xref: /linux/mm/huge_memory.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (sysfs_streq(buf, "always")) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (sysfs_streq(buf, "madvise")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "never")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else
190 		ret = -EINVAL;
191 
192 	if (ret > 0) {
193 		int err = start_stop_khugepaged();
194 		if (err)
195 			ret = err;
196 	}
197 	return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 	__ATTR(enabled, 0644, enabled_show, enabled_store);
201 
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 				struct kobj_attribute *attr, char *buf,
204 				enum transparent_hugepage_flag flag)
205 {
206 	return sprintf(buf, "%d\n",
207 		       !!test_bit(flag, &transparent_hugepage_flags));
208 }
209 
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 				 struct kobj_attribute *attr,
212 				 const char *buf, size_t count,
213 				 enum transparent_hugepage_flag flag)
214 {
215 	unsigned long value;
216 	int ret;
217 
218 	ret = kstrtoul(buf, 10, &value);
219 	if (ret < 0)
220 		return ret;
221 	if (value > 1)
222 		return -EINVAL;
223 
224 	if (value)
225 		set_bit(flag, &transparent_hugepage_flags);
226 	else
227 		clear_bit(flag, &transparent_hugepage_flags);
228 
229 	return count;
230 }
231 
232 static ssize_t defrag_show(struct kobject *kobj,
233 			   struct kobj_attribute *attr, char *buf)
234 {
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245 
246 static ssize_t defrag_store(struct kobject *kobj,
247 			    struct kobj_attribute *attr,
248 			    const char *buf, size_t count)
249 {
250 	if (sysfs_streq(buf, "always")) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (sysfs_streq(buf, "defer+madvise")) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (sysfs_streq(buf, "defer")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "never")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 	__ATTR(defrag, 0644, defrag_show, defrag_store);
282 
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 		struct kobj_attribute *attr, char *buf)
285 {
286 	return single_hugepage_flag_show(kobj, attr, buf,
287 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 		struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 	return single_hugepage_flag_store(kobj, attr, buf, count,
293 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 		struct kobj_attribute *attr, char *buf)
300 {
301 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 	__ATTR_RO(hpage_pmd_size);
305 
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 				struct kobj_attribute *attr, char *buf)
309 {
310 	return single_hugepage_flag_show(kobj, attr, buf,
311 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 			       struct kobj_attribute *attr,
315 			       const char *buf, size_t count)
316 {
317 	return single_hugepage_flag_store(kobj, attr, buf, count,
318 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static struct kobj_attribute debug_cow_attr =
321 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
323 
324 static struct attribute *hugepage_attr[] = {
325 	&enabled_attr.attr,
326 	&defrag_attr.attr,
327 	&use_zero_page_attr.attr,
328 	&hpage_pmd_size_attr.attr,
329 #ifdef CONFIG_SHMEM
330 	&shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333 	&debug_cow_attr.attr,
334 #endif
335 	NULL,
336 };
337 
338 static const struct attribute_group hugepage_attr_group = {
339 	.attrs = hugepage_attr,
340 };
341 
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 {
344 	int err;
345 
346 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 	if (unlikely(!*hugepage_kobj)) {
348 		pr_err("failed to create transparent hugepage kobject\n");
349 		return -ENOMEM;
350 	}
351 
352 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 	if (err) {
354 		pr_err("failed to register transparent hugepage group\n");
355 		goto delete_obj;
356 	}
357 
358 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 	if (err) {
360 		pr_err("failed to register transparent hugepage group\n");
361 		goto remove_hp_group;
362 	}
363 
364 	return 0;
365 
366 remove_hp_group:
367 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369 	kobject_put(*hugepage_kobj);
370 	return err;
371 }
372 
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 {
375 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 	kobject_put(hugepage_kobj);
378 }
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381 {
382 	return 0;
383 }
384 
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386 {
387 }
388 #endif /* CONFIG_SYSFS */
389 
390 static int __init hugepage_init(void)
391 {
392 	int err;
393 	struct kobject *hugepage_kobj;
394 
395 	if (!has_transparent_hugepage()) {
396 		transparent_hugepage_flags = 0;
397 		return -EINVAL;
398 	}
399 
400 	/*
401 	 * hugepages can't be allocated by the buddy allocator
402 	 */
403 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 	/*
405 	 * we use page->mapping and page->index in second tail page
406 	 * as list_head: assuming THP order >= 2
407 	 */
408 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409 
410 	err = hugepage_init_sysfs(&hugepage_kobj);
411 	if (err)
412 		goto err_sysfs;
413 
414 	err = khugepaged_init();
415 	if (err)
416 		goto err_slab;
417 
418 	err = register_shrinker(&huge_zero_page_shrinker);
419 	if (err)
420 		goto err_hzp_shrinker;
421 	err = register_shrinker(&deferred_split_shrinker);
422 	if (err)
423 		goto err_split_shrinker;
424 
425 	/*
426 	 * By default disable transparent hugepages on smaller systems,
427 	 * where the extra memory used could hurt more than TLB overhead
428 	 * is likely to save.  The admin can still enable it through /sys.
429 	 */
430 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 		transparent_hugepage_flags = 0;
432 		return 0;
433 	}
434 
435 	err = start_stop_khugepaged();
436 	if (err)
437 		goto err_khugepaged;
438 
439 	return 0;
440 err_khugepaged:
441 	unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443 	unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445 	khugepaged_destroy();
446 err_slab:
447 	hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449 	return err;
450 }
451 subsys_initcall(hugepage_init);
452 
453 static int __init setup_transparent_hugepage(char *str)
454 {
455 	int ret = 0;
456 	if (!str)
457 		goto out;
458 	if (!strcmp(str, "always")) {
459 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 			&transparent_hugepage_flags);
461 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 			  &transparent_hugepage_flags);
463 		ret = 1;
464 	} else if (!strcmp(str, "madvise")) {
465 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 			  &transparent_hugepage_flags);
467 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 			&transparent_hugepage_flags);
469 		ret = 1;
470 	} else if (!strcmp(str, "never")) {
471 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 			  &transparent_hugepage_flags);
473 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 			  &transparent_hugepage_flags);
475 		ret = 1;
476 	}
477 out:
478 	if (!ret)
479 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 	return ret;
481 }
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
483 
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 {
486 	if (likely(vma->vm_flags & VM_WRITE))
487 		pmd = pmd_mkwrite(pmd);
488 	return pmd;
489 }
490 
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493 {
494 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496 
497 	if (memcg)
498 		return &memcg->deferred_split_queue;
499 	else
500 		return &pgdat->deferred_split_queue;
501 }
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 
507 	return &pgdat->deferred_split_queue;
508 }
509 #endif
510 
511 void prep_transhuge_page(struct page *page)
512 {
513 	/*
514 	 * we use page->mapping and page->indexlru in second tail page
515 	 * as list_head: assuming THP order >= 2
516 	 */
517 
518 	INIT_LIST_HEAD(page_deferred_list(page));
519 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 }
521 
522 bool is_transparent_hugepage(struct page *page)
523 {
524 	if (!PageCompound(page))
525 		return 0;
526 
527 	page = compound_head(page);
528 	return is_huge_zero_page(page) ||
529 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530 }
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532 
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 		unsigned long addr, unsigned long len,
535 		loff_t off, unsigned long flags, unsigned long size)
536 {
537 	loff_t off_end = off + len;
538 	loff_t off_align = round_up(off, size);
539 	unsigned long len_pad, ret;
540 
541 	if (off_end <= off_align || (off_end - off_align) < size)
542 		return 0;
543 
544 	len_pad = len + size;
545 	if (len_pad < len || (off + len_pad) < off)
546 		return 0;
547 
548 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 					      off >> PAGE_SHIFT, flags);
550 
551 	/*
552 	 * The failure might be due to length padding. The caller will retry
553 	 * without the padding.
554 	 */
555 	if (IS_ERR_VALUE(ret))
556 		return 0;
557 
558 	/*
559 	 * Do not try to align to THP boundary if allocation at the address
560 	 * hint succeeds.
561 	 */
562 	if (ret == addr)
563 		return addr;
564 
565 	ret += (off - ret) & (size - 1);
566 	return ret;
567 }
568 
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 		unsigned long len, unsigned long pgoff, unsigned long flags)
571 {
572 	unsigned long ret;
573 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574 
575 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 		goto out;
577 
578 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 	if (ret)
580 		return ret;
581 out:
582 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583 }
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585 
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 			struct page *page, gfp_t gfp)
588 {
589 	struct vm_area_struct *vma = vmf->vma;
590 	struct mem_cgroup *memcg;
591 	pgtable_t pgtable;
592 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593 	vm_fault_t ret = 0;
594 
595 	VM_BUG_ON_PAGE(!PageCompound(page), page);
596 
597 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 		put_page(page);
599 		count_vm_event(THP_FAULT_FALLBACK);
600 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 		return VM_FAULT_FALLBACK;
602 	}
603 
604 	pgtable = pte_alloc_one(vma->vm_mm);
605 	if (unlikely(!pgtable)) {
606 		ret = VM_FAULT_OOM;
607 		goto release;
608 	}
609 
610 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 	/*
612 	 * The memory barrier inside __SetPageUptodate makes sure that
613 	 * clear_huge_page writes become visible before the set_pmd_at()
614 	 * write.
