xref: /linux/mm/huge_memory.c (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/mm_types.h>
24 #include <linux/khugepaged.h>
25 #include <linux/freezer.h>
26 #include <linux/pfn_t.h>
27 #include <linux/mman.h>
28 #include <linux/memremap.h>
29 #include <linux/pagemap.h>
30 #include <linux/debugfs.h>
31 #include <linux/migrate.h>
32 #include <linux/hashtable.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/page_idle.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/oom.h>
37 #include <linux/numa.h>
38 #include <linux/page_owner.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/memory-tiers.h>
41 #include <linux/compat.h>
42 #include <linux/pgalloc_tag.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlb.h>
46 #include <asm/pgalloc.h>
47 #include "internal.h"
48 #include "swap.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/thp.h>
52 
53 /*
54  * By default, transparent hugepage support is disabled in order to avoid
55  * risking an increased memory footprint for applications that are not
56  * guaranteed to benefit from it. When transparent hugepage support is
57  * enabled, it is for all mappings, and khugepaged scans all mappings.
58  * Defrag is invoked by khugepaged hugepage allocations and by page faults
59  * for all hugepage allocations.
60  */
61 unsigned long transparent_hugepage_flags __read_mostly =
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
63 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
64 #endif
65 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
66 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
67 #endif
68 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
69 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
70 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
71 
72 static struct shrinker *deferred_split_shrinker;
73 static unsigned long deferred_split_count(struct shrinker *shrink,
74 					  struct shrink_control *sc);
75 static unsigned long deferred_split_scan(struct shrinker *shrink,
76 					 struct shrink_control *sc);
77 static bool split_underused_thp = true;
78 
79 static atomic_t huge_zero_refcount;
80 struct folio *huge_zero_folio __read_mostly;
81 unsigned long huge_zero_pfn __read_mostly = ~0UL;
82 unsigned long huge_anon_orders_always __read_mostly;
83 unsigned long huge_anon_orders_madvise __read_mostly;
84 unsigned long huge_anon_orders_inherit __read_mostly;
85 static bool anon_orders_configured __initdata;
86 
87 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
88 					 unsigned long vm_flags,
89 					 unsigned long tva_flags,
90 					 unsigned long orders)
91 {
92 	bool smaps = tva_flags & TVA_SMAPS;
93 	bool in_pf = tva_flags & TVA_IN_PF;
94 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
95 	unsigned long supported_orders;
96 
97 	/* Check the intersection of requested and supported orders. */
98 	if (vma_is_anonymous(vma))
99 		supported_orders = THP_ORDERS_ALL_ANON;
100 	else if (vma_is_dax(vma))
101 		supported_orders = THP_ORDERS_ALL_FILE_DAX;
102 	else
103 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
104 
105 	orders &= supported_orders;
106 	if (!orders)
107 		return 0;
108 
109 	if (!vma->vm_mm)		/* vdso */
110 		return 0;
111 
112 	/*
113 	 * Explicitly disabled through madvise or prctl, or some
114 	 * architectures may disable THP for some mappings, for
115 	 * example, s390 kvm.
116 	 * */
117 	if ((vm_flags & VM_NOHUGEPAGE) ||
118 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
119 		return 0;
120 	/*
121 	 * If the hardware/firmware marked hugepage support disabled.
122 	 */
123 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
124 		return 0;
125 
126 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
127 	if (vma_is_dax(vma))
128 		return in_pf ? orders : 0;
129 
130 	/*
131 	 * khugepaged special VMA and hugetlb VMA.
132 	 * Must be checked after dax since some dax mappings may have
133 	 * VM_MIXEDMAP set.
134 	 */
135 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
136 		return 0;
137 
138 	/*
139 	 * Check alignment for file vma and size for both file and anon vma by
140 	 * filtering out the unsuitable orders.
141 	 *
142 	 * Skip the check for page fault. Huge fault does the check in fault
143 	 * handlers.
144 	 */
145 	if (!in_pf) {
146 		int order = highest_order(orders);
147 		unsigned long addr;
148 
149 		while (orders) {
150 			addr = vma->vm_end - (PAGE_SIZE << order);
151 			if (thp_vma_suitable_order(vma, addr, order))
152 				break;
153 			order = next_order(&orders, order);
154 		}
155 
156 		if (!orders)
157 			return 0;
158 	}
159 
160 	/*
161 	 * Enabled via shmem mount options or sysfs settings.
162 	 * Must be done before hugepage flags check since shmem has its
163 	 * own flags.
164 	 */
165 	if (!in_pf && shmem_file(vma->vm_file))
166 		return shmem_allowable_huge_orders(file_inode(vma->vm_file),
167 						   vma, vma->vm_pgoff,
168 						   !enforce_sysfs);
169 
170 	if (!vma_is_anonymous(vma)) {
171 		/*
172 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
173 		 * were already handled in thp_vma_allowable_orders().
174 		 */
175 		if (enforce_sysfs &&
176 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
177 						    !hugepage_global_always())))
178 			return 0;
179 
180 		/*
181 		 * Trust that ->huge_fault() handlers know what they are doing
182 		 * in fault path.
183 		 */
184 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
185 			return orders;
186 		/* Only regular file is valid in collapse path */
187 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
188 			return orders;
189 		return 0;
190 	}
191 
192 	if (vma_is_temporary_stack(vma))
193 		return 0;
194 
195 	/*
196 	 * THPeligible bit of smaps should show 1 for proper VMAs even
197 	 * though anon_vma is not initialized yet.
198 	 *
199 	 * Allow page fault since anon_vma may be not initialized until
200 	 * the first page fault.
201 	 */
202 	if (!vma->anon_vma)
203 		return (smaps || in_pf) ? orders : 0;
204 
205 	return orders;
206 }
207 
208 static bool get_huge_zero_page(void)
209 {
210 	struct folio *zero_folio;
211 retry:
212 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
213 		return true;
214 
215 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
216 			HPAGE_PMD_ORDER);
217 	if (!zero_folio) {
218 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
219 		return false;
220 	}
221 	preempt_disable();
222 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
223 		preempt_enable();
224 		folio_put(zero_folio);
225 		goto retry;
226 	}
227 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
228 
229 	/* We take additional reference here. It will be put back by shrinker */
230 	atomic_set(&huge_zero_refcount, 2);
231 	preempt_enable();
232 	count_vm_event(THP_ZERO_PAGE_ALLOC);
233 	return true;
234 }
235 
236 static void put_huge_zero_page(void)
237 {
238 	/*
239 	 * Counter should never go to zero here. Only shrinker can put
240 	 * last reference.
241 	 */
242 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244 
245 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
246 {
247 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
248 		return READ_ONCE(huge_zero_folio);
249 
250 	if (!get_huge_zero_page())
251 		return NULL;
252 
253 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
254 		put_huge_zero_page();
255 
256 	return READ_ONCE(huge_zero_folio);
257 }
258 
259 void mm_put_huge_zero_folio(struct mm_struct *mm)
260 {
261 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
262 		put_huge_zero_page();
263 }
264 
265 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
266 					struct shrink_control *sc)
267 {
268 	/* we can free zero page only if last reference remains */
269 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
270 }
271 
272 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
273 				       struct shrink_control *sc)
274 {
275 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
276 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
277 		BUG_ON(zero_folio == NULL);
278 		WRITE_ONCE(huge_zero_pfn, ~0UL);
279 		folio_put(zero_folio);
280 		return HPAGE_PMD_NR;
281 	}
282 
283 	return 0;
284 }
285 
286 static struct shrinker *huge_zero_page_shrinker;
287 
288 #ifdef CONFIG_SYSFS
289 static ssize_t enabled_show(struct kobject *kobj,
290 			    struct kobj_attribute *attr, char *buf)
291 {
292 	const char *output;
293 
294 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
295 		output = "[always] madvise never";
296 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
297 			  &transparent_hugepage_flags))
298 		output = "always [madvise] never";
299 	else
300 		output = "always madvise [never]";
301 
302 	return sysfs_emit(buf, "%s\n", output);
303 }
304 
305 static ssize_t enabled_store(struct kobject *kobj,
306 			     struct kobj_attribute *attr,
307 			     const char *buf, size_t count)
308 {
309 	ssize_t ret = count;
310 
311 	if (sysfs_streq(buf, "always")) {
312 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
313 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
314 	} else if (sysfs_streq(buf, "madvise")) {
315 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
316 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
317 	} else if (sysfs_streq(buf, "never")) {
318 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
320 	} else
321 		ret = -EINVAL;
322 
323 	if (ret > 0) {
324 		int err = start_stop_khugepaged();
325 		if (err)
326 			ret = err;
327 	}
328 	return ret;
329 }
330 
331 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
332 
333 ssize_t single_hugepage_flag_show(struct kobject *kobj,
334 				  struct kobj_attribute *attr, char *buf,
335 				  enum transparent_hugepage_flag flag)
336 {
337 	return sysfs_emit(buf, "%d\n",
338 			  !!test_bit(flag, &transparent_hugepage_flags));
339 }
340 
341 ssize_t single_hugepage_flag_store(struct kobject *kobj,
342 				 struct kobj_attribute *attr,
343 				 const char *buf, size_t count,
344 				 enum transparent_hugepage_flag flag)
345 {
346 	unsigned long value;
347 	int ret;
348 
349 	ret = kstrtoul(buf, 10, &value);
350 	if (ret < 0)
351 		return ret;
352 	if (value > 1)
353 		return -EINVAL;
354 
355 	if (value)
356 		set_bit(flag, &transparent_hugepage_flags);
357 	else
358 		clear_bit(flag, &transparent_hugepage_flags);
359 
360 	return count;
361 }
362 
363 static ssize_t defrag_show(struct kobject *kobj,
364 			   struct kobj_attribute *attr, char *buf)
365 {
366 	const char *output;
367 
368 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
369 		     &transparent_hugepage_flags))
370 		output = "[always] defer defer+madvise madvise never";
371 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
372 			  &transparent_hugepage_flags))
373 		output = "always [defer] defer+madvise madvise never";
374 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
375 			  &transparent_hugepage_flags))
376 		output = "always defer [defer+madvise] madvise never";
377 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
378 			  &transparent_hugepage_flags))
379 		output = "always defer defer+madvise [madvise] never";
380 	else
381 		output = "always defer defer+madvise madvise [never]";
382 
383 	return sysfs_emit(buf, "%s\n", output);
384 }
385 
386 static ssize_t defrag_store(struct kobject *kobj,
387 			    struct kobj_attribute *attr,
388 			    const char *buf, size_t count)
389 {
390 	if (sysfs_streq(buf, "always")) {
391 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
393 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
395 	} else if (sysfs_streq(buf, "defer+madvise")) {
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
400 	} else if (sysfs_streq(buf, "defer")) {
401 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
405 	} else if (sysfs_streq(buf, "madvise")) {
406 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
408 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
409 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 	} else if (sysfs_streq(buf, "never")) {
411 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 	} else
416 		return -EINVAL;
417 
418 	return count;
419 }
420 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
421 
422 static ssize_t use_zero_page_show(struct kobject *kobj,
423 				  struct kobj_attribute *attr, char *buf)
424 {
425 	return single_hugepage_flag_show(kobj, attr, buf,
426 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
427 }
428 static ssize_t use_zero_page_store(struct kobject *kobj,
429 		struct kobj_attribute *attr, const char *buf, size_t count)
430 {
431 	return single_hugepage_flag_store(kobj, attr, buf, count,
432 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
433 }
434 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
435 
436 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
437 				   struct kobj_attribute *attr, char *buf)
438 {
439 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
440 }
441 static struct kobj_attribute hpage_pmd_size_attr =
442 	__ATTR_RO(hpage_pmd_size);
443 
444 static ssize_t split_underused_thp_show(struct kobject *kobj,
445 			    struct kobj_attribute *attr, char *buf)
446 {
447 	return sysfs_emit(buf, "%d\n", split_underused_thp);
448 }
449 
450 static ssize_t split_underused_thp_store(struct kobject *kobj,
451 			     struct kobj_attribute *attr,
452 			     const char *buf, size_t count)
453 {
454 	int err = kstrtobool(buf, &split_underused_thp);
455 
456 	if (err < 0)
457 		return err;
458 
459 	return count;
460 }
461 
462 static struct kobj_attribute split_underused_thp_attr = __ATTR(
463 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
464 
465 static struct attribute *hugepage_attr[] = {
466 	&enabled_attr.attr,
467 	&defrag_attr.attr,
468 	&use_zero_page_attr.attr,
469 	&hpage_pmd_size_attr.attr,
470 #ifdef CONFIG_SHMEM
471 	&shmem_enabled_attr.attr,
472 #endif
473 	&split_underused_thp_attr.attr,
474 	NULL,
475 };
476 
477 static const struct attribute_group hugepage_attr_group = {
478 	.attrs = hugepage_attr,
479 };
480 
481 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
482 static void thpsize_release(struct kobject *kobj);
483 static DEFINE_SPINLOCK(huge_anon_orders_lock);
484 static LIST_HEAD(thpsize_list);
485 
486 static ssize_t anon_enabled_show(struct kobject *kobj,
487 				 struct kobj_attribute *attr, char *buf)
488 {
489 	int order = to_thpsize(kobj)->order;
490 	const char *output;
491 
492 	if (test_bit(order, &huge_anon_orders_always))
493 		output = "[always] inherit madvise never";
494 	else if (test_bit(order, &huge_anon_orders_inherit))
495 		output = "always [inherit] madvise never";
496 	else if (test_bit(order, &huge_anon_orders_madvise))
497 		output = "always inherit [madvise] never";
498 	else
499 		output = "always inherit madvise [never]";
500 
501 	return sysfs_emit(buf, "%s\n", output);
502 }
503 
504 static ssize_t anon_enabled_store(struct kobject *kobj,
505 				  struct kobj_attribute *attr,
506 				  const char *buf, size_t count)
507 {
508 	int order = to_thpsize(kobj)->order;
509 	ssize_t ret = count;
510 
511 	if (sysfs_streq(buf, "always")) {
512 		spin_lock(&huge_anon_orders_lock);
513 		clear_bit(order, &huge_anon_orders_inherit);
514 		clear_bit(order, &huge_anon_orders_madvise);
515 		set_bit(order, &huge_anon_orders_always);
516 		spin_unlock(&huge_anon_orders_lock);
517 	} else if (sysfs_streq(buf, "inherit")) {
518 		spin_lock(&huge_anon_orders_lock);
519 		clear_bit(order, &huge_anon_orders_always);
520 		clear_bit(order, &huge_anon_orders_madvise);
521 		set_bit(order, &huge_anon_orders_inherit);
522 		spin_unlock(&huge_anon_orders_lock);
523 	} else if (sysfs_streq(buf, "madvise")) {
524 		spin_lock(&huge_anon_orders_lock);
525 		clear_bit(order, &huge_anon_orders_always);
526 		clear_bit(order, &huge_anon_orders_inherit);
527 		set_bit(order, &huge_anon_orders_madvise);
528 		spin_unlock(&huge_anon_orders_lock);
529 	} else if (sysfs_streq(buf, "never")) {
530 		spin_lock(&huge_anon_orders_lock);
531 		clear_bit(order, &huge_anon_orders_always);
532 		clear_bit(order, &huge_anon_orders_inherit);
533 		clear_bit(order, &huge_anon_orders_madvise);
534 		spin_unlock(&huge_anon_orders_lock);
535 	} else
536 		ret = -EINVAL;
537 
538 	if (ret > 0) {
539 		int err;
540 
541 		err = start_stop_khugepaged();
542 		if (err)
543 			ret = err;
544 	}
545 	return ret;
546 }
547 
548 static struct kobj_attribute anon_enabled_attr =
549 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
550 
551 static struct attribute *anon_ctrl_attrs[] = {
552 	&anon_enabled_attr.attr,
553 	NULL,
554 };
555 
556 static const struct attribute_group anon_ctrl_attr_grp = {
557 	.attrs = anon_ctrl_attrs,
558 };
559 
560 static struct attribute *file_ctrl_attrs[] = {
561 #ifdef CONFIG_SHMEM
562 	&thpsize_shmem_enabled_attr.attr,
563 #endif
564 	NULL,
565 };
566 
567 static const struct attribute_group file_ctrl_attr_grp = {
568 	.attrs = file_ctrl_attrs,
569 };
570 
571 static struct attribute *any_ctrl_attrs[] = {
572 	NULL,
573 };
574 
575 static const struct attribute_group any_ctrl_attr_grp = {
576 	.attrs = any_ctrl_attrs,
577 };
578 
579 static const struct kobj_type thpsize_ktype = {
580 	.release = &thpsize_release,
581 	.sysfs_ops = &kobj_sysfs_ops,
582 };
583 
584 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
585 
586 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
587 {
588 	unsigned long sum = 0;
589 	int cpu;
590 
591 	for_each_possible_cpu(cpu) {
592 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
593 
594 		sum += this->stats[order][item];
595 	}
596 
597 	return sum;
598 }
599 
600 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
601 static ssize_t _name##_show(struct kobject *kobj,			\
602 			struct kobj_attribute *attr, char *buf)		\
603 {									\
604 	int order = to_thpsize(kobj)->order;				\
605 									\
606 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
607 }									\
608 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
609 
610 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
611 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
612 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
613 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
614 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
615 #ifdef CONFIG_SHMEM
616 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
617 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
618 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
619 #endif
620 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
621 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
622 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
623 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
624 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
625 
626 static struct attribute *anon_stats_attrs[] = {
627 	&anon_fault_alloc_attr.attr,
628 	&anon_fault_fallback_attr.attr,
629 	&anon_fault_fallback_charge_attr.attr,
630 #ifndef CONFIG_SHMEM
631 	&swpout_attr.attr,
632 	&swpout_fallback_attr.attr,
633 #endif
634 	&split_deferred_attr.attr,
635 	&nr_anon_attr.attr,
636 	&nr_anon_partially_mapped_attr.attr,
637 	NULL,
638 };
639 
640 static struct attribute_group anon_stats_attr_grp = {
641 	.name = "stats",
642 	.attrs = anon_stats_attrs,
643 };
644 
645 static struct attribute *file_stats_attrs[] = {
646 #ifdef CONFIG_SHMEM
647 	&shmem_alloc_attr.attr,
648 	&shmem_fallback_attr.attr,
649 	&shmem_fallback_charge_attr.attr,
650 #endif
651 	NULL,
652 };
653 
654 static struct attribute_group file_stats_attr_grp = {
655 	.name = "stats",
656 	.attrs = file_stats_attrs,
657 };
658 
659 static struct attribute *any_stats_attrs[] = {
660 #ifdef CONFIG_SHMEM
661 	&swpout_attr.attr,
662 	&swpout_fallback_attr.attr,
663 #endif
664 	&split_attr.attr,
665 	&split_failed_attr.attr,
666 	NULL,
667 };
668 
669 static struct attribute_group any_stats_attr_grp = {
670 	.name = "stats",
671 	.attrs = any_stats_attrs,
672 };
673 
674 static int sysfs_add_group(struct kobject *kobj,
675 			   const struct attribute_group *grp)
676 {
677 	int ret = -ENOENT;
678 
679 	/*
680 	 * If the group is named, try to merge first, assuming the subdirectory
681 	 * was already created. This avoids the warning emitted by
682 	 * sysfs_create_group() if the directory already exists.
