xref: /linux/mm/hugetlb_vmemmap.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21 
22 /**
23  * struct vmemmap_remap_walk - walk vmemmap page table
24  *
25  * @remap_pte:		called for each lowest-level entry (PTE).
26  * @nr_walked:		the number of walked pte.
27  * @reuse_page:		the page which is reused for the tail vmemmap pages.
28  * @reuse_addr:		the virtual address of the @reuse_page page.
29  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
30  *			or is mapped from.
31  * @flags:		used to modify behavior in vmemmap page table walking
32  *			operations.
33  */
34 struct vmemmap_remap_walk {
35 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
36 					     struct vmemmap_remap_walk *walk);
37 	unsigned long		nr_walked;
38 	struct page		*reuse_page;
39 	unsigned long		reuse_addr;
40 	struct list_head	*vmemmap_pages;
41 
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
46 	unsigned long		flags;
47 };
48 
49 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
50 			     struct vmemmap_remap_walk *walk)
51 {
52 	pmd_t __pmd;
53 	int i;
54 	unsigned long addr = start;
55 	pte_t *pgtable;
56 
57 	pgtable = pte_alloc_one_kernel(&init_mm);
58 	if (!pgtable)
59 		return -ENOMEM;
60 
61 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
62 
63 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
64 		pte_t entry, *pte;
65 		pgprot_t pgprot = PAGE_KERNEL;
66 
67 		entry = mk_pte(head + i, pgprot);
68 		pte = pte_offset_kernel(&__pmd, addr);
69 		set_pte_at(&init_mm, addr, pte, entry);
70 	}
71 
72 	spin_lock(&init_mm.page_table_lock);
73 	if (likely(pmd_leaf(*pmd))) {
74 		/*
75 		 * Higher order allocations from buddy allocator must be able to
76 		 * be treated as indepdenent small pages (as they can be freed
77 		 * individually).
78 		 */
79 		if (!PageReserved(head))
80 			split_page(head, get_order(PMD_SIZE));
81 
82 		/* Make pte visible before pmd. See comment in pmd_install(). */
83 		smp_wmb();
84 		pmd_populate_kernel(&init_mm, pmd, pgtable);
85 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
86 			flush_tlb_kernel_range(start, start + PMD_SIZE);
87 	} else {
88 		pte_free_kernel(&init_mm, pgtable);
89 	}
90 	spin_unlock(&init_mm.page_table_lock);
91 
92 	return 0;
93 }
94 
95 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
96 			     unsigned long next, struct mm_walk *walk)
97 {
98 	int ret = 0;
99 	struct page *head;
100 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
101 
102 	/* Only splitting, not remapping the vmemmap pages. */
103 	if (!vmemmap_walk->remap_pte)
104 		walk->action = ACTION_CONTINUE;
105 
106 	spin_lock(&init_mm.page_table_lock);
107 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
108 	/*
109 	 * Due to HugeTLB alignment requirements and the vmemmap
110 	 * pages being at the start of the hotplugged memory
111 	 * region in memory_hotplug.memmap_on_memory case. Checking
112 	 * the vmemmap page associated with the first vmemmap page
113 	 * if it is self-hosted is sufficient.
114 	 *
115 	 * [                  hotplugged memory                  ]
116 	 * [        section        ][...][        section        ]
117 	 * [ vmemmap ][              usable memory               ]
118 	 *   ^  | ^                        |
119 	 *   +--+ |                        |
120 	 *        +------------------------+
121 	 */
122 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
123 		struct page *page = head ? head + pte_index(addr) :
124 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
125 
126 		if (PageVmemmapSelfHosted(page))
127 			ret = -ENOTSUPP;
128 	}
129 	spin_unlock(&init_mm.page_table_lock);
130 	if (!head || ret)
131 		return ret;
132 
133 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
134 }
135 
136 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
137 			     unsigned long next, struct mm_walk *walk)
138 {
139 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
140 
141 	/*
142 	 * The reuse_page is found 'first' in page table walking before
143 	 * starting remapping.
