xref: /linux/mm/hugetlb_vmemmap.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
19 
20 /**
21  * struct vmemmap_remap_walk - walk vmemmap page table
22  *
23  * @remap_pte:		called for each lowest-level entry (PTE).
24  * @nr_walked:		the number of walked pte.
25  * @reuse_page:		the page which is reused for the tail vmemmap pages.
26  * @reuse_addr:		the virtual address of the @reuse_page page.
27  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
28  *			or is mapped from.
29  */
30 struct vmemmap_remap_walk {
31 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
32 					     struct vmemmap_remap_walk *walk);
33 	unsigned long		nr_walked;
34 	struct page		*reuse_page;
35 	unsigned long		reuse_addr;
36 	struct list_head	*vmemmap_pages;
37 };
38 
39 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
40 {
41 	pmd_t __pmd;
42 	int i;
43 	unsigned long addr = start;
44 	struct page *head;
45 	pte_t *pgtable;
46 
47 	spin_lock(&init_mm.page_table_lock);
48 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
49 	spin_unlock(&init_mm.page_table_lock);
50 
51 	if (!head)
52 		return 0;
53 
54 	pgtable = pte_alloc_one_kernel(&init_mm);
55 	if (!pgtable)
56 		return -ENOMEM;
57 
58 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
59 
60 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
61 		pte_t entry, *pte;
62 		pgprot_t pgprot = PAGE_KERNEL;
63 
64 		entry = mk_pte(head + i, pgprot);
65 		pte = pte_offset_kernel(&__pmd, addr);
66 		set_pte_at(&init_mm, addr, pte, entry);
67 	}
68 
69 	spin_lock(&init_mm.page_table_lock);
70 	if (likely(pmd_leaf(*pmd))) {
71 		/*
72 		 * Higher order allocations from buddy allocator must be able to
73 		 * be treated as indepdenent small pages (as they can be freed
74 		 * individually).
75 		 */
76 		if (!PageReserved(head))
77 			split_page(head, get_order(PMD_SIZE));
78 
79 		/* Make pte visible before pmd. See comment in pmd_install(). */
80 		smp_wmb();
81 		pmd_populate_kernel(&init_mm, pmd, pgtable);
82 		flush_tlb_kernel_range(start, start + PMD_SIZE);
83 	} else {
84 		pte_free_kernel(&init_mm, pgtable);
85 	}
86 	spin_unlock(&init_mm.page_table_lock);
87 
88 	return 0;
89 }
90 
91 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
92 			      unsigned long end,
93 			      struct vmemmap_remap_walk *walk)
94 {
95 	pte_t *pte = pte_offset_kernel(pmd, addr);
96 
97 	/*
98 	 * The reuse_page is found 'first' in table walk before we start
99 	 * remapping (which is calling @walk->remap_pte).
100 	 */
101 	if (!walk->reuse_page) {
102 		walk->reuse_page = pte_page(ptep_get(pte));
103 		/*
104 		 * Because the reuse address is part of the range that we are
105 		 * walking, skip the reuse address range.
106 		 */
107 		addr += PAGE_SIZE;
108 		pte++;
109 		walk->nr_walked++;
110 	}
111 
112 	for (; addr != end; addr += PAGE_SIZE, pte++) {
113 		walk->remap_pte(pte, addr, walk);
114 		walk->nr_walked++;
115 	}
116 }
117 
118 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
119 			     unsigned long end,
120 			     struct vmemmap_remap_walk *walk)
121 {
122 	pmd_t *pmd;
123 	unsigned long next;
124 
125 	pmd = pmd_offset(pud, addr);
126 	do {
127 		int ret;
128 
129 		ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
130 		if (ret)
131 			return ret;
132 
133 		next = pmd_addr_end(addr, end);
134 		vmemmap_pte_range(pmd, addr, next, walk);
135 	} while (pmd++, addr = next, addr != end);
136 
137 	return 0;
138 }
139 
140 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
141 			     unsigned long end,
142 			     struct vmemmap_remap_walk *walk)
143 {
144 	pud_t *pud;
145 	unsigned long next;
146 
147 	pud = pud_offset(p4d, addr);
148 	do {
149 		int ret;
150 
151 		next = pud_addr_end(addr, end);
152 		ret = vmemmap_pmd_range(pud, addr, next, walk);
153 		if (ret)
154 			return ret;
155 	} while (pud++, addr = next, addr != end);
156 
157 	return 0;
158 }
159 
160 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
161 			     unsigned long end,
162 			     struct vmemmap_remap_walk *walk)
163 {
164 	p4d_t *p4d;
165 	unsigned long next;
166 
167 	p4d = p4d_offset(pgd, addr);
