xref: /linux/mm/huge_memory.c (revision f17c69649c698e4df3cfe0010b7bbf142dec3e40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker *deferred_split_shrinker;
69 static unsigned long deferred_split_count(struct shrinker *shrink,
70 					  struct shrink_control *sc);
71 static unsigned long deferred_split_scan(struct shrinker *shrink,
72 					 struct shrink_control *sc);
73 
74 static atomic_t huge_zero_refcount;
75 struct page *huge_zero_page __read_mostly;
76 unsigned long huge_zero_pfn __read_mostly = ~0UL;
77 
78 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
79 			bool smaps, bool in_pf, bool enforce_sysfs)
80 {
81 	if (!vma->vm_mm)		/* vdso */
82 		return false;
83 
84 	/*
85 	 * Explicitly disabled through madvise or prctl, or some
86 	 * architectures may disable THP for some mappings, for
87 	 * example, s390 kvm.
88 	 * */
89 	if ((vm_flags & VM_NOHUGEPAGE) ||
90 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
91 		return false;
92 	/*
93 	 * If the hardware/firmware marked hugepage support disabled.
94 	 */
95 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
96 		return false;
97 
98 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
99 	if (vma_is_dax(vma))
100 		return in_pf;
101 
102 	/*
103 	 * khugepaged special VMA and hugetlb VMA.
104 	 * Must be checked after dax since some dax mappings may have
105 	 * VM_MIXEDMAP set.
106 	 */
107 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
108 		return false;
109 
110 	/*
111 	 * Check alignment for file vma and size for both file and anon vma.
112 	 *
113 	 * Skip the check for page fault. Huge fault does the check in fault
114 	 * handlers. And this check is not suitable for huge PUD fault.
115 	 */
116 	if (!in_pf &&
117 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
118 		return false;
119 
120 	/*
121 	 * Enabled via shmem mount options or sysfs settings.
122 	 * Must be done before hugepage flags check since shmem has its
123 	 * own flags.
124 	 */
125 	if (!in_pf && shmem_file(vma->vm_file))
126 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
127 				     !enforce_sysfs, vma->vm_mm, vm_flags);
128 
129 	/* Enforce sysfs THP requirements as necessary */
130 	if (enforce_sysfs &&
131 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
132 					   !hugepage_flags_always())))
133 		return false;
134 
135 	if (!vma_is_anonymous(vma)) {
136 		/*
137 		 * Trust that ->huge_fault() handlers know what they are doing
138 		 * in fault path.
139 		 */
140 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
141 			return true;
142 		/* Only regular file is valid in collapse path */
143 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
144 			return true;
145 		return false;
146 	}
147 
148 	if (vma_is_temporary_stack(vma))
149 		return false;
150 
151 	/*
152 	 * THPeligible bit of smaps should show 1 for proper VMAs even
153 	 * though anon_vma is not initialized yet.
154 	 *
155 	 * Allow page fault since anon_vma may be not initialized until
156 	 * the first page fault.
157 	 */
158 	if (!vma->anon_vma)
159 		return (smaps || in_pf);
160 
161 	return true;
162 }
163 
164 static bool get_huge_zero_page(void)
165 {
166 	struct page *zero_page;
167 retry:
168 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
169 		return true;
170 
171 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
172 			HPAGE_PMD_ORDER);
173 	if (!zero_page) {
174 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
175 		return false;
176 	}
177 	preempt_disable();
178 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
179 		preempt_enable();
180 		__free_pages(zero_page, compound_order(zero_page));
181 		goto retry;
182 	}
183 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
184 
185 	/* We take additional reference here. It will be put back by shrinker */
186 	atomic_set(&huge_zero_refcount, 2);
187 	preempt_enable();
188 	count_vm_event(THP_ZERO_PAGE_ALLOC);
189 	return true;
190 }
191 
192 static void put_huge_zero_page(void)
193 {
194 	/*
195 	 * Counter should never go to zero here. Only shrinker can put
196 	 * last reference.
197 	 */
198 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
199 }
200 
201 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
202 {
203 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
204 		return READ_ONCE(huge_zero_page);
205 
206 	if (!get_huge_zero_page())
207 		return NULL;
208 
209 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
210 		put_huge_zero_page();
211 
212 	return READ_ONCE(huge_zero_page);
213 }
214 
215 void mm_put_huge_zero_page(struct mm_struct *mm)
216 {
217 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
218 		put_huge_zero_page();
219 }
220 
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 					struct shrink_control *sc)
223 {
224 	/* we can free zero page only if last reference remains */
225 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227 
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 				       struct shrink_control *sc)
230 {
231 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 		struct page *zero_page = xchg(&huge_zero_page, NULL);
233 		BUG_ON(zero_page == NULL);
234 		WRITE_ONCE(huge_zero_pfn, ~0UL);
235 		__free_pages(zero_page, compound_order(zero_page));
236 		return HPAGE_PMD_NR;
237 	}
238 
239 	return 0;
240 }
241 
242 static struct shrinker *huge_zero_page_shrinker;
243 
244 #ifdef CONFIG_SYSFS
245 static ssize_t enabled_show(struct kobject *kobj,
246 			    struct kobj_attribute *attr, char *buf)
247 {
248 	const char *output;
249 
250 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
251 		output = "[always] madvise never";
252 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
253 			  &transparent_hugepage_flags))
254 		output = "always [madvise] never";
255 	else
256 		output = "always madvise [never]";
257 
258 	return sysfs_emit(buf, "%s\n", output);
259 }
260 
261 static ssize_t enabled_store(struct kobject *kobj,
262 			     struct kobj_attribute *attr,
263 			     const char *buf, size_t count)
264 {
265 	ssize_t ret = count;
266 
267 	if (sysfs_streq(buf, "always")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "madvise")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 	} else if (sysfs_streq(buf, "never")) {
274 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 	} else
277 		ret = -EINVAL;
278 
279 	if (ret > 0) {
280 		int err = start_stop_khugepaged();
281 		if (err)
282 			ret = err;
283 	}
284 	return ret;
285 }
286 
287 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
288 
289 ssize_t single_hugepage_flag_show(struct kobject *kobj,
290 				  struct kobj_attribute *attr, char *buf,
291 				  enum transparent_hugepage_flag flag)
292 {
293 	return sysfs_emit(buf, "%d\n",
294 			  !!test_bit(flag, &transparent_hugepage_flags));
295 }
296 
297 ssize_t single_hugepage_flag_store(struct kobject *kobj,
298 				 struct kobj_attribute *attr,
299 				 const char *buf, size_t count,
300 				 enum transparent_hugepage_flag flag)
301 {
302 	unsigned long value;
303 	int ret;
304 
305 	ret = kstrtoul(buf, 10, &value);
306 	if (ret < 0)
307 		return ret;
308 	if (value > 1)
309 		return -EINVAL;
310 
311 	if (value)
312 		set_bit(flag, &transparent_hugepage_flags);
313 	else
314 		clear_bit(flag, &transparent_hugepage_flags);
315 
316 	return count;
317 }
318 
319 static ssize_t defrag_show(struct kobject *kobj,
320 			   struct kobj_attribute *attr, char *buf)
321 {
322 	const char *output;
323 
324 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
325 		     &transparent_hugepage_flags))
326 		output = "[always] defer defer+madvise madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always [defer] defer+madvise madvise never";
330 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
331 			  &transparent_hugepage_flags))
332 		output = "always defer [defer+madvise] madvise never";
333 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
334 			  &transparent_hugepage_flags))
335 		output = "always defer defer+madvise [madvise] never";
336 	else
337 		output = "always defer defer+madvise madvise [never]";
338 
339 	return sysfs_emit(buf, "%s\n", output);
340 }
341 
342 static ssize_t defrag_store(struct kobject *kobj,
343 			    struct kobj_attribute *attr,
344 			    const char *buf, size_t count)
345 {
346 	if (sysfs_streq(buf, "always")) {
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
350 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 	} else if (sysfs_streq(buf, "defer+madvise")) {
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
355 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
356 	} else if (sysfs_streq(buf, "defer")) {
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
361 	} else if (sysfs_streq(buf, "madvise")) {
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
365 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
366 	} else if (sysfs_streq(buf, "never")) {
367 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
368 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
369 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
370 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
371 	} else
372 		return -EINVAL;
373 
374 	return count;
375 }
376 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
377 
378 static ssize_t use_zero_page_show(struct kobject *kobj,
379 				  struct kobj_attribute *attr, char *buf)
380 {
381 	return single_hugepage_flag_show(kobj, attr, buf,
382 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static ssize_t use_zero_page_store(struct kobject *kobj,
385 		struct kobj_attribute *attr, const char *buf, size_t count)
386 {
387 	return single_hugepage_flag_store(kobj, attr, buf, count,
388 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
389 }
390 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
391 
392 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
393 				   struct kobj_attribute *attr, char *buf)
394 {
395 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
396 }
397 static struct kobj_attribute hpage_pmd_size_attr =
398 	__ATTR_RO(hpage_pmd_size);
399 
400 static struct attribute *hugepage_attr[] = {
401 	&enabled_attr.attr,
402 	&defrag_attr.attr,
403 	&use_zero_page_attr.attr,
404 	&hpage_pmd_size_attr.attr,
405 #ifdef CONFIG_SHMEM
406 	&shmem_enabled_attr.attr,
407 #endif
408 	NULL,
409 };
410 
411 static const struct attribute_group hugepage_attr_group = {
412 	.attrs = hugepage_attr,
413 };
414 
415 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
416 {
417 	int err;
418 
419 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
420 	if (unlikely(!*hugepage_kobj)) {
421 		pr_err("failed to create transparent hugepage kobject\n");
422 		return -ENOMEM;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto delete_obj;
429 	}
430 
431 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
432 	if (err) {
433 		pr_err("failed to register transparent hugepage group\n");
434 		goto remove_hp_group;
435 	}
436 
437 	return 0;
438 
439 remove_hp_group:
440 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
441 delete_obj:
442 	kobject_put(*hugepage_kobj);
443 	return err;
444 }
445 
446 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
447 {
448 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
449 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
450 	kobject_put(hugepage_kobj);
451 }
452 #else
453 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
454 {
455 	return 0;
456 }
457 
458 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
459 {
460 }
461 #endif /* CONFIG_SYSFS */
462 
463 static int __init thp_shrinker_init(void)
464 {
465 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
466 	if (!huge_zero_page_shrinker)
467 		return -ENOMEM;
468 
469 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
470 						 SHRINKER_MEMCG_AWARE |
471 						 SHRINKER_NONSLAB,
472 						 "thp-deferred_split");
473 	if (!deferred_split_shrinker) {
474 		shrinker_free(huge_zero_page_shrinker);
475 		return -ENOMEM;
476 	}
477 
478 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
479 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
480 	shrinker_register(huge_zero_page_shrinker);
481 
482 	deferred_split_shrinker->count_objects = deferred_split_count;
483 	deferred_split_shrinker->scan_objects = deferred_split_scan;
484 	shrinker_register(deferred_split_shrinker);
485 
486 	return 0;
487 }
488 
489 static void __init thp_shrinker_exit(void)
490 {
491 	shrinker_free(huge_zero_page_shrinker);
492 	shrinker_free(deferred_split_shrinker);
493 }
494 
495 static int __init hugepage_init(void)
496 {
497 	int err;
498 	struct kobject *hugepage_kobj;
499 
500 	if (!has_transparent_hugepage()) {
501 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
502 		return -EINVAL;
503 	}
504 
505 	/*
506 	 * hugepages can't be allocated by the buddy allocator
507 	 */
508 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
509 	/*
510 	 * we use page->mapping and page->index in second tail page
511 	 * as list_head: assuming THP order >= 2
512 	 */
513 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
514 
515 	err = hugepage_init_sysfs(&hugepage_kobj);
516 	if (err)
517 		goto err_sysfs;
518 
519 	err = khugepaged_init();
520 	if (err)
521 		goto err_slab;
522 
523 	err = thp_shrinker_init();
524 	if (err)
525 		goto err_shrinker;
526 
527 	/*
528 	 * By default disable transparent hugepages on smaller systems,
529 	 * where the extra memory used could hurt more than TLB overhead
530 	 * is likely to save.  The admin can still enable it through /sys.
