xref: /linux/mm/huge_memory.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/* ->lru in the tail pages is occupied by compound_head. */
487 	return &page[2].deferred_list;
488 }
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 		loff_t off, unsigned long flags, unsigned long size)
503 {
504 	unsigned long addr;
505 	loff_t off_end = off + len;
506 	loff_t off_align = round_up(off, size);
507 	unsigned long len_pad;
508 
509 	if (off_end <= off_align || (off_end - off_align) < size)
510 		return 0;
511 
512 	len_pad = len + size;
513 	if (len_pad < len || (off + len_pad) < off)
514 		return 0;
515 
516 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 					      off >> PAGE_SHIFT, flags);
518 	if (IS_ERR_VALUE(addr))
519 		return 0;
520 
521 	addr += (off - addr) & (size - 1);
522 	return addr;
523 }
524 
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 		unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529 
530 	if (addr)
531 		goto out;
532 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 		goto out;
534 
535 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 	if (addr)
537 		return addr;
538 
539  out:
540 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543 
544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
545 		gfp_t gfp)
546 {
547 	struct vm_area_struct *vma = vmf->vma;
548 	struct mem_cgroup *memcg;
549 	pgtable_t pgtable;
550 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 	int ret = 0;
552 
553 	VM_BUG_ON_PAGE(!PageCompound(page), page);
554 
555 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 		put_page(page);
557 		count_vm_event(THP_FAULT_FALLBACK);
558 		return VM_FAULT_FALLBACK;
559 	}
560 
561 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 	if (unlikely(!pgtable)) {
563 		ret = VM_FAULT_OOM;
564 		goto release;
565 	}
566 
567 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 	/*
569 	 * The memory barrier inside __SetPageUptodate makes sure that
570 	 * clear_huge_page writes become visible before the set_pmd_at()
571 	 * write.
572 	 */
573 	__SetPageUptodate(page);
574 
575 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 	if (unlikely(!pmd_none(*vmf->pmd))) {
577 		goto unlock_release;
578 	} else {
579 		pmd_t entry;
580 
581 		ret = check_stable_address_space(vma->vm_mm);
582 		if (ret)
583 			goto unlock_release;
584 
585 		/* Deliver the page fault to userland */
586 		if (userfaultfd_missing(vma)) {
587 			int ret;
588 
589 			spin_unlock(vmf->ptl);
590 			mem_cgroup_cancel_charge(page, memcg, true);
591 			put_page(page);
592 			pte_free(vma->vm_mm, pgtable);
593 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 			return ret;
596 		}
597 
598 		entry = mk_huge_pmd(page, vma->vm_page_prot);
599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 		page_add_new_anon_rmap(page, vma, haddr, true);
601 		mem_cgroup_commit_charge(page, memcg, false, true);
602 		lru_cache_add_active_or_unevictable(page, vma);
603 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 		mm_inc_nr_ptes(vma->vm_mm);
607 		spin_unlock(vmf->ptl);
608 		count_vm_event(THP_FAULT_ALLOC);
609 	}
610 
611 	return 0;
612 unlock_release:
613 	spin_unlock(vmf->ptl);
614 release:
615 	if (pgtable)
616 		pte_free(vma->vm_mm, pgtable);
617 	mem_cgroup_cancel_charge(page, memcg, true);
618 	put_page(page);
619 	return ret;
620 
621 }
622 
623 /*
624  * always: directly stall for all thp allocations
625  * defer: wake kswapd and fail if not immediately available
626  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627  *		  fail if not immediately available
628  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629  *	    available
630  * never: never stall for any thp allocation
631  */
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633 {
634 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635 
636 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 							     __GFP_KSWAPD_RECLAIM);
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     0);
646 	return GFP_TRANSHUGE_LIGHT;
647 }
648 
649 /* Caller must hold page table lock. */
650 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652 		struct page *zero_page)
653 {
654 	pmd_t entry;
655 	if (!pmd_none(*pmd))
656 		return false;
657 	entry = mk_pmd(zero_page, vma->vm_page_prot);
658 	entry = pmd_mkhuge(entry);
659 	if (pgtable)
660 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
661 	set_pmd_at(mm, haddr, pmd, entry);
662 	mm_inc_nr_ptes(mm);
663 	return true;
664 }
665 
666 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
667 {
668 	struct vm_area_struct *vma = vmf->vma;
669 	gfp_t gfp;
670 	struct page *page;
671 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
672 
673 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674 		return VM_FAULT_FALLBACK;
675 	if (unlikely(anon_vma_prepare(vma)))
676 		return VM_FAULT_OOM;
677 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678 		return VM_FAULT_OOM;
679 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
680 			!mm_forbids_zeropage(vma->vm_mm) &&
681 			transparent_hugepage_use_zero_page()) {
682 		pgtable_t pgtable;
683 		struct page *zero_page;
684 		bool set;
685 		int ret;
686 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
687 		if (unlikely(!pgtable))
688 			return VM_FAULT_OOM;
689 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
690 		if (unlikely(!zero_page)) {
691 			pte_free(vma->vm_mm, pgtable);
692 			count_vm_event(THP_FAULT_FALLBACK);
693 			return VM_FAULT_FALLBACK;
694 		}
695 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 		ret = 0;
697 		set = false;
698 		if (pmd_none(*vmf->pmd)) {
699 			ret = check_stable_address_space(vma->vm_mm);
700 			if (ret) {
701 				spin_unlock(vmf->ptl);
702 			} else if (userfaultfd_missing(vma)) {
703 				spin_unlock(vmf->ptl);
704 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 			} else {
707 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
708 						   haddr, vmf->pmd, zero_page);
709 				spin_unlock(vmf->ptl);
710 				set = true;
711 			}
712 		} else
713 			spin_unlock(vmf->ptl);
714 		if (!set)
715 			pte_free(vma->vm_mm, pgtable);
716 		return ret;
717 	}
718 	gfp = alloc_hugepage_direct_gfpmask(vma);
719 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 	if (unlikely(!page)) {
721 		count_vm_event(THP_FAULT_FALLBACK);
722 		return VM_FAULT_FALLBACK;
723 	}
724 	prep_transhuge_page(page);
725 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
726 }
727 
728 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 		pgtable_t pgtable)
731 {
732 	struct mm_struct *mm = vma->vm_mm;
733 	pmd_t entry;
734 	spinlock_t *ptl;
735 
736 	ptl = pmd_lock(mm, pmd);
737 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 	if (pfn_t_devmap(pfn))
739 		entry = pmd_mkdevmap(entry);
740 	if (write) {
741 		entry = pmd_mkyoung(pmd_mkdirty(entry));
742 		entry = maybe_pmd_mkwrite(entry, vma);
743 	}
744 
745 	if (pgtable) {
746 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
747 		mm_inc_nr_ptes(mm);
748 	}
749 
750 	set_pmd_at(mm, addr, pmd, entry);
751 	update_mmu_cache_pmd(vma, addr, pmd);
752 	spin_unlock(ptl);
753 }
754 
755 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
756 			pmd_t *pmd, pfn_t pfn, bool write)
757 {
758 	pgprot_t pgprot = vma->vm_page_prot;
759 	pgtable_t pgtable = NULL;
760 	/*
761 	 * If we had pmd_special, we could avoid all these restrictions,
762 	 * but we need to be consistent with PTEs and architectures that
763 	 * can't support a 'special' bit.
764 	 */
765 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
766 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
767 						(VM_PFNMAP|VM_MIXEDMAP));
768 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
769 	BUG_ON(!pfn_t_devmap(pfn));
770 
771 	if (addr < vma->vm_start || addr >= vma->vm_end)
772 		return VM_FAULT_SIGBUS;
773 
774 	if (arch_needs_pgtable_deposit()) {
775 		pgtable = pte_alloc_one(vma->vm_mm, addr);
776 		if (!pgtable)
777 			return VM_FAULT_OOM;
778 	}
779 
780 	track_pfn_insert(vma, &pgprot, pfn);
781 
782 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
783 	return VM_FAULT_NOPAGE;
784 }
785 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
786 
787 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
789 {
790 	if (likely(vma->vm_flags & VM_WRITE))
791 		pud = pud_mkwrite(pud);
792 	return pud;
793 }
794 
795 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
797 {
798 	struct mm_struct *mm = vma->vm_mm;
799 	pud_t entry;
800 	spinlock_t *ptl;
801 
802 	ptl = pud_lock(mm, pud);
803 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 	if (pfn_t_devmap(pfn))
805 		entry = pud_mkdevmap(entry);
806 	if (write) {
807 		entry = pud_mkyoung(pud_mkdirty(entry));
808 		entry = maybe_pud_mkwrite(entry, vma);
809 	}
810 	set_pud_at(mm, addr, pud, entry);
811 	update_mmu_cache_pud(vma, addr, pud);
812 	spin_unlock(ptl);
813 }
814 
815 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 			pud_t *pud, pfn_t pfn, bool write)
817 {
818 	pgprot_t pgprot = vma->vm_page_prot;
819 	/*
820 	 * If we had pud_special, we could avoid all these restrictions,
821 	 * but we need to be consistent with PTEs and architectures that
822 	 * can't support a 'special' bit.
