xref: /linux/mm/internal.h (revision 55f1b540d893da740a81200450014c45a8103f54)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/swapops.h>
18 #include <linux/swap_cgroup.h>
19 #include <linux/tracepoint-defs.h>
20 
21 /* Internal core VMA manipulation functions. */
22 #include "vma.h"
23 
24 struct folio_batch;
25 
26 /*
27  * The set of flags that only affect watermark checking and reclaim
28  * behaviour. This is used by the MM to obey the caller constraints
29  * about IO, FS and watermark checking while ignoring placement
30  * hints such as HIGHMEM usage.
31  */
32 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
33 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
34 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
35 			__GFP_NOLOCKDEP)
36 
37 /* The GFP flags allowed during early boot */
38 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
39 
40 /* Control allocation cpuset and node placement constraints */
41 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
42 
43 /* Do not use these with a slab allocator */
44 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
45 
46 /*
47  * Different from WARN_ON_ONCE(), no warning will be issued
48  * when we specify __GFP_NOWARN.
49  */
50 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
51 	static bool __section(".data.once") __warned;			\
52 	int __ret_warn_once = !!(cond);					\
53 									\
54 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
55 		__warned = true;					\
56 		WARN_ON(1);						\
57 	}								\
58 	unlikely(__ret_warn_once);					\
59 })
60 
61 void page_writeback_init(void);
62 
63 /*
64  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
65  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
66  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
67  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
68  */
69 #define ENTIRELY_MAPPED		0x800000
70 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
71 
72 /*
73  * Flags passed to __show_mem() and show_free_areas() to suppress output in
74  * various contexts.
75  */
76 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
77 
78 /*
79  * How many individual pages have an elevated _mapcount.  Excludes
80  * the folio's entire_mapcount.
81  *
82  * Don't use this function outside of debugging code.
83  */
84 static inline int folio_nr_pages_mapped(const struct folio *folio)
85 {
86 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
87 }
88 
89 /*
90  * Retrieve the first entry of a folio based on a provided entry within the
91  * folio. We cannot rely on folio->swap as there is no guarantee that it has
92  * been initialized. Used for calling arch_swap_restore()
93  */
94 static inline swp_entry_t folio_swap(swp_entry_t entry,
95 		const struct folio *folio)
96 {
97 	swp_entry_t swap = {
98 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
99 	};
100 
101 	return swap;
102 }
103 
104 static inline void *folio_raw_mapping(const struct folio *folio)
105 {
106 	unsigned long mapping = (unsigned long)folio->mapping;
107 
108 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
109 }
110 
111 #ifdef CONFIG_MMU
112 
113 /* Flags for folio_pte_batch(). */
114 typedef int __bitwise fpb_t;
115 
116 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
117 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
118 
119 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
120 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
121 
122 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
123 {
124 	if (flags & FPB_IGNORE_DIRTY)
125 		pte = pte_mkclean(pte);
126 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
127 		pte = pte_clear_soft_dirty(pte);
128 	return pte_wrprotect(pte_mkold(pte));
129 }
130 
131 /**
132  * folio_pte_batch - detect a PTE batch for a large folio
133  * @folio: The large folio to detect a PTE batch for.
134  * @addr: The user virtual address the first page is mapped at.
135  * @start_ptep: Page table pointer for the first entry.
136  * @pte: Page table entry for the first page.
137  * @max_nr: The maximum number of table entries to consider.
138  * @flags: Flags to modify the PTE batch semantics.
139  * @any_writable: Optional pointer to indicate whether any entry except the
140  *		  first one is writable.
141  * @any_young: Optional pointer to indicate whether any entry except the
142  *		  first one is young.
143  * @any_dirty: Optional pointer to indicate whether any entry except the
144  *		  first one is dirty.
145  *
146  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
147  * pages of the same large folio.
148  *
149  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
150  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
151  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
152  *
153  * start_ptep must map any page of the folio. max_nr must be at least one and
154  * must be limited by the caller so scanning cannot exceed a single page table.
155  *
156  * Return: the number of table entries in the batch.
157  */
158 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
159 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
160 		bool *any_writable, bool *any_young, bool *any_dirty)
161 {
162 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
163 	const pte_t *end_ptep = start_ptep + max_nr;
164 	pte_t expected_pte, *ptep;
165 	bool writable, young, dirty;
166 	int nr;
167 
168 	if (any_writable)
169 		*any_writable = false;
170 	if (any_young)
171 		*any_young = false;
172 	if (any_dirty)
173 		*any_dirty = false;
174 
175 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
176 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
177 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
178 
179 	nr = pte_batch_hint(start_ptep, pte);
180 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
181 	ptep = start_ptep + nr;
182 
183 	while (ptep < end_ptep) {
184 		pte = ptep_get(ptep);
185 		if (any_writable)
186 			writable = !!pte_write(pte);
187 		if (any_young)
188 			young = !!pte_young(pte);
189 		if (any_dirty)
190 			dirty = !!pte_dirty(pte);
191 		pte = __pte_batch_clear_ignored(pte, flags);
192 
193 		if (!pte_same(pte, expected_pte))
194 			break;
195 
196 		/*
197 		 * Stop immediately once we reached the end of the folio. In
198 		 * corner cases the next PFN might fall into a different
199 		 * folio.