168 	do {
169 		int ret;
170 
171 		next = p4d_addr_end(addr, end);
172 		ret = vmemmap_pud_range(p4d, addr, next, walk);
173 		if (ret)
174 			return ret;
175 	} while (p4d++, addr = next, addr != end);
176 
177 	return 0;
178 }
179 
180 static int vmemmap_remap_range(unsigned long start, unsigned long end,
181 			       struct vmemmap_remap_walk *walk)
182 {
183 	unsigned long addr = start;
184 	unsigned long next;
185 	pgd_t *pgd;
186 
187 	VM_BUG_ON(!PAGE_ALIGNED(start));
188 	VM_BUG_ON(!PAGE_ALIGNED(end));
189 
190 	pgd = pgd_offset_k(addr);
191 	do {
192 		int ret;
193 
194 		next = pgd_addr_end(addr, end);
195 		ret = vmemmap_p4d_range(pgd, addr, next, walk);
196 		if (ret)
197 			return ret;
198 	} while (pgd++, addr = next, addr != end);
199 
200 	flush_tlb_kernel_range(start, end);
201 
202 	return 0;
203 }
204 
205 /*
206  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
207  * allocator or buddy allocator. If the PG_reserved flag is set, it means
208  * that it allocated from the memblock allocator, just free it via the
209  * free_bootmem_page(). Otherwise, use __free_page().
210  */
211 static inline void free_vmemmap_page(struct page *page)
212 {
213 	if (PageReserved(page))
214 		free_bootmem_page(page);
215 	else
216 		__free_page(page);
217 }
218 
219 /* Free a list of the vmemmap pages */
220 static void free_vmemmap_page_list(struct list_head *list)
221 {
222 	struct page *page, *next;
223 
224 	list_for_each_entry_safe(page, next, list, lru)
225 		free_vmemmap_page(page);
226 }
227 
228 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
229 			      struct vmemmap_remap_walk *walk)
230 {
231 	/*
232 	 * Remap the tail pages as read-only to catch illegal write operation
233 	 * to the tail pages.
234 	 */
235 	pgprot_t pgprot = PAGE_KERNEL_RO;
236 	struct page *page = pte_page(ptep_get(pte));
237 	pte_t entry;
238 
239 	/* Remapping the head page requires r/w */
240 	if (unlikely(addr == walk->reuse_addr)) {
241 		pgprot = PAGE_KERNEL;
242 		list_del(&walk->reuse_page->lru);
243 
244 		/*
245 		 * Makes sure that preceding stores to the page contents from
246 		 * vmemmap_remap_free() become visible before the set_pte_at()
247 		 * write.
248 		 */
249 		smp_wmb();
250 	}
251 
252 	entry = mk_pte(walk->reuse_page, pgprot);
253 	list_add_tail(&page->lru, walk->vmemmap_pages);
254 	set_pte_at(&init_mm, addr, pte, entry);
255 }
256 
257 /*
258  * How many struct page structs need to be reset. When we reuse the head
259  * struct page, the special metadata (e.g. page->flags or page->mapping)
260  * cannot copy to the tail struct page structs. The invalid value will be
261  * checked in the free_tail_page_prepare(). In order to avoid the message
262  * of "corrupted mapping in tail page". We need to reset at least 3 (one
263  * head struct page struct and two tail struct page structs) struct page
264  * structs.
265  */
266 #define NR_RESET_STRUCT_PAGE		3
267 
268 static inline void reset_struct_pages(struct page *start)
269 {
270 	struct page *from = start + NR_RESET_STRUCT_PAGE;
271 
272 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
273 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
274 }
275 
276 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
277 				struct vmemmap_remap_walk *walk)
278 {
279 	pgprot_t pgprot = PAGE_KERNEL;
280 	struct page *page;
281 	void *to;
282 
283 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
284 
285 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
286 	list_del(&page->lru);
287 	to = page_to_virt(page);
288 	copy_page(to, (void *)walk->reuse_addr);
289 	reset_struct_pages(to);
290 
291 	/*
292 	 * Makes sure that preceding stores to the page contents become visible
293 	 * before the set_pte_at() write.
294 	 */
295 	smp_wmb();
296 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
297 }
298 
299 /**
300  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
301  *			to the page which @reuse is mapped to, then free vmemmap
302  *			which the range are mapped to.
303  * @start:	start address of the vmemmap virtual address range that we want
304  *		to remap.