531 	 */
532 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
533 		transparent_hugepage_flags = 0;
534 		return 0;
535 	}
536 
537 	err = start_stop_khugepaged();
538 	if (err)
539 		goto err_khugepaged;
540 
541 	return 0;
542 err_khugepaged:
543 	thp_shrinker_exit();
544 err_shrinker:
545 	khugepaged_destroy();
546 err_slab:
547 	hugepage_exit_sysfs(hugepage_kobj);
548 err_sysfs:
549 	return err;
550 }
551 subsys_initcall(hugepage_init);
552 
553 static int __init setup_transparent_hugepage(char *str)
554 {
555 	int ret = 0;
556 	if (!str)
557 		goto out;
558 	if (!strcmp(str, "always")) {
559 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 			&transparent_hugepage_flags);
561 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 			  &transparent_hugepage_flags);
563 		ret = 1;
564 	} else if (!strcmp(str, "madvise")) {
565 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 			  &transparent_hugepage_flags);
567 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 			&transparent_hugepage_flags);
569 		ret = 1;
570 	} else if (!strcmp(str, "never")) {
571 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 			  &transparent_hugepage_flags);
573 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 			  &transparent_hugepage_flags);
575 		ret = 1;
576 	}
577 out:
578 	if (!ret)
579 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
580 	return ret;
581 }
582 __setup("transparent_hugepage=", setup_transparent_hugepage);
583 
584 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
585 {
586 	if (likely(vma->vm_flags & VM_WRITE))
587 		pmd = pmd_mkwrite(pmd, vma);
588 	return pmd;
589 }
590 
591 #ifdef CONFIG_MEMCG
592 static inline
593 struct deferred_split *get_deferred_split_queue(struct folio *folio)
594 {
595 	struct mem_cgroup *memcg = folio_memcg(folio);
596 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
597 
598 	if (memcg)
599 		return &memcg->deferred_split_queue;
600 	else
601 		return &pgdat->deferred_split_queue;
602 }
603 #else
604 static inline
605 struct deferred_split *get_deferred_split_queue(struct folio *folio)
606 {
607 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
608 
609 	return &pgdat->deferred_split_queue;
610 }
611 #endif
612 
613 void folio_prep_large_rmappable(struct folio *folio)
614 {
615 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
616 	INIT_LIST_HEAD(&folio->_deferred_list);
617 	folio_set_large_rmappable(folio);
618 }
619 
620 static inline bool is_transparent_hugepage(struct folio *folio)
621 {
622 	if (!folio_test_large(folio))
623 		return false;
624 
625 	return is_huge_zero_page(&folio->page) ||
626 		folio_test_large_rmappable(folio);
627 }
628 
629 static unsigned long __thp_get_unmapped_area(struct file *filp,
630 		unsigned long addr, unsigned long len,
631 		loff_t off, unsigned long flags, unsigned long size)
632 {
633 	loff_t off_end = off + len;
634 	loff_t off_align = round_up(off, size);
635 	unsigned long len_pad, ret;
636 
637 	if (off_end <= off_align || (off_end - off_align) < size)
638 		return 0;
639 
640 	len_pad = len + size;
641 	if (len_pad < len || (off + len_pad) < off)
642 		return 0;
643 
644 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
645 					      off >> PAGE_SHIFT, flags);
646 
647 	/*
648 	 * The failure might be due to length padding. The caller will retry
649 	 * without the padding.
650 	 */
651 	if (IS_ERR_VALUE(ret))
652 		return 0;
653 
654 	/*
655 	 * Do not try to align to THP boundary if allocation at the address
656 	 * hint succeeds.
657 	 */
658 	if (ret == addr)
659 		return addr;
660 
661 	ret += (off - ret) & (size - 1);
662 	return ret;
663 }
664 
665 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
666 		unsigned long len, unsigned long pgoff, unsigned long flags)
667 {
668 	unsigned long ret;
669 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
670 
671 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
672 	if (ret)
673 		return ret;
674 
675 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
676 }
677 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
678 
679 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
680 			struct page *page, gfp_t gfp)
681 {
682 	struct vm_area_struct *vma = vmf->vma;
683 	struct folio *folio = page_folio(page);
684 	pgtable_t pgtable;
685 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
686 	vm_fault_t ret = 0;
687 
688 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
689 
690 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
691 		folio_put(folio);
692 		count_vm_event(THP_FAULT_FALLBACK);
693 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
694 		return VM_FAULT_FALLBACK;
695 	}
696 	folio_throttle_swaprate(folio, gfp);
697 
698 	pgtable = pte_alloc_one(vma->vm_mm);
699 	if (unlikely(!pgtable)) {
700 		ret = VM_FAULT_OOM;
701 		goto release;
702 	}
703 
704 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
705 	/*
706 	 * The memory barrier inside __folio_mark_uptodate makes sure that
707 	 * clear_huge_page writes become visible before the set_pmd_at()
708 	 * write.
709 	 */
710 	__folio_mark_uptodate(folio);
711 
712 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
713 	if (unlikely(!pmd_none(*vmf->pmd))) {
714 		goto unlock_release;
715 	} else {
716 		pmd_t entry;
717 
718 		ret = check_stable_address_space(vma->vm_mm);
719 		if (ret)
720 			goto unlock_release;
721 
722 		/* Deliver the page fault to userland */
723 		if (userfaultfd_missing(vma)) {
724 			spin_unlock(vmf->ptl);
725 			folio_put(folio);
726 			pte_free(vma->vm_mm, pgtable);
727 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
728 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
729 			return ret;
730 		}
731 
732 		entry = mk_huge_pmd(page, vma->vm_page_prot);
733 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
734 		folio_add_new_anon_rmap(folio, vma, haddr);
735 		folio_add_lru_vma(folio, vma);
736 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
737 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
738 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
739 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 		mm_inc_nr_ptes(vma->vm_mm);
741 		spin_unlock(vmf->ptl);
742 		count_vm_event(THP_FAULT_ALLOC);
743 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
744 	}
745 
746 	return 0;
747 unlock_release:
748 	spin_unlock(vmf->ptl);
749 release:
750 	if (pgtable)
751 		pte_free(vma->vm_mm, pgtable);
752 	folio_put(folio);
753 	return ret;
754 
755 }
756 
757 /*
758  * always: directly stall for all thp allocations
759  * defer: wake kswapd and fail if not immediately available
760  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
761  *		  fail if not immediately available
762  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
763  *	    available
764  * never: never stall for any thp allocation
765  */
766 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
767 {
768 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
769 
770 	/* Always do synchronous compaction */
771 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
772 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
773 
774 	/* Kick kcompactd and fail quickly */
775 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
776 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
777 
778 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
779 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
780 		return GFP_TRANSHUGE_LIGHT |
781 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
782 					__GFP_KSWAPD_RECLAIM);
783 
784 	/* Only do synchronous compaction if madvised */
785 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
786 		return GFP_TRANSHUGE_LIGHT |
787 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
788 
789 	return GFP_TRANSHUGE_LIGHT;
790 }
791 
792 /* Caller must hold page table lock. */
793 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795 		struct page *zero_page)
796 {
797 	pmd_t entry;
798 	if (!pmd_none(*pmd))
799 		return;
800 	entry = mk_pmd(zero_page, vma->vm_page_prot);
801 	entry = pmd_mkhuge(entry);
802 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
803 	set_pmd_at(mm, haddr, pmd, entry);
804 	mm_inc_nr_ptes(mm);
805 }
806 
807 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
808 {
809 	struct vm_area_struct *vma = vmf->vma;
810 	gfp_t gfp;
811 	struct folio *folio;
812 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
813 
814 	if (!transhuge_vma_suitable(vma, haddr))
815 		return VM_FAULT_FALLBACK;
816 	if (unlikely(anon_vma_prepare(vma)))
817 		return VM_FAULT_OOM;
818 	khugepaged_enter_vma(vma, vma->vm_flags);
819 
820 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
821 			!mm_forbids_zeropage(vma->vm_mm) &&
822 			transparent_hugepage_use_zero_page()) {
823 		pgtable_t pgtable;
824 		struct page *zero_page;
825 		vm_fault_t ret;
826 		pgtable = pte_alloc_one(vma->vm_mm);
827 		if (unlikely(!pgtable))
828 			return VM_FAULT_OOM;
829 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
830 		if (unlikely(!zero_page)) {
831 			pte_free(vma->vm_mm, pgtable);
832 			count_vm_event(THP_FAULT_FALLBACK);
833 			return VM_FAULT_FALLBACK;
834 		}
835 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
836 		ret = 0;
837 		if (pmd_none(*vmf->pmd)) {
838 			ret = check_stable_address_space(vma->vm_mm);
839 			if (ret) {
840 				spin_unlock(vmf->ptl);
841 				pte_free(vma->vm_mm, pgtable);
842 			} else if (userfaultfd_missing(vma)) {
843 				spin_unlock(vmf->ptl);
844 				pte_free(vma->vm_mm, pgtable);
845 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
846 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 			} else {
848 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
849 						   haddr, vmf->pmd, zero_page);
850 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
851 				spin_unlock(vmf->ptl);
852 			}
853 		} else {
854 			spin_unlock(vmf->ptl);
855 			pte_free(vma->vm_mm, pgtable);
856 		}
857 		return ret;
858 	}
859 	gfp = vma_thp_gfp_mask(vma);
860 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
861 	if (unlikely(!folio)) {
862 		count_vm_event(THP_FAULT_FALLBACK);
863 		return VM_FAULT_FALLBACK;
864 	}
865 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
866 }
867 
868 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
869 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
870 		pgtable_t pgtable)
871 {
872 	struct mm_struct *mm = vma->vm_mm;
873 	pmd_t entry;
874 	spinlock_t *ptl;
875 
876 	ptl = pmd_lock(mm, pmd);
877 	if (!pmd_none(*pmd)) {
878 		if (write) {
879 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
880 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
881 				goto out_unlock;
882 			}
883 			entry = pmd_mkyoung(*pmd);
884 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
885 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
886 				update_mmu_cache_pmd(vma, addr, pmd);
887 		}
888 
889 		goto out_unlock;
890 	}
891 
892 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
893 	if (pfn_t_devmap(pfn))
894 		entry = pmd_mkdevmap(entry);
895 	if (write) {
896 		entry = pmd_mkyoung(pmd_mkdirty(entry));
897 		entry = maybe_pmd_mkwrite(entry, vma);
898 	}
899 
900 	if (pgtable) {
901 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
902 		mm_inc_nr_ptes(mm);
903 		pgtable = NULL;
904 	}
905 
906 	set_pmd_at(mm, addr, pmd, entry);
907 	update_mmu_cache_pmd(vma, addr, pmd);
908 
909 out_unlock:
910 	spin_unlock(ptl);
911 	if (pgtable)
912 		pte_free(mm, pgtable);
913 }
914 
915 /**
916  * vmf_insert_pfn_pmd - insert a pmd size pfn
917  * @vmf: Structure describing the fault
918  * @pfn: pfn to insert
919  * @write: whether it's a write fault
920  *
921  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
922  *
923  * Return: vm_fault_t value.
924  */
925 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
926 {
927 	unsigned long addr = vmf->address & PMD_MASK;
928 	struct vm_area_struct *vma = vmf->vma;
929 	pgprot_t pgprot = vma->vm_page_prot;
930 	pgtable_t pgtable = NULL;
931 
932 	/*
933 	 * If we had pmd_special, we could avoid all these restrictions,
934 	 * but we need to be consistent with PTEs and architectures that
935 	 * can't support a 'special' bit.
