1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * HugeTLB Vmemmap Optimization (HVO) 4 * 5 * Copyright (c) 2020, ByteDance. All rights reserved. 6 * 7 * Author: Muchun Song <songmuchun@bytedance.com> 8 * 9 * See Documentation/mm/vmemmap_dedup.rst 10 */ 11 #define pr_fmt(fmt) "HugeTLB: " fmt 12 13 #include <linux/pgtable.h> 14 #include <linux/moduleparam.h> 15 #include <linux/bootmem_info.h> 16 #include <linux/mmdebug.h> 17 #include <asm/pgalloc.h> 18 #include <asm/tlbflush.h> 19 #include "hugetlb_vmemmap.h" 20 21 /** 22 * struct vmemmap_remap_walk - walk vmemmap page table 23 * 24 * @remap_pte: called for each lowest-level entry (PTE). 25 * @nr_walked: the number of walked pte. 26 * @reuse_page: the page which is reused for the tail vmemmap pages. 27 * @reuse_addr: the virtual address of the @reuse_page page. 28 * @vmemmap_pages: the list head of the vmemmap pages that can be freed 29 * or is mapped from. 30 * @flags: used to modify behavior in vmemmap page table walking 31 * operations. 32 */ 33 struct vmemmap_remap_walk { 34 void (*remap_pte)(pte_t *pte, unsigned long addr, 35 struct vmemmap_remap_walk *walk); 36 unsigned long nr_walked; 37 struct page *reuse_page; 38 unsigned long reuse_addr; 39 struct list_head *vmemmap_pages; 40 41 /* Skip the TLB flush when we split the PMD */ 42 #define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0) 43 /* Skip the TLB flush when we remap the PTE */ 44 #define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1) 45 unsigned long flags; 46 }; 47 48 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start, bool flush) 49 { 50 pmd_t __pmd; 51 int i; 52 unsigned long addr = start; 53 struct page *head; 54 pte_t *pgtable; 55 56 spin_lock(&init_mm.page_table_lock); 57 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL; 58 spin_unlock(&init_mm.page_table_lock); 59 60 if (!head) 61 return 0; 62 63 pgtable = pte_alloc_one_kernel(&init_mm); 64 if (!pgtable) 65 return -ENOMEM; 66 67 pmd_populate_kernel(&init_mm, &__pmd, pgtable); 68 69 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { 70 pte_t entry, *pte; 71 pgprot_t pgprot = PAGE_KERNEL; 72 73 entry = mk_pte(head + i, pgprot); 74 pte = pte_offset_kernel(&__pmd, addr); 75 set_pte_at(&init_mm, addr, pte, entry); 76 } 77 78 spin_lock(&init_mm.page_table_lock); 79 if (likely(pmd_leaf(*pmd))) { 80 /* 81 * Higher order allocations from buddy allocator must be able to 82 * be treated as indepdenent small pages (as they can be freed 83 * individually). 84 */ 85 if (!PageReserved(head)) 86 split_page(head, get_order(PMD_SIZE)); 87 88 /* Make pte visible before pmd. See comment in pmd_install(). */ 89 smp_wmb(); 90 pmd_populate_kernel(&init_mm, pmd, pgtable); 91 if (flush) 92 flush_tlb_kernel_range(start, start + PMD_SIZE); 93 } else { 94 pte_free_kernel(&init_mm, pgtable); 95 } 96 spin_unlock(&init_mm.page_table_lock); 97 98 return 0; 99 } 100 101 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr, 102 unsigned long end, 103 struct vmemmap_remap_walk *walk) 104 { 105 pte_t *pte = pte_offset_kernel(pmd, addr); 106 107 /* 108 * The reuse_page is found 'first' in table walk before we start 109 * remapping (which is calling @walk->remap_pte). 110 */ 111 if (!walk->reuse_page) { 112 walk->reuse_page = pte_page(ptep_get(pte)); 113 /* 114 * Because the reuse address is part of the range that we are 115 * walking, skip the reuse address range. 116 */ 117 addr += PAGE_SIZE; 118 pte++; 119 walk->nr_walked++; 120 } 121 122 for (; addr != end; addr += PAGE_SIZE, pte++) { 123 walk->remap_pte(pte, addr, walk); 124 walk->nr_walked++; 125 } 126 } 127 128 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr, 129 unsigned long end, 130 struct vmemmap_remap_walk *walk) 131 { 132 pmd_t *pmd; 133 unsigned long next; 134 135 pmd = pmd_offset(pud, addr); 136 do { 137 int ret; 138 139 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, 140 !(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH)); 141 if (ret) 142 return ret; 143 144 next = pmd_addr_end(addr, end); 145 146 /* 147 * We are only splitting, not remapping the hugetlb vmemmap 148 * pages. 