615 	 */
616 	__SetPageUptodate(page);
617 
618 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619 	if (unlikely(!pmd_none(*vmf->pmd))) {
620 		goto unlock_release;
621 	} else {
622 		pmd_t entry;
623 
624 		ret = check_stable_address_space(vma->vm_mm);
625 		if (ret)
626 			goto unlock_release;
627 
628 		/* Deliver the page fault to userland */
629 		if (userfaultfd_missing(vma)) {
630 			vm_fault_t ret2;
631 
632 			spin_unlock(vmf->ptl);
633 			mem_cgroup_cancel_charge(page, memcg, true);
634 			put_page(page);
635 			pte_free(vma->vm_mm, pgtable);
636 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
637 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
638 			return ret2;
639 		}
640 
641 		entry = mk_huge_pmd(page, vma->vm_page_prot);
642 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
643 		page_add_new_anon_rmap(page, vma, haddr, true);
644 		mem_cgroup_commit_charge(page, memcg, false, true);
645 		lru_cache_add_active_or_unevictable(page, vma);
646 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
647 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
648 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
649 		mm_inc_nr_ptes(vma->vm_mm);
650 		spin_unlock(vmf->ptl);
651 		count_vm_event(THP_FAULT_ALLOC);
652 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
653 	}
654 
655 	return 0;
656 unlock_release:
657 	spin_unlock(vmf->ptl);
658 release:
659 	if (pgtable)
660 		pte_free(vma->vm_mm, pgtable);
661 	mem_cgroup_cancel_charge(page, memcg, true);
662 	put_page(page);
663 	return ret;
664 
665 }
666 
667 /*
668  * always: directly stall for all thp allocations
669  * defer: wake kswapd and fail if not immediately available
670  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671  *		  fail if not immediately available
672  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673  *	    available
674  * never: never stall for any thp allocation
675  */
676 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
677 {
678 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679 
680 	/* Always do synchronous compaction */
681 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
682 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 
684 	/* Kick kcompactd and fail quickly */
685 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 
688 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
689 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 		return GFP_TRANSHUGE_LIGHT |
691 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
692 					__GFP_KSWAPD_RECLAIM);
693 
694 	/* Only do synchronous compaction if madvised */
695 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 		return GFP_TRANSHUGE_LIGHT |
697 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698 
699 	return GFP_TRANSHUGE_LIGHT;
700 }
701 
702 /* Caller must hold page table lock. */
703 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705 		struct page *zero_page)
706 {
707 	pmd_t entry;
708 	if (!pmd_none(*pmd))
709 		return false;
710 	entry = mk_pmd(zero_page, vma->vm_page_prot);
711 	entry = pmd_mkhuge(entry);
712 	if (pgtable)
713 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
714 	set_pmd_at(mm, haddr, pmd, entry);
715 	mm_inc_nr_ptes(mm);
716 	return true;
717 }
718 
719 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 {
721 	struct vm_area_struct *vma = vmf->vma;
722 	gfp_t gfp;
723 	struct page *page;
724 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725 
726 	if (!transhuge_vma_suitable(vma, haddr))
727 		return VM_FAULT_FALLBACK;
728 	if (unlikely(anon_vma_prepare(vma)))
729 		return VM_FAULT_OOM;
730 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
731 		return VM_FAULT_OOM;
732 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
733 			!mm_forbids_zeropage(vma->vm_mm) &&
734 			transparent_hugepage_use_zero_page()) {
735 		pgtable_t pgtable;
736 		struct page *zero_page;
737 		bool set;
738 		vm_fault_t ret;
739 		pgtable = pte_alloc_one(vma->vm_mm);
740 		if (unlikely(!pgtable))
741 			return VM_FAULT_OOM;
742 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
743 		if (unlikely(!zero_page)) {
744 			pte_free(vma->vm_mm, pgtable);
745 			count_vm_event(THP_FAULT_FALLBACK);
746 			return VM_FAULT_FALLBACK;
747 		}
748 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
749 		ret = 0;
750 		set = false;
751 		if (pmd_none(*vmf->pmd)) {
752 			ret = check_stable_address_space(vma->vm_mm);
753 			if (ret) {
754 				spin_unlock(vmf->ptl);
755 			} else if (userfaultfd_missing(vma)) {
756 				spin_unlock(vmf->ptl);
757 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
758 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 			} else {
760 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
761 						   haddr, vmf->pmd, zero_page);
762 				spin_unlock(vmf->ptl);
763 				set = true;
764 			}
765 		} else
766 			spin_unlock(vmf->ptl);
767 		if (!set)
768 			pte_free(vma->vm_mm, pgtable);
769 		return ret;
770 	}
771 	gfp = alloc_hugepage_direct_gfpmask(vma);
772 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
773 	if (unlikely(!page)) {
774 		count_vm_event(THP_FAULT_FALLBACK);
775 		return VM_FAULT_FALLBACK;
776 	}
777 	prep_transhuge_page(page);
778 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
779 }
780 
781 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
782 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
783 		pgtable_t pgtable)
784 {
785 	struct mm_struct *mm = vma->vm_mm;
786 	pmd_t entry;
787 	spinlock_t *ptl;
788 
789 	ptl = pmd_lock(mm, pmd);
790 	if (!pmd_none(*pmd)) {
791 		if (write) {
792 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
793 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
794 				goto out_unlock;
795 			}
796 			entry = pmd_mkyoung(*pmd);
797 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
798 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
799 				update_mmu_cache_pmd(vma, addr, pmd);
800 		}
801 
802 		goto out_unlock;
803 	}
804 
805 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
806 	if (pfn_t_devmap(pfn))
807 		entry = pmd_mkdevmap(entry);
808 	if (write) {
809 		entry = pmd_mkyoung(pmd_mkdirty(entry));
810 		entry = maybe_pmd_mkwrite(entry, vma);
811 	}
812 
813 	if (pgtable) {
814 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
815 		mm_inc_nr_ptes(mm);
816 		pgtable = NULL;
817 	}
818 
819 	set_pmd_at(mm, addr, pmd, entry);
820 	update_mmu_cache_pmd(vma, addr, pmd);
821 
822 out_unlock:
823 	spin_unlock(ptl);
824 	if (pgtable)
825 		pte_free(mm, pgtable);
826 }
827 
828 /**
829  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
830  * @vmf: Structure describing the fault
831  * @pfn: pfn to insert
832  * @pgprot: page protection to use
833  * @write: whether it's a write fault
834  *
835  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
836  * also consult the vmf_insert_mixed_prot() documentation when
837  * @pgprot != @vmf->vma->vm_page_prot.
838  *
839  * Return: vm_fault_t value.
840  */
841 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
842 				   pgprot_t pgprot, bool write)
843 {
844 	unsigned long addr = vmf->address & PMD_MASK;
845 	struct vm_area_struct *vma = vmf->vma;
846 	pgtable_t pgtable = NULL;
847 
848 	/*
849 	 * If we had pmd_special, we could avoid all these restrictions,
850 	 * but we need to be consistent with PTEs and architectures that
851 	 * can't support a 'special' bit.
852 	 */
853 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
854 			!pfn_t_devmap(pfn));
855 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
856 						(VM_PFNMAP|VM_MIXEDMAP));
857 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
858 
859 	if (addr < vma->vm_start || addr >= vma->vm_end)
860 		return VM_FAULT_SIGBUS;
861 
862 	if (arch_needs_pgtable_deposit()) {
863 		pgtable = pte_alloc_one(vma->vm_mm);
864 		if (!pgtable)
865 			return VM_FAULT_OOM;
866 	}
867 
868 	track_pfn_insert(vma, &pgprot, pfn);
869 
870 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
871 	return VM_FAULT_NOPAGE;
872 }
873 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
874 
875 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
876 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
877 {
878 	if (likely(vma->vm_flags & VM_WRITE))
879 		pud = pud_mkwrite(pud);
880 	return pud;
881 }
882 
883 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
884 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
885 {
886 	struct mm_struct *mm = vma->vm_mm;
887 	pud_t entry;
888 	spinlock_t *ptl;
889 
890 	ptl = pud_lock(mm, pud);
891 	if (!pud_none(*pud)) {
892 		if (write) {
893 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
894 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
895 				goto out_unlock;
896 			}
897 			entry = pud_mkyoung(*pud);
898 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
899 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
900 				update_mmu_cache_pud(vma, addr, pud);
901 		}
902 		goto out_unlock;
903 	}
904 
905 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
906 	if (pfn_t_devmap(pfn))
907 		entry = pud_mkdevmap(entry);
908 	if (write) {
909 		entry = pud_mkyoung(pud_mkdirty(entry));
910 		entry = maybe_pud_mkwrite(entry, vma);
911 	}
912 	set_pud_at(mm, addr, pud, entry);
913 	update_mmu_cache_pud(vma, addr, pud);
914 
915 out_unlock:
916 	spin_unlock(ptl);
917 }
918 
919 /**
920  * vmf_insert_pfn_pud_prot - insert a pud size pfn
921  * @vmf: Structure describing the fault
922  * @pfn: pfn to insert
923  * @pgprot: page protection to use
924  * @write: whether it's a write fault
925  *
926  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
927  * also consult the vmf_insert_mixed_prot() documentation when
928  * @pgprot != @vmf->vma->vm_page_prot.
929  *
930  * Return: vm_fault_t value.
931  */
932 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
933 				   pgprot_t pgprot, bool write)
934 {
935 	unsigned long addr = vmf->address & PUD_MASK;
936 	struct vm_area_struct *vma = vmf->vma;
937 
938 	/*
939 	 * If we had pud_special, we could avoid all these restrictions,
940 	 * but we need to be consistent with PTEs and architectures that
941 	 * can't support a 'special' bit.
942 	 */
943 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
944 			!pfn_t_devmap(pfn));
945 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
946 						(VM_PFNMAP|VM_MIXEDMAP));
947 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
948 
949 	if (addr < vma->vm_start || addr >= vma->vm_end)
950 		return VM_FAULT_SIGBUS;
951 
952 	track_pfn_insert(vma, &pgprot, pfn);
953 
954 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
955 	return VM_FAULT_NOPAGE;
956 }
957 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
958 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
959 
960 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
961 		pmd_t *pmd, int flags)
962 {
963 	pmd_t _pmd;
964 
965 	_pmd = pmd_mkyoung(*pmd);
966 	if (flags & FOLL_WRITE)
967 		_pmd = pmd_mkdirty(_pmd);
968 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
969 				pmd, _pmd, flags & FOLL_WRITE))
970 		update_mmu_cache_pmd(vma, addr, pmd);
971 }
972 
973 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
974 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
975 {
976 	unsigned long pfn = pmd_pfn(*pmd);
977 	struct mm_struct *mm = vma->vm_mm;
978 	struct page *page;
979 
980 	assert_spin_locked(pmd_lockptr(mm, pmd));
981 
982 	/*
983 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
984 	 * not be in this function with `flags & FOLL_COW` set.
985 	 */
986 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
987 
988 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
989 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
990 			 (FOLL_PIN | FOLL_GET)))
991 		return NULL;
992 
993 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
994 		return NULL;
995 
996 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
997 		/* pass */;
998 	else
999 		return NULL;
1000 
1001 	if (flags & FOLL_TOUCH)
1002 		touch_pmd(vma, addr, pmd, flags);
1003 
1004 	/*
1005 	 * device mapped pages can only be returned if the
1006 	 * caller will manage the page reference count.
1007 	 */
1008 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1009 		return ERR_PTR(-EEXIST);
1010 
1011 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1012 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1013 	if (!*pgmap)
1014 		return ERR_PTR(-EFAULT);
1015 	page = pfn_to_page(pfn);
1016 	if (!try_grab_page(page, flags))
1017 		page = ERR_PTR(-ENOMEM);
1018 
1019 	return page;
1020 }
1021 
1022 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1024 		  struct vm_area_struct *vma)
1025 {
1026 	spinlock_t *dst_ptl, *src_ptl;
1027 	struct page *src_page;
1028 	pmd_t pmd;
1029 	pgtable_t pgtable = NULL;
1030 	int ret = -ENOMEM;
1031 
1032 	/* Skip if can be re-fill on fault */
1033 	if (!vma_is_anonymous(vma))
1034 		return 0;
1035 
1036 	pgtable = pte_alloc_one(dst_mm);
1037 	if (unlikely(!pgtable))
1038 		goto out;
1039 
1040 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1041 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1042 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 
1044 	ret = -EAGAIN;
1045 	pmd = *src_pmd;
1046 
1047 	/*
1048 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1049 	 * does not have the VM_UFFD_WP, which means that the uffd
1050 	 * fork event is not enabled.
1051 	 */
1052 	if (!(vma->vm_flags & VM_UFFD_WP))
1053 		pmd = pmd_clear_uffd_wp(pmd);
1054 
1055 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1056 	if (unlikely(is_swap_pmd(pmd))) {
1057 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1058 
1059 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1060 		if (is_write_migration_entry(entry)) {
1061 			make_migration_entry_read(&entry);
1062 			pmd = swp_entry_to_pmd(entry);
1063 			if (pmd_swp_soft_dirty(*src_pmd))
1064 				pmd = pmd_swp_mksoft_dirty(pmd);
1065 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 		}
1067 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 		mm_inc_nr_ptes(dst_mm);
1069 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1071 		ret = 0;
1072 		goto out_unlock;
1073 	}
1074 #endif
1075 
1076 	if (unlikely(!pmd_trans_huge(pmd))) {
1077 		pte_free(dst_mm, pgtable);
1078 		goto out_unlock;
1079 	}
1080 	/*
1081 	 * When page table lock is held, the huge zero pmd should not be
1082 	 * under splitting since we don't split the page itself, only pmd to
1083 	 * a page table.
