xref: /linux/mm/hugetlb_vmemmap.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Free some vmemmap pages of HugeTLB
4  *
5  * Copyright (c) 2020, Bytedance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * The struct page structures (page structs) are used to describe a physical
10  * page frame. By default, there is a one-to-one mapping from a page frame to
11  * it's corresponding page struct.
12  *
13  * HugeTLB pages consist of multiple base page size pages and is supported by
14  * many architectures. See hugetlbpage.rst in the Documentation directory for
15  * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
16  * are currently supported. Since the base page size on x86 is 4KB, a 2MB
17  * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
18  * 4096 base pages. For each base page, there is a corresponding page struct.
19  *
20  * Within the HugeTLB subsystem, only the first 4 page structs are used to
21  * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
22  * this upper limit. The only 'useful' information in the remaining page structs
23  * is the compound_head field, and this field is the same for all tail pages.
24  *
25  * By removing redundant page structs for HugeTLB pages, memory can be returned
26  * to the buddy allocator for other uses.
27  *
28  * Different architectures support different HugeTLB pages. For example, the
29  * following table is the HugeTLB page size supported by x86 and arm64
30  * architectures. Because arm64 supports 4k, 16k, and 64k base pages and
31  * supports contiguous entries, so it supports many kinds of sizes of HugeTLB
32  * page.
33  *
34  * +--------------+-----------+-----------------------------------------------+
35  * | Architecture | Page Size |                HugeTLB Page Size              |
36  * +--------------+-----------+-----------+-----------+-----------+-----------+
37  * |    x86-64    |    4KB    |    2MB    |    1GB    |           |           |
38  * +--------------+-----------+-----------+-----------+-----------+-----------+
39  * |              |    4KB    |   64KB    |    2MB    |    32MB   |    1GB    |
40  * |              +-----------+-----------+-----------+-----------+-----------+
41  * |    arm64     |   16KB    |    2MB    |   32MB    |     1GB   |           |
42  * |              +-----------+-----------+-----------+-----------+-----------+
43  * |              |   64KB    |    2MB    |  512MB    |    16GB   |           |
44  * +--------------+-----------+-----------+-----------+-----------+-----------+
45  *
46  * When the system boot up, every HugeTLB page has more than one struct page
47  * structs which size is (unit: pages):
48  *
49  *    struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
50  *
51  * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
52  * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
53  * relationship.
54  *
55  *    HugeTLB_Size = n * PAGE_SIZE
56  *
57  * Then,
58  *
59  *    struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
60  *                = n * sizeof(struct page) / PAGE_SIZE
61  *
62  * We can use huge mapping at the pud/pmd level for the HugeTLB page.
63  *
64  * For the HugeTLB page of the pmd level mapping, then
65  *
66  *    struct_size = n * sizeof(struct page) / PAGE_SIZE
67  *                = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
68  *                = sizeof(struct page) / sizeof(pte_t)
69  *                = 64 / 8
70  *                = 8 (pages)
71  *
72  * Where n is how many pte entries which one page can contains. So the value of
73  * n is (PAGE_SIZE / sizeof(pte_t)).
74  *
75  * This optimization only supports 64-bit system, so the value of sizeof(pte_t)
76  * is 8. And this optimization also applicable only when the size of struct page
77  * is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
78  * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
79  * size of struct page structs of it is 8 page frames which size depends on the
80  * size of the base page.
81  *
82  * For the HugeTLB page of the pud level mapping, then
83  *
84  *    struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
85  *                = PAGE_SIZE / 8 * 8 (pages)
86  *                = PAGE_SIZE (pages)
87  *
88  * Where the struct_size(pmd) is the size of the struct page structs of a
89  * HugeTLB page of the pmd level mapping.
90  *
91  * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
92  * HugeTLB page consists in 4096.
93  *
94  * Next, we take the pmd level mapping of the HugeTLB page as an example to
95  * show the internal implementation of this optimization. There are 8 pages
96  * struct page structs associated with a HugeTLB page which is pmd mapped.