936 	 */
937 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
938 			!pfn_t_devmap(pfn));
939 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
940 						(VM_PFNMAP|VM_MIXEDMAP));
941 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
942 
943 	if (addr < vma->vm_start || addr >= vma->vm_end)
944 		return VM_FAULT_SIGBUS;
945 
946 	if (arch_needs_pgtable_deposit()) {
947 		pgtable = pte_alloc_one(vma->vm_mm);
948 		if (!pgtable)
949 			return VM_FAULT_OOM;
950 	}
951 
952 	track_pfn_insert(vma, &pgprot, pfn);
953 
954 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
955 	return VM_FAULT_NOPAGE;
956 }
957 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
958 
959 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
960 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
961 {
962 	if (likely(vma->vm_flags & VM_WRITE))
963 		pud = pud_mkwrite(pud);
964 	return pud;
965 }
966 
967 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
968 		pud_t *pud, pfn_t pfn, bool write)
969 {
970 	struct mm_struct *mm = vma->vm_mm;
971 	pgprot_t prot = vma->vm_page_prot;
972 	pud_t entry;
973 	spinlock_t *ptl;
974 
975 	ptl = pud_lock(mm, pud);
976 	if (!pud_none(*pud)) {
977 		if (write) {
978 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
979 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
980 				goto out_unlock;
981 			}
982 			entry = pud_mkyoung(*pud);
983 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
984 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
985 				update_mmu_cache_pud(vma, addr, pud);
986 		}
987 		goto out_unlock;
988 	}
989 
990 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
991 	if (pfn_t_devmap(pfn))
992 		entry = pud_mkdevmap(entry);
993 	if (write) {
994 		entry = pud_mkyoung(pud_mkdirty(entry));
995 		entry = maybe_pud_mkwrite(entry, vma);
996 	}
997 	set_pud_at(mm, addr, pud, entry);
998 	update_mmu_cache_pud(vma, addr, pud);
999 
1000 out_unlock:
1001 	spin_unlock(ptl);
1002 }
1003 
1004 /**
1005  * vmf_insert_pfn_pud - insert a pud size pfn
1006  * @vmf: Structure describing the fault
1007  * @pfn: pfn to insert
1008  * @write: whether it's a write fault
1009  *
1010  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1011  *
1012  * Return: vm_fault_t value.
1013  */
1014 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1015 {
1016 	unsigned long addr = vmf->address & PUD_MASK;
1017 	struct vm_area_struct *vma = vmf->vma;
1018 	pgprot_t pgprot = vma->vm_page_prot;
1019 
1020 	/*
1021 	 * If we had pud_special, we could avoid all these restrictions,
1022 	 * but we need to be consistent with PTEs and architectures that
1023 	 * can't support a 'special' bit.
1024 	 */
1025 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1026 			!pfn_t_devmap(pfn));
1027 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1028 						(VM_PFNMAP|VM_MIXEDMAP));
1029 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1030 
1031 	if (addr < vma->vm_start || addr >= vma->vm_end)
1032 		return VM_FAULT_SIGBUS;
1033 
1034 	track_pfn_insert(vma, &pgprot, pfn);
1035 
1036 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1037 	return VM_FAULT_NOPAGE;
1038 }
1039 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1040 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1041 
1042 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1043 		      pmd_t *pmd, bool write)
1044 {
1045 	pmd_t _pmd;
1046 
1047 	_pmd = pmd_mkyoung(*pmd);
1048 	if (write)
1049 		_pmd = pmd_mkdirty(_pmd);
1050 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1051 				  pmd, _pmd, write))
1052 		update_mmu_cache_pmd(vma, addr, pmd);
1053 }
1054 
1055 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1056 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1057 {
1058 	unsigned long pfn = pmd_pfn(*pmd);
1059 	struct mm_struct *mm = vma->vm_mm;
1060 	struct page *page;
1061 	int ret;
1062 
1063 	assert_spin_locked(pmd_lockptr(mm, pmd));
1064 
1065 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1066 		return NULL;
1067 
1068 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1069 		/* pass */;
1070 	else
1071 		return NULL;
1072 
1073 	if (flags & FOLL_TOUCH)
1074 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1075 
1076 	/*
1077 	 * device mapped pages can only be returned if the
1078 	 * caller will manage the page reference count.
1079 	 */
1080 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1081 		return ERR_PTR(-EEXIST);
1082 
1083 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1084 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1085 	if (!*pgmap)
1086 		return ERR_PTR(-EFAULT);
1087 	page = pfn_to_page(pfn);
1088 	ret = try_grab_page(page, flags);
1089 	if (ret)
1090 		page = ERR_PTR(ret);
1091 
1092 	return page;
1093 }
1094 
1095 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1096 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1097 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1098 {
1099 	spinlock_t *dst_ptl, *src_ptl;
1100 	struct page *src_page;
1101 	pmd_t pmd;
1102 	pgtable_t pgtable = NULL;
1103 	int ret = -ENOMEM;
1104 
1105 	/* Skip if can be re-fill on fault */
1106 	if (!vma_is_anonymous(dst_vma))
1107 		return 0;
1108 
1109 	pgtable = pte_alloc_one(dst_mm);
1110 	if (unlikely(!pgtable))
1111 		goto out;
1112 
1113 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1114 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1115 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1116 
1117 	ret = -EAGAIN;
1118 	pmd = *src_pmd;
1119 
1120 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1121 	if (unlikely(is_swap_pmd(pmd))) {
1122 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1123 
1124 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1125 		if (!is_readable_migration_entry(entry)) {
1126 			entry = make_readable_migration_entry(
1127 							swp_offset(entry));
1128 			pmd = swp_entry_to_pmd(entry);
1129 			if (pmd_swp_soft_dirty(*src_pmd))
1130 				pmd = pmd_swp_mksoft_dirty(pmd);
1131 			if (pmd_swp_uffd_wp(*src_pmd))
1132 				pmd = pmd_swp_mkuffd_wp(pmd);
1133 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1134 		}
1135 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1136 		mm_inc_nr_ptes(dst_mm);
1137 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1138 		if (!userfaultfd_wp(dst_vma))
1139 			pmd = pmd_swp_clear_uffd_wp(pmd);
1140 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1141 		ret = 0;
1142 		goto out_unlock;
1143 	}
1144 #endif
1145 
1146 	if (unlikely(!pmd_trans_huge(pmd))) {
1147 		pte_free(dst_mm, pgtable);
1148 		goto out_unlock;
1149 	}
1150 	/*
1151 	 * When page table lock is held, the huge zero pmd should not be
1152 	 * under splitting since we don't split the page itself, only pmd to
1153 	 * a page table.
1154 	 */
1155 	if (is_huge_zero_pmd(pmd)) {
1156 		/*
1157 		 * get_huge_zero_page() will never allocate a new page here,
1158 		 * since we already have a zero page to copy. It just takes a
1159 		 * reference.
1160 		 */
1161 		mm_get_huge_zero_page(dst_mm);
1162 		goto out_zero_page;
1163 	}
1164 
1165 	src_page = pmd_page(pmd);
1166 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1167 
1168 	get_page(src_page);
1169 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1170 		/* Page maybe pinned: split and retry the fault on PTEs. */
1171 		put_page(src_page);
1172 		pte_free(dst_mm, pgtable);
1173 		spin_unlock(src_ptl);
1174 		spin_unlock(dst_ptl);
1175 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1176 		return -EAGAIN;
1177 	}
1178 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1179 out_zero_page:
1180 	mm_inc_nr_ptes(dst_mm);
1181 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1182 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1183 	if (!userfaultfd_wp(dst_vma))
1184 		pmd = pmd_clear_uffd_wp(pmd);
1185 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1186 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1187 
1188 	ret = 0;
1189 out_unlock:
1190 	spin_unlock(src_ptl);
1191 	spin_unlock(dst_ptl);
1192 out:
1193 	return ret;
1194 }
1195 
1196 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1197 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1198 		      pud_t *pud, bool write)
1199 {
1200 	pud_t _pud;
1201 
1202 	_pud = pud_mkyoung(*pud);
1203 	if (write)
1204 		_pud = pud_mkdirty(_pud);
1205 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1206 				  pud, _pud, write))
1207 		update_mmu_cache_pud(vma, addr, pud);
1208 }
1209 
1210 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1211 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1212 {
1213 	unsigned long pfn = pud_pfn(*pud);
1214 	struct mm_struct *mm = vma->vm_mm;
1215 	struct page *page;
1216 	int ret;
1217 
1218 	assert_spin_locked(pud_lockptr(mm, pud));
1219 
1220 	if (flags & FOLL_WRITE && !pud_write(*pud))
1221 		return NULL;
1222 
1223 	if (pud_present(*pud) && pud_devmap(*pud))
1224 		/* pass */;
1225 	else
1226 		return NULL;
1227 
1228 	if (flags & FOLL_TOUCH)
1229 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1230 
1231 	/*
1232 	 * device mapped pages can only be returned if the
1233 	 * caller will manage the page reference count.
1234 	 *
1235 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1236 	 */
1237 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1238 		return ERR_PTR(-EEXIST);
1239 
1240 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1241 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1242 	if (!*pgmap)
1243 		return ERR_PTR(-EFAULT);
1244 	page = pfn_to_page(pfn);
1245 
1246 	ret = try_grab_page(page, flags);
1247 	if (ret)
1248 		page = ERR_PTR(ret);
1249 
1250 	return page;
1251 }
1252 
1253 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1254 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1255 		  struct vm_area_struct *vma)
1256 {
1257 	spinlock_t *dst_ptl, *src_ptl;
1258 	pud_t pud;
1259 	int ret;
1260 
1261 	dst_ptl = pud_lock(dst_mm, dst_pud);
1262 	src_ptl = pud_lockptr(src_mm, src_pud);
1263 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1264 
1265 	ret = -EAGAIN;
1266 	pud = *src_pud;
1267 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1268 		goto out_unlock;
1269 
1270 	/*
1271 	 * When page table lock is held, the huge zero pud should not be
1272 	 * under splitting since we don't split the page itself, only pud to
1273 	 * a page table.
1274 	 */
1275 	if (is_huge_zero_pud(pud)) {
1276 		/* No huge zero pud yet */
1277 	}
1278 
1279 	/*
1280 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1281 	 * and split if duplicating fails.
1282 	 */
1283 	pudp_set_wrprotect(src_mm, addr, src_pud);
1284 	pud = pud_mkold(pud_wrprotect(pud));
1285 	set_pud_at(dst_mm, addr, dst_pud, pud);
1286 
1287 	ret = 0;
1288 out_unlock:
1289 	spin_unlock(src_ptl);
1290 	spin_unlock(dst_ptl);
1291 	return ret;
1292 }
1293 
1294 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1295 {
1296 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1297 
1298 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1299 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1300 		goto unlock;
1301 
1302 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1303 unlock:
1304 	spin_unlock(vmf->ptl);
1305 }
1306 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1307 
1308 void huge_pmd_set_accessed(struct vm_fault *vmf)
1309 {
1310 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1311 
1312 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1313 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1314 		goto unlock;
1315 
1316 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1317 
1318 unlock:
1319 	spin_unlock(vmf->ptl);
1320 }
1321 
1322 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1323 {
1324 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1325 	struct vm_area_struct *vma = vmf->vma;
1326 	struct folio *folio;
1327 	struct page *page;
1328 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1329 	pmd_t orig_pmd = vmf->orig_pmd;
1330 
1331 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1332 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1333 
1334 	if (is_huge_zero_pmd(orig_pmd))
1335 		goto fallback;
1336 
1337 	spin_lock(vmf->ptl);
1338 
1339 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 		spin_unlock(vmf->ptl);
1341 		return 0;
1342 	}
1343 
1344 	page = pmd_page(orig_pmd);
1345 	folio = page_folio(page);
1346 	VM_BUG_ON_PAGE(!PageHead(page), page);
1347 
1348 	/* Early check when only holding the PT lock. */
1349 	if (PageAnonExclusive(page))
1350 		goto reuse;
1351 
1352 	if (!folio_trylock(folio)) {
1353 		folio_get(folio);
1354 		spin_unlock(vmf->ptl);
1355 		folio_lock(folio);
1356 		spin_lock(vmf->ptl);
1357 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1358 			spin_unlock(vmf->ptl);
1359 			folio_unlock(folio);
1360 			folio_put(folio);
1361 			return 0;
1362 		}
1363 		folio_put(folio);
1364 	}
1365 
1366 	/* Recheck after temporarily dropping the PT lock. */
1367 	if (PageAnonExclusive(page)) {
1368 		folio_unlock(folio);
1369 		goto reuse;
1370 	}
1371 
1372 	/*
1373 	 * See do_wp_page(): we can only reuse the folio exclusively if
1374 	 * there are no additional references. Note that we always drain
1375 	 * the LRU cache immediately after adding a THP.