1084 	 */
1085 	if (is_huge_zero_pmd(pmd)) {
1086 		struct page *zero_page;
1087 		/*
1088 		 * get_huge_zero_page() will never allocate a new page here,
1089 		 * since we already have a zero page to copy. It just takes a
1090 		 * reference.
1091 		 */
1092 		zero_page = mm_get_huge_zero_page(dst_mm);
1093 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1094 				zero_page);
1095 		ret = 0;
1096 		goto out_unlock;
1097 	}
1098 
1099 	src_page = pmd_page(pmd);
1100 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1101 	get_page(src_page);
1102 	page_dup_rmap(src_page, true);
1103 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1104 	mm_inc_nr_ptes(dst_mm);
1105 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1106 
1107 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1108 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1109 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1110 
1111 	ret = 0;
1112 out_unlock:
1113 	spin_unlock(src_ptl);
1114 	spin_unlock(dst_ptl);
1115 out:
1116 	return ret;
1117 }
1118 
1119 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1120 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1121 		pud_t *pud, int flags)
1122 {
1123 	pud_t _pud;
1124 
1125 	_pud = pud_mkyoung(*pud);
1126 	if (flags & FOLL_WRITE)
1127 		_pud = pud_mkdirty(_pud);
1128 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1129 				pud, _pud, flags & FOLL_WRITE))
1130 		update_mmu_cache_pud(vma, addr, pud);
1131 }
1132 
1133 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1134 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1135 {
1136 	unsigned long pfn = pud_pfn(*pud);
1137 	struct mm_struct *mm = vma->vm_mm;
1138 	struct page *page;
1139 
1140 	assert_spin_locked(pud_lockptr(mm, pud));
1141 
1142 	if (flags & FOLL_WRITE && !pud_write(*pud))
1143 		return NULL;
1144 
1145 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1146 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1147 			 (FOLL_PIN | FOLL_GET)))
1148 		return NULL;
1149 
1150 	if (pud_present(*pud) && pud_devmap(*pud))
1151 		/* pass */;
1152 	else
1153 		return NULL;
1154 
1155 	if (flags & FOLL_TOUCH)
1156 		touch_pud(vma, addr, pud, flags);
1157 
1158 	/*
1159 	 * device mapped pages can only be returned if the
1160 	 * caller will manage the page reference count.
1161 	 *
1162 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1163 	 */
1164 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1165 		return ERR_PTR(-EEXIST);
1166 
1167 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1168 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1169 	if (!*pgmap)
1170 		return ERR_PTR(-EFAULT);
1171 	page = pfn_to_page(pfn);
1172 	if (!try_grab_page(page, flags))
1173 		page = ERR_PTR(-ENOMEM);
1174 
1175 	return page;
1176 }
1177 
1178 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1179 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1180 		  struct vm_area_struct *vma)
1181 {
1182 	spinlock_t *dst_ptl, *src_ptl;
1183 	pud_t pud;
1184 	int ret;
1185 
1186 	dst_ptl = pud_lock(dst_mm, dst_pud);
1187 	src_ptl = pud_lockptr(src_mm, src_pud);
1188 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1189 
1190 	ret = -EAGAIN;
1191 	pud = *src_pud;
1192 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1193 		goto out_unlock;
1194 
1195 	/*
1196 	 * When page table lock is held, the huge zero pud should not be
1197 	 * under splitting since we don't split the page itself, only pud to
1198 	 * a page table.
1199 	 */
1200 	if (is_huge_zero_pud(pud)) {
1201 		/* No huge zero pud yet */
1202 	}
1203 
1204 	pudp_set_wrprotect(src_mm, addr, src_pud);
1205 	pud = pud_mkold(pud_wrprotect(pud));
1206 	set_pud_at(dst_mm, addr, dst_pud, pud);
1207 
1208 	ret = 0;
1209 out_unlock:
1210 	spin_unlock(src_ptl);
1211 	spin_unlock(dst_ptl);
1212 	return ret;
1213 }
1214 
1215 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1216 {
1217 	pud_t entry;
1218 	unsigned long haddr;
1219 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1220 
1221 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1222 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1223 		goto unlock;
1224 
1225 	entry = pud_mkyoung(orig_pud);
1226 	if (write)
1227 		entry = pud_mkdirty(entry);
1228 	haddr = vmf->address & HPAGE_PUD_MASK;
1229 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1230 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1231 
1232 unlock:
1233 	spin_unlock(vmf->ptl);
1234 }
1235 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1236 
1237 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1238 {
1239 	pmd_t entry;
1240 	unsigned long haddr;
1241 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1242 
1243 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1244 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1245 		goto unlock;
1246 
1247 	entry = pmd_mkyoung(orig_pmd);
1248 	if (write)
1249 		entry = pmd_mkdirty(entry);
1250 	haddr = vmf->address & HPAGE_PMD_MASK;
1251 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1252 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1253 
1254 unlock:
1255 	spin_unlock(vmf->ptl);
1256 }
1257 
1258 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1259 			pmd_t orig_pmd, struct page *page)
1260 {
1261 	struct vm_area_struct *vma = vmf->vma;
1262 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1263 	struct mem_cgroup *memcg;
1264 	pgtable_t pgtable;
1265 	pmd_t _pmd;
1266 	int i;
1267 	vm_fault_t ret = 0;
1268 	struct page **pages;
1269 	struct mmu_notifier_range range;
1270 
1271 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1272 			      GFP_KERNEL);
1273 	if (unlikely(!pages)) {
1274 		ret |= VM_FAULT_OOM;
1275 		goto out;
1276 	}
1277 
1278 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1279 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1280 					       vmf->address, page_to_nid(page));
1281 		if (unlikely(!pages[i] ||
1282 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1283 				     GFP_KERNEL, &memcg, false))) {
1284 			if (pages[i])
1285 				put_page(pages[i]);
1286 			while (--i >= 0) {
1287 				memcg = (void *)page_private(pages[i]);
1288 				set_page_private(pages[i], 0);
1289 				mem_cgroup_cancel_charge(pages[i], memcg,
1290 						false);
1291 				put_page(pages[i]);
1292 			}
1293 			kfree(pages);
1294 			ret |= VM_FAULT_OOM;
1295 			goto out;
1296 		}
1297 		set_page_private(pages[i], (unsigned long)memcg);
1298 	}
1299 
1300 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1301 		copy_user_highpage(pages[i], page + i,
1302 				   haddr + PAGE_SIZE * i, vma);
1303 		__SetPageUptodate(pages[i]);
1304 		cond_resched();
1305 	}
1306 
1307 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1308 				haddr, haddr + HPAGE_PMD_SIZE);
1309 	mmu_notifier_invalidate_range_start(&range);
1310 
1311 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1312 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1313 		goto out_free_pages;
1314 	VM_BUG_ON_PAGE(!PageHead(page), page);
1315 
1316 	/*
1317 	 * Leave pmd empty until pte is filled note we must notify here as
1318 	 * concurrent CPU thread might write to new page before the call to
1319 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1320 	 * device seeing memory write in different order than CPU.
1321 	 *
1322 	 * See Documentation/vm/mmu_notifier.rst
1323 	 */
1324 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1325 
1326 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1327 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1328 
1329 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1330 		pte_t entry;
1331 		entry = mk_pte(pages[i], vma->vm_page_prot);
1332 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1333 		memcg = (void *)page_private(pages[i]);
1334 		set_page_private(pages[i], 0);
1335 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1336 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1337 		lru_cache_add_active_or_unevictable(pages[i], vma);
1338 		vmf->pte = pte_offset_map(&_pmd, haddr);
1339 		VM_BUG_ON(!pte_none(*vmf->pte));
1340 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1341 		pte_unmap(vmf->pte);
1342 	}
1343 	kfree(pages);
1344 
1345 	smp_wmb(); /* make pte visible before pmd */
1346 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1347 	page_remove_rmap(page, true);
1348 	spin_unlock(vmf->ptl);
1349 
1350 	/*
1351 	 * No need to double call mmu_notifier->invalidate_range() callback as
1352 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1353 	 */
1354 	mmu_notifier_invalidate_range_only_end(&range);
1355 
1356 	ret |= VM_FAULT_WRITE;
1357 	put_page(page);
1358 
1359 out:
1360 	return ret;
1361 
1362 out_free_pages:
1363 	spin_unlock(vmf->ptl);
1364 	mmu_notifier_invalidate_range_end(&range);
1365 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1366 		memcg = (void *)page_private(pages[i]);
1367 		set_page_private(pages[i], 0);
1368 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1369 		put_page(pages[i]);
1370 	}
1371 	kfree(pages);
1372 	goto out;
1373 }
1374 
1375 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1376 {
1377 	struct vm_area_struct *vma = vmf->vma;
1378 	struct page *page = NULL, *new_page;
1379 	struct mem_cgroup *memcg;
1380 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1381 	struct mmu_notifier_range range;
1382 	gfp_t huge_gfp;			/* for allocation and charge */
1383 	vm_fault_t ret = 0;
1384 
1385 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1386 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1387 	if (is_huge_zero_pmd(orig_pmd))
1388 		goto alloc;
1389 	spin_lock(vmf->ptl);
1390 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1391 		goto out_unlock;
1392 
1393 	page = pmd_page(orig_pmd);
1394 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1395 	/*
1396 	 * We can only reuse the page if nobody else maps the huge page or it's
1397 	 * part.
