1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 void __acct_reclaim_writeback(pg_data_t *pgdat, struct page *page, 38 int nr_throttled); 39 static inline void acct_reclaim_writeback(struct page *page) 40 { 41 pg_data_t *pgdat = page_pgdat(page); 42 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 43 44 if (nr_throttled) 45 __acct_reclaim_writeback(pgdat, page, nr_throttled); 46 } 47 48 static inline void wake_throttle_isolated(pg_data_t *pgdat) 49 { 50 wait_queue_head_t *wqh; 51 52 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 53 if (waitqueue_active(wqh)) 54 wake_up(wqh); 55 } 56 57 vm_fault_t do_swap_page(struct vm_fault *vmf); 58 59 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 60 unsigned long floor, unsigned long ceiling); 61 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 62 63 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 64 { 65 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 66 } 67 68 void unmap_page_range(struct mmu_gather *tlb, 69 struct vm_area_struct *vma, 70 unsigned long addr, unsigned long end, 71 struct zap_details *details); 72 73 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 74 unsigned long lookahead_size); 75 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 76 static inline void force_page_cache_readahead(struct address_space *mapping, 77 struct file *file, pgoff_t index, unsigned long nr_to_read) 78 { 79 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 80 force_page_cache_ra(&ractl, nr_to_read); 81 } 82 83 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 84 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 85 86 /** 87 * page_evictable - test whether a page is evictable 88 * @page: the page to test 89 * 90 * Test whether page is evictable--i.e., should be placed on active/inactive 91 * lists vs unevictable list. 92 * 93 * Reasons page might not be evictable: 94 * (1) page's mapping marked unevictable 95 * (2) page is part of an mlocked VMA 96 * 97 */ 98 static inline bool page_evictable(struct page *page) 99 { 100 bool ret; 101 102 /* Prevent address_space of inode and swap cache from being freed */ 103 rcu_read_lock(); 104 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 105 rcu_read_unlock(); 106 return ret; 107 } 108 109 /* 110 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 111 * a count of one. 112 */ 113 static inline void set_page_refcounted(struct page *page) 114 { 115 VM_BUG_ON_PAGE(PageTail(page), page); 116 VM_BUG_ON_PAGE(page_ref_count(page), page); 117 set_page_count(page, 1); 118 } 119 120 extern unsigned long highest_memmap_pfn; 121 122 /* 123 * Maximum number of reclaim retries without progress before the OOM 124 * killer is consider the only way forward. 125 */ 126 #define MAX_RECLAIM_RETRIES 16 127 128 /* 129 * in mm/vmscan.c: 130 */ 131 extern int isolate_lru_page(struct page *page); 132 extern void putback_lru_page(struct page *page); 133 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 134 135 /* 136 * in mm/rmap.c: 137 */ 138 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 139 140 /* 141 * in mm/memcontrol.c: 142 */ 143 extern bool cgroup_memory_nokmem; 144 145 /* 146 * in mm/page_alloc.c 147 */ 148 149 /* 150 * Structure for holding the mostly immutable allocation parameters passed 151 * between functions involved in allocations, including the alloc_pages* 152 * family of functions. 153 * 154 * nodemask, migratetype and highest_zoneidx are initialized only once in 155 * __alloc_pages() and then never change. 156 * 157 * zonelist, preferred_zone and highest_zoneidx are set first in 158 * __alloc_pages() for the fast path, and might be later changed 159 * in __alloc_pages_slowpath(). All other functions pass the whole structure 160 * by a const pointer. 161 */ 162 struct alloc_context { 163 struct zonelist *zonelist; 164 nodemask_t *nodemask; 165 struct zoneref *preferred_zoneref; 166 int migratetype; 167 168 /* 169 * highest_zoneidx represents highest usable zone index of 170 * the allocation request. Due to the nature of the zone, 171 * memory on lower zone than the highest_zoneidx will be 172 * protected by lowmem_reserve[highest_zoneidx]. 173 * 174 * highest_zoneidx is also used by reclaim/compaction to limit 175 * the target zone since higher zone than this index cannot be 176 * usable for this allocation request. 