200 		 */
201 		if (pte_pfn(pte) >= folio_end_pfn)
202 			break;
203 
204 		if (any_writable)
205 			*any_writable |= writable;
206 		if (any_young)
207 			*any_young |= young;
208 		if (any_dirty)
209 			*any_dirty |= dirty;
210 
211 		nr = pte_batch_hint(ptep, pte);
212 		expected_pte = pte_advance_pfn(expected_pte, nr);
213 		ptep += nr;
214 	}
215 
216 	return min(ptep - start_ptep, max_nr);
217 }
218 
219 /**
220  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
221  *	 forward or backward by delta
222  * @pte: The initial pte state; is_swap_pte(pte) must be true and
223  *	 non_swap_entry() must be false.
224  * @delta: The direction and the offset we are moving; forward if delta
225  *	 is positive; backward if delta is negative
226  *
227  * Moves the swap offset, while maintaining all other fields, including
228  * swap type, and any swp pte bits. The resulting pte is returned.
229  */
230 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
231 {
232 	swp_entry_t entry = pte_to_swp_entry(pte);
233 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
234 						   (swp_offset(entry) + delta)));
235 
236 	if (pte_swp_soft_dirty(pte))
237 		new = pte_swp_mksoft_dirty(new);
238 	if (pte_swp_exclusive(pte))
239 		new = pte_swp_mkexclusive(new);
240 	if (pte_swp_uffd_wp(pte))
241 		new = pte_swp_mkuffd_wp(new);
242 
243 	return new;
244 }
245 
246 
247 /**
248  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
249  * @pte: The initial pte state; is_swap_pte(pte) must be true and
250  *	 non_swap_entry() must be false.
251  *
252  * Increments the swap offset, while maintaining all other fields, including
253  * swap type, and any swp pte bits. The resulting pte is returned.
254  */
255 static inline pte_t pte_next_swp_offset(pte_t pte)
256 {
257 	return pte_move_swp_offset(pte, 1);
258 }
259 
260 /**
261  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
262  * @start_ptep: Page table pointer for the first entry.
263  * @max_nr: The maximum number of table entries to consider.
264  * @pte: Page table entry for the first entry.
265  *
266  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
267  * containing swap entries all with consecutive offsets and targeting the same
268  * swap type, all with matching swp pte bits.
269  *
270  * max_nr must be at least one and must be limited by the caller so scanning
271  * cannot exceed a single page table.
272  *
273  * Return: the number of table entries in the batch.
274  */
275 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
276 {
277 	pte_t expected_pte = pte_next_swp_offset(pte);
278 	const pte_t *end_ptep = start_ptep + max_nr;
279 	swp_entry_t entry = pte_to_swp_entry(pte);
280 	pte_t *ptep = start_ptep + 1;
281 	unsigned short cgroup_id;
282 
283 	VM_WARN_ON(max_nr < 1);
284 	VM_WARN_ON(!is_swap_pte(pte));
285 	VM_WARN_ON(non_swap_entry(entry));
286 
287 	cgroup_id = lookup_swap_cgroup_id(entry);
288 	while (ptep < end_ptep) {
289 		pte = ptep_get(ptep);
290 
291 		if (!pte_same(pte, expected_pte))
292 			break;
293 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
294 			break;
295 		expected_pte = pte_next_swp_offset(expected_pte);
296 		ptep++;
297 	}
298 
299 	return ptep - start_ptep;
300 }
301 #endif /* CONFIG_MMU */
302 
303 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
304 						int nr_throttled);
305 static inline void acct_reclaim_writeback(struct folio *folio)
306 {
307 	pg_data_t *pgdat = folio_pgdat(folio);
308 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
309 
310 	if (nr_throttled)
311 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
312 }
313 
314 static inline void wake_throttle_isolated(pg_data_t *pgdat)
315 {
316 	wait_queue_head_t *wqh;
317 
318 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
319 	if (waitqueue_active(wqh))
320 		wake_up(wqh);
321 }
322 
323 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
324 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
325 {
326 	vm_fault_t ret = __vmf_anon_prepare(vmf);
327 
328 	if (unlikely(ret & VM_FAULT_RETRY))
329 		vma_end_read(vmf->vma);
330 	return ret;
331 }
332 
333 vm_fault_t do_swap_page(struct vm_fault *vmf);
334 void folio_rotate_reclaimable(struct folio *folio);
335 bool __folio_end_writeback(struct folio *folio);
336 void deactivate_file_folio(struct folio *folio);
337 void folio_activate(struct folio *folio);
338 
339 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
340 		   struct vm_area_struct *start_vma, unsigned long floor,
341 		   unsigned long ceiling, bool mm_wr_locked);
342 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
343 
344 struct zap_details;
345 void unmap_page_range(struct mmu_gather *tlb,
346 			     struct vm_area_struct *vma,
347 			     unsigned long addr, unsigned long end,
348 			     struct zap_details *details);
349 
350 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
351 		unsigned int order);
352 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
353 static inline void force_page_cache_readahead(struct address_space *mapping,
354 		struct file *file, pgoff_t index, unsigned long nr_to_read)
355 {
356 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
357 	force_page_cache_ra(&ractl, nr_to_read);
358 }
359 
360 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
361 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
362 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
363 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
364 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
365 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
366 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
367 		loff_t end);
368 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
369 unsigned long mapping_try_invalidate(struct address_space *mapping,
370 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
371 
372 /**
373  * folio_evictable - Test whether a folio is evictable.
374  * @folio: The folio to test.
375  *
376  * Test whether @folio is evictable -- i.e., should be placed on
377  * active/inactive lists vs unevictable list.