1398 	 */
1399 	if (!trylock_page(page)) {
1400 		get_page(page);
1401 		spin_unlock(vmf->ptl);
1402 		lock_page(page);
1403 		spin_lock(vmf->ptl);
1404 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1405 			unlock_page(page);
1406 			put_page(page);
1407 			goto out_unlock;
1408 		}
1409 		put_page(page);
1410 	}
1411 	if (reuse_swap_page(page, NULL)) {
1412 		pmd_t entry;
1413 		entry = pmd_mkyoung(orig_pmd);
1414 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1415 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1416 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1417 		ret |= VM_FAULT_WRITE;
1418 		unlock_page(page);
1419 		goto out_unlock;
1420 	}
1421 	unlock_page(page);
1422 	get_page(page);
1423 	spin_unlock(vmf->ptl);
1424 alloc:
1425 	if (__transparent_hugepage_enabled(vma) &&
1426 	    !transparent_hugepage_debug_cow()) {
1427 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1428 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1429 	} else
1430 		new_page = NULL;
1431 
1432 	if (likely(new_page)) {
1433 		prep_transhuge_page(new_page);
1434 	} else {
1435 		if (!page) {
1436 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1437 			ret |= VM_FAULT_FALLBACK;
1438 		} else {
1439 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1440 			if (ret & VM_FAULT_OOM) {
1441 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1442 				ret |= VM_FAULT_FALLBACK;
1443 			}
1444 			put_page(page);
1445 		}
1446 		count_vm_event(THP_FAULT_FALLBACK);
1447 		goto out;
1448 	}
1449 
1450 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1451 					huge_gfp, &memcg, true))) {
1452 		put_page(new_page);
1453 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1454 		if (page)
1455 			put_page(page);
1456 		ret |= VM_FAULT_FALLBACK;
1457 		count_vm_event(THP_FAULT_FALLBACK);
1458 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1459 		goto out;
1460 	}
1461 
1462 	count_vm_event(THP_FAULT_ALLOC);
1463 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1464 
1465 	if (!page)
1466 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1467 	else
1468 		copy_user_huge_page(new_page, page, vmf->address,
1469 				    vma, HPAGE_PMD_NR);
1470 	__SetPageUptodate(new_page);
1471 
1472 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1473 				haddr, haddr + HPAGE_PMD_SIZE);
1474 	mmu_notifier_invalidate_range_start(&range);
1475 
1476 	spin_lock(vmf->ptl);
1477 	if (page)
1478 		put_page(page);
1479 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1480 		spin_unlock(vmf->ptl);
1481 		mem_cgroup_cancel_charge(new_page, memcg, true);
1482 		put_page(new_page);
1483 		goto out_mn;
1484 	} else {
1485 		pmd_t entry;
1486 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1487 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1488 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1489 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1490 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1491 		lru_cache_add_active_or_unevictable(new_page, vma);
1492 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1493 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1494 		if (!page) {
1495 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1496 		} else {
1497 			VM_BUG_ON_PAGE(!PageHead(page), page);
1498 			page_remove_rmap(page, true);
1499 			put_page(page);
1500 		}
1501 		ret |= VM_FAULT_WRITE;
1502 	}
1503 	spin_unlock(vmf->ptl);
1504 out_mn:
1505 	/*
1506 	 * No need to double call mmu_notifier->invalidate_range() callback as
1507 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1508 	 */
1509 	mmu_notifier_invalidate_range_only_end(&range);
1510 out:
1511 	return ret;
1512 out_unlock:
1513 	spin_unlock(vmf->ptl);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1519  * but only after we've gone through a COW cycle and they are dirty.
1520  */
1521 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1522 {
1523 	return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1524 }
1525 
1526 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1527 				   unsigned long addr,
1528 				   pmd_t *pmd,
1529 				   unsigned int flags)
1530 {
1531 	struct mm_struct *mm = vma->vm_mm;
1532 	struct page *page = NULL;
1533 
1534 	assert_spin_locked(pmd_lockptr(mm, pmd));
1535 
1536 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1537 		goto out;
1538 
1539 	/* Avoid dumping huge zero page */
1540 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1541 		return ERR_PTR(-EFAULT);
1542 
1543 	/* Full NUMA hinting faults to serialise migration in fault paths */
1544 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1545 		goto out;
1546 
1547 	page = pmd_page(*pmd);
1548 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1549 
1550 	if (!try_grab_page(page, flags))
1551 		return ERR_PTR(-ENOMEM);
1552 
1553 	if (flags & FOLL_TOUCH)
1554 		touch_pmd(vma, addr, pmd, flags);
1555 
1556 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1557 		/*
1558 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1559 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1560 		 *
1561 		 * For anon THP:
1562 		 *
1563 		 * In most cases the pmd is the only mapping of the page as we
1564 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1565 		 * writable private mappings in populate_vma_page_range().
1566 		 *
1567 		 * The only scenario when we have the page shared here is if we
1568 		 * mlocking read-only mapping shared over fork(). We skip
1569 		 * mlocking such pages.
1570 		 *
1571 		 * For file THP:
1572 		 *
1573 		 * We can expect PageDoubleMap() to be stable under page lock:
1574 		 * for file pages we set it in page_add_file_rmap(), which
1575 		 * requires page to be locked.
1576 		 */
1577 
1578 		if (PageAnon(page) && compound_mapcount(page) != 1)
1579 			goto skip_mlock;
1580 		if (PageDoubleMap(page) || !page->mapping)
1581 			goto skip_mlock;
1582 		if (!trylock_page(page))
1583 			goto skip_mlock;
1584 		lru_add_drain();
1585 		if (page->mapping && !PageDoubleMap(page))
1586 			mlock_vma_page(page);
1587 		unlock_page(page);
1588 	}
1589 skip_mlock:
1590 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1591 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1592 
1593 out:
1594 	return page;
1595 }
1596 
1597 /* NUMA hinting page fault entry point for trans huge pmds */
1598 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1599 {
1600 	struct vm_area_struct *vma = vmf->vma;
1601 	struct anon_vma *anon_vma = NULL;
1602 	struct page *page;
1603 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1604 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1605 	int target_nid, last_cpupid = -1;
1606 	bool page_locked;
1607 	bool migrated = false;
1608 	bool was_writable;
1609 	int flags = 0;
1610 
1611 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1612 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1613 		goto out_unlock;
1614 
1615 	/*
1616 	 * If there are potential migrations, wait for completion and retry
1617 	 * without disrupting NUMA hinting information. Do not relock and
1618 	 * check_same as the page may no longer be mapped.
1619 	 */
1620 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1621 		page = pmd_page(*vmf->pmd);
1622 		if (!get_page_unless_zero(page))
1623 			goto out_unlock;
1624 		spin_unlock(vmf->ptl);
1625 		put_and_wait_on_page_locked(page);
1626 		goto out;
1627 	}
1628 
1629 	page = pmd_page(pmd);
1630 	BUG_ON(is_huge_zero_page(page));
1631 	page_nid = page_to_nid(page);
1632 	last_cpupid = page_cpupid_last(page);
1633 	count_vm_numa_event(NUMA_HINT_FAULTS);
1634 	if (page_nid == this_nid) {
1635 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1636 		flags |= TNF_FAULT_LOCAL;
1637 	}
1638 
1639 	/* See similar comment in do_numa_page for explanation */
1640 	if (!pmd_savedwrite(pmd))
1641 		flags |= TNF_NO_GROUP;
1642 
1643 	/*
1644 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1645 	 * page_table_lock if at all possible
1646 	 */
1647 	page_locked = trylock_page(page);
1648 	target_nid = mpol_misplaced(page, vma, haddr);
1649 	if (target_nid == NUMA_NO_NODE) {
1650 		/* If the page was locked, there are no parallel migrations */
1651 		if (page_locked)
1652 			goto clear_pmdnuma;
1653 	}
1654 
1655 	/* Migration could have started since the pmd_trans_migrating check */
1656 	if (!page_locked) {
1657 		page_nid = NUMA_NO_NODE;
1658 		if (!get_page_unless_zero(page))
1659 			goto out_unlock;
1660 		spin_unlock(vmf->ptl);
1661 		put_and_wait_on_page_locked(page);
1662 		goto out;
1663 	}
1664 
1665 	/*
1666 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1667 	 * to serialises splits
1668 	 */
1669 	get_page(page);
1670 	spin_unlock(vmf->ptl);
1671 	anon_vma = page_lock_anon_vma_read(page);
1672 
1673 	/* Confirm the PMD did not change while page_table_lock was released */
1674 	spin_lock(vmf->ptl);
1675 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1676 		unlock_page(page);
1677 		put_page(page);
1678 		page_nid = NUMA_NO_NODE;
1679 		goto out_unlock;
1680 	}
1681 
1682 	/* Bail if we fail to protect against THP splits for any reason */
1683 	if (unlikely(!anon_vma)) {
1684 		put_page(page);
1685 		page_nid = NUMA_NO_NODE;
1686 		goto clear_pmdnuma;
1687 	}
1688 
1689 	/*
1690 	 * Since we took the NUMA fault, we must have observed the !accessible
1691 	 * bit. Make sure all other CPUs agree with that, to avoid them
1692 	 * modifying the page we're about to migrate.
1693 	 *
1694 	 * Must be done under PTL such that we'll observe the relevant
1695 	 * inc_tlb_flush_pending().
1696 	 *
1697 	 * We are not sure a pending tlb flush here is for a huge page
1698 	 * mapping or not. Hence use the tlb range variant
1699 	 */
1700 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1701 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1702 		/*
1703 		 * change_huge_pmd() released the pmd lock before
1704 		 * invalidating the secondary MMUs sharing the primary
1705 		 * MMU pagetables (with ->invalidate_range()). The
1706 		 * mmu_notifier_invalidate_range_end() (which
1707 		 * internally calls ->invalidate_range()) in
1708 		 * change_pmd_range() will run after us, so we can't
1709 		 * rely on it here and we need an explicit invalidate.
1710 		 */
1711 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1712 					      haddr + HPAGE_PMD_SIZE);
1713 	}
1714 
1715 	/*
1716 	 * Migrate the THP to the requested node, returns with page unlocked
1717 	 * and access rights restored.
1718 	 */
1719 	spin_unlock(vmf->ptl);
1720 
1721 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1722 				vmf->pmd, pmd, vmf->address, page, target_nid);
1723 	if (migrated) {
1724 		flags |= TNF_MIGRATED;
1725 		page_nid = target_nid;
1726 	} else
1727 		flags |= TNF_MIGRATE_FAIL;
1728 
1729 	goto out;
1730 clear_pmdnuma:
1731 	BUG_ON(!PageLocked(page));
1732 	was_writable = pmd_savedwrite(pmd);
1733 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1734 	pmd = pmd_mkyoung(pmd);
1735 	if (was_writable)
1736 		pmd = pmd_mkwrite(pmd);
1737 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1738 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1739 	unlock_page(page);
1740 out_unlock:
1741 	spin_unlock(vmf->ptl);
1742 
1743 out:
1744 	if (anon_vma)
1745 		page_unlock_anon_vma_read(anon_vma);
1746 
1747 	if (page_nid != NUMA_NO_NODE)
1748 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1749 				flags);
1750 
1751 	return 0;
1752 }
1753 
1754 /*
1755  * Return true if we do MADV_FREE successfully on entire pmd page.
1756  * Otherwise, return false.
1757  */
1758 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1759 		pmd_t *pmd, unsigned long addr, unsigned long next)
1760 {
1761 	spinlock_t *ptl;
1762 	pmd_t orig_pmd;
1763 	struct page *page;
1764 	struct mm_struct *mm = tlb->mm;
1765 	bool ret = false;
1766 
1767 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1768 
1769 	ptl = pmd_trans_huge_lock(pmd, vma);
1770 	if (!ptl)
1771 		goto out_unlocked;
1772 
1773 	orig_pmd = *pmd;
1774 	if (is_huge_zero_pmd(orig_pmd))
1775 		goto out;
1776 
1777 	if (unlikely(!pmd_present(orig_pmd))) {
1778 		VM_BUG_ON(thp_migration_supported() &&
1779 				  !is_pmd_migration_entry(orig_pmd));
1780 		goto out;
1781 	}
1782 
1783 	page = pmd_page(orig_pmd);
1784 	/*
1785 	 * If other processes are mapping this page, we couldn't discard
1786 	 * the page unless they all do MADV_FREE so let's skip the page.
1787 	 */
1788 	if (page_mapcount(page) != 1)
1789 		goto out;
1790 
1791 	if (!trylock_page(page))
1792 		goto out;
1793 
1794 	/*
1795 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1796 	 * will deactivate only them.