177 */ 178 enum zone_type highest_zoneidx; 179 bool spread_dirty_pages; 180 }; 181 182 /* 183 * Locate the struct page for both the matching buddy in our 184 * pair (buddy1) and the combined O(n+1) page they form (page). 185 * 186 * 1) Any buddy B1 will have an order O twin B2 which satisfies 187 * the following equation: 188 * B2 = B1 ^ (1 << O) 189 * For example, if the starting buddy (buddy2) is #8 its order 190 * 1 buddy is #10: 191 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 192 * 193 * 2) Any buddy B will have an order O+1 parent P which 194 * satisfies the following equation: 195 * P = B & ~(1 << O) 196 * 197 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 198 */ 199 static inline unsigned long 200 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 201 { 202 return page_pfn ^ (1 << order); 203 } 204 205 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 206 unsigned long end_pfn, struct zone *zone); 207 208 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 209 unsigned long end_pfn, struct zone *zone) 210 { 211 if (zone->contiguous) 212 return pfn_to_page(start_pfn); 213 214 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 215 } 216 217 extern int __isolate_free_page(struct page *page, unsigned int order); 218 extern void __putback_isolated_page(struct page *page, unsigned int order, 219 int mt); 220 extern void memblock_free_pages(struct page *page, unsigned long pfn, 221 unsigned int order); 222 extern void __free_pages_core(struct page *page, unsigned int order); 223 extern void prep_compound_page(struct page *page, unsigned int order); 224 extern void post_alloc_hook(struct page *page, unsigned int order, 225 gfp_t gfp_flags); 226 extern int user_min_free_kbytes; 227 228 extern void free_unref_page(struct page *page, unsigned int order); 229 extern void free_unref_page_list(struct list_head *list); 230 231 extern void zone_pcp_update(struct zone *zone, int cpu_online); 232 extern void zone_pcp_reset(struct zone *zone); 233 extern void zone_pcp_disable(struct zone *zone); 234 extern void zone_pcp_enable(struct zone *zone); 235 236 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 237 phys_addr_t min_addr, 238 int nid, bool exact_nid); 239 240 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 241 242 /* 243 * in mm/compaction.c 244 */ 245 /* 246 * compact_control is used to track pages being migrated and the free pages 247 * they are being migrated to during memory compaction. The free_pfn starts 248 * at the end of a zone and migrate_pfn begins at the start. Movable pages 249 * are moved to the end of a zone during a compaction run and the run 250 * completes when free_pfn <= migrate_pfn 251 */ 252 struct compact_control { 253 struct list_head freepages; /* List of free pages to migrate to */ 254 struct list_head migratepages; /* List of pages being migrated */ 255 unsigned int nr_freepages; /* Number of isolated free pages */ 256 unsigned int nr_migratepages; /* Number of pages to migrate */ 257 unsigned long free_pfn; /* isolate_freepages search base */ 258 /* 259 * Acts as an in/out parameter to page isolation for migration. 260 * isolate_migratepages uses it as a search base. 261 * isolate_migratepages_block will update the value to the next pfn 262 * after the last isolated one. 263 */ 264 unsigned long migrate_pfn; 265 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 266 struct zone *zone; 267 unsigned long total_migrate_scanned; 268 unsigned long total_free_scanned; 269 unsigned short fast_search_fail;/* failures to use free list searches */ 270 short search_order; /* order to start a fast search at */ 271 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 272 int order; /* order a direct compactor needs */ 273 int migratetype; /* migratetype of direct compactor */ 274 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 275 const int highest_zoneidx; /* zone index of a direct compactor */ 276 enum migrate_mode mode; /* Async or sync migration mode */ 277 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 278 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 279 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 280 bool direct_compaction; /* False from kcompactd or /proc/... */ 281 bool proactive_compaction; /* kcompactd proactive compaction */ 282 bool whole_zone; /* Whole zone should/has been scanned */ 283 bool contended; /* Signal lock or sched contention */ 284 bool