xref: /linux/mm/hugetlb_vmemmap.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21 
22 /**
23  * struct vmemmap_remap_walk - walk vmemmap page table
24  *
25  * @remap_pte:		called for each lowest-level entry (PTE).
26  * @nr_walked:		the number of walked pte.
27  * @reuse_page:		the page which is reused for the tail vmemmap pages.
28  * @reuse_addr:		the virtual address of the @reuse_page page.
29  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
30  *			or is mapped from.
31  * @flags:		used to modify behavior in vmemmap page table walking
32  *			operations.
33  */
34 struct vmemmap_remap_walk {
35 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
36 					     struct vmemmap_remap_walk *walk);
37 	unsigned long		nr_walked;
38 	struct page		*reuse_page;
39 	unsigned long		reuse_addr;
40 	struct list_head	*vmemmap_pages;
41 
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
46 	unsigned long		flags;
47 };
48 
49 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
50 			     struct vmemmap_remap_walk *walk)
51 {
52 	pmd_t __pmd;
53 	int i;
54 	unsigned long addr = start;
55 	pte_t *pgtable;
56 
57 	pgtable = pte_alloc_one_kernel(&init_mm);
58 	if (!pgtable)
59 		return -ENOMEM;
60 
61 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
62 
63 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
64 		pte_t entry, *pte;
65 		pgprot_t pgprot = PAGE_KERNEL;
66 
67 		entry = mk_pte(head + i, pgprot);
68 		pte = pte_offset_kernel(&__pmd, addr);
69 		set_pte_at(&init_mm, addr, pte, entry);
70 	}
71 
72 	spin_lock(&init_mm.page_table_lock);
73 	if (likely(pmd_leaf(*pmd))) {
74 		/*
75 		 * Higher order allocations from buddy allocator must be able to
76 		 * be treated as indepdenent small pages (as they can be freed
77 		 * individually).
78 		 */
79 		if (!PageReserved(head))
80 			split_page(head, get_order(PMD_SIZE));
81 
82 		/* Make pte visible before pmd. See comment in pmd_install(). */
83 		smp_wmb();
84 		pmd_populate_kernel(&init_mm, pmd, pgtable);
85 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
86 			flush_tlb_kernel_range(start, start + PMD_SIZE);
87 	} else {
88 		pte_free_kernel(&init_mm, pgtable);
89 	}
90 	spin_unlock(&init_mm.page_table_lock);
91 
92 	return 0;
93 }
94 
95 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
96 			     unsigned long next, struct mm_walk *walk)
97 {
98 	int ret = 0;
99 	struct page *head;
100 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
101 
102 	/* Only splitting, not remapping the vmemmap pages. */
103 	if (!vmemmap_walk->remap_pte)
104 		walk->action = ACTION_CONTINUE;
105 
106 	spin_lock(&init_mm.page_table_lock);
107 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
108 	/*
109 	 * Due to HugeTLB alignment requirements and the vmemmap
110 	 * pages being at the start of the hotplugged memory
111 	 * region in memory_hotplug.memmap_on_memory case. Checking
112 	 * the vmemmap page associated with the first vmemmap page
113 	 * if it is self-hosted is sufficient.
114 	 *
115 	 * [                  hotplugged memory                  ]
116 	 * [        section        ][...][        section        ]
117 	 * [ vmemmap ][              usable memory               ]
118 	 *   ^  | ^                        |
119 	 *   +--+ |                        |
120 	 *        +------------------------+
121 	 */
122 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
123 		struct page *page = head ? head + pte_index(addr) :
124 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
125 
126 		if (PageVmemmapSelfHosted(page))
127 			ret = -ENOTSUPP;
128 	}
129 	spin_unlock(&init_mm.page_table_lock);
130 	if (!head || ret)
131 		return ret;
132 
133 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
134 }
135 
136 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
137 			     unsigned long next, struct mm_walk *walk)
138 {
139 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
140 
141 	/*
142 	 * The reuse_page is found 'first' in page table walking before
143 	 * starting remapping.
