xref: /linux/mm/hugetlb_vmemmap.c (revision 0d6ccfe6b319d56da63b7d7cfbcecd92780a680d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include "hugetlb_vmemmap.h"
21 
22 /**
23  * struct vmemmap_remap_walk - walk vmemmap page table
24  *
25  * @remap_pte:		called for each lowest-level entry (PTE).
26  * @nr_walked:		the number of walked pte.
27  * @reuse_page:		the page which is reused for the tail vmemmap pages.
28  * @reuse_addr:		the virtual address of the @reuse_page page.
29  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
30  *			or is mapped from.
31  * @flags:		used to modify behavior in vmemmap page table walking
32  *			operations.
33  */
34 struct vmemmap_remap_walk {
35 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
36 					     struct vmemmap_remap_walk *walk);
37 	unsigned long		nr_walked;
38 	struct page		*reuse_page;
39 	unsigned long		reuse_addr;
40 	struct list_head	*vmemmap_pages;
41 
42 /* Skip the TLB flush when we split the PMD */
43 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
44 /* Skip the TLB flush when we remap the PTE */
45 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
46 	unsigned long		flags;
47 };
48 
49 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
50 			     struct vmemmap_remap_walk *walk)
51 {
52 	pmd_t __pmd;
53 	int i;
54 	unsigned long addr = start;
55 	pte_t *pgtable;
56 
57 	pgtable = pte_alloc_one_kernel(&init_mm);
58 	if (!pgtable)
59 		return -ENOMEM;
60 
61 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
62 
63 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
64 		pte_t entry, *pte;
65 		pgprot_t pgprot = PAGE_KERNEL;
66 
67 		entry = mk_pte(head + i, pgprot);
68 		pte = pte_offset_kernel(&__pmd, addr);
69 		set_pte_at(&init_mm, addr, pte, entry);
70 	}
71 
72 	spin_lock(&init_mm.page_table_lock);
73 	if (likely(pmd_leaf(*pmd))) {
74 		/*
75 		 * Higher order allocations from buddy allocator must be able to
76 		 * be treated as indepdenent small pages (as they can be freed
77 		 * individually).
78 		 */
79 		if (!PageReserved(head))
80 			split_page(head, get_order(PMD_SIZE));
81 
82 		/* Make pte visible before pmd. See comment in pmd_install(). */
83 		smp_wmb();
84 		pmd_populate_kernel(&init_mm, pmd, pgtable);
85 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
86 			flush_tlb_kernel_range(start, start + PMD_SIZE);
87 	} else {
88 		pte_free_kernel(&init_mm, pgtable);
89 	}
90 	spin_unlock(&init_mm.page_table_lock);
91 
92 	return 0;
93 }
94 
95 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
96 			     unsigned long next, struct mm_walk *walk)
97 {
98 	int ret = 0;
99 	struct page *head;
100 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
101 
102 	/* Only splitting, not remapping the vmemmap pages. */
103 	if (!vmemmap_walk->remap_pte)
104 		walk->action = ACTION_CONTINUE;
105 
106 	spin_lock(&init_mm.page_table_lock);
107 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
108 	/*
109 	 * Due to HugeTLB alignment requirements and the vmemmap
110 	 * pages being at the start of the hotplugged memory
111 	 * region in memory_hotplug.memmap_on_memory case. Checking
112 	 * the vmemmap page associated with the first vmemmap page
113 	 * if it is self-hosted is sufficient.
114 	 *
115 	 * [                  hotplugged memory                  ]
116 	 * [        section        ][...][        section        ]
117 	 * [ vmemmap ][              usable memory               ]
118 	 *   ^  | ^                        |
119 	 *   +--+ |                        |
120 	 *        +------------------------+
121 	 */
122 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
123 		struct page *page = head ? head + pte_index(addr) :
124 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
125 
126 		if (PageVmemmapSelfHosted(page))
127 			ret = -ENOTSUPP;
128 	}
129 	spin_unlock(&init_mm.page_table_lock);
130 	if (!head || ret)
131 		return ret;
132 
133 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
134 }
135 
136 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
137 			     unsigned long next, struct mm_walk *walk)
138 {
139 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
140 
141 	/*
142 	 * The reuse_page is found 'first' in page table walking before
143 	 * starting remapping.