97  *
98  * Here is how things look before optimization.
99  *
100  *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
101  * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
102  * |           |                     |     0     | -------------> |     0     |
103  * |           |                     +-----------+                +-----------+
104  * |           |                     |     1     | -------------> |     1     |
105  * |           |                     +-----------+                +-----------+
106  * |           |                     |     2     | -------------> |     2     |
107  * |           |                     +-----------+                +-----------+
108  * |           |                     |     3     | -------------> |     3     |
109  * |           |                     +-----------+                +-----------+
110  * |           |                     |     4     | -------------> |     4     |
111  * |    PMD    |                     +-----------+                +-----------+
112  * |   level   |                     |     5     | -------------> |     5     |
113  * |  mapping  |                     +-----------+                +-----------+
114  * |           |                     |     6     | -------------> |     6     |
115  * |           |                     +-----------+                +-----------+
116  * |           |                     |     7     | -------------> |     7     |
117  * |           |                     +-----------+                +-----------+
118  * |           |
119  * |           |
120  * |           |
121  * +-----------+
122  *
123  * The value of page->compound_head is the same for all tail pages. The first
124  * page of page structs (page 0) associated with the HugeTLB page contains the 4
125  * page structs necessary to describe the HugeTLB. The only use of the remaining
126  * pages of page structs (page 1 to page 7) is to point to page->compound_head.
127  * Therefore, we can remap pages 1 to 7 to page 0. Only 1 page of page structs
128  * will be used for each HugeTLB page. This will allow us to free the remaining
129  * 7 pages to the buddy allocator.
130  *
131  * Here is how things look after remapping.
132  *
133  *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
134  * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
135  * |           |                     |     0     | -------------> |     0     |
136  * |           |                     +-----------+                +-----------+
137  * |           |                     |     1     | ---------------^ ^ ^ ^ ^ ^ ^
138  * |           |                     +-----------+                  | | | | | |
139  * |           |                     |     2     | -----------------+ | | | | |
140  * |           |                     +-----------+                    | | | | |
141  * |           |                     |     3     | -------------------+ | | | |
142  * |           |                     +-----------+                      | | | |
143  * |           |                     |     4     | ---------------------+ | | |
144  * |    PMD    |                     +-----------+                        | | |
145  * |   level   |                     |     5     | -----------------------+ | |
146  * |  mapping  |                     +-----------+                          | |
147  * |           |                     |     6     | -------------------------+ |
148  * |           |                     +-----------+                            |
149  * |           |                     |     7     | ---------------------------+
150  * |           |                     +-----------+
151  * |           |
152  * |           |
153  * |           |
154  * +-----------+
155  *
156  * When a HugeTLB is freed to the buddy system, we should allocate 7 pages for
157  * vmemmap pages and restore the previous mapping relationship.
158  *
159  * For the HugeTLB page of the pud level mapping. It is similar to the former.
160  * We also can use this approach to free (PAGE_SIZE - 1) vmemmap pages.
161  *
162  * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
163  * (e.g. aarch64) provides a contiguous bit in the translation table entries
164  * that hints to the MMU to indicate that it is one of a contiguous set of
165  * entries that can be cached in a single TLB entry.
166  *
167  * The contiguous bit is used to increase the mapping size at the pmd and pte
168  * (last) level. So this type of HugeTLB page can be optimized only when its
169  * size of the struct page structs is greater than 1 page.
170  *
171  * Notice: The head vmemmap page is not freed to the buddy allocator and all
172  * tail vmemmap pages are mapped to the head vmemmap page frame. So we can see
173  * more than one struct page struct with PG_head (e.g. 8 per 2 MB HugeTLB page)
174  * associated with each HugeTLB page. The compound_head() can handle this
175  * correctly (more details refer to the comment above compound_head()).