144 	 */
145 	if (!vmemmap_walk->reuse_page)
146 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
147 	else
148 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
149 	vmemmap_walk->nr_walked++;
150 
151 	return 0;
152 }
153 
154 static const struct mm_walk_ops vmemmap_remap_ops = {
155 	.pmd_entry	= vmemmap_pmd_entry,
156 	.pte_entry	= vmemmap_pte_entry,
157 };
158 
159 static int vmemmap_remap_range(unsigned long start, unsigned long end,
160 			       struct vmemmap_remap_walk *walk)
161 {
162 	int ret;
163 
164 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
165 
166 	mmap_read_lock(&init_mm);
167 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
168 				    NULL, walk);
169 	mmap_read_unlock(&init_mm);
170 	if (ret)
171 		return ret;
172 
173 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
174 		flush_tlb_kernel_range(start, end);
175 
176 	return 0;
177 }
178 
179 /*
180  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
181  * allocator or buddy allocator. If the PG_reserved flag is set, it means
182  * that it allocated from the memblock allocator, just free it via the
183  * free_bootmem_page(). Otherwise, use __free_page().
184  */
185 static inline void free_vmemmap_page(struct page *page)
186 {
187 	if (PageReserved(page))
188 		free_bootmem_page(page);
189 	else
190 		__free_page(page);
191 }
192 
193 /* Free a list of the vmemmap pages */
194 static void free_vmemmap_page_list(struct list_head *list)
195 {
196 	struct page *page, *next;
197 
198 	list_for_each_entry_safe(page, next, list, lru)
199 		free_vmemmap_page(page);
200 }
201 
202 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
203 			      struct vmemmap_remap_walk *walk)
204 {
205 	/*
206 	 * Remap the tail pages as read-only to catch illegal write operation
207 	 * to the tail pages.
208 	 */
209 	pgprot_t pgprot = PAGE_KERNEL_RO;
210 	struct page *page = pte_page(ptep_get(pte));
211 	pte_t entry;
212 
213 	/* Remapping the head page requires r/w */
214 	if (unlikely(addr == walk->reuse_addr)) {
215 		pgprot = PAGE_KERNEL;
216 		list_del(&walk->reuse_page->lru);
217 
218 		/*
219 		 * Makes sure that preceding stores to the page contents from
220 		 * vmemmap_remap_free() become visible before the set_pte_at()
221 		 * write.
222 		 */
223 		smp_wmb();
224 	}
225 
226 	entry = mk_pte(walk->reuse_page, pgprot);
227 	list_add(&page->lru, walk->vmemmap_pages);
228 	set_pte_at(&init_mm, addr, pte, entry);
229 }
230 
231 /*
232  * How many struct page structs need to be reset. When we reuse the head
233  * struct page, the special metadata (e.g. page->flags or page->mapping)
234  * cannot copy to the tail struct page structs. The invalid value will be
235  * checked in the free_tail_page_prepare(). In order to avoid the message
236  * of "corrupted mapping in tail page". We need to reset at least 3 (one
237  * head struct page struct and two tail struct page structs) struct page
238  * structs.
239  */
240 #define NR_RESET_STRUCT_PAGE		3
241 
242 static inline void reset_struct_pages(struct page *start)
243 {
244 	struct page *from = start + NR_RESET_STRUCT_PAGE;
245 
246 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
247 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
248 }
249 
250 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
251 				struct vmemmap_remap_walk *walk)
252 {
253 	pgprot_t pgprot = PAGE_KERNEL;
254 	struct page *page;
255 	void *to;
256 
257 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
258 
259 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
260 	list_del(&page->lru);
261 	to = page_to_virt(page);
262 	copy_page(to, (void *)walk->reuse_addr);
263 	reset_struct_pages(to);
264 
265 	/*
266 	 * Makes sure that preceding stores to the page contents become visible
267 	 * before the set_pte_at() write.
268 	 */
269 	smp_wmb();
270 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
271 }
272 
273 /**
274  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
275  *                      backing PMDs of the directmap into PTEs
276  * @start:     start address of the vmemmap virtual address range that we want
277  *             to remap.
278  * @end:       end address of the vmemmap virtual address range that we want to
279  *             remap.
280  * @reuse:     reuse address.