144 	 */
145 	if (!vmemmap_walk->reuse_page)
146 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
147 	else
148 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
149 	vmemmap_walk->nr_walked++;
150 
151 	return 0;
152 }
153 
154 static const struct mm_walk_ops vmemmap_remap_ops = {
155 	.pmd_entry	= vmemmap_pmd_entry,
156 	.pte_entry	= vmemmap_pte_entry,
157 };
158 
159 static int vmemmap_remap_range(unsigned long start, unsigned long end,
160 			       struct vmemmap_remap_walk *walk)
161 {
162 	int ret;
163 
164 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
165 
166 	mmap_read_lock(&init_mm);
167 	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
168 				    NULL, walk);
169 	mmap_read_unlock(&init_mm);
170 	if (ret)
171 		return ret;
172 
173 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
174 		flush_tlb_kernel_range(start, end);
175 
176 	return 0;
177 }
178 
179 /*
180  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
181  * allocator or buddy allocator. If the PG_reserved flag is set, it means
182  * that it allocated from the memblock allocator, just free it via the
183  * free_bootmem_page(). Otherwise, use __free_page().
184  */
185 static inline void free_vmemmap_page(struct page *page)
186 {
187 	if (PageReserved(page)) {
188 		free_bootmem_page(page);
189 		mod_node_page_state(page_pgdat(page), NR_MEMMAP_BOOT, -1);
190 	} else {
191 		__free_page(page);
192 		mod_node_page_state(page_pgdat(page), NR_MEMMAP, -1);
193 	}
194 }
195 
196 /* Free a list of the vmemmap pages */
197 static void free_vmemmap_page_list(struct list_head *list)
198 {
199 	struct page *page, *next;
200 
201 	list_for_each_entry_safe(page, next, list, lru)
202 		free_vmemmap_page(page);
203 }
204 
205 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
206 			      struct vmemmap_remap_walk *walk)
207 {
208 	/*
209 	 * Remap the tail pages as read-only to catch illegal write operation
210 	 * to the tail pages.
211 	 */
212 	pgprot_t pgprot = PAGE_KERNEL_RO;
213 	struct page *page = pte_page(ptep_get(pte));
214 	pte_t entry;
215 
216 	/* Remapping the head page requires r/w */
217 	if (unlikely(addr == walk->reuse_addr)) {
218 		pgprot = PAGE_KERNEL;
219 		list_del(&walk->reuse_page->lru);
220 
221 		/*
222 		 * Makes sure that preceding stores to the page contents from
223 		 * vmemmap_remap_free() become visible before the set_pte_at()
224 		 * write.
225 		 */
226 		smp_wmb();
227 	}
228 
229 	entry = mk_pte(walk->reuse_page, pgprot);
230 	list_add(&page->lru, walk->vmemmap_pages);
231 	set_pte_at(&init_mm, addr, pte, entry);
232 }
233 
234 /*
235  * How many struct page structs need to be reset. When we reuse the head
236  * struct page, the special metadata (e.g. page->flags or page->mapping)
237  * cannot copy to the tail struct page structs. The invalid value will be
238  * checked in the free_tail_page_prepare(). In order to avoid the message
239  * of "corrupted mapping in tail page". We need to reset at least 3 (one
240  * head struct page struct and two tail struct page structs) struct page
241  * structs.
242  */
243 #define NR_RESET_STRUCT_PAGE		3
244 
245 static inline void reset_struct_pages(struct page *start)
246 {
247 	struct page *from = start + NR_RESET_STRUCT_PAGE;
248 
249 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
250 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
251 }
252 
253 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
254 				struct vmemmap_remap_walk *walk)
255 {
256 	pgprot_t pgprot = PAGE_KERNEL;
257 	struct page *page;
258 	void *to;
259 
260 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
261 
262 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
263 	list_del(&page->lru);
264 	to = page_to_virt(page);
265 	copy_page(to, (void *)walk->reuse_addr);
266 	reset_struct_pages(to);
267 
268 	/*
269 	 * Makes sure that preceding stores to the page contents become visible
270 	 * before the set_pte_at() write.
271 	 */
272 	smp_wmb();
273 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
274 }
275 
276 /**
277  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
278  *                      backing PMDs of the directmap into PTEs
279  * @start:     start address of the vmemmap virtual address range that we want
280  *             to remap.
281  * @end:       end address of the vmemmap virtual address range that we want to
282  *             remap.
283  * @reuse:     reuse address.
284  *
285  * Return: %0 on success, negative error code otherwise.
