xref: /linux/mm/internal.h (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/swapops.h>
18 #include <linux/swap_cgroup.h>
19 #include <linux/tracepoint-defs.h>
20 
21 /* Internal core VMA manipulation functions. */
22 #include "vma.h"
23 
24 struct folio_batch;
25 
26 /*
27  * The set of flags that only affect watermark checking and reclaim
28  * behaviour. This is used by the MM to obey the caller constraints
29  * about IO, FS and watermark checking while ignoring placement
30  * hints such as HIGHMEM usage.
31  */
32 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
33 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
34 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
35 			__GFP_NOLOCKDEP)
36 
37 /* The GFP flags allowed during early boot */
38 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
39 
40 /* Control allocation cpuset and node placement constraints */
41 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
42 
43 /* Do not use these with a slab allocator */
44 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
45 
46 /*
47  * Different from WARN_ON_ONCE(), no warning will be issued
48  * when we specify __GFP_NOWARN.
49  */
50 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
51 	static bool __section(".data.once") __warned;			\
52 	int __ret_warn_once = !!(cond);					\
53 									\
54 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
55 		__warned = true;					\
56 		WARN_ON(1);						\
57 	}								\
58 	unlikely(__ret_warn_once);					\
59 })
60 
61 void page_writeback_init(void);
62 
63 /*
64  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
65  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
66  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
67  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
68  */
69 #define ENTIRELY_MAPPED		0x800000
70 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
71 
72 /*
73  * Flags passed to __show_mem() and show_free_areas() to suppress output in
74  * various contexts.
75  */
76 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
77 
78 /*
79  * How many individual pages have an elevated _mapcount.  Excludes
80  * the folio's entire_mapcount.
81  *
82  * Don't use this function outside of debugging code.
83  */
84 static inline int folio_nr_pages_mapped(const struct folio *folio)
85 {
86 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
87 }
88 
89 /*
90  * Retrieve the first entry of a folio based on a provided entry within the
91  * folio. We cannot rely on folio->swap as there is no guarantee that it has
92  * been initialized. Used for calling arch_swap_restore()
93  */
94 static inline swp_entry_t folio_swap(swp_entry_t entry,
95 		const struct folio *folio)
96 {
97 	swp_entry_t swap = {
98 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
99 	};
100 
101 	return swap;
102 }
103 
104 static inline void *folio_raw_mapping(const struct folio *folio)
105 {
106 	unsigned long mapping = (unsigned long)folio->mapping;
107 
108 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
109 }
110 
111 /*
112  * This is a file-backed mapping, and is about to be memory mapped - invoke its
113  * mmap hook and safely handle error conditions. On error, VMA hooks will be
114  * mutated.
115  *
116  * @file: File which backs the mapping.
117  * @vma:  VMA which we are mapping.
118  *
119  * Returns: 0 if success, error otherwise.
120  */
121 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
122 {
123 	int err = call_mmap(file, vma);
124 
125 	if (likely(!err))
126 		return 0;
127 
128 	/*
129 	 * OK, we tried to call the file hook for mmap(), but an error
130 	 * arose. The mapping is in an inconsistent state and we most not invoke
131 	 * any further hooks on it.
132 	 */
133 	vma->vm_ops = &vma_dummy_vm_ops;
134 
135 	return err;
136 }
137 
138 /*
139  * If the VMA has a close hook then close it, and since closing it might leave
140  * it in an inconsistent state which makes the use of any hooks suspect, clear
141  * them down by installing dummy empty hooks.
142  */
143 static inline void vma_close(struct vm_area_struct *vma)
144 {
145 	if (vma->vm_ops && vma->vm_ops->close) {
146 		vma->vm_ops->close(vma);
147 
148 		/*
149 		 * The mapping is in an inconsistent state, and no further hooks
150 		 * may be invoked upon it.
151 		 */
152 		vma->vm_ops = &vma_dummy_vm_ops;
153 	}
154 }
155 
156 #ifdef CONFIG_MMU
157 
158 /* Flags for folio_pte_batch(). */
159 typedef int __bitwise fpb_t;
160 
161 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
162 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
163 
164 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
165 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
166 
167 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
168 {
169 	if (flags & FPB_IGNORE_DIRTY)
170 		pte = pte_mkclean(pte);
171 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
172 		pte = pte_clear_soft_dirty(pte);
173 	return pte_wrprotect(pte_mkold(pte));
174 }
175 
176 /**
177  * folio_pte_batch - detect a PTE batch for a large folio
178  * @folio: The large folio to detect a PTE batch for.
179  * @addr: The user virtual address the first page is mapped at.
180  * @start_ptep: Page table pointer for the first entry.
181  * @pte: Page table entry for the first page.
182  * @max_nr: The maximum number of table entries to consider.
183  * @flags: Flags to modify the PTE batch semantics.
184  * @any_writable: Optional pointer to indicate whether any entry except the
185  *		  first one is writable.
186  * @any_young: Optional pointer to indicate whether any entry except the
187  *		  first one is young.
188  * @any_dirty: Optional pointer to indicate whether any entry except the
189  *		  first one is dirty.
190  *
191  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
192  * pages of the same large folio.
193  *
194  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
195  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
196  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
197  *
198  * start_ptep must map any page of the folio. max_nr must be at least one and
199  * must be limited by the caller so scanning cannot exceed a single page table.
200  *
201  * Return: the number of table entries in the batch.