683 	 */
684 	if (grp->name)
685 		ret = sysfs_merge_group(kobj, grp);
686 	if (ret)
687 		ret = sysfs_create_group(kobj, grp);
688 
689 	return ret;
690 }
691 
692 static struct thpsize *thpsize_create(int order, struct kobject *parent)
693 {
694 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
695 	struct thpsize *thpsize;
696 	int ret = -ENOMEM;
697 
698 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
699 	if (!thpsize)
700 		goto err;
701 
702 	thpsize->order = order;
703 
704 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
705 				   "hugepages-%lukB", size);
706 	if (ret) {
707 		kfree(thpsize);
708 		goto err;
709 	}
710 
711 
712 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
713 	if (ret)
714 		goto err_put;
715 
716 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
717 	if (ret)
718 		goto err_put;
719 
720 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
721 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
722 		if (ret)
723 			goto err_put;
724 
725 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
726 		if (ret)
727 			goto err_put;
728 	}
729 
730 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
731 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
732 		if (ret)
733 			goto err_put;
734 
735 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
736 		if (ret)
737 			goto err_put;
738 	}
739 
740 	return thpsize;
741 err_put:
742 	kobject_put(&thpsize->kobj);
743 err:
744 	return ERR_PTR(ret);
745 }
746 
747 static void thpsize_release(struct kobject *kobj)
748 {
749 	kfree(to_thpsize(kobj));
750 }
751 
752 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
753 {
754 	int err;
755 	struct thpsize *thpsize;
756 	unsigned long orders;
757 	int order;
758 
759 	/*
760 	 * Default to setting PMD-sized THP to inherit the global setting and
761 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
762 	 * constant so we have to do this here.
763 	 */
764 	if (!anon_orders_configured)
765 		huge_anon_orders_inherit = BIT(PMD_ORDER);
766 
767 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
768 	if (unlikely(!*hugepage_kobj)) {
769 		pr_err("failed to create transparent hugepage kobject\n");
770 		return -ENOMEM;
771 	}
772 
773 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
774 	if (err) {
775 		pr_err("failed to register transparent hugepage group\n");
776 		goto delete_obj;
777 	}
778 
779 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
780 	if (err) {
781 		pr_err("failed to register transparent hugepage group\n");
782 		goto remove_hp_group;
783 	}
784 
785 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
786 	order = highest_order(orders);
787 	while (orders) {
788 		thpsize = thpsize_create(order, *hugepage_kobj);
789 		if (IS_ERR(thpsize)) {
790 			pr_err("failed to create thpsize for order %d\n", order);
791 			err = PTR_ERR(thpsize);
792 			goto remove_all;
793 		}
794 		list_add(&thpsize->node, &thpsize_list);
795 		order = next_order(&orders, order);
796 	}
797 
798 	return 0;
799 
800 remove_all:
801 	hugepage_exit_sysfs(*hugepage_kobj);
802 	return err;
803 remove_hp_group:
804 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
805 delete_obj:
806 	kobject_put(*hugepage_kobj);
807 	return err;
808 }
809 
810 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
811 {
812 	struct thpsize *thpsize, *tmp;
813 
814 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
815 		list_del(&thpsize->node);
816 		kobject_put(&thpsize->kobj);
817 	}
818 
819 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
820 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
821 	kobject_put(hugepage_kobj);
822 }
823 #else
824 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
825 {
826 	return 0;
827 }
828 
829 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
830 {
831 }
832 #endif /* CONFIG_SYSFS */
833 
834 static int __init thp_shrinker_init(void)
835 {
836 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
837 	if (!huge_zero_page_shrinker)
838 		return -ENOMEM;
839 
840 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
841 						 SHRINKER_MEMCG_AWARE |
842 						 SHRINKER_NONSLAB,
843 						 "thp-deferred_split");
844 	if (!deferred_split_shrinker) {
845 		shrinker_free(huge_zero_page_shrinker);
846 		return -ENOMEM;
847 	}
848 
849 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
850 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
851 	shrinker_register(huge_zero_page_shrinker);
852 
853 	deferred_split_shrinker->count_objects = deferred_split_count;
854 	deferred_split_shrinker->scan_objects = deferred_split_scan;
855 	shrinker_register(deferred_split_shrinker);
856 
857 	return 0;
858 }
859 
860 static void __init thp_shrinker_exit(void)
861 {
862 	shrinker_free(huge_zero_page_shrinker);
863 	shrinker_free(deferred_split_shrinker);
864 }
865 
866 static int __init hugepage_init(void)
867 {
868 	int err;
869 	struct kobject *hugepage_kobj;
870 
871 	if (!has_transparent_hugepage()) {
872 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
873 		return -EINVAL;
874 	}
875 
876 	/*
877 	 * hugepages can't be allocated by the buddy allocator
878 	 */
879 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
880 
881 	err = hugepage_init_sysfs(&hugepage_kobj);
882 	if (err)
883 		goto err_sysfs;
884 
885 	err = khugepaged_init();
886 	if (err)
887 		goto err_slab;
888 
889 	err = thp_shrinker_init();
890 	if (err)
891 		goto err_shrinker;
892 
893 	/*
894 	 * By default disable transparent hugepages on smaller systems,
895 	 * where the extra memory used could hurt more than TLB overhead
896 	 * is likely to save.  The admin can still enable it through /sys.
897 	 */
898 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
899 		transparent_hugepage_flags = 0;
900 		return 0;
901 	}
902 
903 	err = start_stop_khugepaged();
904 	if (err)
905 		goto err_khugepaged;
906 
907 	return 0;
908 err_khugepaged:
909 	thp_shrinker_exit();
910 err_shrinker:
911 	khugepaged_destroy();
912 err_slab:
913 	hugepage_exit_sysfs(hugepage_kobj);
914 err_sysfs:
915 	return err;
916 }
917 subsys_initcall(hugepage_init);
918 
919 static int __init setup_transparent_hugepage(char *str)
920 {
921 	int ret = 0;
922 	if (!str)
923 		goto out;
924 	if (!strcmp(str, "always")) {
925 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
926 			&transparent_hugepage_flags);
927 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
928 			  &transparent_hugepage_flags);
929 		ret = 1;
930 	} else if (!strcmp(str, "madvise")) {
931 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
932 			  &transparent_hugepage_flags);
933 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
934 			&transparent_hugepage_flags);
935 		ret = 1;
936 	} else if (!strcmp(str, "never")) {
937 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
938 			  &transparent_hugepage_flags);
939 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
940 			  &transparent_hugepage_flags);
941 		ret = 1;
942 	}
943 out:
944 	if (!ret)
945 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
946 	return ret;
947 }
948 __setup("transparent_hugepage=", setup_transparent_hugepage);
949 
950 static inline int get_order_from_str(const char *size_str)
951 {
952 	unsigned long size;
953 	char *endptr;
954 	int order;
955 
956 	size = memparse(size_str, &endptr);
957 
958 	if (!is_power_of_2(size))
959 		goto err;
960 	order = get_order(size);
961 	if (BIT(order) & ~THP_ORDERS_ALL_ANON)
962 		goto err;
963 
964 	return order;
965 err:
966 	pr_err("invalid size %s in thp_anon boot parameter\n", size_str);
967 	return -EINVAL;
968 }
969 
970 static char str_dup[PAGE_SIZE] __initdata;
971 static int __init setup_thp_anon(char *str)
972 {
973 	char *token, *range, *policy, *subtoken;
974 	unsigned long always, inherit, madvise;
975 	char *start_size, *end_size;
976 	int start, end, nr;
977 	char *p;
978 
979 	if (!str || strlen(str) + 1 > PAGE_SIZE)
980 		goto err;
981 	strcpy(str_dup, str);
982 
983 	always = huge_anon_orders_always;
984 	madvise = huge_anon_orders_madvise;
985 	inherit = huge_anon_orders_inherit;
986 	p = str_dup;
987 	while ((token = strsep(&p, ";")) != NULL) {
988 		range = strsep(&token, ":");
989 		policy = token;
990 
991 		if (!policy)
992 			goto err;
993 
994 		while ((subtoken = strsep(&range, ",")) != NULL) {
995 			if (strchr(subtoken, '-')) {
996 				start_size = strsep(&subtoken, "-");
997 				end_size = subtoken;
998 
999 				start = get_order_from_str(start_size);
1000 				end = get_order_from_str(end_size);
1001 			} else {
1002 				start = end = get_order_from_str(subtoken);
1003 			}
1004 
1005 			if (start < 0 || end < 0 || start > end)
1006 				goto err;
1007 
1008 			nr = end - start + 1;
1009 			if (!strcmp(policy, "always")) {
1010 				bitmap_set(&always, start, nr);
1011 				bitmap_clear(&inherit, start, nr);
1012 				bitmap_clear(&madvise, start, nr);
1013 			} else if (!strcmp(policy, "madvise")) {
1014 				bitmap_set(&madvise, start, nr);
1015 				bitmap_clear(&inherit, start, nr);
1016 				bitmap_clear(&always, start, nr);
1017 			} else if (!strcmp(policy, "inherit")) {
1018 				bitmap_set(&inherit, start, nr);
1019 				bitmap_clear(&madvise, start, nr);
1020 				bitmap_clear(&always, start, nr);
1021 			} else if (!strcmp(policy, "never")) {
1022 				bitmap_clear(&inherit, start, nr);
1023 				bitmap_clear(&madvise, start, nr);
1024 				bitmap_clear(&always, start, nr);
1025 			} else {
1026 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1027 				goto err;
1028 			}
1029 		}
1030 	}
1031 
1032 	huge_anon_orders_always = always;
1033 	huge_anon_orders_madvise = madvise;
1034 	huge_anon_orders_inherit = inherit;
1035 	anon_orders_configured = true;
1036 	return 1;
1037 
1038 err:
1039 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1040 	return 0;
1041 }
1042 __setup("thp_anon=", setup_thp_anon);
1043 
1044 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1045 {
1046 	if (likely(vma->vm_flags & VM_WRITE))
1047 		pmd = pmd_mkwrite(pmd, vma);
1048 	return pmd;
1049 }
1050 
1051 #ifdef CONFIG_MEMCG
1052 static inline
1053 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1054 {
1055 	struct mem_cgroup *memcg = folio_memcg(folio);
1056 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1057 
1058 	if (memcg)
1059 		return &memcg->deferred_split_queue;
1060 	else
1061 		return &pgdat->deferred_split_queue;
1062 }
1063 #else
1064 static inline
1065 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1066 {
1067 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1068 
1069 	return &pgdat->deferred_split_queue;
1070 }
1071 #endif
1072 
1073 static inline bool is_transparent_hugepage(const struct folio *folio)
1074 {
1075 	if (!folio_test_large(folio))
1076 		return false;
1077 
1078 	return is_huge_zero_folio(folio) ||
1079 		folio_test_large_rmappable(folio);
1080 }
1081 
1082 static unsigned long __thp_get_unmapped_area(struct file *filp,
1083 		unsigned long addr, unsigned long len,
1084 		loff_t off, unsigned long flags, unsigned long size,
1085 		vm_flags_t vm_flags)
1086 {
1087 	loff_t off_end = off + len;
1088 	loff_t off_align = round_up(off, size);
1089 	unsigned long len_pad, ret, off_sub;
1090 
1091 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1092 		return 0;
1093 
1094 	if (off_end <= off_align || (off_end - off_align) < size)
1095 		return 0;
1096 
1097 	len_pad = len + size;
1098 	if (len_pad < len || (off + len_pad) < off)
1099 		return 0;
1100 
1101 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1102 					   off >> PAGE_SHIFT, flags, vm_flags);
1103 
1104 	/*
1105 	 * The failure might be due to length padding. The caller will retry
1106 	 * without the padding.
1107 	 */
1108 	if (IS_ERR_VALUE(ret))
1109 		return 0;
1110 
1111 	/*
1112 	 * Do not try to align to THP boundary if allocation at the address
1113 	 * hint succeeds.