rescan; /* Rescanning the same pageblock */ 285 bool alloc_contig; /* alloc_contig_range allocation */ 286 }; 287 288 /* 289 * Used in direct compaction when a page should be taken from the freelists 290 * immediately when one is created during the free path. 291 */ 292 struct capture_control { 293 struct compact_control *cc; 294 struct page *page; 295 }; 296 297 unsigned long 298 isolate_freepages_range(struct compact_control *cc, 299 unsigned long start_pfn, unsigned long end_pfn); 300 int 301 isolate_migratepages_range(struct compact_control *cc, 302 unsigned long low_pfn, unsigned long end_pfn); 303 #endif 304 int find_suitable_fallback(struct free_area *area, unsigned int order, 305 int migratetype, bool only_stealable, bool *can_steal); 306 307 /* 308 * This function returns the order of a free page in the buddy system. In 309 * general, page_zone(page)->lock must be held by the caller to prevent the 310 * page from being allocated in parallel and returning garbage as the order. 311 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 312 * page cannot be allocated or merged in parallel. Alternatively, it must 313 * handle invalid values gracefully, and use buddy_order_unsafe() below. 314 */ 315 static inline unsigned int buddy_order(struct page *page) 316 { 317 /* PageBuddy() must be checked by the caller */ 318 return page_private(page); 319 } 320 321 /* 322 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 323 * PageBuddy() should be checked first by the caller to minimize race window, 324 * and invalid values must be handled gracefully. 325 * 326 * READ_ONCE is used so that if the caller assigns the result into a local 327 * variable and e.g. tests it for valid range before using, the compiler cannot 328 * decide to remove the variable and inline the page_private(page) multiple 329 * times, potentially observing different values in the tests and the actual 330 * use of the result. 331 */ 332 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 333 334 /* 335 * These three helpers classifies VMAs for virtual memory accounting. 336 */ 337 338 /* 339 * Executable code area - executable, not writable, not stack 340 */ 341 static inline bool is_exec_mapping(vm_flags_t flags) 342 { 343 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 344 } 345 346 /* 347 * Stack area - automatically grows in one direction 348 * 349 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 350 * do_mmap() forbids all other combinations. 351 */ 352 static inline bool is_stack_mapping(vm_flags_t flags) 353 { 354 return (flags & VM_STACK) == VM_STACK; 355 } 356 357 /* 358 * Data area - private, writable, not stack 359 */ 360 static inline bool is_data_mapping(vm_flags_t flags) 361 { 362 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 363 } 364 365 /* mm/util.c */ 366 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 367 struct vm_area_struct *prev); 368 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 369 370 #ifdef CONFIG_MMU 371 extern long populate_vma_page_range(struct vm_area_struct *vma, 372 unsigned long start, unsigned long end, int *locked); 373 extern long faultin_vma_page_range(struct vm_area_struct *vma, 374 unsigned long start, unsigned long end, 375 bool write, int *locked); 376 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 377 unsigned long start, unsigned long end); 378 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 379 { 380 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 381 } 382 383 /* 384 * must be called with vma's mmap_lock held for read or write, and page locked. 385 */ 386 extern void mlock_vma_page(struct page *page); 387 extern unsigned int munlock_vma_page(struct page *page); 388 389 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 390 unsigned long len); 391 392 /* 393 * Clear the page's PageMlocked(). This can be useful in a situation where 394 * we want to unconditionally remove a page from the pagecache -- e.g., 395 * on truncation or freeing. 396 * 397 * It is legal to call this function for any page, mlocked or not. 398 * If called for a page that is still mapped by mlocked vmas, all we do 399 * is revert to lazy LRU behaviour -- semantics are not broken. 400 */ 401 extern void clear_page_mlock(struct page *page); 402 403 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 404 405 /* 406 * At what user virtual address is page expected in vma? 407 * Returns -EFAULT if all of the page is outside the range of vma. 408 * If page is a compound head, the entire compound page is considered. 