202  */
203 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
204 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
205 		bool *any_writable, bool *any_young, bool *any_dirty)
206 {
207 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
208 	const pte_t *end_ptep = start_ptep + max_nr;
209 	pte_t expected_pte, *ptep;
210 	bool writable, young, dirty;
211 	int nr;
212 
213 	if (any_writable)
214 		*any_writable = false;
215 	if (any_young)
216 		*any_young = false;
217 	if (any_dirty)
218 		*any_dirty = false;
219 
220 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
221 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
222 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
223 
224 	nr = pte_batch_hint(start_ptep, pte);
225 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
226 	ptep = start_ptep + nr;
227 
228 	while (ptep < end_ptep) {
229 		pte = ptep_get(ptep);
230 		if (any_writable)
231 			writable = !!pte_write(pte);
232 		if (any_young)
233 			young = !!pte_young(pte);
234 		if (any_dirty)
235 			dirty = !!pte_dirty(pte);
236 		pte = __pte_batch_clear_ignored(pte, flags);
237 
238 		if (!pte_same(pte, expected_pte))
239 			break;
240 
241 		/*
242 		 * Stop immediately once we reached the end of the folio. In
243 		 * corner cases the next PFN might fall into a different
244 		 * folio.
245 		 */
246 		if (pte_pfn(pte) >= folio_end_pfn)
247 			break;
248 
249 		if (any_writable)
250 			*any_writable |= writable;
251 		if (any_young)
252 			*any_young |= young;
253 		if (any_dirty)
254 			*any_dirty |= dirty;
255 
256 		nr = pte_batch_hint(ptep, pte);
257 		expected_pte = pte_advance_pfn(expected_pte, nr);
258 		ptep += nr;
259 	}
260 
261 	return min(ptep - start_ptep, max_nr);
262 }
263 
264 /**
265  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
266  *	 forward or backward by delta
267  * @pte: The initial pte state; is_swap_pte(pte) must be true and
268  *	 non_swap_entry() must be false.
269  * @delta: The direction and the offset we are moving; forward if delta
270  *	 is positive; backward if delta is negative
271  *
272  * Moves the swap offset, while maintaining all other fields, including
273  * swap type, and any swp pte bits. The resulting pte is returned.
274  */
275 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
276 {
277 	swp_entry_t entry = pte_to_swp_entry(pte);
278 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
279 						   (swp_offset(entry) + delta)));
280 
281 	if (pte_swp_soft_dirty(pte))
282 		new = pte_swp_mksoft_dirty(new);
283 	if (pte_swp_exclusive(pte))
284 		new = pte_swp_mkexclusive(new);
285 	if (pte_swp_uffd_wp(pte))
286 		new = pte_swp_mkuffd_wp(new);
287 
288 	return new;
289 }
290 
291 
292 /**
293  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
294  * @pte: The initial pte state; is_swap_pte(pte) must be true and
295  *	 non_swap_entry() must be false.
296  *
297  * Increments the swap offset, while maintaining all other fields, including
298  * swap type, and any swp pte bits. The resulting pte is returned.
299  */
300 static inline pte_t pte_next_swp_offset(pte_t pte)
301 {
302 	return pte_move_swp_offset(pte, 1);
303 }
304 
305 /**
306  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
307  * @start_ptep: Page table pointer for the first entry.
308  * @max_nr: The maximum number of table entries to consider.
309  * @pte: Page table entry for the first entry.
310  *
311  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
312  * containing swap entries all with consecutive offsets and targeting the same
313  * swap type, all with matching swp pte bits.
314  *
315  * max_nr must be at least one and must be limited by the caller so scanning
316  * cannot exceed a single page table.
317  *
318  * Return: the number of table entries in the batch.
319  */
320 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
321 {
322 	pte_t expected_pte = pte_next_swp_offset(pte);
323 	const pte_t *end_ptep = start_ptep + max_nr;
324 	swp_entry_t entry = pte_to_swp_entry(pte);
325 	pte_t *ptep = start_ptep + 1;
326 	unsigned short cgroup_id;
327 
328 	VM_WARN_ON(max_nr < 1);
329 	VM_WARN_ON(!is_swap_pte(pte));
330 	VM_WARN_ON(non_swap_entry(entry));
331 
332 	cgroup_id = lookup_swap_cgroup_id(entry);
333 	while (ptep < end_ptep) {
334 		pte = ptep_get(ptep);
335 
336 		if (!pte_same(pte, expected_pte))
337 			break;
338 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
339 			break;
340 		expected_pte = pte_next_swp_offset(expected_pte);
341 		ptep++;
342 	}
343 
344 	return ptep - start_ptep;
345 }
346 #endif /* CONFIG_MMU */
347 
348 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
349 						int nr_throttled);
350 static inline void acct_reclaim_writeback(struct folio *folio)
351 {
352 	pg_data_t *pgdat = folio_pgdat(folio);
353 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
354 
355 	if (nr_throttled)
356 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
357 }
358 
359 static inline void wake_throttle_isolated(pg_data_t *pgdat)
360 {
361 	wait_queue_head_t *wqh;
362 
363 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
364 	if (waitqueue_active(wqh))
365 		wake_up(wqh);
366 }
367 
368 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
369 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
370 {
371 	vm_fault_t ret = __vmf_anon_prepare(vmf);
372 
373 	if (unlikely(ret & VM_FAULT_RETRY))
374 		vma_end_read(vmf->vma);
375 	return ret;
376 }
377 
378 vm_fault_t do_swap_page(struct vm_fault *vmf);
379 void folio_rotate_reclaimable(struct folio *folio);
380 bool __folio_end_writeback(struct folio *folio);
381 void deactivate_file_folio(struct folio *folio);
382 void folio_activate(struct folio *folio);
383 
384 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
385 		   struct vm_area_struct *start_vma, unsigned long floor,
386 		   unsigned long ceiling, bool mm_wr_locked);
387 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
388 
389 struct zap_details;
390 void unmap_page_range(struct mmu_gather *tlb,
391 			     struct vm_area_struct *vma,
392 			     unsigned long addr, unsigned long end,
393 			     struct zap_details *details);
394 
395 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
396 		unsigned int order);
397 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
398 static inline void force_page_cache_readahead(struct address_space *mapping,
399 		struct file *file, pgoff_t index, unsigned long nr_to_read)
400 {
401 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
402 	force_page_cache_ra(&ractl, nr_to_read);
403 }
404 
405 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
406 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
407 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
408 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
409 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
410 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
411 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
412 		loff_t end);
413 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
414 unsigned long mapping_try_invalidate(struct address_space *mapping,
415 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
416 
417 /**
418  * folio_evictable - Test whether a folio is evictable.