1114 	 */
1115 	if (ret == addr)
1116 		return addr;
1117 
1118 	off_sub = (off - ret) & (size - 1);
1119 
1120 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1121 		return ret + size;
1122 
1123 	ret += off_sub;
1124 	return ret;
1125 }
1126 
1127 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1128 		unsigned long len, unsigned long pgoff, unsigned long flags,
1129 		vm_flags_t vm_flags)
1130 {
1131 	unsigned long ret;
1132 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1133 
1134 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1135 	if (ret)
1136 		return ret;
1137 
1138 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1139 					    vm_flags);
1140 }
1141 
1142 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1143 		unsigned long len, unsigned long pgoff, unsigned long flags)
1144 {
1145 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1146 }
1147 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1148 
1149 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
1150 			struct page *page, gfp_t gfp)
1151 {
1152 	struct vm_area_struct *vma = vmf->vma;
1153 	struct folio *folio = page_folio(page);
1154 	pgtable_t pgtable;
1155 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1156 	vm_fault_t ret = 0;
1157 
1158 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1159 
1160 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1161 		folio_put(folio);
1162 		count_vm_event(THP_FAULT_FALLBACK);
1163 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1164 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1165 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1166 		return VM_FAULT_FALLBACK;
1167 	}
1168 	folio_throttle_swaprate(folio, gfp);
1169 
1170 	pgtable = pte_alloc_one(vma->vm_mm);
1171 	if (unlikely(!pgtable)) {
1172 		ret = VM_FAULT_OOM;
1173 		goto release;
1174 	}
1175 
1176 	folio_zero_user(folio, vmf->address);
1177 	/*
1178 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1179 	 * folio_zero_user writes become visible before the set_pmd_at()
1180 	 * write.
1181 	 */
1182 	__folio_mark_uptodate(folio);
1183 
1184 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1185 	if (unlikely(!pmd_none(*vmf->pmd))) {
1186 		goto unlock_release;
1187 	} else {
1188 		pmd_t entry;
1189 
1190 		ret = check_stable_address_space(vma->vm_mm);
1191 		if (ret)
1192 			goto unlock_release;
1193 
1194 		/* Deliver the page fault to userland */
1195 		if (userfaultfd_missing(vma)) {
1196 			spin_unlock(vmf->ptl);
1197 			folio_put(folio);
1198 			pte_free(vma->vm_mm, pgtable);
1199 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1200 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1201 			return ret;
1202 		}
1203 
1204 		entry = mk_huge_pmd(page, vma->vm_page_prot);
1205 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1206 		folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1207 		folio_add_lru_vma(folio, vma);
1208 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1209 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1210 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1211 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1212 		mm_inc_nr_ptes(vma->vm_mm);
1213 		deferred_split_folio(folio, false);
1214 		spin_unlock(vmf->ptl);
1215 		count_vm_event(THP_FAULT_ALLOC);
1216 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1217 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1218 	}
1219 
1220 	return 0;
1221 unlock_release:
1222 	spin_unlock(vmf->ptl);
1223 release:
1224 	if (pgtable)
1225 		pte_free(vma->vm_mm, pgtable);
1226 	folio_put(folio);
1227 	return ret;
1228 
1229 }
1230 
1231 /*
1232  * always: directly stall for all thp allocations
1233  * defer: wake kswapd and fail if not immediately available
1234  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1235  *		  fail if not immediately available
1236  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1237  *	    available
1238  * never: never stall for any thp allocation
1239  */
1240 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1241 {
1242 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1243 
1244 	/* Always do synchronous compaction */
1245 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1246 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1247 
1248 	/* Kick kcompactd and fail quickly */
1249 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1250 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1251 
1252 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1253 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1254 		return GFP_TRANSHUGE_LIGHT |
1255 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1256 					__GFP_KSWAPD_RECLAIM);
1257 
1258 	/* Only do synchronous compaction if madvised */
1259 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1260 		return GFP_TRANSHUGE_LIGHT |
1261 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1262 
1263 	return GFP_TRANSHUGE_LIGHT;
1264 }
1265 
1266 /* Caller must hold page table lock. */
1267 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1268 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1269 		struct folio *zero_folio)
1270 {
1271 	pmd_t entry;
1272 	if (!pmd_none(*pmd))
1273 		return;
1274 	entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1275 	entry = pmd_mkhuge(entry);
1276 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1277 	set_pmd_at(mm, haddr, pmd, entry);
1278 	mm_inc_nr_ptes(mm);
1279 }
1280 
1281 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1282 {
1283 	struct vm_area_struct *vma = vmf->vma;
1284 	gfp_t gfp;
1285 	struct folio *folio;
1286 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1287 	vm_fault_t ret;
1288 
1289 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1290 		return VM_FAULT_FALLBACK;
1291 	ret = vmf_anon_prepare(vmf);
1292 	if (ret)
1293 		return ret;
1294 	khugepaged_enter_vma(vma, vma->vm_flags);
1295 
1296 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1297 			!mm_forbids_zeropage(vma->vm_mm) &&
1298 			transparent_hugepage_use_zero_page()) {
1299 		pgtable_t pgtable;
1300 		struct folio *zero_folio;
1301 		vm_fault_t ret;
1302 
1303 		pgtable = pte_alloc_one(vma->vm_mm);
1304 		if (unlikely(!pgtable))
1305 			return VM_FAULT_OOM;
1306 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1307 		if (unlikely(!zero_folio)) {
1308 			pte_free(vma->vm_mm, pgtable);
1309 			count_vm_event(THP_FAULT_FALLBACK);
1310 			return VM_FAULT_FALLBACK;
1311 		}
1312 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1313 		ret = 0;
1314 		if (pmd_none(*vmf->pmd)) {
1315 			ret = check_stable_address_space(vma->vm_mm);
1316 			if (ret) {
1317 				spin_unlock(vmf->ptl);
1318 				pte_free(vma->vm_mm, pgtable);
1319 			} else if (userfaultfd_missing(vma)) {
1320 				spin_unlock(vmf->ptl);
1321 				pte_free(vma->vm_mm, pgtable);
1322 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1323 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1324 			} else {
1325 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1326 						   haddr, vmf->pmd, zero_folio);
1327 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1328 				spin_unlock(vmf->ptl);
1329 			}
1330 		} else {
1331 			spin_unlock(vmf->ptl);
1332 			pte_free(vma->vm_mm, pgtable);
1333 		}
1334 		return ret;
1335 	}
1336 	gfp = vma_thp_gfp_mask(vma);
1337 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1338 	if (unlikely(!folio)) {
1339 		count_vm_event(THP_FAULT_FALLBACK);
1340 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1341 		return VM_FAULT_FALLBACK;
1342 	}
1343 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1344 }
1345 
1346 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1347 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1348 		pgtable_t pgtable)
1349 {
1350 	struct mm_struct *mm = vma->vm_mm;
1351 	pmd_t entry;
1352 	spinlock_t *ptl;
1353 
1354 	ptl = pmd_lock(mm, pmd);
1355 	if (!pmd_none(*pmd)) {
1356 		if (write) {
1357 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1358 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1359 				goto out_unlock;
1360 			}
1361 			entry = pmd_mkyoung(*pmd);
1362 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1364 				update_mmu_cache_pmd(vma, addr, pmd);
1365 		}
1366 
1367 		goto out_unlock;
1368 	}
1369 
1370 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1371 	if (pfn_t_devmap(pfn))
1372 		entry = pmd_mkdevmap(entry);
1373 	if (write) {
1374 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1375 		entry = maybe_pmd_mkwrite(entry, vma);
1376 	}
1377 
1378 	if (pgtable) {
1379 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1380 		mm_inc_nr_ptes(mm);
1381 		pgtable = NULL;
1382 	}
1383 
1384 	set_pmd_at(mm, addr, pmd, entry);
1385 	update_mmu_cache_pmd(vma, addr, pmd);
1386 
1387 out_unlock:
1388 	spin_unlock(ptl);
1389 	if (pgtable)
1390 		pte_free(mm, pgtable);
1391 }
1392 
1393 /**
1394  * vmf_insert_pfn_pmd - insert a pmd size pfn
1395  * @vmf: Structure describing the fault
1396  * @pfn: pfn to insert
1397  * @write: whether it's a write fault
1398  *
1399  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1400  *
1401  * Return: vm_fault_t value.
1402  */
1403 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1404 {
1405 	unsigned long addr = vmf->address & PMD_MASK;
1406 	struct vm_area_struct *vma = vmf->vma;
1407 	pgprot_t pgprot = vma->vm_page_prot;
1408 	pgtable_t pgtable = NULL;
1409 
1410 	/*
1411 	 * If we had pmd_special, we could avoid all these restrictions,
1412 	 * but we need to be consistent with PTEs and architectures that
1413 	 * can't support a 'special' bit.
1414 	 */
1415 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1416 			!pfn_t_devmap(pfn));
1417 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1418 						(VM_PFNMAP|VM_MIXEDMAP));
1419 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1420 
1421 	if (addr < vma->vm_start || addr >= vma->vm_end)
1422 		return VM_FAULT_SIGBUS;
1423 
1424 	if (arch_needs_pgtable_deposit()) {
1425 		pgtable = pte_alloc_one(vma->vm_mm);
1426 		if (!pgtable)
1427 			return VM_FAULT_OOM;
1428 	}
1429 
1430 	track_pfn_insert(vma, &pgprot, pfn);
1431 
1432 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1433 	return VM_FAULT_NOPAGE;
1434 }
1435 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1436 
1437 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1438 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1439 {
1440 	if (likely(vma->vm_flags & VM_WRITE))
1441 		pud = pud_mkwrite(pud);
1442 	return pud;
1443 }
1444 
1445 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1446 		pud_t *pud, pfn_t pfn, bool write)
1447 {
1448 	struct mm_struct *mm = vma->vm_mm;
1449 	pgprot_t prot = vma->vm_page_prot;
1450 	pud_t entry;
1451 	spinlock_t *ptl;
1452 
1453 	ptl = pud_lock(mm, pud);
1454 	if (!pud_none(*pud)) {
1455 		if (write) {
1456 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1457 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1458 				goto out_unlock;
1459 			}
1460 			entry = pud_mkyoung(*pud);
1461 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1462 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1463 				update_mmu_cache_pud(vma, addr, pud);
1464 		}
1465 		goto out_unlock;
1466 	}
1467 
1468 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1469 	if (pfn_t_devmap(pfn))
1470 		entry = pud_mkdevmap(entry);
1471 	if (write) {
1472 		entry = pud_mkyoung(pud_mkdirty(entry));
1473 		entry = maybe_pud_mkwrite(entry, vma);
1474 	}
1475 	set_pud_at(mm, addr, pud, entry);
1476 	update_mmu_cache_pud(vma, addr, pud);
1477 
1478 out_unlock:
1479 	spin_unlock(ptl);
1480 }
1481 
1482 /**
1483  * vmf_insert_pfn_pud - insert a pud size pfn
1484  * @vmf: Structure describing the fault
1485  * @pfn: pfn to insert
1486  * @write: whether it's a write fault
1487  *
1488  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1489  *
1490  * Return: vm_fault_t value.
1491  */
1492 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1493 {
1494 	unsigned long addr = vmf->address & PUD_MASK;
1495 	struct vm_area_struct *vma = vmf->vma;
1496 	pgprot_t pgprot = vma->vm_page_prot;
1497 
1498 	/*
1499 	 * If we had pud_special, we could avoid all these restrictions,
1500 	 * but we need to be consistent with PTEs and architectures that
1501 	 * can't support a 'special' bit.
1502 	 */
1503 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1504 			!pfn_t_devmap(pfn));
1505 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1506 						(VM_PFNMAP|VM_MIXEDMAP));
1507 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1508 
1509 	if (addr < vma->vm_start || addr >= vma->vm_end)
1510 		return VM_FAULT_SIGBUS;
1511 
1512 	track_pfn_insert(vma, &pgprot, pfn);
1513 
1514 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1515 	return VM_FAULT_NOPAGE;
1516 }
1517 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1518 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1519 
1520 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1521 	       pmd_t *pmd, bool write)
1522 {
1523 	pmd_t _pmd;
1524 
1525 	_pmd = pmd_mkyoung(*pmd);
1526 	if (write)
1527 		_pmd = pmd_mkdirty(_pmd);
1528 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1529 				  pmd, _pmd, write))
1530 		update_mmu_cache_pmd(vma, addr, pmd);
1531 }
1532 
1533 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1534 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1535 {
1536 	unsigned long pfn = pmd_pfn(*pmd);
1537 	struct mm_struct *mm = vma->vm_mm;
1538 	struct page *page;
1539 	int ret;
1540 
1541 	assert_spin_locked(pmd_lockptr(mm, pmd));
1542 
1543 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1544 		return NULL;
1545 
1546 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1547 		/* pass */;
1548 	else
1549 		return NULL;
1550 
1551 	if (flags & FOLL_TOUCH)
1552 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1553 
1554 	/*
1555 	 * device mapped pages can only be returned if the
1556 	 * caller will manage the page reference count.
1557 	 */
1558 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1559 		return ERR_PTR(-EEXIST);
1560 
1561 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1562 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1563 	if (!*pgmap)
1564 		return ERR_PTR(-EFAULT);
1565 	page = pfn_to_page(pfn);
1566 	ret = try_grab_folio(page_folio(page), 1, flags);
1567 	if (ret)
1568 		page = ERR_PTR(ret);
1569 
1570 	return page;
1571 }
1572 
1573 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1574 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1575 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1576 {
1577 	spinlock_t *dst_ptl, *src_ptl;
1578 	struct page *src_page;
1579 	struct folio *src_folio;
1580 	pmd_t pmd;
1581 	pgtable_t pgtable = NULL;
1582 	int ret = -ENOMEM;
1583 
1584 	/* Skip if can be re-fill on fault */
1585 	if (!vma_is_anonymous(dst_vma))
1586 		return 0;
1587 
1588 	pgtable = pte_alloc_one(dst_mm);
1589 	if (unlikely(!pgtable))
1590 		goto out;
1591 
1592 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1593 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1594 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1595 
1596 	ret = -EAGAIN;
1597 	pmd = *src_pmd;
1598 
1599 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1600 	if (unlikely(is_swap_pmd(pmd))) {
1601 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1602 
1603 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1604 		if (!is_readable_migration_entry(entry)) {
1605 			entry = make_readable_migration_entry(
1606 							swp_offset(entry));
1607 			pmd = swp_entry_to_pmd(entry);
1608 			if (pmd_swp_soft_dirty(*src_pmd))
1609 				pmd = pmd_swp_mksoft_dirty(pmd);
1610 			if (pmd_swp_uffd_wp(*src_pmd))
1611 				pmd = pmd_swp_mkuffd_wp(pmd);
1612 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1613 		}
1614 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1615 		mm_inc_nr_ptes(dst_mm);
1616 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1617 		if (!userfaultfd_wp(dst_vma))
1618 			pmd = pmd_swp_clear_uffd_wp(pmd);
1619 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1620 		ret = 0;
1621 		goto out_unlock;
1622 	}
1623 #endif
1624 
1625 	if (unlikely(!pmd_trans_huge(pmd))) {
1626 		pte_free(dst_mm, pgtable);
1627 		goto out_unlock;
1628 	}
1629 	/*
1630 	 * When page table lock is held, the huge zero pmd should not be
1631 	 * under splitting since we don't split the page itself, only pmd to
1632 	 * a page table.
1633 	 */
1634 	if (is_huge_zero_pmd(pmd)) {
1635 		/*
1636 		 * mm_get_huge_zero_folio() will never allocate a new
1637 		 * folio here, since we already have a zero page to
1638 		 * copy. It just takes a reference.
