xref: /linux/mm/hugetlb_vmemmap.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)	"HugeTLB: " fmt
12 
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <linux/pagewalk.h>
18 #include <linux/pgalloc.h>
19 
20 #include <asm/tlbflush.h>
21 #include "hugetlb_vmemmap.h"
22 
23 /**
24  * struct vmemmap_remap_walk - walk vmemmap page table
25  *
26  * @remap_pte:		called for each lowest-level entry (PTE).
27  * @nr_walked:		the number of walked pte.
28  * @reuse_page:		the page which is reused for the tail vmemmap pages.
29  * @reuse_addr:		the virtual address of the @reuse_page page.
30  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
31  *			or is mapped from.
32  * @flags:		used to modify behavior in vmemmap page table walking
33  *			operations.
34  */
35 struct vmemmap_remap_walk {
36 	void			(*remap_pte)(pte_t *pte, unsigned long addr,
37 					     struct vmemmap_remap_walk *walk);
38 	unsigned long		nr_walked;
39 	struct page		*reuse_page;
40 	unsigned long		reuse_addr;
41 	struct list_head	*vmemmap_pages;
42 
43 /* Skip the TLB flush when we split the PMD */
44 #define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
45 /* Skip the TLB flush when we remap the PTE */
46 #define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
47 /* synchronize_rcu() to avoid writes from page_ref_add_unless() */
48 #define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
49 	unsigned long		flags;
50 };
51 
vmemmap_split_pmd(pmd_t * pmd,struct page * head,unsigned long start,struct vmemmap_remap_walk * walk)52 static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
53 			     struct vmemmap_remap_walk *walk)
54 {
55 	pmd_t __pmd;
56 	int i;
57 	unsigned long addr = start;
58 	pte_t *pgtable;
59 
60 	pgtable = pte_alloc_one_kernel(&init_mm);
61 	if (!pgtable)
62 		return -ENOMEM;
63 
64 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
65 
66 	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
67 		pte_t entry, *pte;
68 		pgprot_t pgprot = PAGE_KERNEL;
69 
70 		entry = mk_pte(head + i, pgprot);
71 		pte = pte_offset_kernel(&__pmd, addr);
72 		set_pte_at(&init_mm, addr, pte, entry);
73 	}
74 
75 	spin_lock(&init_mm.page_table_lock);
76 	if (likely(pmd_leaf(*pmd))) {
77 		/*
78 		 * Higher order allocations from buddy allocator must be able to
79 		 * be treated as independent small pages (as they can be freed
80 		 * individually).
81 		 */
82 		if (!PageReserved(head))
83 			split_page(head, get_order(PMD_SIZE));
84 
85 		/* Make pte visible before pmd. See comment in pmd_install(). */
86 		smp_wmb();
87 		pmd_populate_kernel(&init_mm, pmd, pgtable);
88 		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
89 			flush_tlb_kernel_range(start, start + PMD_SIZE);
90 	} else {
91 		pte_free_kernel(&init_mm, pgtable);
92 	}
93 	spin_unlock(&init_mm.page_table_lock);
94 
95 	return 0;
96 }
97 
vmemmap_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)98 static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
99 			     unsigned long next, struct mm_walk *walk)
100 {
101 	int ret = 0;
102 	struct page *head;
103 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
104 
105 	/* Only splitting, not remapping the vmemmap pages. */
106 	if (!vmemmap_walk->remap_pte)
107 		walk->action = ACTION_CONTINUE;
108 
109 	spin_lock(&init_mm.page_table_lock);
110 	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
111 	/*
112 	 * Due to HugeTLB alignment requirements and the vmemmap
113 	 * pages being at the start of the hotplugged memory
114 	 * region in memory_hotplug.memmap_on_memory case. Checking
115 	 * the vmemmap page associated with the first vmemmap page
116 	 * if it is self-hosted is sufficient.
117 	 *
118 	 * [                  hotplugged memory                  ]
119 	 * [        section        ][...][        section        ]
120 	 * [ vmemmap ][              usable memory               ]
121 	 *   ^  | ^                        |
122 	 *   +--+ |                        |
123 	 *        +------------------------+
124 	 */
125 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
126 		struct page *page = head ? head + pte_index(addr) :
127 				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
128 
129 		if (PageVmemmapSelfHosted(page))
130 			ret = -ENOTSUPP;
131 	}
132 	spin_unlock(&init_mm.page_table_lock);
133 	if (!head || ret)
134 		return ret;
135 
136 	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
137 }
138 
vmemmap_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)139 static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
140 			     unsigned long next, struct mm_walk *walk)
141 {
142 	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
143 
144 	/*
145 	 * The reuse_page is found 'first' in page table walking before
146 	 * starting remapping.