286  */
287 static int vmemmap_remap_split(unsigned long start, unsigned long end,
288 			       unsigned long reuse)
289 {
290 	struct vmemmap_remap_walk walk = {
291 		.remap_pte	= NULL,
292 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
293 	};
294 
295 	/* See the comment in the vmemmap_remap_free(). */
296 	BUG_ON(start - reuse != PAGE_SIZE);
297 
298 	return vmemmap_remap_range(reuse, end, &walk);
299 }
300 
301 /**
302  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
303  *			to the page which @reuse is mapped to, then free vmemmap
304  *			which the range are mapped to.
305  * @start:	start address of the vmemmap virtual address range that we want
306  *		to remap.
307  * @end:	end address of the vmemmap virtual address range that we want to
308  *		remap.
309  * @reuse:	reuse address.
310  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
311  *		responsibility to free pages.
312  * @flags:	modifications to vmemmap_remap_walk flags
313  *
314  * Return: %0 on success, negative error code otherwise.
315  */
316 static int vmemmap_remap_free(unsigned long start, unsigned long end,
317 			      unsigned long reuse,
318 			      struct list_head *vmemmap_pages,
319 			      unsigned long flags)
320 {
321 	int ret;
322 	struct vmemmap_remap_walk walk = {
323 		.remap_pte	= vmemmap_remap_pte,
324 		.reuse_addr	= reuse,
325 		.vmemmap_pages	= vmemmap_pages,
326 		.flags		= flags,
327 	};
328 	int nid = page_to_nid((struct page *)reuse);
329 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
330 
331 	/*
332 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
333 	 * block of struct page memory when freeing it back to page allocator
334 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
335 	 * struct page backing memory to be kept contiguous and allowing for
336 	 * more allocations of hugepages. Fallback to the currently
337 	 * mapped head page in case should it fail to allocate.
338 	 */
339 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
340 	if (walk.reuse_page) {
341 		copy_page(page_to_virt(walk.reuse_page),
342 			  (void *)walk.reuse_addr);
343 		list_add(&walk.reuse_page->lru, vmemmap_pages);
344 		mod_node_page_state(NODE_DATA(nid), NR_MEMMAP, 1);
345 	}
346 
347 	/*
348 	 * In order to make remapping routine most efficient for the huge pages,
349 	 * the routine of vmemmap page table walking has the following rules
350 	 * (see more details from the vmemmap_pte_range()):
351 	 *
352 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
353 	 *   should be continuous.
354 	 * - The @reuse address is part of the range [@reuse, @end) that we are
355 	 *   walking which is passed to vmemmap_remap_range().
356 	 * - The @reuse address is the first in the complete range.
357 	 *
358 	 * So we need to make sure that @start and @reuse meet the above rules.
359 	 */
360 	BUG_ON(start - reuse != PAGE_SIZE);
361 
362 	ret = vmemmap_remap_range(reuse, end, &walk);
363 	if (ret && walk.nr_walked) {
364 		end = reuse + walk.nr_walked * PAGE_SIZE;
365 		/*
366 		 * vmemmap_pages contains pages from the previous
367 		 * vmemmap_remap_range call which failed.  These
368 		 * are pages which were removed from the vmemmap.
369 		 * They will be restored in the following call.
370 		 */
371 		walk = (struct vmemmap_remap_walk) {
372 			.remap_pte	= vmemmap_restore_pte,
373 			.reuse_addr	= reuse,
374 			.vmemmap_pages	= vmemmap_pages,
375 			.flags		= 0,
376 		};
377 
378 		vmemmap_remap_range(reuse, end, &walk);
379 	}
380 
381 	return ret;
382 }
383 
384 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
385 				   struct list_head *list)
386 {
387 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
388 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
389 	int nid = page_to_nid((struct page *)start);
390 	struct page *page, *next;
391 	int i;
392 
393 	for (i = 0; i < nr_pages; i++) {
394 		page = alloc_pages_node(nid, gfp_mask, 0);
395 		if (!page) {
396 			mod_node_page_state(NODE_DATA(nid), NR_MEMMAP, i);
397 			goto out;
398 		}
399 		list_add(&page->lru, list);
400 	}
401 
402 	mod_node_page_state(NODE_DATA(nid), NR_MEMMAP, nr_pages);
403 
404 	return 0;
405 out:
406 	list_for_each_entry_safe(page, next, list, lru)
407 		__free_page(page);
408 	return -ENOMEM;
409 }
410 
411 /**
412  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
413  *			 to the page which is from the @vmemmap_pages
414  *			 respectively.