378  *
379  * Reasons folio might not be evictable:
380  * 1. folio's mapping marked unevictable
381  * 2. One of the pages in the folio is part of an mlocked VMA
382  */
383 static inline bool folio_evictable(struct folio *folio)
384 {
385 	bool ret;
386 
387 	/* Prevent address_space of inode and swap cache from being freed */
388 	rcu_read_lock();
389 	ret = !mapping_unevictable(folio_mapping(folio)) &&
390 			!folio_test_mlocked(folio);
391 	rcu_read_unlock();
392 	return ret;
393 }
394 
395 /*
396  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
397  * a count of one.
398  */
399 static inline void set_page_refcounted(struct page *page)
400 {
401 	VM_BUG_ON_PAGE(PageTail(page), page);
402 	VM_BUG_ON_PAGE(page_ref_count(page), page);
403 	set_page_count(page, 1);
404 }
405 
406 /*
407  * Return true if a folio needs ->release_folio() calling upon it.
408  */
409 static inline bool folio_needs_release(struct folio *folio)
410 {
411 	struct address_space *mapping = folio_mapping(folio);
412 
413 	return folio_has_private(folio) ||
414 		(mapping && mapping_release_always(mapping));
415 }
416 
417 extern unsigned long highest_memmap_pfn;
418 
419 /*
420  * Maximum number of reclaim retries without progress before the OOM
421  * killer is consider the only way forward.
422  */
423 #define MAX_RECLAIM_RETRIES 16
424 
425 /*
426  * in mm/vmscan.c:
427  */
428 bool folio_isolate_lru(struct folio *folio);
429 void folio_putback_lru(struct folio *folio);
430 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
431 
432 /*
433  * in mm/rmap.c:
434  */
435 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
436 
437 /*
438  * in mm/page_alloc.c
439  */
440 #define K(x) ((x) << (PAGE_SHIFT-10))
441 
442 extern char * const zone_names[MAX_NR_ZONES];
443 
444 /* perform sanity checks on struct pages being allocated or freed */
445 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
446 
447 extern int min_free_kbytes;
448 
449 void setup_per_zone_wmarks(void);
450 void calculate_min_free_kbytes(void);
451 int __meminit init_per_zone_wmark_min(void);
452 void page_alloc_sysctl_init(void);
453 
454 /*
455  * Structure for holding the mostly immutable allocation parameters passed
456  * between functions involved in allocations, including the alloc_pages*
457  * family of functions.
458  *
459  * nodemask, migratetype and highest_zoneidx are initialized only once in
460  * __alloc_pages() and then never change.
461  *
462  * zonelist, preferred_zone and highest_zoneidx are set first in
463  * __alloc_pages() for the fast path, and might be later changed
464  * in __alloc_pages_slowpath(). All other functions pass the whole structure
465  * by a const pointer.
466  */
467 struct alloc_context {
468 	struct zonelist *zonelist;
469 	nodemask_t *nodemask;
470 	struct zoneref *preferred_zoneref;
471 	int migratetype;
472 
473 	/*
474 	 * highest_zoneidx represents highest usable zone index of
475 	 * the allocation request. Due to the nature of the zone,
476 	 * memory on lower zone than the highest_zoneidx will be
477 	 * protected by lowmem_reserve[highest_zoneidx].
478 	 *
479 	 * highest_zoneidx is also used by reclaim/compaction to limit
480 	 * the target zone since higher zone than this index cannot be
481 	 * usable for this allocation request.
482 	 */
483 	enum zone_type highest_zoneidx;
484 	bool spread_dirty_pages;
485 };
486 
487 /*
488  * This function returns the order of a free page in the buddy system. In
489  * general, page_zone(page)->lock must be held by the caller to prevent the
490  * page from being allocated in parallel and returning garbage as the order.
491  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
492  * page cannot be allocated or merged in parallel. Alternatively, it must
493  * handle invalid values gracefully, and use buddy_order_unsafe() below.
494  */
495 static inline unsigned int buddy_order(struct page *page)
496 {
497 	/* PageBuddy() must be checked by the caller */
498 	return page_private(page);
499 }
500 
501 /*
502  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
503  * PageBuddy() should be checked first by the caller to minimize race window,
504  * and invalid values must be handled gracefully.
505  *
506  * READ_ONCE is used so that if the caller assigns the result into a local
507  * variable and e.g. tests it for valid range before using, the compiler cannot
508  * decide to remove the variable and inline the page_private(page) multiple
509  * times, potentially observing different values in the tests and the actual
510  * use of the result.
511  */
512 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
513 
514 /*
515  * This function checks whether a page is free && is the buddy
516  * we can coalesce a page and its buddy if
517  * (a) the buddy is not in a hole (check before calling!) &&
518  * (b) the buddy is in the buddy system &&
519  * (c) a page and its buddy have the same order &&
520  * (d) a page and its buddy are in the same zone.
521  *
522  * For recording whether a page is in the buddy system, we set PageBuddy.
523  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
524  *
525  * For recording page's order, we use page_private(page).
526  */
527 static inline bool page_is_buddy(struct page *page, struct page *buddy,
528 				 unsigned int order)
529 {
530 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
531 		return false;
532 
533 	if (buddy_order(buddy) != order)
534 		return false;
535 
536 	/*
537 	 * zone check is done late to avoid uselessly calculating
538 	 * zone/node ids for pages that could never merge.
539 	 */
540 	if (page_zone_id(page) != page_zone_id(buddy))
541 		return false;
542 
543 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
544 
545 	return true;
546 }
547 
548 /*
549  * Locate the struct page for both the matching buddy in our
550  * pair (buddy1) and the combined O(n+1) page they form (page).
