xref: /linux/mm/huge_memory.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56 
57 static struct shrinker deferred_split_shrinker;
58 
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61 
62 static struct page *get_huge_zero_page(void)
63 {
64 	struct page *zero_page;
65 retry:
66 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 		return READ_ONCE(huge_zero_page);
68 
69 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 			HPAGE_PMD_ORDER);
71 	if (!zero_page) {
72 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 		return NULL;
74 	}
75 	count_vm_event(THP_ZERO_PAGE_ALLOC);
76 	preempt_disable();
77 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 		preempt_enable();
79 		__free_pages(zero_page, compound_order(zero_page));
80 		goto retry;
81 	}
82 
83 	/* We take additional reference here. It will be put back by shrinker */
84 	atomic_set(&huge_zero_refcount, 2);
85 	preempt_enable();
86 	return READ_ONCE(huge_zero_page);
87 }
88 
89 static void put_huge_zero_page(void)
90 {
91 	/*
92 	 * Counter should never go to zero here. Only shrinker can put
93 	 * last reference.
94 	 */
95 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97 
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 		return READ_ONCE(huge_zero_page);
102 
103 	if (!get_huge_zero_page())
104 		return NULL;
105 
106 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 		put_huge_zero_page();
108 
109 	return READ_ONCE(huge_zero_page);
110 }
111 
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		put_huge_zero_page();
116 }
117 
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 					struct shrink_control *sc)
120 {
121 	/* we can free zero page only if last reference remains */
122 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124 
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 				       struct shrink_control *sc)
127 {
128 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 		struct page *zero_page = xchg(&huge_zero_page, NULL);
130 		BUG_ON(zero_page == NULL);
131 		__free_pages(zero_page, compound_order(zero_page));
132 		return HPAGE_PMD_NR;
133 	}
134 
135 	return 0;
136 }
137 
138 static struct shrinker huge_zero_page_shrinker = {
139 	.count_objects = shrink_huge_zero_page_count,
140 	.scan_objects = shrink_huge_zero_page_scan,
141 	.seeks = DEFAULT_SEEKS,
142 };
143 
144 #ifdef CONFIG_SYSFS
145 
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 				 struct kobj_attribute *attr,
148 				 const char *buf, size_t count,
149 				 enum transparent_hugepage_flag enabled,
150 				 enum transparent_hugepage_flag deferred,
151 				 enum transparent_hugepage_flag req_madv)
152 {
153 	if (!memcmp("defer", buf,
154 		    min(sizeof("defer")-1, count))) {
155 		if (enabled == deferred)
156 			return -EINVAL;
157 		clear_bit(enabled, &transparent_hugepage_flags);
158 		clear_bit(req_madv, &transparent_hugepage_flags);
159 		set_bit(deferred, &transparent_hugepage_flags);
160 	} else if (!memcmp("always", buf,
161 		    min(sizeof("always")-1, count))) {
162 		clear_bit(deferred, &transparent_hugepage_flags);
163 		clear_bit(req_madv, &transparent_hugepage_flags);
164 		set_bit(enabled, &transparent_hugepage_flags);
165 	} else if (!memcmp("madvise", buf,
166 			   min(sizeof("madvise")-1, count))) {
167 		clear_bit(enabled, &transparent_hugepage_flags);
168 		clear_bit(deferred, &transparent_hugepage_flags);
169 		set_bit(req_madv, &transparent_hugepage_flags);
170 	} else if (!memcmp("never", buf,
171 			   min(sizeof("never")-1, count))) {
172 		clear_bit(enabled, &transparent_hugepage_flags);
173 		clear_bit(req_madv, &transparent_hugepage_flags);
174 		clear_bit(deferred, &transparent_hugepage_flags);
175 	} else
176 		return -EINVAL;
177 
178 	return count;
179 }
180 
181 static ssize_t enabled_show(struct kobject *kobj,
182 			    struct kobj_attribute *attr, char *buf)
183 {
184 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 		return sprintf(buf, "[always] madvise never\n");
186 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 		return sprintf(buf, "always [madvise] never\n");
188 	else
189 		return sprintf(buf, "always madvise [never]\n");
190 }
191 
192 static ssize_t enabled_store(struct kobject *kobj,
193 			     struct kobj_attribute *attr,
194 			     const char *buf, size_t count)
195 {
196 	ssize_t ret;
197 
198 	ret = triple_flag_store(kobj, attr, buf, count,
199 				TRANSPARENT_HUGEPAGE_FLAG,
200 				TRANSPARENT_HUGEPAGE_FLAG,
201 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202 
203 	if (ret > 0) {
204 		int err = start_stop_khugepaged();
205 		if (err)
206 			ret = err;
207 	}
208 
209 	return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 	__ATTR(enabled, 0644, enabled_show, enabled_store);
213 
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 				struct kobj_attribute *attr, char *buf,
216 				enum transparent_hugepage_flag flag)
217 {
218 	return sprintf(buf, "%d\n",
219 		       !!test_bit(flag, &transparent_hugepage_flags));
220 }
221 
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 				 struct kobj_attribute *attr,
224 				 const char *buf, size_t count,
225 				 enum transparent_hugepage_flag flag)
226 {
227 	unsigned long value;
228 	int ret;
229 
230 	ret = kstrtoul(buf, 10, &value);
231 	if (ret < 0)
232 		return ret;
233 	if (value > 1)
234 		return -EINVAL;
235 
236 	if (value)
237 		set_bit(flag, &transparent_hugepage_flags);
238 	else
239 		clear_bit(flag, &transparent_hugepage_flags);
240 
241 	return count;
242 }
243 
244 /*
245  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247  * memory just to allocate one more hugepage.
248  */
249 static ssize_t defrag_show(struct kobject *kobj,
250 			   struct kobj_attribute *attr, char *buf)
251 {
252 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 		return sprintf(buf, "[always] defer madvise never\n");
254 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 		return sprintf(buf, "always [defer] madvise never\n");
256 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 		return sprintf(buf, "always defer [madvise] never\n");
258 	else
259 		return sprintf(buf, "always defer madvise [never]\n");
260 
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 			    struct kobj_attribute *attr,
264 			    const char *buf, size_t count)
265 {
266 	return triple_flag_store(kobj, attr, buf, count,
267 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 	__ATTR(defrag, 0644, defrag_show, defrag_store);
273 
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 		struct kobj_attribute *attr, char *buf)
276 {
277 	return single_hugepage_flag_show(kobj, attr, buf,
278 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 		struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 	return single_hugepage_flag_store(kobj, attr, buf, count,
284 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290 				struct kobj_attribute *attr, char *buf)
291 {
292 	return single_hugepage_flag_show(kobj, attr, buf,
293 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296 			       struct kobj_attribute *attr,
297 			       const char *buf, size_t count)
298 {
299 	return single_hugepage_flag_store(kobj, attr, buf, count,
300 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305 
306 static struct attribute *hugepage_attr[] = {
307 	&enabled_attr.attr,
308 	&defrag_attr.attr,
309 	&use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 	&shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 	&debug_cow_attr.attr,
315 #endif
316 	NULL,
317 };
318 
319 static struct attribute_group hugepage_attr_group = {
320 	.attrs = hugepage_attr,
321 };
322 
323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 {
325 	int err;
326 
327 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 	if (unlikely(!*hugepage_kobj)) {
329 		pr_err("failed to create transparent hugepage kobject\n");
330 		return -ENOMEM;
331 	}
332 
333 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 	if (err) {
335 		pr_err("failed to register transparent hugepage group\n");
336 		goto delete_obj;
337 	}
338 
339 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 	if (err) {
341 		pr_err("failed to register transparent hugepage group\n");
342 		goto remove_hp_group;
343 	}
344 
345 	return 0;
346 
347 remove_hp_group:
348 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 	kobject_put(*hugepage_kobj);
351 	return err;
352 }
353 
354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355 {
356 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 	kobject_put(hugepage_kobj);
359 }
360 #else
361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362 {
363 	return 0;
364 }
365 
366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 }
369 #endif /* CONFIG_SYSFS */
370 
371 static int __init hugepage_init(void)
372 {
373 	int err;
374 	struct kobject *hugepage_kobj;
375 
376 	if (!has_transparent_hugepage()) {
377 		transparent_hugepage_flags = 0;
378 		return -EINVAL;
379 	}
380 
381 	/*
382 	 * hugepages can't be allocated by the buddy allocator
383 	 */
384 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 	/*
386 	 * we use page->mapping and page->index in second tail page
387 	 * as list_head: assuming THP order >= 2
388 	 */
389 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390 
391 	err = hugepage_init_sysfs(&hugepage_kobj);
392 	if (err)
393 		goto err_sysfs;
394 
395 	err = khugepaged_init();
396 	if (err)
397 		goto err_slab;
398 
399 	err = register_shrinker(&huge_zero_page_shrinker);
400 	if (err)
401 		goto err_hzp_shrinker;
402 	err = register_shrinker(&deferred_split_shrinker);
403 	if (err)
404 		goto err_split_shrinker;
405 
406 	/*
407 	 * By default disable transparent hugepages on smaller systems,
408 	 * where the extra memory used could hurt more than TLB overhead
409 	 * is likely to save.  The admin can still enable it through /sys.