823 	 */
824 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
825 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
826 						(VM_PFNMAP|VM_MIXEDMAP));
827 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
828 	BUG_ON(!pfn_t_devmap(pfn));
829 
830 	if (addr < vma->vm_start || addr >= vma->vm_end)
831 		return VM_FAULT_SIGBUS;
832 
833 	track_pfn_insert(vma, &pgprot, pfn);
834 
835 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 	return VM_FAULT_NOPAGE;
837 }
838 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
840 
841 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
842 		pmd_t *pmd, int flags)
843 {
844 	pmd_t _pmd;
845 
846 	_pmd = pmd_mkyoung(*pmd);
847 	if (flags & FOLL_WRITE)
848 		_pmd = pmd_mkdirty(_pmd);
849 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
850 				pmd, _pmd, flags & FOLL_WRITE))
851 		update_mmu_cache_pmd(vma, addr, pmd);
852 }
853 
854 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
855 		pmd_t *pmd, int flags)
856 {
857 	unsigned long pfn = pmd_pfn(*pmd);
858 	struct mm_struct *mm = vma->vm_mm;
859 	struct dev_pagemap *pgmap;
860 	struct page *page;
861 
862 	assert_spin_locked(pmd_lockptr(mm, pmd));
863 
864 	/*
865 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
866 	 * not be in this function with `flags & FOLL_COW` set.
867 	 */
868 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
869 
870 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
871 		return NULL;
872 
873 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
874 		/* pass */;
875 	else
876 		return NULL;
877 
878 	if (flags & FOLL_TOUCH)
879 		touch_pmd(vma, addr, pmd, flags);
880 
881 	/*
882 	 * device mapped pages can only be returned if the
883 	 * caller will manage the page reference count.
884 	 */
885 	if (!(flags & FOLL_GET))
886 		return ERR_PTR(-EEXIST);
887 
888 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
889 	pgmap = get_dev_pagemap(pfn, NULL);
890 	if (!pgmap)
891 		return ERR_PTR(-EFAULT);
892 	page = pfn_to_page(pfn);
893 	get_page(page);
894 	put_dev_pagemap(pgmap);
895 
896 	return page;
897 }
898 
899 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
901 		  struct vm_area_struct *vma)
902 {
903 	spinlock_t *dst_ptl, *src_ptl;
904 	struct page *src_page;
905 	pmd_t pmd;
906 	pgtable_t pgtable = NULL;
907 	int ret = -ENOMEM;
908 
909 	/* Skip if can be re-fill on fault */
910 	if (!vma_is_anonymous(vma))
911 		return 0;
912 
913 	pgtable = pte_alloc_one(dst_mm, addr);
914 	if (unlikely(!pgtable))
915 		goto out;
916 
917 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
918 	src_ptl = pmd_lockptr(src_mm, src_pmd);
919 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
920 
921 	ret = -EAGAIN;
922 	pmd = *src_pmd;
923 
924 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
925 	if (unlikely(is_swap_pmd(pmd))) {
926 		swp_entry_t entry = pmd_to_swp_entry(pmd);
927 
928 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
929 		if (is_write_migration_entry(entry)) {
930 			make_migration_entry_read(&entry);
931 			pmd = swp_entry_to_pmd(entry);
932 			if (pmd_swp_soft_dirty(*src_pmd))
933 				pmd = pmd_swp_mksoft_dirty(pmd);
934 			set_pmd_at(src_mm, addr, src_pmd, pmd);
935 		}
936 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
937 		mm_inc_nr_ptes(dst_mm);
938 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
939 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
940 		ret = 0;
941 		goto out_unlock;
942 	}
943 #endif
944 
945 	if (unlikely(!pmd_trans_huge(pmd))) {
946 		pte_free(dst_mm, pgtable);
947 		goto out_unlock;
948 	}
949 	/*
950 	 * When page table lock is held, the huge zero pmd should not be
951 	 * under splitting since we don't split the page itself, only pmd to
952 	 * a page table.
953 	 */
954 	if (is_huge_zero_pmd(pmd)) {
955 		struct page *zero_page;
956 		/*
957 		 * get_huge_zero_page() will never allocate a new page here,
958 		 * since we already have a zero page to copy. It just takes a
959 		 * reference.
960 		 */
961 		zero_page = mm_get_huge_zero_page(dst_mm);
962 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
963 				zero_page);
964 		ret = 0;
965 		goto out_unlock;
966 	}
967 
968 	src_page = pmd_page(pmd);
969 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970 	get_page(src_page);
971 	page_dup_rmap(src_page, true);
972 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
973 	mm_inc_nr_ptes(dst_mm);
974 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
975 
976 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
977 	pmd = pmd_mkold(pmd_wrprotect(pmd));
978 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
979 
980 	ret = 0;
981 out_unlock:
982 	spin_unlock(src_ptl);
983 	spin_unlock(dst_ptl);
984 out:
985 	return ret;
986 }
987 
988 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
989 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
990 		pud_t *pud, int flags)
991 {
992 	pud_t _pud;
993 
994 	_pud = pud_mkyoung(*pud);
995 	if (flags & FOLL_WRITE)
996 		_pud = pud_mkdirty(_pud);
997 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
998 				pud, _pud, flags & FOLL_WRITE))
999 		update_mmu_cache_pud(vma, addr, pud);
1000 }
1001 
1002 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1003 		pud_t *pud, int flags)
1004 {
1005 	unsigned long pfn = pud_pfn(*pud);
1006 	struct mm_struct *mm = vma->vm_mm;
1007 	struct dev_pagemap *pgmap;
1008 	struct page *page;
1009 
1010 	assert_spin_locked(pud_lockptr(mm, pud));
1011 
1012 	if (flags & FOLL_WRITE && !pud_write(*pud))
1013 		return NULL;
1014 
1015 	if (pud_present(*pud) && pud_devmap(*pud))
1016 		/* pass */;
1017 	else
1018 		return NULL;
1019 
1020 	if (flags & FOLL_TOUCH)
1021 		touch_pud(vma, addr, pud, flags);
1022 
1023 	/*
1024 	 * device mapped pages can only be returned if the
1025 	 * caller will manage the page reference count.
1026 	 */
1027 	if (!(flags & FOLL_GET))
1028 		return ERR_PTR(-EEXIST);
1029 
1030 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1031 	pgmap = get_dev_pagemap(pfn, NULL);
1032 	if (!pgmap)
1033 		return ERR_PTR(-EFAULT);
1034 	page = pfn_to_page(pfn);
1035 	get_page(page);
1036 	put_dev_pagemap(pgmap);
1037 
1038 	return page;
1039 }
1040 
1041 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1042 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 		  struct vm_area_struct *vma)
1044 {
1045 	spinlock_t *dst_ptl, *src_ptl;
1046 	pud_t pud;
1047 	int ret;
1048 
1049 	dst_ptl = pud_lock(dst_mm, dst_pud);
1050 	src_ptl = pud_lockptr(src_mm, src_pud);
1051 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1052 
1053 	ret = -EAGAIN;
1054 	pud = *src_pud;
1055 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1056 		goto out_unlock;
1057 
1058 	/*
1059 	 * When page table lock is held, the huge zero pud should not be
1060 	 * under splitting since we don't split the page itself, only pud to
1061 	 * a page table.
1062 	 */
1063 	if (is_huge_zero_pud(pud)) {
1064 		/* No huge zero pud yet */
1065 	}
1066 
1067 	pudp_set_wrprotect(src_mm, addr, src_pud);
1068 	pud = pud_mkold(pud_wrprotect(pud));
1069 	set_pud_at(dst_mm, addr, dst_pud, pud);
1070 
1071 	ret = 0;
1072 out_unlock:
1073 	spin_unlock(src_ptl);
1074 	spin_unlock(dst_ptl);
1075 	return ret;
1076 }
1077 
1078 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1079 {
1080 	pud_t entry;
1081 	unsigned long haddr;
1082 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1083 
1084 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1085 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1086 		goto unlock;
1087 
1088 	entry = pud_mkyoung(orig_pud);
1089 	if (write)
1090 		entry = pud_mkdirty(entry);
1091 	haddr = vmf->address & HPAGE_PUD_MASK;
1092 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1093 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1094 
1095 unlock:
1096 	spin_unlock(vmf->ptl);
1097 }
1098 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1099 
1100 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1101 {
1102 	pmd_t entry;
1103 	unsigned long haddr;
1104 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1105 
1106 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1107 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1108 		goto unlock;
1109 
1110 	entry = pmd_mkyoung(orig_pmd);
1111 	if (write)
1112 		entry = pmd_mkdirty(entry);
1113 	haddr = vmf->address & HPAGE_PMD_MASK;
1114 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1115 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1116 
1117 unlock:
1118 	spin_unlock(vmf->ptl);
1119 }
1120 
1121 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1122 		struct page *page)
1123 {
1124 	struct vm_area_struct *vma = vmf->vma;
1125 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1126 	struct mem_cgroup *memcg;
1127 	pgtable_t pgtable;
1128 	pmd_t _pmd;
1129 	int ret = 0, i;
1130 	struct page **pages;
1131 	unsigned long mmun_start;	/* For mmu_notifiers */
1132 	unsigned long mmun_end;		/* For mmu_notifiers */
1133 
1134 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1135 			      GFP_KERNEL);
1136 	if (unlikely(!pages)) {
1137 		ret |= VM_FAULT_OOM;
1138 		goto out;
1139 	}
1140 
1141 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1142 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1143 					       vmf->address, page_to_nid(page));
1144 		if (unlikely(!pages[i] ||
1145 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1146 				     GFP_KERNEL, &memcg, false))) {
1147 			if (pages[i])
1148 				put_page(pages[i]);
1149 			while (--i >= 0) {
1150 				memcg = (void *)page_private(pages[i]);
1151 				set_page_private(pages[i], 0);
1152 				mem_cgroup_cancel_charge(pages[i], memcg,
1153 						false);
1154 				put_page(pages[i]);
1155 			}
1156 			kfree(pages);
1157 			ret |= VM_FAULT_OOM;
1158 			goto out;
1159 		}
1160 		set_page_private(pages[i], (unsigned long)memcg);
1161 	}
1162 
1163 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1164 		copy_user_highpage(pages[i], page + i,
1165 				   haddr + PAGE_SIZE * i, vma);
1166 		__SetPageUptodate(pages[i]);
1167 		cond_resched();
1168 	}
1169 
1170 	mmun_start = haddr;
1171 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1172 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1173 
1174 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1175 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1176 		goto out_free_pages;
1177 	VM_BUG_ON_PAGE(!PageHead(page), page);
1178 
1179 	/*
1180 	 * Leave pmd empty until pte is filled note we must notify here as
1181 	 * concurrent CPU thread might write to new page before the call to
1182 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1183 	 * device seeing memory write in different order than CPU.