144 	 */
145 	if (!vmemmap_walk->reuse_page)
146 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
147 	else
148 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
149 	vmemmap_walk->nr_walked++;
150 
151 	return 0;
152 }
153 
154 static const struct mm_walk_ops vmemmap_remap_ops = {
155 	.pmd_entry	= vmemmap_pmd_entry,
156 	.pte_entry	= vmemmap_pte_entry,
157 };
158 
159 static int vmemmap_remap_range(unsigned long start, unsigned long end,
160 			       struct vmemmap_remap_walk *walk)
161 {
162 	int ret;
163 
164 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
165 
166 	mmap_read_lock(&init_mm);
167 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
168 				    NULL, walk);
169 	mmap_read_unlock(&init_mm);
170 	if (ret)
171 		return ret;
172 
173 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
174 		flush_tlb_kernel_range(start, end);
175 
176 	return 0;
177 }
178 
179 /*
180  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
181  * allocator or buddy allocator. If the PG_reserved flag is set, it means
182  * that it allocated from the memblock allocator, just free it via the
183  * free_bootmem_page(). Otherwise, use __free_page().
184  */
185 static inline void free_vmemmap_page(struct page *page)
186 {
187 	if (PageReserved(page)) {
188 		memmap_boot_pages_add(-1);
189 		free_bootmem_page(page);
190 	} else {
191 		memmap_pages_add(-1);
192 		__free_page(page);
193 	}
194 }
195 
196 /* Free a list of the vmemmap pages */
197 static void free_vmemmap_page_list(struct list_head *list)
198 {
199 	struct page *page, *next;
200 
201 	list_for_each_entry_safe(page, next, list, lru)
202 		free_vmemmap_page(page);
203 }
204 
205 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
206 			      struct vmemmap_remap_walk *walk)
207 {
208 	/*
209 	 * Remap the tail pages as read-only to catch illegal write operation
210 	 * to the tail pages.
211 	 */
212 	pgprot_t pgprot = PAGE_KERNEL_RO;
213 	struct page *page = pte_page(ptep_get(pte));
214 	pte_t entry;
215 
216 	/* Remapping the head page requires r/w */
217 	if (unlikely(addr == walk->reuse_addr)) {
218 		pgprot = PAGE_KERNEL;
219 		list_del(&walk->reuse_page->lru);
220 
221 		/*
222 		 * Makes sure that preceding stores to the page contents from
223 		 * vmemmap_remap_free() become visible before the set_pte_at()
224 		 * write.
225 		 */
226 		smp_wmb();
227 	}
228 
229 	entry = mk_pte(walk->reuse_page, pgprot);
230 	list_add(&page->lru, walk->vmemmap_pages);
231 	set_pte_at(&init_mm, addr, pte, entry);
232 }
233 
234 /*
235  * How many struct page structs need to be reset. When we reuse the head
236  * struct page, the special metadata (e.g. page->flags or page->mapping)
237  * cannot copy to the tail struct page structs. The invalid value will be
238  * checked in the free_tail_page_prepare(). In order to avoid the message
239  * of "corrupted mapping in tail page". We need to reset at least 3 (one
240  * head struct page struct and two tail struct page structs) struct page
241  * structs.
242  */
243 #define NR_RESET_STRUCT_PAGE		3
244 
245 static inline void reset_struct_pages(struct page *start)
246 {
247 	struct page *from = start + NR_RESET_STRUCT_PAGE;
248 
249 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
250 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
251 }
252 
253 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
254 				struct vmemmap_remap_walk *walk)
255 {
256 	pgprot_t pgprot = PAGE_KERNEL;
257 	struct page *page;
258 	void *to;
259 
260 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
261 
262 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
263 	list_del(&page->lru);
264 	to = page_to_virt(page);
265 	copy_page(to, (void *)walk->reuse_addr);
266 	reset_struct_pages(to);
267 
268 	/*
269 	 * Makes sure that preceding stores to the page contents become visible
270 	 * before the set_pte_at() write.
271 	 */
272 	smp_wmb();
273 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
274 }
275 
276 /**
277  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
278  *                      backing PMDs of the directmap into PTEs
279  * @start:     start address of the vmemmap virtual address range that we want
280  *             to remap.
281  * @end:       end address of the vmemmap virtual address range that we want to
282  *             remap.
283  * @reuse:     reuse address.
284  *
285  * Return: %0 on success, negative error code otherwise.
