xref: /linux/mm/internal.h (revision 1a80ff0f8896750156f22dbf2d4591d79bb2a155)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagewalk.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/swap_cgroup.h>
20 #include <linux/tracepoint-defs.h>
21 
22 /* Internal core VMA manipulation functions. */
23 #include "vma.h"
24 
25 struct folio_batch;
26 
27 /*
28  * Maintains state across a page table move. The operation assumes both source
29  * and destination VMAs already exist and are specified by the user.
30  *
31  * Partial moves are permitted, but the old and new ranges must both reside
32  * within a VMA.
33  *
34  * mmap lock must be held in write and VMA write locks must be held on any VMA
35  * that is visible.
36  *
37  * Use the PAGETABLE_MOVE() macro to initialise this struct.
38  *
39  * The old_addr and new_addr fields are updated as the page table move is
40  * executed.
41  *
42  * NOTE: The page table move is affected by reading from [old_addr, old_end),
43  * and old_addr may be updated for better page table alignment, so len_in
44  * represents the length of the range being copied as specified by the user.
45  */
46 struct pagetable_move_control {
47 	struct vm_area_struct *old; /* Source VMA. */
48 	struct vm_area_struct *new; /* Destination VMA. */
49 	unsigned long old_addr; /* Address from which the move begins. */
50 	unsigned long old_end; /* Exclusive address at which old range ends. */
51 	unsigned long new_addr; /* Address to move page tables to. */
52 	unsigned long len_in; /* Bytes to remap specified by user. */
53 
54 	bool need_rmap_locks; /* Do rmap locks need to be taken? */
55 	bool for_stack; /* Is this an early temp stack being moved? */
56 };
57 
58 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_)	\
59 	struct pagetable_move_control name = {				\
60 		.old = old_,						\
61 		.new = new_,						\
62 		.old_addr = old_addr_,					\
63 		.old_end = (old_addr_) + (len_),			\
64 		.new_addr = new_addr_,					\
65 		.len_in = len_,						\
66 	}
67 
68 /*
69  * The set of flags that only affect watermark checking and reclaim
70  * behaviour. This is used by the MM to obey the caller constraints
71  * about IO, FS and watermark checking while ignoring placement
72  * hints such as HIGHMEM usage.
73  */
74 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77 			__GFP_NOLOCKDEP)
78 
79 /* The GFP flags allowed during early boot */
80 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81 
82 /* Control allocation cpuset and node placement constraints */
83 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84 
85 /* Do not use these with a slab allocator */
86 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87 
88 /*
89  * Different from WARN_ON_ONCE(), no warning will be issued
90  * when we specify __GFP_NOWARN.
91  */
92 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
93 	static bool __section(".data..once") __warned;			\
94 	int __ret_warn_once = !!(cond);					\
95 									\
96 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97 		__warned = true;					\
98 		WARN_ON(1);						\
99 	}								\
100 	unlikely(__ret_warn_once);					\
101 })
102 
103 void page_writeback_init(void);
104 
105 /*
106  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
109  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110  */
111 #define ENTIRELY_MAPPED		0x800000
112 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
113 
114 /*
115  * Flags passed to __show_mem() and show_free_areas() to suppress output in
116  * various contexts.
117  */
118 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
119 
120 /*
121  * How many individual pages have an elevated _mapcount.  Excludes
122  * the folio's entire_mapcount.
123  *
124  * Don't use this function outside of debugging code.
125  */
126 static inline int folio_nr_pages_mapped(const struct folio *folio)
127 {
128 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129 		return -1;
130 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131 }
132 
133 /*
134  * Retrieve the first entry of a folio based on a provided entry within the
135  * folio. We cannot rely on folio->swap as there is no guarantee that it has
136  * been initialized. Used for calling arch_swap_restore()
137  */
138 static inline swp_entry_t folio_swap(swp_entry_t entry,
139 		const struct folio *folio)
140 {
141 	swp_entry_t swap = {
142 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143 	};
144 
145 	return swap;
146 }
147 
148 static inline void *folio_raw_mapping(const struct folio *folio)
149 {
150 	unsigned long mapping = (unsigned long)folio->mapping;
151 
152 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
153 }
154 
155 /*
156  * This is a file-backed mapping, and is about to be memory mapped - invoke its
157  * mmap hook and safely handle error conditions. On error, VMA hooks will be
158  * mutated.
159  *
160  * @file: File which backs the mapping.
161  * @vma:  VMA which we are mapping.
162  *
163  * Returns: 0 if success, error otherwise.
164  */
165 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166 {
167 	int err = call_mmap(file, vma);
168 
169 	if (likely(!err))
170 		return 0;
171 
172 	/*
173 	 * OK, we tried to call the file hook for mmap(), but an error
174 	 * arose. The mapping is in an inconsistent state and we most not invoke
175 	 * any further hooks on it.
176 	 */
177 	vma->vm_ops = &vma_dummy_vm_ops;
178 
179 	return err;
180 }
181 
182 /*
183  * If the VMA has a close hook then close it, and since closing it might leave
184  * it in an inconsistent state which makes the use of any hooks suspect, clear
185  * them down by installing dummy empty hooks.
186  */
187 static inline void vma_close(struct vm_area_struct *vma)
188 {
189 	if (vma->vm_ops && vma->vm_ops->close) {
190 		vma->vm_ops->close(vma);
191 
192 		/*
193 		 * The mapping is in an inconsistent state, and no further hooks
194 		 * may be invoked upon it.
195 		 */
196 		vma->vm_ops = &vma_dummy_vm_ops;
197 	}
198 }
199 
200 #ifdef CONFIG_MMU
201 
202 /* Flags for folio_pte_batch(). */
203 typedef int __bitwise fpb_t;
204 
205 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
206 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
207 
208 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
209 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
210 
211 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
212 {
213 	if (flags & FPB_IGNORE_DIRTY)
214 		pte = pte_mkclean(pte);
215 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
216 		pte = pte_clear_soft_dirty(pte);
217 	return pte_wrprotect(pte_mkold(pte));
218 }
219 
220 /**
221  * folio_pte_batch - detect a PTE batch for a large folio
222  * @folio: The large folio to detect a PTE batch for.
223  * @addr: The user virtual address the first page is mapped at.
224  * @start_ptep: Page table pointer for the first entry.