1376 	 */
1377 	if (folio_ref_count(folio) >
1378 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1379 		goto unlock_fallback;
1380 	if (folio_test_swapcache(folio))
1381 		folio_free_swap(folio);
1382 	if (folio_ref_count(folio) == 1) {
1383 		pmd_t entry;
1384 
1385 		folio_move_anon_rmap(folio, vma);
1386 		SetPageAnonExclusive(page);
1387 		folio_unlock(folio);
1388 reuse:
1389 		if (unlikely(unshare)) {
1390 			spin_unlock(vmf->ptl);
1391 			return 0;
1392 		}
1393 		entry = pmd_mkyoung(orig_pmd);
1394 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1395 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1396 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1397 		spin_unlock(vmf->ptl);
1398 		return 0;
1399 	}
1400 
1401 unlock_fallback:
1402 	folio_unlock(folio);
1403 	spin_unlock(vmf->ptl);
1404 fallback:
1405 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1406 	return VM_FAULT_FALLBACK;
1407 }
1408 
1409 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1410 					   unsigned long addr, pmd_t pmd)
1411 {
1412 	struct page *page;
1413 
1414 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1415 		return false;
1416 
1417 	/* Don't touch entries that are not even readable (NUMA hinting). */
1418 	if (pmd_protnone(pmd))
1419 		return false;
1420 
1421 	/* Do we need write faults for softdirty tracking? */
1422 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1423 		return false;
1424 
1425 	/* Do we need write faults for uffd-wp tracking? */
1426 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1427 		return false;
1428 
1429 	if (!(vma->vm_flags & VM_SHARED)) {
1430 		/* See can_change_pte_writable(). */
1431 		page = vm_normal_page_pmd(vma, addr, pmd);
1432 		return page && PageAnon(page) && PageAnonExclusive(page);
1433 	}
1434 
1435 	/* See can_change_pte_writable(). */
1436 	return pmd_dirty(pmd);
1437 }
1438 
1439 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1440 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1441 					struct vm_area_struct *vma,
1442 					unsigned int flags)
1443 {
1444 	/* If the pmd is writable, we can write to the page. */
1445 	if (pmd_write(pmd))
1446 		return true;
1447 
1448 	/* Maybe FOLL_FORCE is set to override it? */
1449 	if (!(flags & FOLL_FORCE))
1450 		return false;
1451 
1452 	/* But FOLL_FORCE has no effect on shared mappings */
1453 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1454 		return false;
1455 
1456 	/* ... or read-only private ones */
1457 	if (!(vma->vm_flags & VM_MAYWRITE))
1458 		return false;
1459 
1460 	/* ... or already writable ones that just need to take a write fault */
1461 	if (vma->vm_flags & VM_WRITE)
1462 		return false;
1463 
1464 	/*
1465 	 * See can_change_pte_writable(): we broke COW and could map the page
1466 	 * writable if we have an exclusive anonymous page ...
1467 	 */
1468 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1469 		return false;
1470 
1471 	/* ... and a write-fault isn't required for other reasons. */
1472 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1473 		return false;
1474 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1475 }
1476 
1477 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1478 				   unsigned long addr,
1479 				   pmd_t *pmd,
1480 				   unsigned int flags)
1481 {
1482 	struct mm_struct *mm = vma->vm_mm;
1483 	struct page *page;
1484 	int ret;
1485 
1486 	assert_spin_locked(pmd_lockptr(mm, pmd));
1487 
1488 	page = pmd_page(*pmd);
1489 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1490 
1491 	if ((flags & FOLL_WRITE) &&
1492 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1493 		return NULL;
1494 
1495 	/* Avoid dumping huge zero page */
1496 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1497 		return ERR_PTR(-EFAULT);
1498 
1499 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1500 		return NULL;
1501 
1502 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1503 		return ERR_PTR(-EMLINK);
1504 
1505 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1506 			!PageAnonExclusive(page), page);
1507 
1508 	ret = try_grab_page(page, flags);
1509 	if (ret)
1510 		return ERR_PTR(ret);
1511 
1512 	if (flags & FOLL_TOUCH)
1513 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1514 
1515 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1516 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1517 
1518 	return page;
1519 }
1520 
1521 /* NUMA hinting page fault entry point for trans huge pmds */
1522 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1523 {
1524 	struct vm_area_struct *vma = vmf->vma;
1525 	pmd_t oldpmd = vmf->orig_pmd;
1526 	pmd_t pmd;
1527 	struct folio *folio;
1528 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1529 	int nid = NUMA_NO_NODE;
1530 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1531 	bool migrated = false, writable = false;
1532 	int flags = 0;
1533 
1534 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1535 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1536 		spin_unlock(vmf->ptl);
1537 		goto out;
1538 	}
1539 
1540 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1541 
1542 	/*
1543 	 * Detect now whether the PMD could be writable; this information
1544 	 * is only valid while holding the PT lock.
1545 	 */
1546 	writable = pmd_write(pmd);
1547 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1548 	    can_change_pmd_writable(vma, vmf->address, pmd))
1549 		writable = true;
1550 
1551 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1552 	if (!folio)
1553 		goto out_map;
1554 
1555 	/* See similar comment in do_numa_page for explanation */
1556 	if (!writable)
1557 		flags |= TNF_NO_GROUP;
1558 
1559 	nid = folio_nid(folio);
1560 	/*
1561 	 * For memory tiering mode, cpupid of slow memory page is used
1562 	 * to record page access time.  So use default value.
1563 	 */
1564 	if (node_is_toptier(nid))
1565 		last_cpupid = folio_last_cpupid(folio);
1566 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1567 	if (target_nid == NUMA_NO_NODE) {
1568 		folio_put(folio);
1569 		goto out_map;
1570 	}
1571 
1572 	spin_unlock(vmf->ptl);
1573 	writable = false;
1574 
1575 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1576 	if (migrated) {
1577 		flags |= TNF_MIGRATED;
1578 		nid = target_nid;
1579 	} else {
1580 		flags |= TNF_MIGRATE_FAIL;
1581 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1582 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1583 			spin_unlock(vmf->ptl);
1584 			goto out;
1585 		}
1586 		goto out_map;
1587 	}
1588 
1589 out:
1590 	if (nid != NUMA_NO_NODE)
1591 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1592 
1593 	return 0;
1594 
1595 out_map:
1596 	/* Restore the PMD */
1597 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1598 	pmd = pmd_mkyoung(pmd);
1599 	if (writable)
1600 		pmd = pmd_mkwrite(pmd, vma);
1601 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1602 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1603 	spin_unlock(vmf->ptl);
1604 	goto out;
1605 }
1606 
1607 /*
1608  * Return true if we do MADV_FREE successfully on entire pmd page.
1609  * Otherwise, return false.
1610  */
1611 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1612 		pmd_t *pmd, unsigned long addr, unsigned long next)
1613 {
1614 	spinlock_t *ptl;
1615 	pmd_t orig_pmd;
1616 	struct folio *folio;
1617 	struct mm_struct *mm = tlb->mm;
1618 	bool ret = false;
1619 
1620 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1621 
1622 	ptl = pmd_trans_huge_lock(pmd, vma);
1623 	if (!ptl)
1624 		goto out_unlocked;
1625 
1626 	orig_pmd = *pmd;
1627 	if (is_huge_zero_pmd(orig_pmd))
1628 		goto out;
1629 
1630 	if (unlikely(!pmd_present(orig_pmd))) {
1631 		VM_BUG_ON(thp_migration_supported() &&
1632 				  !is_pmd_migration_entry(orig_pmd));
1633 		goto out;
1634 	}
1635 
1636 	folio = pfn_folio(pmd_pfn(orig_pmd));
1637 	/*
1638 	 * If other processes are mapping this folio, we couldn't discard
1639 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1640 	 */
1641 	if (folio_estimated_sharers(folio) != 1)
1642 		goto out;
1643 
1644 	if (!folio_trylock(folio))
1645 		goto out;
1646 
1647 	/*
1648 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1649 	 * will deactivate only them.
1650 	 */
1651 	if (next - addr != HPAGE_PMD_SIZE) {
1652 		folio_get(folio);
1653 		spin_unlock(ptl);
1654 		split_folio(folio);
1655 		folio_unlock(folio);
1656 		folio_put(folio);
1657 		goto out_unlocked;
1658 	}
1659 
1660 	if (folio_test_dirty(folio))
1661 		folio_clear_dirty(folio);
1662 	folio_unlock(folio);
1663 
1664 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1665 		pmdp_invalidate(vma, addr, pmd);
1666 		orig_pmd = pmd_mkold(orig_pmd);
1667 		orig_pmd = pmd_mkclean(orig_pmd);
1668 
1669 		set_pmd_at(mm, addr, pmd, orig_pmd);
1670 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1671 	}
1672 
1673 	folio_mark_lazyfree(folio);
1674 	ret = true;
1675 out:
1676 	spin_unlock(ptl);
1677 out_unlocked:
1678 	return ret;
1679 }
1680 
1681 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1682 {
1683 	pgtable_t pgtable;
1684 
1685 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1686 	pte_free(mm, pgtable);
1687 	mm_dec_nr_ptes(mm);
1688 }
1689 
1690 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691 		 pmd_t *pmd, unsigned long addr)
1692 {
1693 	pmd_t orig_pmd;
1694 	spinlock_t *ptl;
1695 
1696 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1697 
1698 	ptl = __pmd_trans_huge_lock(pmd, vma);
1699 	if (!ptl)
1700 		return 0;
1701 	/*
1702 	 * For architectures like ppc64 we look at deposited pgtable
1703 	 * when calling pmdp_huge_get_and_clear. So do the
1704 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1705 	 * operations.
1706 	 */
1707 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1708 						tlb->fullmm);
1709 	arch_check_zapped_pmd(vma, orig_pmd);
1710 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711 	if (vma_is_special_huge(vma)) {
1712 		if (arch_needs_pgtable_deposit())
1713 			zap_deposited_table(tlb->mm, pmd);
1714 		spin_unlock(ptl);
1715 	} else if (is_huge_zero_pmd(orig_pmd)) {
1716 		zap_deposited_table(tlb->mm, pmd);
1717 		spin_unlock(ptl);
1718 	} else {
1719 		struct page *page = NULL;
1720 		int flush_needed = 1;
1721 
1722 		if (pmd_present(orig_pmd)) {
1723 			page = pmd_page(orig_pmd);
1724 			page_remove_rmap(page, vma, true);
1725 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1726 			VM_BUG_ON_PAGE(!PageHead(page), page);
1727 		} else if (thp_migration_supported()) {
1728 			swp_entry_t entry;
1729 
1730 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1731 			entry = pmd_to_swp_entry(orig_pmd);
1732 			page = pfn_swap_entry_to_page(entry);
1733 			flush_needed = 0;
1734 		} else
1735 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1736 
1737 		if (PageAnon(page)) {
1738 			zap_deposited_table(tlb->mm, pmd);
1739 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1740 		} else {
1741 			if (arch_needs_pgtable_deposit())
1742 				zap_deposited_table(tlb->mm, pmd);
1743 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1744 		}
1745 
1746 		spin_unlock(ptl);
1747 		if (flush_needed)
1748 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1749 	}
1750 	return 1;
1751 }
1752 
1753 #ifndef pmd_move_must_withdraw
1754 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1755 					 spinlock_t *old_pmd_ptl,
1756 					 struct vm_area_struct *vma)
1757 {
1758 	/*
1759 	 * With split pmd lock we also need to move preallocated
1760 	 * PTE page table if new_pmd is on different PMD page table.
1761 	 *
1762 	 * We also don't deposit and withdraw tables for file pages.
1763 	 */
1764 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1765 }
1766 #endif
1767 
1768 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1769 {
1770 #ifdef CONFIG_MEM_SOFT_DIRTY
1771 	if (unlikely(is_pmd_migration_entry(pmd)))
1772 		pmd = pmd_swp_mksoft_dirty(pmd);
1773 	else if (pmd_present(pmd))
1774 		pmd = pmd_mksoft_dirty(pmd);
1775 #endif
1776 	return pmd;
1777 }
1778 
1779 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1780 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1781 {
1782 	spinlock_t *old_ptl, *new_ptl;
1783 	pmd_t pmd;
1784 	struct mm_struct *mm = vma->vm_mm;
1785 	bool force_flush = false;
1786 
1787 	/*
1788 	 * The destination pmd shouldn't be established, free_pgtables()
1789 	 * should have released it; but move_page_tables() might have already
1790 	 * inserted a page table, if racing against shmem/file collapse.