1184 	 *
1185 	 * See Documentation/vm/mmu_notifier.rst
1186 	 */
1187 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1188 
1189 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1190 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1191 
1192 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1193 		pte_t entry;
1194 		entry = mk_pte(pages[i], vma->vm_page_prot);
1195 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1196 		memcg = (void *)page_private(pages[i]);
1197 		set_page_private(pages[i], 0);
1198 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1199 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1200 		lru_cache_add_active_or_unevictable(pages[i], vma);
1201 		vmf->pte = pte_offset_map(&_pmd, haddr);
1202 		VM_BUG_ON(!pte_none(*vmf->pte));
1203 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1204 		pte_unmap(vmf->pte);
1205 	}
1206 	kfree(pages);
1207 
1208 	smp_wmb(); /* make pte visible before pmd */
1209 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1210 	page_remove_rmap(page, true);
1211 	spin_unlock(vmf->ptl);
1212 
1213 	/*
1214 	 * No need to double call mmu_notifier->invalidate_range() callback as
1215 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1216 	 */
1217 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1218 						mmun_end);
1219 
1220 	ret |= VM_FAULT_WRITE;
1221 	put_page(page);
1222 
1223 out:
1224 	return ret;
1225 
1226 out_free_pages:
1227 	spin_unlock(vmf->ptl);
1228 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1229 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 		memcg = (void *)page_private(pages[i]);
1231 		set_page_private(pages[i], 0);
1232 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1233 		put_page(pages[i]);
1234 	}
1235 	kfree(pages);
1236 	goto out;
1237 }
1238 
1239 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1240 {
1241 	struct vm_area_struct *vma = vmf->vma;
1242 	struct page *page = NULL, *new_page;
1243 	struct mem_cgroup *memcg;
1244 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1245 	unsigned long mmun_start;	/* For mmu_notifiers */
1246 	unsigned long mmun_end;		/* For mmu_notifiers */
1247 	gfp_t huge_gfp;			/* for allocation and charge */
1248 	int ret = 0;
1249 
1250 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1251 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1252 	if (is_huge_zero_pmd(orig_pmd))
1253 		goto alloc;
1254 	spin_lock(vmf->ptl);
1255 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1256 		goto out_unlock;
1257 
1258 	page = pmd_page(orig_pmd);
1259 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1260 	/*
1261 	 * We can only reuse the page if nobody else maps the huge page or it's
1262 	 * part.
1263 	 */
1264 	if (!trylock_page(page)) {
1265 		get_page(page);
1266 		spin_unlock(vmf->ptl);
1267 		lock_page(page);
1268 		spin_lock(vmf->ptl);
1269 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1270 			unlock_page(page);
1271 			put_page(page);
1272 			goto out_unlock;
1273 		}
1274 		put_page(page);
1275 	}
1276 	if (reuse_swap_page(page, NULL)) {
1277 		pmd_t entry;
1278 		entry = pmd_mkyoung(orig_pmd);
1279 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1280 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1281 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1282 		ret |= VM_FAULT_WRITE;
1283 		unlock_page(page);
1284 		goto out_unlock;
1285 	}
1286 	unlock_page(page);
1287 	get_page(page);
1288 	spin_unlock(vmf->ptl);
1289 alloc:
1290 	if (transparent_hugepage_enabled(vma) &&
1291 	    !transparent_hugepage_debug_cow()) {
1292 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1293 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1294 	} else
1295 		new_page = NULL;
1296 
1297 	if (likely(new_page)) {
1298 		prep_transhuge_page(new_page);
1299 	} else {
1300 		if (!page) {
1301 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1302 			ret |= VM_FAULT_FALLBACK;
1303 		} else {
1304 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1305 			if (ret & VM_FAULT_OOM) {
1306 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1307 				ret |= VM_FAULT_FALLBACK;
1308 			}
1309 			put_page(page);
1310 		}
1311 		count_vm_event(THP_FAULT_FALLBACK);
1312 		goto out;
1313 	}
1314 
1315 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1316 					huge_gfp, &memcg, true))) {
1317 		put_page(new_page);
1318 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1319 		if (page)
1320 			put_page(page);
1321 		ret |= VM_FAULT_FALLBACK;
1322 		count_vm_event(THP_FAULT_FALLBACK);
1323 		goto out;
1324 	}
1325 
1326 	count_vm_event(THP_FAULT_ALLOC);
1327 
1328 	if (!page)
1329 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1330 	else
1331 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1332 	__SetPageUptodate(new_page);
1333 
1334 	mmun_start = haddr;
1335 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1336 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1337 
1338 	spin_lock(vmf->ptl);
1339 	if (page)
1340 		put_page(page);
1341 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1342 		spin_unlock(vmf->ptl);
1343 		mem_cgroup_cancel_charge(new_page, memcg, true);
1344 		put_page(new_page);
1345 		goto out_mn;
1346 	} else {
1347 		pmd_t entry;
1348 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1349 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1350 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1351 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1352 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1353 		lru_cache_add_active_or_unevictable(new_page, vma);
1354 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1355 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1356 		if (!page) {
1357 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1358 		} else {
1359 			VM_BUG_ON_PAGE(!PageHead(page), page);
1360 			page_remove_rmap(page, true);
1361 			put_page(page);
1362 		}
1363 		ret |= VM_FAULT_WRITE;
1364 	}
1365 	spin_unlock(vmf->ptl);
1366 out_mn:
1367 	/*
1368 	 * No need to double call mmu_notifier->invalidate_range() callback as
1369 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1370 	 */
1371 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1372 					       mmun_end);
1373 out:
1374 	return ret;
1375 out_unlock:
1376 	spin_unlock(vmf->ptl);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * FOLL_FORCE can write to even unwritable pmd's, but only
1382  * after we've gone through a COW cycle and they are dirty.
1383  */
1384 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1385 {
1386 	return pmd_write(pmd) ||
1387 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1388 }
1389 
1390 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1391 				   unsigned long addr,
1392 				   pmd_t *pmd,
1393 				   unsigned int flags)
1394 {
1395 	struct mm_struct *mm = vma->vm_mm;
1396 	struct page *page = NULL;
1397 
1398 	assert_spin_locked(pmd_lockptr(mm, pmd));
1399 
1400 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1401 		goto out;
1402 
1403 	/* Avoid dumping huge zero page */
1404 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1405 		return ERR_PTR(-EFAULT);
1406 
1407 	/* Full NUMA hinting faults to serialise migration in fault paths */
1408 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1409 		goto out;
1410 
1411 	page = pmd_page(*pmd);
1412 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1413 	if (flags & FOLL_TOUCH)
1414 		touch_pmd(vma, addr, pmd, flags);
1415 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1416 		/*
1417 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1418 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1419 		 *
1420 		 * For anon THP:
1421 		 *
1422 		 * In most cases the pmd is the only mapping of the page as we
1423 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1424 		 * writable private mappings in populate_vma_page_range().
1425 		 *
1426 		 * The only scenario when we have the page shared here is if we
1427 		 * mlocking read-only mapping shared over fork(). We skip
1428 		 * mlocking such pages.
1429 		 *
1430 		 * For file THP:
1431 		 *
1432 		 * We can expect PageDoubleMap() to be stable under page lock:
1433 		 * for file pages we set it in page_add_file_rmap(), which
1434 		 * requires page to be locked.
1435 		 */
1436 
1437 		if (PageAnon(page) && compound_mapcount(page) != 1)
1438 			goto skip_mlock;
1439 		if (PageDoubleMap(page) || !page->mapping)
1440 			goto skip_mlock;
1441 		if (!trylock_page(page))
1442 			goto skip_mlock;
1443 		lru_add_drain();
1444 		if (page->mapping && !PageDoubleMap(page))
1445 			mlock_vma_page(page);
1446 		unlock_page(page);
1447 	}
1448 skip_mlock:
1449 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1450 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1451 	if (flags & FOLL_GET)
1452 		get_page(page);
1453 
1454 out:
1455 	return page;
1456 }
1457 
1458 /* NUMA hinting page fault entry point for trans huge pmds */
1459 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1460 {
1461 	struct vm_area_struct *vma = vmf->vma;
1462 	struct anon_vma *anon_vma = NULL;
1463 	struct page *page;
1464 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1465 	int page_nid = -1, this_nid = numa_node_id();
1466 	int target_nid, last_cpupid = -1;
1467 	bool page_locked;
1468 	bool migrated = false;
1469 	bool was_writable;
1470 	int flags = 0;
1471 
1472 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1473 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1474 		goto out_unlock;
1475 
1476 	/*
1477 	 * If there are potential migrations, wait for completion and retry
1478 	 * without disrupting NUMA hinting information. Do not relock and
1479 	 * check_same as the page may no longer be mapped.
