1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * HugeTLB Vmemmap Optimization (HVO) 4 * 5 * Copyright (c) 2020, ByteDance. All rights reserved. 6 * 7 * Author: Muchun Song <songmuchun@bytedance.com> 8 * 9 * See Documentation/mm/vmemmap_dedup.rst 10 */ 11 #define pr_fmt(fmt) "HugeTLB: " fmt 12 13 #include <linux/pgtable.h> 14 #include <linux/bootmem_info.h> 15 #include <asm/pgalloc.h> 16 #include <asm/tlbflush.h> 17 #include "hugetlb_vmemmap.h" 18 19 /** 20 * struct vmemmap_remap_walk - walk vmemmap page table 21 * 22 * @remap_pte: called for each lowest-level entry (PTE). 23 * @nr_walked: the number of walked pte. 24 * @reuse_page: the page which is reused for the tail vmemmap pages. 25 * @reuse_addr: the virtual address of the @reuse_page page. 26 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 27 * or is mapped from. 28 */ 29 struct vmemmap_remap_walk { 30 void (*remap_pte)(pte_t *pte, unsigned long addr, 31 struct vmemmap_remap_walk *walk); 32 unsigned long nr_walked; 33 struct page *reuse_page; 34 unsigned long reuse_addr; 35 struct list_head *vmemmap_pages; 36 }; 37 38 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 39 { 40 pmd_t __pmd; 41 int i; 42 unsigned long addr = start; 43 struct page *page = pmd_page(*pmd); 44 pte_t *pgtable = pte_alloc_one_kernel(&init_mm); 45 46 if (!pgtable) 47 return -ENOMEM; 48 49 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 50 51 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { 52 pte_t entry, *pte; 53 pgprot_t pgprot = PAGE_KERNEL; 54 55 entry = mk_pte(page + i, pgprot); 56 pte = pte_offset_kernel(&__pmd, addr); 57 set_pte_at(&init_mm, addr, pte, entry); 58 } 59 60 spin_lock(&init_mm.page_table_lock); 61 if (likely(pmd_leaf(*pmd))) { 62 /* 63 * Higher order allocations from buddy allocator must be able to 64 * be treated as indepdenent small pages (as they can be freed 65 * individually). 66 */ 67 if (!PageReserved(page)) 68 split_page(page, get_order(PMD_SIZE)); 69 70 /* Make pte visible before pmd. See comment in pmd_install(). */ 71 smp_wmb(); 72 pmd_populate_kernel(&init_mm, pmd, pgtable); 73 flush_tlb_kernel_range(start, start + PMD_SIZE); 74 } else { 75 pte_free_kernel(&init_mm, pgtable); 76 } 77 spin_unlock(&init_mm.page_table_lock); 78 79 return 0; 80 } 81 82 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start) 83 { 84 int leaf; 85 86 spin_lock(&init_mm.page_table_lock); 87 leaf = pmd_leaf(*pmd); 88 spin_unlock(&init_mm.page_table_lock); 89 90 if (!leaf) 91 return 0; 92 93 return __split_vmemmap_huge_pmd(pmd, start); 94 } 95 96 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 97 unsigned long end, 98 struct vmemmap_remap_walk *walk) 99 { 100 pte_t *pte = pte_offset_kernel(pmd, addr); 101 102 /* 103 * The reuse_page is found 'first' in table walk before we start 104 * remapping (which is calling @walk->remap_pte). 105 */ 106 if (!walk->reuse_page) { 107 walk->reuse_page = pte_page(*pte); 108 /* 109 * Because the reuse address is part of the range that we are 110 * walking, skip the reuse address range. 111 */ 112 addr += PAGE_SIZE; 113 pte++; 114 walk->nr_walked++; 115 } 116 117 for (; addr != end; addr += PAGE_SIZE, pte++) { 118 walk->remap_pte(pte, addr, walk); 119 walk->nr_walked++; 120 } 121 } 122 123 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 124 unsigned long end, 125 struct vmemmap_remap_walk *walk) 126 { 127 pmd_t *pmd; 128 unsigned long next; 129 130 pmd = pmd_offset(pud, addr); 131 do { 132 int ret; 133 134 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK); 135 if (ret) 136 return ret; 137 138 next = pmd_addr_end(addr, end); 139 vmemmap_pte_range(pmd, addr, next, walk); 140 } while (pmd++, addr = next, addr != end); 141 142 return 0; 143 } 144 145 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 146 unsigned long end, 147 struct vmemmap_remap_walk *walk) 148 { 149 pud_t *pud; 150 unsigned long next; 151 152 pud = pud_offset(p4d, addr); 153 do { 154 int ret; 155 156 next = pud_addr_end(addr, end); 157 ret = vmemmap_pmd_range(pud, addr, next, walk); 158 if (ret) 159 return ret; 160 } while (pud++, addr = next, addr != end); 161 162 return 0; 163 } 164 165 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 166 unsigned long end, 