1797 	 */
1798 	if (next - addr != HPAGE_PMD_SIZE) {
1799 		get_page(page);
1800 		spin_unlock(ptl);
1801 		split_huge_page(page);
1802 		unlock_page(page);
1803 		put_page(page);
1804 		goto out_unlocked;
1805 	}
1806 
1807 	if (PageDirty(page))
1808 		ClearPageDirty(page);
1809 	unlock_page(page);
1810 
1811 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1812 		pmdp_invalidate(vma, addr, pmd);
1813 		orig_pmd = pmd_mkold(orig_pmd);
1814 		orig_pmd = pmd_mkclean(orig_pmd);
1815 
1816 		set_pmd_at(mm, addr, pmd, orig_pmd);
1817 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1818 	}
1819 
1820 	mark_page_lazyfree(page);
1821 	ret = true;
1822 out:
1823 	spin_unlock(ptl);
1824 out_unlocked:
1825 	return ret;
1826 }
1827 
1828 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1829 {
1830 	pgtable_t pgtable;
1831 
1832 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1833 	pte_free(mm, pgtable);
1834 	mm_dec_nr_ptes(mm);
1835 }
1836 
1837 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1838 		 pmd_t *pmd, unsigned long addr)
1839 {
1840 	pmd_t orig_pmd;
1841 	spinlock_t *ptl;
1842 
1843 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1844 
1845 	ptl = __pmd_trans_huge_lock(pmd, vma);
1846 	if (!ptl)
1847 		return 0;
1848 	/*
1849 	 * For architectures like ppc64 we look at deposited pgtable
1850 	 * when calling pmdp_huge_get_and_clear. So do the
1851 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1852 	 * operations.
1853 	 */
1854 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1855 			tlb->fullmm);
1856 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1857 	if (vma_is_special_huge(vma)) {
1858 		if (arch_needs_pgtable_deposit())
1859 			zap_deposited_table(tlb->mm, pmd);
1860 		spin_unlock(ptl);
1861 		if (is_huge_zero_pmd(orig_pmd))
1862 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1863 	} else if (is_huge_zero_pmd(orig_pmd)) {
1864 		zap_deposited_table(tlb->mm, pmd);
1865 		spin_unlock(ptl);
1866 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1867 	} else {
1868 		struct page *page = NULL;
1869 		int flush_needed = 1;
1870 
1871 		if (pmd_present(orig_pmd)) {
1872 			page = pmd_page(orig_pmd);
1873 			page_remove_rmap(page, true);
1874 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1875 			VM_BUG_ON_PAGE(!PageHead(page), page);
1876 		} else if (thp_migration_supported()) {
1877 			swp_entry_t entry;
1878 
1879 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1880 			entry = pmd_to_swp_entry(orig_pmd);
1881 			page = pfn_to_page(swp_offset(entry));
1882 			flush_needed = 0;
1883 		} else
1884 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1885 
1886 		if (PageAnon(page)) {
1887 			zap_deposited_table(tlb->mm, pmd);
1888 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1889 		} else {
1890 			if (arch_needs_pgtable_deposit())
1891 				zap_deposited_table(tlb->mm, pmd);
1892 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1893 		}
1894 
1895 		spin_unlock(ptl);
1896 		if (flush_needed)
1897 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1898 	}
1899 	return 1;
1900 }
1901 
1902 #ifndef pmd_move_must_withdraw
1903 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1904 					 spinlock_t *old_pmd_ptl,
1905 					 struct vm_area_struct *vma)
1906 {
1907 	/*
1908 	 * With split pmd lock we also need to move preallocated
1909 	 * PTE page table if new_pmd is on different PMD page table.
1910 	 *
1911 	 * We also don't deposit and withdraw tables for file pages.
1912 	 */
1913 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1914 }
1915 #endif
1916 
1917 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1918 {
1919 #ifdef CONFIG_MEM_SOFT_DIRTY
1920 	if (unlikely(is_pmd_migration_entry(pmd)))
1921 		pmd = pmd_swp_mksoft_dirty(pmd);
1922 	else if (pmd_present(pmd))
1923 		pmd = pmd_mksoft_dirty(pmd);
1924 #endif
1925 	return pmd;
1926 }
1927 
1928 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1929 		  unsigned long new_addr, unsigned long old_end,
1930 		  pmd_t *old_pmd, pmd_t *new_pmd)
1931 {
1932 	spinlock_t *old_ptl, *new_ptl;
1933 	pmd_t pmd;
1934 	struct mm_struct *mm = vma->vm_mm;
1935 	bool force_flush = false;
1936 
1937 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1938 	    (new_addr & ~HPAGE_PMD_MASK) ||
1939 	    old_end - old_addr < HPAGE_PMD_SIZE)
1940 		return false;
1941 
1942 	/*
1943 	 * The destination pmd shouldn't be established, free_pgtables()
1944 	 * should have release it.
1945 	 */
1946 	if (WARN_ON(!pmd_none(*new_pmd))) {
1947 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1948 		return false;
1949 	}
1950 
1951 	/*
1952 	 * We don't have to worry about the ordering of src and dst
1953 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1954 	 */
1955 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1956 	if (old_ptl) {
1957 		new_ptl = pmd_lockptr(mm, new_pmd);
1958 		if (new_ptl != old_ptl)
1959 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1960 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1961 		if (pmd_present(pmd))
1962 			force_flush = true;
1963 		VM_BUG_ON(!pmd_none(*new_pmd));
1964 
1965 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1966 			pgtable_t pgtable;
1967 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1968 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1969 		}
1970 		pmd = move_soft_dirty_pmd(pmd);
1971 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1972 		if (force_flush)
1973 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1974 		if (new_ptl != old_ptl)
1975 			spin_unlock(new_ptl);
1976 		spin_unlock(old_ptl);
1977 		return true;
1978 	}
1979 	return false;
1980 }
1981 
1982 /*
1983  * Returns
1984  *  - 0 if PMD could not be locked
1985  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1986  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1987  */
1988 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1989 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1990 {
1991 	struct mm_struct *mm = vma->vm_mm;
1992 	spinlock_t *ptl;
1993 	pmd_t entry;
1994 	bool preserve_write;
1995 	int ret;
1996 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1997 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1998 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1999 
2000 	ptl = __pmd_trans_huge_lock(pmd, vma);
2001 	if (!ptl)
2002 		return 0;
2003 
2004 	preserve_write = prot_numa && pmd_write(*pmd);
2005 	ret = 1;
2006 
2007 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2008 	if (is_swap_pmd(*pmd)) {
2009 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2010 
2011 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2012 		if (is_write_migration_entry(entry)) {
2013 			pmd_t newpmd;
2014 			/*
2015 			 * A protection check is difficult so
2016 			 * just be safe and disable write
2017 			 */
2018 			make_migration_entry_read(&entry);
2019 			newpmd = swp_entry_to_pmd(entry);
2020 			if (pmd_swp_soft_dirty(*pmd))
2021 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2022 			set_pmd_at(mm, addr, pmd, newpmd);
2023 		}
2024 		goto unlock;
2025 	}
2026 #endif
2027 
2028 	/*
2029 	 * Avoid trapping faults against the zero page. The read-only
2030 	 * data is likely to be read-cached on the local CPU and
2031 	 * local/remote hits to the zero page are not interesting.
2032 	 */
2033 	if (prot_numa && is_huge_zero_pmd(*pmd))
2034 		goto unlock;
2035 
2036 	if (prot_numa && pmd_protnone(*pmd))
2037 		goto unlock;
2038 
2039 	/*
2040 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2041 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2042 	 * which is also under down_read(mmap_sem):
2043 	 *
2044 	 *	CPU0:				CPU1:
2045 	 *				change_huge_pmd(prot_numa=1)
2046 	 *				 pmdp_huge_get_and_clear_notify()
2047 	 * madvise_dontneed()
2048 	 *  zap_pmd_range()
2049 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2050 	 *   // skip the pmd
2051 	 *				 set_pmd_at();
2052 	 *				 // pmd is re-established
2053 	 *
2054 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2055 	 * which may break userspace.
2056 	 *
2057 	 * pmdp_invalidate() is required to make sure we don't miss
2058 	 * dirty/young flags set by hardware.
2059 	 */
2060 	entry = pmdp_invalidate(vma, addr, pmd);
2061 
2062 	entry = pmd_modify(entry, newprot);
2063 	if (preserve_write)
2064 		entry = pmd_mk_savedwrite(entry);
2065 	if (uffd_wp) {
2066 		entry = pmd_wrprotect(entry);
2067 		entry = pmd_mkuffd_wp(entry);
2068 	} else if (uffd_wp_resolve) {
2069 		/*
2070 		 * Leave the write bit to be handled by PF interrupt
2071 		 * handler, then things like COW could be properly
2072 		 * handled.
2073 		 */
2074 		entry = pmd_clear_uffd_wp(entry);
2075 	}
2076 	ret = HPAGE_PMD_NR;
2077 	set_pmd_at(mm, addr, pmd, entry);
2078 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2079 unlock:
2080 	spin_unlock(ptl);
2081 	return ret;
2082 }
2083 
2084 /*
2085  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2086  *
2087  * Note that if it returns page table lock pointer, this routine returns without
2088  * unlocking page table lock. So callers must unlock it.
2089  */
2090 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2091 {
2092 	spinlock_t *ptl;
2093 	ptl = pmd_lock(vma->vm_mm, pmd);
2094 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2095 			pmd_devmap(*pmd)))
2096 		return ptl;
2097 	spin_unlock(ptl);
2098 	return NULL;
2099 }
2100 
2101 /*
2102  * Returns true if a given pud maps a thp, false otherwise.
2103  *
2104  * Note that if it returns true, this routine returns without unlocking page
2105  * table lock. So callers must unlock it.
2106  */
2107 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2108 {
2109 	spinlock_t *ptl;
2110 
2111 	ptl = pud_lock(vma->vm_mm, pud);
2112 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2113 		return ptl;
2114 	spin_unlock(ptl);
2115 	return NULL;
2116 }
2117 
2118 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2119 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2120 		 pud_t *pud, unsigned long addr)
2121 {
2122 	spinlock_t *ptl;
2123 
2124 	ptl = __pud_trans_huge_lock(pud, vma);
2125 	if (!ptl)
2126 		return 0;
2127 	/*
2128 	 * For architectures like ppc64 we look at deposited pgtable
2129 	 * when calling pudp_huge_get_and_clear. So do the
2130 	 * pgtable_trans_huge_withdraw after finishing pudp related
2131 	 * operations.
2132 	 */
2133 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2134 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2135 	if (vma_is_special_huge(vma)) {
2136 		spin_unlock(ptl);
2137 		/* No zero page support yet */
2138 	} else {
2139 		/* No support for anonymous PUD pages yet */
2140 		BUG();
2141 	}
2142 	return 1;
2143 }
2144 
2145 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2146 		unsigned long haddr)
2147 {
2148 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2149 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2150 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2151 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2152 
2153 	count_vm_event(THP_SPLIT_PUD);
2154 
2155 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2156 }
2157 
2158 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2159 		unsigned long address)
2160 {
2161 	spinlock_t *ptl;
2162 	struct mmu_notifier_range range;
2163 
2164 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2165 				address & HPAGE_PUD_MASK,
2166 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2167 	mmu_notifier_invalidate_range_start(&range);
2168 	ptl = pud_lock(vma->vm_mm, pud);
2169 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2170 		goto out;
2171 	__split_huge_pud_locked(vma, pud, range.start);
2172 
2173 out:
2174 	spin_unlock(ptl);
2175 	/*
2176 	 * No need to double call mmu_notifier->invalidate_range() callback as
2177 	 * the above pudp_huge_clear_flush_notify() did already call it.