409 */ 410 static inline unsigned long 411 vma_address(struct page *page, struct vm_area_struct *vma) 412 { 413 pgoff_t pgoff; 414 unsigned long address; 415 416 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 417 pgoff = page_to_pgoff(page); 418 if (pgoff >= vma->vm_pgoff) { 419 address = vma->vm_start + 420 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 421 /* Check for address beyond vma (or wrapped through 0?) */ 422 if (address < vma->vm_start || address >= vma->vm_end) 423 address = -EFAULT; 424 } else if (PageHead(page) && 425 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 426 /* Test above avoids possibility of wrap to 0 on 32-bit */ 427 address = vma->vm_start; 428 } else { 429 address = -EFAULT; 430 } 431 return address; 432 } 433 434 /* 435 * Then at what user virtual address will none of the page be found in vma? 436 * Assumes that vma_address() already returned a good starting address. 437 * If page is a compound head, the entire compound page is considered. 438 */ 439 static inline unsigned long 440 vma_address_end(struct page *page, struct vm_area_struct *vma) 441 { 442 pgoff_t pgoff; 443 unsigned long address; 444 445 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 446 pgoff = page_to_pgoff(page) + compound_nr(page); 447 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 448 /* Check for address beyond vma (or wrapped through 0?) */ 449 if (address < vma->vm_start || address > vma->vm_end) 450 address = vma->vm_end; 451 return address; 452 } 453 454 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 455 struct file *fpin) 456 { 457 int flags = vmf->flags; 458 459 if (fpin) 460 return fpin; 461 462 /* 463 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 464 * anything, so we only pin the file and drop the mmap_lock if only 465 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 466 */ 467 if (fault_flag_allow_retry_first(flags) && 468 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 469 fpin = get_file(vmf->vma->vm_file); 470 mmap_read_unlock(vmf->vma->vm_mm); 471 } 472 return fpin; 473 } 474 475 #else /* !CONFIG_MMU */ 476 static inline void clear_page_mlock(struct page *page) { } 477 static inline void mlock_vma_page(struct page *page) { } 478 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 479 { 480 } 481 #endif /* !CONFIG_MMU */ 482 483 /* 484 * Return the mem_map entry representing the 'offset' subpage within 485 * the maximally aligned gigantic page 'base'. Handle any discontiguity 486 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 487 */ 488 static inline struct page *mem_map_offset(struct page *base, int offset) 489 { 490 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 491 return nth_page(base, offset); 492 return base + offset; 493 } 494 495 /* 496 * Iterator over all subpages within the maximally aligned gigantic 497 * page 'base'. Handle any discontiguity in the mem_map. 498 */ 499 static inline struct page *mem_map_next(struct page *iter, 500 struct page *base, int offset) 501 { 502 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 503 unsigned long pfn = page_to_pfn(base) + offset; 504 if (!pfn_valid(pfn)) 505 return NULL; 506 return pfn_to_page(pfn); 507 } 508 return iter + 1; 509 } 510 511 /* Memory initialisation debug and verification */ 512 enum mminit_level { 513 MMINIT_WARNING, 514 MMINIT_VERIFY, 515 MMINIT_TRACE 516 }; 517 518 #ifdef CONFIG_DEBUG_MEMORY_INIT 519 520 extern int mminit_loglevel; 521 522 #define mminit_dprintk(level, prefix, fmt, arg...) \ 523 do { \ 524 if (level < mminit_loglevel) { \ 525 if (level <= MMINIT_WARNING) \ 526 pr_warn("mminit::" prefix " " fmt, ##arg); \ 527 else \ 528 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 529 } \ 530 } while (0) 531 532 extern void mminit_verify_pageflags_layout(void); 533 extern void mminit_verify_zonelist(void); 534 #else 535 536 static inline void mminit_dprintk(enum mminit_level level, 537 const char *prefix, const char *fmt, ...) 