1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/mm_types.h> 24 #include <linux/khugepaged.h> 25 #include <linux/freezer.h> 26 #include <linux/pfn_t.h> 27 #include <linux/mman.h> 28 #include <linux/memremap.h> 29 #include <linux/pagemap.h> 30 #include <linux/debugfs.h> 31 #include <linux/migrate.h> 32 #include <linux/hashtable.h> 33 #include <linux/userfaultfd_k.h> 34 #include <linux/page_idle.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/oom.h> 37 #include <linux/numa.h> 38 #include <linux/page_owner.h> 39 #include <linux/sched/sysctl.h> 40 #include <linux/memory-tiers.h> 41 #include <linux/compat.h> 42 #include <linux/pgalloc_tag.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 84 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 85 unsigned long vm_flags, 86 unsigned long tva_flags, 87 unsigned long orders) 88 { 89 bool smaps = tva_flags & TVA_SMAPS; 90 bool in_pf = tva_flags & TVA_IN_PF; 91 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 92 unsigned long supported_orders; 93 94 /* Check the intersection of requested and supported orders. */ 95 if (vma_is_anonymous(vma)) 96 supported_orders = THP_ORDERS_ALL_ANON; 97 else if (vma_is_dax(vma)) 98 supported_orders = THP_ORDERS_ALL_FILE_DAX; 99 else 100 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 101 102 orders &= supported_orders; 103 if (!orders) 104 return 0; 105 106 if (!vma->vm_mm) /* vdso */ 107 return 0; 108 109 /* 110 * Explicitly disabled through madvise or prctl, or some 111 * architectures may disable THP for some mappings, for 112 * example, s390 kvm. 113 * */ 114 if ((vm_flags & VM_NOHUGEPAGE) || 115 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 116 return 0; 117 /* 118 * If the hardware/firmware marked hugepage support disabled. 119 */ 120 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 121 return 0; 122 123 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 124 if (vma_is_dax(vma)) 125 return in_pf ? orders : 0; 126 127 /* 128 * khugepaged special VMA and hugetlb VMA. 129 * Must be checked after dax since some dax mappings may have 130 * VM_MIXEDMAP set. 131 */ 132 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 133 return 0; 134 135 /* 136 * Check alignment for file vma and size for both file and anon vma by 137 * filtering out the unsuitable orders. 138 * 139 * Skip the check for page fault. Huge fault does the check in fault 140 * handlers. 141 */ 142 if (!in_pf) { 143 int order = highest_order(orders); 144 unsigned long addr; 145 146 while (orders) { 147 addr = vma->vm_end - (PAGE_SIZE << order); 148 if (thp_vma_suitable_order(vma, addr, order)) 149 break; 150 order = next_order(&orders, order); 151 } 152 153 if (!orders) 154 return 0; 155 } 156 157 /* 158 * Enabled via shmem mount options or sysfs settings. 159 * Must be done before hugepage flags check since shmem has its 160 * own flags. 161 */ 162 if (!in_pf && shmem_file(vma->vm_file)) { 163 bool global_huge = shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 164 !enforce_sysfs, vma->vm_mm, vm_flags); 165 166 if (!vma_is_anon_shmem(vma)) 167 return global_huge ? orders : 0; 168 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 169 vma, vma->vm_pgoff, global_huge); 170 } 171 172 if (!vma_is_anonymous(vma)) { 173 /* 174 * Enforce sysfs THP requirements as necessary. Anonymous vmas 175 * were already handled in thp_vma_allowable_orders(). 176 */ 177 if (enforce_sysfs && 178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 179 !hugepage_global_always()))) 180 return 0; 181 182 /* 183 * Trust that ->huge_fault() handlers know what they are doing 184 * in fault path. 185 */ 186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 187 return orders; 188 /* Only regular file is valid in collapse path */ 189 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 190 return orders; 191 return 0; 192 } 193 194 if (vma_is_temporary_stack(vma)) 195 return 0; 196 197 /* 198 * THPeligible bit of smaps should show 1 for proper VMAs even 199 * though anon_vma is not initialized yet. 200 * 201 * Allow page fault since anon_vma may be not initialized until 202 * the first page fault. 203 */ 204 if (!vma->anon_vma) 205 return (smaps || in_pf) ? orders : 0; 206 207 return orders; 208 } 209 210 static bool get_huge_zero_page(void) 211 { 212 struct folio *zero_folio; 213 retry: 214 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 215 return true; 216 217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 218 HPAGE_PMD_ORDER); 219 if (!zero_folio) { 220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 221 return false; 222 } 223 preempt_disable(); 224 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 225 preempt_enable(); 226 folio_put(zero_folio); 227 goto retry; 228 } 229 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 230 231 /* We take additional reference here. It will be put back by shrinker */ 232 atomic_set(&huge_zero_refcount, 2); 233 preempt_enable(); 234 count_vm_event(THP_ZERO_PAGE_ALLOC); 235 return true; 236 } 237 238 static void put_huge_zero_page(void) 239 { 240 /* 241 * Counter should never go to zero here. Only shrinker can put 242 * last reference. 243 */ 244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 245 } 246 247 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 248 { 249 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 250 return READ_ONCE(huge_zero_folio); 251 252 if (!get_huge_zero_page()) 253 return NULL; 254 255 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 256 put_huge_zero_page(); 257 258 return READ_ONCE(huge_zero_folio); 259 } 260 261 void mm_put_huge_zero_folio(struct mm_struct *mm) 262 { 263 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 264 put_huge_zero_page(); 265 } 266 267 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 268 struct shrink_control *sc) 269 { 270 /* we can free zero page only if last reference remains */ 271 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 272 } 273 274 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 275 struct shrink_control *sc) 276 { 277 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 278 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 279 BUG_ON(zero_folio == NULL); 280 WRITE_ONCE(huge_zero_pfn, ~0UL); 281 folio_put(zero_folio); 282 return HPAGE_PMD_NR; 283 } 284 285 return 0; 286 } 287 288 static struct shrinker *huge_zero_page_shrinker; 289 290 #ifdef CONFIG_SYSFS 291 static ssize_t enabled_show(struct kobject *kobj, 292 struct kobj_attribute *attr, char *buf) 293 { 294 const char *output; 295 296 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 297 output = "[always] madvise never"; 298 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 299 &transparent_hugepage_flags)) 300 output = "always [madvise] never"; 301 else 302 output = "always madvise [never]"; 303 304 return sysfs_emit(buf, "%s\n", output); 305 } 306 307 static ssize_t enabled_store(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 const char *buf, size_t count) 310 { 311 ssize_t ret = count; 312 313 if (sysfs_streq(buf, "always")) { 314 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 315 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 316 } else if (sysfs_streq(buf, "madvise")) { 317 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 318 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 319 } else if (sysfs_streq(buf, "never")) { 320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 321 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 322 } else 323 ret = -EINVAL; 324 325 if (ret > 0) { 326 int err = start_stop_khugepaged(); 327 if (err) 328 ret = err; 329 } 330 return ret; 331 } 332 333 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 334 335 ssize_t single_hugepage_flag_show(struct kobject *kobj, 336 struct kobj_attribute *attr, char *buf, 337 enum transparent_hugepage_flag flag) 338 { 339 return sysfs_emit(buf, "%d\n", 340 !!test_bit(flag, &transparent_hugepage_flags)); 341 } 342 343 ssize_t single_hugepage_flag_store(struct kobject *kobj, 344 struct kobj_attribute *attr, 345 const char *buf, size_t count, 346 enum transparent_hugepage_flag flag) 347 { 348 unsigned long value; 349 int ret; 350 351 ret = kstrtoul(buf, 10, &value); 352 if (ret < 0) 353 return ret; 354 if (value > 1) 355 return -EINVAL; 356 357 if (value) 358 set_bit(flag, &transparent_hugepage_flags); 359 else 360 clear_bit(flag, &transparent_hugepage_flags); 361 362 return count; 363 } 364 365 static ssize_t defrag_show(struct kobject *kobj, 366 struct kobj_attribute *attr, char *buf) 367 { 368 const char *output; 369 370 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 371 &transparent_hugepage_flags)) 372 output = "[always] defer defer+madvise madvise never"; 373 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 374 &transparent_hugepage_flags)) 375 output = "always [defer] defer+madvise madvise never"; 376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 377 &transparent_hugepage_flags)) 378 output = "always defer [defer+madvise] madvise never"; 379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 380 &transparent_hugepage_flags)) 381 output = "always defer defer+madvise [madvise] never"; 382 else 383 output = "always defer defer+madvise madvise [never]"; 384 385 return sysfs_emit(buf, "%s\n", output); 386 } 387 388 static ssize_t defrag_store(struct kobject *kobj, 389 struct kobj_attribute *attr, 390 const char *buf, size_t count) 391 { 392 if (sysfs_streq(buf, "always")) { 393 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 394 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 396 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 397 } else if (sysfs_streq(buf, "defer+madvise")) { 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 399 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 401 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 402 } else if (sysfs_streq(buf, "defer")) { 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 405 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 406 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 407 } else if (sysfs_streq(buf, "madvise")) { 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 410 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 411 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 412 } else if (sysfs_streq(buf, "never")) { 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 414 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 415 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 417 } else 418 return -EINVAL; 419 420 return count; 421 } 422 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 423 424 static ssize_t use_zero_page_show(struct kobject *kobj, 425 struct kobj_attribute *attr, char *buf) 426 { 427 return single_hugepage_flag_show(kobj, attr, buf, 428 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 429 } 430 static ssize_t use_zero_page_store(struct kobject *kobj, 431 struct kobj_attribute *attr, const char *buf, size_t count) 432 { 433 return single_hugepage_flag_store(kobj, attr, buf, count, 434 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 435 } 436 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 437 438 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 439 struct kobj_attribute *attr, char *buf) 440 { 441 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 442 } 443 static struct kobj_attribute hpage_pmd_size_attr = 444 __ATTR_RO(hpage_pmd_size); 445 446 static struct attribute *hugepage_attr[] = { 447 &enabled_attr.attr, 448 &defrag_attr.attr, 449 &use_zero_page_attr.attr, 450 &hpage_pmd_size_attr.attr, 451 #ifdef CONFIG_SHMEM 452 &shmem_enabled_attr.attr, 453 #endif 454 NULL, 455 }; 456 457 static const struct attribute_group hugepage_attr_group = { 458 .attrs = hugepage_attr, 459 }; 460 461 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 462 static void thpsize_release(struct kobject *kobj); 463 static DEFINE_SPINLOCK(huge_anon_orders_lock); 464 static LIST_HEAD(thpsize_list); 465 466 static ssize_t thpsize_enabled_show(struct kobject *kobj, 467 struct kobj_attribute *attr, char *buf) 468 { 469 int order = to_thpsize(kobj)->order; 470 const char *output; 471 472 if (test_bit(order, &huge_anon_orders_always)) 473 output = "[always] inherit madvise never"; 474 else if (test_bit(order, &huge_anon_orders_inherit)) 475 output = "always [inherit] madvise never"; 476 else if (test_bit(order, &huge_anon_orders_madvise)) 477 output = "always inherit [madvise] never"; 478 else 479 output = "always inherit madvise [never]"; 480 481 return sysfs_emit(buf, "%s\n", output); 482 } 483 484 static ssize_t thpsize_enabled_store(struct kobject *kobj, 485 struct kobj_attribute *attr, 486 const char *buf, size_t count) 487 { 488 int order = to_thpsize(kobj)->order; 489 ssize_t ret = count; 490 491 if (sysfs_streq(buf, "always")) { 492 spin_lock(&huge_anon_orders_lock); 493 clear_bit(order, &huge_anon_orders_inherit); 494 clear_bit(order, &huge_anon_orders_madvise); 495 set_bit(order, &huge_anon_orders_always); 496 spin_unlock(&huge_anon_orders_lock); 497 } else if (sysfs_streq(buf, "inherit")) { 498 spin_lock(&huge_anon_orders_lock); 499 clear_bit(order, &huge_anon_orders_always); 500 clear_bit(order, &huge_anon_orders_madvise); 501 set_bit(order, &huge_anon_orders_inherit); 502 spin_unlock(&huge_anon_orders_lock); 503 } else if (sysfs_streq(buf, "madvise")) { 504 spin_lock(&huge_anon_orders_lock); 505 clear_bit(order, &huge_anon_orders_always); 506 clear_bit(order, &huge_anon_orders_inherit); 507 set_bit(order, &huge_anon_orders_madvise); 508 spin_unlock(&huge_anon_orders_lock); 509 } else if (sysfs_streq(buf, "never")) { 510 spin_lock(&huge_anon_orders_lock); 511 clear_bit(order, &huge_anon_orders_always); 512 clear_bit(order, &huge_anon_orders_inherit); 513 clear_bit(order, &huge_anon_orders_madvise); 514 spin_unlock(&huge_anon_orders_lock); 515 } else 516 ret = -EINVAL; 517 518 if (ret > 0) { 519 int err; 520 521 err = start_stop_khugepaged(); 522 if (err) 523 ret = err; 524 } 525 return ret; 526 } 527 528 static struct kobj_attribute thpsize_enabled_attr = 529 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 530 531 static struct attribute *thpsize_attrs[] = { 532 &thpsize_enabled_attr.attr, 533 #ifdef CONFIG_SHMEM 534 &thpsize_shmem_enabled_attr.attr, 535 #endif 536 NULL, 537 }; 538 539 static const struct attribute_group thpsize_attr_group = { 540 .attrs = thpsize_attrs, 541 }; 542 543 static const struct kobj_type thpsize_ktype = { 544 .release = &thpsize_release, 545 .sysfs_ops = &kobj_sysfs_ops, 546 }; 547 548 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 549 550 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 551 { 552 unsigned long sum = 0; 553 int cpu; 554 555 for_each_possible_cpu(cpu) { 556 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 557 558 sum += this->stats[order][item]; 559 } 560 561 return sum; 562 } 563 564 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 565 static ssize_t _name##_show(struct kobject *kobj, \ 566 struct kobj_attribute *attr, char *buf) \ 567 { \ 568 int order = to_thpsize(kobj)->order; \ 569 \ 570 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 571 } \ 572 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 573 574 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 575 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 576 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 577 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 578 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 579 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 580 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 581 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 582 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 583 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 584 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 585 586 static struct attribute *stats_attrs[] = { 587 &anon_fault_alloc_attr.attr, 588 &anon_fault_fallback_attr.attr, 589 &anon_fault_fallback_charge_attr.attr, 590 &swpout_attr.attr, 591 &swpout_fallback_attr.attr, 592 &shmem_alloc_attr.attr, 593 &shmem_fallback_attr.attr, 594 &shmem_fallback_charge_attr.attr, 595 &split_attr.attr, 596 &split_failed_attr.attr, 597 &split_deferred_attr.attr, 598 NULL, 599 }; 600 601 static struct attribute_group stats_attr_group = { 602 .name = "stats", 603 .attrs = stats_attrs, 604 }; 605 606 static struct thpsize *thpsize_create(int order, struct kobject *parent) 607 { 608 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 609 struct thpsize *thpsize; 610 int ret; 611 612 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 613 if (!thpsize) 614 return ERR_PTR(-ENOMEM); 615 616 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 617 "hugepages-%lukB", size); 618 if (ret) { 619 kfree(thpsize); 620 return ERR_PTR(ret); 621 } 622 623 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 624 if (ret) { 625 kobject_put(&thpsize->kobj); 626 return ERR_PTR(ret); 627 } 628 629 ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group); 630 if (ret) { 631 kobject_put(&thpsize->kobj); 632 return ERR_PTR(ret); 633 } 634 635 thpsize->order = order; 636 return thpsize; 637 } 638 639 static void thpsize_release(struct kobject *kobj) 640 { 641 kfree(to_thpsize(kobj)); 642 } 643 644 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 645 { 646 int err; 647 struct thpsize *thpsize; 648 unsigned long orders; 649 int order; 650 651 /* 652 * Default to setting PMD-sized THP to inherit the global setting and 653 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 654 * constant so we have to do this here. 655 */ 656 huge_anon_orders_inherit = BIT(PMD_ORDER); 657 658 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 659 if (unlikely(!*hugepage_kobj)) { 660 pr_err("failed to create transparent hugepage kobject\n"); 661 return -ENOMEM; 662 } 663 664 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 665 if (err) { 666 pr_err("failed to register transparent hugepage group\n"); 667 goto delete_obj; 668 } 669 670 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 671 if (err) { 672 pr_err("failed to register transparent hugepage group\n"); 673 goto remove_hp_group; 674 } 675 676 orders = THP_ORDERS_ALL_ANON; 677 order = highest_order(orders); 678 while (orders) { 679 thpsize = thpsize_create(order, *hugepage_kobj); 680 if (IS_ERR(thpsize)) { 681 pr_err("failed to create thpsize for order %d\n", order); 682 err = PTR_ERR(thpsize); 683 goto remove_all; 684 } 685 list_add(&thpsize->node, &thpsize_list); 686 order = next_order(&orders, order); 687 } 688 689 return 0; 690 691 remove_all: 692 hugepage_exit_sysfs(*hugepage_kobj); 693 return err; 694 remove_hp_group: 695 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 696 delete_obj: 697 kobject_put(*hugepage_kobj); 698 return err; 699 } 700 701 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 702 { 703 struct thpsize *thpsize, *tmp; 704 705 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 706 list_del(&thpsize->node); 707 kobject_put(&thpsize->kobj); 708 } 709 710 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 711 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 712 kobject_put(hugepage_kobj); 713 } 714 #else 715 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 716 { 717 return 0; 718 } 719 720 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 721 { 722 } 723 #endif /* CONFIG_SYSFS */ 724 725 static int __init thp_shrinker_init(void) 726 { 727 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 728 if (!huge_zero_page_shrinker) 729 return -ENOMEM; 730 731 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 732 SHRINKER_MEMCG_AWARE | 733 SHRINKER_NONSLAB, 734 "thp-deferred_split"); 735 if (!deferred_split_shrinker) { 736 shrinker_free(huge_zero_page_shrinker); 737 return -ENOMEM; 738 } 739 740 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 741 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 742 shrinker_register(huge_zero_page_shrinker); 743 744 deferred_split_shrinker->count_objects = deferred_split_count; 745 deferred_split_shrinker->scan_objects = deferred_split_scan; 746 shrinker_register(deferred_split_shrinker); 747 748 return 0; 749 } 750 751 static void __init thp_shrinker_exit(void) 752 { 753 shrinker_free(huge_zero_page_shrinker); 754 shrinker_free(deferred_split_shrinker); 755 } 756 757 static int __init hugepage_init(void) 758 { 759 int err; 760 struct kobject *hugepage_kobj; 761 762 if (!has_transparent_hugepage()) { 763 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 764 return -EINVAL; 765 } 766 767 /* 768 * hugepages can't be allocated by the buddy allocator 769 */ 770 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 771 772 err = hugepage_init_sysfs(&hugepage_kobj); 773 if (err) 774 goto err_sysfs; 775 776 err = khugepaged_init(); 777 if (err) 778 goto err_slab; 779 780 err = thp_shrinker_init(); 781 if (err) 782 goto err_shrinker; 783 784 /* 785 * By default disable transparent hugepages on smaller systems, 786 * where the extra memory used could hurt more than TLB overhead 787 * is likely to save. The admin can still enable it through /sys. 788 */ 789 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 790 transparent_hugepage_flags = 0; 791 return 0; 792 } 793 794 err = start_stop_khugepaged(); 795 if (err) 796 goto err_khugepaged; 797 798 return 0; 799 err_khugepaged: 800 thp_shrinker_exit(); 801 err_shrinker: 802 khugepaged_destroy(); 803 err_slab: 804 hugepage_exit_sysfs(hugepage_kobj); 805 err_sysfs: 806 return err; 807 } 808 subsys_initcall(hugepage_init); 809 810 static int __init setup_transparent_hugepage(char *str) 811 { 812 int ret = 0; 813 if (!str) 814 goto out; 815 if (!strcmp(str, "always")) { 816 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 817 &transparent_hugepage_flags); 818 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 819 &transparent_hugepage_flags); 820 ret = 1; 821 } else if (!strcmp(str, "madvise")) { 822 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 823 &transparent_hugepage_flags); 824 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 825 &transparent_hugepage_flags); 826 ret = 1; 827 } else if (!strcmp(str, "never")) { 828 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 829 &transparent_hugepage_flags); 830 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 831 &transparent_hugepage_flags); 832 ret = 1; 833 } 834 out: 835 if (!ret) 836 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 837 return ret; 838 } 839 __setup("transparent_hugepage=", setup_transparent_hugepage); 840 841 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 842 { 843 if (likely(vma->vm_flags & VM_WRITE)) 844 pmd = pmd_mkwrite(pmd, vma); 845 return pmd; 846 } 847 848 #ifdef CONFIG_MEMCG 849 static inline 850 struct deferred_split *get_deferred_split_queue(struct folio *folio) 851 { 852 struct mem_cgroup *memcg = folio_memcg(folio); 853 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 854 855 if (memcg) 856 return &memcg->deferred_split_queue; 857 else 858 return &pgdat->deferred_split_queue; 859 } 860 #else 861 static inline 862 struct deferred_split *get_deferred_split_queue(struct folio *folio) 863 { 864 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 865 866 return &pgdat->deferred_split_queue; 867 } 868 #endif 869 870 static inline bool is_transparent_hugepage(const struct folio *folio) 871 { 872 if (!folio_test_large(folio)) 873 return false; 874 875 return is_huge_zero_folio(folio) || 876 folio_test_large_rmappable(folio); 877 } 878 879 static unsigned long __thp_get_unmapped_area(struct file *filp, 880 unsigned long addr, unsigned long len, 881 loff_t off, unsigned long flags, unsigned long size, 882 vm_flags_t vm_flags) 883 { 884 loff_t off_end = off + len; 885 loff_t off_align = round_up(off, size); 886 unsigned long len_pad, ret, off_sub; 887 888 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 889 return 0; 890 891 if (off_end <= off_align || (off_end - off_align) < size) 892 return 0; 893 894 len_pad = len + size; 895 if (len_pad < len || (off + len_pad) < off) 896 return 0; 897 898 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 899 off >> PAGE_SHIFT, flags, vm_flags); 900 901 /* 902 * The failure might be due to length padding. The caller will retry 903 * without the padding. 904 */ 905 if (IS_ERR_VALUE(ret)) 906 return 0; 907 908 /* 909 * Do not try to align to THP boundary if allocation at the address 910 * hint succeeds. 911 */ 912 if (ret == addr) 913 return addr; 914 915 off_sub = (off - ret) & (size - 1); 916 917 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 918 return ret + size; 919 920 ret += off_sub; 921 return ret; 922 } 923 924 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 925 unsigned long len, unsigned long pgoff, unsigned long flags, 926 vm_flags_t vm_flags) 927 { 928 unsigned long ret; 929 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 930 931 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 932 if (ret) 933 return ret; 934 935 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 936 vm_flags); 937 } 938 939 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 940 unsigned long len, unsigned long pgoff, unsigned long flags) 941 { 942 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 943 } 944 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 945 946 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 947 struct page *page, gfp_t gfp) 948 { 949 struct vm_area_struct *vma = vmf->vma; 950 struct folio *folio = page_folio(page); 951 pgtable_t pgtable; 952 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 953 vm_fault_t ret = 0; 954 955 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 956 957 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 958 folio_put(folio); 959 count_vm_event(THP_FAULT_FALLBACK); 960 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 961 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 962 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 963 return VM_FAULT_FALLBACK; 964 } 965 folio_throttle_swaprate(folio, gfp); 966 967 pgtable = pte_alloc_one(vma->vm_mm); 968 if (unlikely(!pgtable)) { 969 ret = VM_FAULT_OOM; 970 goto release; 971 } 972 973 folio_zero_user(folio, vmf->address); 974 /* 975 * The memory barrier inside __folio_mark_uptodate makes sure that 976 * folio_zero_user writes become visible before the set_pmd_at() 977 * write. 