410 	 */
411 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 		transparent_hugepage_flags = 0;
413 		return 0;
414 	}
415 
416 	err = start_stop_khugepaged();
417 	if (err)
418 		goto err_khugepaged;
419 
420 	return 0;
421 err_khugepaged:
422 	unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 	unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 	khugepaged_destroy();
427 err_slab:
428 	hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 	return err;
431 }
432 subsys_initcall(hugepage_init);
433 
434 static int __init setup_transparent_hugepage(char *str)
435 {
436 	int ret = 0;
437 	if (!str)
438 		goto out;
439 	if (!strcmp(str, "always")) {
440 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 			&transparent_hugepage_flags);
442 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 			  &transparent_hugepage_flags);
444 		ret = 1;
445 	} else if (!strcmp(str, "madvise")) {
446 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 			  &transparent_hugepage_flags);
448 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 			&transparent_hugepage_flags);
450 		ret = 1;
451 	} else if (!strcmp(str, "never")) {
452 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			  &transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	}
458 out:
459 	if (!ret)
460 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 	return ret;
462 }
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
464 
465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 {
467 	if (likely(vma->vm_flags & VM_WRITE))
468 		pmd = pmd_mkwrite(pmd);
469 	return pmd;
470 }
471 
472 static inline struct list_head *page_deferred_list(struct page *page)
473 {
474 	/*
475 	 * ->lru in the tail pages is occupied by compound_head.
476 	 * Let's use ->mapping + ->index in the second tail page as list_head.
477 	 */
478 	return (struct list_head *)&page[2].mapping;
479 }
480 
481 void prep_transhuge_page(struct page *page)
482 {
483 	/*
484 	 * we use page->mapping and page->indexlru in second tail page
485 	 * as list_head: assuming THP order >= 2
486 	 */
487 
488 	INIT_LIST_HEAD(page_deferred_list(page));
489 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490 }
491 
492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 		loff_t off, unsigned long flags, unsigned long size)
494 {
495 	unsigned long addr;
496 	loff_t off_end = off + len;
497 	loff_t off_align = round_up(off, size);
498 	unsigned long len_pad;
499 
500 	if (off_end <= off_align || (off_end - off_align) < size)
501 		return 0;
502 
503 	len_pad = len + size;
504 	if (len_pad < len || (off + len_pad) < off)
505 		return 0;
506 
507 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 					      off >> PAGE_SHIFT, flags);
509 	if (IS_ERR_VALUE(addr))
510 		return 0;
511 
512 	addr += (off - addr) & (size - 1);
513 	return addr;
514 }
515 
516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 		unsigned long len, unsigned long pgoff, unsigned long flags)
518 {
519 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520 
521 	if (addr)
522 		goto out;
523 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 		goto out;
525 
526 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 	if (addr)
528 		return addr;
529 
530  out:
531 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532 }
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534 
535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 		gfp_t gfp)
537 {
538 	struct vm_area_struct *vma = fe->vma;
539 	struct mem_cgroup *memcg;
540 	pgtable_t pgtable;
541 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542 
543 	VM_BUG_ON_PAGE(!PageCompound(page), page);
544 
545 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 		put_page(page);
547 		count_vm_event(THP_FAULT_FALLBACK);
548 		return VM_FAULT_FALLBACK;
549 	}
550 
551 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 	if (unlikely(!pgtable)) {
553 		mem_cgroup_cancel_charge(page, memcg, true);
554 		put_page(page);
555 		return VM_FAULT_OOM;
556 	}
557 
558 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 	/*
560 	 * The memory barrier inside __SetPageUptodate makes sure that
561 	 * clear_huge_page writes become visible before the set_pmd_at()
562 	 * write.
563 	 */
564 	__SetPageUptodate(page);
565 
566 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 	if (unlikely(!pmd_none(*fe->pmd))) {
568 		spin_unlock(fe->ptl);
569 		mem_cgroup_cancel_charge(page, memcg, true);
570 		put_page(page);
571 		pte_free(vma->vm_mm, pgtable);
572 	} else {
573 		pmd_t entry;
574 
575 		/* Deliver the page fault to userland */
576 		if (userfaultfd_missing(vma)) {
577 			int ret;
578 
579 			spin_unlock(fe->ptl);
580 			mem_cgroup_cancel_charge(page, memcg, true);
581 			put_page(page);
582 			pte_free(vma->vm_mm, pgtable);
583 			ret = handle_userfault(fe, VM_UFFD_MISSING);
584 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 			return ret;
586 		}
587 
588 		entry = mk_huge_pmd(page, vma->vm_page_prot);
589 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 		page_add_new_anon_rmap(page, vma, haddr, true);
591 		mem_cgroup_commit_charge(page, memcg, false, true);
592 		lru_cache_add_active_or_unevictable(page, vma);
593 		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 		atomic_long_inc(&vma->vm_mm->nr_ptes);
597 		spin_unlock(fe->ptl);
598 		count_vm_event(THP_FAULT_ALLOC);
599 	}
600 
601 	return 0;
602 }
603 
604 /*
605  * If THP defrag is set to always then directly reclaim/compact as necessary
606  * If set to defer then do only background reclaim/compact and defer to khugepaged
607  * If set to madvise and the VMA is flagged then directly reclaim/compact
608  * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609  */
610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611 {
612 	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613 
614 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 				&transparent_hugepage_flags) && vma_madvised)
616 		return GFP_TRANSHUGE;
617 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 						&transparent_hugepage_flags))
619 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 						&transparent_hugepage_flags))
622 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623 
624 	return GFP_TRANSHUGE_LIGHT;
625 }
626 
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 		struct page *zero_page)
631 {
632 	pmd_t entry;
633 	if (!pmd_none(*pmd))
634 		return false;
635 	entry = mk_pmd(zero_page, vma->vm_page_prot);
636 	entry = pmd_mkhuge(entry);
637 	if (pgtable)
638 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 	set_pmd_at(mm, haddr, pmd, entry);
640 	atomic_long_inc(&mm->nr_ptes);
641 	return true;
642 }
643 
644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
645 {
646 	struct vm_area_struct *vma = fe->vma;
647 	gfp_t gfp;
648 	struct page *page;
649 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650 
651 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 		return VM_FAULT_FALLBACK;
653 	if (unlikely(anon_vma_prepare(vma)))
654 		return VM_FAULT_OOM;
655 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 		return VM_FAULT_OOM;
657 	if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 			!mm_forbids_zeropage(vma->vm_mm) &&
659 			transparent_hugepage_use_zero_page()) {
660 		pgtable_t pgtable;
661 		struct page *zero_page;
662 		bool set;
663 		int ret;
664 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 		if (unlikely(!pgtable))
666 			return VM_FAULT_OOM;
667 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 		if (unlikely(!zero_page)) {
669 			pte_free(vma->vm_mm, pgtable);
670 			count_vm_event(THP_FAULT_FALLBACK);
671 			return VM_FAULT_FALLBACK;
672 		}
673 		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 		ret = 0;
675 		set = false;
676 		if (pmd_none(*fe->pmd)) {
677 			if (userfaultfd_missing(vma)) {
678 				spin_unlock(fe->ptl);
679 				ret = handle_userfault(fe, VM_UFFD_MISSING);
680 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 			} else {
682 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 						   haddr, fe->pmd, zero_page);
684 				spin_unlock(fe->ptl);
685 				set = true;
686 			}
687 		} else
688 			spin_unlock(fe->ptl);
689 		if (!set)
690 			pte_free(vma->vm_mm, pgtable);
691 		return ret;
692 	}
693 	gfp = alloc_hugepage_direct_gfpmask(vma);
694 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 	if (unlikely(!page)) {
696 		count_vm_event(THP_FAULT_FALLBACK);
697 		return VM_FAULT_FALLBACK;
698 	}
699 	prep_transhuge_page(page);
700 	return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 }
702 
703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	pmd_t entry;
708 	spinlock_t *ptl;
709 
710 	ptl = pmd_lock(mm, pmd);
711 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 	if (pfn_t_devmap(pfn))
713 		entry = pmd_mkdevmap(entry);
714 	if (write) {
715 		entry = pmd_mkyoung(pmd_mkdirty(entry));
716 		entry = maybe_pmd_mkwrite(entry, vma);
717 	}
718 	set_pmd_at(mm, addr, pmd, entry);
719 	update_mmu_cache_pmd(vma, addr, pmd);
720 	spin_unlock(ptl);
721 }
722 
723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 			pmd_t *pmd, pfn_t pfn, bool write)
725 {
726 	pgprot_t pgprot = vma->vm_page_prot;
727 	/*
728 	 * If we had pmd_special, we could avoid all these restrictions,
729 	 * but we need to be consistent with PTEs and architectures that
730 	 * can't support a 'special' bit.