225  * @pte: Page table entry for the first page.
226  * @max_nr: The maximum number of table entries to consider.
227  * @flags: Flags to modify the PTE batch semantics.
228  * @any_writable: Optional pointer to indicate whether any entry except the
229  *		  first one is writable.
230  * @any_young: Optional pointer to indicate whether any entry except the
231  *		  first one is young.
232  * @any_dirty: Optional pointer to indicate whether any entry except the
233  *		  first one is dirty.
234  *
235  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
236  * pages of the same large folio.
237  *
238  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
239  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
240  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
241  *
242  * start_ptep must map any page of the folio. max_nr must be at least one and
243  * must be limited by the caller so scanning cannot exceed a single page table.
244  *
245  * Return: the number of table entries in the batch.
246  */
247 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
248 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
249 		bool *any_writable, bool *any_young, bool *any_dirty)
250 {
251 	pte_t expected_pte, *ptep;
252 	bool writable, young, dirty;
253 	int nr, cur_nr;
254 
255 	if (any_writable)
256 		*any_writable = false;
257 	if (any_young)
258 		*any_young = false;
259 	if (any_dirty)
260 		*any_dirty = false;
261 
262 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
263 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
264 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
265 
266 	/* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
267 	max_nr = min_t(unsigned long, max_nr,
268 		       folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
269 
270 	nr = pte_batch_hint(start_ptep, pte);
271 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
272 	ptep = start_ptep + nr;
273 
274 	while (nr < max_nr) {
275 		pte = ptep_get(ptep);
276 		if (any_writable)
277 			writable = !!pte_write(pte);
278 		if (any_young)
279 			young = !!pte_young(pte);
280 		if (any_dirty)
281 			dirty = !!pte_dirty(pte);
282 		pte = __pte_batch_clear_ignored(pte, flags);
283 
284 		if (!pte_same(pte, expected_pte))
285 			break;
286 
287 		if (any_writable)
288 			*any_writable |= writable;
289 		if (any_young)
290 			*any_young |= young;
291 		if (any_dirty)
292 			*any_dirty |= dirty;
293 
294 		cur_nr = pte_batch_hint(ptep, pte);
295 		expected_pte = pte_advance_pfn(expected_pte, cur_nr);
296 		ptep += cur_nr;
297 		nr += cur_nr;
298 	}
299 
300 	return min(nr, max_nr);
301 }
302 
303 /**
304  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
305  *	 forward or backward by delta
306  * @pte: The initial pte state; is_swap_pte(pte) must be true and
307  *	 non_swap_entry() must be false.
308  * @delta: The direction and the offset we are moving; forward if delta
309  *	 is positive; backward if delta is negative
310  *
311  * Moves the swap offset, while maintaining all other fields, including
312  * swap type, and any swp pte bits. The resulting pte is returned.
313  */
314 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
315 {
316 	swp_entry_t entry = pte_to_swp_entry(pte);
317 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
318 						   (swp_offset(entry) + delta)));
319 
320 	if (pte_swp_soft_dirty(pte))
321 		new = pte_swp_mksoft_dirty(new);
322 	if (pte_swp_exclusive(pte))
323 		new = pte_swp_mkexclusive(new);
324 	if (pte_swp_uffd_wp(pte))
325 		new = pte_swp_mkuffd_wp(new);
326 
327 	return new;
328 }
329 
330 
331 /**
332  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
333  * @pte: The initial pte state; is_swap_pte(pte) must be true and
334  *	 non_swap_entry() must be false.
335  *
336  * Increments the swap offset, while maintaining all other fields, including
337  * swap type, and any swp pte bits. The resulting pte is returned.
338  */
339 static inline pte_t pte_next_swp_offset(pte_t pte)
340 {
341 	return pte_move_swp_offset(pte, 1);
342 }
343 
344 /**
345  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
346  * @start_ptep: Page table pointer for the first entry.
347  * @max_nr: The maximum number of table entries to consider.
348  * @pte: Page table entry for the first entry.
349  *
350  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
351  * containing swap entries all with consecutive offsets and targeting the same
352  * swap type, all with matching swp pte bits.
353  *
354  * max_nr must be at least one and must be limited by the caller so scanning
355  * cannot exceed a single page table.
356  *
357  * Return: the number of table entries in the batch.
358  */
359 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
360 {
361 	pte_t expected_pte = pte_next_swp_offset(pte);
362 	const pte_t *end_ptep = start_ptep + max_nr;
363 	swp_entry_t entry = pte_to_swp_entry(pte);
364 	pte_t *ptep = start_ptep + 1;
365 	unsigned short cgroup_id;
366 
367 	VM_WARN_ON(max_nr < 1);
368 	VM_WARN_ON(!is_swap_pte(pte));
369 	VM_WARN_ON(non_swap_entry(entry));
370 
371 	cgroup_id = lookup_swap_cgroup_id(entry);
372 	while (ptep < end_ptep) {
373 		pte = ptep_get(ptep);
374 
375 		if (!pte_same(pte, expected_pte))
376 			break;
377 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
378 			break;
379 		expected_pte = pte_next_swp_offset(expected_pte);
380 		ptep++;
381 	}
382 
383 	return ptep - start_ptep;
384 }
385 #endif /* CONFIG_MMU */
386 
387 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
388 						int nr_throttled);
389 static inline void acct_reclaim_writeback(struct folio *folio)
390 {
391 	pg_data_t *pgdat = folio_pgdat(folio);
392 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
393 
394 	if (nr_throttled)
395 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
396 }
397 
398 static inline void wake_throttle_isolated(pg_data_t *pgdat)
399 {
400 	wait_queue_head_t *wqh;
401 
402 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
403 	if (waitqueue_active(wqh))
404 		wake_up(wqh);
405 }
406 
407 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
408 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
409 {
410 	vm_fault_t ret = __vmf_anon_prepare(vmf);
411 
412 	if (unlikely(ret & VM_FAULT_RETRY))
413 		vma_end_read(vmf->vma);
414 	return ret;
415 }
416 
417 vm_fault_t do_swap_page(struct vm_fault *vmf);
418 void folio_rotate_reclaimable(struct folio *folio);
419 bool __folio_end_writeback(struct folio *folio);
420 void deactivate_file_folio(struct folio *folio);
421 void folio_activate(struct folio *folio);
422 
423 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
424 		   struct vm_area_struct *start_vma, unsigned long floor,
425 		   unsigned long ceiling, bool mm_wr_locked);
426 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
427 
428 struct zap_details;
429 void unmap_page_range(struct mmu_gather *tlb,
430 			     struct vm_area_struct *vma,
431 			     unsigned long addr, unsigned long end,
432 			     struct zap_details *details);
433 void zap_page_range_single_batched(struct mmu_gather *tlb,
434 		struct vm_area_struct *vma, unsigned long addr,
435 		unsigned long size, struct zap_details *details);
436 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
437 			   gfp_t gfp);
438 
439 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
440 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
441 static inline void force_page_cache_readahead(struct address_space *mapping,
442 		struct file *file, pgoff_t index, unsigned long nr_to_read)
443 {
444 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
445 	force_page_cache_ra(&ractl, nr_to_read);
446 }
447 
448 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
449 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
450 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
451 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
452 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
453 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
454 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
455 		loff_t end);
456 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
457 unsigned long mapping_try_invalidate(struct address_space *mapping,
458 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
459 
460 /**
461  * folio_evictable - Test whether a folio is evictable.