415  * @start:	start address of the vmemmap virtual address range that we want
416  *		to remap.
417  * @end:	end address of the vmemmap virtual address range that we want to
418  *		remap.
419  * @reuse:	reuse address.
420  * @flags:	modifications to vmemmap_remap_walk flags
421  *
422  * Return: %0 on success, negative error code otherwise.
423  */
424 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
425 			       unsigned long reuse, unsigned long flags)
426 {
427 	LIST_HEAD(vmemmap_pages);
428 	struct vmemmap_remap_walk walk = {
429 		.remap_pte	= vmemmap_restore_pte,
430 		.reuse_addr	= reuse,
431 		.vmemmap_pages	= &vmemmap_pages,
432 		.flags		= flags,
433 	};
434 
435 	/* See the comment in the vmemmap_remap_free(). */
436 	BUG_ON(start - reuse != PAGE_SIZE);
437 
438 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
439 		return -ENOMEM;
440 
441 	return vmemmap_remap_range(reuse, end, &walk);
442 }
443 
444 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
445 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
446 
447 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
448 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
449 
450 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
451 					   struct folio *folio, unsigned long flags)
452 {
453 	int ret;
454 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
455 	unsigned long vmemmap_reuse;
456 
457 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
458 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
459 
460 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
461 		return 0;
462 
463 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
464 	vmemmap_reuse	= vmemmap_start;
465 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
466 
467 	/*
468 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
469 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
470 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
471 	 * When a HugeTLB page is freed to the buddy allocator, previously
472 	 * discarded vmemmap pages must be allocated and remapping.
473 	 */
474 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
475 	if (!ret) {
476 		folio_clear_hugetlb_vmemmap_optimized(folio);
477 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
478 	}
479 
480 	return ret;
481 }
482 
483 /**
484  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
485  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
486  *				will be reallocated and remapped.
487  * @h:		struct hstate.
488  * @folio:     the folio whose vmemmap pages will be restored.
489  *
490  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
491  * negative error code otherwise.
492  */
493 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
494 {
495 	/* avoid writes from page_ref_add_unless() while unfolding vmemmap */
496 	synchronize_rcu();
497 
498 	return __hugetlb_vmemmap_restore_folio(h, folio, 0);
499 }
500 
501 /**
502  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
503  * @h:			hstate.
504  * @folio_list:		list of folios.
505  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
506  *
507  * Return: number of folios for which vmemmap was restored, or an error code
508  *		if an error was encountered restoring vmemmap for a folio.
509  *		Folios that have vmemmap are moved to the non_hvo_folios
510  *		list.  Processing of entries stops when the first error is
511  *		encountered. The folio that experienced the error and all
512  *		non-processed folios will remain on folio_list.
513  */
514 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
515 					struct list_head *folio_list,
516 					struct list_head *non_hvo_folios)
517 {
518 	struct folio *folio, *t_folio;
519 	long restored = 0;
520 	long ret = 0;
521 
522 	/* avoid writes from page_ref_add_unless() while unfolding vmemmap */
523 	synchronize_rcu();
524 
525 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
526 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
527 			ret = __hugetlb_vmemmap_restore_folio(h, folio,
528 							      VMEMMAP_REMAP_NO_TLB_FLUSH);
529 			if (ret)
530 				break;
531 			restored++;
532 		}
533 
534 		/* Add non-optimized folios to output list */
535 		list_move(&folio->lru, non_hvo_folios);
536 	}
537 
538 	if (restored)
539 		flush_tlb_all();
540 	if (!ret)
541 		ret = restored;
542 	return ret;
543 }
544 
545 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
546 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
547 {
548 	if (folio_test_hugetlb_vmemmap_optimized(folio))
549 		return false;
550 
551 	if (!READ_ONCE(vmemmap_optimize_enabled))
552 		return false;
553 
554 	if (!hugetlb_vmemmap_optimizable(h))
555 		return false;
556 
557 	return true;
558 }
559 
560 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
561 					    struct folio *folio,
562 					    struct list_head *vmemmap_pages,
563 					    unsigned long flags)
564 {
565 	int ret = 0;
566 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
567 	unsigned long vmemmap_reuse;
568 
569 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
570 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
571 
572 	if (!vmemmap_should_optimize_folio(h, folio))
573 		return ret;
574 
575 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
576 	/*
577 	 * Very Subtle
578 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
579 	 * immediately after remapping.  As a result, subsequent accesses
580 	 * and modifications to struct pages associated with the hugetlb
581 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
582 	 * flag here so that it is copied to the new head page.  This keeps
583 	 * the old and new struct pages in sync.