149 */ 150 if (!walk->remap_pte) 151 continue; 152 153 vmemmap_pte_range(pmd, addr, next, walk); 154 } while (pmd++, addr = next, addr != end); 155 156 return 0; 157 } 158 159 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr, 160 unsigned long end, 161 struct vmemmap_remap_walk *walk) 162 { 163 pud_t *pud; 164 unsigned long next; 165 166 pud = pud_offset(p4d, addr); 167 do { 168 int ret; 169 170 next = pud_addr_end(addr, end); 171 ret = vmemmap_pmd_range(pud, addr, next, walk); 172 if (ret) 173 return ret; 174 } while (pud++, addr = next, addr != end); 175 176 return 0; 177 } 178 179 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr, 180 unsigned long end, 181 struct vmemmap_remap_walk *walk) 182 { 183 p4d_t *p4d; 184 unsigned long next; 185 186 p4d = p4d_offset(pgd, addr); 187 do { 188 int ret; 189 190 next = p4d_addr_end(addr, end); 191 ret = vmemmap_pud_range(p4d, addr, next, walk); 192 if (ret) 193 return ret; 194 } while (p4d++, addr = next, addr != end); 195 196 return 0; 197 } 198 199 static int vmemmap_remap_range(unsigned long start, unsigned long end, 200 struct vmemmap_remap_walk *walk) 201 { 202 unsigned long addr = start; 203 unsigned long next; 204 pgd_t *pgd; 205 206 VM_BUG_ON(!PAGE_ALIGNED(start)); 207 VM_BUG_ON(!PAGE_ALIGNED(end)); 208 209 pgd = pgd_offset_k(addr); 210 do { 211 int ret; 212 213 next = pgd_addr_end(addr, end); 214 ret = vmemmap_p4d_range(pgd, addr, next, walk); 215 if (ret) 216 return ret; 217 } while (pgd++, addr = next, addr != end); 218 219 if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH)) 220 flush_tlb_kernel_range(start, end); 221 222 return 0; 223 } 224 225 /* 226 * Free a vmemmap page. A vmemmap page can be allocated from the memblock 227 * allocator or buddy allocator. If the PG_reserved flag is set, it means 228 * that it allocated from the memblock allocator, just free it via the 229 * free_bootmem_page(). Otherwise, use __free_page(). 230 */ 231 static inline void free_vmemmap_page(struct page *page) 232 { 233 if (PageReserved(page)) 234 free_bootmem_page(page); 235 else 236 __free_page(page); 237 } 238 239 /* Free a list of the vmemmap pages */ 240 static void free_vmemmap_page_list(struct list_head *list) 241 { 242 struct page *page, *next; 243 244 list_for_each_entry_safe(page, next, list, lru) 245 free_vmemmap_page(page); 246 } 247 248 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr, 249 struct vmemmap_remap_walk *walk) 250 { 251 /* 252 * Remap the tail pages as read-only to catch illegal write operation 253 * to the tail pages. 254 */ 255 pgprot_t pgprot = PAGE_KERNEL_RO; 256 struct page *page = pte_page(ptep_get(pte)); 257 pte_t entry; 258 259 /* Remapping the head page requires r/w */ 260 if (unlikely(addr == walk->reuse_addr)) { 261 pgprot = PAGE_KERNEL; 262 list_del(&walk->reuse_page->lru); 263 264 /* 265 * Makes sure that preceding stores to the page contents from 266 * vmemmap_remap_free() become visible before the set_pte_at() 267 * write. 268 */ 269 smp_wmb(); 270 } 271 272 entry = mk_pte(walk->reuse_page, pgprot); 273 list_add(&page->lru, walk->vmemmap_pages); 274 set_pte_at(&init_mm, addr, pte, entry); 275 } 276 277 /* 278 * How many struct page structs need to be reset. When we reuse the head 279 * struct page, the special metadata (e.g. page->flags or page->mapping) 280 * cannot copy to the tail struct page structs. The invalid value will be 281 * checked in the free_tail_page_prepare(). In order to avoid the message 282 * of "corrupted mapping in tail page". We need to reset at least 3 (one 283 * head struct page struct and two tail struct page structs) struct page 284 * structs. 