1480 	 */
1481 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1482 		page = pmd_page(*vmf->pmd);
1483 		if (!get_page_unless_zero(page))
1484 			goto out_unlock;
1485 		spin_unlock(vmf->ptl);
1486 		wait_on_page_locked(page);
1487 		put_page(page);
1488 		goto out;
1489 	}
1490 
1491 	page = pmd_page(pmd);
1492 	BUG_ON(is_huge_zero_page(page));
1493 	page_nid = page_to_nid(page);
1494 	last_cpupid = page_cpupid_last(page);
1495 	count_vm_numa_event(NUMA_HINT_FAULTS);
1496 	if (page_nid == this_nid) {
1497 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1498 		flags |= TNF_FAULT_LOCAL;
1499 	}
1500 
1501 	/* See similar comment in do_numa_page for explanation */
1502 	if (!pmd_savedwrite(pmd))
1503 		flags |= TNF_NO_GROUP;
1504 
1505 	/*
1506 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1507 	 * page_table_lock if at all possible
1508 	 */
1509 	page_locked = trylock_page(page);
1510 	target_nid = mpol_misplaced(page, vma, haddr);
1511 	if (target_nid == -1) {
1512 		/* If the page was locked, there are no parallel migrations */
1513 		if (page_locked)
1514 			goto clear_pmdnuma;
1515 	}
1516 
1517 	/* Migration could have started since the pmd_trans_migrating check */
1518 	if (!page_locked) {
1519 		page_nid = -1;
1520 		if (!get_page_unless_zero(page))
1521 			goto out_unlock;
1522 		spin_unlock(vmf->ptl);
1523 		wait_on_page_locked(page);
1524 		put_page(page);
1525 		goto out;
1526 	}
1527 
1528 	/*
1529 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 	 * to serialises splits
1531 	 */
1532 	get_page(page);
1533 	spin_unlock(vmf->ptl);
1534 	anon_vma = page_lock_anon_vma_read(page);
1535 
1536 	/* Confirm the PMD did not change while page_table_lock was released */
1537 	spin_lock(vmf->ptl);
1538 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1539 		unlock_page(page);
1540 		put_page(page);
1541 		page_nid = -1;
1542 		goto out_unlock;
1543 	}
1544 
1545 	/* Bail if we fail to protect against THP splits for any reason */
1546 	if (unlikely(!anon_vma)) {
1547 		put_page(page);
1548 		page_nid = -1;
1549 		goto clear_pmdnuma;
1550 	}
1551 
1552 	/*
1553 	 * Since we took the NUMA fault, we must have observed the !accessible
1554 	 * bit. Make sure all other CPUs agree with that, to avoid them
1555 	 * modifying the page we're about to migrate.
1556 	 *
1557 	 * Must be done under PTL such that we'll observe the relevant
1558 	 * inc_tlb_flush_pending().
1559 	 *
1560 	 * We are not sure a pending tlb flush here is for a huge page
1561 	 * mapping or not. Hence use the tlb range variant
1562 	 */
1563 	if (mm_tlb_flush_pending(vma->vm_mm))
1564 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1565 
1566 	/*
1567 	 * Migrate the THP to the requested node, returns with page unlocked
1568 	 * and access rights restored.
1569 	 */
1570 	spin_unlock(vmf->ptl);
1571 
1572 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1573 				vmf->pmd, pmd, vmf->address, page, target_nid);
1574 	if (migrated) {
1575 		flags |= TNF_MIGRATED;
1576 		page_nid = target_nid;
1577 	} else
1578 		flags |= TNF_MIGRATE_FAIL;
1579 
1580 	goto out;
1581 clear_pmdnuma:
1582 	BUG_ON(!PageLocked(page));
1583 	was_writable = pmd_savedwrite(pmd);
1584 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1585 	pmd = pmd_mkyoung(pmd);
1586 	if (was_writable)
1587 		pmd = pmd_mkwrite(pmd);
1588 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1589 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1590 	unlock_page(page);
1591 out_unlock:
1592 	spin_unlock(vmf->ptl);
1593 
1594 out:
1595 	if (anon_vma)
1596 		page_unlock_anon_vma_read(anon_vma);
1597 
1598 	if (page_nid != -1)
1599 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1600 				flags);
1601 
1602 	return 0;
1603 }
1604 
1605 /*
1606  * Return true if we do MADV_FREE successfully on entire pmd page.
1607  * Otherwise, return false.
1608  */
1609 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1610 		pmd_t *pmd, unsigned long addr, unsigned long next)
1611 {
1612 	spinlock_t *ptl;
1613 	pmd_t orig_pmd;
1614 	struct page *page;
1615 	struct mm_struct *mm = tlb->mm;
1616 	bool ret = false;
1617 
1618 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1619 
1620 	ptl = pmd_trans_huge_lock(pmd, vma);
1621 	if (!ptl)
1622 		goto out_unlocked;
1623 
1624 	orig_pmd = *pmd;
1625 	if (is_huge_zero_pmd(orig_pmd))
1626 		goto out;
1627 
1628 	if (unlikely(!pmd_present(orig_pmd))) {
1629 		VM_BUG_ON(thp_migration_supported() &&
1630 				  !is_pmd_migration_entry(orig_pmd));
1631 		goto out;
1632 	}
1633 
1634 	page = pmd_page(orig_pmd);
1635 	/*
1636 	 * If other processes are mapping this page, we couldn't discard
1637 	 * the page unless they all do MADV_FREE so let's skip the page.
1638 	 */
1639 	if (page_mapcount(page) != 1)
1640 		goto out;
1641 
1642 	if (!trylock_page(page))
1643 		goto out;
1644 
1645 	/*
1646 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1647 	 * will deactivate only them.
1648 	 */
1649 	if (next - addr != HPAGE_PMD_SIZE) {
1650 		get_page(page);
1651 		spin_unlock(ptl);
1652 		split_huge_page(page);
1653 		unlock_page(page);
1654 		put_page(page);
1655 		goto out_unlocked;
1656 	}
1657 
1658 	if (PageDirty(page))
1659 		ClearPageDirty(page);
1660 	unlock_page(page);
1661 
1662 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1663 		pmdp_invalidate(vma, addr, pmd);
1664 		orig_pmd = pmd_mkold(orig_pmd);
1665 		orig_pmd = pmd_mkclean(orig_pmd);
1666 
1667 		set_pmd_at(mm, addr, pmd, orig_pmd);
1668 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1669 	}
1670 
1671 	mark_page_lazyfree(page);
1672 	ret = true;
1673 out:
1674 	spin_unlock(ptl);
1675 out_unlocked:
1676 	return ret;
1677 }
1678 
1679 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1680 {
1681 	pgtable_t pgtable;
1682 
1683 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1684 	pte_free(mm, pgtable);
1685 	mm_dec_nr_ptes(mm);
1686 }
1687 
1688 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1689 		 pmd_t *pmd, unsigned long addr)
1690 {
1691 	pmd_t orig_pmd;
1692 	spinlock_t *ptl;
1693 
1694 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1695 
1696 	ptl = __pmd_trans_huge_lock(pmd, vma);
1697 	if (!ptl)
1698 		return 0;
1699 	/*
1700 	 * For architectures like ppc64 we look at deposited pgtable
1701 	 * when calling pmdp_huge_get_and_clear. So do the
1702 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1703 	 * operations.
1704 	 */
1705 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1706 			tlb->fullmm);
1707 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1708 	if (vma_is_dax(vma)) {
1709 		if (arch_needs_pgtable_deposit())
1710 			zap_deposited_table(tlb->mm, pmd);
1711 		spin_unlock(ptl);
1712 		if (is_huge_zero_pmd(orig_pmd))
1713 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1714 	} else if (is_huge_zero_pmd(orig_pmd)) {
1715 		zap_deposited_table(tlb->mm, pmd);
1716 		spin_unlock(ptl);
1717 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718 	} else {
1719 		struct page *page = NULL;
1720 		int flush_needed = 1;
1721 
1722 		if (pmd_present(orig_pmd)) {
1723 			page = pmd_page(orig_pmd);
1724 			page_remove_rmap(page, true);
1725 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1726 			VM_BUG_ON_PAGE(!PageHead(page), page);
1727 		} else if (thp_migration_supported()) {
1728 			swp_entry_t entry;
1729 
1730 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1731 			entry = pmd_to_swp_entry(orig_pmd);
1732 			page = pfn_to_page(swp_offset(entry));
1733 			flush_needed = 0;
1734 		} else
1735 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1736 
1737 		if (PageAnon(page)) {
1738 			zap_deposited_table(tlb->mm, pmd);
1739 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1740 		} else {
1741 			if (arch_needs_pgtable_deposit())
1742 				zap_deposited_table(tlb->mm, pmd);
1743 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1744 		}
1745 
1746 		spin_unlock(ptl);
1747 		if (flush_needed)
1748 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1749 	}
1750 	return 1;
1751 }
1752 
1753 #ifndef pmd_move_must_withdraw
1754 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1755 					 spinlock_t *old_pmd_ptl,
1756 					 struct vm_area_struct *vma)
1757 {
1758 	/*
1759 	 * With split pmd lock we also need to move preallocated
1760 	 * PTE page table if new_pmd is on different PMD page table.
1761 	 *
1762 	 * We also don't deposit and withdraw tables for file pages.