419  * @folio: The folio to test.
420  *
421  * Test whether @folio is evictable -- i.e., should be placed on
422  * active/inactive lists vs unevictable list.
423  *
424  * Reasons folio might not be evictable:
425  * 1. folio's mapping marked unevictable
426  * 2. One of the pages in the folio is part of an mlocked VMA
427  */
428 static inline bool folio_evictable(struct folio *folio)
429 {
430 	bool ret;
431 
432 	/* Prevent address_space of inode and swap cache from being freed */
433 	rcu_read_lock();
434 	ret = !mapping_unevictable(folio_mapping(folio)) &&
435 			!folio_test_mlocked(folio);
436 	rcu_read_unlock();
437 	return ret;
438 }
439 
440 /*
441  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
442  * a count of one.
443  */
444 static inline void set_page_refcounted(struct page *page)
445 {
446 	VM_BUG_ON_PAGE(PageTail(page), page);
447 	VM_BUG_ON_PAGE(page_ref_count(page), page);
448 	set_page_count(page, 1);
449 }
450 
451 /*
452  * Return true if a folio needs ->release_folio() calling upon it.
453  */
454 static inline bool folio_needs_release(struct folio *folio)
455 {
456 	struct address_space *mapping = folio_mapping(folio);
457 
458 	return folio_has_private(folio) ||
459 		(mapping && mapping_release_always(mapping));
460 }
461 
462 extern unsigned long highest_memmap_pfn;
463 
464 /*
465  * Maximum number of reclaim retries without progress before the OOM
466  * killer is consider the only way forward.
467  */
468 #define MAX_RECLAIM_RETRIES 16
469 
470 /*
471  * in mm/vmscan.c:
472  */
473 bool folio_isolate_lru(struct folio *folio);
474 void folio_putback_lru(struct folio *folio);
475 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
476 
477 /*
478  * in mm/rmap.c:
479  */
480 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
481 
482 /*
483  * in mm/page_alloc.c
484  */
485 #define K(x) ((x) << (PAGE_SHIFT-10))
486 
487 extern char * const zone_names[MAX_NR_ZONES];
488 
489 /* perform sanity checks on struct pages being allocated or freed */
490 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
491 
492 extern int min_free_kbytes;
493 
494 void setup_per_zone_wmarks(void);
495 void calculate_min_free_kbytes(void);
496 int __meminit init_per_zone_wmark_min(void);
497 void page_alloc_sysctl_init(void);
498 
499 /*
500  * Structure for holding the mostly immutable allocation parameters passed
501  * between functions involved in allocations, including the alloc_pages*
502  * family of functions.
503  *
504  * nodemask, migratetype and highest_zoneidx are initialized only once in
505  * __alloc_pages() and then never change.
506  *
507  * zonelist, preferred_zone and highest_zoneidx are set first in
508  * __alloc_pages() for the fast path, and might be later changed
509  * in __alloc_pages_slowpath(). All other functions pass the whole structure
510  * by a const pointer.
511  */
512 struct alloc_context {
513 	struct zonelist *zonelist;
514 	nodemask_t *nodemask;
515 	struct zoneref *preferred_zoneref;
516 	int migratetype;
517 
518 	/*
519 	 * highest_zoneidx represents highest usable zone index of
520 	 * the allocation request. Due to the nature of the zone,
521 	 * memory on lower zone than the highest_zoneidx will be
522 	 * protected by lowmem_reserve[highest_zoneidx].
523 	 *
524 	 * highest_zoneidx is also used by reclaim/compaction to limit
525 	 * the target zone since higher zone than this index cannot be
526 	 * usable for this allocation request.
527 	 */
528 	enum zone_type highest_zoneidx;
529 	bool spread_dirty_pages;
530 };
531 
532 /*
533  * This function returns the order of a free page in the buddy system. In
534  * general, page_zone(page)->lock must be held by the caller to prevent the
535  * page from being allocated in parallel and returning garbage as the order.
536  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
537  * page cannot be allocated or merged in parallel. Alternatively, it must
538  * handle invalid values gracefully, and use buddy_order_unsafe() below.
539  */
540 static inline unsigned int buddy_order(struct page *page)
541 {
542 	/* PageBuddy() must be checked by the caller */
543 	return page_private(page);
544 }
545 
546 /*
547  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
548  * PageBuddy() should be checked first by the caller to minimize race window,
549  * and invalid values must be handled gracefully.
550  *
551  * READ_ONCE is used so that if the caller assigns the result into a local
552  * variable and e.g. tests it for valid range before using, the compiler cannot
553  * decide to remove the variable and inline the page_private(page) multiple
554  * times, potentially observing different values in the tests and the actual
555  * use of the result.
556  */
557 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
558 
559 /*
560  * This function checks whether a page is free && is the buddy
561  * we can coalesce a page and its buddy if
562  * (a) the buddy is not in a hole (check before calling!) &&
563  * (b) the buddy is in the buddy system &&
564  * (c) a page and its buddy have the same order &&
565  * (d) a page and its buddy are in the same zone.