551  *
552  * 1) Any buddy B1 will have an order O twin B2 which satisfies
553  * the following equation:
554  *     B2 = B1 ^ (1 << O)
555  * For example, if the starting buddy (buddy2) is #8 its order
556  * 1 buddy is #10:
557  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
558  *
559  * 2) Any buddy B will have an order O+1 parent P which
560  * satisfies the following equation:
561  *     P = B & ~(1 << O)
562  *
563  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
564  */
565 static inline unsigned long
566 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
567 {
568 	return page_pfn ^ (1 << order);
569 }
570 
571 /*
572  * Find the buddy of @page and validate it.
573  * @page: The input page
574  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
575  *       function is used in the performance-critical __free_one_page().
576  * @order: The order of the page
577  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
578  *             page_to_pfn().
579  *
580  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
581  * not the same as @page. The validation is necessary before use it.
582  *
583  * Return: the found buddy page or NULL if not found.
584  */
585 static inline struct page *find_buddy_page_pfn(struct page *page,
586 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
587 {
588 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
589 	struct page *buddy;
590 
591 	buddy = page + (__buddy_pfn - pfn);
592 	if (buddy_pfn)
593 		*buddy_pfn = __buddy_pfn;
594 
595 	if (page_is_buddy(page, buddy, order))
596 		return buddy;
597 	return NULL;
598 }
599 
600 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
601 				unsigned long end_pfn, struct zone *zone);
602 
603 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
604 				unsigned long end_pfn, struct zone *zone)
605 {
606 	if (zone->contiguous)
607 		return pfn_to_page(start_pfn);
608 
609 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
610 }
611 
612 void set_zone_contiguous(struct zone *zone);
613 
614 static inline void clear_zone_contiguous(struct zone *zone)
615 {
616 	zone->contiguous = false;
617 }
618 
619 extern int __isolate_free_page(struct page *page, unsigned int order);
620 extern void __putback_isolated_page(struct page *page, unsigned int order,
621 				    int mt);
622 extern void memblock_free_pages(struct page *page, unsigned long pfn,
623 					unsigned int order);
624 extern void __free_pages_core(struct page *page, unsigned int order,
625 		enum meminit_context context);
626 
627 /*
628  * This will have no effect, other than possibly generating a warning, if the
629  * caller passes in a non-large folio.
630  */
631 static inline void folio_set_order(struct folio *folio, unsigned int order)
632 {
633 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
634 		return;
635 
636 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
637 #ifdef CONFIG_64BIT
638 	folio->_folio_nr_pages = 1U << order;
639 #endif
640 }
641 
642 void __folio_undo_large_rmappable(struct folio *folio);
643 static inline void folio_undo_large_rmappable(struct folio *folio)
644 {
645 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
646 		return;
647 
648 	/*
649 	 * At this point, there is no one trying to add the folio to
650 	 * deferred_list. If folio is not in deferred_list, it's safe
651 	 * to check without acquiring the split_queue_lock.
652 	 */
653 	if (data_race(list_empty(&folio->_deferred_list)))
654 		return;
655 
656 	__folio_undo_large_rmappable(folio);
657 }
658 
659 static inline struct folio *page_rmappable_folio(struct page *page)
660 {
661 	struct folio *folio = (struct folio *)page;
662 
663 	if (folio && folio_test_large(folio))
664 		folio_set_large_rmappable(folio);
665 	return folio;
666 }
667 
668 static inline void prep_compound_head(struct page *page, unsigned int order)
669 {
670 	struct folio *folio = (struct folio *)page;
671 
672 	folio_set_order(folio, order);
673 	atomic_set(&folio->_large_mapcount, -1);
674 	atomic_set(&folio->_entire_mapcount, -1);
675 	atomic_set(&folio->_nr_pages_mapped, 0);
676 	atomic_set(&folio->_pincount, 0);
677 	if (order > 1)
678 		INIT_LIST_HEAD(&folio->_deferred_list);
679 }
680 
681 static inline void prep_compound_tail(struct page *head, int tail_idx)
682 {
683 	struct page *p = head + tail_idx;
684 
685 	p->mapping = TAIL_MAPPING;
686 	set_compound_head(p, head);
687 	set_page_private(p, 0);
688 }
689 
690 extern void prep_compound_page(struct page *page, unsigned int order);
691 
692 extern void post_alloc_hook(struct page *page, unsigned int order,
693 					gfp_t gfp_flags);
694 extern bool free_pages_prepare(struct page *page, unsigned int order);
695 
696 extern int user_min_free_kbytes;
697 
698 void free_unref_page(struct page *page, unsigned int order);
699 void free_unref_folios(struct folio_batch *fbatch);
700 
701 extern void zone_pcp_reset(struct zone *zone);
702 extern void zone_pcp_disable(struct zone *zone);
703 extern void zone_pcp_enable(struct zone *zone);
704 extern void zone_pcp_init(struct zone *zone);
705 
706 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
707 			  phys_addr_t min_addr,
708 			  int nid, bool exact_nid);
709 
710 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
711 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
712 
713 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
714 
715 /*
716  * in mm/compaction.c
717  */
718 /*
719  * compact_control is used to track pages being migrated and the free pages
720  * they are being migrated to during memory compaction. The free_pfn starts
721  * at the end of a zone and migrate_pfn begins at the start. Movable pages
722  * are moved to the end of a zone during a compaction run and the run
723  * completes when free_pfn <= migrate_pfn
724  */
725 struct compact_control {
726 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
727 	struct list_head migratepages;	/* List of pages being migrated */
728 	unsigned int nr_freepages;	/* Number of isolated free pages */
729 	unsigned int nr_migratepages;	/* Number of pages to migrate */
730 	unsigned long free_pfn;		/* isolate_freepages search base */
731 	/*
732 	 * Acts as an in/out parameter to page isolation for migration.