584 	 * If there is an error during optimization, we will immediately FLUSH
585 	 * the TLB and clear the flag below.
586 	 */
587 	folio_set_hugetlb_vmemmap_optimized(folio);
588 
589 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
590 	vmemmap_reuse	= vmemmap_start;
591 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
592 
593 	/*
594 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
595 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
596 	 * mapping the range to vmemmap_pages list so that they can be freed by
597 	 * the caller.
598 	 */
599 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
600 				 vmemmap_pages, flags);
601 	if (ret) {
602 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
603 		folio_clear_hugetlb_vmemmap_optimized(folio);
604 	}
605 
606 	return ret;
607 }
608 
609 /**
610  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
611  * @h:		struct hstate.
612  * @folio:     the folio whose vmemmap pages will be optimized.
613  *
614  * This function only tries to optimize @folio's vmemmap pages and does not
615  * guarantee that the optimization will succeed after it returns. The caller
616  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
617  * vmemmap pages have been optimized.
618  */
619 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
620 {
621 	LIST_HEAD(vmemmap_pages);
622 
623 	/* avoid writes from page_ref_add_unless() while folding vmemmap */
624 	synchronize_rcu();
625 
626 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
627 	free_vmemmap_page_list(&vmemmap_pages);
628 }
629 
630 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
631 {
632 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
633 	unsigned long vmemmap_reuse;
634 
635 	if (!vmemmap_should_optimize_folio(h, folio))
636 		return 0;
637 
638 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
639 	vmemmap_reuse	= vmemmap_start;
640 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
641 
642 	/*
643 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
644 	 * @vmemmap_end]
645 	 */
646 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
647 }
648 
649 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
650 {
651 	struct folio *folio;
652 	LIST_HEAD(vmemmap_pages);
653 
654 	list_for_each_entry(folio, folio_list, lru) {
655 		int ret = hugetlb_vmemmap_split_folio(h, folio);
656 
657 		/*
658 		 * Spliting the PMD requires allocating a page, thus lets fail
659 		 * early once we encounter the first OOM. No point in retrying
660 		 * as it can be dynamically done on remap with the memory
661 		 * we get back from the vmemmap deduplication.
662 		 */
663 		if (ret == -ENOMEM)
664 			break;
665 	}
666 
667 	flush_tlb_all();
668 
669 	/* avoid writes from page_ref_add_unless() while folding vmemmap */
670 	synchronize_rcu();
671 
672 	list_for_each_entry(folio, folio_list, lru) {
673 		int ret;
674 
675 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
676 						       VMEMMAP_REMAP_NO_TLB_FLUSH);
677 
678 		/*
679 		 * Pages to be freed may have been accumulated.  If we
680 		 * encounter an ENOMEM,  free what we have and try again.
681 		 * This can occur in the case that both spliting fails
682 		 * halfway and head page allocation also failed. In this
683 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
684 		 * allowing more vmemmap remaps to occur.
685 		 */
686 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
687 			flush_tlb_all();
688 			free_vmemmap_page_list(&vmemmap_pages);
689 			INIT_LIST_HEAD(&vmemmap_pages);
690 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
691 							 VMEMMAP_REMAP_NO_TLB_FLUSH);
692 		}
693 	}
694 
695 	flush_tlb_all();
696 	free_vmemmap_page_list(&vmemmap_pages);
697 }
698 
699 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
700 	{
701 		.procname	= "hugetlb_optimize_vmemmap",
702 		.data		= &vmemmap_optimize_enabled,
703 		.maxlen		= sizeof(vmemmap_optimize_enabled),
704 		.mode		= 0644,
705 		.proc_handler	= proc_dobool,
706 	},
707 };
708 
709 static int __init hugetlb_vmemmap_init(void)
710 {
711 	const struct hstate *h;
712 
713 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
714 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
715 
716 	for_each_hstate(h) {
717 		if (hugetlb_vmemmap_optimizable(h)) {
718 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
719 			break;
720 		}
721 	}
722 	return 0;
723 }
724 late_initcall(hugetlb_vmemmap_init);
725