566  *
567  * For recording whether a page is in the buddy system, we set PageBuddy.
568  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
569  *
570  * For recording page's order, we use page_private(page).
571  */
572 static inline bool page_is_buddy(struct page *page, struct page *buddy,
573 				 unsigned int order)
574 {
575 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
576 		return false;
577 
578 	if (buddy_order(buddy) != order)
579 		return false;
580 
581 	/*
582 	 * zone check is done late to avoid uselessly calculating
583 	 * zone/node ids for pages that could never merge.
584 	 */
585 	if (page_zone_id(page) != page_zone_id(buddy))
586 		return false;
587 
588 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
589 
590 	return true;
591 }
592 
593 /*
594  * Locate the struct page for both the matching buddy in our
595  * pair (buddy1) and the combined O(n+1) page they form (page).
596  *
597  * 1) Any buddy B1 will have an order O twin B2 which satisfies
598  * the following equation:
599  *     B2 = B1 ^ (1 << O)
600  * For example, if the starting buddy (buddy2) is #8 its order
601  * 1 buddy is #10:
602  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
603  *
604  * 2) Any buddy B will have an order O+1 parent P which
605  * satisfies the following equation:
606  *     P = B & ~(1 << O)
607  *
608  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
609  */
610 static inline unsigned long
611 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
612 {
613 	return page_pfn ^ (1 << order);
614 }
615 
616 /*
617  * Find the buddy of @page and validate it.
618  * @page: The input page
619  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
620  *       function is used in the performance-critical __free_one_page().
621  * @order: The order of the page
622  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
623  *             page_to_pfn().
624  *
625  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
626  * not the same as @page. The validation is necessary before use it.
627  *
628  * Return: the found buddy page or NULL if not found.
629  */
630 static inline struct page *find_buddy_page_pfn(struct page *page,
631 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
632 {
633 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
634 	struct page *buddy;
635 
636 	buddy = page + (__buddy_pfn - pfn);
637 	if (buddy_pfn)
638 		*buddy_pfn = __buddy_pfn;
639 
640 	if (page_is_buddy(page, buddy, order))
641 		return buddy;
642 	return NULL;
643 }
644 
645 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
646 				unsigned long end_pfn, struct zone *zone);
647 
648 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
649 				unsigned long end_pfn, struct zone *zone)
650 {
651 	if (zone->contiguous)
652 		return pfn_to_page(start_pfn);
653 
654 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
655 }
656 
657 void set_zone_contiguous(struct zone *zone);
658 
659 static inline void clear_zone_contiguous(struct zone *zone)
660 {
661 	zone->contiguous = false;
662 }
663 
664 extern int __isolate_free_page(struct page *page, unsigned int order);
665 extern void __putback_isolated_page(struct page *page, unsigned int order,
666 				    int mt);
667 extern void memblock_free_pages(struct page *page, unsigned long pfn,
668 					unsigned int order);
669 extern void __free_pages_core(struct page *page, unsigned int order,
670 		enum meminit_context context);
671 
672 /*
673  * This will have no effect, other than possibly generating a warning, if the
674  * caller passes in a non-large folio.
675  */
676 static inline void folio_set_order(struct folio *folio, unsigned int order)
677 {
678 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
679 		return;
680 
681 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
682 #ifdef CONFIG_64BIT
683 	folio->_folio_nr_pages = 1U << order;
684 #endif
685 }
686 
687 bool __folio_unqueue_deferred_split(struct folio *folio);
688 static inline bool folio_unqueue_deferred_split(struct folio *folio)
689 {
690 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
691 		return false;
692 
693 	/*
694 	 * At this point, there is no one trying to add the folio to
695 	 * deferred_list. If folio is not in deferred_list, it's safe
696 	 * to check without acquiring the split_queue_lock.
697 	 */
698 	if (data_race(list_empty(&folio->_deferred_list)))
699 		return false;
700 
701 	return __folio_unqueue_deferred_split(folio);
702 }
703 
704 static inline struct folio *page_rmappable_folio(struct page *page)
705 {
706 	struct folio *folio = (struct folio *)page;
707 
708 	if (folio && folio_test_large(folio))
709 		folio_set_large_rmappable(folio);
710 	return folio;
711 }
712 
713 static inline void prep_compound_head(struct page *page, unsigned int order)
714 {
715 	struct folio *folio = (struct folio *)page;
716 
717 	folio_set_order(folio, order);
718 	atomic_set(&folio->_large_mapcount, -1);
719 	atomic_set(&folio->_entire_mapcount, -1);
720 	atomic_set(&folio->_nr_pages_mapped, 0);
721 	atomic_set(&folio->_pincount, 0);
722 	if (order > 1)
723 		INIT_LIST_HEAD(&folio->_deferred_list);
724 }
725 
726 static inline void prep_compound_tail(struct page *head, int tail_idx)
727 {
728 	struct page *p = head + tail_idx;
729 
730 	p->mapping = TAIL_MAPPING;
731 	set_compound_head(p, head);
732 	set_page_private(p, 0);
733 }
734 
735 extern void prep_compound_page(struct page *page, unsigned int order);
736 
737 extern void post_alloc_hook(struct page *page, unsigned int order,
738 					gfp_t gfp_flags);
739 extern bool free_pages_prepare(struct page *page, unsigned int order);
740 
741 extern int user_min_free_kbytes;
742 
743 void free_unref_page(struct page *page, unsigned int order);
744 void free_unref_folios(struct folio_batch *fbatch);
745 
746 extern void zone_pcp_reset(struct zone *zone);
747 extern void zone_pcp_disable(struct zone *zone);
748 extern void zone_pcp_enable(struct zone *zone);
749 extern void zone_pcp_init(struct zone *zone);
750 
751 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
752 			  phys_addr_t min_addr,
753 			  int nid, bool exact_nid);
754 
755 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
756 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
757 
758 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
759 
760 /*
761  * in mm/compaction.c
762  */
763 /*
764  * compact_control is used to track pages being migrated and the free pages
765  * they are being migrated to during memory compaction. The free_pfn starts
766  * at the end of a zone and migrate_pfn begins at the start. Movable pages
767  * are moved to the end of a zone during a compaction run and the run
768  * completes when free_pfn <= migrate_pfn
769  */
770 struct compact_control {
771 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
772 	struct list_head migratepages;	/* List of pages being migrated */
773 	unsigned int nr_freepages;	/* Number of isolated free pages */
774 	unsigned int nr_migratepages;	/* Number of pages to migrate */
775 	unsigned long free_pfn;		/* isolate_freepages search base */
776 	/*
777 	 * Acts as an in/out parameter to page isolation for migration.