1639 		 */
1640 		mm_get_huge_zero_folio(dst_mm);
1641 		goto out_zero_page;
1642 	}
1643 
1644 	src_page = pmd_page(pmd);
1645 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1646 	src_folio = page_folio(src_page);
1647 
1648 	folio_get(src_folio);
1649 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1650 		/* Page maybe pinned: split and retry the fault on PTEs. */
1651 		folio_put(src_folio);
1652 		pte_free(dst_mm, pgtable);
1653 		spin_unlock(src_ptl);
1654 		spin_unlock(dst_ptl);
1655 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1656 		return -EAGAIN;
1657 	}
1658 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1659 out_zero_page:
1660 	mm_inc_nr_ptes(dst_mm);
1661 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1662 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1663 	if (!userfaultfd_wp(dst_vma))
1664 		pmd = pmd_clear_uffd_wp(pmd);
1665 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1666 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1667 
1668 	ret = 0;
1669 out_unlock:
1670 	spin_unlock(src_ptl);
1671 	spin_unlock(dst_ptl);
1672 out:
1673 	return ret;
1674 }
1675 
1676 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1677 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1678 	       pud_t *pud, bool write)
1679 {
1680 	pud_t _pud;
1681 
1682 	_pud = pud_mkyoung(*pud);
1683 	if (write)
1684 		_pud = pud_mkdirty(_pud);
1685 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1686 				  pud, _pud, write))
1687 		update_mmu_cache_pud(vma, addr, pud);
1688 }
1689 
1690 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1691 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1692 		  struct vm_area_struct *vma)
1693 {
1694 	spinlock_t *dst_ptl, *src_ptl;
1695 	pud_t pud;
1696 	int ret;
1697 
1698 	dst_ptl = pud_lock(dst_mm, dst_pud);
1699 	src_ptl = pud_lockptr(src_mm, src_pud);
1700 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1701 
1702 	ret = -EAGAIN;
1703 	pud = *src_pud;
1704 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1705 		goto out_unlock;
1706 
1707 	/*
1708 	 * When page table lock is held, the huge zero pud should not be
1709 	 * under splitting since we don't split the page itself, only pud to
1710 	 * a page table.
1711 	 */
1712 	if (is_huge_zero_pud(pud)) {
1713 		/* No huge zero pud yet */
1714 	}
1715 
1716 	/*
1717 	 * TODO: once we support anonymous pages, use
1718 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1719 	 */
1720 	pudp_set_wrprotect(src_mm, addr, src_pud);
1721 	pud = pud_mkold(pud_wrprotect(pud));
1722 	set_pud_at(dst_mm, addr, dst_pud, pud);
1723 
1724 	ret = 0;
1725 out_unlock:
1726 	spin_unlock(src_ptl);
1727 	spin_unlock(dst_ptl);
1728 	return ret;
1729 }
1730 
1731 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1732 {
1733 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1734 
1735 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1736 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1737 		goto unlock;
1738 
1739 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1740 unlock:
1741 	spin_unlock(vmf->ptl);
1742 }
1743 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1744 
1745 void huge_pmd_set_accessed(struct vm_fault *vmf)
1746 {
1747 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1748 
1749 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1750 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1751 		goto unlock;
1752 
1753 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1754 
1755 unlock:
1756 	spin_unlock(vmf->ptl);
1757 }
1758 
1759 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1760 {
1761 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1762 	struct vm_area_struct *vma = vmf->vma;
1763 	struct folio *folio;
1764 	struct page *page;
1765 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1766 	pmd_t orig_pmd = vmf->orig_pmd;
1767 
1768 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1769 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1770 
1771 	if (is_huge_zero_pmd(orig_pmd))
1772 		goto fallback;
1773 
1774 	spin_lock(vmf->ptl);
1775 
1776 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1777 		spin_unlock(vmf->ptl);
1778 		return 0;
1779 	}
1780 
1781 	page = pmd_page(orig_pmd);
1782 	folio = page_folio(page);
1783 	VM_BUG_ON_PAGE(!PageHead(page), page);
1784 
1785 	/* Early check when only holding the PT lock. */
1786 	if (PageAnonExclusive(page))
1787 		goto reuse;
1788 
1789 	if (!folio_trylock(folio)) {
1790 		folio_get(folio);
1791 		spin_unlock(vmf->ptl);
1792 		folio_lock(folio);
1793 		spin_lock(vmf->ptl);
1794 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1795 			spin_unlock(vmf->ptl);
1796 			folio_unlock(folio);
1797 			folio_put(folio);
1798 			return 0;
1799 		}
1800 		folio_put(folio);
1801 	}
1802 
1803 	/* Recheck after temporarily dropping the PT lock. */
1804 	if (PageAnonExclusive(page)) {
1805 		folio_unlock(folio);
1806 		goto reuse;
1807 	}
1808 
1809 	/*
1810 	 * See do_wp_page(): we can only reuse the folio exclusively if
1811 	 * there are no additional references. Note that we always drain
1812 	 * the LRU cache immediately after adding a THP.
1813 	 */
1814 	if (folio_ref_count(folio) >
1815 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1816 		goto unlock_fallback;
1817 	if (folio_test_swapcache(folio))
1818 		folio_free_swap(folio);
1819 	if (folio_ref_count(folio) == 1) {
1820 		pmd_t entry;
1821 
1822 		folio_move_anon_rmap(folio, vma);
1823 		SetPageAnonExclusive(page);
1824 		folio_unlock(folio);
1825 reuse:
1826 		if (unlikely(unshare)) {
1827 			spin_unlock(vmf->ptl);
1828 			return 0;
1829 		}
1830 		entry = pmd_mkyoung(orig_pmd);
1831 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1832 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1833 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1834 		spin_unlock(vmf->ptl);
1835 		return 0;
1836 	}
1837 
1838 unlock_fallback:
1839 	folio_unlock(folio);
1840 	spin_unlock(vmf->ptl);
1841 fallback:
1842 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1843 	return VM_FAULT_FALLBACK;
1844 }
1845 
1846 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1847 					   unsigned long addr, pmd_t pmd)
1848 {
1849 	struct page *page;
1850 
1851 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1852 		return false;
1853 
1854 	/* Don't touch entries that are not even readable (NUMA hinting). */
1855 	if (pmd_protnone(pmd))
1856 		return false;
1857 
1858 	/* Do we need write faults for softdirty tracking? */
1859 	if (pmd_needs_soft_dirty_wp(vma, pmd))
1860 		return false;
1861 
1862 	/* Do we need write faults for uffd-wp tracking? */
1863 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1864 		return false;
1865 
1866 	if (!(vma->vm_flags & VM_SHARED)) {
1867 		/* See can_change_pte_writable(). */
1868 		page = vm_normal_page_pmd(vma, addr, pmd);
1869 		return page && PageAnon(page) && PageAnonExclusive(page);
1870 	}
1871 
1872 	/* See can_change_pte_writable(). */
1873 	return pmd_dirty(pmd);
1874 }
1875 
1876 /* NUMA hinting page fault entry point for trans huge pmds */
1877 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1878 {
1879 	struct vm_area_struct *vma = vmf->vma;
1880 	struct folio *folio;
1881 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1882 	int nid = NUMA_NO_NODE;
1883 	int target_nid, last_cpupid;
1884 	pmd_t pmd, old_pmd;
1885 	bool writable = false;
1886 	int flags = 0;
1887 
1888 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1889 	old_pmd = pmdp_get(vmf->pmd);
1890 
1891 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1892 		spin_unlock(vmf->ptl);
1893 		return 0;
1894 	}
1895 
1896 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1897 
1898 	/*
1899 	 * Detect now whether the PMD could be writable; this information
1900 	 * is only valid while holding the PT lock.
1901 	 */
1902 	writable = pmd_write(pmd);
1903 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1904 	    can_change_pmd_writable(vma, vmf->address, pmd))
1905 		writable = true;
1906 
1907 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1908 	if (!folio)
1909 		goto out_map;
1910 
1911 	nid = folio_nid(folio);
1912 
1913 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1914 					&last_cpupid);
1915 	if (target_nid == NUMA_NO_NODE)
1916 		goto out_map;
1917 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1918 		flags |= TNF_MIGRATE_FAIL;
1919 		goto out_map;
1920 	}
1921 	/* The folio is isolated and isolation code holds a folio reference. */
1922 	spin_unlock(vmf->ptl);
1923 	writable = false;
1924 
1925 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
1926 		flags |= TNF_MIGRATED;
1927 		nid = target_nid;
1928 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1929 		return 0;
1930 	}
1931 
1932 	flags |= TNF_MIGRATE_FAIL;
1933 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1934 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
1935 		spin_unlock(vmf->ptl);
1936 		return 0;
1937 	}
1938 out_map:
1939 	/* Restore the PMD */
1940 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
1941 	pmd = pmd_mkyoung(pmd);
1942 	if (writable)
1943 		pmd = pmd_mkwrite(pmd, vma);
1944 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1945 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1946 	spin_unlock(vmf->ptl);
1947 
1948 	if (nid != NUMA_NO_NODE)
1949 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Return true if we do MADV_FREE successfully on entire pmd page.
1955  * Otherwise, return false.
1956  */
1957 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1958 		pmd_t *pmd, unsigned long addr, unsigned long next)
1959 {
1960 	spinlock_t *ptl;
1961 	pmd_t orig_pmd;
1962 	struct folio *folio;
1963 	struct mm_struct *mm = tlb->mm;
1964 	bool ret = false;
1965 
1966 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1967 
1968 	ptl = pmd_trans_huge_lock(pmd, vma);
1969 	if (!ptl)
1970 		goto out_unlocked;
1971 
1972 	orig_pmd = *pmd;
1973 	if (is_huge_zero_pmd(orig_pmd))
1974 		goto out;
1975 
1976 	if (unlikely(!pmd_present(orig_pmd))) {
1977 		VM_BUG_ON(thp_migration_supported() &&
1978 				  !is_pmd_migration_entry(orig_pmd));
1979 		goto out;
1980 	}
1981 
1982 	folio = pmd_folio(orig_pmd);
1983 	/*
1984 	 * If other processes are mapping this folio, we couldn't discard
1985 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1986 	 */
1987 	if (folio_likely_mapped_shared(folio))
1988 		goto out;
1989 
1990 	if (!folio_trylock(folio))
1991 		goto out;
1992 
1993 	/*
1994 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1995 	 * will deactivate only them.
1996 	 */
1997 	if (next - addr != HPAGE_PMD_SIZE) {
1998 		folio_get(folio);
1999 		spin_unlock(ptl);
2000 		split_folio(folio);
2001 		folio_unlock(folio);
2002 		folio_put(folio);
2003 		goto out_unlocked;
2004 	}
2005 
2006 	if (folio_test_dirty(folio))
2007 		folio_clear_dirty(folio);
2008 	folio_unlock(folio);
2009 
2010 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2011 		pmdp_invalidate(vma, addr, pmd);
2012 		orig_pmd = pmd_mkold(orig_pmd);
2013 		orig_pmd = pmd_mkclean(orig_pmd);
2014 
2015 		set_pmd_at(mm, addr, pmd, orig_pmd);
2016 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2017 	}
2018 
2019 	folio_mark_lazyfree(folio);
2020 	ret = true;
2021 out:
2022 	spin_unlock(ptl);
2023 out_unlocked:
2024 	return ret;
2025 }
2026 
2027 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2028 {
2029 	pgtable_t pgtable;
2030 
2031 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2032 	pte_free(mm, pgtable);
2033 	mm_dec_nr_ptes(mm);
2034 }
2035 
2036 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2037 		 pmd_t *pmd, unsigned long addr)
2038 {
2039 	pmd_t orig_pmd;
2040 	spinlock_t *ptl;
2041 
2042 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2043 
2044 	ptl = __pmd_trans_huge_lock(pmd, vma);
2045 	if (!ptl)
2046 		return 0;
2047 	/*
2048 	 * For architectures like ppc64 we look at deposited pgtable
2049 	 * when calling pmdp_huge_get_and_clear. So do the
2050 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2051 	 * operations.
2052 	 */
2053 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2054 						tlb->fullmm);
2055 	arch_check_zapped_pmd(vma, orig_pmd);
2056 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2057 	if (vma_is_special_huge(vma)) {
2058 		if (arch_needs_pgtable_deposit())
2059 			zap_deposited_table(tlb->mm, pmd);
2060 		spin_unlock(ptl);
2061 	} else if (is_huge_zero_pmd(orig_pmd)) {
2062 		zap_deposited_table(tlb->mm, pmd);
2063 		spin_unlock(ptl);
2064 	} else {
2065 		struct folio *folio = NULL;
2066 		int flush_needed = 1;
2067 
2068 		if (pmd_present(orig_pmd)) {
2069 			struct page *page = pmd_page(orig_pmd);
2070 
2071 			folio = page_folio(page);
2072 			folio_remove_rmap_pmd(folio, page, vma);
2073 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2074 			VM_BUG_ON_PAGE(!PageHead(page), page);
2075 		} else if (thp_migration_supported()) {
2076 			swp_entry_t entry;
2077 
2078 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2079 			entry = pmd_to_swp_entry(orig_pmd);
2080 			folio = pfn_swap_entry_folio(entry);
2081 			flush_needed = 0;
2082 		} else
2083 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2084 
2085 		if (folio_test_anon(folio)) {
2086 			zap_deposited_table(tlb->mm, pmd);
2087 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2088 		} else {
2089 			if (arch_needs_pgtable_deposit())
2090 				zap_deposited_table(tlb->mm, pmd);
2091 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2092 				       -HPAGE_PMD_NR);
2093 		}
2094 
2095 		spin_unlock(ptl);
2096 		if (flush_needed)
2097 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2098 	}
2099 	return 1;
2100 }
2101 
2102 #ifndef pmd_move_must_withdraw
2103 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2104 					 spinlock_t *old_pmd_ptl,
2105 					 struct vm_area_struct *vma)
2106 {
2107 	/*
2108 	 * With split pmd lock we also need to move preallocated
2109 	 * PTE page table if new_pmd is on different PMD page table.
2110 	 *
2111 	 * We also don't deposit and withdraw tables for file pages.
2112 	 */
2113 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2114 }
2115 #endif
2116 
2117 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2118 {
2119 #ifdef CONFIG_MEM_SOFT_DIRTY
2120 	if (unlikely(is_pmd_migration_entry(pmd)))
2121 		pmd = pmd_swp_mksoft_dirty(pmd);
2122 	else if (pmd_present(pmd))
2123 		pmd = pmd_mksoft_dirty(pmd);
2124 #endif
2125 	return pmd;
2126 }
2127 
2128 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2129 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2130 {
2131 	spinlock_t *old_ptl, *new_ptl;
2132 	pmd_t pmd;
2133 	struct mm_struct *mm = vma->vm_mm;
2134 	bool force_flush = false;
2135 
2136 	/*
2137 	 * The destination pmd shouldn't be established, free_pgtables()
2138 	 * should have released it; but move_page_tables() might have already
2139 	 * inserted a page table, if racing against shmem/file collapse.