281  *
282  * Return: %0 on success, negative error code otherwise.
283  */
284 static int vmemmap_remap_split(unsigned long start, unsigned long end,
285 			       unsigned long reuse)
286 {
287 	struct vmemmap_remap_walk walk = {
288 		.remap_pte	= NULL,
289 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
290 	};
291 
292 	/* See the comment in the vmemmap_remap_free(). */
293 	BUG_ON(start - reuse != PAGE_SIZE);
294 
295 	return vmemmap_remap_range(reuse, end, &walk);
296 }
297 
298 /**
299  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
300  *			to the page which @reuse is mapped to, then free vmemmap
301  *			which the range are mapped to.
302  * @start:	start address of the vmemmap virtual address range that we want
303  *		to remap.
304  * @end:	end address of the vmemmap virtual address range that we want to
305  *		remap.
306  * @reuse:	reuse address.
307  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
308  *		responsibility to free pages.
309  * @flags:	modifications to vmemmap_remap_walk flags
310  *
311  * Return: %0 on success, negative error code otherwise.
312  */
313 static int vmemmap_remap_free(unsigned long start, unsigned long end,
314 			      unsigned long reuse,
315 			      struct list_head *vmemmap_pages,
316 			      unsigned long flags)
317 {
318 	int ret;
319 	struct vmemmap_remap_walk walk = {
320 		.remap_pte	= vmemmap_remap_pte,
321 		.reuse_addr	= reuse,
322 		.vmemmap_pages	= vmemmap_pages,
323 		.flags		= flags,
324 	};
325 	int nid = page_to_nid((struct page *)reuse);
326 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
327 
328 	/*
329 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
330 	 * block of struct page memory when freeing it back to page allocator
331 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
332 	 * struct page backing memory to be kept contiguous and allowing for
333 	 * more allocations of hugepages. Fallback to the currently
334 	 * mapped head page in case should it fail to allocate.
335 	 */
336 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
337 	if (walk.reuse_page) {
338 		copy_page(page_to_virt(walk.reuse_page),
339 			  (void *)walk.reuse_addr);
340 		list_add(&walk.reuse_page->lru, vmemmap_pages);
341 	}
342 
343 	/*
344 	 * In order to make remapping routine most efficient for the huge pages,
345 	 * the routine of vmemmap page table walking has the following rules
346 	 * (see more details from the vmemmap_pte_range()):
347 	 *
348 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
349 	 *   should be continuous.
350 	 * - The @reuse address is part of the range [@reuse, @end) that we are
351 	 *   walking which is passed to vmemmap_remap_range().
352 	 * - The @reuse address is the first in the complete range.
353 	 *
354 	 * So we need to make sure that @start and @reuse meet the above rules.
355 	 */
356 	BUG_ON(start - reuse != PAGE_SIZE);
357 
358 	ret = vmemmap_remap_range(reuse, end, &walk);
359 	if (ret && walk.nr_walked) {
360 		end = reuse + walk.nr_walked * PAGE_SIZE;
361 		/*
362 		 * vmemmap_pages contains pages from the previous
363 		 * vmemmap_remap_range call which failed.  These
364 		 * are pages which were removed from the vmemmap.
365 		 * They will be restored in the following call.
366 		 */
367 		walk = (struct vmemmap_remap_walk) {
368 			.remap_pte	= vmemmap_restore_pte,
369 			.reuse_addr	= reuse,
370 			.vmemmap_pages	= vmemmap_pages,
371 			.flags		= 0,
372 		};
373 
374 		vmemmap_remap_range(reuse, end, &walk);
375 	}
376 
377 	return ret;
378 }
379 
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381 				   struct list_head *list)
382 {
383 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
384 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 	int nid = page_to_nid((struct page *)start);
386 	struct page *page, *next;
387 
388 	while (nr_pages--) {
389 		page = alloc_pages_node(nid, gfp_mask, 0);
390 		if (!page)
391 			goto out;
392 		list_add(&page->lru, list);
393 	}
394 
395 	return 0;
396 out:
397 	list_for_each_entry_safe(page, next, list, lru)
398 		__free_page(page);
399 	return -ENOMEM;
400 }
401 
402 /**
403  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404  *			 to the page which is from the @vmemmap_pages
405  *			 respectively.