1763 	 */
1764 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1765 }
1766 #endif
1767 
1768 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1769 {
1770 #ifdef CONFIG_MEM_SOFT_DIRTY
1771 	if (unlikely(is_pmd_migration_entry(pmd)))
1772 		pmd = pmd_swp_mksoft_dirty(pmd);
1773 	else if (pmd_present(pmd))
1774 		pmd = pmd_mksoft_dirty(pmd);
1775 #endif
1776 	return pmd;
1777 }
1778 
1779 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1780 		  unsigned long new_addr, unsigned long old_end,
1781 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1782 {
1783 	spinlock_t *old_ptl, *new_ptl;
1784 	pmd_t pmd;
1785 	struct mm_struct *mm = vma->vm_mm;
1786 	bool force_flush = false;
1787 
1788 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1789 	    (new_addr & ~HPAGE_PMD_MASK) ||
1790 	    old_end - old_addr < HPAGE_PMD_SIZE)
1791 		return false;
1792 
1793 	/*
1794 	 * The destination pmd shouldn't be established, free_pgtables()
1795 	 * should have release it.
1796 	 */
1797 	if (WARN_ON(!pmd_none(*new_pmd))) {
1798 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1799 		return false;
1800 	}
1801 
1802 	/*
1803 	 * We don't have to worry about the ordering of src and dst
1804 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1805 	 */
1806 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1807 	if (old_ptl) {
1808 		new_ptl = pmd_lockptr(mm, new_pmd);
1809 		if (new_ptl != old_ptl)
1810 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1811 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1812 		if (pmd_present(pmd) && pmd_dirty(pmd))
1813 			force_flush = true;
1814 		VM_BUG_ON(!pmd_none(*new_pmd));
1815 
1816 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1817 			pgtable_t pgtable;
1818 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1819 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1820 		}
1821 		pmd = move_soft_dirty_pmd(pmd);
1822 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1823 		if (new_ptl != old_ptl)
1824 			spin_unlock(new_ptl);
1825 		if (force_flush)
1826 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1827 		else
1828 			*need_flush = true;
1829 		spin_unlock(old_ptl);
1830 		return true;
1831 	}
1832 	return false;
1833 }
1834 
1835 /*
1836  * Returns
1837  *  - 0 if PMD could not be locked
1838  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1839  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1840  */
1841 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1842 		unsigned long addr, pgprot_t newprot, int prot_numa)
1843 {
1844 	struct mm_struct *mm = vma->vm_mm;
1845 	spinlock_t *ptl;
1846 	pmd_t entry;
1847 	bool preserve_write;
1848 	int ret;
1849 
1850 	ptl = __pmd_trans_huge_lock(pmd, vma);
1851 	if (!ptl)
1852 		return 0;
1853 
1854 	preserve_write = prot_numa && pmd_write(*pmd);
1855 	ret = 1;
1856 
1857 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858 	if (is_swap_pmd(*pmd)) {
1859 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1860 
1861 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1862 		if (is_write_migration_entry(entry)) {
1863 			pmd_t newpmd;
1864 			/*
1865 			 * A protection check is difficult so
1866 			 * just be safe and disable write
1867 			 */
1868 			make_migration_entry_read(&entry);
1869 			newpmd = swp_entry_to_pmd(entry);
1870 			if (pmd_swp_soft_dirty(*pmd))
1871 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1872 			set_pmd_at(mm, addr, pmd, newpmd);
1873 		}
1874 		goto unlock;
1875 	}
1876 #endif
1877 
1878 	/*
1879 	 * Avoid trapping faults against the zero page. The read-only
1880 	 * data is likely to be read-cached on the local CPU and
1881 	 * local/remote hits to the zero page are not interesting.
1882 	 */
1883 	if (prot_numa && is_huge_zero_pmd(*pmd))
1884 		goto unlock;
1885 
1886 	if (prot_numa && pmd_protnone(*pmd))
1887 		goto unlock;
1888 
1889 	/*
1890 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1891 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892 	 * which is also under down_read(mmap_sem):
1893 	 *
1894 	 *	CPU0:				CPU1:
1895 	 *				change_huge_pmd(prot_numa=1)
1896 	 *				 pmdp_huge_get_and_clear_notify()
1897 	 * madvise_dontneed()
1898 	 *  zap_pmd_range()
1899 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1900 	 *   // skip the pmd
1901 	 *				 set_pmd_at();
1902 	 *				 // pmd is re-established
1903 	 *
1904 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905 	 * which may break userspace.
1906 	 *
1907 	 * pmdp_invalidate() is required to make sure we don't miss
1908 	 * dirty/young flags set by hardware.
1909 	 */
1910 	entry = pmdp_invalidate(vma, addr, pmd);
1911 
1912 	entry = pmd_modify(entry, newprot);
1913 	if (preserve_write)
1914 		entry = pmd_mk_savedwrite(entry);
1915 	ret = HPAGE_PMD_NR;
1916 	set_pmd_at(mm, addr, pmd, entry);
1917 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1918 unlock:
1919 	spin_unlock(ptl);
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1925  *
1926  * Note that if it returns page table lock pointer, this routine returns without
1927  * unlocking page table lock. So callers must unlock it.
1928  */
1929 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1930 {
1931 	spinlock_t *ptl;
1932 	ptl = pmd_lock(vma->vm_mm, pmd);
1933 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1934 			pmd_devmap(*pmd)))
1935 		return ptl;
1936 	spin_unlock(ptl);
1937 	return NULL;
1938 }
1939 
1940 /*
1941  * Returns true if a given pud maps a thp, false otherwise.
1942  *
1943  * Note that if it returns true, this routine returns without unlocking page
1944  * table lock. So callers must unlock it.
1945  */
1946 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1947 {
1948 	spinlock_t *ptl;
1949 
1950 	ptl = pud_lock(vma->vm_mm, pud);
1951 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1952 		return ptl;
1953 	spin_unlock(ptl);
1954 	return NULL;
1955 }
1956 
1957 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1958 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1959 		 pud_t *pud, unsigned long addr)
1960 {
1961 	pud_t orig_pud;
1962 	spinlock_t *ptl;
1963 
1964 	ptl = __pud_trans_huge_lock(pud, vma);
1965 	if (!ptl)
1966 		return 0;
1967 	/*
1968 	 * For architectures like ppc64 we look at deposited pgtable
1969 	 * when calling pudp_huge_get_and_clear. So do the
1970 	 * pgtable_trans_huge_withdraw after finishing pudp related
1971 	 * operations.
1972 	 */
1973 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1974 			tlb->fullmm);
1975 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1976 	if (vma_is_dax(vma)) {
1977 		spin_unlock(ptl);
1978 		/* No zero page support yet */
1979 	} else {
1980 		/* No support for anonymous PUD pages yet */
1981 		BUG();
1982 	}
1983 	return 1;
1984 }
1985 
1986 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1987 		unsigned long haddr)
1988 {
1989 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1990 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1991 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1992 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1993 
1994 	count_vm_event(THP_SPLIT_PUD);
1995 
1996 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1997 }
1998 
1999 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2000 		unsigned long address)
2001 {
2002 	spinlock_t *ptl;
2003 	struct mm_struct *mm = vma->vm_mm;
2004 	unsigned long haddr = address & HPAGE_PUD_MASK;
2005 
2006 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2007 	ptl = pud_lock(mm, pud);
2008 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2009 		goto out;
2010 	__split_huge_pud_locked(vma, pud, haddr);
2011 
2012 out:
2013 	spin_unlock(ptl);
2014 	/*
2015 	 * No need to double call mmu_notifier->invalidate_range() callback as
2016 	 * the above pudp_huge_clear_flush_notify() did already call it.
2017 	 */
2018 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2019 					       HPAGE_PUD_SIZE);
2020 }
2021 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2022 
2023 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2024 		unsigned long haddr, pmd_t *pmd)
2025 {
2026 	struct mm_struct *mm = vma->vm_mm;
2027 	pgtable_t pgtable;
2028 	pmd_t _pmd;
2029 	int i;
2030 
2031 	/*
2032 	 * Leave pmd empty until pte is filled note that it is fine to delay
2033 	 * notification until mmu_notifier_invalidate_range_end() as we are
2034 	 * replacing a zero pmd write protected page with a zero pte write
2035 	 * protected page.
2036 	 *
2037 	 * See Documentation/vm/mmu_notifier.rst
2038 	 */
2039 	pmdp_huge_clear_flush(vma, haddr, pmd);
2040 
2041 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2042 	pmd_populate(mm, &_pmd, pgtable);
2043 
2044 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2045 		pte_t *pte, entry;
2046 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2047 		entry = pte_mkspecial(entry);
2048 		pte = pte_offset_map(&_pmd, haddr);
2049 		VM_BUG_ON(!pte_none(*pte));
2050 		set_pte_at(mm, haddr, pte, entry);
2051 		pte_unmap(pte);
2052 	}
2053 	smp_wmb(); /* make pte visible before pmd */
2054 	pmd_populate(mm, pmd, pgtable);
2055 }
2056 
2057 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2058 		unsigned long haddr, bool freeze)
2059 {
2060 	struct mm_struct *mm = vma->vm_mm;
2061 	struct page *page;
2062 	pgtable_t pgtable;
2063 	pmd_t old_pmd, _pmd;
2064 	bool young, write, soft_dirty, pmd_migration = false;
2065 	unsigned long addr;
2066 	int i;
2067 
2068 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2069 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2070 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2071 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2072 				&& !pmd_devmap(*pmd));
2073 
2074 	count_vm_event(THP_SPLIT_PMD);
2075 
2076 	if (!vma_is_anonymous(vma)) {
2077 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2078 		/*
2079 		 * We are going to unmap this huge page. So
2080 		 * just go ahead and zap it
2081 		 */
2082 		if (arch_needs_pgtable_deposit())
2083 			zap_deposited_table(mm, pmd);
2084 		if (vma_is_dax(vma))
2085 			return;
2086 		page = pmd_page(_pmd);
2087 		if (!PageDirty(page) && pmd_dirty(_pmd))
2088 			set_page_dirty(page);
2089 		if (!PageReferenced(page) && pmd_young(_pmd))
2090 			SetPageReferenced(page);
2091 		page_remove_rmap(page, true);
2092 		put_page(page);
2093 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2094 		return;
2095 	} else if (is_huge_zero_pmd(*pmd)) {
2096 		/*
2097 		 * FIXME: Do we want to invalidate secondary mmu by calling
2098 		 * mmu_notifier_invalidate_range() see comments below inside
2099 		 * __split_huge_pmd() ?