731 	 */
732 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 						(VM_PFNMAP|VM_MIXEDMAP));
735 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 	BUG_ON(!pfn_t_devmap(pfn));
737 
738 	if (addr < vma->vm_start || addr >= vma->vm_end)
739 		return VM_FAULT_SIGBUS;
740 	if (track_pfn_insert(vma, &pgprot, pfn))
741 		return VM_FAULT_SIGBUS;
742 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
743 	return VM_FAULT_NOPAGE;
744 }
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
746 
747 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
748 		pmd_t *pmd)
749 {
750 	pmd_t _pmd;
751 
752 	/*
753 	 * We should set the dirty bit only for FOLL_WRITE but for now
754 	 * the dirty bit in the pmd is meaningless.  And if the dirty
755 	 * bit will become meaningful and we'll only set it with
756 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
757 	 * set the young bit, instead of the current set_pmd_at.
758 	 */
759 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
760 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
761 				pmd, _pmd,  1))
762 		update_mmu_cache_pmd(vma, addr, pmd);
763 }
764 
765 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
766 		pmd_t *pmd, int flags)
767 {
768 	unsigned long pfn = pmd_pfn(*pmd);
769 	struct mm_struct *mm = vma->vm_mm;
770 	struct dev_pagemap *pgmap;
771 	struct page *page;
772 
773 	assert_spin_locked(pmd_lockptr(mm, pmd));
774 
775 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
776 		return NULL;
777 
778 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
779 		/* pass */;
780 	else
781 		return NULL;
782 
783 	if (flags & FOLL_TOUCH)
784 		touch_pmd(vma, addr, pmd);
785 
786 	/*
787 	 * device mapped pages can only be returned if the
788 	 * caller will manage the page reference count.
789 	 */
790 	if (!(flags & FOLL_GET))
791 		return ERR_PTR(-EEXIST);
792 
793 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
794 	pgmap = get_dev_pagemap(pfn, NULL);
795 	if (!pgmap)
796 		return ERR_PTR(-EFAULT);
797 	page = pfn_to_page(pfn);
798 	get_page(page);
799 	put_dev_pagemap(pgmap);
800 
801 	return page;
802 }
803 
804 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
806 		  struct vm_area_struct *vma)
807 {
808 	spinlock_t *dst_ptl, *src_ptl;
809 	struct page *src_page;
810 	pmd_t pmd;
811 	pgtable_t pgtable = NULL;
812 	int ret = -ENOMEM;
813 
814 	/* Skip if can be re-fill on fault */
815 	if (!vma_is_anonymous(vma))
816 		return 0;
817 
818 	pgtable = pte_alloc_one(dst_mm, addr);
819 	if (unlikely(!pgtable))
820 		goto out;
821 
822 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
823 	src_ptl = pmd_lockptr(src_mm, src_pmd);
824 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
825 
826 	ret = -EAGAIN;
827 	pmd = *src_pmd;
828 	if (unlikely(!pmd_trans_huge(pmd))) {
829 		pte_free(dst_mm, pgtable);
830 		goto out_unlock;
831 	}
832 	/*
833 	 * When page table lock is held, the huge zero pmd should not be
834 	 * under splitting since we don't split the page itself, only pmd to
835 	 * a page table.
836 	 */
837 	if (is_huge_zero_pmd(pmd)) {
838 		struct page *zero_page;
839 		/*
840 		 * get_huge_zero_page() will never allocate a new page here,
841 		 * since we already have a zero page to copy. It just takes a
842 		 * reference.
843 		 */
844 		zero_page = mm_get_huge_zero_page(dst_mm);
845 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
846 				zero_page);
847 		ret = 0;
848 		goto out_unlock;
849 	}
850 
851 	src_page = pmd_page(pmd);
852 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
853 	get_page(src_page);
854 	page_dup_rmap(src_page, true);
855 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
856 	atomic_long_inc(&dst_mm->nr_ptes);
857 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
858 
859 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
860 	pmd = pmd_mkold(pmd_wrprotect(pmd));
861 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
862 
863 	ret = 0;
864 out_unlock:
865 	spin_unlock(src_ptl);
866 	spin_unlock(dst_ptl);
867 out:
868 	return ret;
869 }
870 
871 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
872 {
873 	pmd_t entry;
874 	unsigned long haddr;
875 
876 	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
877 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
878 		goto unlock;
879 
880 	entry = pmd_mkyoung(orig_pmd);
881 	haddr = fe->address & HPAGE_PMD_MASK;
882 	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
883 				fe->flags & FAULT_FLAG_WRITE))
884 		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
885 
886 unlock:
887 	spin_unlock(fe->ptl);
888 }
889 
890 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
891 		struct page *page)
892 {
893 	struct vm_area_struct *vma = fe->vma;
894 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
895 	struct mem_cgroup *memcg;
896 	pgtable_t pgtable;
897 	pmd_t _pmd;
898 	int ret = 0, i;
899 	struct page **pages;
900 	unsigned long mmun_start;	/* For mmu_notifiers */
901 	unsigned long mmun_end;		/* For mmu_notifiers */
902 
903 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
904 			GFP_KERNEL);
905 	if (unlikely(!pages)) {
906 		ret |= VM_FAULT_OOM;
907 		goto out;
908 	}
909 
910 	for (i = 0; i < HPAGE_PMD_NR; i++) {
911 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
912 					       __GFP_OTHER_NODE, vma,
913 					       fe->address, page_to_nid(page));
914 		if (unlikely(!pages[i] ||
915 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
916 				     GFP_KERNEL, &memcg, false))) {
917 			if (pages[i])
918 				put_page(pages[i]);
919 			while (--i >= 0) {
920 				memcg = (void *)page_private(pages[i]);
921 				set_page_private(pages[i], 0);
922 				mem_cgroup_cancel_charge(pages[i], memcg,
923 						false);
924 				put_page(pages[i]);
925 			}
926 			kfree(pages);
927 			ret |= VM_FAULT_OOM;
928 			goto out;
929 		}
930 		set_page_private(pages[i], (unsigned long)memcg);
931 	}
932 
933 	for (i = 0; i < HPAGE_PMD_NR; i++) {
934 		copy_user_highpage(pages[i], page + i,
935 				   haddr + PAGE_SIZE * i, vma);
936 		__SetPageUptodate(pages[i]);
937 		cond_resched();
938 	}
939 
940 	mmun_start = haddr;
941 	mmun_end   = haddr + HPAGE_PMD_SIZE;
942 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
943 
944 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
945 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
946 		goto out_free_pages;
947 	VM_BUG_ON_PAGE(!PageHead(page), page);
948 
949 	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
950 	/* leave pmd empty until pte is filled */
951 
952 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
953 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
954 
955 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
956 		pte_t entry;
957 		entry = mk_pte(pages[i], vma->vm_page_prot);
958 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
959 		memcg = (void *)page_private(pages[i]);
960 		set_page_private(pages[i], 0);
961 		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
962 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
963 		lru_cache_add_active_or_unevictable(pages[i], vma);
964 		fe->pte = pte_offset_map(&_pmd, haddr);
965 		VM_BUG_ON(!pte_none(*fe->pte));
966 		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
967 		pte_unmap(fe->pte);
968 	}
969 	kfree(pages);
970 
971 	smp_wmb(); /* make pte visible before pmd */
972 	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
973 	page_remove_rmap(page, true);
974 	spin_unlock(fe->ptl);
975 
976 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
977 
978 	ret |= VM_FAULT_WRITE;
979 	put_page(page);
980 
981 out:
982 	return ret;
983 
984 out_free_pages:
985 	spin_unlock(fe->ptl);
986 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
987 	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 		memcg = (void *)page_private(pages[i]);
989 		set_page_private(pages[i], 0);
990 		mem_cgroup_cancel_charge(pages[i], memcg, false);
991 		put_page(pages[i]);
992 	}
993 	kfree(pages);
994 	goto out;
995 }
996 
997 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
998 {
999 	struct vm_area_struct *vma = fe->vma;
1000 	struct page *page = NULL, *new_page;
1001 	struct mem_cgroup *memcg;
1002 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1003 	unsigned long mmun_start;	/* For mmu_notifiers */
1004 	unsigned long mmun_end;		/* For mmu_notifiers */
1005 	gfp_t huge_gfp;			/* for allocation and charge */
1006 	int ret = 0;
1007 
1008 	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1009 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1010 	if (is_huge_zero_pmd(orig_pmd))
1011 		goto alloc;
1012 	spin_lock(fe->ptl);
1013 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1014 		goto out_unlock;
1015 
1016 	page = pmd_page(orig_pmd);
1017 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1018 	/*
1019 	 * We can only reuse the page if nobody else maps the huge page or it's
1020 	 * part.