462  * @folio: The folio to test.
463  *
464  * Test whether @folio is evictable -- i.e., should be placed on
465  * active/inactive lists vs unevictable list.
466  *
467  * Reasons folio might not be evictable:
468  * 1. folio's mapping marked unevictable
469  * 2. One of the pages in the folio is part of an mlocked VMA
470  */
471 static inline bool folio_evictable(struct folio *folio)
472 {
473 	bool ret;
474 
475 	/* Prevent address_space of inode and swap cache from being freed */
476 	rcu_read_lock();
477 	ret = !mapping_unevictable(folio_mapping(folio)) &&
478 			!folio_test_mlocked(folio);
479 	rcu_read_unlock();
480 	return ret;
481 }
482 
483 /*
484  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
485  * a count of one.
486  */
487 static inline void set_page_refcounted(struct page *page)
488 {
489 	VM_BUG_ON_PAGE(PageTail(page), page);
490 	VM_BUG_ON_PAGE(page_ref_count(page), page);
491 	set_page_count(page, 1);
492 }
493 
494 /*
495  * Return true if a folio needs ->release_folio() calling upon it.
496  */
497 static inline bool folio_needs_release(struct folio *folio)
498 {
499 	struct address_space *mapping = folio_mapping(folio);
500 
501 	return folio_has_private(folio) ||
502 		(mapping && mapping_release_always(mapping));
503 }
504 
505 extern unsigned long highest_memmap_pfn;
506 
507 /*
508  * Maximum number of reclaim retries without progress before the OOM
509  * killer is consider the only way forward.
510  */
511 #define MAX_RECLAIM_RETRIES 16
512 
513 /*
514  * in mm/vmscan.c:
515  */
516 bool folio_isolate_lru(struct folio *folio);
517 void folio_putback_lru(struct folio *folio);
518 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
519 
520 /*
521  * in mm/rmap.c:
522  */
523 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
524 
525 /*
526  * in mm/page_alloc.c
527  */
528 #define K(x) ((x) << (PAGE_SHIFT-10))
529 
530 extern char * const zone_names[MAX_NR_ZONES];
531 
532 /* perform sanity checks on struct pages being allocated or freed */
533 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
534 
535 extern int min_free_kbytes;
536 extern int defrag_mode;
537 
538 void setup_per_zone_wmarks(void);
539 void calculate_min_free_kbytes(void);
540 int __meminit init_per_zone_wmark_min(void);
541 void page_alloc_sysctl_init(void);
542 
543 /*
544  * Structure for holding the mostly immutable allocation parameters passed
545  * between functions involved in allocations, including the alloc_pages*
546  * family of functions.
547  *
548  * nodemask, migratetype and highest_zoneidx are initialized only once in
549  * __alloc_pages() and then never change.
550  *
551  * zonelist, preferred_zone and highest_zoneidx are set first in
552  * __alloc_pages() for the fast path, and might be later changed
553  * in __alloc_pages_slowpath(). All other functions pass the whole structure
554  * by a const pointer.
555  */
556 struct alloc_context {
557 	struct zonelist *zonelist;
558 	nodemask_t *nodemask;
559 	struct zoneref *preferred_zoneref;
560 	int migratetype;
561 
562 	/*
563 	 * highest_zoneidx represents highest usable zone index of
564 	 * the allocation request. Due to the nature of the zone,
565 	 * memory on lower zone than the highest_zoneidx will be
566 	 * protected by lowmem_reserve[highest_zoneidx].
567 	 *
568 	 * highest_zoneidx is also used by reclaim/compaction to limit
569 	 * the target zone since higher zone than this index cannot be
570 	 * usable for this allocation request.
571 	 */
572 	enum zone_type highest_zoneidx;
573 	bool spread_dirty_pages;
574 };
575 
576 /*
577  * This function returns the order of a free page in the buddy system. In
578  * general, page_zone(page)->lock must be held by the caller to prevent the
579  * page from being allocated in parallel and returning garbage as the order.
580  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
581  * page cannot be allocated or merged in parallel. Alternatively, it must
582  * handle invalid values gracefully, and use buddy_order_unsafe() below.
583  */
584 static inline unsigned int buddy_order(struct page *page)
585 {
586 	/* PageBuddy() must be checked by the caller */
587 	return page_private(page);
588 }
589 
590 /*
591  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
592  * PageBuddy() should be checked first by the caller to minimize race window,
593  * and invalid values must be handled gracefully.
594  *
595  * READ_ONCE is used so that if the caller assigns the result into a local
596  * variable and e.g. tests it for valid range before using, the compiler cannot
597  * decide to remove the variable and inline the page_private(page) multiple
598  * times, potentially observing different values in the tests and the actual
599  * use of the result.
600  */
601 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
602 
603 /*
604  * This function checks whether a page is free && is the buddy
605  * we can coalesce a page and its buddy if
606  * (a) the buddy is not in a hole (check before calling!) &&
607  * (b) the buddy is in the buddy system &&
608  * (c) a page and its buddy have the same order &&
609  * (d) a page and its buddy are in the same zone.
610  *
611  * For recording whether a page is in the buddy system, we set PageBuddy.