286  */
287 static int vmemmap_remap_split(unsigned long start, unsigned long end,
288 			       unsigned long reuse)
289 {
290 	struct vmemmap_remap_walk walk = {
291 		.remap_pte	= NULL,
292 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
293 	};
294 
295 	/* See the comment in the vmemmap_remap_free(). */
296 	BUG_ON(start - reuse != PAGE_SIZE);
297 
298 	return vmemmap_remap_range(reuse, end, &walk);
299 }
300 
301 /**
302  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
303  *			to the page which @reuse is mapped to, then free vmemmap
304  *			which the range are mapped to.
305  * @start:	start address of the vmemmap virtual address range that we want
306  *		to remap.
307  * @end:	end address of the vmemmap virtual address range that we want to
308  *		remap.
309  * @reuse:	reuse address.
310  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
311  *		responsibility to free pages.
312  * @flags:	modifications to vmemmap_remap_walk flags
313  *
314  * Return: %0 on success, negative error code otherwise.
315  */
316 static int vmemmap_remap_free(unsigned long start, unsigned long end,
317 			      unsigned long reuse,
318 			      struct list_head *vmemmap_pages,
319 			      unsigned long flags)
320 {
321 	int ret;
322 	struct vmemmap_remap_walk walk = {
323 		.remap_pte	= vmemmap_remap_pte,
324 		.reuse_addr	= reuse,
325 		.vmemmap_pages	= vmemmap_pages,
326 		.flags		= flags,
327 	};
328 	int nid = page_to_nid((struct page *)reuse);
329 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
330 
331 	/*
332 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
333 	 * block of struct page memory when freeing it back to page allocator
334 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
335 	 * struct page backing memory to be kept contiguous and allowing for
336 	 * more allocations of hugepages. Fallback to the currently
337 	 * mapped head page in case should it fail to allocate.
338 	 */
339 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
340 	if (walk.reuse_page) {
341 		copy_page(page_to_virt(walk.reuse_page),
342 			  (void *)walk.reuse_addr);
343 		list_add(&walk.reuse_page->lru, vmemmap_pages);
344 		memmap_pages_add(1);
345 	}
346 
347 	/*
348 	 * In order to make remapping routine most efficient for the huge pages,
349 	 * the routine of vmemmap page table walking has the following rules
350 	 * (see more details from the vmemmap_pte_range()):
351 	 *
352 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
353 	 *   should be continuous.
354 	 * - The @reuse address is part of the range [@reuse, @end) that we are
355 	 *   walking which is passed to vmemmap_remap_range().
356 	 * - The @reuse address is the first in the complete range.
357 	 *
358 	 * So we need to make sure that @start and @reuse meet the above rules.
359 	 */
360 	BUG_ON(start - reuse != PAGE_SIZE);
361 
362 	ret = vmemmap_remap_range(reuse, end, &walk);
363 	if (ret && walk.nr_walked) {
364 		end = reuse + walk.nr_walked * PAGE_SIZE;
365 		/*
366 		 * vmemmap_pages contains pages from the previous
367 		 * vmemmap_remap_range call which failed.  These
368 		 * are pages which were removed from the vmemmap.
369 		 * They will be restored in the following call.
370 		 */
371 		walk = (struct vmemmap_remap_walk) {
372 			.remap_pte	= vmemmap_restore_pte,
373 			.reuse_addr	= reuse,
374 			.vmemmap_pages	= vmemmap_pages,
375 			.flags		= 0,
376 		};
377 
378 		vmemmap_remap_range(reuse, end, &walk);
379 	}
380 
381 	return ret;
382 }
383 
384 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
385 				   struct list_head *list)
386 {
387 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
388 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
389 	int nid = page_to_nid((struct page *)start);
390 	struct page *page, *next;
391 	int i;
392 
393 	for (i = 0; i < nr_pages; i++) {
394 		page = alloc_pages_node(nid, gfp_mask, 0);
395 		if (!page)
396 			goto out;
397 		list_add(&page->lru, list);
398 	}
399 	memmap_pages_add(nr_pages);
400 
401 	return 0;
402 out:
403 	list_for_each_entry_safe(page, next, list, lru)
404 		__free_page(page);
405 	return -ENOMEM;
406 }
407 
408 /**
409  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
410  *			 to the page which is from the @vmemmap_pages
411  *			 respectively.
412  * @start:	start address of the vmemmap virtual address range that we want
413  *		to remap.