978 */ 979 __folio_mark_uptodate(folio); 980 981 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 982 if (unlikely(!pmd_none(*vmf->pmd))) { 983 goto unlock_release; 984 } else { 985 pmd_t entry; 986 987 ret = check_stable_address_space(vma->vm_mm); 988 if (ret) 989 goto unlock_release; 990 991 /* Deliver the page fault to userland */ 992 if (userfaultfd_missing(vma)) { 993 spin_unlock(vmf->ptl); 994 folio_put(folio); 995 pte_free(vma->vm_mm, pgtable); 996 ret = handle_userfault(vmf, VM_UFFD_MISSING); 997 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 998 return ret; 999 } 1000 1001 entry = mk_huge_pmd(page, vma->vm_page_prot); 1002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1003 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1004 folio_add_lru_vma(folio, vma); 1005 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1006 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1007 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1008 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1009 mm_inc_nr_ptes(vma->vm_mm); 1010 spin_unlock(vmf->ptl); 1011 count_vm_event(THP_FAULT_ALLOC); 1012 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1013 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1014 } 1015 1016 return 0; 1017 unlock_release: 1018 spin_unlock(vmf->ptl); 1019 release: 1020 if (pgtable) 1021 pte_free(vma->vm_mm, pgtable); 1022 folio_put(folio); 1023 return ret; 1024 1025 } 1026 1027 /* 1028 * always: directly stall for all thp allocations 1029 * defer: wake kswapd and fail if not immediately available 1030 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1031 * fail if not immediately available 1032 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1033 * available 1034 * never: never stall for any thp allocation 1035 */ 1036 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1037 { 1038 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1039 1040 /* Always do synchronous compaction */ 1041 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1042 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1043 1044 /* Kick kcompactd and fail quickly */ 1045 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1046 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1047 1048 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1049 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1050 return GFP_TRANSHUGE_LIGHT | 1051 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1052 __GFP_KSWAPD_RECLAIM); 1053 1054 /* Only do synchronous compaction if madvised */ 1055 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1056 return GFP_TRANSHUGE_LIGHT | 1057 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1058 1059 return GFP_TRANSHUGE_LIGHT; 1060 } 1061 1062 /* Caller must hold page table lock. */ 1063 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1064 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1065 struct folio *zero_folio) 1066 { 1067 pmd_t entry; 1068 if (!pmd_none(*pmd)) 1069 return; 1070 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1071 entry = pmd_mkhuge(entry); 1072 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1073 set_pmd_at(mm, haddr, pmd, entry); 1074 mm_inc_nr_ptes(mm); 1075 } 1076 1077 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1078 { 1079 struct vm_area_struct *vma = vmf->vma; 1080 gfp_t gfp; 1081 struct folio *folio; 1082 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1083 vm_fault_t ret; 1084 1085 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1086 return VM_FAULT_FALLBACK; 1087 ret = vmf_anon_prepare(vmf); 1088 if (ret) 1089 return ret; 1090 khugepaged_enter_vma(vma, vma->vm_flags); 1091 1092 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1093 !mm_forbids_zeropage(vma->vm_mm) && 1094 transparent_hugepage_use_zero_page()) { 1095 pgtable_t pgtable; 1096 struct folio *zero_folio; 1097 vm_fault_t ret; 1098 1099 pgtable = pte_alloc_one(vma->vm_mm); 1100 if (unlikely(!pgtable)) 1101 return VM_FAULT_OOM; 1102 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1103 if (unlikely(!zero_folio)) { 1104 pte_free(vma->vm_mm, pgtable); 1105 count_vm_event(THP_FAULT_FALLBACK); 1106 return VM_FAULT_FALLBACK; 1107 } 1108 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1109 ret = 0; 1110 if (pmd_none(*vmf->pmd)) { 1111 ret = check_stable_address_space(vma->vm_mm); 1112 if (ret) { 1113 spin_unlock(vmf->ptl); 1114 pte_free(vma->vm_mm, pgtable); 1115 } else if (userfaultfd_missing(vma)) { 1116 spin_unlock(vmf->ptl); 1117 pte_free(vma->vm_mm, pgtable); 1118 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1119 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1120 } else { 1121 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1122 haddr, vmf->pmd, zero_folio); 1123 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1124 spin_unlock(vmf->ptl); 1125 } 1126 } else { 1127 spin_unlock(vmf->ptl); 1128 pte_free(vma->vm_mm, pgtable); 1129 } 1130 return ret; 1131 } 1132 gfp = vma_thp_gfp_mask(vma); 1133 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1134 if (unlikely(!folio)) { 1135 count_vm_event(THP_FAULT_FALLBACK); 1136 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 1137 return VM_FAULT_FALLBACK; 1138 } 1139 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1140 } 1141 1142 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1143 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1144 pgtable_t pgtable) 1145 { 1146 struct mm_struct *mm = vma->vm_mm; 1147 pmd_t entry; 1148 spinlock_t *ptl; 1149 1150 ptl = pmd_lock(mm, pmd); 1151 if (!pmd_none(*pmd)) { 1152 if (write) { 1153 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1154 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1155 goto out_unlock; 1156 } 1157 entry = pmd_mkyoung(*pmd); 1158 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1159 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1160 update_mmu_cache_pmd(vma, addr, pmd); 1161 } 1162 1163 goto out_unlock; 1164 } 1165 1166 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1167 if (pfn_t_devmap(pfn)) 1168 entry = pmd_mkdevmap(entry); 1169 if (write) { 1170 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1171 entry = maybe_pmd_mkwrite(entry, vma); 1172 } 1173 1174 if (pgtable) { 1175 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1176 mm_inc_nr_ptes(mm); 1177 pgtable = NULL; 1178 } 1179 1180 set_pmd_at(mm, addr, pmd, entry); 1181 update_mmu_cache_pmd(vma, addr, pmd); 1182 1183 out_unlock: 1184 spin_unlock(ptl); 1185 if (pgtable) 1186 pte_free(mm, pgtable); 1187 } 1188 1189 /** 1190 * vmf_insert_pfn_pmd - insert a pmd size pfn 1191 * @vmf: Structure describing the fault 1192 * @pfn: pfn to insert 1193 * @write: whether it's a write fault 1194 * 1195 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1196 * 1197 * Return: vm_fault_t value. 1198 */ 1199 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1200 { 1201 unsigned long addr = vmf->address & PMD_MASK; 1202 struct vm_area_struct *vma = vmf->vma; 1203 pgprot_t pgprot = vma->vm_page_prot; 1204 pgtable_t pgtable = NULL; 1205 1206 /* 1207 * If we had pmd_special, we could avoid all these restrictions, 1208 * but we need to be consistent with PTEs and architectures that 1209 * can't support a 'special' bit. 1210 */ 1211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1212 !pfn_t_devmap(pfn)); 1213 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1214 (VM_PFNMAP|VM_MIXEDMAP)); 1215 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1216 1217 if (addr < vma->vm_start || addr >= vma->vm_end) 1218 return VM_FAULT_SIGBUS; 1219 1220 if (arch_needs_pgtable_deposit()) { 1221 pgtable = pte_alloc_one(vma->vm_mm); 1222 if (!pgtable) 1223 return VM_FAULT_OOM; 1224 } 1225 1226 track_pfn_insert(vma, &pgprot, pfn); 1227 1228 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1229 return VM_FAULT_NOPAGE; 1230 } 1231 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1232 1233 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1234 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1235 { 1236 if (likely(vma->vm_flags & VM_WRITE)) 1237 pud = pud_mkwrite(pud); 1238 return pud; 1239 } 1240 1241 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1242 pud_t *pud, pfn_t pfn, bool write) 1243 { 1244 struct mm_struct *mm = vma->vm_mm; 1245 pgprot_t prot = vma->vm_page_prot; 1246 pud_t entry; 1247 spinlock_t *ptl; 1248 1249 ptl = pud_lock(mm, pud); 1250 if (!pud_none(*pud)) { 1251 if (write) { 1252 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1253 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1254 goto out_unlock; 1255 } 1256 entry = pud_mkyoung(*pud); 1257 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1258 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1259 update_mmu_cache_pud(vma, addr, pud); 1260 } 1261 goto out_unlock; 1262 } 1263 1264 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1265 if (pfn_t_devmap(pfn)) 1266 entry = pud_mkdevmap(entry); 1267 if (write) { 1268 entry = pud_mkyoung(pud_mkdirty(entry)); 1269 entry = maybe_pud_mkwrite(entry, vma); 1270 } 1271 set_pud_at(mm, addr, pud, entry); 1272 update_mmu_cache_pud(vma, addr, pud); 1273 1274 out_unlock: 1275 spin_unlock(ptl); 1276 } 1277 1278 /** 1279 * vmf_insert_pfn_pud - insert a pud size pfn 1280 * @vmf: Structure describing the fault 1281 * @pfn: pfn to insert 1282 * @write: whether it's a write fault 1283 * 1284 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1285 * 1286 * Return: vm_fault_t value. 1287 */ 1288 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1289 { 1290 unsigned long addr = vmf->address & PUD_MASK; 1291 struct vm_area_struct *vma = vmf->vma; 1292 pgprot_t pgprot = vma->vm_page_prot; 1293 1294 /* 1295 * If we had pud_special, we could avoid all these restrictions, 1296 * but we need to be consistent with PTEs and architectures that 1297 * can't support a 'special' bit. 1298 */ 1299 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1300 !pfn_t_devmap(pfn)); 1301 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1302 (VM_PFNMAP|VM_MIXEDMAP)); 1303 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1304 1305 if (addr < vma->vm_start || addr >= vma->vm_end) 1306 return VM_FAULT_SIGBUS; 1307 1308 track_pfn_insert(vma, &pgprot, pfn); 1309 1310 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1311 return VM_FAULT_NOPAGE; 1312 } 1313 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1314 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1315 1316 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1317 pmd_t *pmd, bool write) 1318 { 1319 pmd_t _pmd; 1320 1321 _pmd = pmd_mkyoung(*pmd); 1322 if (write) 1323 _pmd = pmd_mkdirty(_pmd); 1324 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1325 pmd, _pmd, write)) 1326 update_mmu_cache_pmd(vma, addr, pmd); 1327 } 1328 1329 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1330 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1331 { 1332 unsigned long pfn = pmd_pfn(*pmd); 1333 struct mm_struct *mm = vma->vm_mm; 1334 struct page *page; 1335 int ret; 1336 1337 assert_spin_locked(pmd_lockptr(mm, pmd)); 1338 1339 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1340 return NULL; 1341 1342 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1343 /* pass */; 1344 else 1345 return NULL; 1346 1347 if (flags & FOLL_TOUCH) 1348 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1349 1350 /* 1351 * device mapped pages can only be returned if the 1352 * caller will manage the page reference count. 1353 */ 1354 if (!(flags & (FOLL_GET | FOLL_PIN))) 1355 return ERR_PTR(-EEXIST); 1356 1357 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1358 *pgmap = get_dev_pagemap(pfn, *pgmap); 1359 if (!*pgmap) 1360 return ERR_PTR(-EFAULT); 1361 page = pfn_to_page(pfn); 1362 ret = try_grab_folio(page_folio(page), 1, flags); 1363 if (ret) 1364 page = ERR_PTR(ret); 1365 1366 return page; 1367 } 1368 1369 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1370 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1371 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1372 { 1373 spinlock_t *dst_ptl, *src_ptl; 1374 struct page *src_page; 1375 struct folio *src_folio; 1376 pmd_t pmd; 1377 pgtable_t pgtable = NULL; 1378 int ret = -ENOMEM; 1379 1380 /* Skip if can be re-fill on fault */ 1381 if (!vma_is_anonymous(dst_vma)) 1382 return 0; 1383 1384 pgtable = pte_alloc_one(dst_mm); 1385 if (unlikely(!pgtable)) 1386 goto out; 1387 1388 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1389 src_ptl = pmd_lockptr(src_mm, src_pmd); 1390 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1391 1392 ret = -EAGAIN; 1393 pmd = *src_pmd; 1394 1395 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1396 if (unlikely(is_swap_pmd(pmd))) { 1397 swp_entry_t entry = pmd_to_swp_entry(pmd); 1398 1399 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1400 if (!is_readable_migration_entry(entry)) { 1401 entry = make_readable_migration_entry( 1402 swp_offset(entry)); 1403 pmd = swp_entry_to_pmd(entry); 1404 if (pmd_swp_soft_dirty(*src_pmd)) 1405 pmd = pmd_swp_mksoft_dirty(pmd); 1406 if (pmd_swp_uffd_wp(*src_pmd)) 1407 pmd = pmd_swp_mkuffd_wp(pmd); 1408 set_pmd_at(src_mm, addr, src_pmd, pmd); 1409 } 1410 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1411 mm_inc_nr_ptes(dst_mm); 1412 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1413 if (!userfaultfd_wp(dst_vma)) 1414 pmd = pmd_swp_clear_uffd_wp(pmd); 1415 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1416 ret = 0; 1417 goto out_unlock; 1418 } 1419 #endif 1420 1421 if (unlikely(!pmd_trans_huge(pmd))) { 1422 pte_free(dst_mm, pgtable); 1423 goto out_unlock; 1424 } 1425 /* 1426 * When page table lock is held, the huge zero pmd should not be 1427 * under splitting since we don't split the page itself, only pmd to 1428 * a page table. 1429 */ 1430 if (is_huge_zero_pmd(pmd)) { 1431 /* 1432 * mm_get_huge_zero_folio() will never allocate a new 1433 * folio here, since we already have a zero page to 1434 * copy. It just takes a reference. 1435 */ 1436 mm_get_huge_zero_folio(dst_mm); 1437 goto out_zero_page; 1438 } 1439 1440 src_page = pmd_page(pmd); 1441 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1442 src_folio = page_folio(src_page); 1443 1444 folio_get(src_folio); 1445 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1446 /* Page maybe pinned: split and retry the fault on PTEs. */ 1447 folio_put(src_folio); 1448 pte_free(dst_mm, pgtable); 1449 spin_unlock(src_ptl); 1450 spin_unlock(dst_ptl); 1451 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1452 return -EAGAIN; 1453 } 1454 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1455 out_zero_page: 1456 mm_inc_nr_ptes(dst_mm); 1457 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1458 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1459 if (!userfaultfd_wp(dst_vma)) 1460 pmd = pmd_clear_uffd_wp(pmd); 1461 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1462 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1463 1464 ret = 0; 1465 out_unlock: 1466 spin_unlock(src_ptl); 1467 spin_unlock(dst_ptl); 1468 out: 1469 return ret; 1470 } 1471 1472 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1473 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1474 pud_t *pud, bool write) 1475 { 1476 pud_t _pud; 1477 1478 _pud = pud_mkyoung(*pud); 1479 if (write) 1480 _pud = pud_mkdirty(_pud); 1481 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1482 pud, _pud, write)) 1483 update_mmu_cache_pud(vma, addr, pud); 1484 } 1485 1486 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1487 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1488 struct vm_area_struct *vma) 1489 { 1490 spinlock_t *dst_ptl, *src_ptl; 1491 pud_t pud; 1492 int ret; 1493 1494 dst_ptl = pud_lock(dst_mm, dst_pud); 1495 src_ptl = pud_lockptr(src_mm, src_pud); 1496 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1497 1498 ret = -EAGAIN; 1499 pud = *src_pud; 1500 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1501 goto out_unlock; 1502 1503 /* 1504 * When page table lock is held, the huge zero pud should not be 1505 * under splitting since we don't split the page itself, only pud to 1506 * a page table. 