1021 	 */
1022 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1023 		pmd_t entry;
1024 		entry = pmd_mkyoung(orig_pmd);
1025 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1026 		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1027 			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1028 		ret |= VM_FAULT_WRITE;
1029 		goto out_unlock;
1030 	}
1031 	get_page(page);
1032 	spin_unlock(fe->ptl);
1033 alloc:
1034 	if (transparent_hugepage_enabled(vma) &&
1035 	    !transparent_hugepage_debug_cow()) {
1036 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1037 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1038 	} else
1039 		new_page = NULL;
1040 
1041 	if (likely(new_page)) {
1042 		prep_transhuge_page(new_page);
1043 	} else {
1044 		if (!page) {
1045 			split_huge_pmd(vma, fe->pmd, fe->address);
1046 			ret |= VM_FAULT_FALLBACK;
1047 		} else {
1048 			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1049 			if (ret & VM_FAULT_OOM) {
1050 				split_huge_pmd(vma, fe->pmd, fe->address);
1051 				ret |= VM_FAULT_FALLBACK;
1052 			}
1053 			put_page(page);
1054 		}
1055 		count_vm_event(THP_FAULT_FALLBACK);
1056 		goto out;
1057 	}
1058 
1059 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1060 					huge_gfp, &memcg, true))) {
1061 		put_page(new_page);
1062 		split_huge_pmd(vma, fe->pmd, fe->address);
1063 		if (page)
1064 			put_page(page);
1065 		ret |= VM_FAULT_FALLBACK;
1066 		count_vm_event(THP_FAULT_FALLBACK);
1067 		goto out;
1068 	}
1069 
1070 	count_vm_event(THP_FAULT_ALLOC);
1071 
1072 	if (!page)
1073 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1074 	else
1075 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1076 	__SetPageUptodate(new_page);
1077 
1078 	mmun_start = haddr;
1079 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1080 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1081 
1082 	spin_lock(fe->ptl);
1083 	if (page)
1084 		put_page(page);
1085 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1086 		spin_unlock(fe->ptl);
1087 		mem_cgroup_cancel_charge(new_page, memcg, true);
1088 		put_page(new_page);
1089 		goto out_mn;
1090 	} else {
1091 		pmd_t entry;
1092 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1093 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1094 		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1095 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1096 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1097 		lru_cache_add_active_or_unevictable(new_page, vma);
1098 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1099 		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1100 		if (!page) {
1101 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1102 		} else {
1103 			VM_BUG_ON_PAGE(!PageHead(page), page);
1104 			page_remove_rmap(page, true);
1105 			put_page(page);
1106 		}
1107 		ret |= VM_FAULT_WRITE;
1108 	}
1109 	spin_unlock(fe->ptl);
1110 out_mn:
1111 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1112 out:
1113 	return ret;
1114 out_unlock:
1115 	spin_unlock(fe->ptl);
1116 	return ret;
1117 }
1118 
1119 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1120 				   unsigned long addr,
1121 				   pmd_t *pmd,
1122 				   unsigned int flags)
1123 {
1124 	struct mm_struct *mm = vma->vm_mm;
1125 	struct page *page = NULL;
1126 
1127 	assert_spin_locked(pmd_lockptr(mm, pmd));
1128 
1129 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1130 		goto out;
1131 
1132 	/* Avoid dumping huge zero page */
1133 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1134 		return ERR_PTR(-EFAULT);
1135 
1136 	/* Full NUMA hinting faults to serialise migration in fault paths */
1137 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1138 		goto out;
1139 
1140 	page = pmd_page(*pmd);
1141 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1142 	if (flags & FOLL_TOUCH)
1143 		touch_pmd(vma, addr, pmd);
1144 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1145 		/*
1146 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1147 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1148 		 *
1149 		 * For anon THP:
1150 		 *
1151 		 * In most cases the pmd is the only mapping of the page as we
1152 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1153 		 * writable private mappings in populate_vma_page_range().
1154 		 *
1155 		 * The only scenario when we have the page shared here is if we
1156 		 * mlocking read-only mapping shared over fork(). We skip
1157 		 * mlocking such pages.
1158 		 *
1159 		 * For file THP:
1160 		 *
1161 		 * We can expect PageDoubleMap() to be stable under page lock:
1162 		 * for file pages we set it in page_add_file_rmap(), which
1163 		 * requires page to be locked.
1164 		 */
1165 
1166 		if (PageAnon(page) && compound_mapcount(page) != 1)
1167 			goto skip_mlock;
1168 		if (PageDoubleMap(page) || !page->mapping)
1169 			goto skip_mlock;
1170 		if (!trylock_page(page))
1171 			goto skip_mlock;
1172 		lru_add_drain();
1173 		if (page->mapping && !PageDoubleMap(page))
1174 			mlock_vma_page(page);
1175 		unlock_page(page);
1176 	}
1177 skip_mlock:
1178 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1179 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1180 	if (flags & FOLL_GET)
1181 		get_page(page);
1182 
1183 out:
1184 	return page;
1185 }
1186 
1187 /* NUMA hinting page fault entry point for trans huge pmds */
1188 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1189 {
1190 	struct vm_area_struct *vma = fe->vma;
1191 	struct anon_vma *anon_vma = NULL;
1192 	struct page *page;
1193 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1194 	int page_nid = -1, this_nid = numa_node_id();
1195 	int target_nid, last_cpupid = -1;
1196 	bool page_locked;
1197 	bool migrated = false;
1198 	bool was_writable;
1199 	int flags = 0;
1200 
1201 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1202 	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1203 		goto out_unlock;
1204 
1205 	/*
1206 	 * If there are potential migrations, wait for completion and retry
1207 	 * without disrupting NUMA hinting information. Do not relock and
1208 	 * check_same as the page may no longer be mapped.
1209 	 */
1210 	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1211 		page = pmd_page(*fe->pmd);
1212 		spin_unlock(fe->ptl);
1213 		wait_on_page_locked(page);
1214 		goto out;
1215 	}
1216 
1217 	page = pmd_page(pmd);
1218 	BUG_ON(is_huge_zero_page(page));
1219 	page_nid = page_to_nid(page);
1220 	last_cpupid = page_cpupid_last(page);
1221 	count_vm_numa_event(NUMA_HINT_FAULTS);
1222 	if (page_nid == this_nid) {
1223 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1224 		flags |= TNF_FAULT_LOCAL;
1225 	}
1226 
1227 	/* See similar comment in do_numa_page for explanation */
1228 	if (!pmd_write(pmd))
1229 		flags |= TNF_NO_GROUP;
1230 
1231 	/*
1232 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1233 	 * page_table_lock if at all possible
1234 	 */
1235 	page_locked = trylock_page(page);
1236 	target_nid = mpol_misplaced(page, vma, haddr);
1237 	if (target_nid == -1) {
1238 		/* If the page was locked, there are no parallel migrations */
1239 		if (page_locked)
1240 			goto clear_pmdnuma;
1241 	}
1242 
1243 	/* Migration could have started since the pmd_trans_migrating check */
1244 	if (!page_locked) {
1245 		spin_unlock(fe->ptl);
1246 		wait_on_page_locked(page);
1247 		page_nid = -1;
1248 		goto out;
1249 	}
1250 
1251 	/*
1252 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1253 	 * to serialises splits
1254 	 */
1255 	get_page(page);
1256 	spin_unlock(fe->ptl);
1257 	anon_vma = page_lock_anon_vma_read(page);
1258 
1259 	/* Confirm the PMD did not change while page_table_lock was released */
1260 	spin_lock(fe->ptl);
1261 	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1262 		unlock_page(page);
1263 		put_page(page);
1264 		page_nid = -1;
1265 		goto out_unlock;
1266 	}
1267 
1268 	/* Bail if we fail to protect against THP splits for any reason */
1269 	if (unlikely(!anon_vma)) {
1270 		put_page(page);
1271 		page_nid = -1;
1272 		goto clear_pmdnuma;
1273 	}
1274 
1275 	/*
1276 	 * Migrate the THP to the requested node, returns with page unlocked
1277 	 * and access rights restored.