612  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
613  *
614  * For recording page's order, we use page_private(page).
615  */
616 static inline bool page_is_buddy(struct page *page, struct page *buddy,
617 				 unsigned int order)
618 {
619 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
620 		return false;
621 
622 	if (buddy_order(buddy) != order)
623 		return false;
624 
625 	/*
626 	 * zone check is done late to avoid uselessly calculating
627 	 * zone/node ids for pages that could never merge.
628 	 */
629 	if (page_zone_id(page) != page_zone_id(buddy))
630 		return false;
631 
632 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
633 
634 	return true;
635 }
636 
637 /*
638  * Locate the struct page for both the matching buddy in our
639  * pair (buddy1) and the combined O(n+1) page they form (page).
640  *
641  * 1) Any buddy B1 will have an order O twin B2 which satisfies
642  * the following equation:
643  *     B2 = B1 ^ (1 << O)
644  * For example, if the starting buddy (buddy2) is #8 its order
645  * 1 buddy is #10:
646  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
647  *
648  * 2) Any buddy B will have an order O+1 parent P which
649  * satisfies the following equation:
650  *     P = B & ~(1 << O)
651  *
652  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
653  */
654 static inline unsigned long
655 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
656 {
657 	return page_pfn ^ (1 << order);
658 }
659 
660 /*
661  * Find the buddy of @page and validate it.
662  * @page: The input page
663  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
664  *       function is used in the performance-critical __free_one_page().
665  * @order: The order of the page
666  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
667  *             page_to_pfn().
668  *
669  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
670  * not the same as @page. The validation is necessary before use it.
671  *
672  * Return: the found buddy page or NULL if not found.
673  */
674 static inline struct page *find_buddy_page_pfn(struct page *page,
675 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
676 {
677 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
678 	struct page *buddy;
679 
680 	buddy = page + (__buddy_pfn - pfn);
681 	if (buddy_pfn)
682 		*buddy_pfn = __buddy_pfn;
683 
684 	if (page_is_buddy(page, buddy, order))
685 		return buddy;
686 	return NULL;
687 }
688 
689 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
690 				unsigned long end_pfn, struct zone *zone);
691 
692 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
693 				unsigned long end_pfn, struct zone *zone)
694 {
695 	if (zone->contiguous)
696 		return pfn_to_page(start_pfn);
697 
698 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
699 }
700 
701 void set_zone_contiguous(struct zone *zone);
702 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
703 			   unsigned long nr_pages);
704 
705 static inline void clear_zone_contiguous(struct zone *zone)
706 {
707 	zone->contiguous = false;
708 }
709 
710 extern int __isolate_free_page(struct page *page, unsigned int order);
711 extern void __putback_isolated_page(struct page *page, unsigned int order,
712 				    int mt);
713 extern void memblock_free_pages(struct page *page, unsigned long pfn,
714 					unsigned int order);
715 extern void __free_pages_core(struct page *page, unsigned int order,
716 		enum meminit_context context);
717 
718 /*
719  * This will have no effect, other than possibly generating a warning, if the
720  * caller passes in a non-large folio.
721  */
722 static inline void folio_set_order(struct folio *folio, unsigned int order)
723 {
724 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
725 		return;
726 
727 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
728 #ifdef NR_PAGES_IN_LARGE_FOLIO
729 	folio->_nr_pages = 1U << order;
730 #endif
731 }
732 
733 bool __folio_unqueue_deferred_split(struct folio *folio);
734 static inline bool folio_unqueue_deferred_split(struct folio *folio)
735 {
736 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
737 		return false;
738 
739 	/*
740 	 * At this point, there is no one trying to add the folio to
741 	 * deferred_list. If folio is not in deferred_list, it's safe
742 	 * to check without acquiring the split_queue_lock.
743 	 */
744 	if (data_race(list_empty(&folio->_deferred_list)))
745 		return false;
746 
747 	return __folio_unqueue_deferred_split(folio);
748 }
749 
750 static inline struct folio *page_rmappable_folio(struct page *page)
751 {
752 	struct folio *folio = (struct folio *)page;
753 
754 	if (folio && folio_test_large(folio))
755 		folio_set_large_rmappable(folio);
756 	return folio;
757 }
758 
759 static inline void prep_compound_head(struct page *page, unsigned int order)
760 {
761 	struct folio *folio = (struct folio *)page;
762 
763 	folio_set_order(folio, order);
764 	atomic_set(&folio->_large_mapcount, -1);
765 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
766 		atomic_set(&folio->_nr_pages_mapped, 0);
767 	if (IS_ENABLED(CONFIG_MM_ID)) {
768 		folio->_mm_ids = 0;
769 		folio->_mm_id_mapcount[0] = -1;
770 		folio->_mm_id_mapcount[1] = -1;
771 	}
772 	if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
773 		atomic_set(&folio->_pincount, 0);
774 		atomic_set(&folio->_entire_mapcount, -1);
775 	}
776 	if (order > 1)
777 		INIT_LIST_HEAD(&folio->_deferred_list);
778 }
779 
780 static inline void prep_compound_tail(struct page *head, int tail_idx)
781 {
782 	struct page *p = head + tail_idx;
783 
784 	p->mapping = TAIL_MAPPING;
785 	set_compound_head(p, head);
786 	set_page_private(p, 0);
787 }
788 
789 void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
790 extern bool free_pages_prepare(struct page *page, unsigned int order);
791 
792 extern int user_min_free_kbytes;
793 
794 struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
795 		nodemask_t *);
796 #define __alloc_frozen_pages(...) \
797 	alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
798 void free_frozen_pages(struct page *page, unsigned int order);
799 void free_unref_folios(struct folio_batch *fbatch);
800 
801 #ifdef CONFIG_NUMA
802 struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
803 #else
804 static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
805 {
806 	return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
807 }
808 #endif
809 
810 #define alloc_frozen_pages(...) \
811 	alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
812 
813 extern void zone_pcp_reset(struct zone *zone);
814 extern void zone_pcp_disable(struct zone *zone);
815 extern void zone_pcp_enable(struct zone *zone);
816 extern void zone_pcp_init(struct zone *zone);
817 
818 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
819 			  phys_addr_t min_addr,
820 			  int nid, bool exact_nid);
821 
822 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
823 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
824 
825 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
826 
827 /*
828  * in mm/compaction.c
829  */
830 /*
831  * compact_control is used to track pages being migrated and the free pages
832  * they are being migrated to during memory compaction. The free_pfn starts
833  * at the end of a zone and migrate_pfn begins at the start. Movable pages
834  * are moved to the end of a zone during a compaction run and the run
835  * completes when free_pfn <= migrate_pfn
836  */
837 struct compact_control {
838 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
839 	struct list_head migratepages;	/* List of pages being migrated */
840 	unsigned int nr_freepages;	/* Number of isolated free pages */
841 	unsigned int nr_migratepages;	/* Number of pages to migrate */
842 	unsigned long free_pfn;		/* isolate_freepages search base */
843 	/*
844 	 * Acts as an in/out parameter to page isolation for migration.
