			      struct folio *folio, loff_t fpos, size_t size);
1164 
1165 /*
1166  * mm/vmalloc.c
1167  */
1168 #ifdef CONFIG_MMU
1169 void __init vmalloc_init(void);
1170 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1171                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1172 #else
1173 static inline void vmalloc_init(void)
1174 {
1175 }
1176 
1177 static inline
1178 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1179                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1180 {
1181 	return -EINVAL;
1182 }
1183 #endif
1184 
1185 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1186 			       unsigned long end, pgprot_t prot,
1187 			       struct page **pages, unsigned int page_shift);
1188 
1189 void vunmap_range_noflush(unsigned long start, unsigned long end);
1190 
1191 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1192 
1193 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
1194 		      unsigned long addr, int page_nid, int *flags);
1195 
1196 void free_zone_device_folio(struct folio *folio);
1197 int migrate_device_coherent_page(struct page *page);
1198 
1199 /*
1200  * mm/gup.c
1201  */
1202 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
1203 int __must_check try_grab_page(struct page *page, unsigned int flags);
1204 
1205 /*
1206  * mm/huge_memory.c
1207  */
1208 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1209 	       pud_t *pud, bool write);
1210 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1211 	       pmd_t *pmd, bool write);
1212 
1213 /*
1214  * mm/mmap.c
1215  */
1216 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1217 					struct vm_area_struct *vma,
1218 					unsigned long delta);
1219 
1220 enum {
1221 	/* mark page accessed */
1222 	FOLL_TOUCH = 1 << 16,
1223 	/* a retry, previous pass started an IO */
1224 	FOLL_TRIED = 1 << 17,
1225 	/* we are working on non-current tsk/mm */
1226 	FOLL_REMOTE = 1 << 18,
1227 	/* pages must be released via unpin_user_page */
1228 	FOLL_PIN = 1 << 19,
1229 	/* gup_fast: prevent fall-back to slow gup */
1230 	FOLL_FAST_ONLY = 1 << 20,
1231 	/* allow unlocking the mmap lock */
1232 	FOLL_UNLOCKABLE = 1 << 21,
1233 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1234 	FOLL_MADV_POPULATE = 1 << 22,
1235 };
1236 
1237 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1238 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1239 			    FOLL_MADV_POPULATE)
1240 
1241 /*
1242  * Indicates for which pages that are write-protected in the page table,
1243  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1244  * GUP pin will remain consistent with the pages mapped into the page tables
1245  * of the MM.
1246  *
1247  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1248  * PageAnonExclusive() has to protect against concurrent GUP:
1249  * * Ordinary GUP: Using the PT lock
1250  * * GUP-fast and fork(): mm->write_protect_seq
1251  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1252  *    folio_try_share_anon_rmap_*()
1253  *
1254  * Must be called with the (sub)page that's actually referenced via the
1255  * page table entry, which might not necessarily be the head page for a
1256  * PTE-mapped THP.
1257  *
1258  * If the vma is NULL, we're coming from the GUP-fast path and might have
1259  * to fallback to the slow path just to lookup the vma.
1260  */
1261 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1262 				    unsigned int flags, struct page *page)
1263 {
1264 	/*
1265 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1266 	 * has to be writable -- and if it references (part of) an anonymous
1267 	 * folio, that part is required to be marked exclusive.
1268 	 */
1269 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1270 		return false;
1271 	/*
1272 	 * Note: PageAnon(page) is stable until the page is actually getting
1273 	 * freed.
1274 	 */
1275 	if (!PageAnon(page)) {
1276 		/*
1277 		 * We only care about R/O long-term pining: R/O short-term
1278 		 * pinning does not have the semantics to observe successive
1279 		 * changes through the process page tables.
1280 		 */
1281 		if (!(flags & FOLL_LONGTERM))
1282 			return false;
1283 
1284 		/* We really need the vma ... */
1285 		if (!vma)
1286 			return true;
1287 
1288 		/*
1289 		 * ... because we only care about writable private ("COW")
1290 		 * mappings where we have to break COW early.
1291 		 */
1292 		return is_cow_mapping(vma->vm_flags);
1293 	}
1294 
1295 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1296 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1297 		smp_rmb();
1298 
1299 	/*
1300 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1301 	 * cannot get pinned.
1302 	 */
1303 	return !PageAnonExclusive(page);
1304 }
1305 
1306 extern bool mirrored_kernelcore;
1307 extern bool memblock_has_mirror(void);
1308 
1309 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1310 					  unsigned long start, unsigned long end,
1311 					  pgoff_t pgoff)
1312 {
1313 	vma->vm_start = start;
1314 	vma->vm_end = end;
1315 	vma->vm_pgoff = pgoff;
1316 }
1317 
1318 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1319 {
1320 	/*
1321 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1322 	 * enablements, because when without soft-dirty being compiled in,
1323 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1324 	 * will be constantly true.
1325 	 */
1326 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1327 		return false;
1328 
1329 	/*
1330 	 * Soft-dirty is kind of special: its tracking is enabled when the
1331 	 * vma flags not set.