414  * @end:	end address of the vmemmap virtual address range that we want to
415  *		remap.
416  * @reuse:	reuse address.
417  * @flags:	modifications to vmemmap_remap_walk flags
418  *
419  * Return: %0 on success, negative error code otherwise.
420  */
421 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
422 			       unsigned long reuse, unsigned long flags)
423 {
424 	LIST_HEAD(vmemmap_pages);
425 	struct vmemmap_remap_walk walk = {
426 		.remap_pte	= vmemmap_restore_pte,
427 		.reuse_addr	= reuse,
428 		.vmemmap_pages	= &vmemmap_pages,
429 		.flags		= flags,
430 	};
431 
432 	/* See the comment in the vmemmap_remap_free(). */
433 	BUG_ON(start - reuse != PAGE_SIZE);
434 
435 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
436 		return -ENOMEM;
437 
438 	return vmemmap_remap_range(reuse, end, &walk);
439 }
440 
441 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
442 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
443 
444 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
445 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
446 
447 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
448 					   struct folio *folio, unsigned long flags)
449 {
450 	int ret;
451 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
452 	unsigned long vmemmap_reuse;
453 
454 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
455 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
456 
457 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
458 		return 0;
459 
460 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
461 	vmemmap_reuse	= vmemmap_start;
462 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
463 
464 	/*
465 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
466 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
467 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
468 	 * When a HugeTLB page is freed to the buddy allocator, previously
469 	 * discarded vmemmap pages must be allocated and remapping.
470 	 */
471 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
472 	if (!ret) {
473 		folio_clear_hugetlb_vmemmap_optimized(folio);
474 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
475 	}
476 
477 	return ret;
478 }
479 
480 /**
481  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
482  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
483  *				will be reallocated and remapped.
484  * @h:		struct hstate.
485  * @folio:     the folio whose vmemmap pages will be restored.
486  *
487  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
488  * negative error code otherwise.
489  */
490 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
491 {
492 	/* avoid writes from page_ref_add_unless() while unfolding vmemmap */
493 	synchronize_rcu();
494 
495 	return __hugetlb_vmemmap_restore_folio(h, folio, 0);
496 }
497 
498 /**
499  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
500  * @h:			hstate.
501  * @folio_list:		list of folios.
502  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
503  *
504  * Return: number of folios for which vmemmap was restored, or an error code
505  *		if an error was encountered restoring vmemmap for a folio.
506  *		Folios that have vmemmap are moved to the non_hvo_folios
507  *		list.  Processing of entries stops when the first error is
508  *		encountered. The folio that experienced the error and all
509  *		non-processed folios will remain on folio_list.
510  */
511 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
512 					struct list_head *folio_list,
513 					struct list_head *non_hvo_folios)
514 {
515 	struct folio *folio, *t_folio;
516 	long restored = 0;
517 	long ret = 0;
518 
519 	/* avoid writes from page_ref_add_unless() while unfolding vmemmap */
520 	synchronize_rcu();
521 
522 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
523 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
524 			ret = __hugetlb_vmemmap_restore_folio(h, folio,
525 							      VMEMMAP_REMAP_NO_TLB_FLUSH);
526 			if (ret)
527 				break;
528 			restored++;
529 		}
530 
531 		/* Add non-optimized folios to output list */
532 		list_move(&folio->lru, non_hvo_folios);
533 	}
534 
535 	if (restored)
536 		flush_tlb_all();
537 	if (!ret)
538 		ret = restored;
539 	return ret;
540 }
541 
542 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
543 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
544 {
545 	if (folio_test_hugetlb_vmemmap_optimized(folio))
546 		return false;
547 
548 	if (!READ_ONCE(vmemmap_optimize_enabled))
549 		return false;
550 
551 	if (!hugetlb_vmemmap_optimizable(h))
552 		return false;
553 
554 	return true;
555 }
556 
557 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
558 					    struct folio *folio,
559 					    struct list_head *vmemmap_pages,
560 					    unsigned long flags)
561 {
562 	int ret = 0;
563 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
564 	unsigned long vmemmap_reuse;
565 
566 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
567 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
568 
569 	if (!vmemmap_should_optimize_folio(h, folio))
570 		return ret;
571 
572 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
573 	/*
574 	 * Very Subtle
575 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
576 	 * immediately after remapping.  As a result, subsequent accesses
577 	 * and modifications to struct pages associated with the hugetlb
578 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
579 	 * flag here so that it is copied to the new head page.  This keeps
580 	 * the old and new struct pages in sync.