2178 	 */
2179 	mmu_notifier_invalidate_range_only_end(&range);
2180 }
2181 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2182 
2183 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2184 		unsigned long haddr, pmd_t *pmd)
2185 {
2186 	struct mm_struct *mm = vma->vm_mm;
2187 	pgtable_t pgtable;
2188 	pmd_t _pmd;
2189 	int i;
2190 
2191 	/*
2192 	 * Leave pmd empty until pte is filled note that it is fine to delay
2193 	 * notification until mmu_notifier_invalidate_range_end() as we are
2194 	 * replacing a zero pmd write protected page with a zero pte write
2195 	 * protected page.
2196 	 *
2197 	 * See Documentation/vm/mmu_notifier.rst
2198 	 */
2199 	pmdp_huge_clear_flush(vma, haddr, pmd);
2200 
2201 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2202 	pmd_populate(mm, &_pmd, pgtable);
2203 
2204 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2205 		pte_t *pte, entry;
2206 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2207 		entry = pte_mkspecial(entry);
2208 		pte = pte_offset_map(&_pmd, haddr);
2209 		VM_BUG_ON(!pte_none(*pte));
2210 		set_pte_at(mm, haddr, pte, entry);
2211 		pte_unmap(pte);
2212 	}
2213 	smp_wmb(); /* make pte visible before pmd */
2214 	pmd_populate(mm, pmd, pgtable);
2215 }
2216 
2217 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2218 		unsigned long haddr, bool freeze)
2219 {
2220 	struct mm_struct *mm = vma->vm_mm;
2221 	struct page *page;
2222 	pgtable_t pgtable;
2223 	pmd_t old_pmd, _pmd;
2224 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2225 	unsigned long addr;
2226 	int i;
2227 
2228 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2229 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2230 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2231 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2232 				&& !pmd_devmap(*pmd));
2233 
2234 	count_vm_event(THP_SPLIT_PMD);
2235 
2236 	if (!vma_is_anonymous(vma)) {
2237 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2238 		/*
2239 		 * We are going to unmap this huge page. So
2240 		 * just go ahead and zap it
2241 		 */
2242 		if (arch_needs_pgtable_deposit())
2243 			zap_deposited_table(mm, pmd);
2244 		if (vma_is_special_huge(vma))
2245 			return;
2246 		page = pmd_page(_pmd);
2247 		if (!PageDirty(page) && pmd_dirty(_pmd))
2248 			set_page_dirty(page);
2249 		if (!PageReferenced(page) && pmd_young(_pmd))
2250 			SetPageReferenced(page);
2251 		page_remove_rmap(page, true);
2252 		put_page(page);
2253 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2254 		return;
2255 	} else if (is_huge_zero_pmd(*pmd)) {
2256 		/*
2257 		 * FIXME: Do we want to invalidate secondary mmu by calling
2258 		 * mmu_notifier_invalidate_range() see comments below inside
2259 		 * __split_huge_pmd() ?
2260 		 *
2261 		 * We are going from a zero huge page write protected to zero
2262 		 * small page also write protected so it does not seems useful
2263 		 * to invalidate secondary mmu at this time.
2264 		 */
2265 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2266 	}
2267 
2268 	/*
2269 	 * Up to this point the pmd is present and huge and userland has the
2270 	 * whole access to the hugepage during the split (which happens in
2271 	 * place). If we overwrite the pmd with the not-huge version pointing
2272 	 * to the pte here (which of course we could if all CPUs were bug
2273 	 * free), userland could trigger a small page size TLB miss on the
2274 	 * small sized TLB while the hugepage TLB entry is still established in
2275 	 * the huge TLB. Some CPU doesn't like that.
2276 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2277 	 * 383 on page 93. Intel should be safe but is also warns that it's
2278 	 * only safe if the permission and cache attributes of the two entries
2279 	 * loaded in the two TLB is identical (which should be the case here).
2280 	 * But it is generally safer to never allow small and huge TLB entries
2281 	 * for the same virtual address to be loaded simultaneously. So instead
2282 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2283 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2284 	 * must remain set at all times on the pmd until the split is complete
2285 	 * for this pmd), then we flush the SMP TLB and finally we write the
2286 	 * non-huge version of the pmd entry with pmd_populate.
2287 	 */
2288 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2289 
2290 	pmd_migration = is_pmd_migration_entry(old_pmd);
2291 	if (unlikely(pmd_migration)) {
2292 		swp_entry_t entry;
2293 
2294 		entry = pmd_to_swp_entry(old_pmd);
2295 		page = pfn_to_page(swp_offset(entry));
2296 		write = is_write_migration_entry(entry);
2297 		young = false;
2298 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2299 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2300 	} else {
2301 		page = pmd_page(old_pmd);
2302 		if (pmd_dirty(old_pmd))
2303 			SetPageDirty(page);
2304 		write = pmd_write(old_pmd);
2305 		young = pmd_young(old_pmd);
2306 		soft_dirty = pmd_soft_dirty(old_pmd);
2307 		uffd_wp = pmd_uffd_wp(old_pmd);
2308 	}
2309 	VM_BUG_ON_PAGE(!page_count(page), page);
2310 	page_ref_add(page, HPAGE_PMD_NR - 1);
2311 
2312 	/*
2313 	 * Withdraw the table only after we mark the pmd entry invalid.
2314 	 * This's critical for some architectures (Power).
2315 	 */
2316 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2317 	pmd_populate(mm, &_pmd, pgtable);
2318 
2319 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2320 		pte_t entry, *pte;
2321 		/*
2322 		 * Note that NUMA hinting access restrictions are not
2323 		 * transferred to avoid any possibility of altering
2324 		 * permissions across VMAs.
2325 		 */
2326 		if (freeze || pmd_migration) {
2327 			swp_entry_t swp_entry;
2328 			swp_entry = make_migration_entry(page + i, write);
2329 			entry = swp_entry_to_pte(swp_entry);
2330 			if (soft_dirty)
2331 				entry = pte_swp_mksoft_dirty(entry);
2332 			if (uffd_wp)
2333 				entry = pte_swp_mkuffd_wp(entry);
2334 		} else {
2335 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2336 			entry = maybe_mkwrite(entry, vma);
2337 			if (!write)
2338 				entry = pte_wrprotect(entry);
2339 			if (!young)
2340 				entry = pte_mkold(entry);
2341 			if (soft_dirty)
2342 				entry = pte_mksoft_dirty(entry);
2343 			if (uffd_wp)
2344 				entry = pte_mkuffd_wp(entry);
2345 		}
2346 		pte = pte_offset_map(&_pmd, addr);
2347 		BUG_ON(!pte_none(*pte));
2348 		set_pte_at(mm, addr, pte, entry);
2349 		atomic_inc(&page[i]._mapcount);
2350 		pte_unmap(pte);
2351 	}
2352 
2353 	/*
2354 	 * Set PG_double_map before dropping compound_mapcount to avoid
2355 	 * false-negative page_mapped().
2356 	 */
2357 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2358 		for (i = 0; i < HPAGE_PMD_NR; i++)
2359 			atomic_inc(&page[i]._mapcount);
2360 	}
2361 
2362 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2363 		/* Last compound_mapcount is gone. */
2364 		__dec_node_page_state(page, NR_ANON_THPS);
2365 		if (TestClearPageDoubleMap(page)) {
2366 			/* No need in mapcount reference anymore */
2367 			for (i = 0; i < HPAGE_PMD_NR; i++)
2368 				atomic_dec(&page[i]._mapcount);
2369 		}
2370 	}
2371 
2372 	smp_wmb(); /* make pte visible before pmd */
2373 	pmd_populate(mm, pmd, pgtable);
2374 
2375 	if (freeze) {
2376 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2377 			page_remove_rmap(page + i, false);
2378 			put_page(page + i);
2379 		}
2380 	}
2381 }
2382 
2383 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2384 		unsigned long address, bool freeze, struct page *page)
2385 {
2386 	spinlock_t *ptl;
2387 	struct mmu_notifier_range range;
2388 
2389 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2390 				address & HPAGE_PMD_MASK,
2391 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2392 	mmu_notifier_invalidate_range_start(&range);
2393 	ptl = pmd_lock(vma->vm_mm, pmd);
2394 
2395 	/*
2396 	 * If caller asks to setup a migration entries, we need a page to check
2397 	 * pmd against. Otherwise we can end up replacing wrong page.
2398 	 */
2399 	VM_BUG_ON(freeze && !page);
2400 	if (page && page != pmd_page(*pmd))
2401 	        goto out;
2402 
2403 	if (pmd_trans_huge(*pmd)) {
2404 		page = pmd_page(*pmd);
2405 		if (PageMlocked(page))
2406 			clear_page_mlock(page);
2407 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2408 		goto out;
2409 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2410 out:
2411 	spin_unlock(ptl);
2412 	/*
2413 	 * No need to double call mmu_notifier->invalidate_range() callback.
2414 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2415 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2416 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2417 	 *    fault will trigger a flush_notify before pointing to a new page
2418 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2419 	 *    page in the meantime)
2420 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2421 	 *     to invalidate secondary tlb entry they are all still valid.
2422 	 *     any further changes to individual pte will notify. So no need
2423 	 *     to call mmu_notifier->invalidate_range()
2424 	 */
2425 	mmu_notifier_invalidate_range_only_end(&range);
2426 }
2427 
2428 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2429 		bool freeze, struct page *page)
2430 {
2431 	pgd_t *pgd;
2432 	p4d_t *p4d;
2433 	pud_t *pud;
2434 	pmd_t *pmd;
2435 
2436 	pgd = pgd_offset(vma->vm_mm, address);
2437 	if (!pgd_present(*pgd))
2438 		return;
2439 
2440 	p4d = p4d_offset(pgd, address);
2441 	if (!p4d_present(*p4d))
2442 		return;
2443 
2444 	pud = pud_offset(p4d, address);
2445 	if (!pud_present(*pud))
2446 		return;
2447 
2448 	pmd = pmd_offset(pud, address);
2449 
2450 	__split_huge_pmd(vma, pmd, address, freeze, page);
2451 }
2452 
2453 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2454 			     unsigned long start,
2455 			     unsigned long end,
2456 			     long adjust_next)
2457 {
2458 	/*
2459 	 * If the new start address isn't hpage aligned and it could
2460 	 * previously contain an hugepage: check if we need to split
2461 	 * an huge pmd.
2462 	 */
2463 	if (start & ~HPAGE_PMD_MASK &&
2464 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2465 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2466 		split_huge_pmd_address(vma, start, false, NULL);
2467 
2468 	/*
2469 	 * If the new end address isn't hpage aligned and it could
2470 	 * previously contain an hugepage: check if we need to split
2471 	 * an huge pmd.