147 	 */
148 	if (!vmemmap_walk->reuse_page)
149 		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
150 	else
151 		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
152 	vmemmap_walk->nr_walked++;
153 
154 	return 0;
155 }
156 
157 static const struct mm_walk_ops vmemmap_remap_ops = {
158 	.pmd_entry	= vmemmap_pmd_entry,
159 	.pte_entry	= vmemmap_pte_entry,
160 };
161 
vmemmap_remap_range(unsigned long start,unsigned long end,struct vmemmap_remap_walk * walk)162 static int vmemmap_remap_range(unsigned long start, unsigned long end,
163 			       struct vmemmap_remap_walk *walk)
164 {
165 	int ret;
166 
167 	VM_BUG_ON(!PAGE_ALIGNED(start | end));
168 
169 	mmap_read_lock(&init_mm);
170 	ret = walk_kernel_page_table_range(start, end, &vmemmap_remap_ops,
171 				    NULL, walk);
172 	mmap_read_unlock(&init_mm);
173 	if (ret)
174 		return ret;
175 
176 	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
177 		flush_tlb_kernel_range(start, end);
178 
179 	return 0;
180 }
181 
182 /*
183  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
184  * allocator or buddy allocator. If the PG_reserved flag is set, it means
185  * that it allocated from the memblock allocator, just free it via the
186  * free_bootmem_page(). Otherwise, use __free_page().
187  */
free_vmemmap_page(struct page * page)188 static inline void free_vmemmap_page(struct page *page)
189 {
190 	if (PageReserved(page)) {
191 		memmap_boot_pages_add(-1);
192 		free_bootmem_page(page);
193 	} else {
194 		memmap_pages_add(-1);
195 		__free_page(page);
196 	}
197 }
198 
199 /* Free a list of the vmemmap pages */
free_vmemmap_page_list(struct list_head * list)200 static void free_vmemmap_page_list(struct list_head *list)
201 {
202 	struct page *page, *next;
203 
204 	list_for_each_entry_safe(page, next, list, lru)
205 		free_vmemmap_page(page);
206 }
207 
vmemmap_remap_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)208 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
209 			      struct vmemmap_remap_walk *walk)
210 {
211 	/*
212 	 * Remap the tail pages as read-only to catch illegal write operation
213 	 * to the tail pages.
214 	 */
215 	pgprot_t pgprot = PAGE_KERNEL_RO;
216 	struct page *page = pte_page(ptep_get(pte));
217 	pte_t entry;
218 
219 	/* Remapping the head page requires r/w */
220 	if (unlikely(addr == walk->reuse_addr)) {
221 		pgprot = PAGE_KERNEL;
222 		list_del(&walk->reuse_page->lru);
223 
224 		/*
225 		 * Makes sure that preceding stores to the page contents from
226 		 * vmemmap_remap_free() become visible before the set_pte_at()
227 		 * write.
228 		 */
229 		smp_wmb();
230 	}
231 
232 	entry = mk_pte(walk->reuse_page, pgprot);
233 	list_add(&page->lru, walk->vmemmap_pages);
234 	set_pte_at(&init_mm, addr, pte, entry);
235 }
236 
237 /*
238  * How many struct page structs need to be reset. When we reuse the head
239  * struct page, the special metadata (e.g. page->flags or page->mapping)
240  * cannot copy to the tail struct page structs. The invalid value will be
241  * checked in the free_tail_page_prepare(). In order to avoid the message
242  * of "corrupted mapping in tail page". We need to reset at least 4 (one
243  * head struct page struct and three tail struct page structs) struct page
244  * structs.