167 struct vmemmap_remap_walk *walk) 168 { 169 p4d_t *p4d; 170 unsigned long next; 171 172 p4d = p4d_offset(pgd, addr); 173 do { 174 int ret; 175 176 next = p4d_addr_end(addr, end); 177 ret = vmemmap_pud_range(p4d, addr, next, walk); 178 if (ret) 179 return ret; 180 } while (p4d++, addr = next, addr != end); 181 182 return 0; 183 } 184 185 static int vmemmap_remap_range(unsigned long start, unsigned long end, 186 struct vmemmap_remap_walk *walk) 187 { 188 unsigned long addr = start; 189 unsigned long next; 190 pgd_t *pgd; 191 192 VM_BUG_ON(!PAGE_ALIGNED(start)); 193 VM_BUG_ON(!PAGE_ALIGNED(end)); 194 195 pgd = pgd_offset_k(addr); 196 do { 197 int ret; 198 199 next = pgd_addr_end(addr, end); 200 ret = vmemmap_p4d_range(pgd, addr, next, walk); 201 if (ret) 202 return ret; 203 } while (pgd++, addr = next, addr != end); 204 205 /* 206 * We only change the mapping of the vmemmap virtual address range 207 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which 208 * belongs to the range. 209 */ 210 flush_tlb_kernel_range(start + PAGE_SIZE, end); 211 212 return 0; 213 } 214 215 /* 216 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 217 * allocator or buddy allocator. If the PG_reserved flag is set, it means 218 * that it allocated from the memblock allocator, just free it via the 219 * free_bootmem_page(). Otherwise, use __free_page(). 220 */ 221 static inline void free_vmemmap_page(struct page *page) 222 { 223 if (PageReserved(page)) 224 free_bootmem_page(page); 225 else 226 __free_page(page); 227 } 228 229 /* Free a list of the vmemmap pages */ 230 static void free_vmemmap_page_list(struct list_head *list) 231 { 232 struct page *page, *next; 233 234 list_for_each_entry_safe(page, next, list, lru) { 235 list_del(&page->lru); 236 free_vmemmap_page(page); 237 } 238 } 239 240 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 241 struct vmemmap_remap_walk *walk) 242 { 243 /* 244 * Remap the tail pages as read-only to catch illegal write operation 245 * to the tail pages. 246 */ 247 pgprot_t pgprot = PAGE_KERNEL_RO; 248 pte_t entry = mk_pte(walk->reuse_page, pgprot); 249 struct page *page = pte_page(*pte); 250 251 list_add_tail(&page->lru, walk->vmemmap_pages); 252 set_pte_at(&init_mm, addr, pte, entry); 253 } 254 255 /* 256 * How many struct page structs need to be reset. When we reuse the head 257 * struct page, the special metadata (e.g. page->flags or page->mapping) 258 * cannot copy to the tail struct page structs. The invalid value will be 259 * checked in the free_tail_pages_check(). In order to avoid the message 260 * of "corrupted mapping in tail page". We need to reset at least 3 (one 261 * head struct page struct and two tail struct page structs) struct page 262 * structs. 263 */ 264 #define NR_RESET_STRUCT_PAGE 3 265 266 static inline void reset_struct_pages(struct page *start) 267 { 268 struct page *from = start + NR_RESET_STRUCT_PAGE; 269 270 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); 271 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); 272 } 273 274 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 275 struct vmemmap_remap_walk *walk) 276 { 277 pgprot_t pgprot = PAGE_KERNEL; 278 struct page *page; 279 void *to; 280 281 BUG_ON(pte_page(*pte) != walk->reuse_page); 282 283 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 284 list_del(&page->lru); 285 to = page_to_virt(page); 286 copy_page(to, (void *)walk->reuse_addr); 287 reset_struct_pages(to); 288 289 /* 290 * Makes sure that preceding stores to the page contents become visible 291 * before the set_pte_at() write. 292 */ 293 smp_wmb(); 294 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 295 } 296 297 /** 298 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 299 * to the page which @reuse is mapped to, then free vmemmap 300 * which the range are mapped to. 301 * @start: start address of the vmemmap virtual address range that we want 302 * to remap. 303 * @end: end address of the vmemmap virtual address range that we want to 304 * remap. 305 * @reuse: reuse address. 306 * 307 * Return: %0 on success, negative error code otherwise. 