xref: /linux/mm/hugetlb_vmemmap.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21 
22 /**
23  * struct vmemmap_remap_walk - walk vmemmap page table
24  *
25  * @remap_pte:		called for each lowest-level entry (PTE).
26  * @nr_walked:		the number of walked pte.
27  * @reuse_page:		the page which is reused for the tail vmemmap pages.
28  * @reuse_addr:		the virtual address of the @reuse_page page.
29  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
30  *			or is mapped from.
31  * @flags:		used to modify behavior in vmemmap page table walking
32  *			operations.
33  */
34 struct vmemmap_remap_walk {
35 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
36 					     struct vmemmap_remap_walk *walk);
37 	unsigned long		nr_walked;
38 	struct page		*reuse_page;
39 	unsigned long		reuse_addr;
40 	struct list_head	*vmemmap_pages;
41 
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
46 /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
47 #define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
48 	unsigned long		flags;
49 };
50 
51 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
52 			     struct vmemmap_remap_walk *walk)
53 {
54 	pmd_t __pmd;
55 	int i;
56 	unsigned long addr = start;
57 	pte_t *pgtable;
58 
59 	pgtable = pte_alloc_one_kernel(&init_mm);
60 	if (!pgtable)
61 		return -ENOMEM;
62 
63 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
64 
65 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
66 		pte_t entry, *pte;
67 		pgprot_t pgprot = PAGE_KERNEL;
68 
69 		entry = mk_pte(head + i, pgprot);
70 		pte = pte_offset_kernel(&__pmd, addr);
71 		set_pte_at(&init_mm, addr, pte, entry);
72 	}
73 
74 	spin_lock(&init_mm.page_table_lock);
75 	if (likely(pmd_leaf(*pmd))) {
76 		/*
77 		 * Higher order allocations from buddy allocator must be able to
78 		 * be treated as indepdenent small pages (as they can be freed
79 		 * individually).
80 		 */
81 		if (!PageReserved(head))
82 			split_page(head, get_order(PMD_SIZE));
83 
84 		/* Make pte visible before pmd. See comment in pmd_install(). */
85 		smp_wmb();
86 		pmd_populate_kernel(&init_mm, pmd, pgtable);
87 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
88 			flush_tlb_kernel_range(start, start + PMD_SIZE);
89 	} else {
90 		pte_free_kernel(&init_mm, pgtable);
91 	}
92 	spin_unlock(&init_mm.page_table_lock);
93 
94 	return 0;
95 }
96 
97 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
98 			     unsigned long next, struct mm_walk *walk)
99 {
100 	int ret = 0;
101 	struct page *head;
102 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
103 
104 	/* Only splitting, not remapping the vmemmap pages. */
105 	if (!vmemmap_walk->remap_pte)
106 		walk->action = ACTION_CONTINUE;
107 
108 	spin_lock(&init_mm.page_table_lock);
109 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
110 	/*
111 	 * Due to HugeTLB alignment requirements and the vmemmap
112 	 * pages being at the start of the hotplugged memory
113 	 * region in memory_hotplug.memmap_on_memory case. Checking
114 	 * the vmemmap page associated with the first vmemmap page
115 	 * if it is self-hosted is sufficient.
116 	 *
117 	 * [                  hotplugged memory                  ]
118 	 * [        section        ][...][        section        ]
119 	 * [ vmemmap ][              usable memory               ]
120 	 *   ^  | ^                        |
121 	 *   +--+ |                        |
122 	 *        +------------------------+
123 	 */
124 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
125 		struct page *page = head ? head + pte_index(addr) :
126 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
127 
128 		if (PageVmemmapSelfHosted(page))
129 			ret = -ENOTSUPP;
130 	}
131 	spin_unlock(&init_mm.page_table_lock);
132 	if (!head || ret)
133 		return ret;
134 
135 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
136 }
137 
138 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
139 			     unsigned long next, struct mm_walk *walk)
140 {
141 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
142 
143 	/*
144 	 * The reuse_page is found 'first' in page table walking before
145 	 * starting remapping.