285 */ 286 #define NR_RESET_STRUCT_PAGE 3 287 288 static inline void reset_struct_pages(struct page *start) 289 { 290 struct page *from = start + NR_RESET_STRUCT_PAGE; 291 292 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page)); 293 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE); 294 } 295 296 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr, 297 struct vmemmap_remap_walk *walk) 298 { 299 pgprot_t pgprot = PAGE_KERNEL; 300 struct page *page; 301 void *to; 302 303 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page); 304 305 page = list_first_entry(walk->vmemmap_pages, struct page, lru); 306 list_del(&page->lru); 307 to = page_to_virt(page); 308 copy_page(to, (void *)walk->reuse_addr); 309 reset_struct_pages(to); 310 311 /* 312 * Makes sure that preceding stores to the page contents become visible 313 * before the set_pte_at() write. 314 */ 315 smp_wmb(); 316 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot)); 317 } 318 319 /** 320 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end) 321 * backing PMDs of the directmap into PTEs 322 * @start: start address of the vmemmap virtual address range that we want 323 * to remap. 324 * @end: end address of the vmemmap virtual address range that we want to 325 * remap. 326 * @reuse: reuse address. 327 * 328 * Return: %0 on success, negative error code otherwise. 329 */ 330 static int vmemmap_remap_split(unsigned long start, unsigned long end, 331 unsigned long reuse) 332 { 333 int ret; 334 struct vmemmap_remap_walk walk = { 335 .remap_pte = NULL, 336 .flags = VMEMMAP_SPLIT_NO_TLB_FLUSH, 337 }; 338 339 /* See the comment in the vmemmap_remap_free(). */ 340 BUG_ON(start - reuse != PAGE_SIZE); 341 342 mmap_read_lock(&init_mm); 343 ret = vmemmap_remap_range(reuse, end, &walk); 344 mmap_read_unlock(&init_mm); 345 346 return ret; 347 } 348 349 /** 350 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end) 351 * to the page which @reuse is mapped to, then free vmemmap 352 * which the range are mapped to. 353 * @start: start address of the vmemmap virtual address range that we want 354 * to remap. 355 * @end: end address of the vmemmap virtual address range that we want to 356 * remap. 357 * @reuse: reuse address. 358 * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers 359 * responsibility to free pages. 360 * @flags: modifications to vmemmap_remap_walk flags 361 * 362 * Return: %0 on success, negative error code otherwise. 363 */ 364 static int vmemmap_remap_free(unsigned long start, unsigned long end, 365 unsigned long reuse, 366 struct list_head *vmemmap_pages, 367 unsigned long flags) 368 { 369 int ret; 370 struct vmemmap_remap_walk walk = { 371 .remap_pte = vmemmap_remap_pte, 372 .reuse_addr = reuse, 373 .vmemmap_pages = vmemmap_pages, 374 .flags = flags, 375 }; 376 int nid = page_to_nid((struct page *)reuse); 377 gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 378 379 /* 380 * Allocate a new head vmemmap page to avoid breaking a contiguous 381 * block of struct page memory when freeing it back to page allocator 382 * in free_vmemmap_page_list(). This will allow the likely contiguous 383 * struct page backing memory to be kept contiguous and allowing for 384 * more allocations of hugepages. Fallback to the currently 385 * mapped head page in case should it fail to allocate. 386 */ 387 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0); 388 if (walk.reuse_page) { 389 copy_page(page_to_virt(walk.reuse_page), 390 (void *)walk.reuse_addr); 391 list_add(&walk.reuse_page->lru, vmemmap_pages); 392 } 393 394 /* 395 * In order to make remapping routine most efficient for the huge pages, 396 * the routine of vmemmap page table walking has the following rules 397 * (see more details from the vmemmap_pte_range()): 398 * 399 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE) 400 * should be continuous. 401 * - The @reuse address is part of the range [@reuse, @end) that we are 402 * walking which is passed to vmemmap_remap_range(). 403 * - The @reuse address is the first in the complete range. 404 * 405 * So we need to make sure that @start and @reuse meet the above rules. 406 */ 407 BUG_ON(start - reuse != PAGE_SIZE); 408 409 mmap_read_lock(&init_mm); 410 ret = vmemmap_remap_range(reuse, end, &walk); 411 if (ret && walk.nr_walked) { 412 end = reuse + walk.nr_walked * PAGE_SIZE; 413 /* 414 * vmemmap_pages contains pages from the previous 415 * vmemmap_remap_range call which failed. These 416 * are pages which were removed from the vmemmap. 