1278 	 */
1279 	spin_unlock(fe->ptl);
1280 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1281 				fe->pmd, pmd, fe->address, page, target_nid);
1282 	if (migrated) {
1283 		flags |= TNF_MIGRATED;
1284 		page_nid = target_nid;
1285 	} else
1286 		flags |= TNF_MIGRATE_FAIL;
1287 
1288 	goto out;
1289 clear_pmdnuma:
1290 	BUG_ON(!PageLocked(page));
1291 	was_writable = pmd_write(pmd);
1292 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1293 	pmd = pmd_mkyoung(pmd);
1294 	if (was_writable)
1295 		pmd = pmd_mkwrite(pmd);
1296 	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1297 	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1298 	unlock_page(page);
1299 out_unlock:
1300 	spin_unlock(fe->ptl);
1301 
1302 out:
1303 	if (anon_vma)
1304 		page_unlock_anon_vma_read(anon_vma);
1305 
1306 	if (page_nid != -1)
1307 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * Return true if we do MADV_FREE successfully on entire pmd page.
1314  * Otherwise, return false.
1315  */
1316 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1317 		pmd_t *pmd, unsigned long addr, unsigned long next)
1318 {
1319 	spinlock_t *ptl;
1320 	pmd_t orig_pmd;
1321 	struct page *page;
1322 	struct mm_struct *mm = tlb->mm;
1323 	bool ret = false;
1324 
1325 	ptl = pmd_trans_huge_lock(pmd, vma);
1326 	if (!ptl)
1327 		goto out_unlocked;
1328 
1329 	orig_pmd = *pmd;
1330 	if (is_huge_zero_pmd(orig_pmd))
1331 		goto out;
1332 
1333 	page = pmd_page(orig_pmd);
1334 	/*
1335 	 * If other processes are mapping this page, we couldn't discard
1336 	 * the page unless they all do MADV_FREE so let's skip the page.
1337 	 */
1338 	if (page_mapcount(page) != 1)
1339 		goto out;
1340 
1341 	if (!trylock_page(page))
1342 		goto out;
1343 
1344 	/*
1345 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1346 	 * will deactivate only them.
1347 	 */
1348 	if (next - addr != HPAGE_PMD_SIZE) {
1349 		get_page(page);
1350 		spin_unlock(ptl);
1351 		split_huge_page(page);
1352 		put_page(page);
1353 		unlock_page(page);
1354 		goto out_unlocked;
1355 	}
1356 
1357 	if (PageDirty(page))
1358 		ClearPageDirty(page);
1359 	unlock_page(page);
1360 
1361 	if (PageActive(page))
1362 		deactivate_page(page);
1363 
1364 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1365 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1366 			tlb->fullmm);
1367 		orig_pmd = pmd_mkold(orig_pmd);
1368 		orig_pmd = pmd_mkclean(orig_pmd);
1369 
1370 		set_pmd_at(mm, addr, pmd, orig_pmd);
1371 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1372 	}
1373 	ret = true;
1374 out:
1375 	spin_unlock(ptl);
1376 out_unlocked:
1377 	return ret;
1378 }
1379 
1380 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1381 		 pmd_t *pmd, unsigned long addr)
1382 {
1383 	pmd_t orig_pmd;
1384 	spinlock_t *ptl;
1385 
1386 	ptl = __pmd_trans_huge_lock(pmd, vma);
1387 	if (!ptl)
1388 		return 0;
1389 	/*
1390 	 * For architectures like ppc64 we look at deposited pgtable
1391 	 * when calling pmdp_huge_get_and_clear. So do the
1392 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1393 	 * operations.
1394 	 */
1395 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1396 			tlb->fullmm);
1397 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1398 	if (vma_is_dax(vma)) {
1399 		spin_unlock(ptl);
1400 		if (is_huge_zero_pmd(orig_pmd))
1401 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1402 	} else if (is_huge_zero_pmd(orig_pmd)) {
1403 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1404 		atomic_long_dec(&tlb->mm->nr_ptes);
1405 		spin_unlock(ptl);
1406 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1407 	} else {
1408 		struct page *page = pmd_page(orig_pmd);
1409 		page_remove_rmap(page, true);
1410 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1411 		VM_BUG_ON_PAGE(!PageHead(page), page);
1412 		if (PageAnon(page)) {
1413 			pgtable_t pgtable;
1414 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1415 			pte_free(tlb->mm, pgtable);
1416 			atomic_long_dec(&tlb->mm->nr_ptes);
1417 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1418 		} else {
1419 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1420 		}
1421 		spin_unlock(ptl);
1422 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1423 	}
1424 	return 1;
1425 }
1426 
1427 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1428 		  unsigned long new_addr, unsigned long old_end,
1429 		  pmd_t *old_pmd, pmd_t *new_pmd)
1430 {
1431 	spinlock_t *old_ptl, *new_ptl;
1432 	pmd_t pmd;
1433 	struct mm_struct *mm = vma->vm_mm;
1434 
1435 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1436 	    (new_addr & ~HPAGE_PMD_MASK) ||
1437 	    old_end - old_addr < HPAGE_PMD_SIZE)
1438 		return false;
1439 
1440 	/*
1441 	 * The destination pmd shouldn't be established, free_pgtables()
1442 	 * should have release it.
1443 	 */
1444 	if (WARN_ON(!pmd_none(*new_pmd))) {
1445 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1446 		return false;
1447 	}
1448 
1449 	/*
1450 	 * We don't have to worry about the ordering of src and dst
1451 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1452 	 */
1453 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1454 	if (old_ptl) {
1455 		new_ptl = pmd_lockptr(mm, new_pmd);
1456 		if (new_ptl != old_ptl)
1457 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1458 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1459 		VM_BUG_ON(!pmd_none(*new_pmd));
1460 
1461 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1462 				vma_is_anonymous(vma)) {
1463 			pgtable_t pgtable;
1464 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1465 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1466 		}
1467 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1468 		if (new_ptl != old_ptl)
1469 			spin_unlock(new_ptl);
1470 		spin_unlock(old_ptl);
1471 		return true;
1472 	}
1473 	return false;
1474 }
1475 
1476 /*
1477  * Returns
1478  *  - 0 if PMD could not be locked
1479  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1480  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1481  */
1482 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1483 		unsigned long addr, pgprot_t newprot, int prot_numa)
1484 {
1485 	struct mm_struct *mm = vma->vm_mm;
1486 	spinlock_t *ptl;
1487 	int ret = 0;
1488 
1489 	ptl = __pmd_trans_huge_lock(pmd, vma);
1490 	if (ptl) {
1491 		pmd_t entry;
1492 		bool preserve_write = prot_numa && pmd_write(*pmd);
1493 		ret = 1;
1494 
1495 		/*
1496 		 * Avoid trapping faults against the zero page. The read-only
1497 		 * data is likely to be read-cached on the local CPU and
1498 		 * local/remote hits to the zero page are not interesting.
1499 		 */
1500 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1501 			spin_unlock(ptl);
1502 			return ret;
1503 		}
1504 
1505 		if (!prot_numa || !pmd_protnone(*pmd)) {
1506 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1507 			entry = pmd_modify(entry, newprot);
1508 			if (preserve_write)
1509 				entry = pmd_mkwrite(entry);
1510 			ret = HPAGE_PMD_NR;
1511 			set_pmd_at(mm, addr, pmd, entry);
1512 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1513 					pmd_write(entry));
1514 		}
1515 		spin_unlock(ptl);
1516 	}
1517 
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1523  *
1524  * Note that if it returns page table lock pointer, this routine returns without
1525  * unlocking page table lock. So callers must unlock it.