2140 	 */
2141 	if (!pmd_none(*new_pmd)) {
2142 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2143 		return false;
2144 	}
2145 
2146 	/*
2147 	 * We don't have to worry about the ordering of src and dst
2148 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2149 	 */
2150 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2151 	if (old_ptl) {
2152 		new_ptl = pmd_lockptr(mm, new_pmd);
2153 		if (new_ptl != old_ptl)
2154 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2155 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2156 		if (pmd_present(pmd))
2157 			force_flush = true;
2158 		VM_BUG_ON(!pmd_none(*new_pmd));
2159 
2160 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2161 			pgtable_t pgtable;
2162 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2163 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2164 		}
2165 		pmd = move_soft_dirty_pmd(pmd);
2166 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2167 		if (force_flush)
2168 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2169 		if (new_ptl != old_ptl)
2170 			spin_unlock(new_ptl);
2171 		spin_unlock(old_ptl);
2172 		return true;
2173 	}
2174 	return false;
2175 }
2176 
2177 /*
2178  * Returns
2179  *  - 0 if PMD could not be locked
2180  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2181  *      or if prot_numa but THP migration is not supported
2182  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2183  */
2184 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2185 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2186 		    unsigned long cp_flags)
2187 {
2188 	struct mm_struct *mm = vma->vm_mm;
2189 	spinlock_t *ptl;
2190 	pmd_t oldpmd, entry;
2191 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2192 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2193 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2194 	int ret = 1;
2195 
2196 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2197 
2198 	if (prot_numa && !thp_migration_supported())
2199 		return 1;
2200 
2201 	ptl = __pmd_trans_huge_lock(pmd, vma);
2202 	if (!ptl)
2203 		return 0;
2204 
2205 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2206 	if (is_swap_pmd(*pmd)) {
2207 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2208 		struct folio *folio = pfn_swap_entry_folio(entry);
2209 		pmd_t newpmd;
2210 
2211 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2212 		if (is_writable_migration_entry(entry)) {
2213 			/*
2214 			 * A protection check is difficult so
2215 			 * just be safe and disable write
2216 			 */
2217 			if (folio_test_anon(folio))
2218 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2219 			else
2220 				entry = make_readable_migration_entry(swp_offset(entry));
2221 			newpmd = swp_entry_to_pmd(entry);
2222 			if (pmd_swp_soft_dirty(*pmd))
2223 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2224 		} else {
2225 			newpmd = *pmd;
2226 		}
2227 
2228 		if (uffd_wp)
2229 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2230 		else if (uffd_wp_resolve)
2231 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2232 		if (!pmd_same(*pmd, newpmd))
2233 			set_pmd_at(mm, addr, pmd, newpmd);
2234 		goto unlock;
2235 	}
2236 #endif
2237 
2238 	if (prot_numa) {
2239 		struct folio *folio;
2240 		bool toptier;
2241 		/*
2242 		 * Avoid trapping faults against the zero page. The read-only
2243 		 * data is likely to be read-cached on the local CPU and
2244 		 * local/remote hits to the zero page are not interesting.
2245 		 */
2246 		if (is_huge_zero_pmd(*pmd))
2247 			goto unlock;
2248 
2249 		if (pmd_protnone(*pmd))
2250 			goto unlock;
2251 
2252 		folio = pmd_folio(*pmd);
2253 		toptier = node_is_toptier(folio_nid(folio));
2254 		/*
2255 		 * Skip scanning top tier node if normal numa
2256 		 * balancing is disabled
2257 		 */
2258 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2259 		    toptier)
2260 			goto unlock;
2261 
2262 		if (folio_use_access_time(folio))
2263 			folio_xchg_access_time(folio,
2264 					       jiffies_to_msecs(jiffies));
2265 	}
2266 	/*
2267 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2268 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2269 	 * which is also under mmap_read_lock(mm):
2270 	 *
2271 	 *	CPU0:				CPU1:
2272 	 *				change_huge_pmd(prot_numa=1)
2273 	 *				 pmdp_huge_get_and_clear_notify()
2274 	 * madvise_dontneed()
2275 	 *  zap_pmd_range()
2276 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2277 	 *   // skip the pmd
2278 	 *				 set_pmd_at();
2279 	 *				 // pmd is re-established
2280 	 *
2281 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2282 	 * which may break userspace.
2283 	 *
2284 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2285 	 * dirty/young flags set by hardware.
2286 	 */
2287 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2288 
2289 	entry = pmd_modify(oldpmd, newprot);
2290 	if (uffd_wp)
2291 		entry = pmd_mkuffd_wp(entry);
2292 	else if (uffd_wp_resolve)
2293 		/*
2294 		 * Leave the write bit to be handled by PF interrupt
2295 		 * handler, then things like COW could be properly
2296 		 * handled.
2297 		 */
2298 		entry = pmd_clear_uffd_wp(entry);
2299 
2300 	/* See change_pte_range(). */
2301 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2302 	    can_change_pmd_writable(vma, addr, entry))
2303 		entry = pmd_mkwrite(entry, vma);
2304 
2305 	ret = HPAGE_PMD_NR;
2306 	set_pmd_at(mm, addr, pmd, entry);
2307 
2308 	if (huge_pmd_needs_flush(oldpmd, entry))
2309 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2310 unlock:
2311 	spin_unlock(ptl);
2312 	return ret;
2313 }
2314 
2315 /*
2316  * Returns:
2317  *
2318  * - 0: if pud leaf changed from under us
2319  * - 1: if pud can be skipped
2320  * - HPAGE_PUD_NR: if pud was successfully processed
2321  */
2322 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2323 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2324 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2325 		    unsigned long cp_flags)
2326 {
2327 	struct mm_struct *mm = vma->vm_mm;
2328 	pud_t oldpud, entry;
2329 	spinlock_t *ptl;
2330 
2331 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2332 
2333 	/* NUMA balancing doesn't apply to dax */
2334 	if (cp_flags & MM_CP_PROT_NUMA)
2335 		return 1;
2336 
2337 	/*
2338 	 * Huge entries on userfault-wp only works with anonymous, while we
2339 	 * don't have anonymous PUDs yet.
2340 	 */
2341 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2342 		return 1;
2343 
2344 	ptl = __pud_trans_huge_lock(pudp, vma);
2345 	if (!ptl)
2346 		return 0;
2347 
2348 	/*
2349 	 * Can't clear PUD or it can race with concurrent zapping.  See
2350 	 * change_huge_pmd().
2351 	 */
2352 	oldpud = pudp_invalidate(vma, addr, pudp);
2353 	entry = pud_modify(oldpud, newprot);
2354 	set_pud_at(mm, addr, pudp, entry);
2355 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2356 
2357 	spin_unlock(ptl);
2358 	return HPAGE_PUD_NR;
2359 }
2360 #endif
2361 
2362 #ifdef CONFIG_USERFAULTFD
2363 /*
2364  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2365  * the caller, but it must return after releasing the page_table_lock.
2366  * Just move the page from src_pmd to dst_pmd if possible.
2367  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2368  * repeated by the caller, or other errors in case of failure.
2369  */
2370 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2371 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2372 			unsigned long dst_addr, unsigned long src_addr)
2373 {
2374 	pmd_t _dst_pmd, src_pmdval;
2375 	struct page *src_page;
2376 	struct folio *src_folio;
2377 	struct anon_vma *src_anon_vma;
2378 	spinlock_t *src_ptl, *dst_ptl;
2379 	pgtable_t src_pgtable;
2380 	struct mmu_notifier_range range;
2381 	int err = 0;
2382 
2383 	src_pmdval = *src_pmd;
2384 	src_ptl = pmd_lockptr(mm, src_pmd);
2385 
2386 	lockdep_assert_held(src_ptl);
2387 	vma_assert_locked(src_vma);
2388 	vma_assert_locked(dst_vma);
2389 
2390 	/* Sanity checks before the operation */
2391 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2392 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2393 		spin_unlock(src_ptl);
2394 		return -EINVAL;
2395 	}
2396 
2397 	if (!pmd_trans_huge(src_pmdval)) {
2398 		spin_unlock(src_ptl);
2399 		if (is_pmd_migration_entry(src_pmdval)) {
2400 			pmd_migration_entry_wait(mm, &src_pmdval);
2401 			return -EAGAIN;
2402 		}
2403 		return -ENOENT;
2404 	}
2405 
2406 	src_page = pmd_page(src_pmdval);
2407 
2408 	if (!is_huge_zero_pmd(src_pmdval)) {
2409 		if (unlikely(!PageAnonExclusive(src_page))) {
2410 			spin_unlock(src_ptl);
2411 			return -EBUSY;
2412 		}
2413 
2414 		src_folio = page_folio(src_page);
2415 		folio_get(src_folio);
2416 	} else
2417 		src_folio = NULL;
2418 
2419 	spin_unlock(src_ptl);
2420 
2421 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2422 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2423 				src_addr + HPAGE_PMD_SIZE);
2424 	mmu_notifier_invalidate_range_start(&range);
2425 
2426 	if (src_folio) {
2427 		folio_lock(src_folio);
2428 
2429 		/*
2430 		 * split_huge_page walks the anon_vma chain without the page
2431 		 * lock. Serialize against it with the anon_vma lock, the page
2432 		 * lock is not enough.
2433 		 */
2434 		src_anon_vma = folio_get_anon_vma(src_folio);
2435 		if (!src_anon_vma) {
2436 			err = -EAGAIN;
2437 			goto unlock_folio;
2438 		}
2439 		anon_vma_lock_write(src_anon_vma);
2440 	} else
2441 		src_anon_vma = NULL;
2442 
2443 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2444 	double_pt_lock(src_ptl, dst_ptl);
2445 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2446 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2447 		err = -EAGAIN;
2448 		goto unlock_ptls;
2449 	}
2450 	if (src_folio) {
2451 		if (folio_maybe_dma_pinned(src_folio) ||
2452 		    !PageAnonExclusive(&src_folio->page)) {
2453 			err = -EBUSY;
2454 			goto unlock_ptls;
2455 		}
2456 
2457 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2458 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2459 			err = -EBUSY;
2460 			goto unlock_ptls;
2461 		}
2462 
2463 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2464 		/* Folio got pinned from under us. Put it back and fail the move. */
2465 		if (folio_maybe_dma_pinned(src_folio)) {
2466 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2467 			err = -EBUSY;
2468 			goto unlock_ptls;
2469 		}
2470 
2471 		folio_move_anon_rmap(src_folio, dst_vma);
2472 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2473 
2474 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2475 		/* Follow mremap() behavior and treat the entry dirty after the move */
2476 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2477 	} else {
2478 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2479 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2480 	}
2481 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2482 
2483 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2484 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2485 unlock_ptls:
2486 	double_pt_unlock(src_ptl, dst_ptl);
2487 	if (src_anon_vma) {
2488 		anon_vma_unlock_write(src_anon_vma);
2489 		put_anon_vma(src_anon_vma);
2490 	}
2491 unlock_folio:
2492 	/* unblock rmap walks */
2493 	if (src_folio)
2494 		folio_unlock(src_folio);
2495 	mmu_notifier_invalidate_range_end(&range);
2496 	if (src_folio)
2497 		folio_put(src_folio);
2498 	return err;
2499 }
2500 #endif /* CONFIG_USERFAULTFD */
2501 
2502 /*
2503  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2504  *
2505  * Note that if it returns page table lock pointer, this routine returns without
2506  * unlocking page table lock. So callers must unlock it.
2507  */
2508 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2509 {
2510 	spinlock_t *ptl;
2511 	ptl = pmd_lock(vma->vm_mm, pmd);
2512 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2513 			pmd_devmap(*pmd)))
2514 		return ptl;
2515 	spin_unlock(ptl);
2516 	return NULL;
2517 }
2518 
2519 /*
2520  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2521  *
2522  * Note that if it returns page table lock pointer, this routine returns without
2523  * unlocking page table lock. So callers must unlock it.
2524  */
2525 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2526 {
2527 	spinlock_t *ptl;
2528 
2529 	ptl = pud_lock(vma->vm_mm, pud);
2530 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2531 		return ptl;
2532 	spin_unlock(ptl);
2533 	return NULL;
2534 }
2535 
2536 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2537 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2538 		 pud_t *pud, unsigned long addr)
2539 {
2540 	spinlock_t *ptl;
2541 	pud_t orig_pud;
2542 
2543 	ptl = __pud_trans_huge_lock(pud, vma);
2544 	if (!ptl)
2545 		return 0;
2546 
2547 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2548 	arch_check_zapped_pud(vma, orig_pud);
2549 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2550 	if (vma_is_special_huge(vma)) {
2551 		spin_unlock(ptl);
2552 		/* No zero page support yet */
2553 	} else {
2554 		/* No support for anonymous PUD pages yet */
2555 		BUG();
2556 	}
2557 	return 1;
2558 }
2559 
2560 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2561 		unsigned long haddr)
2562 {
2563 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2564 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2565 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2566 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2567 
2568 	count_vm_event(THP_SPLIT_PUD);
2569 
2570 	pudp_huge_clear_flush(vma, haddr, pud);
2571 }
2572 
2573 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2574 		unsigned long address)
2575 {
2576 	spinlock_t *ptl;
2577 	struct mmu_notifier_range range;
2578 
2579 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2580 				address & HPAGE_PUD_MASK,
2581 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2582 	mmu_notifier_invalidate_range_start(&range);
2583 	ptl = pud_lock(vma->vm_mm, pud);
2584 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2585 		goto out;
2586 	__split_huge_pud_locked(vma, pud, range.start);
2587 
2588 out:
2589 	spin_unlock(ptl);
2590 	mmu_notifier_invalidate_range_end(&range);
2591 }
2592 #else
2593 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2594 		unsigned long address)
2595 {
2596 }
2597 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2598 
2599 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2600 		unsigned long haddr, pmd_t *pmd)
2601 {
2602 	struct mm_struct *mm = vma->vm_mm;
2603 	pgtable_t pgtable;
2604 	pmd_t _pmd, old_pmd;
2605 	unsigned long addr;
2606 	pte_t *pte;
2607 	int i;
2608 
2609 	/*
2610 	 * Leave pmd empty until pte is filled note that it is fine to delay
2611 	 * notification until mmu_notifier_invalidate_range_end() as we are
2612 	 * replacing a zero pmd write protected page with a zero pte write
2613 	 * protected page.
2614 	 *
2615 	 * See Documentation/mm/mmu_notifier.rst
2616 	 */
2617 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2618 
2619 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2620 	pmd_populate(mm, &_pmd, pgtable);
2621 
2622 	pte = pte_offset_map(&_pmd, haddr);
2623 	VM_BUG_ON(!pte);
2624 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2625 		pte_t entry;
2626 
2627 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2628 		entry = pte_mkspecial(entry);
2629 		if (pmd_uffd_wp(old_pmd))
2630 			entry = pte_mkuffd_wp(entry);
2631 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2632 		set_pte_at(mm, addr, pte, entry);
2633 		pte++;
2634 	}
2635 	pte_unmap(pte - 1);
2636 	smp_wmb(); /* make pte visible before pmd */
2637 	pmd_populate(mm, pmd, pgtable);
2638 }
2639 
2640 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2641 		unsigned long haddr, bool freeze)
2642 {
2643 	struct mm_struct *mm = vma->vm_mm;
2644 	struct folio *folio;
2645 	struct page *page;
2646 	pgtable_t pgtable;
2647 	pmd_t old_pmd, _pmd;
2648 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2649 	bool anon_exclusive = false, dirty = false;
2650 	unsigned long addr;
2651 	pte_t *pte;
2652 	int i;
2653 
2654 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2655 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2656 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2657 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2658 				&& !pmd_devmap(*pmd));
2659 
2660 	count_vm_event(THP_SPLIT_PMD);
2661 
2662 	if (!vma_is_anonymous(vma)) {
2663 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2664 		/*
2665 		 * We are going to unmap this huge page. So
2666 		 * just go ahead and zap it
2667 		 */
2668 		if (arch_needs_pgtable_deposit())
2669 			zap_deposited_table(mm, pmd);
2670 		if (vma_is_special_huge(vma))
2671 			return;
2672 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2673 			swp_entry_t entry;
2674 
2675 			entry = pmd_to_swp_entry(old_pmd);
2676 			folio = pfn_swap_entry_folio(entry);
2677 		} else {
2678 			page = pmd_page(old_pmd);
2679 			folio = page_folio(page);
2680 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2681 				folio_mark_dirty(folio);
2682 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2683 				folio_set_referenced(folio);
2684 			folio_remove_rmap_pmd(folio, page, vma);
2685 			folio_put(folio);
2686 		}
2687 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2688 		return;
2689 	}
2690 
2691 	if (is_huge_zero_pmd(*pmd)) {
2692 		/*
2693 		 * FIXME: Do we want to invalidate secondary mmu by calling
2694 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2695 		 * inside __split_huge_pmd() ?
2696 		 *
2697 		 * We are going from a zero huge page write protected to zero
2698 		 * small page also write protected so it does not seems useful
2699 		 * to invalidate secondary mmu at this time.