1791 	 */
1792 	if (!pmd_none(*new_pmd)) {
1793 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1794 		return false;
1795 	}
1796 
1797 	/*
1798 	 * We don't have to worry about the ordering of src and dst
1799 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1800 	 */
1801 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1802 	if (old_ptl) {
1803 		new_ptl = pmd_lockptr(mm, new_pmd);
1804 		if (new_ptl != old_ptl)
1805 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1806 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1807 		if (pmd_present(pmd))
1808 			force_flush = true;
1809 		VM_BUG_ON(!pmd_none(*new_pmd));
1810 
1811 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1812 			pgtable_t pgtable;
1813 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1814 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1815 		}
1816 		pmd = move_soft_dirty_pmd(pmd);
1817 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1818 		if (force_flush)
1819 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1820 		if (new_ptl != old_ptl)
1821 			spin_unlock(new_ptl);
1822 		spin_unlock(old_ptl);
1823 		return true;
1824 	}
1825 	return false;
1826 }
1827 
1828 /*
1829  * Returns
1830  *  - 0 if PMD could not be locked
1831  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1832  *      or if prot_numa but THP migration is not supported
1833  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1834  */
1835 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1836 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1837 		    unsigned long cp_flags)
1838 {
1839 	struct mm_struct *mm = vma->vm_mm;
1840 	spinlock_t *ptl;
1841 	pmd_t oldpmd, entry;
1842 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1843 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1844 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1845 	int ret = 1;
1846 
1847 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1848 
1849 	if (prot_numa && !thp_migration_supported())
1850 		return 1;
1851 
1852 	ptl = __pmd_trans_huge_lock(pmd, vma);
1853 	if (!ptl)
1854 		return 0;
1855 
1856 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1857 	if (is_swap_pmd(*pmd)) {
1858 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1859 		struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1860 		pmd_t newpmd;
1861 
1862 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1863 		if (is_writable_migration_entry(entry)) {
1864 			/*
1865 			 * A protection check is difficult so
1866 			 * just be safe and disable write
1867 			 */
1868 			if (folio_test_anon(folio))
1869 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1870 			else
1871 				entry = make_readable_migration_entry(swp_offset(entry));
1872 			newpmd = swp_entry_to_pmd(entry);
1873 			if (pmd_swp_soft_dirty(*pmd))
1874 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875 		} else {
1876 			newpmd = *pmd;
1877 		}
1878 
1879 		if (uffd_wp)
1880 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1881 		else if (uffd_wp_resolve)
1882 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1883 		if (!pmd_same(*pmd, newpmd))
1884 			set_pmd_at(mm, addr, pmd, newpmd);
1885 		goto unlock;
1886 	}
1887 #endif
1888 
1889 	if (prot_numa) {
1890 		struct folio *folio;
1891 		bool toptier;
1892 		/*
1893 		 * Avoid trapping faults against the zero page. The read-only
1894 		 * data is likely to be read-cached on the local CPU and
1895 		 * local/remote hits to the zero page are not interesting.
1896 		 */
1897 		if (is_huge_zero_pmd(*pmd))
1898 			goto unlock;
1899 
1900 		if (pmd_protnone(*pmd))
1901 			goto unlock;
1902 
1903 		folio = page_folio(pmd_page(*pmd));
1904 		toptier = node_is_toptier(folio_nid(folio));
1905 		/*
1906 		 * Skip scanning top tier node if normal numa
1907 		 * balancing is disabled
1908 		 */
1909 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1910 		    toptier)
1911 			goto unlock;
1912 
1913 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1914 		    !toptier)
1915 			folio_xchg_access_time(folio,
1916 					       jiffies_to_msecs(jiffies));
1917 	}
1918 	/*
1919 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1920 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1921 	 * which is also under mmap_read_lock(mm):
1922 	 *
1923 	 *	CPU0:				CPU1:
1924 	 *				change_huge_pmd(prot_numa=1)
1925 	 *				 pmdp_huge_get_and_clear_notify()
1926 	 * madvise_dontneed()
1927 	 *  zap_pmd_range()
1928 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1929 	 *   // skip the pmd
1930 	 *				 set_pmd_at();
1931 	 *				 // pmd is re-established
1932 	 *
1933 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1934 	 * which may break userspace.
1935 	 *
1936 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1937 	 * dirty/young flags set by hardware.
1938 	 */
1939 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1940 
1941 	entry = pmd_modify(oldpmd, newprot);
1942 	if (uffd_wp)
1943 		entry = pmd_mkuffd_wp(entry);
1944 	else if (uffd_wp_resolve)
1945 		/*
1946 		 * Leave the write bit to be handled by PF interrupt
1947 		 * handler, then things like COW could be properly
1948 		 * handled.
1949 		 */
1950 		entry = pmd_clear_uffd_wp(entry);
1951 
1952 	/* See change_pte_range(). */
1953 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1954 	    can_change_pmd_writable(vma, addr, entry))
1955 		entry = pmd_mkwrite(entry, vma);
1956 
1957 	ret = HPAGE_PMD_NR;
1958 	set_pmd_at(mm, addr, pmd, entry);
1959 
1960 	if (huge_pmd_needs_flush(oldpmd, entry))
1961 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1962 unlock:
1963 	spin_unlock(ptl);
1964 	return ret;
1965 }
1966 
1967 /*
1968  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1969  *
1970  * Note that if it returns page table lock pointer, this routine returns without
1971  * unlocking page table lock. So callers must unlock it.
1972  */
1973 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1974 {
1975 	spinlock_t *ptl;
1976 	ptl = pmd_lock(vma->vm_mm, pmd);
1977 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1978 			pmd_devmap(*pmd)))
1979 		return ptl;
1980 	spin_unlock(ptl);
1981 	return NULL;
1982 }
1983 
1984 /*
1985  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1986  *
1987  * Note that if it returns page table lock pointer, this routine returns without
1988  * unlocking page table lock. So callers must unlock it.
1989  */
1990 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1991 {
1992 	spinlock_t *ptl;
1993 
1994 	ptl = pud_lock(vma->vm_mm, pud);
1995 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1996 		return ptl;
1997 	spin_unlock(ptl);
1998 	return NULL;
1999 }
2000 
2001 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2002 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2003 		 pud_t *pud, unsigned long addr)
2004 {
2005 	spinlock_t *ptl;
2006 
2007 	ptl = __pud_trans_huge_lock(pud, vma);
2008 	if (!ptl)
2009 		return 0;
2010 
2011 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2012 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2013 	if (vma_is_special_huge(vma)) {
2014 		spin_unlock(ptl);
2015 		/* No zero page support yet */
2016 	} else {
2017 		/* No support for anonymous PUD pages yet */
2018 		BUG();
2019 	}
2020 	return 1;
2021 }
2022 
2023 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2024 		unsigned long haddr)
2025 {
2026 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2027 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2028 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2029 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2030 
2031 	count_vm_event(THP_SPLIT_PUD);
2032 
2033 	pudp_huge_clear_flush(vma, haddr, pud);
2034 }
2035 
2036 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2037 		unsigned long address)
2038 {
2039 	spinlock_t *ptl;
2040 	struct mmu_notifier_range range;
2041 
2042 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2043 				address & HPAGE_PUD_MASK,
2044 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2045 	mmu_notifier_invalidate_range_start(&range);
2046 	ptl = pud_lock(vma->vm_mm, pud);
2047 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2048 		goto out;
2049 	__split_huge_pud_locked(vma, pud, range.start);
2050 
2051 out:
2052 	spin_unlock(ptl);
2053 	mmu_notifier_invalidate_range_end(&range);
2054 }
2055 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2056 
2057 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2058 		unsigned long haddr, pmd_t *pmd)
2059 {
2060 	struct mm_struct *mm = vma->vm_mm;
2061 	pgtable_t pgtable;
2062 	pmd_t _pmd, old_pmd;
2063 	unsigned long addr;
2064 	pte_t *pte;
2065 	int i;
2066 
2067 	/*
2068 	 * Leave pmd empty until pte is filled note that it is fine to delay
2069 	 * notification until mmu_notifier_invalidate_range_end() as we are
2070 	 * replacing a zero pmd write protected page with a zero pte write
2071 	 * protected page.
2072 	 *
2073 	 * See Documentation/mm/mmu_notifier.rst
2074 	 */
2075 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2076 
2077 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2078 	pmd_populate(mm, &_pmd, pgtable);
2079 
2080 	pte = pte_offset_map(&_pmd, haddr);
2081 	VM_BUG_ON(!pte);
2082 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2083 		pte_t entry;
2084 
2085 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2086 		entry = pte_mkspecial(entry);
2087 		if (pmd_uffd_wp(old_pmd))
2088 			entry = pte_mkuffd_wp(entry);
2089 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2090 		set_pte_at(mm, addr, pte, entry);
2091 		pte++;
2092 	}
2093 	pte_unmap(pte - 1);
2094 	smp_wmb(); /* make pte visible before pmd */
2095 	pmd_populate(mm, pmd, pgtable);
2096 }
2097 
2098 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2099 		unsigned long haddr, bool freeze)
2100 {
2101 	struct mm_struct *mm = vma->vm_mm;
2102 	struct page *page;
2103 	pgtable_t pgtable;
2104 	pmd_t old_pmd, _pmd;
2105 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2106 	bool anon_exclusive = false, dirty = false;
2107 	unsigned long addr;
2108 	pte_t *pte;
2109 	int i;
2110 
2111 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2112 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2113 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2114 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2115 				&& !pmd_devmap(*pmd));
2116 
2117 	count_vm_event(THP_SPLIT_PMD);
2118 
2119 	if (!vma_is_anonymous(vma)) {
2120 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2121 		/*
2122 		 * We are going to unmap this huge page. So
2123 		 * just go ahead and zap it
2124 		 */
2125 		if (arch_needs_pgtable_deposit())
2126 			zap_deposited_table(mm, pmd);
2127 		if (vma_is_special_huge(vma))
2128 			return;
2129 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2130 			swp_entry_t entry;
2131 
2132 			entry = pmd_to_swp_entry(old_pmd);
2133 			page = pfn_swap_entry_to_page(entry);
2134 		} else {
2135 			page = pmd_page(old_pmd);
2136 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2137 				set_page_dirty(page);
2138 			if (!PageReferenced(page) && pmd_young(old_pmd))
2139 				SetPageReferenced(page);
2140 			page_remove_rmap(page, vma, true);
2141 			put_page(page);
2142 		}
2143 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2144 		return;
2145 	}
2146 
2147 	if (is_huge_zero_pmd(*pmd)) {
2148 		/*
2149 		 * FIXME: Do we want to invalidate secondary mmu by calling
2150 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2151 		 * inside __split_huge_pmd() ?
2152 		 *
2153 		 * We are going from a zero huge page write protected to zero
2154 		 * small page also write protected so it does not seems useful
2155 		 * to invalidate secondary mmu at this time.
2156 		 */
2157 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2158 	}
2159 
2160 	/*
2161 	 * Up to this point the pmd is present and huge and userland has the
2162 	 * whole access to the hugepage during the split (which happens in
2163 	 * place). If we overwrite the pmd with the not-huge version pointing
2164 	 * to the pte here (which of course we could if all CPUs were bug
2165 	 * free), userland could trigger a small page size TLB miss on the
2166 	 * small sized TLB while the hugepage TLB entry is still established in
2167 	 * the huge TLB. Some CPU doesn't like that.
2168 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2169 	 * 383 on page 105. Intel should be safe but is also warns that it's
2170 	 * only safe if the permission and cache attributes of the two entries
2171 	 * loaded in the two TLB is identical (which should be the case here).
2172 	 * But it is generally safer to never allow small and huge TLB entries
2173 	 * for the same virtual address to be loaded simultaneously. So instead
2174 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2175 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2176 	 * must remain set at all times on the pmd until the split is complete
2177 	 * for this pmd), then we flush the SMP TLB and finally we write the
2178 	 * non-huge version of the pmd entry with pmd_populate.