245  */
246 #define NR_RESET_STRUCT_PAGE		4
247 
reset_struct_pages(struct page * start)248 static inline void reset_struct_pages(struct page *start)
249 {
250 	struct page *from = start + NR_RESET_STRUCT_PAGE;
251 
252 	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
253 	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
254 }
255 
vmemmap_restore_pte(pte_t * pte,unsigned long addr,struct vmemmap_remap_walk * walk)256 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
257 				struct vmemmap_remap_walk *walk)
258 {
259 	pgprot_t pgprot = PAGE_KERNEL;
260 	struct page *page;
261 	void *to;
262 
263 	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
264 
265 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
266 	list_del(&page->lru);
267 	to = page_to_virt(page);
268 	copy_page(to, (void *)walk->reuse_addr);
269 	reset_struct_pages(to);
270 
271 	/*
272 	 * Makes sure that preceding stores to the page contents become visible
273 	 * before the set_pte_at() write.
274 	 */
275 	smp_wmb();
276 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
277 }
278 
279 /**
280  * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
281  *                      backing PMDs of the directmap into PTEs
282  * @start:     start address of the vmemmap virtual address range that we want
283  *             to remap.
284  * @end:       end address of the vmemmap virtual address range that we want to
285  *             remap.
286  * @reuse:     reuse address.
287  *
288  * Return: %0 on success, negative error code otherwise.
289  */
vmemmap_remap_split(unsigned long start,unsigned long end,unsigned long reuse)290 static int vmemmap_remap_split(unsigned long start, unsigned long end,
291 			       unsigned long reuse)
292 {
293 	struct vmemmap_remap_walk walk = {
294 		.remap_pte	= NULL,
295 		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
296 	};
297 
298 	/* See the comment in the vmemmap_remap_free(). */
299 	BUG_ON(start - reuse != PAGE_SIZE);
300 
301 	return vmemmap_remap_range(reuse, end, &walk);
302 }
303 
304 /**
305  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
306  *			to the page which @reuse is mapped to, then free vmemmap
307  *			which the range are mapped to.
308  * @start:	start address of the vmemmap virtual address range that we want
309  *		to remap.
310  * @end:	end address of the vmemmap virtual address range that we want to
311  *		remap.
312  * @reuse:	reuse address.
313  * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
314  *		responsibility to free pages.
315  * @flags:	modifications to vmemmap_remap_walk flags
316  *
317  * Return: %0 on success, negative error code otherwise.
318  */
vmemmap_remap_free(unsigned long start,unsigned long end,unsigned long reuse,struct list_head * vmemmap_pages,unsigned long flags)319 static int vmemmap_remap_free(unsigned long start, unsigned long end,
320 			      unsigned long reuse,
321 			      struct list_head *vmemmap_pages,
322 			      unsigned long flags)
323 {
324 	int ret;
325 	struct vmemmap_remap_walk walk = {
326 		.remap_pte	= vmemmap_remap_pte,
327 		.reuse_addr	= reuse,
328 		.vmemmap_pages	= vmemmap_pages,
329 		.flags		= flags,
330 	};
331 	int nid = page_to_nid((struct page *)reuse);
332 	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
333 
334 	/*
335 	 * Allocate a new head vmemmap page to avoid breaking a contiguous
336 	 * block of struct page memory when freeing it back to page allocator
337 	 * in free_vmemmap_page_list(). This will allow the likely contiguous
338 	 * struct page backing memory to be kept contiguous and allowing for
339 	 * more allocations of hugepages. Fallback to the currently
340 	 * mapped head page in case should it fail to allocate.
341 	 */
342 	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
343 	if (walk.reuse_page) {
344 		copy_page(page_to_virt(walk.reuse_page),
345 			  (void *)walk.reuse_addr);
346 		list_add(&walk.reuse_page->lru, vmemmap_pages);
347 		memmap_pages_add(1);
348 	}
349 
350 	/*
351 	 * In order to make remapping routine most efficient for the huge pages,
352 	 * the routine of vmemmap page table walking has the following rules
353 	 * (see more details from the vmemmap_pte_range()):
354 	 *
355 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
356 	 *   should be continuous.
357 	 * - The @reuse address is part of the range [@reuse, @end) that we are
358 	 *   walking which is passed to vmemmap_remap_range().
359 	 * - The @reuse address is the first in the complete range.
360 	 *
361 	 * So we need to make sure that @start and @reuse meet the above rules.
362 	 */
363 	BUG_ON(start - reuse != PAGE_SIZE);
364 
365 	ret = vmemmap_remap_range(reuse, end, &walk);
366 	if (ret && walk.nr_walked) {
367 		end = reuse + walk.nr_walked * PAGE_SIZE;
368 		/*
369 		 * vmemmap_pages contains pages from the previous
370 		 * vmemmap_remap_range call which failed.  These
371 		 * are pages which were removed from the vmemmap.