845 	 * isolate_migratepages uses it as a search base.
846 	 * isolate_migratepages_block will update the value to the next pfn
847 	 * after the last isolated one.
848 	 */
849 	unsigned long migrate_pfn;
850 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
851 	struct zone *zone;
852 	unsigned long total_migrate_scanned;
853 	unsigned long total_free_scanned;
854 	unsigned short fast_search_fail;/* failures to use free list searches */
855 	short search_order;		/* order to start a fast search at */
856 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
857 	int order;			/* order a direct compactor needs */
858 	int migratetype;		/* migratetype of direct compactor */
859 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
860 	const int highest_zoneidx;	/* zone index of a direct compactor */
861 	enum migrate_mode mode;		/* Async or sync migration mode */
862 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
863 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
864 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
865 	bool direct_compaction;		/* False from kcompactd or /proc/... */
866 	bool proactive_compaction;	/* kcompactd proactive compaction */
867 	bool whole_zone;		/* Whole zone should/has been scanned */
868 	bool contended;			/* Signal lock contention */
869 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
870 					 * when there are potentially transient
871 					 * isolation or migration failures to
872 					 * ensure forward progress.
873 					 */
874 	bool alloc_contig;		/* alloc_contig_range allocation */
875 };
876 
877 /*
878  * Used in direct compaction when a page should be taken from the freelists
879  * immediately when one is created during the free path.
880  */
881 struct capture_control {
882 	struct compact_control *cc;
883 	struct page *page;
884 };
885 
886 unsigned long
887 isolate_freepages_range(struct compact_control *cc,
888 			unsigned long start_pfn, unsigned long end_pfn);
889 int
890 isolate_migratepages_range(struct compact_control *cc,
891 			   unsigned long low_pfn, unsigned long end_pfn);
892 
893 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
894 void init_cma_reserved_pageblock(struct page *page);
895 
896 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
897 
898 struct cma;
899 
900 #ifdef CONFIG_CMA
901 void *cma_reserve_early(struct cma *cma, unsigned long size);
902 void init_cma_pageblock(struct page *page);
903 #else
904 static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
905 {
906 	return NULL;
907 }
908 static inline void init_cma_pageblock(struct page *page)
909 {
910 }
911 #endif
912 
913 
914 int find_suitable_fallback(struct free_area *area, unsigned int order,
915 			   int migratetype, bool claimable);
916 
917 static inline bool free_area_empty(struct free_area *area, int migratetype)
918 {
919 	return list_empty(&area->free_list[migratetype]);
920 }
921 
922 /* mm/util.c */
923 struct anon_vma *folio_anon_vma(const struct folio *folio);
924 
925 #ifdef CONFIG_MMU
926 void unmap_mapping_folio(struct folio *folio);
927 extern long populate_vma_page_range(struct vm_area_struct *vma,
928 		unsigned long start, unsigned long end, int *locked);
929 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
930 		unsigned long end, bool write, int *locked);
931 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
932 			       unsigned long bytes);
933 
934 /*
935  * NOTE: This function can't tell whether the folio is "fully mapped" in the
936  * range.
937  * "fully mapped" means all the pages of folio is associated with the page
938  * table of range while this function just check whether the folio range is
939  * within the range [start, end). Function caller needs to do page table
940  * check if it cares about the page table association.
941  *
942  * Typical usage (like mlock or madvise) is:
943  * Caller knows at least 1 page of folio is associated with page table of VMA
944  * and the range [start, end) is intersect with the VMA range. Caller wants
945  * to know whether the folio is fully associated with the range. It calls
946  * this function to check whether the folio is in the range first. Then checks
947  * the page table to know whether the folio is fully mapped to the range.
948  */
949 static inline bool
950 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
951 		unsigned long start, unsigned long end)
952 {
953 	pgoff_t pgoff, addr;
954 	unsigned long vma_pglen = vma_pages(vma);
955 
956 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
957 	if (start > end)
958 		return false;
959 
960 	if (start < vma->vm_start)
961 		start = vma->vm_start;
962 
963 	if (end > vma->vm_end)
964 		end = vma->vm_end;
965 
966 	pgoff = folio_pgoff(folio);
967 
968 	/* if folio start address is not in vma range */
969 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
970 		return false;
971 
972 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
973 
974 	return !(addr < start || end - addr < folio_size(folio));
975 }
976 
977 static inline bool
978 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
979 {
980 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
981 }
982 
983 /*
984  * mlock_vma_folio() and munlock_vma_folio():
985  * should be called with vma's mmap_lock held for read or write,
986  * under page table lock for the pte/pmd being added or removed.
987  *
988  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
989  * the end of folio_remove_rmap_*(); but new anon folios are managed by
990  * folio_add_lru_vma() calling mlock_new_folio().
991  */
992 void mlock_folio(struct folio *folio);
993 static inline void mlock_vma_folio(struct folio *folio,
994 				struct vm_area_struct *vma)
995 {
996 	/*
997 	 * The VM_SPECIAL check here serves two purposes.
998 	 * 1) VM_IO check prevents migration from double-counting during mlock.
999 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1000 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
1001 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1002 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
1003 	 */
1004 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1005 		mlock_folio(folio);
1006 }
1007 
1008 void munlock_folio(struct folio *folio);
1009 static inline void munlock_vma_folio(struct folio *folio,
1010 					struct vm_area_struct *vma)
1011 {
1012 	/*
1013 	 * munlock if the function is called. Ideally, we should only
1014 	 * do munlock if any page of folio is unmapped from VMA and
1015 	 * cause folio not fully mapped to VMA.