538 { 539 } 540 541 static inline void mminit_verify_pageflags_layout(void) 542 { 543 } 544 545 static inline void mminit_verify_zonelist(void) 546 { 547 } 548 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 549 550 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 551 #if defined(CONFIG_SPARSEMEM) 552 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 553 unsigned long *end_pfn); 554 #else 555 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 556 unsigned long *end_pfn) 557 { 558 } 559 #endif /* CONFIG_SPARSEMEM */ 560 561 #define NODE_RECLAIM_NOSCAN -2 562 #define NODE_RECLAIM_FULL -1 563 #define NODE_RECLAIM_SOME 0 564 #define NODE_RECLAIM_SUCCESS 1 565 566 #ifdef CONFIG_NUMA 567 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 568 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 569 #else 570 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 571 unsigned int order) 572 { 573 return NODE_RECLAIM_NOSCAN; 574 } 575 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 576 { 577 return NUMA_NO_NODE; 578 } 579 #endif 580 581 extern int hwpoison_filter(struct page *p); 582 583 extern u32 hwpoison_filter_dev_major; 584 extern u32 hwpoison_filter_dev_minor; 585 extern u64 hwpoison_filter_flags_mask; 586 extern u64 hwpoison_filter_flags_value; 587 extern u64 hwpoison_filter_memcg; 588 extern u32 hwpoison_filter_enable; 589 590 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 591 unsigned long, unsigned long, 592 unsigned long, unsigned long); 593 594 extern void set_pageblock_order(void); 595 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 596 struct list_head *page_list); 597 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 598 #define ALLOC_WMARK_MIN WMARK_MIN 599 #define ALLOC_WMARK_LOW WMARK_LOW 600 #define ALLOC_WMARK_HIGH WMARK_HIGH 601 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 602 603 /* Mask to get the watermark bits */ 604 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 605 606 /* 607 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 608 * cannot assume a reduced access to memory reserves is sufficient for 609 * !MMU 610 */ 611 #ifdef CONFIG_MMU 612 #define ALLOC_OOM 0x08 613 #else 614 #define ALLOC_OOM ALLOC_NO_WATERMARKS 615 #endif 616 617 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 618 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 619 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 620 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 621 #ifdef CONFIG_ZONE_DMA32 622 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 623 #else 624 #define ALLOC_NOFRAGMENT 0x0 625 #endif 626 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 627 628 enum ttu_flags; 629 struct tlbflush_unmap_batch; 630 631 632 /* 633 * only for MM internal work items which do not depend on 634 * any allocations or locks which might depend on allocations 635 */ 636 extern struct workqueue_struct *mm_percpu_wq; 637 638 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 639 void try_to_unmap_flush(void); 640 void try_to_unmap_flush_dirty(void); 641 void flush_tlb_batched_pending(struct mm_struct *mm); 642 #else 643 static inline void try_to_unmap_flush(void) 644 { 645 } 646 static inline void try_to_unmap_flush_dirty(void) 647 { 648 } 649 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 650 { 651 } 652 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 653 654 extern const struct trace_print_flags pageflag_names[]; 655 extern const struct trace_print_flags vmaflag_names[]; 656 extern const struct trace_print_flags gfpflag_names[]; 657 658 static inline bool is_migrate_highatomic(enum migratetype migratetype) 659 { 660 return migratetype == MIGRATE_HIGHATOMIC; 661 } 662 663 static inline bool is_migrate_highatomic_page(struct page *page) 664 { 665 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 666 } 667 668 void setup_zone_pageset(struct zone *zone); 669 670 struct migration_target_control { 671 int nid; /* preferred node id */ 672 nodemask_t *nmask; 673 gfp_t gfp_mask; 674 }; 675 676 /* 677 * mm/vmalloc.c 678 */ 679 #ifdef CONFIG_MMU 680 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 681 pgprot_t prot, struct page **pages, unsigned int page_shift); 682 #else 683 static inline 684 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 685 pgprot_t prot, struct page **pages, unsigned int page_shift) 686 { 687 return -EINVAL; 688 } 689 #endif 690 691 void vunmap_range_noflush(unsigned long start, unsigned long end); 692 693 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 694 unsigned long addr, int page_nid, int *flags); 695 696 #endif /* __MM_INTERNAL_H */ 697