146 	 */
147 	if (!vmemmap_walk->reuse_page)
148 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
149 	else
150 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
151 	vmemmap_walk->nr_walked++;
152 
153 	return 0;
154 }
155 
156 static const struct mm_walk_ops vmemmap_remap_ops = {
157 	.pmd_entry	= vmemmap_pmd_entry,
158 	.pte_entry	= vmemmap_pte_entry,
159 };
160 
161 static int vmemmap_remap_range(unsigned long start, unsigned long end,
162 			       struct vmemmap_remap_walk *walk)
163 {
164 	int ret;
165 
166 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
167 
168 	mmap_read_lock(&init_mm);
169 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
170 				    NULL, walk);
171 	mmap_read_unlock(&init_mm);
172 	if (ret)
173 		return ret;
174 
175 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
176 		flush_tlb_kernel_range(start, end);
177 
178 	return 0;
179 }
180 
181 /*
182  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
183  * allocator or buddy allocator. If the PG_reserved flag is set, it means
184  * that it allocated from the memblock allocator, just free it via the
185  * free_bootmem_page(). Otherwise, use __free_page().
186  */
187 static inline void free_vmemmap_page(struct page *page)
188 {
189 	if (PageReserved(page)) {
190 		memmap_boot_pages_add(-1);
191 		free_bootmem_page(page);
192 	} else {
193 		memmap_pages_add(-1);
194 		__free_page(page);
195 	}
196 }
197 
198 /* Free a list of the vmemmap pages */
199 static void free_vmemmap_page_list(struct list_head *list)
200 {
201 	struct page *page, *next;
202 
203 	list_for_each_entry_safe(page, next, list, lru)
204 		free_vmemmap_page(page);
205 }
206 
207 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
208 			      struct vmemmap_remap_walk *walk)
209 {
210 	/*
211 	 * Remap the tail pages as read-only to catch illegal write operation
212 	 * to the tail pages.
213 	 */
214 	pgprot_t pgprot = PAGE_KERNEL_RO;
215 	struct page *page = pte_page(ptep_get(pte));
216 	pte_t entry;
217 
218 	/* Remapping the head page requires r/w */
219 	if (unlikely(addr == walk->reuse_addr)) {
220 		pgprot = PAGE_KERNEL;
221 		list_del(&walk->reuse_page->lru);
222 
223 		/*
224 		 * Makes sure that preceding stores to the page contents from
225 		 * vmemmap_remap_free() become visible before the set_pte_at()
226 		 * write.
227 		 */
228 		smp_wmb();
229 	}
230 
231 	entry = mk_pte(walk->reuse_page, pgprot);
232 	list_add(&page->lru, walk->vmemmap_pages);
233 	set_pte_at(&init_mm, addr, pte, entry);
234 }
235 
236 /*
237  * How many struct page structs need to be reset. When we reuse the head
238  * struct page, the special metadata (e.g. page->flags or page->mapping)
239  * cannot copy to the tail struct page structs. The invalid value will be
240  * checked in the free_tail_page_prepare(). In order to avoid the message
241  * of "corrupted mapping in tail page". We need to reset at least 3 (one
242  * head struct page struct and two tail struct page structs) struct page
243  * structs.
244  */
245 #define NR_RESET_STRUCT_PAGE		3
246 
247 static inline void reset_struct_pages(struct page *start)
248 {
249 	struct page *from = start + NR_RESET_STRUCT_PAGE;
250 
251 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
252 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
253 }
254 
255 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
256 				struct vmemmap_remap_walk *walk)
257 {
258 	pgprot_t pgprot = PAGE_KERNEL;
259 	struct page *page;
260 	void *to;
261 
262 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
263 
264 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
265 	list_del(&page->lru);
266 	to = page_to_virt(page);
267 	copy_page(to, (void *)walk->reuse_addr);
268 	reset_struct_pages(to);
269 
270 	/*
271 	 * Makes sure that preceding stores to the page contents become visible
272 	 * before the set_pte_at() write.
273 	 */
274 	smp_wmb();
275 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
276 }
277 
278 /**
279  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
280  *                      backing PMDs of the directmap into PTEs
281  * @start:     start address of the vmemmap virtual address range that we want
282  *             to remap.
283  * @end:       end address of the vmemmap virtual address range that we want to
284  *             remap.