1016 	 *
1017 	 * But it's not easy to confirm that's the situation. So we
1018 	 * always munlock the folio and page reclaim will correct it
1019 	 * if it's wrong.
1020 	 */
1021 	if (unlikely(vma->vm_flags & VM_LOCKED))
1022 		munlock_folio(folio);
1023 }
1024 
1025 void mlock_new_folio(struct folio *folio);
1026 bool need_mlock_drain(int cpu);
1027 void mlock_drain_local(void);
1028 void mlock_drain_remote(int cpu);
1029 
1030 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1031 
1032 /**
1033  * vma_address - Find the virtual address a page range is mapped at
1034  * @vma: The vma which maps this object.
1035  * @pgoff: The page offset within its object.
1036  * @nr_pages: The number of pages to consider.
1037  *
1038  * If any page in this range is mapped by this VMA, return the first address
1039  * where any of these pages appear.  Otherwise, return -EFAULT.
1040  */
1041 static inline unsigned long vma_address(const struct vm_area_struct *vma,
1042 		pgoff_t pgoff, unsigned long nr_pages)
1043 {
1044 	unsigned long address;
1045 
1046 	if (pgoff >= vma->vm_pgoff) {
1047 		address = vma->vm_start +
1048 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1049 		/* Check for address beyond vma (or wrapped through 0?) */
1050 		if (address < vma->vm_start || address >= vma->vm_end)
1051 			address = -EFAULT;
1052 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1053 		/* Test above avoids possibility of wrap to 0 on 32-bit */
1054 		address = vma->vm_start;
1055 	} else {
1056 		address = -EFAULT;
1057 	}
1058 	return address;
1059 }
1060 
1061 /*
1062  * Then at what user virtual address will none of the range be found in vma?
1063  * Assumes that vma_address() already returned a good starting address.
1064  */
1065 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1066 {
1067 	struct vm_area_struct *vma = pvmw->vma;
1068 	pgoff_t pgoff;
1069 	unsigned long address;
1070 
1071 	/* Common case, plus ->pgoff is invalid for KSM */
1072 	if (pvmw->nr_pages == 1)
1073 		return pvmw->address + PAGE_SIZE;
1074 
1075 	pgoff = pvmw->pgoff + pvmw->nr_pages;
1076 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1077 	/* Check for address beyond vma (or wrapped through 0?) */
1078 	if (address < vma->vm_start || address > vma->vm_end)
1079 		address = vma->vm_end;
1080 	return address;
1081 }
1082 
1083 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1084 						    struct file *fpin)
1085 {
1086 	int flags = vmf->flags;
1087 
1088 	if (fpin)
1089 		return fpin;
1090 
1091 	/*
1092 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1093 	 * anything, so we only pin the file and drop the mmap_lock if only
1094 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1095 	 */
1096 	if (fault_flag_allow_retry_first(flags) &&
1097 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1098 		fpin = get_file(vmf->vma->vm_file);
1099 		release_fault_lock(vmf);
1100 	}
1101 	return fpin;
1102 }
1103 #else /* !CONFIG_MMU */
1104 static inline void unmap_mapping_folio(struct folio *folio) { }
1105 static inline void mlock_new_folio(struct folio *folio) { }
1106 static inline bool need_mlock_drain(int cpu) { return false; }
1107 static inline void mlock_drain_local(void) { }
1108 static inline void mlock_drain_remote(int cpu) { }
1109 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1110 {
1111 }
1112 #endif /* !CONFIG_MMU */
1113 
1114 /* Memory initialisation debug and verification */
1115 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1116 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1117 
1118 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1119 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1120 
1121 void init_deferred_page(unsigned long pfn, int nid);
1122 
1123 enum mminit_level {
1124 	MMINIT_WARNING,
1125 	MMINIT_VERIFY,
1126 	MMINIT_TRACE
1127 };
1128 
1129 #ifdef CONFIG_DEBUG_MEMORY_INIT
1130 
1131 extern int mminit_loglevel;
1132 
1133 #define mminit_dprintk(level, prefix, fmt, arg...) \
1134 do { \
1135 	if (level < mminit_loglevel) { \
1136 		if (level <= MMINIT_WARNING) \
1137 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1138 		else \
1139 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1140 	} \
1141 } while (0)
1142 
1143 extern void mminit_verify_pageflags_layout(void);
1144 extern void mminit_verify_zonelist(void);
1145 #else
1146 
1147 static inline void mminit_dprintk(enum mminit_level level,
1148 				const char *prefix, const char *fmt, ...)
1149 {
1150 }
1151 
1152 static inline void mminit_verify_pageflags_layout(void)
1153 {
1154 }
1155 
1156 static inline void mminit_verify_zonelist(void)
1157 {
1158 }
1159 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1160 
1161 #define NODE_RECLAIM_NOSCAN	-2
1162 #define NODE_RECLAIM_FULL	-1
1163 #define NODE_RECLAIM_SOME	0
1164 #define NODE_RECLAIM_SUCCESS	1
1165 
1166 #ifdef CONFIG_NUMA
1167 extern int node_reclaim_mode;
1168 
1169 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1170 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1171 #else
1172 #define node_reclaim_mode 0
1173 
1174 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1175 				unsigned int order)
1176 {
1177 	return NODE_RECLAIM_NOSCAN;
1178 }
1179 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1180 {
1181 	return NUMA_NO_NODE;
1182 }
1183 #endif
1184 
1185 static inline bool node_reclaim_enabled(void)
1186 {
1187 	/* Is any node_reclaim_mode bit set? */
1188 	return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1189 }
1190 
1191 /*
1192  * mm/memory-failure.c
1193  */
1194 #ifdef CONFIG_MEMORY_FAILURE
1195 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1196 void shake_folio(struct folio *folio);
1197 extern int hwpoison_filter(struct page *p);
1198 
1199 extern u32 hwpoison_filter_dev_major;
1200 extern u32 hwpoison_filter_dev_minor;
1201 extern u64 hwpoison_filter_flags_mask;
1202 extern u64 hwpoison_filter_flags_value;
1203 extern u64 hwpoison_filter_memcg;
1204 extern u32 hwpoison_filter_enable;
1205 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1206 void SetPageHWPoisonTakenOff(struct page *page);
1207 void ClearPageHWPoisonTakenOff(struct page *page);
1208 bool take_page_off_buddy(struct page *page);
1209 bool put_page_back_buddy(struct page *page);
1210 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1211 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1212 		     struct vm_area_struct *vma, struct list_head *to_kill,
1213 		     unsigned long ksm_addr);
1214 unsigned long page_mapped_in_vma(const struct page *page,
1215 		struct vm_area_struct *vma);
1216 
1217 #else
1218 static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1219 {
1220 	return -EBUSY;
1221 }
1222 #endif
1223 
1224 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1225         unsigned long, unsigned long,
1226         unsigned long, unsigned long);
1227 
1228 extern void set_pageblock_order(void);
1229 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1230 unsigned long reclaim_pages(struct list_head *folio_list);
1231 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1232 					    struct list_head *folio_list);
1233 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1234 #define ALLOC_WMARK_MIN		WMARK_MIN
1235 #define ALLOC_WMARK_LOW		WMARK_LOW
1236 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1237 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1238 
1239 /* Mask to get the watermark bits */
1240 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1241 
1242 /*
1243  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1244  * cannot assume a reduced access to memory reserves is sufficient for
1245  * !MMU
1246  */
1247 #ifdef CONFIG_MMU
1248 #define ALLOC_OOM		0x08
1249 #else
1250 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1251 #endif
1252 
1253 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1254 				       * to 25% of the min watermark or
1255 				       * 62.5% if __GFP_HIGH is set.