2700 		 */
2701 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2702 	}
2703 
2704 	pmd_migration = is_pmd_migration_entry(*pmd);
2705 	if (unlikely(pmd_migration)) {
2706 		swp_entry_t entry;
2707 
2708 		old_pmd = *pmd;
2709 		entry = pmd_to_swp_entry(old_pmd);
2710 		page = pfn_swap_entry_to_page(entry);
2711 		write = is_writable_migration_entry(entry);
2712 		if (PageAnon(page))
2713 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2714 		young = is_migration_entry_young(entry);
2715 		dirty = is_migration_entry_dirty(entry);
2716 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2717 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2718 	} else {
2719 		/*
2720 		 * Up to this point the pmd is present and huge and userland has
2721 		 * the whole access to the hugepage during the split (which
2722 		 * happens in place). If we overwrite the pmd with the not-huge
2723 		 * version pointing to the pte here (which of course we could if
2724 		 * all CPUs were bug free), userland could trigger a small page
2725 		 * size TLB miss on the small sized TLB while the hugepage TLB
2726 		 * entry is still established in the huge TLB. Some CPU doesn't
2727 		 * like that. See
2728 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2729 		 * 383 on page 105. Intel should be safe but is also warns that
2730 		 * it's only safe if the permission and cache attributes of the
2731 		 * two entries loaded in the two TLB is identical (which should
2732 		 * be the case here). But it is generally safer to never allow
2733 		 * small and huge TLB entries for the same virtual address to be
2734 		 * loaded simultaneously. So instead of doing "pmd_populate();
2735 		 * flush_pmd_tlb_range();" we first mark the current pmd
2736 		 * notpresent (atomically because here the pmd_trans_huge must
2737 		 * remain set at all times on the pmd until the split is
2738 		 * complete for this pmd), then we flush the SMP TLB and finally
2739 		 * we write the non-huge version of the pmd entry with
2740 		 * pmd_populate.
2741 		 */
2742 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2743 		page = pmd_page(old_pmd);
2744 		folio = page_folio(page);
2745 		if (pmd_dirty(old_pmd)) {
2746 			dirty = true;
2747 			folio_set_dirty(folio);
2748 		}
2749 		write = pmd_write(old_pmd);
2750 		young = pmd_young(old_pmd);
2751 		soft_dirty = pmd_soft_dirty(old_pmd);
2752 		uffd_wp = pmd_uffd_wp(old_pmd);
2753 
2754 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2755 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2756 
2757 		/*
2758 		 * Without "freeze", we'll simply split the PMD, propagating the
2759 		 * PageAnonExclusive() flag for each PTE by setting it for
2760 		 * each subpage -- no need to (temporarily) clear.
2761 		 *
2762 		 * With "freeze" we want to replace mapped pages by
2763 		 * migration entries right away. This is only possible if we
2764 		 * managed to clear PageAnonExclusive() -- see
2765 		 * set_pmd_migration_entry().
2766 		 *
2767 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2768 		 * only and let try_to_migrate_one() fail later.
2769 		 *
2770 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2771 		 */
2772 		anon_exclusive = PageAnonExclusive(page);
2773 		if (freeze && anon_exclusive &&
2774 		    folio_try_share_anon_rmap_pmd(folio, page))
2775 			freeze = false;
2776 		if (!freeze) {
2777 			rmap_t rmap_flags = RMAP_NONE;
2778 
2779 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2780 			if (anon_exclusive)
2781 				rmap_flags |= RMAP_EXCLUSIVE;
2782 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2783 						 vma, haddr, rmap_flags);
2784 		}
2785 	}
2786 
2787 	/*
2788 	 * Withdraw the table only after we mark the pmd entry invalid.
2789 	 * This's critical for some architectures (Power).
2790 	 */
2791 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2792 	pmd_populate(mm, &_pmd, pgtable);
2793 
2794 	pte = pte_offset_map(&_pmd, haddr);
2795 	VM_BUG_ON(!pte);
2796 
2797 	/*
2798 	 * Note that NUMA hinting access restrictions are not transferred to
2799 	 * avoid any possibility of altering permissions across VMAs.
2800 	 */
2801 	if (freeze || pmd_migration) {
2802 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2803 			pte_t entry;
2804 			swp_entry_t swp_entry;
2805 
2806 			if (write)
2807 				swp_entry = make_writable_migration_entry(
2808 							page_to_pfn(page + i));
2809 			else if (anon_exclusive)
2810 				swp_entry = make_readable_exclusive_migration_entry(
2811 							page_to_pfn(page + i));
2812 			else
2813 				swp_entry = make_readable_migration_entry(
2814 							page_to_pfn(page + i));
2815 			if (young)
2816 				swp_entry = make_migration_entry_young(swp_entry);
2817 			if (dirty)
2818 				swp_entry = make_migration_entry_dirty(swp_entry);
2819 			entry = swp_entry_to_pte(swp_entry);
2820 			if (soft_dirty)
2821 				entry = pte_swp_mksoft_dirty(entry);
2822 			if (uffd_wp)
2823 				entry = pte_swp_mkuffd_wp(entry);
2824 
2825 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2826 			set_pte_at(mm, addr, pte + i, entry);
2827 		}
2828 	} else {
2829 		pte_t entry;
2830 
2831 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2832 		if (write)
2833 			entry = pte_mkwrite(entry, vma);
2834 		if (!young)
2835 			entry = pte_mkold(entry);
2836 		/* NOTE: this may set soft-dirty too on some archs */
2837 		if (dirty)
2838 			entry = pte_mkdirty(entry);
2839 		if (soft_dirty)
2840 			entry = pte_mksoft_dirty(entry);
2841 		if (uffd_wp)
2842 			entry = pte_mkuffd_wp(entry);
2843 
2844 		for (i = 0; i < HPAGE_PMD_NR; i++)
2845 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2846 
2847 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2848 	}
2849 	pte_unmap(pte);
2850 
2851 	if (!pmd_migration)
2852 		folio_remove_rmap_pmd(folio, page, vma);
2853 	if (freeze)
2854 		put_page(page);
2855 
2856 	smp_wmb(); /* make pte visible before pmd */
2857 	pmd_populate(mm, pmd, pgtable);
2858 }
2859 
2860 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2861 			   pmd_t *pmd, bool freeze, struct folio *folio)
2862 {
2863 	VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2864 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2865 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2866 	VM_BUG_ON(freeze && !folio);
2867 
2868 	/*
2869 	 * When the caller requests to set up a migration entry, we
2870 	 * require a folio to check the PMD against. Otherwise, there
2871 	 * is a risk of replacing the wrong folio.
2872 	 */
2873 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2874 	    is_pmd_migration_entry(*pmd)) {
2875 		if (folio && folio != pmd_folio(*pmd))
2876 			return;
2877 		__split_huge_pmd_locked(vma, pmd, address, freeze);
2878 	}
2879 }
2880 
2881 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2882 		unsigned long address, bool freeze, struct folio *folio)
2883 {
2884 	spinlock_t *ptl;
2885 	struct mmu_notifier_range range;
2886 
2887 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2888 				address & HPAGE_PMD_MASK,
2889 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2890 	mmu_notifier_invalidate_range_start(&range);
2891 	ptl = pmd_lock(vma->vm_mm, pmd);
2892 	split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2893 	spin_unlock(ptl);
2894 	mmu_notifier_invalidate_range_end(&range);
2895 }
2896 
2897 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2898 		bool freeze, struct folio *folio)
2899 {
2900 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2901 
2902 	if (!pmd)
2903 		return;
2904 
2905 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2906 }
2907 
2908 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2909 {
2910 	/*
2911 	 * If the new address isn't hpage aligned and it could previously
2912 	 * contain an hugepage: check if we need to split an huge pmd.
2913 	 */
2914 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2915 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2916 			 ALIGN(address, HPAGE_PMD_SIZE)))
2917 		split_huge_pmd_address(vma, address, false, NULL);
2918 }
2919 
2920 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2921 			     unsigned long start,
2922 			     unsigned long end,
2923 			     long adjust_next)
2924 {
2925 	/* Check if we need to split start first. */
2926 	split_huge_pmd_if_needed(vma, start);
2927 
2928 	/* Check if we need to split end next. */
2929 	split_huge_pmd_if_needed(vma, end);
2930 
2931 	/*
2932 	 * If we're also updating the next vma vm_start,
2933 	 * check if we need to split it.
2934 	 */
2935 	if (adjust_next > 0) {
2936 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2937 		unsigned long nstart = next->vm_start;
2938 		nstart += adjust_next;
2939 		split_huge_pmd_if_needed(next, nstart);
2940 	}
2941 }
2942 
2943 static void unmap_folio(struct folio *folio)
2944 {
2945 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2946 		TTU_BATCH_FLUSH;
2947 
2948 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2949 
2950 	if (folio_test_pmd_mappable(folio))
2951 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
2952 
2953 	/*
2954 	 * Anon pages need migration entries to preserve them, but file
2955 	 * pages can simply be left unmapped, then faulted back on demand.
2956 	 * If that is ever changed (perhaps for mlock), update remap_page().
2957 	 */
2958 	if (folio_test_anon(folio))
2959 		try_to_migrate(folio, ttu_flags);
2960 	else
2961 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2962 
2963 	try_to_unmap_flush();
2964 }
2965 
2966 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
2967 					    unsigned long addr, pmd_t *pmdp,
2968 					    struct folio *folio)
2969 {
2970 	struct mm_struct *mm = vma->vm_mm;
2971 	int ref_count, map_count;
2972 	pmd_t orig_pmd = *pmdp;
2973 
2974 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
2975 		return false;
2976 
2977 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
2978 
2979 	/*
2980 	 * Syncing against concurrent GUP-fast:
2981 	 * - clear PMD; barrier; read refcount
2982 	 * - inc refcount; barrier; read PMD
2983 	 */
2984 	smp_mb();
2985 
2986 	ref_count = folio_ref_count(folio);
2987 	map_count = folio_mapcount(folio);
2988 
2989 	/*
2990 	 * Order reads for folio refcount and dirty flag
2991 	 * (see comments in __remove_mapping()).
2992 	 */
2993 	smp_rmb();
2994 
2995 	/*
2996 	 * If the folio or its PMD is redirtied at this point, or if there
2997 	 * are unexpected references, we will give up to discard this folio
2998 	 * and remap it.
2999 	 *
3000 	 * The only folio refs must be one from isolation plus the rmap(s).
3001 	 */
3002 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3003 	    ref_count != map_count + 1) {
3004 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3005 		return false;
3006 	}
3007 
3008 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3009 	zap_deposited_table(mm, pmdp);
3010 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3011 	if (vma->vm_flags & VM_LOCKED)
3012 		mlock_drain_local();
3013 	folio_put(folio);
3014 
3015 	return true;
3016 }
3017 
3018 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3019 			   pmd_t *pmdp, struct folio *folio)
3020 {
3021 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3022 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3023 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3024 
3025 	if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3026 		return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3027 
3028 	return false;
3029 }
3030 
3031 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3032 {
3033 	int i = 0;
3034 
3035 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3036 	if (!folio_test_anon(folio))
3037 		return;
3038 	for (;;) {
3039 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3040 		i += folio_nr_pages(folio);
3041 		if (i >= nr)
3042 			break;
3043 		folio = folio_next(folio);
3044 	}
3045 }
3046 
3047 static void lru_add_page_tail(struct folio *folio, struct page *tail,
3048 		struct lruvec *lruvec, struct list_head *list)
3049 {
3050 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3051 	VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3052 	lockdep_assert_held(&lruvec->lru_lock);
3053 
3054 	if (list) {
3055 		/* page reclaim is reclaiming a huge page */
3056 		VM_WARN_ON(folio_test_lru(folio));
3057 		get_page(tail);
3058 		list_add_tail(&tail->lru, list);
3059 	} else {
3060 		/* head is still on lru (and we have it frozen) */
3061 		VM_WARN_ON(!folio_test_lru(folio));
3062 		if (folio_test_unevictable(folio))
3063 			tail->mlock_count = 0;
3064 		else
3065 			list_add_tail(&tail->lru, &folio->lru);
3066 		SetPageLRU(tail);
3067 	}
3068 }
3069 
3070 static void __split_huge_page_tail(struct folio *folio, int tail,
3071 		struct lruvec *lruvec, struct list_head *list,
3072 		unsigned int new_order)
3073 {
3074 	struct page *head = &folio->page;
3075 	struct page *page_tail = head + tail;
3076 	/*
3077 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3078 	 * Don't pass it around before clear_compound_head().
3079 	 */
3080 	struct folio *new_folio = (struct folio *)page_tail;
3081 
3082 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3083 
3084 	/*
3085 	 * Clone page flags before unfreezing refcount.
3086 	 *
3087 	 * After successful get_page_unless_zero() might follow flags change,
3088 	 * for example lock_page() which set PG_waiters.
3089 	 *
3090 	 * Note that for mapped sub-pages of an anonymous THP,
3091 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3092 	 * the migration entry instead from where remap_page() will restore it.
3093 	 * We can still have PG_anon_exclusive set on effectively unmapped and
3094 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
3095 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3096 	 */
3097 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3098 	page_tail->flags |= (head->flags &
3099 			((1L << PG_referenced) |
3100 			 (1L << PG_swapbacked) |
3101 			 (1L << PG_swapcache) |
3102 			 (1L << PG_mlocked) |
3103 			 (1L << PG_uptodate) |
3104 			 (1L << PG_active) |
3105 			 (1L << PG_workingset) |
3106 			 (1L << PG_locked) |
3107 			 (1L << PG_unevictable) |
3108 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3109 			 (1L << PG_arch_2) |
3110 #endif
3111 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3112 			 (1L << PG_arch_3) |
3113 #endif
3114 			 (1L << PG_dirty) |
3115 			 LRU_GEN_MASK | LRU_REFS_MASK));
3116 
3117 	/* ->mapping in first and second tail page is replaced by other uses */
3118 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3119 			page_tail);
3120 	page_tail->mapping = head->mapping;
3121 	page_tail->index = head->index + tail;
3122 
3123 	/*
3124 	 * page->private should not be set in tail pages. Fix up and warn once
3125 	 * if private is unexpectedly set.
3126 	 */
3127 	if (unlikely(page_tail->private)) {
3128 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
3129 		page_tail->private = 0;
3130 	}
3131 	if (folio_test_swapcache(folio))
3132 		new_folio->swap.val = folio->swap.val + tail;
3133 
3134 	/* Page flags must be visible before we make the page non-compound. */
3135 	smp_wmb();
3136 
3137 	/*
3138 	 * Clear PageTail before unfreezing page refcount.
3139 	 *
3140 	 * After successful get_page_unless_zero() might follow put_page()
3141 	 * which needs correct compound_head().
3142 	 */
3143 	clear_compound_head(page_tail);
3144 	if (new_order) {
3145 		prep_compound_page(page_tail, new_order);
3146 		folio_set_large_rmappable(new_folio);
3147 	}
3148 
3149 	/* Finally unfreeze refcount. Additional reference from page cache. */
3150 	page_ref_unfreeze(page_tail,
3151 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3152 			     folio_nr_pages(new_folio) : 0));
3153 
3154 	if (folio_test_young(folio))
3155 		folio_set_young(new_folio);
3156 	if (folio_test_idle(folio))
3157 		folio_set_idle(new_folio);
3158 
3159 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3160 
3161 	/*
3162 	 * always add to the tail because some iterators expect new
3163 	 * pages to show after the currently processed elements - e.g.