1507 */ 1508 if (is_huge_zero_pud(pud)) { 1509 /* No huge zero pud yet */ 1510 } 1511 1512 /* 1513 * TODO: once we support anonymous pages, use 1514 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1515 */ 1516 pudp_set_wrprotect(src_mm, addr, src_pud); 1517 pud = pud_mkold(pud_wrprotect(pud)); 1518 set_pud_at(dst_mm, addr, dst_pud, pud); 1519 1520 ret = 0; 1521 out_unlock: 1522 spin_unlock(src_ptl); 1523 spin_unlock(dst_ptl); 1524 return ret; 1525 } 1526 1527 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1528 { 1529 bool write = vmf->flags & FAULT_FLAG_WRITE; 1530 1531 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1532 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1533 goto unlock; 1534 1535 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1536 unlock: 1537 spin_unlock(vmf->ptl); 1538 } 1539 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1540 1541 void huge_pmd_set_accessed(struct vm_fault *vmf) 1542 { 1543 bool write = vmf->flags & FAULT_FLAG_WRITE; 1544 1545 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1546 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1547 goto unlock; 1548 1549 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1550 1551 unlock: 1552 spin_unlock(vmf->ptl); 1553 } 1554 1555 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1556 { 1557 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1558 struct vm_area_struct *vma = vmf->vma; 1559 struct folio *folio; 1560 struct page *page; 1561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1562 pmd_t orig_pmd = vmf->orig_pmd; 1563 1564 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1565 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1566 1567 if (is_huge_zero_pmd(orig_pmd)) 1568 goto fallback; 1569 1570 spin_lock(vmf->ptl); 1571 1572 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1573 spin_unlock(vmf->ptl); 1574 return 0; 1575 } 1576 1577 page = pmd_page(orig_pmd); 1578 folio = page_folio(page); 1579 VM_BUG_ON_PAGE(!PageHead(page), page); 1580 1581 /* Early check when only holding the PT lock. */ 1582 if (PageAnonExclusive(page)) 1583 goto reuse; 1584 1585 if (!folio_trylock(folio)) { 1586 folio_get(folio); 1587 spin_unlock(vmf->ptl); 1588 folio_lock(folio); 1589 spin_lock(vmf->ptl); 1590 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1591 spin_unlock(vmf->ptl); 1592 folio_unlock(folio); 1593 folio_put(folio); 1594 return 0; 1595 } 1596 folio_put(folio); 1597 } 1598 1599 /* Recheck after temporarily dropping the PT lock. */ 1600 if (PageAnonExclusive(page)) { 1601 folio_unlock(folio); 1602 goto reuse; 1603 } 1604 1605 /* 1606 * See do_wp_page(): we can only reuse the folio exclusively if 1607 * there are no additional references. Note that we always drain 1608 * the LRU cache immediately after adding a THP. 1609 */ 1610 if (folio_ref_count(folio) > 1611 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1612 goto unlock_fallback; 1613 if (folio_test_swapcache(folio)) 1614 folio_free_swap(folio); 1615 if (folio_ref_count(folio) == 1) { 1616 pmd_t entry; 1617 1618 folio_move_anon_rmap(folio, vma); 1619 SetPageAnonExclusive(page); 1620 folio_unlock(folio); 1621 reuse: 1622 if (unlikely(unshare)) { 1623 spin_unlock(vmf->ptl); 1624 return 0; 1625 } 1626 entry = pmd_mkyoung(orig_pmd); 1627 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1628 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1629 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1630 spin_unlock(vmf->ptl); 1631 return 0; 1632 } 1633 1634 unlock_fallback: 1635 folio_unlock(folio); 1636 spin_unlock(vmf->ptl); 1637 fallback: 1638 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1639 return VM_FAULT_FALLBACK; 1640 } 1641 1642 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1643 unsigned long addr, pmd_t pmd) 1644 { 1645 struct page *page; 1646 1647 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1648 return false; 1649 1650 /* Don't touch entries that are not even readable (NUMA hinting). */ 1651 if (pmd_protnone(pmd)) 1652 return false; 1653 1654 /* Do we need write faults for softdirty tracking? */ 1655 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1656 return false; 1657 1658 /* Do we need write faults for uffd-wp tracking? */ 1659 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1660 return false; 1661 1662 if (!(vma->vm_flags & VM_SHARED)) { 1663 /* See can_change_pte_writable(). */ 1664 page = vm_normal_page_pmd(vma, addr, pmd); 1665 return page && PageAnon(page) && PageAnonExclusive(page); 1666 } 1667 1668 /* See can_change_pte_writable(). */ 1669 return pmd_dirty(pmd); 1670 } 1671 1672 /* NUMA hinting page fault entry point for trans huge pmds */ 1673 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1674 { 1675 struct vm_area_struct *vma = vmf->vma; 1676 pmd_t oldpmd = vmf->orig_pmd; 1677 pmd_t pmd; 1678 struct folio *folio; 1679 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1680 int nid = NUMA_NO_NODE; 1681 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1682 bool writable = false; 1683 int flags = 0; 1684 1685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1686 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1687 spin_unlock(vmf->ptl); 1688 return 0; 1689 } 1690 1691 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1692 1693 /* 1694 * Detect now whether the PMD could be writable; this information 1695 * is only valid while holding the PT lock. 1696 */ 1697 writable = pmd_write(pmd); 1698 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1699 can_change_pmd_writable(vma, vmf->address, pmd)) 1700 writable = true; 1701 1702 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1703 if (!folio) 1704 goto out_map; 1705 1706 /* See similar comment in do_numa_page for explanation */ 1707 if (!writable) 1708 flags |= TNF_NO_GROUP; 1709 1710 nid = folio_nid(folio); 1711 /* 1712 * For memory tiering mode, cpupid of slow memory page is used 1713 * to record page access time. So use default value. 1714 */ 1715 if (node_is_toptier(nid)) 1716 last_cpupid = folio_last_cpupid(folio); 1717 target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags); 1718 if (target_nid == NUMA_NO_NODE) 1719 goto out_map; 1720 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 1721 flags |= TNF_MIGRATE_FAIL; 1722 goto out_map; 1723 } 1724 /* The folio is isolated and isolation code holds a folio reference. */ 1725 spin_unlock(vmf->ptl); 1726 writable = false; 1727 1728 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 1729 flags |= TNF_MIGRATED; 1730 nid = target_nid; 1731 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1732 return 0; 1733 } 1734 1735 flags |= TNF_MIGRATE_FAIL; 1736 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1737 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1738 spin_unlock(vmf->ptl); 1739 return 0; 1740 } 1741 out_map: 1742 /* Restore the PMD */ 1743 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1744 pmd = pmd_mkyoung(pmd); 1745 if (writable) 1746 pmd = pmd_mkwrite(pmd, vma); 1747 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1748 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1749 spin_unlock(vmf->ptl); 1750 1751 if (nid != NUMA_NO_NODE) 1752 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1753 return 0; 1754 } 1755 1756 /* 1757 * Return true if we do MADV_FREE successfully on entire pmd page. 1758 * Otherwise, return false. 1759 */ 1760 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1761 pmd_t *pmd, unsigned long addr, unsigned long next) 1762 { 1763 spinlock_t *ptl; 1764 pmd_t orig_pmd; 1765 struct folio *folio; 1766 struct mm_struct *mm = tlb->mm; 1767 bool ret = false; 1768 1769 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1770 1771 ptl = pmd_trans_huge_lock(pmd, vma); 1772 if (!ptl) 1773 goto out_unlocked; 1774 1775 orig_pmd = *pmd; 1776 if (is_huge_zero_pmd(orig_pmd)) 1777 goto out; 1778 1779 if (unlikely(!pmd_present(orig_pmd))) { 1780 VM_BUG_ON(thp_migration_supported() && 1781 !is_pmd_migration_entry(orig_pmd)); 1782 goto out; 1783 } 1784 1785 folio = pmd_folio(orig_pmd); 1786 /* 1787 * If other processes are mapping this folio, we couldn't discard 1788 * the folio unless they all do MADV_FREE so let's skip the folio. 1789 */ 1790 if (folio_likely_mapped_shared(folio)) 1791 goto out; 1792 1793 if (!folio_trylock(folio)) 1794 goto out; 1795 1796 /* 1797 * If user want to discard part-pages of THP, split it so MADV_FREE 1798 * will deactivate only them. 1799 */ 1800 if (next - addr != HPAGE_PMD_SIZE) { 1801 folio_get(folio); 1802 spin_unlock(ptl); 1803 split_folio(folio); 1804 folio_unlock(folio); 1805 folio_put(folio); 1806 goto out_unlocked; 1807 } 1808 1809 if (folio_test_dirty(folio)) 1810 folio_clear_dirty(folio); 1811 folio_unlock(folio); 1812 1813 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1814 pmdp_invalidate(vma, addr, pmd); 1815 orig_pmd = pmd_mkold(orig_pmd); 1816 orig_pmd = pmd_mkclean(orig_pmd); 1817 1818 set_pmd_at(mm, addr, pmd, orig_pmd); 1819 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1820 } 1821 1822 folio_mark_lazyfree(folio); 1823 ret = true; 1824 out: 1825 spin_unlock(ptl); 1826 out_unlocked: 1827 return ret; 1828 } 1829 1830 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1831 { 1832 pgtable_t pgtable; 1833 1834 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1835 pte_free(mm, pgtable); 1836 mm_dec_nr_ptes(mm); 1837 } 1838 1839 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1840 pmd_t *pmd, unsigned long addr) 1841 { 1842 pmd_t orig_pmd; 1843 spinlock_t *ptl; 1844 1845 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1846 1847 ptl = __pmd_trans_huge_lock(pmd, vma); 1848 if (!ptl) 1849 return 0; 1850 /* 1851 * For architectures like ppc64 we look at deposited pgtable 1852 * when calling pmdp_huge_get_and_clear. So do the 1853 * pgtable_trans_huge_withdraw after finishing pmdp related 1854 * operations. 1855 */ 1856 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1857 tlb->fullmm); 1858 arch_check_zapped_pmd(vma, orig_pmd); 1859 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1860 if (vma_is_special_huge(vma)) { 1861 if (arch_needs_pgtable_deposit()) 1862 zap_deposited_table(tlb->mm, pmd); 1863 spin_unlock(ptl); 1864 } else if (is_huge_zero_pmd(orig_pmd)) { 1865 zap_deposited_table(tlb->mm, pmd); 1866 spin_unlock(ptl); 1867 } else { 1868 struct folio *folio = NULL; 1869 int flush_needed = 1; 1870 1871 if (pmd_present(orig_pmd)) { 1872 struct page *page = pmd_page(orig_pmd); 1873 1874 folio = page_folio(page); 1875 folio_remove_rmap_pmd(folio, page, vma); 1876 WARN_ON_ONCE(folio_mapcount(folio) < 0); 1877 VM_BUG_ON_PAGE(!PageHead(page), page); 1878 } else if (thp_migration_supported()) { 1879 swp_entry_t entry; 1880 1881 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1882 entry = pmd_to_swp_entry(orig_pmd); 1883 folio = pfn_swap_entry_folio(entry); 1884 flush_needed = 0; 1885 } else 1886 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1887 1888 if (folio_test_anon(folio)) { 1889 zap_deposited_table(tlb->mm, pmd); 1890 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1891 } else { 1892 if (arch_needs_pgtable_deposit()) 1893 zap_deposited_table(tlb->mm, pmd); 1894 add_mm_counter(tlb->mm, mm_counter_file(folio), 1895 -HPAGE_PMD_NR); 1896 } 1897 1898 spin_unlock(ptl); 1899 if (flush_needed) 1900 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1901 } 1902 return 1; 1903 } 1904 1905 #ifndef pmd_move_must_withdraw 1906 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1907 spinlock_t *old_pmd_ptl, 1908 struct vm_area_struct *vma) 1909 { 1910 /* 1911 * With split pmd lock we also need to move preallocated 1912 * PTE page table if new_pmd is on different PMD page table. 1913 * 1914 * We also don't deposit and withdraw tables for file pages. 1915 */ 1916 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1917 } 1918 #endif 1919 1920 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1921 { 1922 #ifdef CONFIG_MEM_SOFT_DIRTY 1923 if (unlikely(is_pmd_migration_entry(pmd))) 1924 pmd = pmd_swp_mksoft_dirty(pmd); 1925 else if (pmd_present(pmd)) 1926 pmd = pmd_mksoft_dirty(pmd); 1927 #endif 1928 return pmd; 1929 } 1930 1931 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1932 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1933 { 1934 spinlock_t *old_ptl, *new_ptl; 1935 pmd_t pmd; 1936 struct mm_struct *mm = vma->vm_mm; 1937 bool force_flush = false; 1938 1939 /* 1940 * The destination pmd shouldn't be established, free_pgtables() 1941 * should have released it; but move_page_tables() might have already 1942 * inserted a page table, if racing against shmem/file collapse. 1943 */ 1944 if (!pmd_none(*new_pmd)) { 1945 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1946 return false; 1947 } 1948 1949 /* 1950 * We don't have to worry about the ordering of src and dst 1951 * ptlocks because exclusive mmap_lock prevents deadlock. 