176  */
177 #define pr_fmt(fmt)	"HugeTLB: " fmt
178 
179 #include "hugetlb_vmemmap.h"
180 
181 /*
182  * There are a lot of struct page structures associated with each HugeTLB page.
183  * For tail pages, the value of compound_head is the same. So we can reuse first
184  * page of head page structures. We map the virtual addresses of all the pages
185  * of tail page structures to the head page struct, and then free these page
186  * frames. Therefore, we need to reserve one pages as vmemmap areas.
187  */
188 #define RESERVE_VMEMMAP_NR		1U
189 #define RESERVE_VMEMMAP_SIZE		(RESERVE_VMEMMAP_NR << PAGE_SHIFT)
190 
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON,
192 			hugetlb_free_vmemmap_enabled_key);
193 EXPORT_SYMBOL(hugetlb_free_vmemmap_enabled_key);
194 
195 static int __init early_hugetlb_free_vmemmap_param(char *buf)
196 {
197 	/* We cannot optimize if a "struct page" crosses page boundaries. */
198 	if (!is_power_of_2(sizeof(struct page))) {
199 		pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
200 		return 0;
201 	}
202 
203 	if (!buf)
204 		return -EINVAL;
205 
206 	if (!strcmp(buf, "on"))
207 		static_branch_enable(&hugetlb_free_vmemmap_enabled_key);
208 	else if (!strcmp(buf, "off"))
209 		static_branch_disable(&hugetlb_free_vmemmap_enabled_key);
210 	else
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param);
216 
217 static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
218 {
219 	return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
220 }
221 
222 /*
223  * Previously discarded vmemmap pages will be allocated and remapping
224  * after this function returns zero.
225  */
226 int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
227 {
228 	int ret;
229 	unsigned long vmemmap_addr = (unsigned long)head;
230 	unsigned long vmemmap_end, vmemmap_reuse;
231 
232 	if (!HPageVmemmapOptimized(head))
233 		return 0;
234 
235 	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
236 	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
237 	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
238 	/*
239 	 * The pages which the vmemmap virtual address range [@vmemmap_addr,
240 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
241 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
242 	 * When a HugeTLB page is freed to the buddy allocator, previously
243 	 * discarded vmemmap pages must be allocated and remapping.
244 	 */
245 	ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
246 				  GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
247 	if (!ret)
248 		ClearHPageVmemmapOptimized(head);
249 
250 	return ret;
251 }
252 
253 void free_huge_page_vmemmap(struct hstate *h, struct page *head)
254 {
255 	unsigned long vmemmap_addr = (unsigned long)head;
256 	unsigned long vmemmap_end, vmemmap_reuse;
257 
258 	if (!free_vmemmap_pages_per_hpage(h))
259 		return;
260 
261 	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
262 	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
263 	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
264 
265 	/*
266 	 * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
267 	 * to the page which @vmemmap_reuse is mapped to, then free the pages
268 	 * which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
269 	 */
270 	if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
271 		SetHPageVmemmapOptimized(head);
272 }
273 
274 void __init hugetlb_vmemmap_init(struct hstate *h)
275 {
276 	unsigned int nr_pages = pages_per_huge_page(h);
277 	unsigned int vmemmap_pages;
278 
279 	/*
280 	 * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
281 	 * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP,
282 	 * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page.
283 	 */
284 	BUILD_BUG_ON(__NR_USED_SUBPAGE >=
285 		     RESERVE_VMEMMAP_SIZE / sizeof(struct page));
286 
287 	if (!hugetlb_free_vmemmap_enabled())
288 		return;
289 
290 	vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
291 	/*
292 	 * The head page is not to be freed to buddy allocator, the other tail
293 	 * pages will map to the head page, so they can be freed.
294 	 *
295 	 * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
296 	 * on some architectures (e.g. aarch64). See Documentation/arm64/
297 	 * hugetlbpage.rst for more details.
298 	 */
299 	if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
300 		h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
301 
302 	pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages,
303 		h->name);
304 }
305