1256 				       */
1257 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1258 				       * of the min watermark.
1259 				       */
1260 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1261 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1262 #ifdef CONFIG_ZONE_DMA32
1263 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1264 #else
1265 #define ALLOC_NOFRAGMENT	  0x0
1266 #endif
1267 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1268 #define ALLOC_TRYLOCK		0x400 /* Only use spin_trylock in allocation path */
1269 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1270 
1271 /* Flags that allow allocations below the min watermark. */
1272 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1273 
1274 enum ttu_flags;
1275 struct tlbflush_unmap_batch;
1276 
1277 
1278 /*
1279  * only for MM internal work items which do not depend on
1280  * any allocations or locks which might depend on allocations
1281  */
1282 extern struct workqueue_struct *mm_percpu_wq;
1283 
1284 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1285 void try_to_unmap_flush(void);
1286 void try_to_unmap_flush_dirty(void);
1287 void flush_tlb_batched_pending(struct mm_struct *mm);
1288 #else
1289 static inline void try_to_unmap_flush(void)
1290 {
1291 }
1292 static inline void try_to_unmap_flush_dirty(void)
1293 {
1294 }
1295 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1296 {
1297 }
1298 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1299 
1300 extern const struct trace_print_flags pageflag_names[];
1301 extern const struct trace_print_flags vmaflag_names[];
1302 extern const struct trace_print_flags gfpflag_names[];
1303 
1304 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1305 {
1306 	return migratetype == MIGRATE_HIGHATOMIC;
1307 }
1308 
1309 void setup_zone_pageset(struct zone *zone);
1310 
1311 struct migration_target_control {
1312 	int nid;		/* preferred node id */
1313 	nodemask_t *nmask;
1314 	gfp_t gfp_mask;
1315 	enum migrate_reason reason;
1316 };
1317 
1318 /*
1319  * mm/filemap.c
1320  */
1321 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1322 			      struct folio *folio, loff_t fpos, size_t size);
1323 
1324 /*
1325  * mm/vmalloc.c
1326  */
1327 #ifdef CONFIG_MMU
1328 void __init vmalloc_init(void);
1329 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1330                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1331 unsigned int get_vm_area_page_order(struct vm_struct *vm);
1332 #else
1333 static inline void vmalloc_init(void)
1334 {
1335 }
1336 
1337 static inline
1338 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1339                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1340 {
1341 	return -EINVAL;
1342 }
1343 #endif
1344 
1345 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1346 			       unsigned long end, pgprot_t prot,
1347 			       struct page **pages, unsigned int page_shift);
1348 
1349 void vunmap_range_noflush(unsigned long start, unsigned long end);
1350 
1351 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1352 
1353 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1354 		      unsigned long addr, int *flags, bool writable,
1355 		      int *last_cpupid);
1356 
1357 void free_zone_device_folio(struct folio *folio);
1358 int migrate_device_coherent_folio(struct folio *folio);
1359 
1360 struct vm_struct *__get_vm_area_node(unsigned long size,
1361 				     unsigned long align, unsigned long shift,
1362 				     unsigned long flags, unsigned long start,
1363 				     unsigned long end, int node, gfp_t gfp_mask,
1364 				     const void *caller);
1365 
1366 /*
1367  * mm/gup.c
1368  */
1369 int __must_check try_grab_folio(struct folio *folio, int refs,
1370 				unsigned int flags);
1371 
1372 /*
1373  * mm/huge_memory.c
1374  */
1375 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1376 	       pud_t *pud, bool write);
1377 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1378 	       pmd_t *pmd, bool write);
1379 
1380 /*
1381  * Parses a string with mem suffixes into its order. Useful to parse kernel
1382  * parameters.
1383  */
1384 static inline int get_order_from_str(const char *size_str,
1385 				     unsigned long valid_orders)
1386 {
1387 	unsigned long size;
1388 	char *endptr;
1389 	int order;
1390 
1391 	size = memparse(size_str, &endptr);
1392 
1393 	if (!is_power_of_2(size))
1394 		return -EINVAL;
1395 	order = get_order(size);
1396 	if (BIT(order) & ~valid_orders)
1397 		return -EINVAL;
1398 
1399 	return order;
1400 }
1401 
1402 enum {
1403 	/* mark page accessed */
1404 	FOLL_TOUCH = 1 << 16,
1405 	/* a retry, previous pass started an IO */
1406 	FOLL_TRIED = 1 << 17,
1407 	/* we are working on non-current tsk/mm */
1408 	FOLL_REMOTE = 1 << 18,
1409 	/* pages must be released via unpin_user_page */
1410 	FOLL_PIN = 1 << 19,
1411 	/* gup_fast: prevent fall-back to slow gup */
1412 	FOLL_FAST_ONLY = 1 << 20,
1413 	/* allow unlocking the mmap lock */
1414 	FOLL_UNLOCKABLE = 1 << 21,
1415 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1416 	FOLL_MADV_POPULATE = 1 << 22,
1417 };
1418 
1419 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1420 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1421 			    FOLL_MADV_POPULATE)
1422 
1423 /*
1424  * Indicates for which pages that are write-protected in the page table,
1425  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1426  * GUP pin will remain consistent with the pages mapped into the page tables
1427  * of the MM.