1952 */ 1953 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1954 if (old_ptl) { 1955 new_ptl = pmd_lockptr(mm, new_pmd); 1956 if (new_ptl != old_ptl) 1957 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1958 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1959 if (pmd_present(pmd)) 1960 force_flush = true; 1961 VM_BUG_ON(!pmd_none(*new_pmd)); 1962 1963 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1964 pgtable_t pgtable; 1965 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1966 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1967 } 1968 pmd = move_soft_dirty_pmd(pmd); 1969 set_pmd_at(mm, new_addr, new_pmd, pmd); 1970 if (force_flush) 1971 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1972 if (new_ptl != old_ptl) 1973 spin_unlock(new_ptl); 1974 spin_unlock(old_ptl); 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 /* 1981 * Returns 1982 * - 0 if PMD could not be locked 1983 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1984 * or if prot_numa but THP migration is not supported 1985 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1986 */ 1987 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1988 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1989 unsigned long cp_flags) 1990 { 1991 struct mm_struct *mm = vma->vm_mm; 1992 spinlock_t *ptl; 1993 pmd_t oldpmd, entry; 1994 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1995 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1996 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1997 int ret = 1; 1998 1999 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2000 2001 if (prot_numa && !thp_migration_supported()) 2002 return 1; 2003 2004 ptl = __pmd_trans_huge_lock(pmd, vma); 2005 if (!ptl) 2006 return 0; 2007 2008 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2009 if (is_swap_pmd(*pmd)) { 2010 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2011 struct folio *folio = pfn_swap_entry_folio(entry); 2012 pmd_t newpmd; 2013 2014 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2015 if (is_writable_migration_entry(entry)) { 2016 /* 2017 * A protection check is difficult so 2018 * just be safe and disable write 2019 */ 2020 if (folio_test_anon(folio)) 2021 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2022 else 2023 entry = make_readable_migration_entry(swp_offset(entry)); 2024 newpmd = swp_entry_to_pmd(entry); 2025 if (pmd_swp_soft_dirty(*pmd)) 2026 newpmd = pmd_swp_mksoft_dirty(newpmd); 2027 } else { 2028 newpmd = *pmd; 2029 } 2030 2031 if (uffd_wp) 2032 newpmd = pmd_swp_mkuffd_wp(newpmd); 2033 else if (uffd_wp_resolve) 2034 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2035 if (!pmd_same(*pmd, newpmd)) 2036 set_pmd_at(mm, addr, pmd, newpmd); 2037 goto unlock; 2038 } 2039 #endif 2040 2041 if (prot_numa) { 2042 struct folio *folio; 2043 bool toptier; 2044 /* 2045 * Avoid trapping faults against the zero page. The read-only 2046 * data is likely to be read-cached on the local CPU and 2047 * local/remote hits to the zero page are not interesting. 2048 */ 2049 if (is_huge_zero_pmd(*pmd)) 2050 goto unlock; 2051 2052 if (pmd_protnone(*pmd)) 2053 goto unlock; 2054 2055 folio = pmd_folio(*pmd); 2056 toptier = node_is_toptier(folio_nid(folio)); 2057 /* 2058 * Skip scanning top tier node if normal numa 2059 * balancing is disabled 2060 */ 2061 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2062 toptier) 2063 goto unlock; 2064 2065 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2066 !toptier) 2067 folio_xchg_access_time(folio, 2068 jiffies_to_msecs(jiffies)); 2069 } 2070 /* 2071 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2072 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2073 * which is also under mmap_read_lock(mm): 2074 * 2075 * CPU0: CPU1: 2076 * change_huge_pmd(prot_numa=1) 2077 * pmdp_huge_get_and_clear_notify() 2078 * madvise_dontneed() 2079 * zap_pmd_range() 2080 * pmd_trans_huge(*pmd) == 0 (without ptl) 2081 * // skip the pmd 2082 * set_pmd_at(); 2083 * // pmd is re-established 2084 * 2085 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2086 * which may break userspace. 2087 * 2088 * pmdp_invalidate_ad() is required to make sure we don't miss 2089 * dirty/young flags set by hardware. 2090 */ 2091 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2092 2093 entry = pmd_modify(oldpmd, newprot); 2094 if (uffd_wp) 2095 entry = pmd_mkuffd_wp(entry); 2096 else if (uffd_wp_resolve) 2097 /* 2098 * Leave the write bit to be handled by PF interrupt 2099 * handler, then things like COW could be properly 2100 * handled. 2101 */ 2102 entry = pmd_clear_uffd_wp(entry); 2103 2104 /* See change_pte_range(). */ 2105 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2106 can_change_pmd_writable(vma, addr, entry)) 2107 entry = pmd_mkwrite(entry, vma); 2108 2109 ret = HPAGE_PMD_NR; 2110 set_pmd_at(mm, addr, pmd, entry); 2111 2112 if (huge_pmd_needs_flush(oldpmd, entry)) 2113 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2114 unlock: 2115 spin_unlock(ptl); 2116 return ret; 2117 } 2118 2119 #ifdef CONFIG_USERFAULTFD 2120 /* 2121 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2122 * the caller, but it must return after releasing the page_table_lock. 2123 * Just move the page from src_pmd to dst_pmd if possible. 2124 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2125 * repeated by the caller, or other errors in case of failure. 2126 */ 2127 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2128 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2129 unsigned long dst_addr, unsigned long src_addr) 2130 { 2131 pmd_t _dst_pmd, src_pmdval; 2132 struct page *src_page; 2133 struct folio *src_folio; 2134 struct anon_vma *src_anon_vma; 2135 spinlock_t *src_ptl, *dst_ptl; 2136 pgtable_t src_pgtable; 2137 struct mmu_notifier_range range; 2138 int err = 0; 2139 2140 src_pmdval = *src_pmd; 2141 src_ptl = pmd_lockptr(mm, src_pmd); 2142 2143 lockdep_assert_held(src_ptl); 2144 vma_assert_locked(src_vma); 2145 vma_assert_locked(dst_vma); 2146 2147 /* Sanity checks before the operation */ 2148 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2149 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2150 spin_unlock(src_ptl); 2151 return -EINVAL; 2152 } 2153 2154 if (!pmd_trans_huge(src_pmdval)) { 2155 spin_unlock(src_ptl); 2156 if (is_pmd_migration_entry(src_pmdval)) { 2157 pmd_migration_entry_wait(mm, &src_pmdval); 2158 return -EAGAIN; 2159 } 2160 return -ENOENT; 2161 } 2162 2163 src_page = pmd_page(src_pmdval); 2164 2165 if (!is_huge_zero_pmd(src_pmdval)) { 2166 if (unlikely(!PageAnonExclusive(src_page))) { 2167 spin_unlock(src_ptl); 2168 return -EBUSY; 2169 } 2170 2171 src_folio = page_folio(src_page); 2172 folio_get(src_folio); 2173 } else 2174 src_folio = NULL; 2175 2176 spin_unlock(src_ptl); 2177 2178 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2179 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2180 src_addr + HPAGE_PMD_SIZE); 2181 mmu_notifier_invalidate_range_start(&range); 2182 2183 if (src_folio) { 2184 folio_lock(src_folio); 2185 2186 /* 2187 * split_huge_page walks the anon_vma chain without the page 2188 * lock. Serialize against it with the anon_vma lock, the page 2189 * lock is not enough. 2190 */ 2191 src_anon_vma = folio_get_anon_vma(src_folio); 2192 if (!src_anon_vma) { 2193 err = -EAGAIN; 2194 goto unlock_folio; 2195 } 2196 anon_vma_lock_write(src_anon_vma); 2197 } else 2198 src_anon_vma = NULL; 2199 2200 dst_ptl = pmd_lockptr(mm, dst_pmd); 2201 double_pt_lock(src_ptl, dst_ptl); 2202 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2203 !pmd_same(*dst_pmd, dst_pmdval))) { 2204 err = -EAGAIN; 2205 goto unlock_ptls; 2206 } 2207 if (src_folio) { 2208 if (folio_maybe_dma_pinned(src_folio) || 2209 !PageAnonExclusive(&src_folio->page)) { 2210 err = -EBUSY; 2211 goto unlock_ptls; 2212 } 2213 2214 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2215 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2216 err = -EBUSY; 2217 goto unlock_ptls; 2218 } 2219 2220 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2221 /* Folio got pinned from under us. Put it back and fail the move. */ 2222 if (folio_maybe_dma_pinned(src_folio)) { 2223 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2224 err = -EBUSY; 2225 goto unlock_ptls; 2226 } 2227 2228 folio_move_anon_rmap(src_folio, dst_vma); 2229 src_folio->index = linear_page_index(dst_vma, dst_addr); 2230 2231 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2232 /* Follow mremap() behavior and treat the entry dirty after the move */ 2233 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2234 } else { 2235 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2236 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2237 } 2238 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2239 2240 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2241 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2242 unlock_ptls: 2243 double_pt_unlock(src_ptl, dst_ptl); 2244 if (src_anon_vma) { 2245 anon_vma_unlock_write(src_anon_vma); 2246 put_anon_vma(src_anon_vma); 2247 } 2248 unlock_folio: 2249 /* unblock rmap walks */ 2250 if (src_folio) 2251 folio_unlock(src_folio); 2252 mmu_notifier_invalidate_range_end(&range); 2253 if (src_folio) 2254 folio_put(src_folio); 2255 return err; 2256 } 2257 #endif /* CONFIG_USERFAULTFD */ 2258 2259 /* 2260 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2261 * 2262 * Note that if it returns page table lock pointer, this routine returns without 2263 * unlocking page table lock. So callers must unlock it. 2264 */ 2265 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2266 { 2267 spinlock_t *ptl; 2268 ptl = pmd_lock(vma->vm_mm, pmd); 2269 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2270 pmd_devmap(*pmd))) 2271 return ptl; 2272 spin_unlock(ptl); 2273 return NULL; 2274 } 2275 2276 /* 2277 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2278 * 2279 * Note that if it returns page table lock pointer, this routine returns without 2280 * unlocking page table lock. So callers must unlock it. 2281 */ 2282 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2283 { 2284 spinlock_t *ptl; 2285 2286 ptl = pud_lock(vma->vm_mm, pud); 2287 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2288 return ptl; 2289 spin_unlock(ptl); 2290 return NULL; 2291 } 2292 2293 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2294 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2295 pud_t *pud, unsigned long addr) 2296 { 2297 spinlock_t *ptl; 2298 2299 ptl = __pud_trans_huge_lock(pud, vma); 2300 if (!ptl) 2301 return 0; 2302 2303 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2304 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2305 if (vma_is_special_huge(vma)) { 2306 spin_unlock(ptl); 2307 /* No zero page support yet */ 2308 } else { 2309 /* No support for anonymous PUD pages yet */ 2310 BUG(); 2311 } 2312 return 1; 2313 } 2314 2315 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2316 unsigned long haddr) 2317 { 2318 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2319 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2320 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2321 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2322 2323 count_vm_event(THP_SPLIT_PUD); 2324 2325 pudp_huge_clear_flush(vma, haddr, pud); 2326 } 2327 2328 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2329 unsigned long address) 2330 { 2331 spinlock_t *ptl; 2332 struct mmu_notifier_range range; 2333 2334 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2335 address & HPAGE_PUD_MASK, 2336 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2337 mmu_notifier_invalidate_range_start(&range); 2338 ptl = pud_lock(vma->vm_mm, pud); 2339 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2340 goto out; 2341 __split_huge_pud_locked(vma, pud, range.start); 2342 2343 out: 2344 spin_unlock(ptl); 2345 mmu_notifier_invalidate_range_end(&range); 2346 } 2347 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2348 2349 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2350 unsigned long haddr, pmd_t *pmd) 2351 { 2352 struct mm_struct *mm = vma->vm_mm; 2353 pgtable_t pgtable; 2354 pmd_t _pmd, old_pmd; 2355 unsigned long addr; 2356 pte_t *pte; 2357 int i; 2358 2359 /* 2360 * Leave pmd empty until pte is filled note that it is fine to delay 2361 * notification until mmu_notifier_invalidate_range_end() as we are 2362 * replacing a zero pmd write protected page with a zero pte write 2363 * protected page. 2364 * 2365 * See Documentation/mm/mmu_notifier.rst 2366 */ 2367 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2368 2369 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2370 pmd_populate(mm, &_pmd, pgtable); 2371 2372 pte = pte_offset_map(&_pmd, haddr); 2373 VM_BUG_ON(!pte); 2374 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2375 pte_t entry; 2376 2377 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2378 entry = pte_mkspecial(entry); 2379 if (pmd_uffd_wp(old_pmd)) 2380 entry = pte_mkuffd_wp(entry); 2381 VM_BUG_ON(!pte_none(ptep_get(pte))); 2382 set_pte_at(mm, addr, pte, entry); 2383 pte++; 2384 } 2385 pte_unmap(pte - 1); 2386 smp_wmb(); /* make pte visible before pmd */ 2387 pmd_populate(mm, pmd, pgtable); 2388 } 2389 2390 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2391 unsigned long haddr, bool freeze) 2392 { 2393 struct mm_struct *mm = vma->vm_mm; 2394 struct folio *folio; 2395 struct page *page; 2396 pgtable_t pgtable; 2397 pmd_t old_pmd, _pmd; 2398 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2399 bool anon_exclusive = false, dirty = false; 2400 unsigned long addr; 2401 pte_t *pte; 2402 int i; 2403 2404 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2405 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2406 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2407 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2408 && !pmd_devmap(*pmd)); 2409 2410 count_vm_event(THP_SPLIT_PMD); 2411 2412 if (!vma_is_anonymous(vma)) { 2413 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2414 /* 2415 * We are going to unmap this huge page. So 2416 * just go ahead and zap it 2417 */ 2418 if (arch_needs_pgtable_deposit()) 2419 zap_deposited_table(mm, pmd); 2420 if (vma_is_special_huge(vma)) 2421 return; 2422 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2423 swp_entry_t entry; 2424 2425 entry = pmd_to_swp_entry(old_pmd); 2426 folio = pfn_swap_entry_folio(entry); 2427 } else { 2428 page = pmd_page(old_pmd); 2429 folio = page_folio(page); 2430 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2431 folio_mark_dirty(folio); 2432 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2433 folio_set_referenced(folio); 2434 folio_remove_rmap_pmd(folio, page, vma); 2435 folio_put(folio); 2436 } 2437 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2438 return; 2439 } 2440 2441 if (is_huge_zero_pmd(*pmd)) { 2442 /* 2443 * FIXME: Do we want to invalidate secondary mmu by calling 2444 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2445 * inside __split_huge_pmd() ? 