778 	 * isolate_migratepages uses it as a search base.
779 	 * isolate_migratepages_block will update the value to the next pfn
780 	 * after the last isolated one.
781 	 */
782 	unsigned long migrate_pfn;
783 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
784 	struct zone *zone;
785 	unsigned long total_migrate_scanned;
786 	unsigned long total_free_scanned;
787 	unsigned short fast_search_fail;/* failures to use free list searches */
788 	short search_order;		/* order to start a fast search at */
789 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
790 	int order;			/* order a direct compactor needs */
791 	int migratetype;		/* migratetype of direct compactor */
792 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
793 	const int highest_zoneidx;	/* zone index of a direct compactor */
794 	enum migrate_mode mode;		/* Async or sync migration mode */
795 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
796 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
797 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
798 	bool direct_compaction;		/* False from kcompactd or /proc/... */
799 	bool proactive_compaction;	/* kcompactd proactive compaction */
800 	bool whole_zone;		/* Whole zone should/has been scanned */
801 	bool contended;			/* Signal lock contention */
802 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
803 					 * when there are potentially transient
804 					 * isolation or migration failures to
805 					 * ensure forward progress.
806 					 */
807 	bool alloc_contig;		/* alloc_contig_range allocation */
808 };
809 
810 /*
811  * Used in direct compaction when a page should be taken from the freelists
812  * immediately when one is created during the free path.
813  */
814 struct capture_control {
815 	struct compact_control *cc;
816 	struct page *page;
817 };
818 
819 unsigned long
820 isolate_freepages_range(struct compact_control *cc,
821 			unsigned long start_pfn, unsigned long end_pfn);
822 int
823 isolate_migratepages_range(struct compact_control *cc,
824 			   unsigned long low_pfn, unsigned long end_pfn);
825 
826 int __alloc_contig_migrate_range(struct compact_control *cc,
827 					unsigned long start, unsigned long end,
828 					int migratetype);
829 
830 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
831 void init_cma_reserved_pageblock(struct page *page);
832 
833 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
834 
835 int find_suitable_fallback(struct free_area *area, unsigned int order,
836 			int migratetype, bool only_stealable, bool *can_steal);
837 
838 static inline bool free_area_empty(struct free_area *area, int migratetype)
839 {
840 	return list_empty(&area->free_list[migratetype]);
841 }
842 
843 /* mm/util.c */
844 struct anon_vma *folio_anon_vma(struct folio *folio);
845 
846 #ifdef CONFIG_MMU
847 void unmap_mapping_folio(struct folio *folio);
848 extern long populate_vma_page_range(struct vm_area_struct *vma,
849 		unsigned long start, unsigned long end, int *locked);
850 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
851 		unsigned long end, bool write, int *locked);
852 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
853 			       unsigned long bytes);
854 
855 /*
856  * NOTE: This function can't tell whether the folio is "fully mapped" in the
857  * range.
858  * "fully mapped" means all the pages of folio is associated with the page
859  * table of range while this function just check whether the folio range is
860  * within the range [start, end). Function caller needs to do page table
861  * check if it cares about the page table association.
862  *
863  * Typical usage (like mlock or madvise) is:
864  * Caller knows at least 1 page of folio is associated with page table of VMA
865  * and the range [start, end) is intersect with the VMA range. Caller wants
866  * to know whether the folio is fully associated with the range. It calls
867  * this function to check whether the folio is in the range first. Then checks
868  * the page table to know whether the folio is fully mapped to the range.
869  */
870 static inline bool
871 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
872 		unsigned long start, unsigned long end)
873 {
874 	pgoff_t pgoff, addr;
875 	unsigned long vma_pglen = vma_pages(vma);
876 
877 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
878 	if (start > end)
879 		return false;
880 
881 	if (start < vma->vm_start)
882 		start = vma->vm_start;
883 
884 	if (end > vma->vm_end)
885 		end = vma->vm_end;
886 
887 	pgoff = folio_pgoff(folio);
888 
889 	/* if folio start address is not in vma range */
890 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
891 		return false;
892 
893 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
894 
895 	return !(addr < start || end - addr < folio_size(folio));
896 }
897 
898 static inline bool
899 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
900 {
901 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
902 }
903 
904 /*
905  * mlock_vma_folio() and munlock_vma_folio():
906  * should be called with vma's mmap_lock held for read or write,
907  * under page table lock for the pte/pmd being added or removed.
908  *
909  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
910  * the end of folio_remove_rmap_*(); but new anon folios are managed by
911  * folio_add_lru_vma() calling mlock_new_folio().
912  */
913 void mlock_folio(struct folio *folio);
914 static inline void mlock_vma_folio(struct folio *folio,
915 				struct vm_area_struct *vma)
916 {
917 	/*
918 	 * The VM_SPECIAL check here serves two purposes.