406  * @start:	start address of the vmemmap virtual address range that we want
407  *		to remap.
408  * @end:	end address of the vmemmap virtual address range that we want to
409  *		remap.
410  * @reuse:	reuse address.
411  * @flags:	modifications to vmemmap_remap_walk flags
412  *
413  * Return: %0 on success, negative error code otherwise.
414  */
415 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
416 			       unsigned long reuse, unsigned long flags)
417 {
418 	LIST_HEAD(vmemmap_pages);
419 	struct vmemmap_remap_walk walk = {
420 		.remap_pte	= vmemmap_restore_pte,
421 		.reuse_addr	= reuse,
422 		.vmemmap_pages	= &vmemmap_pages,
423 		.flags		= flags,
424 	};
425 
426 	/* See the comment in the vmemmap_remap_free(). */
427 	BUG_ON(start - reuse != PAGE_SIZE);
428 
429 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
430 		return -ENOMEM;
431 
432 	return vmemmap_remap_range(reuse, end, &walk);
433 }
434 
435 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
436 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
437 
438 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
439 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
440 
441 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
442 					   struct folio *folio, unsigned long flags)
443 {
444 	int ret;
445 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
446 	unsigned long vmemmap_reuse;
447 
448 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
449 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
450 		return 0;
451 
452 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
453 	vmemmap_reuse	= vmemmap_start;
454 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
455 
456 	/*
457 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
458 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
459 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
460 	 * When a HugeTLB page is freed to the buddy allocator, previously
461 	 * discarded vmemmap pages must be allocated and remapping.
462 	 */
463 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
464 	if (!ret) {
465 		folio_clear_hugetlb_vmemmap_optimized(folio);
466 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
467 	}
468 
469 	return ret;
470 }
471 
472 /**
473  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
474  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
475  *				will be reallocated and remapped.
476  * @h:		struct hstate.
477  * @folio:     the folio whose vmemmap pages will be restored.
478  *
479  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
480  * negative error code otherwise.
481  */
482 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
483 {
484 	return __hugetlb_vmemmap_restore_folio(h, folio, 0);
485 }
486 
487 /**
488  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
489  * @h:			hstate.
490  * @folio_list:		list of folios.
491  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
492  *
493  * Return: number of folios for which vmemmap was restored, or an error code
494  *		if an error was encountered restoring vmemmap for a folio.
495  *		Folios that have vmemmap are moved to the non_hvo_folios
496  *		list.  Processing of entries stops when the first error is
497  *		encountered. The folio that experienced the error and all
498  *		non-processed folios will remain on folio_list.
499  */
500 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
501 					struct list_head *folio_list,
502 					struct list_head *non_hvo_folios)
503 {
504 	struct folio *folio, *t_folio;
505 	long restored = 0;
506 	long ret = 0;
507 
508 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
509 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
510 			ret = __hugetlb_vmemmap_restore_folio(h, folio,
511 							      VMEMMAP_REMAP_NO_TLB_FLUSH);
512 			if (ret)
513 				break;
514 			restored++;
515 		}
516 
517 		/* Add non-optimized folios to output list */
518 		list_move(&folio->lru, non_hvo_folios);
519 	}
520 
521 	if (restored)
522 		flush_tlb_all();
523 	if (!ret)
524 		ret = restored;
525 	return ret;
526 }
527 
528 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
529 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
530 {
531 	if (folio_test_hugetlb_vmemmap_optimized(folio))
532 		return false;
533 
534 	if (!READ_ONCE(vmemmap_optimize_enabled))
535 		return false;
536 
537 	if (!hugetlb_vmemmap_optimizable(h))
538 		return false;
539 
540 	return true;
541 }
542 
543 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
544 					    struct folio *folio,
545 					    struct list_head *vmemmap_pages,
546 					    unsigned long flags)
547 {
548 	int ret = 0;
549 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
550 	unsigned long vmemmap_reuse;
551 
552 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
553 	if (!vmemmap_should_optimize_folio(h, folio))
554 		return ret;
555 
556 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
557 	/*
558 	 * Very Subtle
559 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
560 	 * immediately after remapping.  As a result, subsequent accesses
561 	 * and modifications to struct pages associated with the hugetlb
562 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
563 	 * flag here so that it is copied to the new head page.  This keeps
564 	 * the old and new struct pages in sync.