372 		 * They will be restored in the following call.
373 		 */
374 		walk = (struct vmemmap_remap_walk) {
375 			.remap_pte	= vmemmap_restore_pte,
376 			.reuse_addr	= reuse,
377 			.vmemmap_pages	= vmemmap_pages,
378 			.flags		= 0,
379 		};
380 
381 		vmemmap_remap_range(reuse, end, &walk);
382 	}
383 
384 	return ret;
385 }
386 
alloc_vmemmap_page_list(unsigned long start,unsigned long end,struct list_head * list)387 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
388 				   struct list_head *list)
389 {
390 	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
391 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
392 	int nid = page_to_nid((struct page *)start);
393 	struct page *page, *next;
394 	int i;
395 
396 	for (i = 0; i < nr_pages; i++) {
397 		page = alloc_pages_node(nid, gfp_mask, 0);
398 		if (!page)
399 			goto out;
400 		list_add(&page->lru, list);
401 	}
402 	memmap_pages_add(nr_pages);
403 
404 	return 0;
405 out:
406 	list_for_each_entry_safe(page, next, list, lru)
407 		__free_page(page);
408 	return -ENOMEM;
409 }
410 
411 /**
412  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
413  *			 to the page which is from the @vmemmap_pages
414  *			 respectively.
415  * @start:	start address of the vmemmap virtual address range that we want
416  *		to remap.
417  * @end:	end address of the vmemmap virtual address range that we want to
418  *		remap.
419  * @reuse:	reuse address.
420  * @flags:	modifications to vmemmap_remap_walk flags
421  *
422  * Return: %0 on success, negative error code otherwise.
423  */
vmemmap_remap_alloc(unsigned long start,unsigned long end,unsigned long reuse,unsigned long flags)424 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
425 			       unsigned long reuse, unsigned long flags)
426 {
427 	LIST_HEAD(vmemmap_pages);
428 	struct vmemmap_remap_walk walk = {
429 		.remap_pte	= vmemmap_restore_pte,
430 		.reuse_addr	= reuse,
431 		.vmemmap_pages	= &vmemmap_pages,
432 		.flags		= flags,
433 	};
434 
435 	/* See the comment in the vmemmap_remap_free(). */
436 	BUG_ON(start - reuse != PAGE_SIZE);
437 
438 	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
439 		return -ENOMEM;
440 
441 	return vmemmap_remap_range(reuse, end, &walk);
442 }
443 
444 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
445 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
446 
447 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
hugetlb_vmemmap_optimize_param(char * buf)448 static int __init hugetlb_vmemmap_optimize_param(char *buf)
449 {
450 	return kstrtobool(buf, &vmemmap_optimize_enabled);
451 }
452 early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
453 
__hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio,unsigned long flags)454 static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
455 					   struct folio *folio, unsigned long flags)
456 {
457 	int ret;
458 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
459 	unsigned long vmemmap_reuse;
460 
461 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
462 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
463 
464 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
465 		return 0;
466 
467 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
468 		synchronize_rcu();
469 
470 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
471 	vmemmap_reuse	= vmemmap_start;
472 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
473 
474 	/*
475 	 * The pages which the vmemmap virtual address range [@vmemmap_start,
476 	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
477 	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
478 	 * When a HugeTLB page is freed to the buddy allocator, previously
479 	 * discarded vmemmap pages must be allocated and remapping.
480 	 */
481 	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
482 	if (!ret) {
483 		folio_clear_hugetlb_vmemmap_optimized(folio);
484 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
485 	}
486 
487 	return ret;
488 }
489 
490 /**
491  * hugetlb_vmemmap_restore_folio - restore previously optimized (by
492  *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
493  *				will be reallocated and remapped.
494  * @h:		struct hstate.
495  * @folio:     the folio whose vmemmap pages will be restored.
496  *
497  * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
498  * negative error code otherwise.
499  */
hugetlb_vmemmap_restore_folio(const struct hstate * h,struct folio * folio)500 int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
501 {
502 	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
503 }
504 
505 /**
506  * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
507  * @h:			hstate.
508  * @folio_list:		list of folios.
509  * @non_hvo_folios:	Output list of folios for which vmemmap exists.
510  *
511  * Return: number of folios for which vmemmap was restored, or an error code
512  *		if an error was encountered restoring vmemmap for a folio.