2179 	 */
2180 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2181 
2182 	pmd_migration = is_pmd_migration_entry(old_pmd);
2183 	if (unlikely(pmd_migration)) {
2184 		swp_entry_t entry;
2185 
2186 		entry = pmd_to_swp_entry(old_pmd);
2187 		page = pfn_swap_entry_to_page(entry);
2188 		write = is_writable_migration_entry(entry);
2189 		if (PageAnon(page))
2190 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2191 		young = is_migration_entry_young(entry);
2192 		dirty = is_migration_entry_dirty(entry);
2193 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2194 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2195 	} else {
2196 		page = pmd_page(old_pmd);
2197 		if (pmd_dirty(old_pmd)) {
2198 			dirty = true;
2199 			SetPageDirty(page);
2200 		}
2201 		write = pmd_write(old_pmd);
2202 		young = pmd_young(old_pmd);
2203 		soft_dirty = pmd_soft_dirty(old_pmd);
2204 		uffd_wp = pmd_uffd_wp(old_pmd);
2205 
2206 		VM_BUG_ON_PAGE(!page_count(page), page);
2207 
2208 		/*
2209 		 * Without "freeze", we'll simply split the PMD, propagating the
2210 		 * PageAnonExclusive() flag for each PTE by setting it for
2211 		 * each subpage -- no need to (temporarily) clear.
2212 		 *
2213 		 * With "freeze" we want to replace mapped pages by
2214 		 * migration entries right away. This is only possible if we
2215 		 * managed to clear PageAnonExclusive() -- see
2216 		 * set_pmd_migration_entry().
2217 		 *
2218 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2219 		 * only and let try_to_migrate_one() fail later.
2220 		 *
2221 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2222 		 */
2223 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2224 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2225 			freeze = false;
2226 		if (!freeze)
2227 			page_ref_add(page, HPAGE_PMD_NR - 1);
2228 	}
2229 
2230 	/*
2231 	 * Withdraw the table only after we mark the pmd entry invalid.
2232 	 * This's critical for some architectures (Power).
2233 	 */
2234 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2235 	pmd_populate(mm, &_pmd, pgtable);
2236 
2237 	pte = pte_offset_map(&_pmd, haddr);
2238 	VM_BUG_ON(!pte);
2239 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2240 		pte_t entry;
2241 		/*
2242 		 * Note that NUMA hinting access restrictions are not
2243 		 * transferred to avoid any possibility of altering
2244 		 * permissions across VMAs.
2245 		 */
2246 		if (freeze || pmd_migration) {
2247 			swp_entry_t swp_entry;
2248 			if (write)
2249 				swp_entry = make_writable_migration_entry(
2250 							page_to_pfn(page + i));
2251 			else if (anon_exclusive)
2252 				swp_entry = make_readable_exclusive_migration_entry(
2253 							page_to_pfn(page + i));
2254 			else
2255 				swp_entry = make_readable_migration_entry(
2256 							page_to_pfn(page + i));
2257 			if (young)
2258 				swp_entry = make_migration_entry_young(swp_entry);
2259 			if (dirty)
2260 				swp_entry = make_migration_entry_dirty(swp_entry);
2261 			entry = swp_entry_to_pte(swp_entry);
2262 			if (soft_dirty)
2263 				entry = pte_swp_mksoft_dirty(entry);
2264 			if (uffd_wp)
2265 				entry = pte_swp_mkuffd_wp(entry);
2266 		} else {
2267 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2268 			if (write)
2269 				entry = pte_mkwrite(entry, vma);
2270 			if (anon_exclusive)
2271 				SetPageAnonExclusive(page + i);
2272 			if (!young)
2273 				entry = pte_mkold(entry);
2274 			/* NOTE: this may set soft-dirty too on some archs */
2275 			if (dirty)
2276 				entry = pte_mkdirty(entry);
2277 			if (soft_dirty)
2278 				entry = pte_mksoft_dirty(entry);
2279 			if (uffd_wp)
2280 				entry = pte_mkuffd_wp(entry);
2281 			page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2282 		}
2283 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2284 		set_pte_at(mm, addr, pte, entry);
2285 		pte++;
2286 	}
2287 	pte_unmap(pte - 1);
2288 
2289 	if (!pmd_migration)
2290 		page_remove_rmap(page, vma, true);
2291 	if (freeze)
2292 		put_page(page);
2293 
2294 	smp_wmb(); /* make pte visible before pmd */
2295 	pmd_populate(mm, pmd, pgtable);
2296 }
2297 
2298 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2299 		unsigned long address, bool freeze, struct folio *folio)
2300 {
2301 	spinlock_t *ptl;
2302 	struct mmu_notifier_range range;
2303 
2304 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2305 				address & HPAGE_PMD_MASK,
2306 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2307 	mmu_notifier_invalidate_range_start(&range);
2308 	ptl = pmd_lock(vma->vm_mm, pmd);
2309 
2310 	/*
2311 	 * If caller asks to setup a migration entry, we need a folio to check
2312 	 * pmd against. Otherwise we can end up replacing wrong folio.
2313 	 */
2314 	VM_BUG_ON(freeze && !folio);
2315 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2316 
2317 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2318 	    is_pmd_migration_entry(*pmd)) {
2319 		/*
2320 		 * It's safe to call pmd_page when folio is set because it's
2321 		 * guaranteed that pmd is present.
2322 		 */
2323 		if (folio && folio != page_folio(pmd_page(*pmd)))
2324 			goto out;
2325 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2326 	}
2327 
2328 out:
2329 	spin_unlock(ptl);
2330 	mmu_notifier_invalidate_range_end(&range);
2331 }
2332 
2333 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2334 		bool freeze, struct folio *folio)
2335 {
2336 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2337 
2338 	if (!pmd)
2339 		return;
2340 
2341 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2342 }
2343 
2344 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2345 {
2346 	/*
2347 	 * If the new address isn't hpage aligned and it could previously
2348 	 * contain an hugepage: check if we need to split an huge pmd.
2349 	 */
2350 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2351 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2352 			 ALIGN(address, HPAGE_PMD_SIZE)))
2353 		split_huge_pmd_address(vma, address, false, NULL);
2354 }
2355 
2356 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2357 			     unsigned long start,
2358 			     unsigned long end,
2359 			     long adjust_next)
2360 {
2361 	/* Check if we need to split start first. */
2362 	split_huge_pmd_if_needed(vma, start);
2363 
2364 	/* Check if we need to split end next. */
2365 	split_huge_pmd_if_needed(vma, end);
2366 
2367 	/*
2368 	 * If we're also updating the next vma vm_start,
2369 	 * check if we need to split it.
2370 	 */
2371 	if (adjust_next > 0) {
2372 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2373 		unsigned long nstart = next->vm_start;
2374 		nstart += adjust_next;
2375 		split_huge_pmd_if_needed(next, nstart);
2376 	}
2377 }
2378 
2379 static void unmap_folio(struct folio *folio)
2380 {
2381 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2382 		TTU_SYNC;
2383 
2384 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2385 
2386 	/*
2387 	 * Anon pages need migration entries to preserve them, but file
2388 	 * pages can simply be left unmapped, then faulted back on demand.
2389 	 * If that is ever changed (perhaps for mlock), update remap_page().
2390 	 */
2391 	if (folio_test_anon(folio))
2392 		try_to_migrate(folio, ttu_flags);
2393 	else
2394 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2395 }
2396 
2397 static void remap_page(struct folio *folio, unsigned long nr)
2398 {
2399 	int i = 0;
2400 
2401 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2402 	if (!folio_test_anon(folio))
2403 		return;
2404 	for (;;) {
2405 		remove_migration_ptes(folio, folio, true);
2406 		i += folio_nr_pages(folio);
2407 		if (i >= nr)
2408 			break;
2409 		folio = folio_next(folio);
2410 	}
2411 }
2412 
2413 static void lru_add_page_tail(struct page *head, struct page *tail,
2414 		struct lruvec *lruvec, struct list_head *list)
2415 {
2416 	VM_BUG_ON_PAGE(!PageHead(head), head);
2417 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2418 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2419 	lockdep_assert_held(&lruvec->lru_lock);
2420 
2421 	if (list) {
2422 		/* page reclaim is reclaiming a huge page */
2423 		VM_WARN_ON(PageLRU(head));
2424 		get_page(tail);
2425 		list_add_tail(&tail->lru, list);
2426 	} else {
2427 		/* head is still on lru (and we have it frozen) */
2428 		VM_WARN_ON(!PageLRU(head));
2429 		if (PageUnevictable(tail))
2430 			tail->mlock_count = 0;
2431 		else
2432 			list_add_tail(&tail->lru, &head->lru);
2433 		SetPageLRU(tail);
2434 	}
2435 }
2436 
2437 static void __split_huge_page_tail(struct folio *folio, int tail,
2438 		struct lruvec *lruvec, struct list_head *list)
2439 {
2440 	struct page *head = &folio->page;
2441 	struct page *page_tail = head + tail;
2442 	/*
2443 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2444 	 * Don't pass it around before clear_compound_head().
2445 	 */
2446 	struct folio *new_folio = (struct folio *)page_tail;
2447 
2448 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2449 
2450 	/*
2451 	 * Clone page flags before unfreezing refcount.
2452 	 *
2453 	 * After successful get_page_unless_zero() might follow flags change,
2454 	 * for example lock_page() which set PG_waiters.
2455 	 *
2456 	 * Note that for mapped sub-pages of an anonymous THP,
2457 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2458 	 * the migration entry instead from where remap_page() will restore it.
2459 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2460 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2461 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2462 	 */
2463 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2464 	page_tail->flags |= (head->flags &
2465 			((1L << PG_referenced) |
2466 			 (1L << PG_swapbacked) |
2467 			 (1L << PG_swapcache) |
2468 			 (1L << PG_mlocked) |
2469 			 (1L << PG_uptodate) |
2470 			 (1L << PG_active) |
2471 			 (1L << PG_workingset) |
2472 			 (1L << PG_locked) |
2473 			 (1L << PG_unevictable) |
2474 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2475 			 (1L << PG_arch_2) |
2476 			 (1L << PG_arch_3) |
2477 #endif
2478 			 (1L << PG_dirty) |
2479 			 LRU_GEN_MASK | LRU_REFS_MASK));
2480 
2481 	/* ->mapping in first and second tail page is replaced by other uses */
2482 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2483 			page_tail);
2484 	page_tail->mapping = head->mapping;
2485 	page_tail->index = head->index + tail;
2486 
2487 	/*
2488 	 * page->private should not be set in tail pages. Fix up and warn once
2489 	 * if private is unexpectedly set.
2490 	 */
2491 	if (unlikely(page_tail->private)) {
2492 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2493 		page_tail->private = 0;
2494 	}
2495 	if (folio_test_swapcache(folio))
2496 		new_folio->swap.val = folio->swap.val + tail;
2497 
2498 	/* Page flags must be visible before we make the page non-compound. */
2499 	smp_wmb();
2500 
2501 	/*
2502 	 * Clear PageTail before unfreezing page refcount.
2503 	 *
2504 	 * After successful get_page_unless_zero() might follow put_page()
2505 	 * which needs correct compound_head().
2506 	 */
2507 	clear_compound_head(page_tail);
2508 
2509 	/* Finally unfreeze refcount. Additional reference from page cache. */
2510 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2511 					  PageSwapCache(head)));
2512 
2513 	if (page_is_young(head))
2514 		set_page_young(page_tail);
2515 	if (page_is_idle(head))
2516 		set_page_idle(page_tail);
2517 
2518 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2519 
2520 	/*
2521 	 * always add to the tail because some iterators expect new
2522 	 * pages to show after the currently processed elements - e.g.