1428  *
1429  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1430  * PageAnonExclusive() has to protect against concurrent GUP:
1431  * * Ordinary GUP: Using the PT lock
1432  * * GUP-fast and fork(): mm->write_protect_seq
1433  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1434  *    folio_try_share_anon_rmap_*()
1435  *
1436  * Must be called with the (sub)page that's actually referenced via the
1437  * page table entry, which might not necessarily be the head page for a
1438  * PTE-mapped THP.
1439  *
1440  * If the vma is NULL, we're coming from the GUP-fast path and might have
1441  * to fallback to the slow path just to lookup the vma.
1442  */
1443 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1444 				    unsigned int flags, struct page *page)
1445 {
1446 	/*
1447 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1448 	 * has to be writable -- and if it references (part of) an anonymous
1449 	 * folio, that part is required to be marked exclusive.
1450 	 */
1451 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1452 		return false;
1453 	/*
1454 	 * Note: PageAnon(page) is stable until the page is actually getting
1455 	 * freed.
1456 	 */
1457 	if (!PageAnon(page)) {
1458 		/*
1459 		 * We only care about R/O long-term pining: R/O short-term
1460 		 * pinning does not have the semantics to observe successive
1461 		 * changes through the process page tables.
1462 		 */
1463 		if (!(flags & FOLL_LONGTERM))
1464 			return false;
1465 
1466 		/* We really need the vma ... */
1467 		if (!vma)
1468 			return true;
1469 
1470 		/*
1471 		 * ... because we only care about writable private ("COW")
1472 		 * mappings where we have to break COW early.
1473 		 */
1474 		return is_cow_mapping(vma->vm_flags);
1475 	}
1476 
1477 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1478 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1479 		smp_rmb();
1480 
1481 	/*
1482 	 * Note that KSM pages cannot be exclusive, and consequently,
1483 	 * cannot get pinned.
1484 	 */
1485 	return !PageAnonExclusive(page);
1486 }
1487 
1488 extern bool mirrored_kernelcore;
1489 bool memblock_has_mirror(void);
1490 void memblock_free_all(void);
1491 
1492 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1493 					  unsigned long start, unsigned long end,
1494 					  pgoff_t pgoff)
1495 {
1496 	vma->vm_start = start;
1497 	vma->vm_end = end;
1498 	vma->vm_pgoff = pgoff;
1499 }
1500 
1501 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1502 {
1503 	/*
1504 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1505 	 * enablements, because when without soft-dirty being compiled in,
1506 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1507 	 * will be constantly true.
1508 	 */
1509 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1510 		return false;
1511 
1512 	/*
1513 	 * Soft-dirty is kind of special: its tracking is enabled when the
1514 	 * vma flags not set.
1515 	 */
1516 	return !(vma->vm_flags & VM_SOFTDIRTY);
1517 }
1518 
1519 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1520 {
1521 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1522 }
1523 
1524 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1525 {
1526 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1527 }
1528 
1529 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1530 				unsigned long zone, int nid);
1531 void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1532 
1533 /* shrinker related functions */
1534 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1535 			  int priority);
1536 
1537 #ifdef CONFIG_SHRINKER_DEBUG
1538 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1539 			struct shrinker *shrinker, const char *fmt, va_list ap)
1540 {
1541 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1542 
1543 	return shrinker->name ? 0 : -ENOMEM;
1544 }
1545 
1546 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1547 {
1548 	kfree_const(shrinker->name);
1549 	shrinker->name = NULL;
1550 }
1551 
1552 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1553 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1554 					      int *debugfs_id);
1555 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1556 				    int debugfs_id);
1557 #else /* CONFIG_SHRINKER_DEBUG */
1558 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1559 {
1560 	return 0;
1561 }
1562 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1563 					      const char *fmt, va_list ap)
1564 {
1565 	return 0;
1566 }
1567 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1568 {
1569 }
1570 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1571 						     int *debugfs_id)
1572 {
1573 	*debugfs_id = -1;
1574 	return NULL;
1575 }
1576 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1577 					   int debugfs_id)
1578 {
1579 }
1580 #endif /* CONFIG_SHRINKER_DEBUG */
1581 
1582 /* Only track the nodes of mappings with shadow entries */
1583 void workingset_update_node(struct xa_node *node);
1584 extern struct list_lru shadow_nodes;
1585 #define mapping_set_update(xas, mapping) do {			\
1586 	if (!dax_mapping(mapping) && !shmem_mapping(mapping)) {	\
1587 		xas_set_update(xas, workingset_update_node);	\
1588 		xas_set_lru(xas, &shadow_nodes);		\
1589 	}							\
1590 } while (0)
1591 
1592 /* mremap.c */
1593 unsigned long move_page_tables(struct pagetable_move_control *pmc);
1594 
1595 #ifdef CONFIG_UNACCEPTED_MEMORY
1596 void accept_page(struct page *page);
1597 #else /* CONFIG_UNACCEPTED_MEMORY */
1598 static inline void accept_page(struct page *page)
1599 {
1600 }
1601 #endif /* CONFIG_UNACCEPTED_MEMORY */
1602 
1603 /* pagewalk.c */
1604 int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1605 		unsigned long end, const struct mm_walk_ops *ops,
1606 		void *private);
1607 int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1608 			  unsigned long end, const struct mm_walk_ops *ops,
1609 			  pgd_t *pgd, void *private);
1610 
1611 /* pt_reclaim.c */
1612 bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1613 void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1614 	      pmd_t pmdval);
1615 void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1616 		     struct mmu_gather *tlb);
1617 
1618 #ifdef CONFIG_PT_RECLAIM
1619 bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1620 			   struct zap_details *details);
1621 #else
1622 static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1623 					 struct zap_details *details)
1624 {
1625 	return false;
1626 }
1627 #endif /* CONFIG_PT_RECLAIM */
1628 
1629 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1630 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1631 
1632 #endif	/* __MM_INTERNAL_H */
1633