2100 		 *
2101 		 * We are going from a zero huge page write protected to zero
2102 		 * small page also write protected so it does not seems useful
2103 		 * to invalidate secondary mmu at this time.
2104 		 */
2105 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2106 	}
2107 
2108 	/*
2109 	 * Up to this point the pmd is present and huge and userland has the
2110 	 * whole access to the hugepage during the split (which happens in
2111 	 * place). If we overwrite the pmd with the not-huge version pointing
2112 	 * to the pte here (which of course we could if all CPUs were bug
2113 	 * free), userland could trigger a small page size TLB miss on the
2114 	 * small sized TLB while the hugepage TLB entry is still established in
2115 	 * the huge TLB. Some CPU doesn't like that.
2116 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2117 	 * 383 on page 93. Intel should be safe but is also warns that it's
2118 	 * only safe if the permission and cache attributes of the two entries
2119 	 * loaded in the two TLB is identical (which should be the case here).
2120 	 * But it is generally safer to never allow small and huge TLB entries
2121 	 * for the same virtual address to be loaded simultaneously. So instead
2122 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2123 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2124 	 * must remain set at all times on the pmd until the split is complete
2125 	 * for this pmd), then we flush the SMP TLB and finally we write the
2126 	 * non-huge version of the pmd entry with pmd_populate.
2127 	 */
2128 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2129 
2130 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2131 	pmd_migration = is_pmd_migration_entry(old_pmd);
2132 	if (pmd_migration) {
2133 		swp_entry_t entry;
2134 
2135 		entry = pmd_to_swp_entry(old_pmd);
2136 		page = pfn_to_page(swp_offset(entry));
2137 	} else
2138 #endif
2139 		page = pmd_page(old_pmd);
2140 	VM_BUG_ON_PAGE(!page_count(page), page);
2141 	page_ref_add(page, HPAGE_PMD_NR - 1);
2142 	if (pmd_dirty(old_pmd))
2143 		SetPageDirty(page);
2144 	write = pmd_write(old_pmd);
2145 	young = pmd_young(old_pmd);
2146 	soft_dirty = pmd_soft_dirty(old_pmd);
2147 
2148 	/*
2149 	 * Withdraw the table only after we mark the pmd entry invalid.
2150 	 * This's critical for some architectures (Power).
2151 	 */
2152 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2153 	pmd_populate(mm, &_pmd, pgtable);
2154 
2155 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2156 		pte_t entry, *pte;
2157 		/*
2158 		 * Note that NUMA hinting access restrictions are not
2159 		 * transferred to avoid any possibility of altering
2160 		 * permissions across VMAs.
2161 		 */
2162 		if (freeze || pmd_migration) {
2163 			swp_entry_t swp_entry;
2164 			swp_entry = make_migration_entry(page + i, write);
2165 			entry = swp_entry_to_pte(swp_entry);
2166 			if (soft_dirty)
2167 				entry = pte_swp_mksoft_dirty(entry);
2168 		} else {
2169 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2170 			entry = maybe_mkwrite(entry, vma);
2171 			if (!write)
2172 				entry = pte_wrprotect(entry);
2173 			if (!young)
2174 				entry = pte_mkold(entry);
2175 			if (soft_dirty)
2176 				entry = pte_mksoft_dirty(entry);
2177 		}
2178 		pte = pte_offset_map(&_pmd, addr);
2179 		BUG_ON(!pte_none(*pte));
2180 		set_pte_at(mm, addr, pte, entry);
2181 		atomic_inc(&page[i]._mapcount);
2182 		pte_unmap(pte);
2183 	}
2184 
2185 	/*
2186 	 * Set PG_double_map before dropping compound_mapcount to avoid
2187 	 * false-negative page_mapped().
2188 	 */
2189 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2190 		for (i = 0; i < HPAGE_PMD_NR; i++)
2191 			atomic_inc(&page[i]._mapcount);
2192 	}
2193 
2194 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2195 		/* Last compound_mapcount is gone. */
2196 		__dec_node_page_state(page, NR_ANON_THPS);
2197 		if (TestClearPageDoubleMap(page)) {
2198 			/* No need in mapcount reference anymore */
2199 			for (i = 0; i < HPAGE_PMD_NR; i++)
2200 				atomic_dec(&page[i]._mapcount);
2201 		}
2202 	}
2203 
2204 	smp_wmb(); /* make pte visible before pmd */
2205 	pmd_populate(mm, pmd, pgtable);
2206 
2207 	if (freeze) {
2208 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2209 			page_remove_rmap(page + i, false);
2210 			put_page(page + i);
2211 		}
2212 	}
2213 }
2214 
2215 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2216 		unsigned long address, bool freeze, struct page *page)
2217 {
2218 	spinlock_t *ptl;
2219 	struct mm_struct *mm = vma->vm_mm;
2220 	unsigned long haddr = address & HPAGE_PMD_MASK;
2221 
2222 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2223 	ptl = pmd_lock(mm, pmd);
2224 
2225 	/*
2226 	 * If caller asks to setup a migration entries, we need a page to check
2227 	 * pmd against. Otherwise we can end up replacing wrong page.
2228 	 */
2229 	VM_BUG_ON(freeze && !page);
2230 	if (page && page != pmd_page(*pmd))
2231 	        goto out;
2232 
2233 	if (pmd_trans_huge(*pmd)) {
2234 		page = pmd_page(*pmd);
2235 		if (PageMlocked(page))
2236 			clear_page_mlock(page);
2237 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2238 		goto out;
2239 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2240 out:
2241 	spin_unlock(ptl);
2242 	/*
2243 	 * No need to double call mmu_notifier->invalidate_range() callback.
2244 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2245 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2246 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2247 	 *    fault will trigger a flush_notify before pointing to a new page
2248 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2249 	 *    page in the meantime)
2250 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2251 	 *     to invalidate secondary tlb entry they are all still valid.
2252 	 *     any further changes to individual pte will notify. So no need
2253 	 *     to call mmu_notifier->invalidate_range()
2254 	 */
2255 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2256 					       HPAGE_PMD_SIZE);
2257 }
2258 
2259 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2260 		bool freeze, struct page *page)
2261 {
2262 	pgd_t *pgd;
2263 	p4d_t *p4d;
2264 	pud_t *pud;
2265 	pmd_t *pmd;
2266 
2267 	pgd = pgd_offset(vma->vm_mm, address);
2268 	if (!pgd_present(*pgd))
2269 		return;
2270 
2271 	p4d = p4d_offset(pgd, address);
2272 	if (!p4d_present(*p4d))
2273 		return;
2274 
2275 	pud = pud_offset(p4d, address);
2276 	if (!pud_present(*pud))
2277 		return;
2278 
2279 	pmd = pmd_offset(pud, address);
2280 
2281 	__split_huge_pmd(vma, pmd, address, freeze, page);
2282 }
2283 
2284 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2285 			     unsigned long start,
2286 			     unsigned long end,
2287 			     long adjust_next)
2288 {
2289 	/*
2290 	 * If the new start address isn't hpage aligned and it could
2291 	 * previously contain an hugepage: check if we need to split
2292 	 * an huge pmd.
2293 	 */
2294 	if (start & ~HPAGE_PMD_MASK &&
2295 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2296 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2297 		split_huge_pmd_address(vma, start, false, NULL);
2298 
2299 	/*
2300 	 * If the new end address isn't hpage aligned and it could
2301 	 * previously contain an hugepage: check if we need to split
2302 	 * an huge pmd.
2303 	 */
2304 	if (end & ~HPAGE_PMD_MASK &&
2305 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2306 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2307 		split_huge_pmd_address(vma, end, false, NULL);
2308 
2309 	/*
2310 	 * If we're also updating the vma->vm_next->vm_start, if the new
2311 	 * vm_next->vm_start isn't page aligned and it could previously
2312 	 * contain an hugepage: check if we need to split an huge pmd.
2313 	 */
2314 	if (adjust_next > 0) {
2315 		struct vm_area_struct *next = vma->vm_next;
2316 		unsigned long nstart = next->vm_start;
2317 		nstart += adjust_next << PAGE_SHIFT;
2318 		if (nstart & ~HPAGE_PMD_MASK &&
2319 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2320 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2321 			split_huge_pmd_address(next, nstart, false, NULL);
2322 	}
2323 }
2324 
2325 static void freeze_page(struct page *page)
2326 {
2327 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2328 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2329 	bool unmap_success;
2330 
2331 	VM_BUG_ON_PAGE(!PageHead(page), page);
2332 
2333 	if (PageAnon(page))
2334 		ttu_flags |= TTU_SPLIT_FREEZE;
2335 
2336 	unmap_success = try_to_unmap(page, ttu_flags);
2337 	VM_BUG_ON_PAGE(!unmap_success, page);
2338 }
2339 
2340 static void unfreeze_page(struct page *page)
2341 {
2342 	int i;
2343 	if (PageTransHuge(page)) {
2344 		remove_migration_ptes(page, page, true);
2345 	} else {
2346 		for (i = 0; i < HPAGE_PMD_NR; i++)
2347 			remove_migration_ptes(page + i, page + i, true);
2348 	}
2349 }
2350 
2351 static void __split_huge_page_tail(struct page *head, int tail,
2352 		struct lruvec *lruvec, struct list_head *list)
2353 {
2354 	struct page *page_tail = head + tail;
2355 
2356 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2357 
2358 	/*
2359 	 * Clone page flags before unfreezing refcount.