2446 * 2447 * We are going from a zero huge page write protected to zero 2448 * small page also write protected so it does not seems useful 2449 * to invalidate secondary mmu at this time. 2450 */ 2451 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2452 } 2453 2454 pmd_migration = is_pmd_migration_entry(*pmd); 2455 if (unlikely(pmd_migration)) { 2456 swp_entry_t entry; 2457 2458 old_pmd = *pmd; 2459 entry = pmd_to_swp_entry(old_pmd); 2460 page = pfn_swap_entry_to_page(entry); 2461 write = is_writable_migration_entry(entry); 2462 if (PageAnon(page)) 2463 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2464 young = is_migration_entry_young(entry); 2465 dirty = is_migration_entry_dirty(entry); 2466 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2467 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2468 } else { 2469 /* 2470 * Up to this point the pmd is present and huge and userland has 2471 * the whole access to the hugepage during the split (which 2472 * happens in place). If we overwrite the pmd with the not-huge 2473 * version pointing to the pte here (which of course we could if 2474 * all CPUs were bug free), userland could trigger a small page 2475 * size TLB miss on the small sized TLB while the hugepage TLB 2476 * entry is still established in the huge TLB. Some CPU doesn't 2477 * like that. See 2478 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2479 * 383 on page 105. Intel should be safe but is also warns that 2480 * it's only safe if the permission and cache attributes of the 2481 * two entries loaded in the two TLB is identical (which should 2482 * be the case here). But it is generally safer to never allow 2483 * small and huge TLB entries for the same virtual address to be 2484 * loaded simultaneously. So instead of doing "pmd_populate(); 2485 * flush_pmd_tlb_range();" we first mark the current pmd 2486 * notpresent (atomically because here the pmd_trans_huge must 2487 * remain set at all times on the pmd until the split is 2488 * complete for this pmd), then we flush the SMP TLB and finally 2489 * we write the non-huge version of the pmd entry with 2490 * pmd_populate. 2491 */ 2492 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2493 page = pmd_page(old_pmd); 2494 folio = page_folio(page); 2495 if (pmd_dirty(old_pmd)) { 2496 dirty = true; 2497 folio_set_dirty(folio); 2498 } 2499 write = pmd_write(old_pmd); 2500 young = pmd_young(old_pmd); 2501 soft_dirty = pmd_soft_dirty(old_pmd); 2502 uffd_wp = pmd_uffd_wp(old_pmd); 2503 2504 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2505 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2506 2507 /* 2508 * Without "freeze", we'll simply split the PMD, propagating the 2509 * PageAnonExclusive() flag for each PTE by setting it for 2510 * each subpage -- no need to (temporarily) clear. 2511 * 2512 * With "freeze" we want to replace mapped pages by 2513 * migration entries right away. This is only possible if we 2514 * managed to clear PageAnonExclusive() -- see 2515 * set_pmd_migration_entry(). 2516 * 2517 * In case we cannot clear PageAnonExclusive(), split the PMD 2518 * only and let try_to_migrate_one() fail later. 2519 * 2520 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2521 */ 2522 anon_exclusive = PageAnonExclusive(page); 2523 if (freeze && anon_exclusive && 2524 folio_try_share_anon_rmap_pmd(folio, page)) 2525 freeze = false; 2526 if (!freeze) { 2527 rmap_t rmap_flags = RMAP_NONE; 2528 2529 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2530 if (anon_exclusive) 2531 rmap_flags |= RMAP_EXCLUSIVE; 2532 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2533 vma, haddr, rmap_flags); 2534 } 2535 } 2536 2537 /* 2538 * Withdraw the table only after we mark the pmd entry invalid. 2539 * This's critical for some architectures (Power). 2540 */ 2541 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2542 pmd_populate(mm, &_pmd, pgtable); 2543 2544 pte = pte_offset_map(&_pmd, haddr); 2545 VM_BUG_ON(!pte); 2546 2547 /* 2548 * Note that NUMA hinting access restrictions are not transferred to 2549 * avoid any possibility of altering permissions across VMAs. 2550 */ 2551 if (freeze || pmd_migration) { 2552 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2553 pte_t entry; 2554 swp_entry_t swp_entry; 2555 2556 if (write) 2557 swp_entry = make_writable_migration_entry( 2558 page_to_pfn(page + i)); 2559 else if (anon_exclusive) 2560 swp_entry = make_readable_exclusive_migration_entry( 2561 page_to_pfn(page + i)); 2562 else 2563 swp_entry = make_readable_migration_entry( 2564 page_to_pfn(page + i)); 2565 if (young) 2566 swp_entry = make_migration_entry_young(swp_entry); 2567 if (dirty) 2568 swp_entry = make_migration_entry_dirty(swp_entry); 2569 entry = swp_entry_to_pte(swp_entry); 2570 if (soft_dirty) 2571 entry = pte_swp_mksoft_dirty(entry); 2572 if (uffd_wp) 2573 entry = pte_swp_mkuffd_wp(entry); 2574 2575 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2576 set_pte_at(mm, addr, pte + i, entry); 2577 } 2578 } else { 2579 pte_t entry; 2580 2581 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2582 if (write) 2583 entry = pte_mkwrite(entry, vma); 2584 if (!young) 2585 entry = pte_mkold(entry); 2586 /* NOTE: this may set soft-dirty too on some archs */ 2587 if (dirty) 2588 entry = pte_mkdirty(entry); 2589 if (soft_dirty) 2590 entry = pte_mksoft_dirty(entry); 2591 if (uffd_wp) 2592 entry = pte_mkuffd_wp(entry); 2593 2594 for (i = 0; i < HPAGE_PMD_NR; i++) 2595 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2596 2597 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2598 } 2599 pte_unmap(pte); 2600 2601 if (!pmd_migration) 2602 folio_remove_rmap_pmd(folio, page, vma); 2603 if (freeze) 2604 put_page(page); 2605 2606 smp_wmb(); /* make pte visible before pmd */ 2607 pmd_populate(mm, pmd, pgtable); 2608 } 2609 2610 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 2611 pmd_t *pmd, bool freeze, struct folio *folio) 2612 { 2613 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio)); 2614 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 2615 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2616 VM_BUG_ON(freeze && !folio); 2617 2618 /* 2619 * When the caller requests to set up a migration entry, we 2620 * require a folio to check the PMD against. Otherwise, there 2621 * is a risk of replacing the wrong folio. 2622 */ 2623 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2624 is_pmd_migration_entry(*pmd)) { 2625 if (folio && folio != pmd_folio(*pmd)) 2626 return; 2627 __split_huge_pmd_locked(vma, pmd, address, freeze); 2628 } 2629 } 2630 2631 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2632 unsigned long address, bool freeze, struct folio *folio) 2633 { 2634 spinlock_t *ptl; 2635 struct mmu_notifier_range range; 2636 2637 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2638 address & HPAGE_PMD_MASK, 2639 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2640 mmu_notifier_invalidate_range_start(&range); 2641 ptl = pmd_lock(vma->vm_mm, pmd); 2642 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio); 2643 spin_unlock(ptl); 2644 mmu_notifier_invalidate_range_end(&range); 2645 } 2646 2647 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2648 bool freeze, struct folio *folio) 2649 { 2650 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2651 2652 if (!pmd) 2653 return; 2654 2655 __split_huge_pmd(vma, pmd, address, freeze, folio); 2656 } 2657 2658 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2659 { 2660 /* 2661 * If the new address isn't hpage aligned and it could previously 2662 * contain an hugepage: check if we need to split an huge pmd. 2663 */ 2664 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2665 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2666 ALIGN(address, HPAGE_PMD_SIZE))) 2667 split_huge_pmd_address(vma, address, false, NULL); 2668 } 2669 2670 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2671 unsigned long start, 2672 unsigned long end, 2673 long adjust_next) 2674 { 2675 /* Check if we need to split start first. */ 2676 split_huge_pmd_if_needed(vma, start); 2677 2678 /* Check if we need to split end next. */ 2679 split_huge_pmd_if_needed(vma, end); 2680 2681 /* 2682 * If we're also updating the next vma vm_start, 2683 * check if we need to split it. 2684 */ 2685 if (adjust_next > 0) { 2686 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2687 unsigned long nstart = next->vm_start; 2688 nstart += adjust_next; 2689 split_huge_pmd_if_needed(next, nstart); 2690 } 2691 } 2692 2693 static void unmap_folio(struct folio *folio) 2694 { 2695 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2696 TTU_BATCH_FLUSH; 2697 2698 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2699 2700 if (folio_test_pmd_mappable(folio)) 2701 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2702 2703 /* 2704 * Anon pages need migration entries to preserve them, but file 2705 * pages can simply be left unmapped, then faulted back on demand. 2706 * If that is ever changed (perhaps for mlock), update remap_page(). 2707 */ 2708 if (folio_test_anon(folio)) 2709 try_to_migrate(folio, ttu_flags); 2710 else 2711 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2712 2713 try_to_unmap_flush(); 2714 } 2715 2716 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 2717 unsigned long addr, pmd_t *pmdp, 2718 struct folio *folio) 2719 { 2720 struct mm_struct *mm = vma->vm_mm; 2721 int ref_count, map_count; 2722 pmd_t orig_pmd = *pmdp; 2723 2724 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd)) 2725 return false; 2726 2727 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 2728 2729 /* 2730 * Syncing against concurrent GUP-fast: 2731 * - clear PMD; barrier; read refcount 2732 * - inc refcount; barrier; read PMD 2733 */ 2734 smp_mb(); 2735 2736 ref_count = folio_ref_count(folio); 2737 map_count = folio_mapcount(folio); 2738 2739 /* 2740 * Order reads for folio refcount and dirty flag 2741 * (see comments in __remove_mapping()). 2742 */ 2743 smp_rmb(); 2744 2745 /* 2746 * If the folio or its PMD is redirtied at this point, or if there 2747 * are unexpected references, we will give up to discard this folio 2748 * and remap it. 2749 * 2750 * The only folio refs must be one from isolation plus the rmap(s). 2751 */ 2752 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) || 2753 ref_count != map_count + 1) { 2754 set_pmd_at(mm, addr, pmdp, orig_pmd); 2755 return false; 2756 } 2757 2758 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 2759 zap_deposited_table(mm, pmdp); 2760 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2761 if (vma->vm_flags & VM_LOCKED) 2762 mlock_drain_local(); 2763 folio_put(folio); 2764 2765 return true; 2766 } 2767 2768 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 2769 pmd_t *pmdp, struct folio *folio) 2770 { 2771 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 2772 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2773 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 2774 2775 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) 2776 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 2777 2778 return false; 2779 } 2780 2781 static void remap_page(struct folio *folio, unsigned long nr) 2782 { 2783 int i = 0; 2784 2785 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2786 if (!folio_test_anon(folio)) 2787 return; 2788 for (;;) { 2789 remove_migration_ptes(folio, folio, true); 2790 i += folio_nr_pages(folio); 2791 if (i >= nr) 2792 break; 2793 folio = folio_next(folio); 2794 } 2795 } 2796 2797 static void lru_add_page_tail(struct page *head, struct page *tail, 2798 struct lruvec *lruvec, struct list_head *list) 2799 { 2800 VM_BUG_ON_PAGE(!PageHead(head), head); 2801 VM_BUG_ON_PAGE(PageLRU(tail), head); 2802 lockdep_assert_held(&lruvec->lru_lock); 2803 2804 if (list) { 2805 /* page reclaim is reclaiming a huge page */ 2806 VM_WARN_ON(PageLRU(head)); 2807 get_page(tail); 2808 list_add_tail(&tail->lru, list); 2809 } else { 2810 /* head is still on lru (and we have it frozen) */ 2811 VM_WARN_ON(!PageLRU(head)); 2812 if (PageUnevictable(tail)) 2813 tail->mlock_count = 0; 2814 else 2815 list_add_tail(&tail->lru, &head->lru); 2816 SetPageLRU(tail); 2817 } 2818 } 2819 2820 static void __split_huge_page_tail(struct folio *folio, int tail, 2821 struct lruvec *lruvec, struct list_head *list, 2822 unsigned int new_order) 2823 { 2824 struct page *head = &folio->page; 2825 struct page *page_tail = head + tail; 2826 /* 2827 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2828 * Don't pass it around before clear_compound_head(). 2829 */ 2830 struct folio *new_folio = (struct folio *)page_tail; 2831 2832 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2833 2834 /* 2835 * Clone page flags before unfreezing refcount. 2836 * 2837 * After successful get_page_unless_zero() might follow flags change, 2838 * for example lock_page() which set PG_waiters. 2839 * 2840 * Note that for mapped sub-pages of an anonymous THP, 2841 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2842 * the migration entry instead from where remap_page() will restore it. 2843 * We can still have PG_anon_exclusive set on effectively unmapped and 2844 * unreferenced sub-pages of an anonymous THP: we can simply drop 2845 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2846 */ 2847 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2848 page_tail->flags |= (head->flags & 2849 ((1L << PG_referenced) | 2850 (1L << PG_swapbacked) | 2851 (1L << PG_swapcache) | 2852 (1L << PG_mlocked) | 2853 (1L << PG_uptodate) | 2854 (1L << PG_active) | 2855 (1L << PG_workingset) | 2856 (1L << PG_locked) | 2857 (1L << PG_unevictable) | 2858 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2859 (1L << PG_arch_2) | 2860 (1L << PG_arch_3) | 2861 #endif 2862 (1L << PG_dirty) | 2863 LRU_GEN_MASK | LRU_REFS_MASK)); 2864 2865 /* ->mapping in first and second tail page is replaced by other uses */ 2866 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2867 page_tail); 2868 page_tail->mapping = head->mapping; 2869 page_tail->index = head->index + tail; 2870 2871 /* 2872 * page->private should not be set in tail pages. Fix up and warn once 2873 * if private is unexpectedly set. 2874 */ 2875 if (unlikely(page_tail->private)) { 2876 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2877 page_tail->private = 0; 2878 } 2879 if (folio_test_swapcache(folio)) 2880 new_folio->swap.val = folio->swap.val + tail; 2881 2882 /* Page flags must be visible before we make the page non-compound. */ 2883 smp_wmb(); 2884 2885 /* 2886 * Clear PageTail before unfreezing page refcount. 