308 */ 309 static int vmemmap_remap_free(unsigned long start, unsigned long end, 310 unsigned long reuse) 311 { 312 int ret; 313 LIST_HEAD(vmemmap_pages); 314 struct vmemmap_remap_walk walk = { 315 .remap_pte = vmemmap_remap_pte, 316 .reuse_addr = reuse, 317 .vmemmap_pages = &vmemmap_pages, 318 }; 319 320 /* 321 * In order to make remapping routine most efficient for the huge pages, 322 * the routine of vmemmap page table walking has the following rules 323 * (see more details from the vmemmap_pte_range()): 324 * 325 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 326 * should be continuous. 327 * - The @reuse address is part of the range [@reuse, @end) that we are 328 * walking which is passed to vmemmap_remap_range(). 329 * - The @reuse address is the first in the complete range. 330 * 331 * So we need to make sure that @start and @reuse meet the above rules. 332 */ 333 BUG_ON(start - reuse != PAGE_SIZE); 334 335 mmap_read_lock(&init_mm); 336 ret = vmemmap_remap_range(reuse, end, &walk); 337 if (ret && walk.nr_walked) { 338 end = reuse + walk.nr_walked * PAGE_SIZE; 339 /* 340 * vmemmap_pages contains pages from the previous 341 * vmemmap_remap_range call which failed. These 342 * are pages which were removed from the vmemmap. 343 * They will be restored in the following call. 344 */ 345 walk = (struct vmemmap_remap_walk) { 346 .remap_pte = vmemmap_restore_pte, 347 .reuse_addr = reuse, 348 .vmemmap_pages = &vmemmap_pages, 349 }; 350 351 vmemmap_remap_range(reuse, end, &walk); 352 } 353 mmap_read_unlock(&init_mm); 354 355 free_vmemmap_page_list(&vmemmap_pages); 356 357 return ret; 358 } 359 360 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 361 gfp_t gfp_mask, struct list_head *list) 362 { 363 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 364 int nid = page_to_nid((struct page *)start); 365 struct page *page, *next; 366 367 while (nr_pages--) { 368 page = alloc_pages_node(nid, gfp_mask, 0); 369 if (!page) 370 goto out; 371 list_add_tail(&page->lru, list); 372 } 373 374 return 0; 375 out: 376 list_for_each_entry_safe(page, next, list, lru) 377 __free_pages(page, 0); 378 return -ENOMEM; 379 } 380 381 /** 382 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 383 * to the page which is from the @vmemmap_pages 384 * respectively. 385 * @start: start address of the vmemmap virtual address range that we want 386 * to remap. 387 * @end: end address of the vmemmap virtual address range that we want to 388 * remap. 389 * @reuse: reuse address. 390 * @gfp_mask: GFP flag for allocating vmemmap pages. 391 * 392 * Return: %0 on success, negative error code otherwise. 393 */ 394 static int vmemmap_remap_alloc(unsigned long start, unsigned long end, 395 unsigned long reuse, gfp_t gfp_mask) 396 { 397 LIST_HEAD(vmemmap_pages); 398 struct vmemmap_remap_walk walk = { 399 .remap_pte = vmemmap_restore_pte, 400 .reuse_addr = reuse, 401 .vmemmap_pages = &vmemmap_pages, 402 }; 403 404 /* See the comment in the vmemmap_remap_free(). */ 405 BUG_ON(start - reuse != PAGE_SIZE); 406 407 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages)) 408 return -ENOMEM; 409 410 mmap_read_lock(&init_mm); 411 vmemmap_remap_range(reuse, end, &walk); 412 mmap_read_unlock(&init_mm); 413 414 return 0; 415 } 416 417 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 418 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); 419 420 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); 421 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); 422 423 /** 424 * hugetlb_vmemmap_restore - restore previously optimized (by 425 * hugetlb_vmemmap_optimize()) vmemmap pages which 426 * will be reallocated and remapped. 427 * @h: struct hstate. 428 * @head: the head page whose vmemmap pages will be restored. 429 * 430 * Return: %0 if @head's vmemmap pages have been reallocated and remapped, 431 * negative error code otherwise. 432 */ 433 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head) 434 { 435 int ret; 436 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 437 unsigned long vmemmap_reuse; 438 439 if (!HPageVmemmapOptimized(head)) 440 return 0; 441 442 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 443 vmemmap_reuse = vmemmap_start; 444 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 445 446 /* 447 * The pages which the vmemmap virtual address range [@vmemmap_start, 448 * @vmemmap_end) are mapped to are freed to the buddy allocator, and 449 * the range is mapped to the page which @vmemmap_reuse is mapped to. 450 * When a HugeTLB page is freed to the buddy allocator, previously 451 * discarded vmemmap pages must be allocated and remapping. 