2360 	 *
2361 	 * After successful get_page_unless_zero() might follow flags change,
2362 	 * for exmaple lock_page() which set PG_waiters.
2363 	 */
2364 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2365 	page_tail->flags |= (head->flags &
2366 			((1L << PG_referenced) |
2367 			 (1L << PG_swapbacked) |
2368 			 (1L << PG_swapcache) |
2369 			 (1L << PG_mlocked) |
2370 			 (1L << PG_uptodate) |
2371 			 (1L << PG_active) |
2372 			 (1L << PG_locked) |
2373 			 (1L << PG_unevictable) |
2374 			 (1L << PG_dirty)));
2375 
2376 	/* Page flags must be visible before we make the page non-compound. */
2377 	smp_wmb();
2378 
2379 	/*
2380 	 * Clear PageTail before unfreezing page refcount.
2381 	 *
2382 	 * After successful get_page_unless_zero() might follow put_page()
2383 	 * which needs correct compound_head().
2384 	 */
2385 	clear_compound_head(page_tail);
2386 
2387 	/* Finally unfreeze refcount. Additional reference from page cache. */
2388 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2389 					  PageSwapCache(head)));
2390 
2391 	if (page_is_young(head))
2392 		set_page_young(page_tail);
2393 	if (page_is_idle(head))
2394 		set_page_idle(page_tail);
2395 
2396 	/* ->mapping in first tail page is compound_mapcount */
2397 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2398 			page_tail);
2399 	page_tail->mapping = head->mapping;
2400 
2401 	page_tail->index = head->index + tail;
2402 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2403 
2404 	/*
2405 	 * always add to the tail because some iterators expect new
2406 	 * pages to show after the currently processed elements - e.g.
2407 	 * migrate_pages
2408 	 */
2409 	lru_add_page_tail(head, page_tail, lruvec, list);
2410 }
2411 
2412 static void __split_huge_page(struct page *page, struct list_head *list,
2413 		unsigned long flags)
2414 {
2415 	struct page *head = compound_head(page);
2416 	struct zone *zone = page_zone(head);
2417 	struct lruvec *lruvec;
2418 	pgoff_t end = -1;
2419 	int i;
2420 
2421 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2422 
2423 	/* complete memcg works before add pages to LRU */
2424 	mem_cgroup_split_huge_fixup(head);
2425 
2426 	if (!PageAnon(page))
2427 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2428 
2429 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2430 		__split_huge_page_tail(head, i, lruvec, list);
2431 		/* Some pages can be beyond i_size: drop them from page cache */
2432 		if (head[i].index >= end) {
2433 			ClearPageDirty(head + i);
2434 			__delete_from_page_cache(head + i, NULL);
2435 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2436 				shmem_uncharge(head->mapping->host, 1);
2437 			put_page(head + i);
2438 		}
2439 	}
2440 
2441 	ClearPageCompound(head);
2442 	/* See comment in __split_huge_page_tail() */
2443 	if (PageAnon(head)) {
2444 		/* Additional pin to radix tree of swap cache */
2445 		if (PageSwapCache(head))
2446 			page_ref_add(head, 2);
2447 		else
2448 			page_ref_inc(head);
2449 	} else {
2450 		/* Additional pin to radix tree */
2451 		page_ref_add(head, 2);
2452 		xa_unlock(&head->mapping->i_pages);
2453 	}
2454 
2455 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2456 
2457 	unfreeze_page(head);
2458 
2459 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2460 		struct page *subpage = head + i;
2461 		if (subpage == page)
2462 			continue;
2463 		unlock_page(subpage);
2464 
2465 		/*
2466 		 * Subpages may be freed if there wasn't any mapping
2467 		 * like if add_to_swap() is running on a lru page that
2468 		 * had its mapping zapped. And freeing these pages
2469 		 * requires taking the lru_lock so we do the put_page
2470 		 * of the tail pages after the split is complete.
2471 		 */
2472 		put_page(subpage);
2473 	}
2474 }
2475 
2476 int total_mapcount(struct page *page)
2477 {
2478 	int i, compound, ret;
2479 
2480 	VM_BUG_ON_PAGE(PageTail(page), page);
2481 
2482 	if (likely(!PageCompound(page)))
2483 		return atomic_read(&page->_mapcount) + 1;
2484 
2485 	compound = compound_mapcount(page);
2486 	if (PageHuge(page))
2487 		return compound;
2488 	ret = compound;
2489 	for (i = 0; i < HPAGE_PMD_NR; i++)
2490 		ret += atomic_read(&page[i]._mapcount) + 1;
2491 	/* File pages has compound_mapcount included in _mapcount */
2492 	if (!PageAnon(page))
2493 		return ret - compound * HPAGE_PMD_NR;
2494 	if (PageDoubleMap(page))
2495 		ret -= HPAGE_PMD_NR;
2496 	return ret;
2497 }
2498 
2499 /*
2500  * This calculates accurately how many mappings a transparent hugepage
2501  * has (unlike page_mapcount() which isn't fully accurate). This full
2502  * accuracy is primarily needed to know if copy-on-write faults can
2503  * reuse the page and change the mapping to read-write instead of
2504  * copying them. At the same time this returns the total_mapcount too.
2505  *
2506  * The function returns the highest mapcount any one of the subpages
2507  * has. If the return value is one, even if different processes are
2508  * mapping different subpages of the transparent hugepage, they can
2509  * all reuse it, because each process is reusing a different subpage.
2510  *
2511  * The total_mapcount is instead counting all virtual mappings of the
2512  * subpages. If the total_mapcount is equal to "one", it tells the
2513  * caller all mappings belong to the same "mm" and in turn the
2514  * anon_vma of the transparent hugepage can become the vma->anon_vma
2515  * local one as no other process may be mapping any of the subpages.
2516  *
2517  * It would be more accurate to replace page_mapcount() with
2518  * page_trans_huge_mapcount(), however we only use
2519  * page_trans_huge_mapcount() in the copy-on-write faults where we
2520  * need full accuracy to avoid breaking page pinning, because
2521  * page_trans_huge_mapcount() is slower than page_mapcount().
2522  */
2523 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2524 {
2525 	int i, ret, _total_mapcount, mapcount;
2526 
2527 	/* hugetlbfs shouldn't call it */
2528 	VM_BUG_ON_PAGE(PageHuge(page), page);
2529 
2530 	if (likely(!PageTransCompound(page))) {
2531 		mapcount = atomic_read(&page->_mapcount) + 1;
2532 		if (total_mapcount)
2533 			*total_mapcount = mapcount;
2534 		return mapcount;
2535 	}
2536 
2537 	page = compound_head(page);
2538 
2539 	_total_mapcount = ret = 0;
2540 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2541 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2542 		ret = max(ret, mapcount);
2543 		_total_mapcount += mapcount;
2544 	}
2545 	if (PageDoubleMap(page)) {
2546 		ret -= 1;
2547 		_total_mapcount -= HPAGE_PMD_NR;
2548 	}
2549 	mapcount = compound_mapcount(page);
2550 	ret += mapcount;
2551 	_total_mapcount += mapcount;
2552 	if (total_mapcount)
2553 		*total_mapcount = _total_mapcount;
2554 	return ret;
2555 }
2556 
2557 /* Racy check whether the huge page can be split */
2558 bool can_split_huge_page(struct page *page, int *pextra_pins)
2559 {
2560 	int extra_pins;
2561 
2562 	/* Additional pins from radix tree */
2563 	if (PageAnon(page))
2564 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2565 	else
2566 		extra_pins = HPAGE_PMD_NR;
2567 	if (pextra_pins)
2568 		*pextra_pins = extra_pins;
2569 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2570 }
2571 
2572 /*
2573  * This function splits huge page into normal pages. @page can point to any
2574  * subpage of huge page to split. Split doesn't change the position of @page.
2575  *
2576  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2577  * The huge page must be locked.
2578  *
2579  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2580  *
2581  * Both head page and tail pages will inherit mapping, flags, and so on from
2582  * the hugepage.
2583  *
2584  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2585  * they are not mapped.
2586  *
2587  * Returns 0 if the hugepage is split successfully.
2588  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2589  * us.
2590  */
2591 int split_huge_page_to_list(struct page *page, struct list_head *list)
2592 {
2593 	struct page *head = compound_head(page);
2594 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2595 	struct anon_vma *anon_vma = NULL;
2596 	struct address_space *mapping = NULL;
2597 	int count, mapcount, extra_pins, ret;
2598 	bool mlocked;
2599 	unsigned long flags;
2600 
2601 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2602 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2603 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2604 
2605 	if (PageWriteback(page))
2606 		return -EBUSY;
2607 
2608 	if (PageAnon(head)) {
2609 		/*
2610 		 * The caller does not necessarily hold an mmap_sem that would
2611 		 * prevent the anon_vma disappearing so we first we take a
2612 		 * reference to it and then lock the anon_vma for write. This
2613 		 * is similar to page_lock_anon_vma_read except the write lock
2614 		 * is taken to serialise against parallel split or collapse
2615 		 * operations.