733 	 * isolate_migratepages uses it as a search base.
734 	 * isolate_migratepages_block will update the value to the next pfn
735 	 * after the last isolated one.
736 	 */
737 	unsigned long migrate_pfn;
738 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
739 	struct zone *zone;
740 	unsigned long total_migrate_scanned;
741 	unsigned long total_free_scanned;
742 	unsigned short fast_search_fail;/* failures to use free list searches */
743 	short search_order;		/* order to start a fast search at */
744 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
745 	int order;			/* order a direct compactor needs */
746 	int migratetype;		/* migratetype of direct compactor */
747 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
748 	const int highest_zoneidx;	/* zone index of a direct compactor */
749 	enum migrate_mode mode;		/* Async or sync migration mode */
750 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
751 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
752 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
753 	bool direct_compaction;		/* False from kcompactd or /proc/... */
754 	bool proactive_compaction;	/* kcompactd proactive compaction */
755 	bool whole_zone;		/* Whole zone should/has been scanned */
756 	bool contended;			/* Signal lock contention */
757 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
758 					 * when there are potentially transient
759 					 * isolation or migration failures to
760 					 * ensure forward progress.
761 					 */
762 	bool alloc_contig;		/* alloc_contig_range allocation */
763 };
764 
765 /*
766  * Used in direct compaction when a page should be taken from the freelists
767  * immediately when one is created during the free path.
768  */
769 struct capture_control {
770 	struct compact_control *cc;
771 	struct page *page;
772 };
773 
774 unsigned long
775 isolate_freepages_range(struct compact_control *cc,
776 			unsigned long start_pfn, unsigned long end_pfn);
777 int
778 isolate_migratepages_range(struct compact_control *cc,
779 			   unsigned long low_pfn, unsigned long end_pfn);
780 
781 int __alloc_contig_migrate_range(struct compact_control *cc,
782 					unsigned long start, unsigned long end,
783 					int migratetype);
784 
785 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
786 void init_cma_reserved_pageblock(struct page *page);
787 
788 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
789 
790 int find_suitable_fallback(struct free_area *area, unsigned int order,
791 			int migratetype, bool only_stealable, bool *can_steal);
792 
793 static inline bool free_area_empty(struct free_area *area, int migratetype)
794 {
795 	return list_empty(&area->free_list[migratetype]);
796 }
797 
798 /* mm/util.c */
799 struct anon_vma *folio_anon_vma(struct folio *folio);
800 
801 #ifdef CONFIG_MMU
802 void unmap_mapping_folio(struct folio *folio);
803 extern long populate_vma_page_range(struct vm_area_struct *vma,
804 		unsigned long start, unsigned long end, int *locked);
805 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
806 		unsigned long end, bool write, int *locked);
807 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
808 			       unsigned long bytes);
809 
810 /*
811  * NOTE: This function can't tell whether the folio is "fully mapped" in the
812  * range.
813  * "fully mapped" means all the pages of folio is associated with the page
814  * table of range while this function just check whether the folio range is
815  * within the range [start, end). Function caller needs to do page table
816  * check if it cares about the page table association.
817  *
818  * Typical usage (like mlock or madvise) is:
819  * Caller knows at least 1 page of folio is associated with page table of VMA
820  * and the range [start, end) is intersect with the VMA range. Caller wants
821  * to know whether the folio is fully associated with the range. It calls
822  * this function to check whether the folio is in the range first. Then checks
823  * the page table to know whether the folio is fully mapped to the range.
824  */
825 static inline bool
826 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
827 		unsigned long start, unsigned long end)
828 {
829 	pgoff_t pgoff, addr;
830 	unsigned long vma_pglen = vma_pages(vma);
831 
832 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
833 	if (start > end)
834 		return false;
835 
836 	if (start < vma->vm_start)
837 		start = vma->vm_start;
838 
839 	if (end > vma->vm_end)
840 		end = vma->vm_end;
841 
842 	pgoff = folio_pgoff(folio);
843 
844 	/* if folio start address is not in vma range */
845 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
846 		return false;
847 
848 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
849 
850 	return !(addr < start || end - addr < folio_size(folio));
851 }
852 
853 static inline bool
854 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
855 {
856 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
857 }
858 
859 /*
860  * mlock_vma_folio() and munlock_vma_folio():
861  * should be called with vma's mmap_lock held for read or write,
862  * under page table lock for the pte/pmd being added or removed.
863  *
864  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
865  * the end of folio_remove_rmap_*(); but new anon folios are managed by
866  * folio_add_lru_vma() calling mlock_new_folio().
867  */
868 void mlock_folio(struct folio *folio);
869 static inline void mlock_vma_folio(struct folio *folio,
870 				struct vm_area_struct *vma)
871 {
872 	/*
873 	 * The VM_SPECIAL check here serves two purposes.
874 	 * 1) VM_IO check prevents migration from double-counting during mlock.
875 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
876 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
877 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
878 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
879 	 */
880 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
881 		mlock_folio(folio);
882 }
883 
884 void munlock_folio(struct folio *folio);
885 static inline void munlock_vma_folio(struct folio *folio,
886 					struct vm_area_struct *vma)
887 {
888 	/*
889 	 * munlock if the function is called. Ideally, we should only
890 	 * do munlock if any page of folio is unmapped from VMA and
891 	 * cause folio not fully mapped to VMA.