2523 	 * migrate_pages
2524 	 */
2525 	lru_add_page_tail(head, page_tail, lruvec, list);
2526 }
2527 
2528 static void __split_huge_page(struct page *page, struct list_head *list,
2529 		pgoff_t end)
2530 {
2531 	struct folio *folio = page_folio(page);
2532 	struct page *head = &folio->page;
2533 	struct lruvec *lruvec;
2534 	struct address_space *swap_cache = NULL;
2535 	unsigned long offset = 0;
2536 	unsigned int nr = thp_nr_pages(head);
2537 	int i, nr_dropped = 0;
2538 
2539 	/* complete memcg works before add pages to LRU */
2540 	split_page_memcg(head, nr);
2541 
2542 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2543 		offset = swp_offset(folio->swap);
2544 		swap_cache = swap_address_space(folio->swap);
2545 		xa_lock(&swap_cache->i_pages);
2546 	}
2547 
2548 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2549 	lruvec = folio_lruvec_lock(folio);
2550 
2551 	ClearPageHasHWPoisoned(head);
2552 
2553 	for (i = nr - 1; i >= 1; i--) {
2554 		__split_huge_page_tail(folio, i, lruvec, list);
2555 		/* Some pages can be beyond EOF: drop them from page cache */
2556 		if (head[i].index >= end) {
2557 			struct folio *tail = page_folio(head + i);
2558 
2559 			if (shmem_mapping(head->mapping))
2560 				nr_dropped++;
2561 			else if (folio_test_clear_dirty(tail))
2562 				folio_account_cleaned(tail,
2563 					inode_to_wb(folio->mapping->host));
2564 			__filemap_remove_folio(tail, NULL);
2565 			folio_put(tail);
2566 		} else if (!PageAnon(page)) {
2567 			__xa_store(&head->mapping->i_pages, head[i].index,
2568 					head + i, 0);
2569 		} else if (swap_cache) {
2570 			__xa_store(&swap_cache->i_pages, offset + i,
2571 					head + i, 0);
2572 		}
2573 	}
2574 
2575 	ClearPageCompound(head);
2576 	unlock_page_lruvec(lruvec);
2577 	/* Caller disabled irqs, so they are still disabled here */
2578 
2579 	split_page_owner(head, nr);
2580 
2581 	/* See comment in __split_huge_page_tail() */
2582 	if (PageAnon(head)) {
2583 		/* Additional pin to swap cache */
2584 		if (PageSwapCache(head)) {
2585 			page_ref_add(head, 2);
2586 			xa_unlock(&swap_cache->i_pages);
2587 		} else {
2588 			page_ref_inc(head);
2589 		}
2590 	} else {
2591 		/* Additional pin to page cache */
2592 		page_ref_add(head, 2);
2593 		xa_unlock(&head->mapping->i_pages);
2594 	}
2595 	local_irq_enable();
2596 
2597 	if (nr_dropped)
2598 		shmem_uncharge(head->mapping->host, nr_dropped);
2599 	remap_page(folio, nr);
2600 
2601 	if (folio_test_swapcache(folio))
2602 		split_swap_cluster(folio->swap);
2603 
2604 	for (i = 0; i < nr; i++) {
2605 		struct page *subpage = head + i;
2606 		if (subpage == page)
2607 			continue;
2608 		unlock_page(subpage);
2609 
2610 		/*
2611 		 * Subpages may be freed if there wasn't any mapping
2612 		 * like if add_to_swap() is running on a lru page that
2613 		 * had its mapping zapped. And freeing these pages
2614 		 * requires taking the lru_lock so we do the put_page
2615 		 * of the tail pages after the split is complete.
2616 		 */
2617 		free_page_and_swap_cache(subpage);
2618 	}
2619 }
2620 
2621 /* Racy check whether the huge page can be split */
2622 bool can_split_folio(struct folio *folio, int *pextra_pins)
2623 {
2624 	int extra_pins;
2625 
2626 	/* Additional pins from page cache */
2627 	if (folio_test_anon(folio))
2628 		extra_pins = folio_test_swapcache(folio) ?
2629 				folio_nr_pages(folio) : 0;
2630 	else
2631 		extra_pins = folio_nr_pages(folio);
2632 	if (pextra_pins)
2633 		*pextra_pins = extra_pins;
2634 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2635 }
2636 
2637 /*
2638  * This function splits huge page into normal pages. @page can point to any
2639  * subpage of huge page to split. Split doesn't change the position of @page.
2640  *
2641  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2642  * The huge page must be locked.
2643  *
2644  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2645  *
2646  * Both head page and tail pages will inherit mapping, flags, and so on from
2647  * the hugepage.
2648  *
2649  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2650  * they are not mapped.
2651  *
2652  * Returns 0 if the hugepage is split successfully.
2653  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2654  * us.
2655  */
2656 int split_huge_page_to_list(struct page *page, struct list_head *list)
2657 {
2658 	struct folio *folio = page_folio(page);
2659 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2660 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2661 	struct anon_vma *anon_vma = NULL;
2662 	struct address_space *mapping = NULL;
2663 	int extra_pins, ret;
2664 	pgoff_t end;
2665 	bool is_hzp;
2666 
2667 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2668 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2669 
2670 	is_hzp = is_huge_zero_page(&folio->page);
2671 	if (is_hzp) {
2672 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2673 		return -EBUSY;
2674 	}
2675 
2676 	if (folio_test_writeback(folio))
2677 		return -EBUSY;
2678 
2679 	if (folio_test_anon(folio)) {
2680 		/*
2681 		 * The caller does not necessarily hold an mmap_lock that would
2682 		 * prevent the anon_vma disappearing so we first we take a
2683 		 * reference to it and then lock the anon_vma for write. This
2684 		 * is similar to folio_lock_anon_vma_read except the write lock
2685 		 * is taken to serialise against parallel split or collapse
2686 		 * operations.
2687 		 */
2688 		anon_vma = folio_get_anon_vma(folio);
2689 		if (!anon_vma) {
2690 			ret = -EBUSY;
2691 			goto out;
2692 		}
2693 		end = -1;
2694 		mapping = NULL;
2695 		anon_vma_lock_write(anon_vma);
2696 	} else {
2697 		gfp_t gfp;
2698 
2699 		mapping = folio->mapping;
2700 
2701 		/* Truncated ? */
2702 		if (!mapping) {
2703 			ret = -EBUSY;
2704 			goto out;
2705 		}
2706 
2707 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2708 							GFP_RECLAIM_MASK);
2709 
2710 		if (!filemap_release_folio(folio, gfp)) {
2711 			ret = -EBUSY;
2712 			goto out;
2713 		}
2714 
2715 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2716 		if (xas_error(&xas)) {
2717 			ret = xas_error(&xas);
2718 			goto out;
2719 		}
2720 
2721 		anon_vma = NULL;
2722 		i_mmap_lock_read(mapping);
2723 
2724 		/*
2725 		 *__split_huge_page() may need to trim off pages beyond EOF:
2726 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2727 		 * which cannot be nested inside the page tree lock. So note
2728 		 * end now: i_size itself may be changed at any moment, but
2729 		 * folio lock is good enough to serialize the trimming.
2730 		 */
2731 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2732 		if (shmem_mapping(mapping))
2733 			end = shmem_fallocend(mapping->host, end);
2734 	}
2735 
2736 	/*
2737 	 * Racy check if we can split the page, before unmap_folio() will
2738 	 * split PMDs
2739 	 */
2740 	if (!can_split_folio(folio, &extra_pins)) {
2741 		ret = -EAGAIN;
2742 		goto out_unlock;
2743 	}
2744 
2745 	unmap_folio(folio);
2746 
2747 	/* block interrupt reentry in xa_lock and spinlock */
2748 	local_irq_disable();
2749 	if (mapping) {
2750 		/*
2751 		 * Check if the folio is present in page cache.
2752 		 * We assume all tail are present too, if folio is there.
2753 		 */
2754 		xas_lock(&xas);
2755 		xas_reset(&xas);
2756 		if (xas_load(&xas) != folio)
2757 			goto fail;
2758 	}
2759 
2760 	/* Prevent deferred_split_scan() touching ->_refcount */
2761 	spin_lock(&ds_queue->split_queue_lock);
2762 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2763 		if (!list_empty(&folio->_deferred_list)) {
2764 			ds_queue->split_queue_len--;
2765 			list_del(&folio->_deferred_list);
2766 		}
2767 		spin_unlock(&ds_queue->split_queue_lock);
2768 		if (mapping) {
2769 			int nr = folio_nr_pages(folio);
2770 
2771 			xas_split(&xas, folio, folio_order(folio));
2772 			if (folio_test_pmd_mappable(folio)) {
2773 				if (folio_test_swapbacked(folio)) {
2774 					__lruvec_stat_mod_folio(folio,
2775 							NR_SHMEM_THPS, -nr);
2776 				} else {
2777 					__lruvec_stat_mod_folio(folio,
2778 							NR_FILE_THPS, -nr);
2779 					filemap_nr_thps_dec(mapping);
2780 				}
2781 			}
2782 		}
2783 
2784 		__split_huge_page(page, list, end);
2785 		ret = 0;
2786 	} else {
2787 		spin_unlock(&ds_queue->split_queue_lock);
2788 fail:
2789 		if (mapping)
2790 			xas_unlock(&xas);
2791 		local_irq_enable();
2792 		remap_page(folio, folio_nr_pages(folio));
2793 		ret = -EAGAIN;
2794 	}
2795 
2796 out_unlock:
2797 	if (anon_vma) {
2798 		anon_vma_unlock_write(anon_vma);
2799 		put_anon_vma(anon_vma);
2800 	}
2801 	if (mapping)
2802 		i_mmap_unlock_read(mapping);
2803 out:
2804 	xas_destroy(&xas);
2805 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2806 	return ret;
2807 }
2808 
2809 void folio_undo_large_rmappable(struct folio *folio)
2810 {
2811 	struct deferred_split *ds_queue;
2812 	unsigned long flags;
2813 
2814 	/*
2815 	 * At this point, there is no one trying to add the folio to
2816 	 * deferred_list. If folio is not in deferred_list, it's safe
2817 	 * to check without acquiring the split_queue_lock.
2818 	 */
2819 	if (data_race(list_empty(&folio->_deferred_list)))
2820 		return;
2821 
2822 	ds_queue = get_deferred_split_queue(folio);
2823 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2824 	if (!list_empty(&folio->_deferred_list)) {
2825 		ds_queue->split_queue_len--;
2826 		list_del(&folio->_deferred_list);
2827 	}
2828 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2829 }
2830 
2831 void deferred_split_folio(struct folio *folio)
2832 {
2833 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2834 #ifdef CONFIG_MEMCG
2835 	struct mem_cgroup *memcg = folio_memcg(folio);
2836 #endif
2837 	unsigned long flags;
2838 
2839 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2840 
2841 	/*
2842 	 * The try_to_unmap() in page reclaim path might reach here too,
2843 	 * this may cause a race condition to corrupt deferred split queue.
2844 	 * And, if page reclaim is already handling the same folio, it is
2845 	 * unnecessary to handle it again in shrinker.
2846 	 *
2847 	 * Check the swapcache flag to determine if the folio is being
2848 	 * handled by page reclaim since THP swap would add the folio into
2849 	 * swap cache before calling try_to_unmap().
2850 	 */
2851 	if (folio_test_swapcache(folio))
2852 		return;
2853 
2854 	if (!list_empty(&folio->_deferred_list))
2855 		return;
2856 
2857 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2858 	if (list_empty(&folio->_deferred_list)) {
2859 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2860 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2861 		ds_queue->split_queue_len++;
2862 #ifdef CONFIG_MEMCG
2863 		if (memcg)
2864 			set_shrinker_bit(memcg, folio_nid(folio),
2865 					 deferred_split_shrinker->id);
2866 #endif
2867 	}
2868 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2869 }
2870 
2871 static unsigned long deferred_split_count(struct shrinker *shrink,
2872 		struct shrink_control *sc)
2873 {
2874 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2875 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2876 
2877 #ifdef CONFIG_MEMCG
2878 	if (sc->memcg)
2879 		ds_queue = &sc->memcg->deferred_split_queue;
2880 #endif
2881 	return READ_ONCE(ds_queue->split_queue_len);
2882 }
2883 
2884 static unsigned long deferred_split_scan(struct shrinker *shrink,
2885 		struct shrink_control *sc)
2886 {
2887 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2888 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2889 	unsigned long flags;
2890 	LIST_HEAD(list);
2891 	struct folio *folio, *next;
2892 	int split = 0;
2893 
2894 #ifdef CONFIG_MEMCG
2895 	if (sc->memcg)
2896 		ds_queue = &sc->memcg->deferred_split_queue;
2897 #endif
2898 
2899 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2900 	/* Take pin on all head pages to avoid freeing them under us */
2901 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2902 							_deferred_list) {
2903 		if (folio_try_get(folio)) {
2904 			list_move(&folio->_deferred_list, &list);
2905 		} else {
2906 			/* We lost race with folio_put() */
2907 			list_del_init(&folio->_deferred_list);
2908 			ds_queue->split_queue_len--;
2909 		}
2910 		if (!--sc->nr_to_scan)
2911 			break;
2912 	}
2913 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2914 
2915 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2916 		if (!folio_trylock(folio))
2917 			goto next;
2918 		/* split_huge_page() removes page from list on success */
2919 		if (!split_folio(folio))
2920 			split++;
2921 		folio_unlock(folio);
2922 next:
2923 		folio_put(folio);
2924 	}
2925 
2926 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2927 	list_splice_tail(&list, &ds_queue->split_queue);
2928 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2929 
2930 	/*
2931 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2932 	 * This can happen if pages were freed under us.