1526  */
1527 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1528 {
1529 	spinlock_t *ptl;
1530 	ptl = pmd_lock(vma->vm_mm, pmd);
1531 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1532 		return ptl;
1533 	spin_unlock(ptl);
1534 	return NULL;
1535 }
1536 
1537 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1538 		unsigned long haddr, pmd_t *pmd)
1539 {
1540 	struct mm_struct *mm = vma->vm_mm;
1541 	pgtable_t pgtable;
1542 	pmd_t _pmd;
1543 	int i;
1544 
1545 	/* leave pmd empty until pte is filled */
1546 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1547 
1548 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1549 	pmd_populate(mm, &_pmd, pgtable);
1550 
1551 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1552 		pte_t *pte, entry;
1553 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1554 		entry = pte_mkspecial(entry);
1555 		pte = pte_offset_map(&_pmd, haddr);
1556 		VM_BUG_ON(!pte_none(*pte));
1557 		set_pte_at(mm, haddr, pte, entry);
1558 		pte_unmap(pte);
1559 	}
1560 	smp_wmb(); /* make pte visible before pmd */
1561 	pmd_populate(mm, pmd, pgtable);
1562 }
1563 
1564 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1565 		unsigned long haddr, bool freeze)
1566 {
1567 	struct mm_struct *mm = vma->vm_mm;
1568 	struct page *page;
1569 	pgtable_t pgtable;
1570 	pmd_t _pmd;
1571 	bool young, write, dirty, soft_dirty;
1572 	unsigned long addr;
1573 	int i;
1574 
1575 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1576 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1577 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1578 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1579 
1580 	count_vm_event(THP_SPLIT_PMD);
1581 
1582 	if (!vma_is_anonymous(vma)) {
1583 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1584 		if (vma_is_dax(vma))
1585 			return;
1586 		page = pmd_page(_pmd);
1587 		if (!PageReferenced(page) && pmd_young(_pmd))
1588 			SetPageReferenced(page);
1589 		page_remove_rmap(page, true);
1590 		put_page(page);
1591 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1592 		return;
1593 	} else if (is_huge_zero_pmd(*pmd)) {
1594 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1595 	}
1596 
1597 	page = pmd_page(*pmd);
1598 	VM_BUG_ON_PAGE(!page_count(page), page);
1599 	page_ref_add(page, HPAGE_PMD_NR - 1);
1600 	write = pmd_write(*pmd);
1601 	young = pmd_young(*pmd);
1602 	dirty = pmd_dirty(*pmd);
1603 	soft_dirty = pmd_soft_dirty(*pmd);
1604 
1605 	pmdp_huge_split_prepare(vma, haddr, pmd);
1606 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1607 	pmd_populate(mm, &_pmd, pgtable);
1608 
1609 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1610 		pte_t entry, *pte;
1611 		/*
1612 		 * Note that NUMA hinting access restrictions are not
1613 		 * transferred to avoid any possibility of altering
1614 		 * permissions across VMAs.
1615 		 */
1616 		if (freeze) {
1617 			swp_entry_t swp_entry;
1618 			swp_entry = make_migration_entry(page + i, write);
1619 			entry = swp_entry_to_pte(swp_entry);
1620 			if (soft_dirty)
1621 				entry = pte_swp_mksoft_dirty(entry);
1622 		} else {
1623 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1624 			entry = maybe_mkwrite(entry, vma);
1625 			if (!write)
1626 				entry = pte_wrprotect(entry);
1627 			if (!young)
1628 				entry = pte_mkold(entry);
1629 			if (soft_dirty)
1630 				entry = pte_mksoft_dirty(entry);
1631 		}
1632 		if (dirty)
1633 			SetPageDirty(page + i);
1634 		pte = pte_offset_map(&_pmd, addr);
1635 		BUG_ON(!pte_none(*pte));
1636 		set_pte_at(mm, addr, pte, entry);
1637 		atomic_inc(&page[i]._mapcount);
1638 		pte_unmap(pte);
1639 	}
1640 
1641 	/*
1642 	 * Set PG_double_map before dropping compound_mapcount to avoid
1643 	 * false-negative page_mapped().
1644 	 */
1645 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1646 		for (i = 0; i < HPAGE_PMD_NR; i++)
1647 			atomic_inc(&page[i]._mapcount);
1648 	}
1649 
1650 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1651 		/* Last compound_mapcount is gone. */
1652 		__dec_node_page_state(page, NR_ANON_THPS);
1653 		if (TestClearPageDoubleMap(page)) {
1654 			/* No need in mapcount reference anymore */
1655 			for (i = 0; i < HPAGE_PMD_NR; i++)
1656 				atomic_dec(&page[i]._mapcount);
1657 		}
1658 	}
1659 
1660 	smp_wmb(); /* make pte visible before pmd */
1661 	/*
1662 	 * Up to this point the pmd is present and huge and userland has the
1663 	 * whole access to the hugepage during the split (which happens in
1664 	 * place). If we overwrite the pmd with the not-huge version pointing
1665 	 * to the pte here (which of course we could if all CPUs were bug
1666 	 * free), userland could trigger a small page size TLB miss on the
1667 	 * small sized TLB while the hugepage TLB entry is still established in
1668 	 * the huge TLB. Some CPU doesn't like that.
1669 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1670 	 * 383 on page 93. Intel should be safe but is also warns that it's
1671 	 * only safe if the permission and cache attributes of the two entries
1672 	 * loaded in the two TLB is identical (which should be the case here).
1673 	 * But it is generally safer to never allow small and huge TLB entries
1674 	 * for the same virtual address to be loaded simultaneously. So instead
1675 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1676 	 * current pmd notpresent (atomically because here the pmd_trans_huge
1677 	 * and pmd_trans_splitting must remain set at all times on the pmd
1678 	 * until the split is complete for this pmd), then we flush the SMP TLB
1679 	 * and finally we write the non-huge version of the pmd entry with
1680 	 * pmd_populate.
1681 	 */
1682 	pmdp_invalidate(vma, haddr, pmd);
1683 	pmd_populate(mm, pmd, pgtable);
1684 
1685 	if (freeze) {
1686 		for (i = 0; i < HPAGE_PMD_NR; i++) {
1687 			page_remove_rmap(page + i, false);
1688 			put_page(page + i);
1689 		}
1690 	}
1691 }
1692 
1693 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1694 		unsigned long address, bool freeze, struct page *page)
1695 {
1696 	spinlock_t *ptl;
1697 	struct mm_struct *mm = vma->vm_mm;
1698 	unsigned long haddr = address & HPAGE_PMD_MASK;
1699 
1700 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1701 	ptl = pmd_lock(mm, pmd);
1702 
1703 	/*
1704 	 * If caller asks to setup a migration entries, we need a page to check
1705 	 * pmd against. Otherwise we can end up replacing wrong page.
1706 	 */
1707 	VM_BUG_ON(freeze && !page);
1708 	if (page && page != pmd_page(*pmd))
1709 	        goto out;
1710 
1711 	if (pmd_trans_huge(*pmd)) {
1712 		page = pmd_page(*pmd);
1713 		if (PageMlocked(page))
1714 			clear_page_mlock(page);
1715 	} else if (!pmd_devmap(*pmd))
1716 		goto out;
1717 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1718 out:
1719 	spin_unlock(ptl);
1720 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1721 }
1722 
1723 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1724 		bool freeze, struct page *page)
1725 {
1726 	pgd_t *pgd;
1727 	pud_t *pud;
1728 	pmd_t *pmd;
1729 
1730 	pgd = pgd_offset(vma->vm_mm, address);
1731 	if (!pgd_present(*pgd))
1732 		return;
1733 
1734 	pud = pud_offset(pgd, address);
1735 	if (!pud_present(*pud))
1736 		return;
1737 
1738 	pmd = pmd_offset(pud, address);
1739 
1740 	__split_huge_pmd(vma, pmd, address, freeze, page);
1741 }
1742 
1743 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1744 			     unsigned long start,
1745 			     unsigned long end,
1746 			     long adjust_next)
1747 {
1748 	/*
1749 	 * If the new start address isn't hpage aligned and it could
1750 	 * previously contain an hugepage: check if we need to split
1751 	 * an huge pmd.
1752 	 */
1753 	if (start & ~HPAGE_PMD_MASK &&
1754 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1755 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1756 		split_huge_pmd_address(vma, start, false, NULL);
1757 
1758 	/*
1759 	 * If the new end address isn't hpage aligned and it could
1760 	 * previously contain an hugepage: check if we need to split
1761 	 * an huge pmd.
1762 	 */
1763 	if (end & ~HPAGE_PMD_MASK &&
1764 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1765 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1766 		split_huge_pmd_address(vma, end, false, NULL);
1767 
1768 	/*
1769 	 * If we're also updating the vma->vm_next->vm_start, if the new
1770 	 * vm_next->vm_start isn't page aligned and it could previously
1771 	 * contain an hugepage: check if we need to split an huge pmd.