919 	 * 1) VM_IO check prevents migration from double-counting during mlock.
920 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
921 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
922 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
923 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
924 	 */
925 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
926 		mlock_folio(folio);
927 }
928 
929 void munlock_folio(struct folio *folio);
930 static inline void munlock_vma_folio(struct folio *folio,
931 					struct vm_area_struct *vma)
932 {
933 	/*
934 	 * munlock if the function is called. Ideally, we should only
935 	 * do munlock if any page of folio is unmapped from VMA and
936 	 * cause folio not fully mapped to VMA.
937 	 *
938 	 * But it's not easy to confirm that's the situation. So we
939 	 * always munlock the folio and page reclaim will correct it
940 	 * if it's wrong.
941 	 */
942 	if (unlikely(vma->vm_flags & VM_LOCKED))
943 		munlock_folio(folio);
944 }
945 
946 void mlock_new_folio(struct folio *folio);
947 bool need_mlock_drain(int cpu);
948 void mlock_drain_local(void);
949 void mlock_drain_remote(int cpu);
950 
951 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
952 
953 /**
954  * vma_address - Find the virtual address a page range is mapped at
955  * @vma: The vma which maps this object.
956  * @pgoff: The page offset within its object.
957  * @nr_pages: The number of pages to consider.
958  *
959  * If any page in this range is mapped by this VMA, return the first address
960  * where any of these pages appear.  Otherwise, return -EFAULT.
961  */
962 static inline unsigned long vma_address(struct vm_area_struct *vma,
963 		pgoff_t pgoff, unsigned long nr_pages)
964 {
965 	unsigned long address;
966 
967 	if (pgoff >= vma->vm_pgoff) {
968 		address = vma->vm_start +
969 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
970 		/* Check for address beyond vma (or wrapped through 0?) */
971 		if (address < vma->vm_start || address >= vma->vm_end)
972 			address = -EFAULT;
973 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
974 		/* Test above avoids possibility of wrap to 0 on 32-bit */
975 		address = vma->vm_start;
976 	} else {
977 		address = -EFAULT;
978 	}
979 	return address;
980 }
981 
982 /*
983  * Then at what user virtual address will none of the range be found in vma?
984  * Assumes that vma_address() already returned a good starting address.
985  */
986 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
987 {
988 	struct vm_area_struct *vma = pvmw->vma;
989 	pgoff_t pgoff;
990 	unsigned long address;
991 
992 	/* Common case, plus ->pgoff is invalid for KSM */
993 	if (pvmw->nr_pages == 1)
994 		return pvmw->address + PAGE_SIZE;
995 
996 	pgoff = pvmw->pgoff + pvmw->nr_pages;
997 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
998 	/* Check for address beyond vma (or wrapped through 0?) */
999 	if (address < vma->vm_start || address > vma->vm_end)
1000 		address = vma->vm_end;
1001 	return address;
1002 }
1003 
1004 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1005 						    struct file *fpin)
1006 {
1007 	int flags = vmf->flags;
1008 
1009 	if (fpin)
1010 		return fpin;
1011 
1012 	/*
1013 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1014 	 * anything, so we only pin the file and drop the mmap_lock if only
1015 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1016 	 */
1017 	if (fault_flag_allow_retry_first(flags) &&
1018 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1019 		fpin = get_file(vmf->vma->vm_file);
1020 		release_fault_lock(vmf);
1021 	}
1022 	return fpin;
1023 }
1024 #else /* !CONFIG_MMU */
1025 static inline void unmap_mapping_folio(struct folio *folio) { }
1026 static inline void mlock_new_folio(struct folio *folio) { }
1027 static inline bool need_mlock_drain(int cpu) { return false; }
1028 static inline void mlock_drain_local(void) { }
1029 static inline void mlock_drain_remote(int cpu) { }
1030 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1031 {
1032 }
1033 #endif /* !CONFIG_MMU */
1034 
1035 /* Memory initialisation debug and verification */
1036 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1037 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1038 
1039 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1040 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1041 
1042 enum mminit_level {
1043 	MMINIT_WARNING,
1044 	MMINIT_VERIFY,
1045 	MMINIT_TRACE
1046 };
1047 
1048 #ifdef CONFIG_DEBUG_MEMORY_INIT
1049 
1050 extern int mminit_loglevel;
1051 
1052 #define mminit_dprintk(level, prefix, fmt, arg...) \
1053 do { \
1054 	if (level < mminit_loglevel) { \
1055 		if (level <= MMINIT_WARNING) \
1056 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1057 		else \
1058 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1059 	} \
1060 } while (0)
1061 
1062 extern void mminit_verify_pageflags_layout(void);
1063 extern void mminit_verify_zonelist(void);
1064 #else
1065 
1066 static inline void mminit_dprintk(enum mminit_level level,
1067 				const char *prefix, const char *fmt, ...)