305  * @end:	end address of the vmemmap virtual address range that we want to
306  *		remap.
307  * @reuse:	reuse address.
308  *
309  * Return: %0 on success, negative error code otherwise.
310  */
311 static int vmemmap_remap_free(unsigned long start, unsigned long end,
312 			      unsigned long reuse)
313 {
314 	int ret;
315 	LIST_HEAD(vmemmap_pages);
316 	struct vmemmap_remap_walk walk = {
317 		.remap_pte	= vmemmap_remap_pte,
318 		.reuse_addr	= reuse,
319 		.vmemmap_pages	= &vmemmap_pages,
320 	};
321 	int nid = page_to_nid((struct page *)start);
322 	gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
323 			__GFP_NOWARN;
324 
325 	/*
326 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
327 	 * block of struct page memory when freeing it back to page allocator
328 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
329 	 * struct page backing memory to be kept contiguous and allowing for
330 	 * more allocations of hugepages. Fallback to the currently
331 	 * mapped head page in case should it fail to allocate.
332 	 */
333 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
334 	if (walk.reuse_page) {
335 		copy_page(page_to_virt(walk.reuse_page),
336 			  (void *)walk.reuse_addr);
337 		list_add(&walk.reuse_page->lru, &vmemmap_pages);
338 	}
339 
340 	/*
341 	 * In order to make remapping routine most efficient for the huge pages,
342 	 * the routine of vmemmap page table walking has the following rules
343 	 * (see more details from the vmemmap_pte_range()):
344 	 *
345 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
346 	 *   should be continuous.
347 	 * - The @reuse address is part of the range [@reuse, @end) that we are
348 	 *   walking which is passed to vmemmap_remap_range().
349 	 * - The @reuse address is the first in the complete range.
350 	 *
351 	 * So we need to make sure that @start and @reuse meet the above rules.
352 	 */
353 	BUG_ON(start - reuse != PAGE_SIZE);
354 
355 	mmap_read_lock(&init_mm);
356 	ret = vmemmap_remap_range(reuse, end, &walk);
357 	if (ret && walk.nr_walked) {
358 		end = reuse + walk.nr_walked * PAGE_SIZE;
359 		/*
360 		 * vmemmap_pages contains pages from the previous
361 		 * vmemmap_remap_range call which failed.  These
362 		 * are pages which were removed from the vmemmap.
363 		 * They will be restored in the following call.
364 		 */
365 		walk = (struct vmemmap_remap_walk) {
366 			.remap_pte	= vmemmap_restore_pte,
367 			.reuse_addr	= reuse,
368 			.vmemmap_pages	= &vmemmap_pages,
369 		};
370 
371 		vmemmap_remap_range(reuse, end, &walk);
372 	}
373 	mmap_read_unlock(&init_mm);
374 
375 	free_vmemmap_page_list(&vmemmap_pages);
376 
377 	return ret;
378 }
379 
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381 				   struct list_head *list)
382 {
383 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_THISNODE;
384 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 	int nid = page_to_nid((struct page *)start);
386 	struct page *page, *next;
387 
388 	while (nr_pages--) {
389 		page = alloc_pages_node(nid, gfp_mask, 0);
390 		if (!page)
391 			goto out;
392 		list_add_tail(&page->lru, list);
393 	}
394 
395 	return 0;
396 out:
397 	list_for_each_entry_safe(page, next, list, lru)
398 		__free_page(page);
399 	return -ENOMEM;
400 }
401 
402 /**
403  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404  *			 to the page which is from the @vmemmap_pages
405  *			 respectively.
406  * @start:	start address of the vmemmap virtual address range that we want
407  *		to remap.
408  * @end:	end address of the vmemmap virtual address range that we want to
409  *		remap.
410  * @reuse:	reuse address.
411  *
412  * Return: %0 on success, negative error code otherwise.
413  */
414 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
415 			       unsigned long reuse)
416 {
417 	LIST_HEAD(vmemmap_pages);
418 	struct vmemmap_remap_walk walk = {
419 		.remap_pte	= vmemmap_restore_pte,
420 		.reuse_addr	= reuse,
421 		.vmemmap_pages	= &vmemmap_pages,
422 	};
423 
424 	/* See the comment in the vmemmap_remap_free(). */
425 	BUG_ON(start - reuse != PAGE_SIZE);
426 
427 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
428 		return -ENOMEM;
429 
430 	mmap_read_lock(&init_mm);
431 	vmemmap_remap_range(reuse, end, &walk);
432 	mmap_read_unlock(&init_mm);
433 
434 	return 0;
435 }
436 
437 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
438 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
439 
440 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
441 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
442 
443 /**
444  * hugetlb_vmemmap_restore - restore previously optimized (by
445  *			     hugetlb_vmemmap_optimize()) vmemmap pages which
446  *			     will be reallocated and remapped.