2887 * 2888 * After successful get_page_unless_zero() might follow put_page() 2889 * which needs correct compound_head(). 2890 */ 2891 clear_compound_head(page_tail); 2892 if (new_order) { 2893 prep_compound_page(page_tail, new_order); 2894 folio_set_large_rmappable(new_folio); 2895 } 2896 2897 /* Finally unfreeze refcount. Additional reference from page cache. */ 2898 page_ref_unfreeze(page_tail, 2899 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2900 folio_nr_pages(new_folio) : 0)); 2901 2902 if (folio_test_young(folio)) 2903 folio_set_young(new_folio); 2904 if (folio_test_idle(folio)) 2905 folio_set_idle(new_folio); 2906 2907 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2908 2909 /* 2910 * always add to the tail because some iterators expect new 2911 * pages to show after the currently processed elements - e.g. 2912 * migrate_pages 2913 */ 2914 lru_add_page_tail(head, page_tail, lruvec, list); 2915 } 2916 2917 static void __split_huge_page(struct page *page, struct list_head *list, 2918 pgoff_t end, unsigned int new_order) 2919 { 2920 struct folio *folio = page_folio(page); 2921 struct page *head = &folio->page; 2922 struct lruvec *lruvec; 2923 struct address_space *swap_cache = NULL; 2924 unsigned long offset = 0; 2925 int i, nr_dropped = 0; 2926 unsigned int new_nr = 1 << new_order; 2927 int order = folio_order(folio); 2928 unsigned int nr = 1 << order; 2929 2930 /* complete memcg works before add pages to LRU */ 2931 split_page_memcg(head, order, new_order); 2932 2933 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2934 offset = swap_cache_index(folio->swap); 2935 swap_cache = swap_address_space(folio->swap); 2936 xa_lock(&swap_cache->i_pages); 2937 } 2938 2939 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2940 lruvec = folio_lruvec_lock(folio); 2941 2942 ClearPageHasHWPoisoned(head); 2943 2944 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2945 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2946 /* Some pages can be beyond EOF: drop them from page cache */ 2947 if (head[i].index >= end) { 2948 struct folio *tail = page_folio(head + i); 2949 2950 if (shmem_mapping(folio->mapping)) 2951 nr_dropped++; 2952 else if (folio_test_clear_dirty(tail)) 2953 folio_account_cleaned(tail, 2954 inode_to_wb(folio->mapping->host)); 2955 __filemap_remove_folio(tail, NULL); 2956 folio_put(tail); 2957 } else if (!PageAnon(page)) { 2958 __xa_store(&folio->mapping->i_pages, head[i].index, 2959 head + i, 0); 2960 } else if (swap_cache) { 2961 __xa_store(&swap_cache->i_pages, offset + i, 2962 head + i, 0); 2963 } 2964 } 2965 2966 if (!new_order) 2967 ClearPageCompound(head); 2968 else { 2969 struct folio *new_folio = (struct folio *)head; 2970 2971 folio_set_order(new_folio, new_order); 2972 } 2973 unlock_page_lruvec(lruvec); 2974 /* Caller disabled irqs, so they are still disabled here */ 2975 2976 split_page_owner(head, order, new_order); 2977 pgalloc_tag_split(head, 1 << order); 2978 2979 /* See comment in __split_huge_page_tail() */ 2980 if (folio_test_anon(folio)) { 2981 /* Additional pin to swap cache */ 2982 if (folio_test_swapcache(folio)) { 2983 folio_ref_add(folio, 1 + new_nr); 2984 xa_unlock(&swap_cache->i_pages); 2985 } else { 2986 folio_ref_inc(folio); 2987 } 2988 } else { 2989 /* Additional pin to page cache */ 2990 folio_ref_add(folio, 1 + new_nr); 2991 xa_unlock(&folio->mapping->i_pages); 2992 } 2993 local_irq_enable(); 2994 2995 if (nr_dropped) 2996 shmem_uncharge(folio->mapping->host, nr_dropped); 2997 remap_page(folio, nr); 2998 2999 /* 3000 * set page to its compound_head when split to non order-0 pages, so 3001 * we can skip unlocking it below, since PG_locked is transferred to 3002 * the compound_head of the page and the caller will unlock it. 3003 */ 3004 if (new_order) 3005 page = compound_head(page); 3006 3007 for (i = 0; i < nr; i += new_nr) { 3008 struct page *subpage = head + i; 3009 struct folio *new_folio = page_folio(subpage); 3010 if (subpage == page) 3011 continue; 3012 folio_unlock(new_folio); 3013 3014 /* 3015 * Subpages may be freed if there wasn't any mapping 3016 * like if add_to_swap() is running on a lru page that 3017 * had its mapping zapped. And freeing these pages 3018 * requires taking the lru_lock so we do the put_page 3019 * of the tail pages after the split is complete. 3020 */ 3021 free_page_and_swap_cache(subpage); 3022 } 3023 } 3024 3025 /* Racy check whether the huge page can be split */ 3026 bool can_split_folio(struct folio *folio, int *pextra_pins) 3027 { 3028 int extra_pins; 3029 3030 /* Additional pins from page cache */ 3031 if (folio_test_anon(folio)) 3032 extra_pins = folio_test_swapcache(folio) ? 3033 folio_nr_pages(folio) : 0; 3034 else 3035 extra_pins = folio_nr_pages(folio); 3036 if (pextra_pins) 3037 *pextra_pins = extra_pins; 3038 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 3039 } 3040 3041 /* 3042 * This function splits a large folio into smaller folios of order @new_order. 3043 * @page can point to any page of the large folio to split. The split operation 3044 * does not change the position of @page. 3045 * 3046 * Prerequisites: 3047 * 3048 * 1) The caller must hold a reference on the @page's owning folio, also known 3049 * as the large folio. 3050 * 3051 * 2) The large folio must be locked. 3052 * 3053 * 3) The folio must not be pinned. Any unexpected folio references, including 3054 * GUP pins, will result in the folio not getting split; instead, the caller 3055 * will receive an -EAGAIN. 3056 * 3057 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3058 * supported for non-file-backed folios, because folio->_deferred_list, which 3059 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3060 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3061 * since they do not use _deferred_list. 3062 * 3063 * After splitting, the caller's folio reference will be transferred to @page, 3064 * resulting in a raised refcount of @page after this call. The other pages may 3065 * be freed if they are not mapped. 3066 * 3067 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3068 * 3069 * Pages in @new_order will inherit the mapping, flags, and so on from the 3070 * huge page. 3071 * 3072 * Returns 0 if the huge page was split successfully. 3073 * 3074 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3075 * the folio was concurrently removed from the page cache. 3076 * 3077 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3078 * under writeback, if fs-specific folio metadata cannot currently be 3079 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3080 * truncation). 3081 * 3082 * Returns -EINVAL when trying to split to an order that is incompatible 3083 * with the folio. Splitting to order 0 is compatible with all folios. 3084 */ 3085 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3086 unsigned int new_order) 3087 { 3088 struct folio *folio = page_folio(page); 3089 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3090 /* reset xarray order to new order after split */ 3091 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3092 struct anon_vma *anon_vma = NULL; 3093 struct address_space *mapping = NULL; 3094 int order = folio_order(folio); 3095 int extra_pins, ret; 3096 pgoff_t end; 3097 bool is_hzp; 3098 3099 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3100 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3101 3102 if (new_order >= folio_order(folio)) 3103 return -EINVAL; 3104 3105 if (folio_test_anon(folio)) { 3106 /* order-1 is not supported for anonymous THP. */ 3107 if (new_order == 1) { 3108 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3109 return -EINVAL; 3110 } 3111 } else if (new_order) { 3112 /* Split shmem folio to non-zero order not supported */ 3113 if (shmem_mapping(folio->mapping)) { 3114 VM_WARN_ONCE(1, 3115 "Cannot split shmem folio to non-0 order"); 3116 return -EINVAL; 3117 } 3118 /* 3119 * No split if the file system does not support large folio. 3120 * Note that we might still have THPs in such mappings due to 3121 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3122 * does not actually support large folios properly. 3123 */ 3124 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3125 !mapping_large_folio_support(folio->mapping)) { 3126 VM_WARN_ONCE(1, 3127 "Cannot split file folio to non-0 order"); 3128 return -EINVAL; 3129 } 3130 } 3131 3132 /* Only swapping a whole PMD-mapped folio is supported */ 3133 if (folio_test_swapcache(folio) && new_order) 3134 return -EINVAL; 3135 3136 is_hzp = is_huge_zero_folio(folio); 3137 if (is_hzp) { 3138 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3139 return -EBUSY; 3140 } 3141 3142 if (folio_test_writeback(folio)) 3143 return -EBUSY; 3144 3145 if (folio_test_anon(folio)) { 3146 /* 3147 * The caller does not necessarily hold an mmap_lock that would 3148 * prevent the anon_vma disappearing so we first we take a 3149 * reference to it and then lock the anon_vma for write. This 3150 * is similar to folio_lock_anon_vma_read except the write lock 3151 * is taken to serialise against parallel split or collapse 3152 * operations. 3153 */ 3154 anon_vma = folio_get_anon_vma(folio); 3155 if (!anon_vma) { 3156 ret = -EBUSY; 3157 goto out; 3158 } 3159 end = -1; 3160 mapping = NULL; 3161 anon_vma_lock_write(anon_vma); 3162 } else { 3163 gfp_t gfp; 3164 3165 mapping = folio->mapping; 3166 3167 /* Truncated ? */ 3168 if (!mapping) { 3169 ret = -EBUSY; 3170 goto out; 3171 } 3172 3173 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3174 GFP_RECLAIM_MASK); 3175 3176 if (!filemap_release_folio(folio, gfp)) { 3177 ret = -EBUSY; 3178 goto out; 3179 } 3180 3181 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3182 if (xas_error(&xas)) { 3183 ret = xas_error(&xas); 3184 goto out; 3185 } 3186 3187 anon_vma = NULL; 3188 i_mmap_lock_read(mapping); 3189 3190 /* 3191 *__split_huge_page() may need to trim off pages beyond EOF: 3192 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3193 * which cannot be nested inside the page tree lock. So note 3194 * end now: i_size itself may be changed at any moment, but 3195 * folio lock is good enough to serialize the trimming. 3196 */ 3197 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3198 if (shmem_mapping(mapping)) 3199 end = shmem_fallocend(mapping->host, end); 3200 } 3201 3202 /* 3203 * Racy check if we can split the page, before unmap_folio() will 3204 * split PMDs 3205 */ 3206 if (!can_split_folio(folio, &extra_pins)) { 3207 ret = -EAGAIN; 3208 goto out_unlock; 3209 } 3210 3211 unmap_folio(folio); 3212 3213 /* block interrupt reentry in xa_lock and spinlock */ 3214 local_irq_disable(); 3215 if (mapping) { 3216 /* 3217 * Check if the folio is present in page cache. 3218 * We assume all tail are present too, if folio is there. 3219 */ 3220 xas_lock(&xas); 3221 xas_reset(&xas); 3222 if (xas_load(&xas) != folio) 3223 goto fail; 3224 } 3225 3226 /* Prevent deferred_split_scan() touching ->_refcount */ 3227 spin_lock(&ds_queue->split_queue_lock); 3228 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3229 if (folio_order(folio) > 1 && 3230 !list_empty(&folio->_deferred_list)) { 3231 ds_queue->split_queue_len--; 3232 /* 3233 * Reinitialize page_deferred_list after removing the 3234 * page from the split_queue, otherwise a subsequent 3235 * split will see list corruption when checking the 3236 * page_deferred_list. 3237 */ 3238 list_del_init(&folio->_deferred_list); 3239 } 3240 spin_unlock(&ds_queue->split_queue_lock); 3241 if (mapping) { 3242 int nr = folio_nr_pages(folio); 3243 3244 xas_split(&xas, folio, folio_order(folio)); 3245 if (folio_test_pmd_mappable(folio) && 3246 new_order < HPAGE_PMD_ORDER) { 3247 if (folio_test_swapbacked(folio)) { 3248 __lruvec_stat_mod_folio(folio, 3249 NR_SHMEM_THPS, -nr); 3250 } else { 3251 __lruvec_stat_mod_folio(folio, 3252 NR_FILE_THPS, -nr); 3253 filemap_nr_thps_dec(mapping); 3254 } 3255 } 3256 } 3257 3258 __split_huge_page(page, list, end, new_order); 3259 ret = 0; 3260 } else { 3261 spin_unlock(&ds_queue->split_queue_lock); 3262 fail: 3263 if (mapping) 3264 xas_unlock(&xas); 3265 local_irq_enable(); 3266 remap_page(folio, folio_nr_pages(folio)); 3267 ret = -EAGAIN; 3268 } 3269 3270 out_unlock: 3271 if (anon_vma) { 3272 anon_vma_unlock_write(anon_vma); 3273 put_anon_vma(anon_vma); 3274 } 3275 if (mapping) 3276 i_mmap_unlock_read(mapping); 3277 out: 3278 xas_destroy(&xas); 3279 if (order == HPAGE_PMD_ORDER) 3280 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3281 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3282 return ret; 3283 } 3284 3285 void __folio_undo_large_rmappable(struct folio *folio) 3286 { 3287 struct deferred_split *ds_queue; 3288 unsigned long flags; 3289 3290 ds_queue = get_deferred_split_queue(folio); 3291 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3292 if (!list_empty(&folio->_deferred_list)) { 3293 ds_queue->split_queue_len--; 3294 list_del_init(&folio->_deferred_list); 3295 } 3296 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3297 } 3298 3299 void deferred_split_folio(struct folio *folio) 3300 { 3301 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3302 #ifdef CONFIG_MEMCG 3303 struct mem_cgroup *memcg = folio_memcg(folio); 3304 #endif 3305 unsigned long flags; 3306 3307 /* 3308 * Order 1 folios have no space for a deferred list, but we also 3309 * won't waste much memory by not adding them to the deferred list. 3310 */ 3311 if (folio_order(folio) <= 1) 3312 return; 3313 3314 /* 3315 * The try_to_unmap() in page reclaim path might reach here too, 3316 * this may cause a race condition to corrupt deferred split queue. 