1068 {
1069 }
1070 
1071 static inline void mminit_verify_pageflags_layout(void)
1072 {
1073 }
1074 
1075 static inline void mminit_verify_zonelist(void)
1076 {
1077 }
1078 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1079 
1080 #define NODE_RECLAIM_NOSCAN	-2
1081 #define NODE_RECLAIM_FULL	-1
1082 #define NODE_RECLAIM_SOME	0
1083 #define NODE_RECLAIM_SUCCESS	1
1084 
1085 #ifdef CONFIG_NUMA
1086 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1087 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1088 #else
1089 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1090 				unsigned int order)
1091 {
1092 	return NODE_RECLAIM_NOSCAN;
1093 }
1094 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1095 {
1096 	return NUMA_NO_NODE;
1097 }
1098 #endif
1099 
1100 /*
1101  * mm/memory-failure.c
1102  */
1103 #ifdef CONFIG_MEMORY_FAILURE
1104 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu);
1105 void shake_folio(struct folio *folio);
1106 extern int hwpoison_filter(struct page *p);
1107 
1108 extern u32 hwpoison_filter_dev_major;
1109 extern u32 hwpoison_filter_dev_minor;
1110 extern u64 hwpoison_filter_flags_mask;
1111 extern u64 hwpoison_filter_flags_value;
1112 extern u64 hwpoison_filter_memcg;
1113 extern u32 hwpoison_filter_enable;
1114 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1115 void SetPageHWPoisonTakenOff(struct page *page);
1116 void ClearPageHWPoisonTakenOff(struct page *page);
1117 bool take_page_off_buddy(struct page *page);
1118 bool put_page_back_buddy(struct page *page);
1119 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1120 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1121 		     struct vm_area_struct *vma, struct list_head *to_kill,
1122 		     unsigned long ksm_addr);
1123 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1124 
1125 #else
1126 static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1127 {
1128 }
1129 #endif
1130 
1131 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1132         unsigned long, unsigned long,
1133         unsigned long, unsigned long);
1134 
1135 extern void set_pageblock_order(void);
1136 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1137 unsigned long reclaim_pages(struct list_head *folio_list);
1138 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1139 					    struct list_head *folio_list);
1140 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1141 #define ALLOC_WMARK_MIN		WMARK_MIN
1142 #define ALLOC_WMARK_LOW		WMARK_LOW
1143 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1144 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1145 
1146 /* Mask to get the watermark bits */
1147 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1148 
1149 /*
1150  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1151  * cannot assume a reduced access to memory reserves is sufficient for
1152  * !MMU
1153  */
1154 #ifdef CONFIG_MMU
1155 #define ALLOC_OOM		0x08
1156 #else
1157 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1158 #endif
1159 
1160 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1161 				       * to 25% of the min watermark or
1162 				       * 62.5% if __GFP_HIGH is set.
1163 				       */
1164 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1165 				       * of the min watermark.
1166 				       */
1167 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1168 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1169 #ifdef CONFIG_ZONE_DMA32
1170 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1171 #else
1172 #define ALLOC_NOFRAGMENT	  0x0
1173 #endif
1174 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1175 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1176 
1177 /* Flags that allow allocations below the min watermark. */
1178 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1179 
1180 enum ttu_flags;
1181 struct tlbflush_unmap_batch;
1182 
1183 
1184 /*
1185  * only for MM internal work items which do not depend on
1186  * any allocations or locks which might depend on allocations
1187  */
1188 extern struct workqueue_struct *mm_percpu_wq;
1189 
1190 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1191 void try_to_unmap_flush(void);
1192 void try_to_unmap_flush_dirty(void);
1193 void flush_tlb_batched_pending(struct mm_struct *mm);
1194 #else
1195 static inline void try_to_unmap_flush(void)
1196 {
1197 }
1198 static inline void try_to_unmap_flush_dirty(void)
1199 {
1200 }
1201 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1202 {
1203 }
1204 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1205 
1206 extern const struct trace_print_flags pageflag_names[];
1207 extern const struct trace_print_flags vmaflag_names[];
1208 extern const struct trace_print_flags gfpflag_names[];
1209 
1210 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1211 {
1212 	return migratetype == MIGRATE_HIGHATOMIC;
1213 }
1214 
1215 void setup_zone_pageset(struct zone *zone);
1216 
1217 struct migration_target_control {
1218 	int nid;		/* preferred node id */
1219 	nodemask_t *nmask;
1220 	gfp_t gfp_mask;
1221 	enum migrate_reason reason;
1222 };
1223 
1224 /*
1225  * mm/filemap.c
1226  */
1227 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1228 			      struct folio *folio, loff_t fpos, size_t size);
1229 
1230 /*
1231  * mm/vmalloc.c
1232  */
1233 #ifdef CONFIG_MMU
1234 void __init vmalloc_init(void);
1235 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1236                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1237 #else
1238 static inline void vmalloc_init(void)
1239 {
1240 }
1241 
1242 static inline
1243 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1244                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1245 {
1246 	return -EINVAL;
1247 }
1248 #endif
1249 
1250 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1251 			       unsigned long end, pgprot_t prot,
1252 			       struct page **pages, unsigned int page_shift);
1253 
1254 void vunmap_range_noflush(unsigned long start, unsigned long end);
1255 
1256 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1257 
1258 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1259 		      unsigned long addr, int *flags, bool writable,
1260 		      int *last_cpupid);
1261 
1262 void free_zone_device_folio(struct folio *folio);
1263 int migrate_device_coherent_folio(struct folio *folio);
1264 
1265 /*
1266  * mm/gup.c
1267  */
1268 int __must_check try_grab_folio(struct folio *folio, int refs,
1269 				unsigned int flags);
1270 
1271 /*
1272  * mm/huge_memory.c
1273  */
1274 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1275 	       pud_t *pud, bool write);
1276 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1277 	       pmd_t *pmd, bool write);
1278 
1279 enum {
1280 	/* mark page accessed */
1281 	FOLL_TOUCH = 1 << 16,
1282 	/* a retry, previous pass started an IO */
1283 	FOLL_TRIED = 1 << 17,
1284 	/* we are working on non-current tsk/mm */
1285 	FOLL_REMOTE = 1 << 18,
1286 	/* pages must be released via unpin_user_page */
1287 	FOLL_PIN = 1 << 19,
1288 	/* gup_fast: prevent fall-back to slow gup */
1289 	FOLL_FAST_ONLY = 1 << 20,
1290 	/* allow unlocking the mmap lock */
1291 	FOLL_UNLOCKABLE = 1 << 21,
1292 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1293 	FOLL_MADV_POPULATE = 1 << 22,
1294 };
1295 
1296 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1297 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1298 			    FOLL_MADV_POPULATE)
1299 
1300 /*
1301  * Indicates for which pages that are write-protected in the page table,
1302  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1303  * GUP pin will remain consistent with the pages mapped into the page tables
1304  * of the MM.