2472 	 */
2473 	if (end & ~HPAGE_PMD_MASK &&
2474 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2475 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2476 		split_huge_pmd_address(vma, end, false, NULL);
2477 
2478 	/*
2479 	 * If we're also updating the vma->vm_next->vm_start, if the new
2480 	 * vm_next->vm_start isn't page aligned and it could previously
2481 	 * contain an hugepage: check if we need to split an huge pmd.
2482 	 */
2483 	if (adjust_next > 0) {
2484 		struct vm_area_struct *next = vma->vm_next;
2485 		unsigned long nstart = next->vm_start;
2486 		nstart += adjust_next << PAGE_SHIFT;
2487 		if (nstart & ~HPAGE_PMD_MASK &&
2488 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2489 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2490 			split_huge_pmd_address(next, nstart, false, NULL);
2491 	}
2492 }
2493 
2494 static void unmap_page(struct page *page)
2495 {
2496 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2497 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2498 	bool unmap_success;
2499 
2500 	VM_BUG_ON_PAGE(!PageHead(page), page);
2501 
2502 	if (PageAnon(page))
2503 		ttu_flags |= TTU_SPLIT_FREEZE;
2504 
2505 	unmap_success = try_to_unmap(page, ttu_flags);
2506 	VM_BUG_ON_PAGE(!unmap_success, page);
2507 }
2508 
2509 static void remap_page(struct page *page)
2510 {
2511 	int i;
2512 	if (PageTransHuge(page)) {
2513 		remove_migration_ptes(page, page, true);
2514 	} else {
2515 		for (i = 0; i < HPAGE_PMD_NR; i++)
2516 			remove_migration_ptes(page + i, page + i, true);
2517 	}
2518 }
2519 
2520 static void __split_huge_page_tail(struct page *head, int tail,
2521 		struct lruvec *lruvec, struct list_head *list)
2522 {
2523 	struct page *page_tail = head + tail;
2524 
2525 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2526 
2527 	/*
2528 	 * Clone page flags before unfreezing refcount.
2529 	 *
2530 	 * After successful get_page_unless_zero() might follow flags change,
2531 	 * for exmaple lock_page() which set PG_waiters.
2532 	 */
2533 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2534 	page_tail->flags |= (head->flags &
2535 			((1L << PG_referenced) |
2536 			 (1L << PG_swapbacked) |
2537 			 (1L << PG_swapcache) |
2538 			 (1L << PG_mlocked) |
2539 			 (1L << PG_uptodate) |
2540 			 (1L << PG_active) |
2541 			 (1L << PG_workingset) |
2542 			 (1L << PG_locked) |
2543 			 (1L << PG_unevictable) |
2544 			 (1L << PG_dirty)));
2545 
2546 	/* ->mapping in first tail page is compound_mapcount */
2547 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2548 			page_tail);
2549 	page_tail->mapping = head->mapping;
2550 	page_tail->index = head->index + tail;
2551 
2552 	/* Page flags must be visible before we make the page non-compound. */
2553 	smp_wmb();
2554 
2555 	/*
2556 	 * Clear PageTail before unfreezing page refcount.
2557 	 *
2558 	 * After successful get_page_unless_zero() might follow put_page()
2559 	 * which needs correct compound_head().
2560 	 */
2561 	clear_compound_head(page_tail);
2562 
2563 	/* Finally unfreeze refcount. Additional reference from page cache. */
2564 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2565 					  PageSwapCache(head)));
2566 
2567 	if (page_is_young(head))
2568 		set_page_young(page_tail);
2569 	if (page_is_idle(head))
2570 		set_page_idle(page_tail);
2571 
2572 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2573 
2574 	/*
2575 	 * always add to the tail because some iterators expect new
2576 	 * pages to show after the currently processed elements - e.g.
2577 	 * migrate_pages
2578 	 */
2579 	lru_add_page_tail(head, page_tail, lruvec, list);
2580 }
2581 
2582 static void __split_huge_page(struct page *page, struct list_head *list,
2583 		pgoff_t end, unsigned long flags)
2584 {
2585 	struct page *head = compound_head(page);
2586 	pg_data_t *pgdat = page_pgdat(head);
2587 	struct lruvec *lruvec;
2588 	struct address_space *swap_cache = NULL;
2589 	unsigned long offset = 0;
2590 	int i;
2591 
2592 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2593 
2594 	/* complete memcg works before add pages to LRU */
2595 	mem_cgroup_split_huge_fixup(head);
2596 
2597 	if (PageAnon(head) && PageSwapCache(head)) {
2598 		swp_entry_t entry = { .val = page_private(head) };
2599 
2600 		offset = swp_offset(entry);
2601 		swap_cache = swap_address_space(entry);
2602 		xa_lock(&swap_cache->i_pages);
2603 	}
2604 
2605 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2606 		__split_huge_page_tail(head, i, lruvec, list);
2607 		/* Some pages can be beyond i_size: drop them from page cache */
2608 		if (head[i].index >= end) {
2609 			ClearPageDirty(head + i);
2610 			__delete_from_page_cache(head + i, NULL);
2611 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2612 				shmem_uncharge(head->mapping->host, 1);
2613 			put_page(head + i);
2614 		} else if (!PageAnon(page)) {
2615 			__xa_store(&head->mapping->i_pages, head[i].index,
2616 					head + i, 0);
2617 		} else if (swap_cache) {
2618 			__xa_store(&swap_cache->i_pages, offset + i,
2619 					head + i, 0);
2620 		}
2621 	}
2622 
2623 	ClearPageCompound(head);
2624 
2625 	split_page_owner(head, HPAGE_PMD_ORDER);
2626 
2627 	/* See comment in __split_huge_page_tail() */
2628 	if (PageAnon(head)) {
2629 		/* Additional pin to swap cache */
2630 		if (PageSwapCache(head)) {
2631 			page_ref_add(head, 2);
2632 			xa_unlock(&swap_cache->i_pages);
2633 		} else {
2634 			page_ref_inc(head);
2635 		}
2636 	} else {
2637 		/* Additional pin to page cache */
2638 		page_ref_add(head, 2);
2639 		xa_unlock(&head->mapping->i_pages);
2640 	}
2641 
2642 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2643 
2644 	remap_page(head);
2645 
2646 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2647 		struct page *subpage = head + i;
2648 		if (subpage == page)
2649 			continue;
2650 		unlock_page(subpage);
2651 
2652 		/*
2653 		 * Subpages may be freed if there wasn't any mapping
2654 		 * like if add_to_swap() is running on a lru page that
2655 		 * had its mapping zapped. And freeing these pages
2656 		 * requires taking the lru_lock so we do the put_page
2657 		 * of the tail pages after the split is complete.
2658 		 */
2659 		put_page(subpage);
2660 	}
2661 }
2662 
2663 int total_mapcount(struct page *page)
2664 {
2665 	int i, compound, ret;
2666 
2667 	VM_BUG_ON_PAGE(PageTail(page), page);
2668 
2669 	if (likely(!PageCompound(page)))
2670 		return atomic_read(&page->_mapcount) + 1;
2671 
2672 	compound = compound_mapcount(page);
2673 	if (PageHuge(page))
2674 		return compound;
2675 	ret = compound;
2676 	for (i = 0; i < HPAGE_PMD_NR; i++)
2677 		ret += atomic_read(&page[i]._mapcount) + 1;
2678 	/* File pages has compound_mapcount included in _mapcount */
2679 	if (!PageAnon(page))
2680 		return ret - compound * HPAGE_PMD_NR;
2681 	if (PageDoubleMap(page))
2682 		ret -= HPAGE_PMD_NR;
2683 	return ret;
2684 }
2685 
2686 /*
2687  * This calculates accurately how many mappings a transparent hugepage
2688  * has (unlike page_mapcount() which isn't fully accurate). This full
2689  * accuracy is primarily needed to know if copy-on-write faults can
2690  * reuse the page and change the mapping to read-write instead of
2691  * copying them. At the same time this returns the total_mapcount too.
2692  *
2693  * The function returns the highest mapcount any one of the subpages
2694  * has. If the return value is one, even if different processes are
2695  * mapping different subpages of the transparent hugepage, they can
2696  * all reuse it, because each process is reusing a different subpage.
2697  *
2698  * The total_mapcount is instead counting all virtual mappings of the
2699  * subpages. If the total_mapcount is equal to "one", it tells the
2700  * caller all mappings belong to the same "mm" and in turn the
2701  * anon_vma of the transparent hugepage can become the vma->anon_vma
2702  * local one as no other process may be mapping any of the subpages.
2703  *
2704  * It would be more accurate to replace page_mapcount() with
2705  * page_trans_huge_mapcount(), however we only use
2706  * page_trans_huge_mapcount() in the copy-on-write faults where we
2707  * need full accuracy to avoid breaking page pinning, because
2708  * page_trans_huge_mapcount() is slower than page_mapcount().
2709  */
2710 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2711 {
2712 	int i, ret, _total_mapcount, mapcount;
2713 
2714 	/* hugetlbfs shouldn't call it */
2715 	VM_BUG_ON_PAGE(PageHuge(page), page);
2716 
2717 	if (likely(!PageTransCompound(page))) {
2718 		mapcount = atomic_read(&page->_mapcount) + 1;
2719 		if (total_mapcount)
2720 			*total_mapcount = mapcount;
2721 		return mapcount;
2722 	}
2723 
2724 	page = compound_head(page);
2725 
2726 	_total_mapcount = ret = 0;
2727 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2728 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2729 		ret = max(ret, mapcount);
2730 		_total_mapcount += mapcount;
2731 	}
2732 	if (PageDoubleMap(page)) {
2733 		ret -= 1;
2734 		_total_mapcount -= HPAGE_PMD_NR;
2735 	}
2736 	mapcount = compound_mapcount(page);
2737 	ret += mapcount;
2738 	_total_mapcount += mapcount;
2739 	if (total_mapcount)
2740 		*total_mapcount = _total_mapcount;
2741 	return ret;
2742 }
2743 
2744 /* Racy check whether the huge page can be split */
2745 bool can_split_huge_page(struct page *page, int *pextra_pins)
2746 {
2747 	int extra_pins;
2748 
2749 	/* Additional pins from page cache */
2750 	if (PageAnon(page))
2751 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2752 	else
2753 		extra_pins = HPAGE_PMD_NR;
2754 	if (pextra_pins)
2755 		*pextra_pins = extra_pins;
2756 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2757 }
2758 
2759 /*
2760  * This function splits huge page into normal pages. @page can point to any
2761  * subpage of huge page to split. Split doesn't change the position of @page.
2762  *
2763  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2764  * The huge page must be locked.
2765  *
2766  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2767  *
2768  * Both head page and tail pages will inherit mapping, flags, and so on from
2769  * the hugepage.
2770  *
2771  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2772  * they are not mapped.
2773  *
2774  * Returns 0 if the hugepage is split successfully.
2775  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2776  * us.
2777  */
2778 int split_huge_page_to_list(struct page *page, struct list_head *list)
2779 {
2780 	struct page *head = compound_head(page);
2781 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2782 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2783 	struct anon_vma *anon_vma = NULL;
2784 	struct address_space *mapping = NULL;
2785 	int count, mapcount, extra_pins, ret;
2786 	bool mlocked;
2787 	unsigned long flags;
2788 	pgoff_t end;
2789 
2790 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2791 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2792 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2793 
2794 	if (PageWriteback(head))
2795 		return -EBUSY;
2796 
2797 	if (PageAnon(head)) {
2798 		/*
2799 		 * The caller does not necessarily hold an mmap_sem that would
2800 		 * prevent the anon_vma disappearing so we first we take a
2801 		 * reference to it and then lock the anon_vma for write. This
2802 		 * is similar to page_lock_anon_vma_read except the write lock
2803 		 * is taken to serialise against parallel split or collapse
2804 		 * operations.