513  *		Folios that have vmemmap are moved to the non_hvo_folios
514  *		list.  Processing of entries stops when the first error is
515  *		encountered. The folio that experienced the error and all
516  *		non-processed folios will remain on folio_list.
517  */
hugetlb_vmemmap_restore_folios(const struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)518 long hugetlb_vmemmap_restore_folios(const struct hstate *h,
519 					struct list_head *folio_list,
520 					struct list_head *non_hvo_folios)
521 {
522 	struct folio *folio, *t_folio;
523 	long restored = 0;
524 	long ret = 0;
525 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
526 
527 	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
528 		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
529 			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
530 			/* only need to synchronize_rcu() once for each batch */
531 			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
532 
533 			if (ret)
534 				break;
535 			restored++;
536 		}
537 
538 		/* Add non-optimized folios to output list */
539 		list_move(&folio->lru, non_hvo_folios);
540 	}
541 
542 	if (restored)
543 		flush_tlb_all();
544 	if (!ret)
545 		ret = restored;
546 	return ret;
547 }
548 
549 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
vmemmap_should_optimize_folio(const struct hstate * h,struct folio * folio)550 static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
551 {
552 	if (folio_test_hugetlb_vmemmap_optimized(folio))
553 		return false;
554 
555 	if (!READ_ONCE(vmemmap_optimize_enabled))
556 		return false;
557 
558 	if (!hugetlb_vmemmap_optimizable(h))
559 		return false;
560 
561 	return true;
562 }
563 
__hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio,struct list_head * vmemmap_pages,unsigned long flags)564 static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
565 					    struct folio *folio,
566 					    struct list_head *vmemmap_pages,
567 					    unsigned long flags)
568 {
569 	int ret = 0;
570 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
571 	unsigned long vmemmap_reuse;
572 
573 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
574 	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
575 
576 	if (!vmemmap_should_optimize_folio(h, folio))
577 		return ret;
578 
579 	static_branch_inc(&hugetlb_optimize_vmemmap_key);
580 
581 	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
582 		synchronize_rcu();
583 	/*
584 	 * Very Subtle
585 	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
586 	 * immediately after remapping.  As a result, subsequent accesses
587 	 * and modifications to struct pages associated with the hugetlb
588 	 * page could be to the OLD struct pages.  Set the vmemmap optimized
589 	 * flag here so that it is copied to the new head page.  This keeps
590 	 * the old and new struct pages in sync.
591 	 * If there is an error during optimization, we will immediately FLUSH
592 	 * the TLB and clear the flag below.
593 	 */
594 	folio_set_hugetlb_vmemmap_optimized(folio);
595 
596 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
597 	vmemmap_reuse	= vmemmap_start;
598 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
599 
600 	/*
601 	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
602 	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
603 	 * mapping the range to vmemmap_pages list so that they can be freed by
604 	 * the caller.
605 	 */
606 	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
607 				 vmemmap_pages, flags);
608 	if (ret) {
609 		static_branch_dec(&hugetlb_optimize_vmemmap_key);
610 		folio_clear_hugetlb_vmemmap_optimized(folio);
611 	}
612 
613 	return ret;
614 }
615 
616 /**
617  * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
618  * @h:		struct hstate.
619  * @folio:     the folio whose vmemmap pages will be optimized.
620  *
621  * This function only tries to optimize @folio's vmemmap pages and does not
622  * guarantee that the optimization will succeed after it returns. The caller
623  * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
624  * vmemmap pages have been optimized.
625  */
hugetlb_vmemmap_optimize_folio(const struct hstate * h,struct folio * folio)626 void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
627 {
628 	LIST_HEAD(vmemmap_pages);
629 
630 	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
631 	free_vmemmap_page_list(&vmemmap_pages);
632 }
633 
hugetlb_vmemmap_split_folio(const struct hstate * h,struct folio * folio)634 static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
635 {
636 	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
637 	unsigned long vmemmap_reuse;
638 
639 	if (!vmemmap_should_optimize_folio(h, folio))
640 		return 0;
641 
642 	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
643 	vmemmap_reuse	= vmemmap_start;
644 	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
645 
646 	/*
647 	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
648 	 * @vmemmap_end]
649 	 */
650 	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
651 }
652 
__hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list,bool boot)653 static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
654 					      struct list_head *folio_list,
655 					      bool boot)
656 {
657 	struct folio *folio;
658 	int nr_to_optimize;
659 	LIST_HEAD(vmemmap_pages);
660 	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
661 
662 	nr_to_optimize = 0;
663 	list_for_each_entry(folio, folio_list, lru) {
664 		int ret;
665 		unsigned long spfn, epfn;
666 
667 		if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
668 			/*
669 			 * Already optimized by pre-HVO, just map the
670 			 * mirrored tail page structs RO.