3164 	 * migrate_pages
3165 	 */
3166 	lru_add_page_tail(folio, page_tail, lruvec, list);
3167 }
3168 
3169 static void __split_huge_page(struct page *page, struct list_head *list,
3170 		pgoff_t end, unsigned int new_order)
3171 {
3172 	struct folio *folio = page_folio(page);
3173 	struct page *head = &folio->page;
3174 	struct lruvec *lruvec;
3175 	struct address_space *swap_cache = NULL;
3176 	unsigned long offset = 0;
3177 	int i, nr_dropped = 0;
3178 	unsigned int new_nr = 1 << new_order;
3179 	int order = folio_order(folio);
3180 	unsigned int nr = 1 << order;
3181 
3182 	/* complete memcg works before add pages to LRU */
3183 	split_page_memcg(head, order, new_order);
3184 
3185 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3186 		offset = swap_cache_index(folio->swap);
3187 		swap_cache = swap_address_space(folio->swap);
3188 		xa_lock(&swap_cache->i_pages);
3189 	}
3190 
3191 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3192 	lruvec = folio_lruvec_lock(folio);
3193 
3194 	ClearPageHasHWPoisoned(head);
3195 
3196 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3197 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
3198 		/* Some pages can be beyond EOF: drop them from page cache */
3199 		if (head[i].index >= end) {
3200 			struct folio *tail = page_folio(head + i);
3201 
3202 			if (shmem_mapping(folio->mapping))
3203 				nr_dropped++;
3204 			else if (folio_test_clear_dirty(tail))
3205 				folio_account_cleaned(tail,
3206 					inode_to_wb(folio->mapping->host));
3207 			__filemap_remove_folio(tail, NULL);
3208 			folio_put(tail);
3209 		} else if (!PageAnon(page)) {
3210 			__xa_store(&folio->mapping->i_pages, head[i].index,
3211 					head + i, 0);
3212 		} else if (swap_cache) {
3213 			__xa_store(&swap_cache->i_pages, offset + i,
3214 					head + i, 0);
3215 		}
3216 	}
3217 
3218 	if (!new_order)
3219 		ClearPageCompound(head);
3220 	else {
3221 		struct folio *new_folio = (struct folio *)head;
3222 
3223 		folio_set_order(new_folio, new_order);
3224 	}
3225 	unlock_page_lruvec(lruvec);
3226 	/* Caller disabled irqs, so they are still disabled here */
3227 
3228 	split_page_owner(head, order, new_order);
3229 	pgalloc_tag_split(head, 1 << order);
3230 
3231 	/* See comment in __split_huge_page_tail() */
3232 	if (folio_test_anon(folio)) {
3233 		/* Additional pin to swap cache */
3234 		if (folio_test_swapcache(folio)) {
3235 			folio_ref_add(folio, 1 + new_nr);
3236 			xa_unlock(&swap_cache->i_pages);
3237 		} else {
3238 			folio_ref_inc(folio);
3239 		}
3240 	} else {
3241 		/* Additional pin to page cache */
3242 		folio_ref_add(folio, 1 + new_nr);
3243 		xa_unlock(&folio->mapping->i_pages);
3244 	}
3245 	local_irq_enable();
3246 
3247 	if (nr_dropped)
3248 		shmem_uncharge(folio->mapping->host, nr_dropped);
3249 	remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3250 
3251 	/*
3252 	 * set page to its compound_head when split to non order-0 pages, so
3253 	 * we can skip unlocking it below, since PG_locked is transferred to
3254 	 * the compound_head of the page and the caller will unlock it.
3255 	 */
3256 	if (new_order)
3257 		page = compound_head(page);
3258 
3259 	for (i = 0; i < nr; i += new_nr) {
3260 		struct page *subpage = head + i;
3261 		struct folio *new_folio = page_folio(subpage);
3262 		if (subpage == page)
3263 			continue;
3264 		folio_unlock(new_folio);
3265 
3266 		/*
3267 		 * Subpages may be freed if there wasn't any mapping
3268 		 * like if add_to_swap() is running on a lru page that
3269 		 * had its mapping zapped. And freeing these pages
3270 		 * requires taking the lru_lock so we do the put_page
3271 		 * of the tail pages after the split is complete.
3272 		 */
3273 		free_page_and_swap_cache(subpage);
3274 	}
3275 }
3276 
3277 /* Racy check whether the huge page can be split */
3278 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3279 {
3280 	int extra_pins;
3281 
3282 	/* Additional pins from page cache */
3283 	if (folio_test_anon(folio))
3284 		extra_pins = folio_test_swapcache(folio) ?
3285 				folio_nr_pages(folio) : 0;
3286 	else
3287 		extra_pins = folio_nr_pages(folio);
3288 	if (pextra_pins)
3289 		*pextra_pins = extra_pins;
3290 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3291 					caller_pins;
3292 }
3293 
3294 /*
3295  * This function splits a large folio into smaller folios of order @new_order.
3296  * @page can point to any page of the large folio to split. The split operation
3297  * does not change the position of @page.
3298  *
3299  * Prerequisites:
3300  *
3301  * 1) The caller must hold a reference on the @page's owning folio, also known
3302  *    as the large folio.
3303  *
3304  * 2) The large folio must be locked.
3305  *
3306  * 3) The folio must not be pinned. Any unexpected folio references, including
3307  *    GUP pins, will result in the folio not getting split; instead, the caller
3308  *    will receive an -EAGAIN.
3309  *
3310  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3311  *    supported for non-file-backed folios, because folio->_deferred_list, which
3312  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3313  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3314  *    since they do not use _deferred_list.
3315  *
3316  * After splitting, the caller's folio reference will be transferred to @page,
3317  * resulting in a raised refcount of @page after this call. The other pages may
3318  * be freed if they are not mapped.
3319  *
3320  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3321  *
3322  * Pages in @new_order will inherit the mapping, flags, and so on from the
3323  * huge page.
3324  *
3325  * Returns 0 if the huge page was split successfully.
3326  *
3327  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3328  * the folio was concurrently removed from the page cache.
3329  *
3330  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3331  * under writeback, if fs-specific folio metadata cannot currently be
3332  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3333  * truncation).
3334  *
3335  * Returns -EINVAL when trying to split to an order that is incompatible
3336  * with the folio. Splitting to order 0 is compatible with all folios.
3337  */
3338 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3339 				     unsigned int new_order)
3340 {
3341 	struct folio *folio = page_folio(page);
3342 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3343 	/* reset xarray order to new order after split */
3344 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3345 	bool is_anon = folio_test_anon(folio);
3346 	struct address_space *mapping = NULL;
3347 	struct anon_vma *anon_vma = NULL;
3348 	int order = folio_order(folio);
3349 	int extra_pins, ret;
3350 	pgoff_t end;
3351 	bool is_hzp;
3352 
3353 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3354 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3355 
3356 	if (new_order >= folio_order(folio))
3357 		return -EINVAL;
3358 
3359 	if (is_anon) {
3360 		/* order-1 is not supported for anonymous THP. */
3361 		if (new_order == 1) {
3362 			VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3363 			return -EINVAL;
3364 		}
3365 	} else if (new_order) {
3366 		/* Split shmem folio to non-zero order not supported */
3367 		if (shmem_mapping(folio->mapping)) {
3368 			VM_WARN_ONCE(1,
3369 				"Cannot split shmem folio to non-0 order");
3370 			return -EINVAL;
3371 		}
3372 		/*
3373 		 * No split if the file system does not support large folio.
3374 		 * Note that we might still have THPs in such mappings due to
3375 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3376 		 * does not actually support large folios properly.
3377 		 */
3378 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3379 		    !mapping_large_folio_support(folio->mapping)) {
3380 			VM_WARN_ONCE(1,
3381 				"Cannot split file folio to non-0 order");
3382 			return -EINVAL;
3383 		}
3384 	}
3385 
3386 	/* Only swapping a whole PMD-mapped folio is supported */
3387 	if (folio_test_swapcache(folio) && new_order)
3388 		return -EINVAL;
3389 
3390 	is_hzp = is_huge_zero_folio(folio);
3391 	if (is_hzp) {
3392 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3393 		return -EBUSY;
3394 	}
3395 
3396 	if (folio_test_writeback(folio))
3397 		return -EBUSY;
3398 
3399 	if (is_anon) {
3400 		/*
3401 		 * The caller does not necessarily hold an mmap_lock that would
3402 		 * prevent the anon_vma disappearing so we first we take a
3403 		 * reference to it and then lock the anon_vma for write. This
3404 		 * is similar to folio_lock_anon_vma_read except the write lock
3405 		 * is taken to serialise against parallel split or collapse
3406 		 * operations.
3407 		 */
3408 		anon_vma = folio_get_anon_vma(folio);
3409 		if (!anon_vma) {
3410 			ret = -EBUSY;
3411 			goto out;
3412 		}
3413 		end = -1;
3414 		mapping = NULL;
3415 		anon_vma_lock_write(anon_vma);
3416 	} else {
3417 		gfp_t gfp;
3418 
3419 		mapping = folio->mapping;
3420 
3421 		/* Truncated ? */
3422 		if (!mapping) {
3423 			ret = -EBUSY;
3424 			goto out;
3425 		}
3426 
3427 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3428 							GFP_RECLAIM_MASK);
3429 
3430 		if (!filemap_release_folio(folio, gfp)) {
3431 			ret = -EBUSY;
3432 			goto out;
3433 		}
3434 
3435 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3436 		if (xas_error(&xas)) {
3437 			ret = xas_error(&xas);
3438 			goto out;
3439 		}
3440 
3441 		anon_vma = NULL;
3442 		i_mmap_lock_read(mapping);
3443 
3444 		/*
3445 		 *__split_huge_page() may need to trim off pages beyond EOF:
3446 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3447 		 * which cannot be nested inside the page tree lock. So note
3448 		 * end now: i_size itself may be changed at any moment, but
3449 		 * folio lock is good enough to serialize the trimming.
3450 		 */
3451 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3452 		if (shmem_mapping(mapping))
3453 			end = shmem_fallocend(mapping->host, end);
3454 	}
3455 
3456 	/*
3457 	 * Racy check if we can split the page, before unmap_folio() will
3458 	 * split PMDs
3459 	 */
3460 	if (!can_split_folio(folio, 1, &extra_pins)) {
3461 		ret = -EAGAIN;
3462 		goto out_unlock;
3463 	}
3464 
3465 	unmap_folio(folio);
3466 
3467 	/* block interrupt reentry in xa_lock and spinlock */
3468 	local_irq_disable();
3469 	if (mapping) {
3470 		/*
3471 		 * Check if the folio is present in page cache.
3472 		 * We assume all tail are present too, if folio is there.
3473 		 */
3474 		xas_lock(&xas);
3475 		xas_reset(&xas);
3476 		if (xas_load(&xas) != folio)
3477 			goto fail;
3478 	}
3479 
3480 	/* Prevent deferred_split_scan() touching ->_refcount */
3481 	spin_lock(&ds_queue->split_queue_lock);
3482 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3483 		if (folio_order(folio) > 1 &&
3484 		    !list_empty(&folio->_deferred_list)) {
3485 			ds_queue->split_queue_len--;
3486 			if (folio_test_partially_mapped(folio)) {
3487 				__folio_clear_partially_mapped(folio);
3488 				mod_mthp_stat(folio_order(folio),
3489 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3490 			}
3491 			/*
3492 			 * Reinitialize page_deferred_list after removing the
3493 			 * page from the split_queue, otherwise a subsequent
3494 			 * split will see list corruption when checking the
3495 			 * page_deferred_list.
3496 			 */
3497 			list_del_init(&folio->_deferred_list);
3498 		}
3499 		spin_unlock(&ds_queue->split_queue_lock);
3500 		if (mapping) {
3501 			int nr = folio_nr_pages(folio);
3502 
3503 			xas_split(&xas, folio, folio_order(folio));
3504 			if (folio_test_pmd_mappable(folio) &&
3505 			    new_order < HPAGE_PMD_ORDER) {
3506 				if (folio_test_swapbacked(folio)) {
3507 					__lruvec_stat_mod_folio(folio,
3508 							NR_SHMEM_THPS, -nr);
3509 				} else {
3510 					__lruvec_stat_mod_folio(folio,
3511 							NR_FILE_THPS, -nr);
3512 					filemap_nr_thps_dec(mapping);
3513 				}
3514 			}
3515 		}
3516 
3517 		if (is_anon) {
3518 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3519 			mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3520 		}
3521 		__split_huge_page(page, list, end, new_order);
3522 		ret = 0;
3523 	} else {
3524 		spin_unlock(&ds_queue->split_queue_lock);
3525 fail:
3526 		if (mapping)
3527 			xas_unlock(&xas);
3528 		local_irq_enable();
3529 		remap_page(folio, folio_nr_pages(folio), 0);
3530 		ret = -EAGAIN;
3531 	}
3532 
3533 out_unlock:
3534 	if (anon_vma) {
3535 		anon_vma_unlock_write(anon_vma);
3536 		put_anon_vma(anon_vma);
3537 	}
3538 	if (mapping)
3539 		i_mmap_unlock_read(mapping);
3540 out:
3541 	xas_destroy(&xas);
3542 	if (order == HPAGE_PMD_ORDER)
3543 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3544 	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3545 	return ret;
3546 }
3547 
3548 void __folio_undo_large_rmappable(struct folio *folio)
3549 {
3550 	struct deferred_split *ds_queue;
3551 	unsigned long flags;
3552 
3553 	ds_queue = get_deferred_split_queue(folio);
3554 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3555 	if (!list_empty(&folio->_deferred_list)) {
3556 		ds_queue->split_queue_len--;
3557 		if (folio_test_partially_mapped(folio)) {
3558 			__folio_clear_partially_mapped(folio);
3559 			mod_mthp_stat(folio_order(folio),
3560 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3561 		}
3562 		list_del_init(&folio->_deferred_list);
3563 	}
3564 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3565 }
3566 
3567 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
3568 void deferred_split_folio(struct folio *folio, bool partially_mapped)
3569 {
3570 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3571 #ifdef CONFIG_MEMCG
3572 	struct mem_cgroup *memcg = folio_memcg(folio);
3573 #endif
3574 	unsigned long flags;
3575 
3576 	/*
3577 	 * Order 1 folios have no space for a deferred list, but we also
3578 	 * won't waste much memory by not adding them to the deferred list.
3579 	 */
3580 	if (folio_order(folio) <= 1)
3581 		return;
3582 
3583 	if (!partially_mapped && !split_underused_thp)
3584 		return;
3585 
3586 	/*
3587 	 * The try_to_unmap() in page reclaim path might reach here too,
3588 	 * this may cause a race condition to corrupt deferred split queue.
3589 	 * And, if page reclaim is already handling the same folio, it is
3590 	 * unnecessary to handle it again in shrinker.
3591 	 *
3592 	 * Check the swapcache flag to determine if the folio is being
3593 	 * handled by page reclaim since THP swap would add the folio into
3594 	 * swap cache before calling try_to_unmap().
3595 	 */
3596 	if (folio_test_swapcache(folio))
3597 		return;
3598 
3599 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3600 	if (partially_mapped) {
3601 		if (!folio_test_partially_mapped(folio)) {
3602 			__folio_set_partially_mapped(folio);
3603 			if (folio_test_pmd_mappable(folio))
3604 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3605 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3606 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3607 
3608 		}
3609 	} else {
3610 		/* partially mapped folios cannot become non-partially mapped */
3611 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3612 	}
3613 	if (list_empty(&folio->_deferred_list)) {
3614 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3615 		ds_queue->split_queue_len++;
3616 #ifdef CONFIG_MEMCG
3617 		if (memcg)
3618 			set_shrinker_bit(memcg, folio_nid(folio),
3619 					 deferred_split_shrinker->id);
3620 #endif
3621 	}
3622 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3623 }
3624 
3625 static unsigned long deferred_split_count(struct shrinker *shrink,
3626 		struct shrink_control *sc)
3627 {
3628 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3629 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3630 
3631 #ifdef CONFIG_MEMCG
3632 	if (sc->memcg)
3633 		ds_queue = &sc->memcg->deferred_split_queue;
3634 #endif
3635 	return READ_ONCE(ds_queue->split_queue_len);
3636 }
3637 
3638 static bool thp_underused(struct folio *folio)
3639 {
3640 	int num_zero_pages = 0, num_filled_pages = 0;
3641 	void *kaddr;
3642 	int i;
3643 
3644 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3645 		return false;
3646 
3647 	for (i = 0; i < folio_nr_pages(folio); i++) {
3648 		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3649 		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3650 			num_zero_pages++;
3651 			if (num_zero_pages > khugepaged_max_ptes_none) {
3652 				kunmap_local(kaddr);
3653 				return true;
3654 			}
3655 		} else {
3656 			/*
3657 			 * Another path for early exit once the number
3658 			 * of non-zero filled pages exceeds threshold.