1332 	 */
1333 	return !(vma->vm_flags & VM_SOFTDIRTY);
1334 }
1335 
1336 static inline void vma_iter_config(struct vma_iterator *vmi,
1337 		unsigned long index, unsigned long last)
1338 {
1339 	__mas_set_range(&vmi->mas, index, last - 1);
1340 }
1341 
1342 static inline void vma_iter_reset(struct vma_iterator *vmi)
1343 {
1344 	mas_reset(&vmi->mas);
1345 }
1346 
1347 static inline
1348 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
1349 {
1350 	return mas_prev_range(&vmi->mas, min);
1351 }
1352 
1353 static inline
1354 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
1355 {
1356 	return mas_next_range(&vmi->mas, max);
1357 }
1358 
1359 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
1360 				       unsigned long max, unsigned long size)
1361 {
1362 	return mas_empty_area(&vmi->mas, min, max - 1, size);
1363 }
1364 
1365 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
1366 					unsigned long max, unsigned long size)
1367 {
1368 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
1369 }
1370 
1371 /*
1372  * VMA Iterator functions shared between nommu and mmap
1373  */
1374 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1375 		struct vm_area_struct *vma)
1376 {
1377 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1378 }
1379 
1380 static inline void vma_iter_clear(struct vma_iterator *vmi)
1381 {
1382 	mas_store_prealloc(&vmi->mas, NULL);
1383 }
1384 
1385 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1386 {
1387 	return mas_walk(&vmi->mas);
1388 }
1389 
1390 /* Store a VMA with preallocated memory */
1391 static inline void vma_iter_store(struct vma_iterator *vmi,
1392 				  struct vm_area_struct *vma)
1393 {
1394 
1395 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1396 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1397 			vmi->mas.index > vma->vm_start)) {
1398 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1399 			vmi->mas.index, vma->vm_start, vma->vm_start,
1400 			vma->vm_end, vmi->mas.index, vmi->mas.last);
1401 	}
1402 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1403 			vmi->mas.last <  vma->vm_start)) {
1404 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1405 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1406 		       vmi->mas.index, vmi->mas.last);
1407 	}
1408 #endif
1409 
1410 	if (vmi->mas.status != ma_start &&
1411 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1412 		vma_iter_invalidate(vmi);
1413 
1414 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1415 	mas_store_prealloc(&vmi->mas, vma);
1416 }
1417 
1418 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1419 			struct vm_area_struct *vma, gfp_t gfp)
1420 {
1421 	if (vmi->mas.status != ma_start &&
1422 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1423 		vma_iter_invalidate(vmi);
1424 
1425 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1426 	mas_store_gfp(&vmi->mas, vma, gfp);
1427 	if (unlikely(mas_is_err(&vmi->mas)))
1428 		return -ENOMEM;
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * VMA lock generalization
1435  */
1436 struct vma_prepare {
1437 	struct vm_area_struct *vma;
1438 	struct vm_area_struct *adj_next;
1439 	struct file *file;
1440 	struct address_space *mapping;
1441 	struct anon_vma *anon_vma;
1442 	struct vm_area_struct *insert;
1443 	struct vm_area_struct *remove;
1444 	struct vm_area_struct *remove2;
1445 };
1446 
1447 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1448 				unsigned long zone, int nid);
1449 
1450 /* shrinker related functions */
1451 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1452 			  int priority);
1453 
1454 #ifdef CONFIG_64BIT
1455 static inline int can_do_mseal(unsigned long flags)
1456 {
1457 	if (flags)
1458 		return -EINVAL;
1459 
1460 	return 0;
1461 }
1462 
1463 bool can_modify_mm(struct mm_struct *mm, unsigned long start,
1464 		unsigned long end);
1465 bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start,
1466 		unsigned long end, int behavior);
1467 #else
1468 static inline int can_do_mseal(unsigned long flags)
1469 {
1470 	return -EPERM;
1471 }
1472 
1473 static inline bool can_modify_mm(struct mm_struct *mm, unsigned long start,
1474 		unsigned long end)
1475 {
1476 	return true;
1477 }
1478 
1479 static inline bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start,
1480 		unsigned long end, int behavior)
1481 {
1482 	return true;
1483 }
1484 #endif
1485 
1486 #ifdef CONFIG_SHRINKER_DEBUG
1487 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1488 			struct shrinker *shrinker, const char *fmt, va_list ap)
1489 {
1490 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1491 
1492 	return shrinker->name ? 0 : -ENOMEM;
1493 }
1494 
1495 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1496 {
1497 	kfree_const(shrinker->name);
1498 	shrinker->name = NULL;
1499 }
1500 
1501 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1502 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1503 					      int *debugfs_id);
1504 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1505 				    int debugfs_id);
1506 #else /* CONFIG_SHRINKER_DEBUG */
1507 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1508 {
1509 	return 0;
1510 }
1511 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1512 					      const char *fmt, va_list ap)
1513 {
1514 	return 0;
1515 }
1516 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1517 {
1518 }
1519 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1520 						     int *debugfs_id)
1521 {
1522 	*debugfs_id = -1;
1523 	return NULL;
1524 }
1525 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1526 					   int debugfs_id)
1527 {
1528 }
1529 #endif /* CONFIG_SHRINKER_DEBUG */
1530 
1531 /* Only track the nodes of mappings with shadow entries */
1532 void workingset_update_node(struct xa_node *node);
1533 extern struct list_lru shadow_nodes;
1534 
1535 struct unlink_vma_file_batch {
1536 	int count;
1537 	struct vm_area_struct *vmas[8];
1538 };
1539 
1540 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *);
1541 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *, struct vm_area_struct *);
1542 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *);
1543 
1544 #endif	/* __MM_INTERNAL_H */
1545