417 * They will be restored in the following call. 418 */ 419 walk = (struct vmemmap_remap_walk) { 420 .remap_pte = vmemmap_restore_pte, 421 .reuse_addr = reuse, 422 .vmemmap_pages = vmemmap_pages, 423 .flags = 0, 424 }; 425 426 vmemmap_remap_range(reuse, end, &walk); 427 } 428 mmap_read_unlock(&init_mm); 429 430 return ret; 431 } 432 433 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end, 434 struct list_head *list) 435 { 436 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 437 unsigned long nr_pages = (end - start) >> PAGE_SHIFT; 438 int nid = page_to_nid((struct page *)start); 439 struct page *page, *next; 440 441 while (nr_pages--) { 442 page = alloc_pages_node(nid, gfp_mask, 0); 443 if (!page) 444 goto out; 445 list_add(&page->lru, list); 446 } 447 448 return 0; 449 out: 450 list_for_each_entry_safe(page, next, list, lru) 451 __free_page(page); 452 return -ENOMEM; 453 } 454 455 /** 456 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end) 457 * to the page which is from the @vmemmap_pages 458 * respectively. 459 * @start: start address of the vmemmap virtual address range that we want 460 * to remap. 461 * @end: end address of the vmemmap virtual address range that we want to 462 * remap. 463 * @reuse: reuse address. 464 * @flags: modifications to vmemmap_remap_walk flags 465 * 466 * Return: %0 on success, negative error code otherwise. 467 */ 468 static int vmemmap_remap_alloc(unsigned long start, unsigned long end, 469 unsigned long reuse, unsigned long flags) 470 { 471 LIST_HEAD(vmemmap_pages); 472 struct vmemmap_remap_walk walk = { 473 .remap_pte = vmemmap_restore_pte, 474 .reuse_addr = reuse, 475 .vmemmap_pages = &vmemmap_pages, 476 .flags = flags, 477 }; 478 479 /* See the comment in the vmemmap_remap_free(). */ 480 BUG_ON(start - reuse != PAGE_SIZE); 481 482 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages)) 483 return -ENOMEM; 484 485 mmap_read_lock(&init_mm); 486 vmemmap_remap_range(reuse, end, &walk); 487 mmap_read_unlock(&init_mm); 488 489 return 0; 490 } 491 492 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 493 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key); 494 495 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON); 496 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); 497 498 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio, unsigned long flags) 499 { 500 int ret; 501 struct page *head = &folio->page; 502 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 503 unsigned long vmemmap_reuse; 504 505 VM_WARN_ON_ONCE(!PageHuge(head)); 506 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 507 return 0; 508 509 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 510 vmemmap_reuse = vmemmap_start; 511 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 512 513 /* 514 * The pages which the vmemmap virtual address range [@vmemmap_start, 515 * @vmemmap_end) are mapped to are freed to the buddy allocator, and 516 * the range is mapped to the page which @vmemmap_reuse is mapped to. 517 * When a HugeTLB page is freed to the buddy allocator, previously 518 * discarded vmemmap pages must be allocated and remapping. 519 */ 520 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags); 521 if (!ret) { 522 folio_clear_hugetlb_vmemmap_optimized(folio); 523 static_branch_dec(&hugetlb_optimize_vmemmap_key); 524 } 525 526 return ret; 527 } 528 529 /** 530 * hugetlb_vmemmap_restore_folio - restore previously optimized (by 531 * hugetlb_vmemmap_optimize_folio()) vmemmap pages which 532 * will be reallocated and remapped. 533 * @h: struct hstate. 534 * @folio: the folio whose vmemmap pages will be restored. 535 * 536 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped, 537 * negative error code otherwise. 538 */ 539 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio) 540 { 541 return __hugetlb_vmemmap_restore_folio(h, folio, 0); 542 } 543 544 /** 545 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list. 546 * @h: hstate. 