2616 		 */
2617 		anon_vma = page_get_anon_vma(head);
2618 		if (!anon_vma) {
2619 			ret = -EBUSY;
2620 			goto out;
2621 		}
2622 		mapping = NULL;
2623 		anon_vma_lock_write(anon_vma);
2624 	} else {
2625 		mapping = head->mapping;
2626 
2627 		/* Truncated ? */
2628 		if (!mapping) {
2629 			ret = -EBUSY;
2630 			goto out;
2631 		}
2632 
2633 		anon_vma = NULL;
2634 		i_mmap_lock_read(mapping);
2635 	}
2636 
2637 	/*
2638 	 * Racy check if we can split the page, before freeze_page() will
2639 	 * split PMDs
2640 	 */
2641 	if (!can_split_huge_page(head, &extra_pins)) {
2642 		ret = -EBUSY;
2643 		goto out_unlock;
2644 	}
2645 
2646 	mlocked = PageMlocked(page);
2647 	freeze_page(head);
2648 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2649 
2650 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2651 	if (mlocked)
2652 		lru_add_drain();
2653 
2654 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2655 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2656 
2657 	if (mapping) {
2658 		void **pslot;
2659 
2660 		xa_lock(&mapping->i_pages);
2661 		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2662 				page_index(head));
2663 		/*
2664 		 * Check if the head page is present in radix tree.
2665 		 * We assume all tail are present too, if head is there.
2666 		 */
2667 		if (radix_tree_deref_slot_protected(pslot,
2668 					&mapping->i_pages.xa_lock) != head)
2669 			goto fail;
2670 	}
2671 
2672 	/* Prevent deferred_split_scan() touching ->_refcount */
2673 	spin_lock(&pgdata->split_queue_lock);
2674 	count = page_count(head);
2675 	mapcount = total_mapcount(head);
2676 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2677 		if (!list_empty(page_deferred_list(head))) {
2678 			pgdata->split_queue_len--;
2679 			list_del(page_deferred_list(head));
2680 		}
2681 		if (mapping)
2682 			__dec_node_page_state(page, NR_SHMEM_THPS);
2683 		spin_unlock(&pgdata->split_queue_lock);
2684 		__split_huge_page(page, list, flags);
2685 		if (PageSwapCache(head)) {
2686 			swp_entry_t entry = { .val = page_private(head) };
2687 
2688 			ret = split_swap_cluster(entry);
2689 		} else
2690 			ret = 0;
2691 	} else {
2692 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2693 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2694 					mapcount, count);
2695 			if (PageTail(page))
2696 				dump_page(head, NULL);
2697 			dump_page(page, "total_mapcount(head) > 0");
2698 			BUG();
2699 		}
2700 		spin_unlock(&pgdata->split_queue_lock);
2701 fail:		if (mapping)
2702 			xa_unlock(&mapping->i_pages);
2703 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2704 		unfreeze_page(head);
2705 		ret = -EBUSY;
2706 	}
2707 
2708 out_unlock:
2709 	if (anon_vma) {
2710 		anon_vma_unlock_write(anon_vma);
2711 		put_anon_vma(anon_vma);
2712 	}
2713 	if (mapping)
2714 		i_mmap_unlock_read(mapping);
2715 out:
2716 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2717 	return ret;
2718 }
2719 
2720 void free_transhuge_page(struct page *page)
2721 {
2722 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2723 	unsigned long flags;
2724 
2725 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726 	if (!list_empty(page_deferred_list(page))) {
2727 		pgdata->split_queue_len--;
2728 		list_del(page_deferred_list(page));
2729 	}
2730 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2731 	free_compound_page(page);
2732 }
2733 
2734 void deferred_split_huge_page(struct page *page)
2735 {
2736 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2737 	unsigned long flags;
2738 
2739 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2740 
2741 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2742 	if (list_empty(page_deferred_list(page))) {
2743 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2744 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2745 		pgdata->split_queue_len++;
2746 	}
2747 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2748 }
2749 
2750 static unsigned long deferred_split_count(struct shrinker *shrink,
2751 		struct shrink_control *sc)
2752 {
2753 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2754 	return READ_ONCE(pgdata->split_queue_len);
2755 }
2756 
2757 static unsigned long deferred_split_scan(struct shrinker *shrink,
2758 		struct shrink_control *sc)
2759 {
2760 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2761 	unsigned long flags;
2762 	LIST_HEAD(list), *pos, *next;
2763 	struct page *page;
2764 	int split = 0;
2765 
2766 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2767 	/* Take pin on all head pages to avoid freeing them under us */
2768 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2769 		page = list_entry((void *)pos, struct page, mapping);
2770 		page = compound_head(page);
2771 		if (get_page_unless_zero(page)) {
2772 			list_move(page_deferred_list(page), &list);
2773 		} else {
2774 			/* We lost race with put_compound_page() */
2775 			list_del_init(page_deferred_list(page));
2776 			pgdata->split_queue_len--;
2777 		}
2778 		if (!--sc->nr_to_scan)
2779 			break;
2780 	}
2781 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2782 
2783 	list_for_each_safe(pos, next, &list) {
2784 		page = list_entry((void *)pos, struct page, mapping);
2785 		if (!trylock_page(page))
2786 			goto next;
2787 		/* split_huge_page() removes page from list on success */
2788 		if (!split_huge_page(page))
2789 			split++;
2790 		unlock_page(page);
2791 next:
2792 		put_page(page);
2793 	}
2794 
2795 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2796 	list_splice_tail(&list, &pgdata->split_queue);
2797 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2798 
2799 	/*
2800 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2801 	 * This can happen if pages were freed under us.
2802 	 */
2803 	if (!split && list_empty(&pgdata->split_queue))
2804 		return SHRINK_STOP;
2805 	return split;
2806 }
2807 
2808 static struct shrinker deferred_split_shrinker = {
2809 	.count_objects = deferred_split_count,
2810 	.scan_objects = deferred_split_scan,
2811 	.seeks = DEFAULT_SEEKS,
2812 	.flags = SHRINKER_NUMA_AWARE,
2813 };
2814 
2815 #ifdef CONFIG_DEBUG_FS
2816 static int split_huge_pages_set(void *data, u64 val)
2817 {
2818 	struct zone *zone;
2819 	struct page *page;
2820 	unsigned long pfn, max_zone_pfn;
2821 	unsigned long total = 0, split = 0;
2822 
2823 	if (val != 1)
2824 		return -EINVAL;
2825 
2826 	for_each_populated_zone(zone) {
2827 		max_zone_pfn = zone_end_pfn(zone);
2828 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2829 			if (!pfn_valid(pfn))
2830 				continue;
2831 
2832 			page = pfn_to_page(pfn);
2833 			if (!get_page_unless_zero(page))
2834 				continue;
2835 
2836 			if (zone != page_zone(page))
2837 				goto next;
2838 
2839 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2840 				goto next;
2841 
2842 			total++;
2843 			lock_page(page);
2844 			if (!split_huge_page(page))
2845 				split++;
2846 			unlock_page(page);
2847 next:
2848 			put_page(page);
2849 		}
2850 	}
2851 
2852 	pr_info("%lu of %lu THP split\n", split, total);
2853 
2854 	return 0;
2855 }
2856 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2857 		"%llu\n");
2858 
2859 static int __init split_huge_pages_debugfs(void)
2860 {
2861 	void *ret;
2862 
2863 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2864 			&split_huge_pages_fops);
2865 	if (!ret)
2866 		pr_warn("Failed to create split_huge_pages in debugfs");
2867 	return 0;
2868 }
2869 late_initcall(split_huge_pages_debugfs);
2870 #endif
2871 
2872 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2873 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2874 		struct page *page)
2875 {
2876 	struct vm_area_struct *vma = pvmw->vma;
2877 	struct mm_struct *mm = vma->vm_mm;
2878 	unsigned long address = pvmw->address;
2879 	pmd_t pmdval;
2880 	swp_entry_t entry;
2881 	pmd_t pmdswp;
2882 
2883 	if (!(pvmw->pmd && !pvmw->pte))
2884 		return;
2885 
2886 	mmu_notifier_invalidate_range_start(mm, address,
2887 			address + HPAGE_PMD_SIZE);
2888 
2889 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2890 	pmdval = *pvmw->pmd;
2891 	pmdp_invalidate(vma, address, pvmw->pmd);
2892 	if (pmd_dirty(pmdval))
2893 		set_page_dirty(page);
2894 	entry = make_migration_entry(page, pmd_write(pmdval));
2895 	pmdswp = swp_entry_to_pmd(entry);
2896 	if (pmd_soft_dirty(pmdval))
2897 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2898 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2899 	page_remove_rmap(page, true);
2900 	put_page(page);
2901 
2902 	mmu_notifier_invalidate_range_end(mm, address,
2903 			address + HPAGE_PMD_SIZE);
2904 }
2905 
2906 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2907 {
2908 	struct vm_area_struct *vma = pvmw->vma;
2909 	struct mm_struct *mm = vma->vm_mm;
2910 	unsigned long address = pvmw->address;
2911 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2912 	pmd_t pmde;
2913 	swp_entry_t entry;
2914 
2915 	if (!(pvmw->pmd && !pvmw->pte))
2916 		return;
2917 
2918 	entry = pmd_to_swp_entry(*pvmw->pmd);
2919 	get_page(new);
2920 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2921 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2922 		pmde = pmd_mksoft_dirty(pmde);
2923 	if (is_write_migration_entry(entry))
2924 		pmde = maybe_pmd_mkwrite(pmde, vma);
2925 
2926 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2927 	if (PageAnon(new))
2928 		page_add_anon_rmap(new, vma, mmun_start, true);
2929 	else
2930 		page_add_file_rmap(new, true);
2931 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2932 	if (vma->vm_flags & VM_LOCKED)
2933 		mlock_vma_page(new);
2934 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2935 }
2936 #endif
2937