447  * @h:		struct hstate.
448  * @head:	the head page whose vmemmap pages will be restored.
449  *
450  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
451  * negative error code otherwise.
452  */
453 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
454 {
455 	int ret;
456 	unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
457 	unsigned long vmemmap_reuse;
458 
459 	if (!HPageVmemmapOptimized(head))
460 		return 0;
461 
462 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
463 	vmemmap_reuse	= vmemmap_start;
464 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
465 
466 	/*
467 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
468 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
469 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
470 	 * When a HugeTLB page is freed to the buddy allocator, previously
471 	 * discarded vmemmap pages must be allocated and remapping.
472 	 */
473 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
474 	if (!ret) {
475 		ClearHPageVmemmapOptimized(head);
476 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
477 	}
478 
479 	return ret;
480 }
481 
482 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
483 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
484 {
485 	if (!READ_ONCE(vmemmap_optimize_enabled))
486 		return false;
487 
488 	if (!hugetlb_vmemmap_optimizable(h))
489 		return false;
490 
491 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
492 		pmd_t *pmdp, pmd;
493 		struct page *vmemmap_page;
494 		unsigned long vaddr = (unsigned long)head;
495 
496 		/*
497 		 * Only the vmemmap page's vmemmap page can be self-hosted.
498 		 * Walking the page tables to find the backing page of the
499 		 * vmemmap page.
500 		 */
501 		pmdp = pmd_off_k(vaddr);
502 		/*
503 		 * The READ_ONCE() is used to stabilize *pmdp in a register or
504 		 * on the stack so that it will stop changing under the code.
505 		 * The only concurrent operation where it can be changed is
506 		 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
507 		 * operation).
508 		 */
509 		pmd = READ_ONCE(*pmdp);
510 		if (pmd_leaf(pmd))
511 			vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
512 		else
513 			vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
514 		/*
515 		 * Due to HugeTLB alignment requirements and the vmemmap pages
516 		 * being at the start of the hotplugged memory region in
517 		 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
518 		 * page's vmemmap page if it is marked as VmemmapSelfHosted is
519 		 * sufficient.
520 		 *
521 		 * [                  hotplugged memory                  ]
522 		 * [        section        ][...][        section        ]
523 		 * [ vmemmap ][              usable memory               ]
524 		 *   ^   |     |                                        |
525 		 *   +---+     |                                        |
526 		 *     ^       |                                        |
527 		 *     +-------+                                        |
528 		 *          ^                                           |
529 		 *          +-------------------------------------------+
530 		 */
531 		if (PageVmemmapSelfHosted(vmemmap_page))
532 			return false;
533 	}
534 
535 	return true;
536 }
537 
538 /**
539  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
540  * @h:		struct hstate.
541  * @head:	the head page whose vmemmap pages will be optimized.
542  *
543  * This function only tries to optimize @head's vmemmap pages and does not
544  * guarantee that the optimization will succeed after it returns. The caller
545  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
546  * have been optimized.
547  */
548 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
549 {
550 	unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
551 	unsigned long vmemmap_reuse;
552 
553 	if (!vmemmap_should_optimize(h, head))
554 		return;
555 
556 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
557 
558 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
559 	vmemmap_reuse	= vmemmap_start;
560 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
561 
562 	/*
563 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
564 	 * to the page which @vmemmap_reuse is mapped to, then free the pages
565 	 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
566 	 */
567 	if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
568 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
569 	else
570 		SetHPageVmemmapOptimized(head);
571 }
572 
573 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
574 	{
575 		.procname	= "hugetlb_optimize_vmemmap",
576 		.data		= &vmemmap_optimize_enabled,
577 		.maxlen		= sizeof(vmemmap_optimize_enabled),
578 		.mode		= 0644,
579 		.proc_handler	= proc_dobool,
580 	},
581 	{ }
582 };
583 
584 static int __init hugetlb_vmemmap_init(void)
585 {
586 	const struct hstate *h;
587 
588 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
589 	BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
590 
591 	for_each_hstate(h) {
592 		if (hugetlb_vmemmap_optimizable(h)) {
593 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
594 			break;
595 		}
596 	}
597 	return 0;
598 }
599 late_initcall(hugetlb_vmemmap_init);
600