2933 	 */
2934 	if (!split && list_empty(&ds_queue->split_queue))
2935 		return SHRINK_STOP;
2936 	return split;
2937 }
2938 
2939 #ifdef CONFIG_DEBUG_FS
2940 static void split_huge_pages_all(void)
2941 {
2942 	struct zone *zone;
2943 	struct page *page;
2944 	struct folio *folio;
2945 	unsigned long pfn, max_zone_pfn;
2946 	unsigned long total = 0, split = 0;
2947 
2948 	pr_debug("Split all THPs\n");
2949 	for_each_zone(zone) {
2950 		if (!managed_zone(zone))
2951 			continue;
2952 		max_zone_pfn = zone_end_pfn(zone);
2953 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2954 			int nr_pages;
2955 
2956 			page = pfn_to_online_page(pfn);
2957 			if (!page || PageTail(page))
2958 				continue;
2959 			folio = page_folio(page);
2960 			if (!folio_try_get(folio))
2961 				continue;
2962 
2963 			if (unlikely(page_folio(page) != folio))
2964 				goto next;
2965 
2966 			if (zone != folio_zone(folio))
2967 				goto next;
2968 
2969 			if (!folio_test_large(folio)
2970 				|| folio_test_hugetlb(folio)
2971 				|| !folio_test_lru(folio))
2972 				goto next;
2973 
2974 			total++;
2975 			folio_lock(folio);
2976 			nr_pages = folio_nr_pages(folio);
2977 			if (!split_folio(folio))
2978 				split++;
2979 			pfn += nr_pages - 1;
2980 			folio_unlock(folio);
2981 next:
2982 			folio_put(folio);
2983 			cond_resched();
2984 		}
2985 	}
2986 
2987 	pr_debug("%lu of %lu THP split\n", split, total);
2988 }
2989 
2990 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2991 {
2992 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2993 		    is_vm_hugetlb_page(vma);
2994 }
2995 
2996 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2997 				unsigned long vaddr_end)
2998 {
2999 	int ret = 0;
3000 	struct task_struct *task;
3001 	struct mm_struct *mm;
3002 	unsigned long total = 0, split = 0;
3003 	unsigned long addr;
3004 
3005 	vaddr_start &= PAGE_MASK;
3006 	vaddr_end &= PAGE_MASK;
3007 
3008 	/* Find the task_struct from pid */
3009 	rcu_read_lock();
3010 	task = find_task_by_vpid(pid);
3011 	if (!task) {
3012 		rcu_read_unlock();
3013 		ret = -ESRCH;
3014 		goto out;
3015 	}
3016 	get_task_struct(task);
3017 	rcu_read_unlock();
3018 
3019 	/* Find the mm_struct */
3020 	mm = get_task_mm(task);
3021 	put_task_struct(task);
3022 
3023 	if (!mm) {
3024 		ret = -EINVAL;
3025 		goto out;
3026 	}
3027 
3028 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3029 		 pid, vaddr_start, vaddr_end);
3030 
3031 	mmap_read_lock(mm);
3032 	/*
3033 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3034 	 * table filled with PTE-mapped THPs, each of which is distinct.
3035 	 */
3036 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3037 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3038 		struct page *page;
3039 		struct folio *folio;
3040 
3041 		if (!vma)
3042 			break;
3043 
3044 		/* skip special VMA and hugetlb VMA */
3045 		if (vma_not_suitable_for_thp_split(vma)) {
3046 			addr = vma->vm_end;
3047 			continue;
3048 		}
3049 
3050 		/* FOLL_DUMP to ignore special (like zero) pages */
3051 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3052 
3053 		if (IS_ERR_OR_NULL(page))
3054 			continue;
3055 
3056 		folio = page_folio(page);
3057 		if (!is_transparent_hugepage(folio))
3058 			goto next;
3059 
3060 		total++;
3061 		if (!can_split_folio(folio, NULL))
3062 			goto next;
3063 
3064 		if (!folio_trylock(folio))
3065 			goto next;
3066 
3067 		if (!split_folio(folio))
3068 			split++;
3069 
3070 		folio_unlock(folio);
3071 next:
3072 		folio_put(folio);
3073 		cond_resched();
3074 	}
3075 	mmap_read_unlock(mm);
3076 	mmput(mm);
3077 
3078 	pr_debug("%lu of %lu THP split\n", split, total);
3079 
3080 out:
3081 	return ret;
3082 }
3083 
3084 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3085 				pgoff_t off_end)
3086 {
3087 	struct filename *file;
3088 	struct file *candidate;
3089 	struct address_space *mapping;
3090 	int ret = -EINVAL;
3091 	pgoff_t index;
3092 	int nr_pages = 1;
3093 	unsigned long total = 0, split = 0;
3094 
3095 	file = getname_kernel(file_path);
3096 	if (IS_ERR(file))
3097 		return ret;
3098 
3099 	candidate = file_open_name(file, O_RDONLY, 0);
3100 	if (IS_ERR(candidate))
3101 		goto out;
3102 
3103 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3104 		 file_path, off_start, off_end);
3105 
3106 	mapping = candidate->f_mapping;
3107 
3108 	for (index = off_start; index < off_end; index += nr_pages) {
3109 		struct folio *folio = filemap_get_folio(mapping, index);
3110 
3111 		nr_pages = 1;
3112 		if (IS_ERR(folio))
3113 			continue;
3114 
3115 		if (!folio_test_large(folio))
3116 			goto next;
3117 
3118 		total++;
3119 		nr_pages = folio_nr_pages(folio);
3120 
3121 		if (!folio_trylock(folio))
3122 			goto next;
3123 
3124 		if (!split_folio(folio))
3125 			split++;
3126 
3127 		folio_unlock(folio);
3128 next:
3129 		folio_put(folio);
3130 		cond_resched();
3131 	}
3132 
3133 	filp_close(candidate, NULL);
3134 	ret = 0;
3135 
3136 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3137 out:
3138 	putname(file);
3139 	return ret;
3140 }
3141 
3142 #define MAX_INPUT_BUF_SZ 255
3143 
3144 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3145 				size_t count, loff_t *ppops)
3146 {
3147 	static DEFINE_MUTEX(split_debug_mutex);
3148 	ssize_t ret;
3149 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3150 	char input_buf[MAX_INPUT_BUF_SZ];
3151 	int pid;
3152 	unsigned long vaddr_start, vaddr_end;
3153 
3154 	ret = mutex_lock_interruptible(&split_debug_mutex);
3155 	if (ret)
3156 		return ret;
3157 
3158 	ret = -EFAULT;
3159 
3160 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3161 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3162 		goto out;
3163 
3164 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3165 
3166 	if (input_buf[0] == '/') {
3167 		char *tok;
3168 		char *buf = input_buf;
3169 		char file_path[MAX_INPUT_BUF_SZ];
3170 		pgoff_t off_start = 0, off_end = 0;
3171 		size_t input_len = strlen(input_buf);
3172 
3173 		tok = strsep(&buf, ",");
3174 		if (tok) {
3175 			strcpy(file_path, tok);
3176 		} else {
3177 			ret = -EINVAL;
3178 			goto out;
3179 		}
3180 
3181 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3182 		if (ret != 2) {
3183 			ret = -EINVAL;
3184 			goto out;
3185 		}
3186 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3187 		if (!ret)
3188 			ret = input_len;
3189 
3190 		goto out;
3191 	}
3192 
3193 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3194 	if (ret == 1 && pid == 1) {
3195 		split_huge_pages_all();
3196 		ret = strlen(input_buf);
3197 		goto out;
3198 	} else if (ret != 3) {
3199 		ret = -EINVAL;
3200 		goto out;
3201 	}
3202 
3203 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3204 	if (!ret)
3205 		ret = strlen(input_buf);
3206 out:
3207 	mutex_unlock(&split_debug_mutex);
3208 	return ret;
3209 
3210 }
3211 
3212 static const struct file_operations split_huge_pages_fops = {
3213 	.owner	 = THIS_MODULE,
3214 	.write	 = split_huge_pages_write,
3215 	.llseek  = no_llseek,
3216 };
3217 
3218 static int __init split_huge_pages_debugfs(void)
3219 {
3220 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3221 			    &split_huge_pages_fops);
3222 	return 0;
3223 }
3224 late_initcall(split_huge_pages_debugfs);
3225 #endif
3226 
3227 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3228 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3229 		struct page *page)
3230 {
3231 	struct vm_area_struct *vma = pvmw->vma;
3232 	struct mm_struct *mm = vma->vm_mm;
3233 	unsigned long address = pvmw->address;
3234 	bool anon_exclusive;
3235 	pmd_t pmdval;
3236 	swp_entry_t entry;
3237 	pmd_t pmdswp;
3238 
3239 	if (!(pvmw->pmd && !pvmw->pte))
3240 		return 0;
3241 
3242 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3243 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3244 
3245 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3246 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3247 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3248 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3249 		return -EBUSY;
3250 	}
3251 
3252 	if (pmd_dirty(pmdval))
3253 		set_page_dirty(page);
3254 	if (pmd_write(pmdval))
3255 		entry = make_writable_migration_entry(page_to_pfn(page));
3256 	else if (anon_exclusive)
3257 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3258 	else
3259 		entry = make_readable_migration_entry(page_to_pfn(page));
3260 	if (pmd_young(pmdval))
3261 		entry = make_migration_entry_young(entry);
3262 	if (pmd_dirty(pmdval))
3263 		entry = make_migration_entry_dirty(entry);
3264 	pmdswp = swp_entry_to_pmd(entry);
3265 	if (pmd_soft_dirty(pmdval))
3266 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3267 	if (pmd_uffd_wp(pmdval))
3268 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3269 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3270 	page_remove_rmap(page, vma, true);
3271 	put_page(page);
3272 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3273 
3274 	return 0;
3275 }
3276 
3277 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3278 {
3279 	struct vm_area_struct *vma = pvmw->vma;
3280 	struct mm_struct *mm = vma->vm_mm;
3281 	unsigned long address = pvmw->address;
3282 	unsigned long haddr = address & HPAGE_PMD_MASK;
3283 	pmd_t pmde;
3284 	swp_entry_t entry;
3285 
3286 	if (!(pvmw->pmd && !pvmw->pte))
3287 		return;
3288 
3289 	entry = pmd_to_swp_entry(*pvmw->pmd);
3290 	get_page(new);
3291 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3292 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3293 		pmde = pmd_mksoft_dirty(pmde);
3294 	if (is_writable_migration_entry(entry))
3295 		pmde = pmd_mkwrite(pmde, vma);
3296 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3297 		pmde = pmd_mkuffd_wp(pmde);
3298 	if (!is_migration_entry_young(entry))
3299 		pmde = pmd_mkold(pmde);
3300 	/* NOTE: this may contain setting soft-dirty on some archs */
3301 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3302 		pmde = pmd_mkdirty(pmde);
3303 
3304 	if (PageAnon(new)) {
3305 		rmap_t rmap_flags = RMAP_COMPOUND;
3306 
3307 		if (!is_readable_migration_entry(entry))
3308 			rmap_flags |= RMAP_EXCLUSIVE;
3309 
3310 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3311 	} else {
3312 		page_add_file_rmap(new, vma, true);
3313 	}
3314 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3315 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3316 
3317 	/* No need to invalidate - it was non-present before */
3318 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3319 	trace_remove_migration_pmd(address, pmd_val(pmde));
3320 }
3321 #endif
3322