285  * @reuse:     reuse address.
286  *
287  * Return: %0 on success, negative error code otherwise.
288  */
289 static int vmemmap_remap_split(unsigned long start, unsigned long end,
290 			       unsigned long reuse)
291 {
292 	struct vmemmap_remap_walk walk = {
293 		.remap_pte	= NULL,
294 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
295 	};
296 
297 	/* See the comment in the vmemmap_remap_free(). */
298 	BUG_ON(start - reuse != PAGE_SIZE);
299 
300 	return vmemmap_remap_range(reuse, end, &walk);
301 }
302 
303 /**
304  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
305  *			to the page which @reuse is mapped to, then free vmemmap
306  *			which the range are mapped to.
307  * @start:	start address of the vmemmap virtual address range that we want
308  *		to remap.
309  * @end:	end address of the vmemmap virtual address range that we want to
310  *		remap.
311  * @reuse:	reuse address.
312  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
313  *		responsibility to free pages.
314  * @flags:	modifications to vmemmap_remap_walk flags
315  *
316  * Return: %0 on success, negative error code otherwise.
317  */
318 static int vmemmap_remap_free(unsigned long start, unsigned long end,
319 			      unsigned long reuse,
320 			      struct list_head *vmemmap_pages,
321 			      unsigned long flags)
322 {
323 	int ret;
324 	struct vmemmap_remap_walk walk = {
325 		.remap_pte	= vmemmap_remap_pte,
326 		.reuse_addr	= reuse,
327 		.vmemmap_pages	= vmemmap_pages,
328 		.flags		= flags,
329 	};
330 	int nid = page_to_nid((struct page *)reuse);
331 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
332 
333 	/*
334 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
335 	 * block of struct page memory when freeing it back to page allocator
336 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
337 	 * struct page backing memory to be kept contiguous and allowing for
338 	 * more allocations of hugepages. Fallback to the currently
339 	 * mapped head page in case should it fail to allocate.
340 	 */
341 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
342 	if (walk.reuse_page) {
343 		copy_page(page_to_virt(walk.reuse_page),
344 			  (void *)walk.reuse_addr);
345 		list_add(&walk.reuse_page->lru, vmemmap_pages);
346 		memmap_pages_add(1);
347 	}
348 
349 	/*
350 	 * In order to make remapping routine most efficient for the huge pages,
351 	 * the routine of vmemmap page table walking has the following rules
352 	 * (see more details from the vmemmap_pte_range()):
353 	 *
354 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
355 	 *   should be continuous.
356 	 * - The @reuse address is part of the range [@reuse, @end) that we are
357 	 *   walking which is passed to vmemmap_remap_range().
358 	 * - The @reuse address is the first in the complete range.
359 	 *
360 	 * So we need to make sure that @start and @reuse meet the above rules.
361 	 */
362 	BUG_ON(start - reuse != PAGE_SIZE);
363 
364 	ret = vmemmap_remap_range(reuse, end, &walk);
365 	if (ret && walk.nr_walked) {
366 		end = reuse + walk.nr_walked * PAGE_SIZE;
367 		/*
368 		 * vmemmap_pages contains pages from the previous
369 		 * vmemmap_remap_range call which failed.  These
370 		 * are pages which were removed from the vmemmap.
371 		 * They will be restored in the following call.
372 		 */
373 		walk = (struct vmemmap_remap_walk) {
374 			.remap_pte	= vmemmap_restore_pte,
375 			.reuse_addr	= reuse,
376 			.vmemmap_pages	= vmemmap_pages,
377 			.flags		= 0,
378 		};
379 
380 		vmemmap_remap_range(reuse, end, &walk);
381 	}
382 
383 	return ret;
384 }
385 
386 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
387 				   struct list_head *list)
388 {
389 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
390 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
391 	int nid = page_to_nid((struct page *)start);
392 	struct page *page, *next;
393 	int i;
394 
395 	for (i = 0; i < nr_pages; i++) {
396 		page = alloc_pages_node(nid, gfp_mask, 0);
397 		if (!page)
398 			goto out;
399 		list_add(&page->lru, list);
400 	}
401 	memmap_pages_add(nr_pages);
402 
403 	return 0;
404 out:
405 	list_for_each_entry_safe(page, next, list, lru)
406 		__free_page(page);
407 	return -ENOMEM;
408 }
409 
410 /**
411  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
412  *			 to the page which is from the @vmemmap_pages
413  *			 respectively.