892 	 *
893 	 * But it's not easy to confirm that's the situation. So we
894 	 * always munlock the folio and page reclaim will correct it
895 	 * if it's wrong.
896 	 */
897 	if (unlikely(vma->vm_flags & VM_LOCKED))
898 		munlock_folio(folio);
899 }
900 
901 void mlock_new_folio(struct folio *folio);
902 bool need_mlock_drain(int cpu);
903 void mlock_drain_local(void);
904 void mlock_drain_remote(int cpu);
905 
906 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
907 
908 /**
909  * vma_address - Find the virtual address a page range is mapped at
910  * @vma: The vma which maps this object.
911  * @pgoff: The page offset within its object.
912  * @nr_pages: The number of pages to consider.
913  *
914  * If any page in this range is mapped by this VMA, return the first address
915  * where any of these pages appear.  Otherwise, return -EFAULT.
916  */
917 static inline unsigned long vma_address(struct vm_area_struct *vma,
918 		pgoff_t pgoff, unsigned long nr_pages)
919 {
920 	unsigned long address;
921 
922 	if (pgoff >= vma->vm_pgoff) {
923 		address = vma->vm_start +
924 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
925 		/* Check for address beyond vma (or wrapped through 0?) */
926 		if (address < vma->vm_start || address >= vma->vm_end)
927 			address = -EFAULT;
928 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
929 		/* Test above avoids possibility of wrap to 0 on 32-bit */
930 		address = vma->vm_start;
931 	} else {
932 		address = -EFAULT;
933 	}
934 	return address;
935 }
936 
937 /*
938  * Then at what user virtual address will none of the range be found in vma?
939  * Assumes that vma_address() already returned a good starting address.
940  */
941 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
942 {
943 	struct vm_area_struct *vma = pvmw->vma;
944 	pgoff_t pgoff;
945 	unsigned long address;
946 
947 	/* Common case, plus ->pgoff is invalid for KSM */
948 	if (pvmw->nr_pages == 1)
949 		return pvmw->address + PAGE_SIZE;
950 
951 	pgoff = pvmw->pgoff + pvmw->nr_pages;
952 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
953 	/* Check for address beyond vma (or wrapped through 0?) */
954 	if (address < vma->vm_start || address > vma->vm_end)
955 		address = vma->vm_end;
956 	return address;
957 }
958 
959 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
960 						    struct file *fpin)
961 {
962 	int flags = vmf->flags;
963 
964 	if (fpin)
965 		return fpin;
966 
967 	/*
968 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
969 	 * anything, so we only pin the file and drop the mmap_lock if only
970 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
971 	 */
972 	if (fault_flag_allow_retry_first(flags) &&
973 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
974 		fpin = get_file(vmf->vma->vm_file);
975 		release_fault_lock(vmf);
976 	}
977 	return fpin;
978 }
979 #else /* !CONFIG_MMU */
980 static inline void unmap_mapping_folio(struct folio *folio) { }
981 static inline void mlock_new_folio(struct folio *folio) { }
982 static inline bool need_mlock_drain(int cpu) { return false; }
983 static inline void mlock_drain_local(void) { }
984 static inline void mlock_drain_remote(int cpu) { }
985 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
986 {
987 }
988 #endif /* !CONFIG_MMU */
989 
990 /* Memory initialisation debug and verification */
991 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
992 DECLARE_STATIC_KEY_TRUE(deferred_pages);
993 
994 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
995 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
996 
997 enum mminit_level {
998 	MMINIT_WARNING,
999 	MMINIT_VERIFY,
1000 	MMINIT_TRACE
1001 };
1002 
1003 #ifdef CONFIG_DEBUG_MEMORY_INIT
1004 
1005 extern int mminit_loglevel;
1006 
1007 #define mminit_dprintk(level, prefix, fmt, arg...) \
1008 do { \
1009 	if (level < mminit_loglevel) { \
1010 		if (level <= MMINIT_WARNING) \
1011 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1012 		else \
1013 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1014 	} \
1015 } while (0)
1016 
1017 extern void mminit_verify_pageflags_layout(void);
1018 extern void mminit_verify_zonelist(void);
1019 #else
1020 
1021 static inline void mminit_dprintk(enum mminit_level level,
1022 				const char *prefix, const char *fmt, ...)