671 			 */
672 			spfn = (unsigned long)&folio->page;
673 			epfn = spfn + pages_per_huge_page(h);
674 			vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
675 					HUGETLB_VMEMMAP_RESERVE_SIZE);
676 			register_page_bootmem_memmap(pfn_to_section_nr(spfn),
677 					&folio->page,
678 					HUGETLB_VMEMMAP_RESERVE_SIZE);
679 			static_branch_inc(&hugetlb_optimize_vmemmap_key);
680 			continue;
681 		}
682 
683 		nr_to_optimize++;
684 
685 		ret = hugetlb_vmemmap_split_folio(h, folio);
686 
687 		/*
688 		 * Splitting the PMD requires allocating a page, thus let's fail
689 		 * early once we encounter the first OOM. No point in retrying
690 		 * as it can be dynamically done on remap with the memory
691 		 * we get back from the vmemmap deduplication.
692 		 */
693 		if (ret == -ENOMEM)
694 			break;
695 	}
696 
697 	if (!nr_to_optimize)
698 		/*
699 		 * All pre-HVO folios, nothing left to do. It's ok if
700 		 * there is a mix of pre-HVO and not yet HVO-ed folios
701 		 * here, as __hugetlb_vmemmap_optimize_folio() will
702 		 * skip any folios that already have the optimized flag
703 		 * set, see vmemmap_should_optimize_folio().
704 		 */
705 		goto out;
706 
707 	flush_tlb_all();
708 
709 	list_for_each_entry(folio, folio_list, lru) {
710 		int ret;
711 
712 		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
713 		/* only need to synchronize_rcu() once for each batch */
714 		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
715 
716 		/*
717 		 * Pages to be freed may have been accumulated.  If we
718 		 * encounter an ENOMEM,  free what we have and try again.
719 		 * This can occur in the case that both splitting fails
720 		 * halfway and head page allocation also failed. In this
721 		 * case __hugetlb_vmemmap_optimize_folio() would free memory
722 		 * allowing more vmemmap remaps to occur.
723 		 */
724 		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
725 			flush_tlb_all();
726 			free_vmemmap_page_list(&vmemmap_pages);
727 			INIT_LIST_HEAD(&vmemmap_pages);
728 			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
729 		}
730 	}
731 
732 out:
733 	flush_tlb_all();
734 	free_vmemmap_page_list(&vmemmap_pages);
735 }
736 
hugetlb_vmemmap_optimize_folios(struct hstate * h,struct list_head * folio_list)737 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
738 {
739 	__hugetlb_vmemmap_optimize_folios(h, folio_list, false);
740 }
741 
hugetlb_vmemmap_optimize_bootmem_folios(struct hstate * h,struct list_head * folio_list)742 void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
743 {
744 	__hugetlb_vmemmap_optimize_folios(h, folio_list, true);
745 }
746 
747 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
748 
749 /* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page * m)750 static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
751 {
752 	unsigned long section_size, psize, pmd_vmemmap_size;
753 	phys_addr_t paddr;
754 
755 	if (!READ_ONCE(vmemmap_optimize_enabled))
756 		return false;
757 
758 	if (!hugetlb_vmemmap_optimizable(m->hstate))
759 		return false;
760 
761 	psize = huge_page_size(m->hstate);
762 	paddr = virt_to_phys(m);
763 
764 	/*
765 	 * Pre-HVO only works if the bootmem huge page
766 	 * is aligned to the section size.
767 	 */
768 	section_size = (1UL << PA_SECTION_SHIFT);
769 	if (!IS_ALIGNED(paddr, section_size) ||
770 	    !IS_ALIGNED(psize, section_size))
771 		return false;
772 
773 	/*
774 	 * The pre-HVO code does not deal with splitting PMDS,
775 	 * so the bootmem page must be aligned to the number
776 	 * of base pages that can be mapped with one vmemmap PMD.