581 	 * If there is an error during optimization, we will immediately FLUSH
582 	 * the TLB and clear the flag below.
583 	 */
584 	folio_set_hugetlb_vmemmap_optimized(folio);
585 
586 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
587 	vmemmap_reuse	= vmemmap_start;
588 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
589 
590 	/*
591 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
592 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
593 	 * mapping the range to vmemmap_pages list so that they can be freed by
594 	 * the caller.
595 	 */
596 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
597 				 vmemmap_pages, flags);
598 	if (ret) {
599 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
600 		folio_clear_hugetlb_vmemmap_optimized(folio);
601 	}
602 
603 	return ret;
604 }
605 
606 /**
607  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
608  * @h:		struct hstate.
609  * @folio:     the folio whose vmemmap pages will be optimized.
610  *
611  * This function only tries to optimize @folio's vmemmap pages and does not
612  * guarantee that the optimization will succeed after it returns. The caller
613  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
614  * vmemmap pages have been optimized.
615  */
616 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
617 {
618 	LIST_HEAD(vmemmap_pages);
619 
620 	/* avoid writes from page_ref_add_unless() while folding vmemmap */
621 	synchronize_rcu();
622 
623 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
624 	free_vmemmap_page_list(&vmemmap_pages);
625 }
626 
627 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
628 {
629 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
630 	unsigned long vmemmap_reuse;
631 
632 	if (!vmemmap_should_optimize_folio(h, folio))
633 		return 0;
634 
635 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
636 	vmemmap_reuse	= vmemmap_start;
637 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
638 
639 	/*
640 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
641 	 * @vmemmap_end]
642 	 */
643 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
644 }
645 
646 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
647 {
648 	struct folio *folio;
649 	LIST_HEAD(vmemmap_pages);
650 
651 	list_for_each_entry(folio, folio_list, lru) {
652 		int ret = hugetlb_vmemmap_split_folio(h, folio);
653 
654 		/*
655 		 * Spliting the PMD requires allocating a page, thus lets fail
656 		 * early once we encounter the first OOM. No point in retrying
657 		 * as it can be dynamically done on remap with the memory
658 		 * we get back from the vmemmap deduplication.
659 		 */
660 		if (ret == -ENOMEM)
661 			break;
662 	}
663 
664 	flush_tlb_all();
665 
666 	/* avoid writes from page_ref_add_unless() while folding vmemmap */
667 	synchronize_rcu();
668 
669 	list_for_each_entry(folio, folio_list, lru) {
670 		int ret;
671 
672 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
673 						       VMEMMAP_REMAP_NO_TLB_FLUSH);
674 
675 		/*
676 		 * Pages to be freed may have been accumulated.  If we
677 		 * encounter an ENOMEM,  free what we have and try again.
678 		 * This can occur in the case that both spliting fails
679 		 * halfway and head page allocation also failed. In this
680 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
681 		 * allowing more vmemmap remaps to occur.
682 		 */
683 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
684 			flush_tlb_all();
685 			free_vmemmap_page_list(&vmemmap_pages);
686 			INIT_LIST_HEAD(&vmemmap_pages);
687 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
688 							 VMEMMAP_REMAP_NO_TLB_FLUSH);
689 		}
690 	}
691 
692 	flush_tlb_all();
693 	free_vmemmap_page_list(&vmemmap_pages);
694 }
695 
696 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
697 	{
698 		.procname	= "hugetlb_optimize_vmemmap",
699 		.data		= &vmemmap_optimize_enabled,
700 		.maxlen		= sizeof(vmemmap_optimize_enabled),
701 		.mode		= 0644,
702 		.proc_handler	= proc_dobool,
703 	},
704 };
705 
706 static int __init hugetlb_vmemmap_init(void)
707 {
708 	const struct hstate *h;
709 
710 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
711 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
712 
713 	for_each_hstate(h) {
714 		if (hugetlb_vmemmap_optimizable(h)) {
715 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
716 			break;
717 		}
718 	}
719 	return 0;
720 }
721 late_initcall(hugetlb_vmemmap_init);
722