3317 * And, if page reclaim is already handling the same folio, it is 3318 * unnecessary to handle it again in shrinker. 3319 * 3320 * Check the swapcache flag to determine if the folio is being 3321 * handled by page reclaim since THP swap would add the folio into 3322 * swap cache before calling try_to_unmap(). 3323 */ 3324 if (folio_test_swapcache(folio)) 3325 return; 3326 3327 if (!list_empty(&folio->_deferred_list)) 3328 return; 3329 3330 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3331 if (list_empty(&folio->_deferred_list)) { 3332 if (folio_test_pmd_mappable(folio)) 3333 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3334 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 3335 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3336 ds_queue->split_queue_len++; 3337 #ifdef CONFIG_MEMCG 3338 if (memcg) 3339 set_shrinker_bit(memcg, folio_nid(folio), 3340 deferred_split_shrinker->id); 3341 #endif 3342 } 3343 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3344 } 3345 3346 static unsigned long deferred_split_count(struct shrinker *shrink, 3347 struct shrink_control *sc) 3348 { 3349 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3350 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3351 3352 #ifdef CONFIG_MEMCG 3353 if (sc->memcg) 3354 ds_queue = &sc->memcg->deferred_split_queue; 3355 #endif 3356 return READ_ONCE(ds_queue->split_queue_len); 3357 } 3358 3359 static unsigned long deferred_split_scan(struct shrinker *shrink, 3360 struct shrink_control *sc) 3361 { 3362 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3363 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3364 unsigned long flags; 3365 LIST_HEAD(list); 3366 struct folio *folio, *next; 3367 int split = 0; 3368 3369 #ifdef CONFIG_MEMCG 3370 if (sc->memcg) 3371 ds_queue = &sc->memcg->deferred_split_queue; 3372 #endif 3373 3374 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3375 /* Take pin on all head pages to avoid freeing them under us */ 3376 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3377 _deferred_list) { 3378 if (folio_try_get(folio)) { 3379 list_move(&folio->_deferred_list, &list); 3380 } else { 3381 /* We lost race with folio_put() */ 3382 list_del_init(&folio->_deferred_list); 3383 ds_queue->split_queue_len--; 3384 } 3385 if (!--sc->nr_to_scan) 3386 break; 3387 } 3388 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3389 3390 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3391 if (!folio_trylock(folio)) 3392 goto next; 3393 /* split_huge_page() removes page from list on success */ 3394 if (!split_folio(folio)) 3395 split++; 3396 folio_unlock(folio); 3397 next: 3398 folio_put(folio); 3399 } 3400 3401 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3402 list_splice_tail(&list, &ds_queue->split_queue); 3403 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3404 3405 /* 3406 * Stop shrinker if we didn't split any page, but the queue is empty. 3407 * This can happen if pages were freed under us. 3408 */ 3409 if (!split && list_empty(&ds_queue->split_queue)) 3410 return SHRINK_STOP; 3411 return split; 3412 } 3413 3414 #ifdef CONFIG_DEBUG_FS 3415 static void split_huge_pages_all(void) 3416 { 3417 struct zone *zone; 3418 struct page *page; 3419 struct folio *folio; 3420 unsigned long pfn, max_zone_pfn; 3421 unsigned long total = 0, split = 0; 3422 3423 pr_debug("Split all THPs\n"); 3424 for_each_zone(zone) { 3425 if (!managed_zone(zone)) 3426 continue; 3427 max_zone_pfn = zone_end_pfn(zone); 3428 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3429 int nr_pages; 3430 3431 page = pfn_to_online_page(pfn); 3432 if (!page || PageTail(page)) 3433 continue; 3434 folio = page_folio(page); 3435 if (!folio_try_get(folio)) 3436 continue; 3437 3438 if (unlikely(page_folio(page) != folio)) 3439 goto next; 3440 3441 if (zone != folio_zone(folio)) 3442 goto next; 3443 3444 if (!folio_test_large(folio) 3445 || folio_test_hugetlb(folio) 3446 || !folio_test_lru(folio)) 3447 goto next; 3448 3449 total++; 3450 folio_lock(folio); 3451 nr_pages = folio_nr_pages(folio); 3452 if (!split_folio(folio)) 3453 split++; 3454 pfn += nr_pages - 1; 3455 folio_unlock(folio); 3456 next: 3457 folio_put(folio); 3458 cond_resched(); 3459 } 3460 } 3461 3462 pr_debug("%lu of %lu THP split\n", split, total); 3463 } 3464 3465 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3466 { 3467 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3468 is_vm_hugetlb_page(vma); 3469 } 3470 3471 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3472 unsigned long vaddr_end, unsigned int new_order) 3473 { 3474 int ret = 0; 3475 struct task_struct *task; 3476 struct mm_struct *mm; 3477 unsigned long total = 0, split = 0; 3478 unsigned long addr; 3479 3480 vaddr_start &= PAGE_MASK; 3481 vaddr_end &= PAGE_MASK; 3482 3483 /* Find the task_struct from pid */ 3484 rcu_read_lock(); 3485 task = find_task_by_vpid(pid); 3486 if (!task) { 3487 rcu_read_unlock(); 3488 ret = -ESRCH; 3489 goto out; 3490 } 3491 get_task_struct(task); 3492 rcu_read_unlock(); 3493 3494 /* Find the mm_struct */ 3495 mm = get_task_mm(task); 3496 put_task_struct(task); 3497 3498 if (!mm) { 3499 ret = -EINVAL; 3500 goto out; 3501 } 3502 3503 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3504 pid, vaddr_start, vaddr_end); 3505 3506 mmap_read_lock(mm); 3507 /* 3508 * always increase addr by PAGE_SIZE, since we could have a PTE page 3509 * table filled with PTE-mapped THPs, each of which is distinct. 3510 */ 3511 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3512 struct vm_area_struct *vma = vma_lookup(mm, addr); 3513 struct page *page; 3514 struct folio *folio; 3515 3516 if (!vma) 3517 break; 3518 3519 /* skip special VMA and hugetlb VMA */ 3520 if (vma_not_suitable_for_thp_split(vma)) { 3521 addr = vma->vm_end; 3522 continue; 3523 } 3524 3525 /* FOLL_DUMP to ignore special (like zero) pages */ 3526 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3527 3528 if (IS_ERR_OR_NULL(page)) 3529 continue; 3530 3531 folio = page_folio(page); 3532 if (!is_transparent_hugepage(folio)) 3533 goto next; 3534 3535 if (new_order >= folio_order(folio)) 3536 goto next; 3537 3538 total++; 3539 /* 3540 * For folios with private, split_huge_page_to_list_to_order() 3541 * will try to drop it before split and then check if the folio 3542 * can be split or not. So skip the check here. 3543 */ 3544 if (!folio_test_private(folio) && 3545 !can_split_folio(folio, NULL)) 3546 goto next; 3547 3548 if (!folio_trylock(folio)) 3549 goto next; 3550 3551 if (!split_folio_to_order(folio, new_order)) 3552 split++; 3553 3554 folio_unlock(folio); 3555 next: 3556 folio_put(folio); 3557 cond_resched(); 3558 } 3559 mmap_read_unlock(mm); 3560 mmput(mm); 3561 3562 pr_debug("%lu of %lu THP split\n", split, total); 3563 3564 out: 3565 return ret; 3566 } 3567 3568 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3569 pgoff_t off_end, unsigned int new_order) 3570 { 3571 struct filename *file; 3572 struct file *candidate; 3573 struct address_space *mapping; 3574 int ret = -EINVAL; 3575 pgoff_t index; 3576 int nr_pages = 1; 3577 unsigned long total = 0, split = 0; 3578 3579 file = getname_kernel(file_path); 3580 if (IS_ERR(file)) 3581 return ret; 3582 3583 candidate = file_open_name(file, O_RDONLY, 0); 3584 if (IS_ERR(candidate)) 3585 goto out; 3586 3587 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3588 file_path, off_start, off_end); 3589 3590 mapping = candidate->f_mapping; 3591 3592 for (index = off_start; index < off_end; index += nr_pages) { 3593 struct folio *folio = filemap_get_folio(mapping, index); 3594 3595 nr_pages = 1; 3596 if (IS_ERR(folio)) 3597 continue; 3598 3599 if (!folio_test_large(folio)) 3600 goto next; 3601 3602 total++; 3603 nr_pages = folio_nr_pages(folio); 3604 3605 if (new_order >= folio_order(folio)) 3606 goto next; 3607 3608 if (!folio_trylock(folio)) 3609 goto next; 3610 3611 if (!split_folio_to_order(folio, new_order)) 3612 split++; 3613 3614 folio_unlock(folio); 3615 next: 3616 folio_put(folio); 3617 cond_resched(); 3618 } 3619 3620 filp_close(candidate, NULL); 3621 ret = 0; 3622 3623 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3624 out: 3625 putname(file); 3626 return ret; 3627 } 3628 3629 #define MAX_INPUT_BUF_SZ 255 3630 3631 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3632 size_t count, loff_t *ppops) 3633 { 3634 static DEFINE_MUTEX(split_debug_mutex); 3635 ssize_t ret; 3636 /* 3637 * hold pid, start_vaddr, end_vaddr, new_order or 3638 * file_path, off_start, off_end, new_order 3639 */ 3640 char input_buf[MAX_INPUT_BUF_SZ]; 3641 int pid; 3642 unsigned long vaddr_start, vaddr_end; 3643 unsigned int new_order = 0; 3644 3645 ret = mutex_lock_interruptible(&split_debug_mutex); 3646 if (ret) 3647 return ret; 3648 3649 ret = -EFAULT; 3650 3651 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3652 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3653 goto out; 3654 3655 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3656 3657 if (input_buf[0] == '/') { 3658 char *tok; 3659 char *buf = input_buf; 3660 char file_path[MAX_INPUT_BUF_SZ]; 3661 pgoff_t off_start = 0, off_end = 0; 3662 size_t input_len = strlen(input_buf); 3663 3664 tok = strsep(&buf, ","); 3665 if (tok) { 3666 strcpy(file_path, tok); 3667 } else { 3668 ret = -EINVAL; 3669 goto out; 3670 } 3671 3672 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3673 if (ret != 2 && ret != 3) { 3674 ret = -EINVAL; 3675 goto out; 3676 } 3677 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3678 if (!ret) 3679 ret = input_len; 3680 3681 goto out; 3682 } 3683 3684 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3685 if (ret == 1 && pid == 1) { 3686 split_huge_pages_all(); 3687 ret = strlen(input_buf); 3688 goto out; 3689 } else if (ret != 3 && ret != 4) { 3690 ret = -EINVAL; 3691 goto out; 3692 } 3693 3694 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3695 if (!ret) 3696 ret = strlen(input_buf); 3697 out: 3698 mutex_unlock(&split_debug_mutex); 3699 return ret; 3700 3701 } 3702 3703 static const struct file_operations split_huge_pages_fops = { 3704 .owner = THIS_MODULE, 3705 .write = split_huge_pages_write, 3706 .llseek = no_llseek, 3707 }; 3708 3709 static int __init split_huge_pages_debugfs(void) 3710 { 3711 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3712 &split_huge_pages_fops); 3713 return 0; 3714 } 3715 late_initcall(split_huge_pages_debugfs); 3716 #endif 3717 3718 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3719 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3720 struct page *page) 3721 { 3722 struct folio *folio = page_folio(page); 3723 struct vm_area_struct *vma = pvmw->vma; 3724 struct mm_struct *mm = vma->vm_mm; 3725 unsigned long address = pvmw->address; 3726 bool anon_exclusive; 3727 pmd_t pmdval; 3728 swp_entry_t entry; 3729 pmd_t pmdswp; 3730 3731 if (!(pvmw->pmd && !pvmw->pte)) 3732 return 0; 3733 3734 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3735 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3736 3737 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3738 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3739 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3740 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3741 return -EBUSY; 3742 } 3743 3744 if (pmd_dirty(pmdval)) 3745 folio_mark_dirty(folio); 3746 if (pmd_write(pmdval)) 3747 entry = make_writable_migration_entry(page_to_pfn(page)); 3748 else if (anon_exclusive) 3749 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3750 else 3751 entry = make_readable_migration_entry(page_to_pfn(page)); 3752 if (pmd_young(pmdval)) 3753 entry = make_migration_entry_young(entry); 3754 if (pmd_dirty(pmdval)) 3755 entry = make_migration_entry_dirty(entry); 3756 pmdswp = swp_entry_to_pmd(entry); 3757 if (pmd_soft_dirty(pmdval)) 3758 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3759 if (pmd_uffd_wp(pmdval)) 3760 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3761 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3762 folio_remove_rmap_pmd(folio, page, vma); 3763 folio_put(folio); 3764 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3765 3766 return 0; 3767 } 3768 3769 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3770 { 3771 struct folio *folio = page_folio(new); 3772 struct vm_area_struct *vma = pvmw->vma; 3773 struct mm_struct *mm = vma->vm_mm; 3774 unsigned long address = pvmw->address; 3775 unsigned long haddr = address & HPAGE_PMD_MASK; 3776 pmd_t pmde; 3777 swp_entry_t entry; 3778 3779 if (!(pvmw->pmd && !pvmw->pte)) 3780 return; 3781 3782 entry = pmd_to_swp_entry(*pvmw->pmd); 3783 folio_get(folio); 3784 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3785 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3786 pmde = pmd_mksoft_dirty(pmde); 3787 if (is_writable_migration_entry(entry)) 3788 pmde = pmd_mkwrite(pmde, vma); 3789 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3790 pmde = pmd_mkuffd_wp(pmde); 3791 if (!is_migration_entry_young(entry)) 3792 pmde = pmd_mkold(pmde); 3793 /* NOTE: this may contain setting soft-dirty on some archs */ 3794 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3795 pmde = pmd_mkdirty(pmde); 3796 3797 if (folio_test_anon(folio)) { 3798 rmap_t rmap_flags = RMAP_NONE; 3799 3800 if (!is_readable_migration_entry(entry)) 3801 rmap_flags |= RMAP_EXCLUSIVE; 3802 3803 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3804 } else { 3805 folio_add_file_rmap_pmd(folio, new, vma); 3806 } 3807 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3808 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3809 3810 /* No need to invalidate - it was non-present before */ 3811 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3812 trace_remove_migration_pmd(address, pmd_val(pmde)); 3813 } 3814 #endif 3815