777 	 */
778 	pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
779 	if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
780 	    !IS_ALIGNED(psize, pmd_vmemmap_size))
781 		return false;
782 
783 	return true;
784 }
785 
786 /*
787  * Initialize memmap section for a gigantic page, HVO-style.
788  */
hugetlb_vmemmap_init_early(int nid)789 void __init hugetlb_vmemmap_init_early(int nid)
790 {
791 	unsigned long psize, paddr, section_size;
792 	unsigned long ns, i, pnum, pfn, nr_pages;
793 	unsigned long start, end;
794 	struct huge_bootmem_page *m = NULL;
795 	void *map;
796 
797 	/*
798 	 * Noting to do if bootmem pages were not allocated
799 	 * early in boot, or if HVO wasn't enabled in the
800 	 * first place.
801 	 */
802 	if (!hugetlb_bootmem_allocated())
803 		return;
804 
805 	if (!READ_ONCE(vmemmap_optimize_enabled))
806 		return;
807 
808 	section_size = (1UL << PA_SECTION_SHIFT);
809 
810 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
811 		if (!vmemmap_should_optimize_bootmem_page(m))
812 			continue;
813 
814 		nr_pages = pages_per_huge_page(m->hstate);
815 		psize = nr_pages << PAGE_SHIFT;
816 		paddr = virt_to_phys(m);
817 		pfn = PHYS_PFN(paddr);
818 		map = pfn_to_page(pfn);
819 		start = (unsigned long)map;
820 		end = start + nr_pages * sizeof(struct page);
821 
822 		if (vmemmap_populate_hvo(start, end, nid,
823 					HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
824 			continue;
825 
826 		memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
827 
828 		pnum = pfn_to_section_nr(pfn);
829 		ns = psize / section_size;
830 
831 		for (i = 0; i < ns; i++) {
832 			sparse_init_early_section(nid, map, pnum,
833 					SECTION_IS_VMEMMAP_PREINIT);
834 			map += section_map_size();
835 			pnum++;
836 		}
837 
838 		m->flags |= HUGE_BOOTMEM_HVO;
839 	}
840 }
841 
hugetlb_vmemmap_init_late(int nid)842 void __init hugetlb_vmemmap_init_late(int nid)
843 {
844 	struct huge_bootmem_page *m, *tm;
845 	unsigned long phys, nr_pages, start, end;
846 	unsigned long pfn, nr_mmap;
847 	struct hstate *h;
848 	void *map;
849 
850 	if (!hugetlb_bootmem_allocated())
851 		return;
852 
853 	if (!READ_ONCE(vmemmap_optimize_enabled))
854 		return;
855 
856 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
857 		if (!(m->flags & HUGE_BOOTMEM_HVO))
858 			continue;
859 
860 		phys = virt_to_phys(m);
861 		h = m->hstate;
862 		pfn = PHYS_PFN(phys);
863 		nr_pages = pages_per_huge_page(h);
864 
865 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
866 			/*
867 			 * Oops, the hugetlb page spans multiple zones.
868 			 * Remove it from the list, and undo HVO.
869 			 */
870 			list_del(&m->list);
871 
872 			map = pfn_to_page(pfn);
873 
874 			start = (unsigned long)map;
875 			end = start + nr_pages * sizeof(struct page);
876 
877 			vmemmap_undo_hvo(start, end, nid,
878 					 HUGETLB_VMEMMAP_RESERVE_SIZE);
879 			nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
880 			memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
881 
882 			memblock_phys_free(phys, huge_page_size(h));
883 			continue;
884 		} else
885 			m->flags |= HUGE_BOOTMEM_ZONES_VALID;
886 	}
887 }
888 #endif
889 
890 static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
891 	{
892 		.procname	= "hugetlb_optimize_vmemmap",
893 		.data		= &vmemmap_optimize_enabled,
894 		.maxlen		= sizeof(vmemmap_optimize_enabled),
895 		.mode		= 0644,
896 		.proc_handler	= proc_dobool,
897 	},
898 };
899 
hugetlb_vmemmap_init(void)900 static int __init hugetlb_vmemmap_init(void)
901 {
902 	const struct hstate *h;
903 
904 	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
905 	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
906 
907 	for_each_hstate(h) {
908 		if (hugetlb_vmemmap_optimizable(h)) {
909 			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
910 			break;
911 		}
912 	}
913 	return 0;
914 }
915 late_initcall(hugetlb_vmemmap_init);
916