414  * @start:	start address of the vmemmap virtual address range that we want
415  *		to remap.
416  * @end:	end address of the vmemmap virtual address range that we want to
417  *		remap.
418  * @reuse:	reuse address.
419  * @flags:	modifications to vmemmap_remap_walk flags
420  *
421  * Return: %0 on success, negative error code otherwise.
422  */
423 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
424 			       unsigned long reuse, unsigned long flags)
425 {
426 	LIST_HEAD(vmemmap_pages);
427 	struct vmemmap_remap_walk walk = {
428 		.remap_pte	= vmemmap_restore_pte,
429 		.reuse_addr	= reuse,
430 		.vmemmap_pages	= &vmemmap_pages,
431 		.flags		= flags,
432 	};
433 
434 	/* See the comment in the vmemmap_remap_free(). */
435 	BUG_ON(start - reuse != PAGE_SIZE);
436 
437 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
438 		return -ENOMEM;
439 
440 	return vmemmap_remap_range(reuse, end, &walk);
441 }
442 
443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
445 
446 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
447 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
448 
449 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
450 					   struct folio *folio, unsigned long flags)
451 {
452 	int ret;
453 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
454 	unsigned long vmemmap_reuse;
455 
456 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
457 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
458 
459 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
460 		return 0;
461 
462 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
463 		synchronize_rcu();
464 
465 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
466 	vmemmap_reuse	= vmemmap_start;
467 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
468 
469 	/*
470 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
471 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
472 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
473 	 * When a HugeTLB page is freed to the buddy allocator, previously
474 	 * discarded vmemmap pages must be allocated and remapping.
475 	 */
476 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
477 	if (!ret) {
478 		folio_clear_hugetlb_vmemmap_optimized(folio);
479 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
480 	}
481 
482 	return ret;
483 }
484 
485 /**
486  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
487  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
488  *				will be reallocated and remapped.
489  * @h:		struct hstate.
490  * @folio:     the folio whose vmemmap pages will be restored.
491  *
492  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
493  * negative error code otherwise.
494  */
495 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
496 {
497 	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
498 }
499 
500 /**
501  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
502  * @h:			hstate.
503  * @folio_list:		list of folios.
504  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
505  *
506  * Return: number of folios for which vmemmap was restored, or an error code
507  *		if an error was encountered restoring vmemmap for a folio.
508  *		Folios that have vmemmap are moved to the non_hvo_folios
509  *		list.  Processing of entries stops when the first error is
510  *		encountered. The folio that experienced the error and all
511  *		non-processed folios will remain on folio_list.
512  */
513 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
514 					struct list_head *folio_list,
515 					struct list_head *non_hvo_folios)
516 {
517 	struct folio *folio, *t_folio;
518 	long restored = 0;
519 	long ret = 0;
520 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
521 
522 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
523 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
524 			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
525 			/* only need to synchronize_rcu() once for each batch */
526 			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
527 
528 			if (ret)
529 				break;
530 			restored++;
531 		}
532 
533 		/* Add non-optimized folios to output list */
534 		list_move(&folio->lru, non_hvo_folios);
535 	}
536 
537 	if (restored)
538 		flush_tlb_all();
539 	if (!ret)
540 		ret = restored;
541 	return ret;
542 }
543 
544 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
545 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
546 {
547 	if (folio_test_hugetlb_vmemmap_optimized(folio))
548 		return false;
549 
550 	if (!READ_ONCE(vmemmap_optimize_enabled))
551 		return false;
552 
553 	if (!hugetlb_vmemmap_optimizable(h))
554 		return false;
555 
556 	return true;
557 }
558 
559 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
560 					    struct folio *folio,
561 					    struct list_head *vmemmap_pages,
562 					    unsigned long flags)
563 {
564 	int ret = 0;
565 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
566 	unsigned long vmemmap_reuse;
567 
568 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
569 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
570 
571 	if (!vmemmap_should_optimize_folio(h, folio))
572 		return ret;
573 
574 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
575 
576 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
577 		synchronize_rcu();
578 	/*
579 	 * Very Subtle
580 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
581 	 * immediately after remapping.  As a result, subsequent accesses
582 	 * and modifications to struct pages associated with the hugetlb
583 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
584 	 * flag here so that it is copied to the new head page.  This keeps
585 	 * the old and new struct pages in sync.