547 * @folio_list: list of folios. 548 * @non_hvo_folios: Output list of folios for which vmemmap exists. 549 * 550 * Return: number of folios for which vmemmap was restored, or an error code 551 * if an error was encountered restoring vmemmap for a folio. 552 * Folios that have vmemmap are moved to the non_hvo_folios 553 * list. Processing of entries stops when the first error is 554 * encountered. The folio that experienced the error and all 555 * non-processed folios will remain on folio_list. 556 */ 557 long hugetlb_vmemmap_restore_folios(const struct hstate *h, 558 struct list_head *folio_list, 559 struct list_head *non_hvo_folios) 560 { 561 struct folio *folio, *t_folio; 562 long restored = 0; 563 long ret = 0; 564 565 list_for_each_entry_safe(folio, t_folio, folio_list, lru) { 566 if (folio_test_hugetlb_vmemmap_optimized(folio)) { 567 ret = __hugetlb_vmemmap_restore_folio(h, folio, 568 VMEMMAP_REMAP_NO_TLB_FLUSH); 569 if (ret) 570 break; 571 restored++; 572 } 573 574 /* Add non-optimized folios to output list */ 575 list_move(&folio->lru, non_hvo_folios); 576 } 577 578 if (restored) 579 flush_tlb_all(); 580 if (!ret) 581 ret = restored; 582 return ret; 583 } 584 585 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */ 586 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head) 587 { 588 if (HPageVmemmapOptimized((struct page *)head)) 589 return false; 590 591 if (!READ_ONCE(vmemmap_optimize_enabled)) 592 return false; 593 594 if (!hugetlb_vmemmap_optimizable(h)) 595 return false; 596 597 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { 598 pmd_t *pmdp, pmd; 599 struct page *vmemmap_page; 600 unsigned long vaddr = (unsigned long)head; 601 602 /* 603 * Only the vmemmap page's vmemmap page can be self-hosted. 604 * Walking the page tables to find the backing page of the 605 * vmemmap page. 606 */ 607 pmdp = pmd_off_k(vaddr); 608 /* 609 * The READ_ONCE() is used to stabilize *pmdp in a register or 610 * on the stack so that it will stop changing under the code. 611 * The only concurrent operation where it can be changed is 612 * split_vmemmap_huge_pmd() (*pmdp will be stable after this 613 * operation). 614 */ 615 pmd = READ_ONCE(*pmdp); 616 if (pmd_leaf(pmd)) 617 vmemmap_page = pmd_page(pmd) + pte_index(vaddr); 618 else 619 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr)); 620 /* 621 * Due to HugeTLB alignment requirements and the vmemmap pages 622 * being at the start of the hotplugged memory region in 623 * memory_hotplug.memmap_on_memory case. Checking any vmemmap 624 * page's vmemmap page if it is marked as VmemmapSelfHosted is 625 * sufficient. 626 * 627 * [ hotplugged memory ] 628 * [ section ][...][ section ] 629 * [ vmemmap ][ usable memory ] 630 * ^ | | | 631 * +---+ | | 632 * ^ | | 633 * +-------+ | 634 * ^ | 635 * +-------------------------------------------+ 636 */ 637 if (PageVmemmapSelfHosted(vmemmap_page)) 638 return false; 639 } 640 641 return true; 642 } 643 644 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h, 645 struct folio *folio, 646 struct list_head *vmemmap_pages, 647 unsigned long flags) 648 { 649 int ret = 0; 650 struct page *head = &folio->page; 651 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 652 unsigned long vmemmap_reuse; 653 654 VM_WARN_ON_ONCE(!PageHuge(head)); 655 if (!vmemmap_should_optimize(h, head)) 656 return ret; 657 658 static_branch_inc(&hugetlb_optimize_vmemmap_key); 659 /* 660 * Very Subtle 661 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed 662 * immediately after remapping. As a result, subsequent accesses 663 * and modifications to struct pages associated with the hugetlb 664 * page could be to the OLD struct pages. Set the vmemmap optimized 665 * flag here so that it is copied to the new head page. This keeps 666 * the old and new struct pages in sync. 667 * If there is an error during optimization, we will immediately FLUSH 668 * the TLB and clear the flag below. 