3659 			 */
3660 			num_filled_pages++;
3661 			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3662 				kunmap_local(kaddr);
3663 				return false;
3664 			}
3665 		}
3666 		kunmap_local(kaddr);
3667 	}
3668 	return false;
3669 }
3670 
3671 static unsigned long deferred_split_scan(struct shrinker *shrink,
3672 		struct shrink_control *sc)
3673 {
3674 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3675 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3676 	unsigned long flags;
3677 	LIST_HEAD(list);
3678 	struct folio *folio, *next;
3679 	int split = 0;
3680 
3681 #ifdef CONFIG_MEMCG
3682 	if (sc->memcg)
3683 		ds_queue = &sc->memcg->deferred_split_queue;
3684 #endif
3685 
3686 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3687 	/* Take pin on all head pages to avoid freeing them under us */
3688 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3689 							_deferred_list) {
3690 		if (folio_try_get(folio)) {
3691 			list_move(&folio->_deferred_list, &list);
3692 		} else {
3693 			/* We lost race with folio_put() */
3694 			if (folio_test_partially_mapped(folio)) {
3695 				__folio_clear_partially_mapped(folio);
3696 				mod_mthp_stat(folio_order(folio),
3697 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3698 			}
3699 			list_del_init(&folio->_deferred_list);
3700 			ds_queue->split_queue_len--;
3701 		}
3702 		if (!--sc->nr_to_scan)
3703 			break;
3704 	}
3705 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3706 
3707 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3708 		bool did_split = false;
3709 		bool underused = false;
3710 
3711 		if (!folio_test_partially_mapped(folio)) {
3712 			underused = thp_underused(folio);
3713 			if (!underused)
3714 				goto next;
3715 		}
3716 		if (!folio_trylock(folio))
3717 			goto next;
3718 		if (!split_folio(folio)) {
3719 			did_split = true;
3720 			if (underused)
3721 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3722 			split++;
3723 		}
3724 		folio_unlock(folio);
3725 next:
3726 		/*
3727 		 * split_folio() removes folio from list on success.
3728 		 * Only add back to the queue if folio is partially mapped.
3729 		 * If thp_underused returns false, or if split_folio fails
3730 		 * in the case it was underused, then consider it used and
3731 		 * don't add it back to split_queue.
3732 		 */
3733 		if (!did_split && !folio_test_partially_mapped(folio)) {
3734 			list_del_init(&folio->_deferred_list);
3735 			ds_queue->split_queue_len--;
3736 		}
3737 		folio_put(folio);
3738 	}
3739 
3740 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3741 	list_splice_tail(&list, &ds_queue->split_queue);
3742 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3743 
3744 	/*
3745 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3746 	 * This can happen if pages were freed under us.
3747 	 */
3748 	if (!split && list_empty(&ds_queue->split_queue))
3749 		return SHRINK_STOP;
3750 	return split;
3751 }
3752 
3753 #ifdef CONFIG_DEBUG_FS
3754 static void split_huge_pages_all(void)
3755 {
3756 	struct zone *zone;
3757 	struct page *page;
3758 	struct folio *folio;
3759 	unsigned long pfn, max_zone_pfn;
3760 	unsigned long total = 0, split = 0;
3761 
3762 	pr_debug("Split all THPs\n");
3763 	for_each_zone(zone) {
3764 		if (!managed_zone(zone))
3765 			continue;
3766 		max_zone_pfn = zone_end_pfn(zone);
3767 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3768 			int nr_pages;
3769 
3770 			page = pfn_to_online_page(pfn);
3771 			if (!page || PageTail(page))
3772 				continue;
3773 			folio = page_folio(page);
3774 			if (!folio_try_get(folio))
3775 				continue;
3776 
3777 			if (unlikely(page_folio(page) != folio))
3778 				goto next;
3779 
3780 			if (zone != folio_zone(folio))
3781 				goto next;
3782 
3783 			if (!folio_test_large(folio)
3784 				|| folio_test_hugetlb(folio)
3785 				|| !folio_test_lru(folio))
3786 				goto next;
3787 
3788 			total++;
3789 			folio_lock(folio);
3790 			nr_pages = folio_nr_pages(folio);
3791 			if (!split_folio(folio))
3792 				split++;
3793 			pfn += nr_pages - 1;
3794 			folio_unlock(folio);
3795 next:
3796 			folio_put(folio);
3797 			cond_resched();
3798 		}
3799 	}
3800 
3801 	pr_debug("%lu of %lu THP split\n", split, total);
3802 }
3803 
3804 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3805 {
3806 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3807 		    is_vm_hugetlb_page(vma);
3808 }
3809 
3810 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3811 				unsigned long vaddr_end, unsigned int new_order)
3812 {
3813 	int ret = 0;
3814 	struct task_struct *task;
3815 	struct mm_struct *mm;
3816 	unsigned long total = 0, split = 0;
3817 	unsigned long addr;
3818 
3819 	vaddr_start &= PAGE_MASK;
3820 	vaddr_end &= PAGE_MASK;
3821 
3822 	/* Find the task_struct from pid */
3823 	rcu_read_lock();
3824 	task = find_task_by_vpid(pid);
3825 	if (!task) {
3826 		rcu_read_unlock();
3827 		ret = -ESRCH;
3828 		goto out;
3829 	}
3830 	get_task_struct(task);
3831 	rcu_read_unlock();
3832 
3833 	/* Find the mm_struct */
3834 	mm = get_task_mm(task);
3835 	put_task_struct(task);
3836 
3837 	if (!mm) {
3838 		ret = -EINVAL;
3839 		goto out;
3840 	}
3841 
3842 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3843 		 pid, vaddr_start, vaddr_end);
3844 
3845 	mmap_read_lock(mm);
3846 	/*
3847 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3848 	 * table filled with PTE-mapped THPs, each of which is distinct.
3849 	 */
3850 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3851 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3852 		struct folio_walk fw;
3853 		struct folio *folio;
3854 
3855 		if (!vma)
3856 			break;
3857 
3858 		/* skip special VMA and hugetlb VMA */
3859 		if (vma_not_suitable_for_thp_split(vma)) {
3860 			addr = vma->vm_end;
3861 			continue;
3862 		}
3863 
3864 		folio = folio_walk_start(&fw, vma, addr, 0);
3865 		if (!folio)
3866 			continue;
3867 
3868 		if (!is_transparent_hugepage(folio))
3869 			goto next;
3870 
3871 		if (new_order >= folio_order(folio))
3872 			goto next;
3873 
3874 		total++;
3875 		/*
3876 		 * For folios with private, split_huge_page_to_list_to_order()
3877 		 * will try to drop it before split and then check if the folio
3878 		 * can be split or not. So skip the check here.
3879 		 */
3880 		if (!folio_test_private(folio) &&
3881 		    !can_split_folio(folio, 0, NULL))
3882 			goto next;
3883 
3884 		if (!folio_trylock(folio))
3885 			goto next;
3886 		folio_get(folio);
3887 		folio_walk_end(&fw, vma);
3888 
3889 		if (!split_folio_to_order(folio, new_order))
3890 			split++;
3891 
3892 		folio_unlock(folio);
3893 		folio_put(folio);
3894 
3895 		cond_resched();
3896 		continue;
3897 next:
3898 		folio_walk_end(&fw, vma);
3899 		cond_resched();
3900 	}
3901 	mmap_read_unlock(mm);
3902 	mmput(mm);
3903 
3904 	pr_debug("%lu of %lu THP split\n", split, total);
3905 
3906 out:
3907 	return ret;
3908 }
3909 
3910 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3911 				pgoff_t off_end, unsigned int new_order)
3912 {
3913 	struct filename *file;
3914 	struct file *candidate;
3915 	struct address_space *mapping;
3916 	int ret = -EINVAL;
3917 	pgoff_t index;
3918 	int nr_pages = 1;
3919 	unsigned long total = 0, split = 0;
3920 
3921 	file = getname_kernel(file_path);
3922 	if (IS_ERR(file))
3923 		return ret;
3924 
3925 	candidate = file_open_name(file, O_RDONLY, 0);
3926 	if (IS_ERR(candidate))
3927 		goto out;
3928 
3929 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3930 		 file_path, off_start, off_end);
3931 
3932 	mapping = candidate->f_mapping;
3933 
3934 	for (index = off_start; index < off_end; index += nr_pages) {
3935 		struct folio *folio = filemap_get_folio(mapping, index);
3936 
3937 		nr_pages = 1;
3938 		if (IS_ERR(folio))
3939 			continue;
3940 
3941 		if (!folio_test_large(folio))
3942 			goto next;
3943 
3944 		total++;
3945 		nr_pages = folio_nr_pages(folio);
3946 
3947 		if (new_order >= folio_order(folio))
3948 			goto next;
3949 
3950 		if (!folio_trylock(folio))
3951 			goto next;
3952 
3953 		if (!split_folio_to_order(folio, new_order))
3954 			split++;
3955 
3956 		folio_unlock(folio);
3957 next:
3958 		folio_put(folio);
3959 		cond_resched();
3960 	}
3961 
3962 	filp_close(candidate, NULL);
3963 	ret = 0;
3964 
3965 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3966 out:
3967 	putname(file);
3968 	return ret;
3969 }
3970 
3971 #define MAX_INPUT_BUF_SZ 255
3972 
3973 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3974 				size_t count, loff_t *ppops)
3975 {
3976 	static DEFINE_MUTEX(split_debug_mutex);
3977 	ssize_t ret;
3978 	/*
3979 	 * hold pid, start_vaddr, end_vaddr, new_order or
3980 	 * file_path, off_start, off_end, new_order
3981 	 */
3982 	char input_buf[MAX_INPUT_BUF_SZ];
3983 	int pid;
3984 	unsigned long vaddr_start, vaddr_end;
3985 	unsigned int new_order = 0;
3986 
3987 	ret = mutex_lock_interruptible(&split_debug_mutex);
3988 	if (ret)
3989 		return ret;
3990 
3991 	ret = -EFAULT;
3992 
3993 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3994 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3995 		goto out;
3996 
3997 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3998 
3999 	if (input_buf[0] == '/') {
4000 		char *tok;
4001 		char *buf = input_buf;
4002 		char file_path[MAX_INPUT_BUF_SZ];
4003 		pgoff_t off_start = 0, off_end = 0;
4004 		size_t input_len = strlen(input_buf);
4005 
4006 		tok = strsep(&buf, ",");
4007 		if (tok) {
4008 			strcpy(file_path, tok);
4009 		} else {
4010 			ret = -EINVAL;
4011 			goto out;
4012 		}
4013 
4014 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4015 		if (ret != 2 && ret != 3) {
4016 			ret = -EINVAL;
4017 			goto out;
4018 		}
4019 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4020 		if (!ret)
4021 			ret = input_len;
4022 
4023 		goto out;
4024 	}
4025 
4026 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4027 	if (ret == 1 && pid == 1) {
4028 		split_huge_pages_all();
4029 		ret = strlen(input_buf);
4030 		goto out;
4031 	} else if (ret != 3 && ret != 4) {
4032 		ret = -EINVAL;
4033 		goto out;
4034 	}
4035 
4036 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4037 	if (!ret)
4038 		ret = strlen(input_buf);
4039 out:
4040 	mutex_unlock(&split_debug_mutex);
4041 	return ret;
4042 
4043 }
4044 
4045 static const struct file_operations split_huge_pages_fops = {
4046 	.owner	 = THIS_MODULE,
4047 	.write	 = split_huge_pages_write,
4048 	.llseek  = no_llseek,
4049 };
4050 
4051 static int __init split_huge_pages_debugfs(void)
4052 {
4053 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4054 			    &split_huge_pages_fops);
4055 	return 0;
4056 }
4057 late_initcall(split_huge_pages_debugfs);
4058 #endif
4059 
4060 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4061 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4062 		struct page *page)
4063 {
4064 	struct folio *folio = page_folio(page);
4065 	struct vm_area_struct *vma = pvmw->vma;
4066 	struct mm_struct *mm = vma->vm_mm;
4067 	unsigned long address = pvmw->address;
4068 	bool anon_exclusive;
4069 	pmd_t pmdval;
4070 	swp_entry_t entry;
4071 	pmd_t pmdswp;
4072 
4073 	if (!(pvmw->pmd && !pvmw->pte))
4074 		return 0;
4075 
4076 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4077 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4078 
4079 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4080 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4081 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4082 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4083 		return -EBUSY;
4084 	}
4085 
4086 	if (pmd_dirty(pmdval))
4087 		folio_mark_dirty(folio);
4088 	if (pmd_write(pmdval))
4089 		entry = make_writable_migration_entry(page_to_pfn(page));
4090 	else if (anon_exclusive)
4091 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4092 	else
4093 		entry = make_readable_migration_entry(page_to_pfn(page));
4094 	if (pmd_young(pmdval))
4095 		entry = make_migration_entry_young(entry);
4096 	if (pmd_dirty(pmdval))
4097 		entry = make_migration_entry_dirty(entry);
4098 	pmdswp = swp_entry_to_pmd(entry);
4099 	if (pmd_soft_dirty(pmdval))
4100 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4101 	if (pmd_uffd_wp(pmdval))
4102 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4103 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4104 	folio_remove_rmap_pmd(folio, page, vma);
4105 	folio_put(folio);
4106 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4107 
4108 	return 0;
4109 }
4110 
4111 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4112 {
4113 	struct folio *folio = page_folio(new);
4114 	struct vm_area_struct *vma = pvmw->vma;
4115 	struct mm_struct *mm = vma->vm_mm;
4116 	unsigned long address = pvmw->address;
4117 	unsigned long haddr = address & HPAGE_PMD_MASK;
4118 	pmd_t pmde;
4119 	swp_entry_t entry;
4120 
4121 	if (!(pvmw->pmd && !pvmw->pte))
4122 		return;
4123 
4124 	entry = pmd_to_swp_entry(*pvmw->pmd);
4125 	folio_get(folio);
4126 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4127 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4128 		pmde = pmd_mksoft_dirty(pmde);
4129 	if (is_writable_migration_entry(entry))
4130 		pmde = pmd_mkwrite(pmde, vma);
4131 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4132 		pmde = pmd_mkuffd_wp(pmde);
4133 	if (!is_migration_entry_young(entry))
4134 		pmde = pmd_mkold(pmde);
4135 	/* NOTE: this may contain setting soft-dirty on some archs */
4136 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4137 		pmde = pmd_mkdirty(pmde);
4138 
4139 	if (folio_test_anon(folio)) {
4140 		rmap_t rmap_flags = RMAP_NONE;
4141 
4142 		if (!is_readable_migration_entry(entry))
4143 			rmap_flags |= RMAP_EXCLUSIVE;
4144 
4145 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4146 	} else {
4147 		folio_add_file_rmap_pmd(folio, new, vma);
4148 	}
4149 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4150 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4151 
4152 	/* No need to invalidate - it was non-present before */
4153 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4154 	trace_remove_migration_pmd(address, pmd_val(pmde));
4155 }
4156 #endif
4157