586 	 * If there is an error during optimization, we will immediately FLUSH
587 	 * the TLB and clear the flag below.
588 	 */
589 	folio_set_hugetlb_vmemmap_optimized(folio);
590 
591 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
592 	vmemmap_reuse	= vmemmap_start;
593 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
594 
595 	/*
596 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
597 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
598 	 * mapping the range to vmemmap_pages list so that they can be freed by
599 	 * the caller.
600 	 */
601 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
602 				 vmemmap_pages, flags);
603 	if (ret) {
604 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
605 		folio_clear_hugetlb_vmemmap_optimized(folio);
606 	}
607 
608 	return ret;
609 }
610 
611 /**
612  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
613  * @h:		struct hstate.
614  * @folio:     the folio whose vmemmap pages will be optimized.
615  *
616  * This function only tries to optimize @folio's vmemmap pages and does not
617  * guarantee that the optimization will succeed after it returns. The caller
618  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
619  * vmemmap pages have been optimized.
620  */
621 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
622 {
623 	LIST_HEAD(vmemmap_pages);
624 
625 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
626 	free_vmemmap_page_list(&vmemmap_pages);
627 }
628 
629 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
630 {
631 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
632 	unsigned long vmemmap_reuse;
633 
634 	if (!vmemmap_should_optimize_folio(h, folio))
635 		return 0;
636 
637 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
638 	vmemmap_reuse	= vmemmap_start;
639 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
640 
641 	/*
642 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
643 	 * @vmemmap_end]
644 	 */
645 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
646 }
647 
648 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
649 {
650 	struct folio *folio;
651 	LIST_HEAD(vmemmap_pages);
652 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
653 
654 	list_for_each_entry(folio, folio_list, lru) {
655 		int ret = hugetlb_vmemmap_split_folio(h, folio);
656 
657 		/*
658 		 * Spliting the PMD requires allocating a page, thus lets fail
659 		 * early once we encounter the first OOM. No point in retrying
660 		 * as it can be dynamically done on remap with the memory
661 		 * we get back from the vmemmap deduplication.
662 		 */
663 		if (ret == -ENOMEM)
664 			break;
665 	}
666 
667 	flush_tlb_all();
668 
669 	list_for_each_entry(folio, folio_list, lru) {
670 		int ret;
671 
672 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
673 		/* only need to synchronize_rcu() once for each batch */
674 		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
675 
676 		/*
677 		 * Pages to be freed may have been accumulated.  If we
678 		 * encounter an ENOMEM,  free what we have and try again.
679 		 * This can occur in the case that both spliting fails
680 		 * halfway and head page allocation also failed. In this
681 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
682 		 * allowing more vmemmap remaps to occur.
683 		 */
684 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
685 			flush_tlb_all();
686 			free_vmemmap_page_list(&vmemmap_pages);
687 			INIT_LIST_HEAD(&vmemmap_pages);
688 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
689 		}
690 	}
691 
692 	flush_tlb_all();
693 	free_vmemmap_page_list(&vmemmap_pages);
694 }
695 
696 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
697 	{
698 		.procname	= "hugetlb_optimize_vmemmap",
699 		.data		= &vmemmap_optimize_enabled,
700 		.maxlen		= sizeof(vmemmap_optimize_enabled),
701 		.mode		= 0644,
702 		.proc_handler	= proc_dobool,
703 	},
704 };
705 
706 static int __init hugetlb_vmemmap_init(void)
707 {
708 	const struct hstate *h;
709 
710 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
711 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
712 
713 	for_each_hstate(h) {
714 		if (hugetlb_vmemmap_optimizable(h)) {
715 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
716 			break;
717 		}
718 	}
719 	return 0;
720 }
721 late_initcall(hugetlb_vmemmap_init);
722