1023 {
1024 }
1025 
1026 static inline void mminit_verify_pageflags_layout(void)
1027 {
1028 }
1029 
1030 static inline void mminit_verify_zonelist(void)
1031 {
1032 }
1033 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1034 
1035 #define NODE_RECLAIM_NOSCAN	-2
1036 #define NODE_RECLAIM_FULL	-1
1037 #define NODE_RECLAIM_SOME	0
1038 #define NODE_RECLAIM_SUCCESS	1
1039 
1040 #ifdef CONFIG_NUMA
1041 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1042 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1043 #else
1044 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1045 				unsigned int order)
1046 {
1047 	return NODE_RECLAIM_NOSCAN;
1048 }
1049 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1050 {
1051 	return NUMA_NO_NODE;
1052 }
1053 #endif
1054 
1055 /*
1056  * mm/memory-failure.c
1057  */
1058 #ifdef CONFIG_MEMORY_FAILURE
1059 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu);
1060 void shake_folio(struct folio *folio);
1061 extern int hwpoison_filter(struct page *p);
1062 
1063 extern u32 hwpoison_filter_dev_major;
1064 extern u32 hwpoison_filter_dev_minor;
1065 extern u64 hwpoison_filter_flags_mask;
1066 extern u64 hwpoison_filter_flags_value;
1067 extern u64 hwpoison_filter_memcg;
1068 extern u32 hwpoison_filter_enable;
1069 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1070 void SetPageHWPoisonTakenOff(struct page *page);
1071 void ClearPageHWPoisonTakenOff(struct page *page);
1072 bool take_page_off_buddy(struct page *page);
1073 bool put_page_back_buddy(struct page *page);
1074 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1075 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1076 		     struct vm_area_struct *vma, struct list_head *to_kill,
1077 		     unsigned long ksm_addr);
1078 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1079 
1080 #else
1081 static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1082 {
1083 }
1084 #endif
1085 
1086 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1087         unsigned long, unsigned long,
1088         unsigned long, unsigned long);
1089 
1090 extern void set_pageblock_order(void);
1091 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1092 unsigned long reclaim_pages(struct list_head *folio_list);
1093 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1094 					    struct list_head *folio_list);
1095 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1096 #define ALLOC_WMARK_MIN		WMARK_MIN
1097 #define ALLOC_WMARK_LOW		WMARK_LOW
1098 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1099 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1100 
1101 /* Mask to get the watermark bits */
1102 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1103 
1104 /*
1105  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1106  * cannot assume a reduced access to memory reserves is sufficient for
1107  * !MMU
1108  */
1109 #ifdef CONFIG_MMU
1110 #define ALLOC_OOM		0x08
1111 #else
1112 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1113 #endif
1114 
1115 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1116 				       * to 25% of the min watermark or
1117 				       * 62.5% if __GFP_HIGH is set.
1118 				       */
1119 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1120 				       * of the min watermark.
1121 				       */
1122 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1123 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1124 #ifdef CONFIG_ZONE_DMA32
1125 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1126 #else
1127 #define ALLOC_NOFRAGMENT	  0x0
1128 #endif
1129 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1130 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1131 
1132 /* Flags that allow allocations below the min watermark. */
1133 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1134 
1135 enum ttu_flags;
1136 struct tlbflush_unmap_batch;
1137 
1138 
1139 /*
1140  * only for MM internal work items which do not depend on
1141  * any allocations or locks which might depend on allocations
1142  */
1143 extern struct workqueue_struct *mm_percpu_wq;
1144 
1145 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1146 void try_to_unmap_flush(void);
1147 void try_to_unmap_flush_dirty(void);
1148 void flush_tlb_batched_pending(struct mm_struct *mm);
1149 #else
1150 static inline void try_to_unmap_flush(void)
1151 {
1152 }
1153 static inline void try_to_unmap_flush_dirty(void)
1154 {
1155 }
1156 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1157 {
1158 }
1159 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1160 
1161 extern const struct trace_print_flags pageflag_names[];
1162 extern const struct trace_print_flags vmaflag_names[];
1163 extern const struct trace_print_flags gfpflag_names[];
1164 
1165 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1166 {
1167 	return migratetype == MIGRATE_HIGHATOMIC;
1168 }
1169 
1170 void setup_zone_pageset(struct zone *zone);
1171 
1172 struct migration_target_control {
1173 	int nid;		/* preferred node id */
1174 	nodemask_t *nmask;
1175 	gfp_t gfp_mask;
1176 	enum migrate_reason reason;
1177 };
1178 
1179 /*
1180  * mm/filemap.c
1181  */
1182 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1183 			      struct folio *folio, loff_t fpos, size_t size);
1184 
1185 /*
1186  * mm/vmalloc.c
1187  */
1188 #ifdef CONFIG_MMU
1189 void __init vmalloc_init(void);
1190 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1191                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1192 #else
1193 static inline void vmalloc_init(void)
1194 {
1195 }
1196 
1197 static inline
1198 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1199                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1200 {
1201 	return -EINVAL;
1202 }
1203 #endif
1204 
1205 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1206 			       unsigned long end, pgprot_t prot,
1207 			       struct page **pages, unsigned int page_shift);
1208 
1209 void vunmap_range_noflush(unsigned long start, unsigned long end);
1210 
1211 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1212 
1213 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1214 		      unsigned long addr, int *flags, bool writable,
1215 		      int *last_cpupid);
1216 
1217 void free_zone_device_folio(struct folio *folio);
1218 int migrate_device_coherent_folio(struct folio *folio);
1219 
1220 /*
1221  * mm/gup.c
1222  */
1223 int __must_check try_grab_folio(struct folio *folio, int refs,
1224 				unsigned int flags);
1225 
1226 /*
1227  * mm/huge_memory.c
1228  */
1229 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1230 	       pud_t *pud, bool write);
1231 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1232 	       pmd_t *pmd, bool write);
1233 
1234 enum {
1235 	/* mark page accessed */
1236 	FOLL_TOUCH = 1 << 16,
1237 	/* a retry, previous pass started an IO */
1238 	FOLL_TRIED = 1 << 17,
1239 	/* we are working on non-current tsk/mm */
1240 	FOLL_REMOTE = 1 << 18,
1241 	/* pages must be released via unpin_user_page */
1242 	FOLL_PIN = 1 << 19,
1243 	/* gup_fast: prevent fall-back to slow gup */
1244 	FOLL_FAST_ONLY = 1 << 20,
1245 	/* allow unlocking the mmap lock */
1246 	FOLL_UNLOCKABLE = 1 << 21,
1247 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1248 	FOLL_MADV_POPULATE = 1 << 22,
1249 };
1250 
1251 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1252 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1253 			    FOLL_MADV_POPULATE)
1254 
1255 /*
1256  * Indicates for which pages that are write-protected in the page table,
1257  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1258  * GUP pin will remain consistent with the pages mapped into the page tables
1259  * of the MM.