1305  *
1306  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1307  * PageAnonExclusive() has to protect against concurrent GUP:
1308  * * Ordinary GUP: Using the PT lock
1309  * * GUP-fast and fork(): mm->write_protect_seq
1310  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1311  *    folio_try_share_anon_rmap_*()
1312  *
1313  * Must be called with the (sub)page that's actually referenced via the
1314  * page table entry, which might not necessarily be the head page for a
1315  * PTE-mapped THP.
1316  *
1317  * If the vma is NULL, we're coming from the GUP-fast path and might have
1318  * to fallback to the slow path just to lookup the vma.
1319  */
1320 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1321 				    unsigned int flags, struct page *page)
1322 {
1323 	/*
1324 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1325 	 * has to be writable -- and if it references (part of) an anonymous
1326 	 * folio, that part is required to be marked exclusive.
1327 	 */
1328 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1329 		return false;
1330 	/*
1331 	 * Note: PageAnon(page) is stable until the page is actually getting
1332 	 * freed.
1333 	 */
1334 	if (!PageAnon(page)) {
1335 		/*
1336 		 * We only care about R/O long-term pining: R/O short-term
1337 		 * pinning does not have the semantics to observe successive
1338 		 * changes through the process page tables.
1339 		 */
1340 		if (!(flags & FOLL_LONGTERM))
1341 			return false;
1342 
1343 		/* We really need the vma ... */
1344 		if (!vma)
1345 			return true;
1346 
1347 		/*
1348 		 * ... because we only care about writable private ("COW")
1349 		 * mappings where we have to break COW early.
1350 		 */
1351 		return is_cow_mapping(vma->vm_flags);
1352 	}
1353 
1354 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1355 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1356 		smp_rmb();
1357 
1358 	/*
1359 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1360 	 * cannot get pinned.
1361 	 */
1362 	return !PageAnonExclusive(page);
1363 }
1364 
1365 extern bool mirrored_kernelcore;
1366 extern bool memblock_has_mirror(void);
1367 
1368 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1369 					  unsigned long start, unsigned long end,
1370 					  pgoff_t pgoff)
1371 {
1372 	vma->vm_start = start;
1373 	vma->vm_end = end;
1374 	vma->vm_pgoff = pgoff;
1375 }
1376 
1377 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1378 {
1379 	/*
1380 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1381 	 * enablements, because when without soft-dirty being compiled in,
1382 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1383 	 * will be constantly true.
1384 	 */
1385 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1386 		return false;
1387 
1388 	/*
1389 	 * Soft-dirty is kind of special: its tracking is enabled when the
1390 	 * vma flags not set.
1391 	 */
1392 	return !(vma->vm_flags & VM_SOFTDIRTY);
1393 }
1394 
1395 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1396 {
1397 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1398 }
1399 
1400 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1401 {
1402 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1403 }
1404 
1405 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1406 				unsigned long zone, int nid);
1407 
1408 /* shrinker related functions */
1409 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1410 			  int priority);
1411 
1412 #ifdef CONFIG_64BIT
1413 static inline int can_do_mseal(unsigned long flags)
1414 {
1415 	if (flags)
1416 		return -EINVAL;
1417 
1418 	return 0;
1419 }
1420 
1421 #else
1422 static inline int can_do_mseal(unsigned long flags)
1423 {
1424 	return -EPERM;
1425 }
1426 #endif
1427 
1428 #ifdef CONFIG_SHRINKER_DEBUG
1429 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1430 			struct shrinker *shrinker, const char *fmt, va_list ap)
1431 {
1432 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1433 
1434 	return shrinker->name ? 0 : -ENOMEM;
1435 }
1436 
1437 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1438 {
1439 	kfree_const(shrinker->name);
1440 	shrinker->name = NULL;
1441 }
1442 
1443 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1444 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1445 					      int *debugfs_id);
1446 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1447 				    int debugfs_id);
1448 #else /* CONFIG_SHRINKER_DEBUG */
1449 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1450 {
1451 	return 0;
1452 }
1453 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1454 					      const char *fmt, va_list ap)
1455 {
1456 	return 0;
1457 }
1458 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1459 {
1460 }
1461 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1462 						     int *debugfs_id)
1463 {
1464 	*debugfs_id = -1;
1465 	return NULL;
1466 }
1467 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1468 					   int debugfs_id)
1469 {
1470 }
1471 #endif /* CONFIG_SHRINKER_DEBUG */
1472 
1473 /* Only track the nodes of mappings with shadow entries */
1474 void workingset_update_node(struct xa_node *node);
1475 extern struct list_lru shadow_nodes;
1476 
1477 /* mremap.c */
1478 unsigned long move_page_tables(struct vm_area_struct *vma,
1479 	unsigned long old_addr, struct vm_area_struct *new_vma,
1480 	unsigned long new_addr, unsigned long len,
1481 	bool need_rmap_locks, bool for_stack);
1482 
1483 #ifdef CONFIG_UNACCEPTED_MEMORY
1484 void accept_page(struct page *page);
1485 #else /* CONFIG_UNACCEPTED_MEMORY */
1486 static inline void accept_page(struct page *page)
1487 {
1488 }
1489 #endif /* CONFIG_UNACCEPTED_MEMORY */
1490 
1491 #endif	/* __MM_INTERNAL_H */
1492