452 */ 453 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, 454 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE); 455 if (!ret) { 456 ClearHPageVmemmapOptimized(head); 457 static_branch_dec(&hugetlb_optimize_vmemmap_key); 458 } 459 460 return ret; 461 } 462 463 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ 464 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) 465 { 466 if (!READ_ONCE(vmemmap_optimize_enabled)) 467 return false; 468 469 if (!hugetlb_vmemmap_optimizable(h)) 470 return false; 471 472 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 473 pmd_t *pmdp, pmd; 474 struct page *vmemmap_page; 475 unsigned long vaddr = (unsigned long)head; 476 477 /* 478 * Only the vmemmap page's vmemmap page can be self-hosted. 479 * Walking the page tables to find the backing page of the 480 * vmemmap page. 481 */ 482 pmdp = pmd_off_k(vaddr); 483 /* 484 * The READ_ONCE() is used to stabilize *pmdp in a register or 485 * on the stack so that it will stop changing under the code. 486 * The only concurrent operation where it can be changed is 487 * split_vmemmap_huge_pmd() (*pmdp will be stable after this 488 * operation). 489 */ 490 pmd = READ_ONCE(*pmdp); 491 if (pmd_leaf(pmd)) 492 vmemmap_page = pmd_page(pmd) + pte_index(vaddr); 493 else 494 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); 495 /* 496 * Due to HugeTLB alignment requirements and the vmemmap pages 497 * being at the start of the hotplugged memory region in 498 * memory_hotplug.memmap_on_memory case. Checking any vmemmap 499 * page's vmemmap page if it is marked as VmemmapSelfHosted is 500 * sufficient. 501 * 502 * [ hotplugged memory ] 503 * [ section ][...][ section ] 504 * [ vmemmap ][ usable memory ] 505 * ^ | | | 506 * +---+ | | 507 * ^ | | 508 * +-------+ | 509 * ^ | 510 * +-------------------------------------------+ 511 */ 512 if (PageVmemmapSelfHosted(vmemmap_page)) 513 return false; 514 } 515 516 return true; 517 } 518 519 /** 520 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages. 521 * @h: struct hstate. 522 * @head: the head page whose vmemmap pages will be optimized. 523 * 524 * This function only tries to optimize @head's vmemmap pages and does not 525 * guarantee that the optimization will succeed after it returns. The caller 526 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages 527 * have been optimized. 528 */ 529 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head) 530 { 531 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 532 unsigned long vmemmap_reuse; 533 534 if (!vmemmap_should_optimize(h, head)) 535 return; 536 537 static_branch_inc(&hugetlb_optimize_vmemmap_key); 538 539 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 540 vmemmap_reuse = vmemmap_start; 541 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 542 543 /* 544 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) 545 * to the page which @vmemmap_reuse is mapped to, then free the pages 546 * which the range [@vmemmap_start, @vmemmap_end] is mapped to. 547 */ 548 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse)) 549 static_branch_dec(&hugetlb_optimize_vmemmap_key); 550 else 551 SetHPageVmemmapOptimized(head); 552 } 553 554 static struct ctl_table hugetlb_vmemmap_sysctls[] = { 555 { 556 .procname = "hugetlb_optimize_vmemmap", 557 .data = &vmemmap_optimize_enabled, 558 .maxlen = sizeof(int), 559 .mode = 0644, 560 .proc_handler = proc_dobool, 561 }, 562 { } 563 }; 564 565 static int __init hugetlb_vmemmap_init(void) 566 { 567 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ 568 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE); 569 570 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) { 571 const struct hstate *h; 572 573 for_each_hstate(h) { 574 if (hugetlb_vmemmap_optimizable(h)) { 575 register_sysctl_init("vm", hugetlb_vmemmap_sysctls); 576 break; 577 } 578 } 579 } 580 return 0; 581 } 582 late_initcall(hugetlb_vmemmap_init); 583