565 	 * If there is an error during optimization, we will immediately FLUSH
566 	 * the TLB and clear the flag below.
567 	 */
568 	folio_set_hugetlb_vmemmap_optimized(folio);
569 
570 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
571 	vmemmap_reuse	= vmemmap_start;
572 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
573 
574 	/*
575 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
576 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
577 	 * mapping the range to vmemmap_pages list so that they can be freed by
578 	 * the caller.
579 	 */
580 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
581 				 vmemmap_pages, flags);
582 	if (ret) {
583 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
584 		folio_clear_hugetlb_vmemmap_optimized(folio);
585 	}
586 
587 	return ret;
588 }
589 
590 /**
591  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
592  * @h:		struct hstate.
593  * @folio:     the folio whose vmemmap pages will be optimized.
594  *
595  * This function only tries to optimize @folio's vmemmap pages and does not
596  * guarantee that the optimization will succeed after it returns. The caller
597  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
598  * vmemmap pages have been optimized.
599  */
600 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
601 {
602 	LIST_HEAD(vmemmap_pages);
603 
604 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
605 	free_vmemmap_page_list(&vmemmap_pages);
606 }
607 
608 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
609 {
610 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
611 	unsigned long vmemmap_reuse;
612 
613 	if (!vmemmap_should_optimize_folio(h, folio))
614 		return 0;
615 
616 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
617 	vmemmap_reuse	= vmemmap_start;
618 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
619 
620 	/*
621 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
622 	 * @vmemmap_end]
623 	 */
624 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
625 }
626 
627 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
628 {
629 	struct folio *folio;
630 	LIST_HEAD(vmemmap_pages);
631 
632 	list_for_each_entry(folio, folio_list, lru) {
633 		int ret = hugetlb_vmemmap_split_folio(h, folio);
634 
635 		/*
636 		 * Spliting the PMD requires allocating a page, thus lets fail
637 		 * early once we encounter the first OOM. No point in retrying
638 		 * as it can be dynamically done on remap with the memory
639 		 * we get back from the vmemmap deduplication.
640 		 */
641 		if (ret == -ENOMEM)
642 			break;
643 	}
644 
645 	flush_tlb_all();
646 
647 	list_for_each_entry(folio, folio_list, lru) {
648 		int ret;
649 
650 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
651 						       VMEMMAP_REMAP_NO_TLB_FLUSH);
652 
653 		/*
654 		 * Pages to be freed may have been accumulated.  If we
655 		 * encounter an ENOMEM,  free what we have and try again.
656 		 * This can occur in the case that both spliting fails
657 		 * halfway and head page allocation also failed. In this
658 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
659 		 * allowing more vmemmap remaps to occur.
660 		 */
661 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
662 			flush_tlb_all();
663 			free_vmemmap_page_list(&vmemmap_pages);
664 			INIT_LIST_HEAD(&vmemmap_pages);
665 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
666 							 VMEMMAP_REMAP_NO_TLB_FLUSH);
667 		}
668 	}
669 
670 	flush_tlb_all();
671 	free_vmemmap_page_list(&vmemmap_pages);
672 }
673 
674 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
675 	{
676 		.procname	= "hugetlb_optimize_vmemmap",
677 		.data		= &vmemmap_optimize_enabled,
678 		.maxlen		= sizeof(vmemmap_optimize_enabled),
679 		.mode		= 0644,
680 		.proc_handler	= proc_dobool,
681 	},
682 };
683 
684 static int __init hugetlb_vmemmap_init(void)
685 {
686 	const struct hstate *h;
687 
688 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
689 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
690 
691 	for_each_hstate(h) {
692 		if (hugetlb_vmemmap_optimizable(h)) {
693 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
694 			break;
695 		}
696 	}
697 	return 0;
698 }
699 late_initcall(hugetlb_vmemmap_init);
700