1260  *
1261  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1262  * PageAnonExclusive() has to protect against concurrent GUP:
1263  * * Ordinary GUP: Using the PT lock
1264  * * GUP-fast and fork(): mm->write_protect_seq
1265  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1266  *    folio_try_share_anon_rmap_*()
1267  *
1268  * Must be called with the (sub)page that's actually referenced via the
1269  * page table entry, which might not necessarily be the head page for a
1270  * PTE-mapped THP.
1271  *
1272  * If the vma is NULL, we're coming from the GUP-fast path and might have
1273  * to fallback to the slow path just to lookup the vma.
1274  */
1275 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1276 				    unsigned int flags, struct page *page)
1277 {
1278 	/*
1279 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1280 	 * has to be writable -- and if it references (part of) an anonymous
1281 	 * folio, that part is required to be marked exclusive.
1282 	 */
1283 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1284 		return false;
1285 	/*
1286 	 * Note: PageAnon(page) is stable until the page is actually getting
1287 	 * freed.
1288 	 */
1289 	if (!PageAnon(page)) {
1290 		/*
1291 		 * We only care about R/O long-term pining: R/O short-term
1292 		 * pinning does not have the semantics to observe successive
1293 		 * changes through the process page tables.
1294 		 */
1295 		if (!(flags & FOLL_LONGTERM))
1296 			return false;
1297 
1298 		/* We really need the vma ... */
1299 		if (!vma)
1300 			return true;
1301 
1302 		/*
1303 		 * ... because we only care about writable private ("COW")
1304 		 * mappings where we have to break COW early.
1305 		 */
1306 		return is_cow_mapping(vma->vm_flags);
1307 	}
1308 
1309 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1310 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1311 		smp_rmb();
1312 
1313 	/*
1314 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1315 	 * cannot get pinned.
1316 	 */
1317 	return !PageAnonExclusive(page);
1318 }
1319 
1320 extern bool mirrored_kernelcore;
1321 extern bool memblock_has_mirror(void);
1322 
1323 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1324 					  unsigned long start, unsigned long end,
1325 					  pgoff_t pgoff)
1326 {
1327 	vma->vm_start = start;
1328 	vma->vm_end = end;
1329 	vma->vm_pgoff = pgoff;
1330 }
1331 
1332 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1333 {
1334 	/*
1335 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1336 	 * enablements, because when without soft-dirty being compiled in,
1337 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1338 	 * will be constantly true.
1339 	 */
1340 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1341 		return false;
1342 
1343 	/*
1344 	 * Soft-dirty is kind of special: its tracking is enabled when the
1345 	 * vma flags not set.
1346 	 */
1347 	return !(vma->vm_flags & VM_SOFTDIRTY);
1348 }
1349 
1350 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1351 {
1352 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1353 }
1354 
1355 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1356 {
1357 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1358 }
1359 
1360 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1361 				unsigned long zone, int nid);
1362 
1363 /* shrinker related functions */
1364 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1365 			  int priority);
1366 
1367 #ifdef CONFIG_64BIT
1368 static inline int can_do_mseal(unsigned long flags)
1369 {
1370 	if (flags)
1371 		return -EINVAL;
1372 
1373 	return 0;
1374 }
1375 
1376 #else
1377 static inline int can_do_mseal(unsigned long flags)
1378 {
1379 	return -EPERM;
1380 }
1381 #endif
1382 
1383 #ifdef CONFIG_SHRINKER_DEBUG
1384 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1385 			struct shrinker *shrinker, const char *fmt, va_list ap)
1386 {
1387 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1388 
1389 	return shrinker->name ? 0 : -ENOMEM;
1390 }
1391 
1392 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1393 {
1394 	kfree_const(shrinker->name);
1395 	shrinker->name = NULL;
1396 }
1397 
1398 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1399 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1400 					      int *debugfs_id);
1401 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1402 				    int debugfs_id);
1403 #else /* CONFIG_SHRINKER_DEBUG */
1404 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1405 {
1406 	return 0;
1407 }
1408 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1409 					      const char *fmt, va_list ap)
1410 {
1411 	return 0;
1412 }
1413 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1414 {
1415 }
1416 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1417 						     int *debugfs_id)
1418 {
1419 	*debugfs_id = -1;
1420 	return NULL;
1421 }
1422 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1423 					   int debugfs_id)
1424 {
1425 }
1426 #endif /* CONFIG_SHRINKER_DEBUG */
1427 
1428 /* Only track the nodes of mappings with shadow entries */
1429 void workingset_update_node(struct xa_node *node);
1430 extern struct list_lru shadow_nodes;
1431 
1432 /* mremap.c */
1433 unsigned long move_page_tables(struct vm_area_struct *vma,
1434 	unsigned long old_addr, struct vm_area_struct *new_vma,
1435 	unsigned long new_addr, unsigned long len,
1436 	bool need_rmap_locks, bool for_stack);
1437 
1438 #ifdef CONFIG_UNACCEPTED_MEMORY
1439 void accept_page(struct page *page);
1440 #else /* CONFIG_UNACCEPTED_MEMORY */
1441 static inline void accept_page(struct page *page)
1442 {
1443 }
1444 #endif /* CONFIG_UNACCEPTED_MEMORY */
1445 
1446 #endif	/* __MM_INTERNAL_H */
1447