2805 		 */
2806 		anon_vma = page_get_anon_vma(head);
2807 		if (!anon_vma) {
2808 			ret = -EBUSY;
2809 			goto out;
2810 		}
2811 		end = -1;
2812 		mapping = NULL;
2813 		anon_vma_lock_write(anon_vma);
2814 	} else {
2815 		mapping = head->mapping;
2816 
2817 		/* Truncated ? */
2818 		if (!mapping) {
2819 			ret = -EBUSY;
2820 			goto out;
2821 		}
2822 
2823 		anon_vma = NULL;
2824 		i_mmap_lock_read(mapping);
2825 
2826 		/*
2827 		 *__split_huge_page() may need to trim off pages beyond EOF:
2828 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2829 		 * which cannot be nested inside the page tree lock. So note
2830 		 * end now: i_size itself may be changed at any moment, but
2831 		 * head page lock is good enough to serialize the trimming.
2832 		 */
2833 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2834 	}
2835 
2836 	/*
2837 	 * Racy check if we can split the page, before unmap_page() will
2838 	 * split PMDs
2839 	 */
2840 	if (!can_split_huge_page(head, &extra_pins)) {
2841 		ret = -EBUSY;
2842 		goto out_unlock;
2843 	}
2844 
2845 	mlocked = PageMlocked(head);
2846 	unmap_page(head);
2847 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2848 
2849 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2850 	if (mlocked)
2851 		lru_add_drain();
2852 
2853 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2854 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2855 
2856 	if (mapping) {
2857 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2858 
2859 		/*
2860 		 * Check if the head page is present in page cache.
2861 		 * We assume all tail are present too, if head is there.
2862 		 */
2863 		xa_lock(&mapping->i_pages);
2864 		if (xas_load(&xas) != head)
2865 			goto fail;
2866 	}
2867 
2868 	/* Prevent deferred_split_scan() touching ->_refcount */
2869 	spin_lock(&ds_queue->split_queue_lock);
2870 	count = page_count(head);
2871 	mapcount = total_mapcount(head);
2872 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2873 		if (!list_empty(page_deferred_list(head))) {
2874 			ds_queue->split_queue_len--;
2875 			list_del(page_deferred_list(head));
2876 		}
2877 		spin_unlock(&ds_queue->split_queue_lock);
2878 		if (mapping) {
2879 			if (PageSwapBacked(head))
2880 				__dec_node_page_state(head, NR_SHMEM_THPS);
2881 			else
2882 				__dec_node_page_state(head, NR_FILE_THPS);
2883 		}
2884 
2885 		__split_huge_page(page, list, end, flags);
2886 		if (PageSwapCache(head)) {
2887 			swp_entry_t entry = { .val = page_private(head) };
2888 
2889 			ret = split_swap_cluster(entry);
2890 		} else
2891 			ret = 0;
2892 	} else {
2893 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2894 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2895 					mapcount, count);
2896 			if (PageTail(page))
2897 				dump_page(head, NULL);
2898 			dump_page(page, "total_mapcount(head) > 0");
2899 			BUG();
2900 		}
2901 		spin_unlock(&ds_queue->split_queue_lock);
2902 fail:		if (mapping)
2903 			xa_unlock(&mapping->i_pages);
2904 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2905 		remap_page(head);
2906 		ret = -EBUSY;
2907 	}
2908 
2909 out_unlock:
2910 	if (anon_vma) {
2911 		anon_vma_unlock_write(anon_vma);
2912 		put_anon_vma(anon_vma);
2913 	}
2914 	if (mapping)
2915 		i_mmap_unlock_read(mapping);
2916 out:
2917 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2918 	return ret;
2919 }
2920 
2921 void free_transhuge_page(struct page *page)
2922 {
2923 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2924 	unsigned long flags;
2925 
2926 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2927 	if (!list_empty(page_deferred_list(page))) {
2928 		ds_queue->split_queue_len--;
2929 		list_del(page_deferred_list(page));
2930 	}
2931 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2932 	free_compound_page(page);
2933 }
2934 
2935 void deferred_split_huge_page(struct page *page)
2936 {
2937 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2938 #ifdef CONFIG_MEMCG
2939 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2940 #endif
2941 	unsigned long flags;
2942 
2943 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2944 
2945 	/*
2946 	 * The try_to_unmap() in page reclaim path might reach here too,
2947 	 * this may cause a race condition to corrupt deferred split queue.
2948 	 * And, if page reclaim is already handling the same page, it is
2949 	 * unnecessary to handle it again in shrinker.
2950 	 *
2951 	 * Check PageSwapCache to determine if the page is being
2952 	 * handled by page reclaim since THP swap would add the page into
2953 	 * swap cache before calling try_to_unmap().
2954 	 */
2955 	if (PageSwapCache(page))
2956 		return;
2957 
2958 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2959 	if (list_empty(page_deferred_list(page))) {
2960 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2961 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2962 		ds_queue->split_queue_len++;
2963 #ifdef CONFIG_MEMCG
2964 		if (memcg)
2965 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2966 					       deferred_split_shrinker.id);
2967 #endif
2968 	}
2969 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2970 }
2971 
2972 static unsigned long deferred_split_count(struct shrinker *shrink,
2973 		struct shrink_control *sc)
2974 {
2975 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2976 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2977 
2978 #ifdef CONFIG_MEMCG
2979 	if (sc->memcg)
2980 		ds_queue = &sc->memcg->deferred_split_queue;
2981 #endif
2982 	return READ_ONCE(ds_queue->split_queue_len);
2983 }
2984 
2985 static unsigned long deferred_split_scan(struct shrinker *shrink,
2986 		struct shrink_control *sc)
2987 {
2988 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2989 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2990 	unsigned long flags;
2991 	LIST_HEAD(list), *pos, *next;
2992 	struct page *page;
2993 	int split = 0;
2994 
2995 #ifdef CONFIG_MEMCG
2996 	if (sc->memcg)
2997 		ds_queue = &sc->memcg->deferred_split_queue;
2998 #endif
2999 
3000 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3001 	/* Take pin on all head pages to avoid freeing them under us */
3002 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
3003 		page = list_entry((void *)pos, struct page, mapping);
3004 		page = compound_head(page);
3005 		if (get_page_unless_zero(page)) {
3006 			list_move(page_deferred_list(page), &list);
3007 		} else {
3008 			/* We lost race with put_compound_page() */
3009 			list_del_init(page_deferred_list(page));
3010 			ds_queue->split_queue_len--;
3011 		}
3012 		if (!--sc->nr_to_scan)
3013 			break;
3014 	}
3015 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3016 
3017 	list_for_each_safe(pos, next, &list) {
3018 		page = list_entry((void *)pos, struct page, mapping);
3019 		if (!trylock_page(page))
3020 			goto next;
3021 		/* split_huge_page() removes page from list on success */
3022 		if (!split_huge_page(page))
3023 			split++;
3024 		unlock_page(page);
3025 next:
3026 		put_page(page);
3027 	}
3028 
3029 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3030 	list_splice_tail(&list, &ds_queue->split_queue);
3031 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3032 
3033 	/*
3034 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3035 	 * This can happen if pages were freed under us.
3036 	 */
3037 	if (!split && list_empty(&ds_queue->split_queue))
3038 		return SHRINK_STOP;
3039 	return split;
3040 }
3041 
3042 static struct shrinker deferred_split_shrinker = {
3043 	.count_objects = deferred_split_count,
3044 	.scan_objects = deferred_split_scan,
3045 	.seeks = DEFAULT_SEEKS,
3046 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3047 		 SHRINKER_NONSLAB,
3048 };
3049 
3050 #ifdef CONFIG_DEBUG_FS
3051 static int split_huge_pages_set(void *data, u64 val)
3052 {
3053 	struct zone *zone;
3054 	struct page *page;
3055 	unsigned long pfn, max_zone_pfn;
3056 	unsigned long total = 0, split = 0;
3057 
3058 	if (val != 1)
3059 		return -EINVAL;
3060 
3061 	for_each_populated_zone(zone) {
3062 		max_zone_pfn = zone_end_pfn(zone);
3063 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3064 			if (!pfn_valid(pfn))
3065 				continue;
3066 
3067 			page = pfn_to_page(pfn);
3068 			if (!get_page_unless_zero(page))
3069 				continue;
3070 
3071 			if (zone != page_zone(page))
3072 				goto next;
3073 
3074 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3075 				goto next;
3076 
3077 			total++;
3078 			lock_page(page);
3079 			if (!split_huge_page(page))
3080 				split++;
3081 			unlock_page(page);
3082 next:
3083 			put_page(page);
3084 		}
3085 	}
3086 
3087 	pr_info("%lu of %lu THP split\n", split, total);
3088 
3089 	return 0;
3090 }
3091 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3092 		"%llu\n");
3093 
3094 static int __init split_huge_pages_debugfs(void)
3095 {
3096 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3097 			    &split_huge_pages_fops);
3098 	return 0;
3099 }
3100 late_initcall(split_huge_pages_debugfs);
3101 #endif
3102 
3103 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3104 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3105 		struct page *page)
3106 {
3107 	struct vm_area_struct *vma = pvmw->vma;
3108 	struct mm_struct *mm = vma->vm_mm;
3109 	unsigned long address = pvmw->address;
3110 	pmd_t pmdval;
3111 	swp_entry_t entry;
3112 	pmd_t pmdswp;
3113 
3114 	if (!(pvmw->pmd && !pvmw->pte))
3115 		return;
3116 
3117 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3118 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3119 	if (pmd_dirty(pmdval))
3120 		set_page_dirty(page);
3121 	entry = make_migration_entry(page, pmd_write(pmdval));
3122 	pmdswp = swp_entry_to_pmd(entry);
3123 	if (pmd_soft_dirty(pmdval))
3124 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3125 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3126 	page_remove_rmap(page, true);
3127 	put_page(page);
3128 }
3129 
3130 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3131 {
3132 	struct vm_area_struct *vma = pvmw->vma;
3133 	struct mm_struct *mm = vma->vm_mm;
3134 	unsigned long address = pvmw->address;
3135 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3136 	pmd_t pmde;
3137 	swp_entry_t entry;
3138 
3139 	if (!(pvmw->pmd && !pvmw->pte))
3140 		return;
3141 
3142 	entry = pmd_to_swp_entry(*pvmw->pmd);
3143 	get_page(new);
3144 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3145 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3146 		pmde = pmd_mksoft_dirty(pmde);
3147 	if (is_write_migration_entry(entry))
3148 		pmde = maybe_pmd_mkwrite(pmde, vma);
3149 
3150 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3151 	if (PageAnon(new))
3152 		page_add_anon_rmap(new, vma, mmun_start, true);
3153 	else
3154 		page_add_file_rmap(new, true);
3155 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3156 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3157 		mlock_vma_page(new);
3158 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3159 }
3160 #endif
3161