669 */ 670 folio_set_hugetlb_vmemmap_optimized(folio); 671 672 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 673 vmemmap_reuse = vmemmap_start; 674 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 675 676 /* 677 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end) 678 * to the page which @vmemmap_reuse is mapped to. Add pages previously 679 * mapping the range to vmemmap_pages list so that they can be freed by 680 * the caller. 681 */ 682 ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse, 683 vmemmap_pages, flags); 684 if (ret) { 685 static_branch_dec(&hugetlb_optimize_vmemmap_key); 686 folio_clear_hugetlb_vmemmap_optimized(folio); 687 } 688 689 return ret; 690 } 691 692 /** 693 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages. 694 * @h: struct hstate. 695 * @folio: the folio whose vmemmap pages will be optimized. 696 * 697 * This function only tries to optimize @folio's vmemmap pages and does not 698 * guarantee that the optimization will succeed after it returns. The caller 699 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's 700 * vmemmap pages have been optimized. 701 */ 702 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio) 703 { 704 LIST_HEAD(vmemmap_pages); 705 706 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0); 707 free_vmemmap_page_list(&vmemmap_pages); 708 } 709 710 static int hugetlb_vmemmap_split(const struct hstate *h, struct page *head) 711 { 712 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end; 713 unsigned long vmemmap_reuse; 714 715 if (!vmemmap_should_optimize(h, head)) 716 return 0; 717 718 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h); 719 vmemmap_reuse = vmemmap_start; 720 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE; 721 722 /* 723 * Split PMDs on the vmemmap virtual address range [@vmemmap_start, 724 * @vmemmap_end] 725 */ 726 return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse); 727 } 728 729 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list) 730 { 731 struct folio *folio; 732 LIST_HEAD(vmemmap_pages); 733 734 list_for_each_entry(folio, folio_list, lru) { 735 int ret = hugetlb_vmemmap_split(h, &folio->page); 736 737 /* 738 * Spliting the PMD requires allocating a page, thus lets fail 739 * early once we encounter the first OOM. No point in retrying 740 * as it can be dynamically done on remap with the memory 741 * we get back from the vmemmap deduplication. 742 */ 743 if (ret == -ENOMEM) 744 break; 745 } 746 747 flush_tlb_all(); 748 749 list_for_each_entry(folio, folio_list, lru) { 750 int ret = __hugetlb_vmemmap_optimize_folio(h, folio, 751 &vmemmap_pages, 752 VMEMMAP_REMAP_NO_TLB_FLUSH); 753 754 /* 755 * Pages to be freed may have been accumulated. If we 756 * encounter an ENOMEM, free what we have and try again. 757 * This can occur in the case that both spliting fails 758 * halfway and head page allocation also failed. In this 759 * case __hugetlb_vmemmap_optimize_folio() would free memory 760 * allowing more vmemmap remaps to occur. 761 */ 762 if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) { 763 flush_tlb_all(); 764 free_vmemmap_page_list(&vmemmap_pages); 765 INIT_LIST_HEAD(&vmemmap_pages); 766 __hugetlb_vmemmap_optimize_folio(h, folio, 767 &vmemmap_pages, 768 VMEMMAP_REMAP_NO_TLB_FLUSH); 769 } 770 } 771 772 flush_tlb_all(); 773 free_vmemmap_page_list(&vmemmap_pages); 774 } 775 776 static struct ctl_table hugetlb_vmemmap_sysctls[] = { 777 { 778 .procname = "hugetlb_optimize_vmemmap", 779 .data = &vmemmap_optimize_enabled, 780 .maxlen = sizeof(vmemmap_optimize_enabled), 781 .mode = 0644, 782 .proc_handler = proc_dobool, 783 }, 784 { } 785 }; 786 787 static int __init hugetlb_vmemmap_init(void) 788 { 789 const struct hstate *h; 790 791 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */ 792 BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES); 793 794 for_each_hstate(h) { 795 if (hugetlb_vmemmap_optimizable(h)) { 796 register_sysctl_init("vm", hugetlb_vmemmap_sysctls); 797 break; 798 } 799 } 800 return 0; 801 } 802 late_initcall(hugetlb_vmemmap_init); 803