1772 	 */
1773 	if (adjust_next > 0) {
1774 		struct vm_area_struct *next = vma->vm_next;
1775 		unsigned long nstart = next->vm_start;
1776 		nstart += adjust_next << PAGE_SHIFT;
1777 		if (nstart & ~HPAGE_PMD_MASK &&
1778 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1779 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1780 			split_huge_pmd_address(next, nstart, false, NULL);
1781 	}
1782 }
1783 
1784 static void freeze_page(struct page *page)
1785 {
1786 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1787 		TTU_RMAP_LOCKED;
1788 	int i, ret;
1789 
1790 	VM_BUG_ON_PAGE(!PageHead(page), page);
1791 
1792 	if (PageAnon(page))
1793 		ttu_flags |= TTU_MIGRATION;
1794 
1795 	/* We only need TTU_SPLIT_HUGE_PMD once */
1796 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1797 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1798 		/* Cut short if the page is unmapped */
1799 		if (page_count(page) == 1)
1800 			return;
1801 
1802 		ret = try_to_unmap(page + i, ttu_flags);
1803 	}
1804 	VM_BUG_ON_PAGE(ret, page + i - 1);
1805 }
1806 
1807 static void unfreeze_page(struct page *page)
1808 {
1809 	int i;
1810 
1811 	for (i = 0; i < HPAGE_PMD_NR; i++)
1812 		remove_migration_ptes(page + i, page + i, true);
1813 }
1814 
1815 static void __split_huge_page_tail(struct page *head, int tail,
1816 		struct lruvec *lruvec, struct list_head *list)
1817 {
1818 	struct page *page_tail = head + tail;
1819 
1820 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1821 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1822 
1823 	/*
1824 	 * tail_page->_refcount is zero and not changing from under us. But
1825 	 * get_page_unless_zero() may be running from under us on the
1826 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1827 	 * atomic_add(), we would then run atomic_set() concurrently with
1828 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1829 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1830 	 * because of PPro errata 66, 92, so unless somebody can guarantee
1831 	 * atomic_set() here would be safe on all archs (and not only on x86),
1832 	 * it's safer to use atomic_inc()/atomic_add().
1833 	 */
1834 	if (PageAnon(head)) {
1835 		page_ref_inc(page_tail);
1836 	} else {
1837 		/* Additional pin to radix tree */
1838 		page_ref_add(page_tail, 2);
1839 	}
1840 
1841 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1842 	page_tail->flags |= (head->flags &
1843 			((1L << PG_referenced) |
1844 			 (1L << PG_swapbacked) |
1845 			 (1L << PG_mlocked) |
1846 			 (1L << PG_uptodate) |
1847 			 (1L << PG_active) |
1848 			 (1L << PG_locked) |
1849 			 (1L << PG_unevictable) |
1850 			 (1L << PG_dirty)));
1851 
1852 	/*
1853 	 * After clearing PageTail the gup refcount can be released.
1854 	 * Page flags also must be visible before we make the page non-compound.
1855 	 */
1856 	smp_wmb();
1857 
1858 	clear_compound_head(page_tail);
1859 
1860 	if (page_is_young(head))
1861 		set_page_young(page_tail);
1862 	if (page_is_idle(head))
1863 		set_page_idle(page_tail);
1864 
1865 	/* ->mapping in first tail page is compound_mapcount */
1866 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1867 			page_tail);
1868 	page_tail->mapping = head->mapping;
1869 
1870 	page_tail->index = head->index + tail;
1871 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1872 	lru_add_page_tail(head, page_tail, lruvec, list);
1873 }
1874 
1875 static void __split_huge_page(struct page *page, struct list_head *list,
1876 		unsigned long flags)
1877 {
1878 	struct page *head = compound_head(page);
1879 	struct zone *zone = page_zone(head);
1880 	struct lruvec *lruvec;
1881 	pgoff_t end = -1;
1882 	int i;
1883 
1884 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1885 
1886 	/* complete memcg works before add pages to LRU */
1887 	mem_cgroup_split_huge_fixup(head);
1888 
1889 	if (!PageAnon(page))
1890 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1891 
1892 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1893 		__split_huge_page_tail(head, i, lruvec, list);
1894 		/* Some pages can be beyond i_size: drop them from page cache */
1895 		if (head[i].index >= end) {
1896 			__ClearPageDirty(head + i);
1897 			__delete_from_page_cache(head + i, NULL);
1898 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1899 				shmem_uncharge(head->mapping->host, 1);
1900 			put_page(head + i);
1901 		}
1902 	}
1903 
1904 	ClearPageCompound(head);
1905 	/* See comment in __split_huge_page_tail() */
1906 	if (PageAnon(head)) {
1907 		page_ref_inc(head);
1908 	} else {
1909 		/* Additional pin to radix tree */
1910 		page_ref_add(head, 2);
1911 		spin_unlock(&head->mapping->tree_lock);
1912 	}
1913 
1914 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1915 
1916 	unfreeze_page(head);
1917 
1918 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1919 		struct page *subpage = head + i;
1920 		if (subpage == page)
1921 			continue;
1922 		unlock_page(subpage);
1923 
1924 		/*
1925 		 * Subpages may be freed if there wasn't any mapping
1926 		 * like if add_to_swap() is running on a lru page that
1927 		 * had its mapping zapped. And freeing these pages
1928 		 * requires taking the lru_lock so we do the put_page
1929 		 * of the tail pages after the split is complete.
1930 		 */
1931 		put_page(subpage);
1932 	}
1933 }
1934 
1935 int total_mapcount(struct page *page)
1936 {
1937 	int i, compound, ret;
1938 
1939 	VM_BUG_ON_PAGE(PageTail(page), page);
1940 
1941 	if (likely(!PageCompound(page)))
1942 		return atomic_read(&page->_mapcount) + 1;
1943 
1944 	compound = compound_mapcount(page);
1945 	if (PageHuge(page))
1946 		return compound;
1947 	ret = compound;
1948 	for (i = 0; i < HPAGE_PMD_NR; i++)
1949 		ret += atomic_read(&page[i]._mapcount) + 1;
1950 	/* File pages has compound_mapcount included in _mapcount */
1951 	if (!PageAnon(page))
1952 		return ret - compound * HPAGE_PMD_NR;
1953 	if (PageDoubleMap(page))
1954 		ret -= HPAGE_PMD_NR;
1955 	return ret;
1956 }
1957 
1958 /*
1959  * This calculates accurately how many mappings a transparent hugepage
1960  * has (unlike page_mapcount() which isn't fully accurate). This full
1961  * accuracy is primarily needed to know if copy-on-write faults can
1962  * reuse the page and change the mapping to read-write instead of
1963  * copying them. At the same time this returns the total_mapcount too.
1964  *
1965  * The function returns the highest mapcount any one of the subpages
1966  * has. If the return value is one, even if different processes are
1967  * mapping different subpages of the transparent hugepage, they can
1968  * all reuse it, because each process is reusing a different subpage.
1969  *
1970  * The total_mapcount is instead counting all virtual mappings of the
1971  * subpages. If the total_mapcount is equal to "one", it tells the
1972  * caller all mappings belong to the same "mm" and in turn the
1973  * anon_vma of the transparent hugepage can become the vma->anon_vma
1974  * local one as no other process may be mapping any of the subpages.
1975  *
1976  * It would be more accurate to replace page_mapcount() with
1977  * page_trans_huge_mapcount(), however we only use
1978  * page_trans_huge_mapcount() in the copy-on-write faults where we
1979  * need full accuracy to avoid breaking page pinning, because
1980  * page_trans_huge_mapcount() is slower than page_mapcount().
1981  */
1982 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1983 {
1984 	int i, ret, _total_mapcount, mapcount;
1985 
1986 	/* hugetlbfs shouldn't call it */
1987 	VM_BUG_ON_PAGE(PageHuge(page), page);
1988 
1989 	if (likely(!PageTransCompound(page))) {
1990 		mapcount = atomic_read(&page->_mapcount) + 1;
1991 		if (total_mapcount)
1992 			*total_mapcount = mapcount;
1993 		return mapcount;
1994 	}
1995 
1996 	page = compound_head(page);
1997 
1998 	_total_mapcount = ret = 0;
1999 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2000 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2001 		ret = max(ret, mapcount);
2002 		_total_mapcount += mapcount;
2003 	}
2004 	if (PageDoubleMap(page)) {
2005 		ret -= 1;
2006 		_total_mapcount -= HPAGE_PMD_NR;
2007 	}
2008 	mapcount = compound_mapcount(page);
2009 	ret += mapcount;
2010 	_total_mapcount += mapcount;
2011 	if (total_mapcount)
2012 		*total_mapcount = _total_mapcount;
2013 	return ret;
2014 }
2015 
2016 /*
2017  * This function splits huge page into normal pages. @page can point to any
2018  * subpage of huge page to split. Split doesn't change the position of @page.
2019  *
2020  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2021  * The huge page must be locked.
2022  *
2023  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2024  *
2025  * Both head page and tail pages will inherit mapping, flags, and so on from
2026  * the hugepage.
2027  *
2028  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2029  * they are not mapped.
2030  *
2031  * Returns 0 if the hugepage is split successfully.
2032  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2033  * us.
2034  */
2035 int split_huge_page_to_list(struct page *page, struct list_head *list)
2036 {
2037 	struct page *head = compound_head(page);
2038 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2039 	struct anon_vma *anon_vma = NULL;
2040 	struct address_space *mapping = NULL;
2041 	int count, mapcount, extra_pins, ret;
2042 	bool mlocked;
2043 	unsigned long flags;
2044 
2045 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2046 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2047 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2048 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2049 
2050 	if (PageAnon(head)) {
2051 		/*
2052 		 * The caller does not necessarily hold an mmap_sem that would
2053 		 * prevent the anon_vma disappearing so we first we take a
2054 		 * reference to it and then lock the anon_vma for write. This
2055 		 * is similar to page_lock_anon_vma_read except the write lock
2056 		 * is taken to serialise against parallel split or collapse
2057 		 * operations.
2058 		 */
2059 		anon_vma = page_get_anon_vma(head);
2060 		if (!anon_vma) {
2061 			ret = -EBUSY;
2062 			goto out;
2063 		}
2064 		extra_pins = 0;
2065 		mapping = NULL;
2066 		anon_vma_lock_write(anon_vma);
2067 	} else {
2068 		mapping = head->mapping;
2069 
2070 		/* Truncated ? */
2071 		if (!mapping) {
2072 			ret = -EBUSY;
2073 			goto out;
2074 		}
2075 
2076 		/* Addidional pins from radix tree */
2077 		extra_pins = HPAGE_PMD_NR;
2078 		anon_vma = NULL;
2079 		i_mmap_lock_read(mapping);
2080 	}
2081 
2082 	/*
2083 	 * Racy check if we can split the page, before freeze_page() will
2084 	 * split PMDs
2085 	 */
2086 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2087 		ret = -EBUSY;
2088 		goto out_unlock;
2089 	}
2090 
2091 	mlocked = PageMlocked(page);
2092 	freeze_page(head);
2093 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2094 
2095 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2096 	if (mlocked)
2097 		lru_add_drain();
2098 
2099 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2100 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2101 
2102 	if (mapping) {
2103 		void **pslot;
2104 
2105 		spin_lock(&mapping->tree_lock);
2106 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2107 				page_index(head));
2108 		/*
2109 		 * Check if the head page is present in radix tree.
2110 		 * We assume all tail are present too, if head is there.
2111 		 */
2112 		if (radix_tree_deref_slot_protected(pslot,
2113 					&mapping->tree_lock) != head)
2114 			goto fail;
2115 	}
2116 
2117 	/* Prevent deferred_split_scan() touching ->_refcount */
2118 	spin_lock(&pgdata->split_queue_lock);
2119 	count = page_count(head);
2120 	mapcount = total_mapcount(head);
2121 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2122 		if (!list_empty(page_deferred_list(head))) {
2123 			pgdata->split_queue_len--;
2124 			list_del(page_deferred_list(head));
2125 		}
2126 		if (mapping)
2127 			__dec_node_page_state(page, NR_SHMEM_THPS);
2128 		spin_unlock(&pgdata->split_queue_lock);
2129 		__split_huge_page(page, list, flags);
2130 		ret = 0;
2131 	} else {
2132 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2133 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2134 					mapcount, count);
2135 			if (PageTail(page))
2136 				dump_page(head, NULL);
2137 			dump_page(page, "total_mapcount(head) > 0");
2138 			BUG();
2139 		}
2140 		spin_unlock(&pgdata->split_queue_lock);
2141 fail:		if (mapping)
2142 			spin_unlock(&mapping->tree_lock);
2143 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2144 		unfreeze_page(head);
2145 		ret = -EBUSY;
2146 	}
2147 
2148 out_unlock:
2149 	if (anon_vma) {
2150 		anon_vma_unlock_write(anon_vma);
2151 		put_anon_vma(anon_vma);
2152 	}
2153 	if (mapping)
2154 		i_mmap_unlock_read(mapping);
2155 out:
2156 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2157 	return ret;
2158 }
2159 
2160 void free_transhuge_page(struct page *page)
2161 {
2162 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2163 	unsigned long flags;
2164 
2165 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2166 	if (!list_empty(page_deferred_list(page))) {
2167 		pgdata->split_queue_len--;
2168 		list_del(page_deferred_list(page));
2169 	}
2170 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2171 	free_compound_page(page);
2172 }
2173 
2174 void deferred_split_huge_page(struct page *page)
2175 {
2176 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2177 	unsigned long flags;
2178 
2179 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2180 
2181 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2182 	if (list_empty(page_deferred_list(page))) {
2183 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2184 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2185 		pgdata->split_queue_len++;
2186 	}
2187 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2188 }
2189 
2190 static unsigned long deferred_split_count(struct shrinker *shrink,
2191 		struct shrink_control *sc)
2192 {
2193 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2194 	return ACCESS_ONCE(pgdata->split_queue_len);
2195 }
2196 
2197 static unsigned long deferred_split_scan(struct shrinker *shrink,
2198 		struct shrink_control *sc)
2199 {
2200 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2201 	unsigned long flags;
2202 	LIST_HEAD(list), *pos, *next;
2203 	struct page *page;
2204 	int split = 0;
2205 
2206 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2207 	/* Take pin on all head pages to avoid freeing them under us */
2208 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2209 		page = list_entry((void *)pos, struct page, mapping);
2210 		page = compound_head(page);
2211 		if (get_page_unless_zero(page)) {
2212 			list_move(page_deferred_list(page), &list);
2213 		} else {
2214 			/* We lost race with put_compound_page() */
2215 			list_del_init(page_deferred_list(page));
2216 			pgdata->split_queue_len--;
2217 		}
2218 		if (!--sc->nr_to_scan)
2219 			break;
2220 	}
2221 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2222 
2223 	list_for_each_safe(pos, next, &list) {
2224 		page = list_entry((void *)pos, struct page, mapping);
2225 		lock_page(page);
2226 		/* split_huge_page() removes page from list on success */
2227 		if (!split_huge_page(page))
2228 			split++;
2229 		unlock_page(page);
2230 		put_page(page);
2231 	}
2232 
2233 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2234 	list_splice_tail(&list, &pgdata->split_queue);
2235 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2236 
2237 	/*
2238 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2239 	 * This can happen if pages were freed under us.
2240 	 */
2241 	if (!split && list_empty(&pgdata->split_queue))
2242 		return SHRINK_STOP;
2243 	return split;
2244 }
2245 
2246 static struct shrinker deferred_split_shrinker = {
2247 	.count_objects = deferred_split_count,
2248 	.scan_objects = deferred_split_scan,
2249 	.seeks = DEFAULT_SEEKS,
2250 	.flags = SHRINKER_NUMA_AWARE,
2251 };
2252 
2253 #ifdef CONFIG_DEBUG_FS
2254 static int split_huge_pages_set(void *data, u64 val)
2255 {
2256 	struct zone *zone;
2257 	struct page *page;
2258 	unsigned long pfn, max_zone_pfn;
2259 	unsigned long total = 0, split = 0;
2260 
2261 	if (val != 1)
2262 		return -EINVAL;
2263 
2264 	for_each_populated_zone(zone) {
2265 		max_zone_pfn = zone_end_pfn(zone);
2266 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2267 			if (!pfn_valid(pfn))
2268 				continue;
2269 
2270 			page = pfn_to_page(pfn);
2271 			if (!get_page_unless_zero(page))
2272 				continue;
2273 
2274 			if (zone != page_zone(page))
2275 				goto next;
2276 
2277 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2278 				goto next;
2279 
2280 			total++;
2281 			lock_page(page);
2282 			if (!split_huge_page(page))
2283 				split++;
2284 			unlock_page(page);
2285 next:
2286 			put_page(page);
2287 		}
2288 	}
2289 
2290 	pr_info("%lu of %lu THP split\n", split, total);
2291 
2292 	return 0;
2293 }
2294 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2295 		"%llu\n");
2296 
2297 static int __init split_huge_pages_debugfs(void)
2298 {
2299 	void *ret;
2300 
2301 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2302 			&split_huge_pages_fops);
2303 	if (!ret)
2304 		pr_warn("Failed to create split_huge_pages in debugfs");
2305 	return 0;
2306 }
2307 late_initcall(split_huge_pages_debugfs);
2308 #endif
2309