1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 42 #include <asm/tlb.h> 43 #include <asm/pgalloc.h> 44 #include "internal.h" 45 #include "swap.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/thp.h> 49 50 /* 51 * By default, transparent hugepage support is disabled in order to avoid 52 * risking an increased memory footprint for applications that are not 53 * guaranteed to benefit from it. When transparent hugepage support is 54 * enabled, it is for all mappings, and khugepaged scans all mappings. 55 * Defrag is invoked by khugepaged hugepage allocations and by page faults 56 * for all hugepage allocations. 57 */ 58 unsigned long transparent_hugepage_flags __read_mostly = 59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 60 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 61 #endif 62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 64 #endif 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 68 69 static struct shrinker *deferred_split_shrinker; 70 static unsigned long deferred_split_count(struct shrinker *shrink, 71 struct shrink_control *sc); 72 static unsigned long deferred_split_scan(struct shrinker *shrink, 73 struct shrink_control *sc); 74 75 static atomic_t huge_zero_refcount; 76 struct page *huge_zero_page __read_mostly; 77 unsigned long huge_zero_pfn __read_mostly = ~0UL; 78 unsigned long huge_anon_orders_always __read_mostly; 79 unsigned long huge_anon_orders_madvise __read_mostly; 80 unsigned long huge_anon_orders_inherit __read_mostly; 81 82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 83 unsigned long vm_flags, bool smaps, 84 bool in_pf, bool enforce_sysfs, 85 unsigned long orders) 86 { 87 /* Check the intersection of requested and supported orders. */ 88 orders &= vma_is_anonymous(vma) ? 89 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 90 if (!orders) 91 return 0; 92 93 if (!vma->vm_mm) /* vdso */ 94 return 0; 95 96 /* 97 * Explicitly disabled through madvise or prctl, or some 98 * architectures may disable THP for some mappings, for 99 * example, s390 kvm. 100 * */ 101 if ((vm_flags & VM_NOHUGEPAGE) || 102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 103 return 0; 104 /* 105 * If the hardware/firmware marked hugepage support disabled. 106 */ 107 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 108 return 0; 109 110 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 111 if (vma_is_dax(vma)) 112 return in_pf ? orders : 0; 113 114 /* 115 * khugepaged special VMA and hugetlb VMA. 116 * Must be checked after dax since some dax mappings may have 117 * VM_MIXEDMAP set. 118 */ 119 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 120 return 0; 121 122 /* 123 * Check alignment for file vma and size for both file and anon vma by 124 * filtering out the unsuitable orders. 125 * 126 * Skip the check for page fault. Huge fault does the check in fault 127 * handlers. 128 */ 129 if (!in_pf) { 130 int order = highest_order(orders); 131 unsigned long addr; 132 133 while (orders) { 134 addr = vma->vm_end - (PAGE_SIZE << order); 135 if (thp_vma_suitable_order(vma, addr, order)) 136 break; 137 order = next_order(&orders, order); 138 } 139 140 if (!orders) 141 return 0; 142 } 143 144 /* 145 * Enabled via shmem mount options or sysfs settings. 146 * Must be done before hugepage flags check since shmem has its 147 * own flags. 148 */ 149 if (!in_pf && shmem_file(vma->vm_file)) 150 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 151 !enforce_sysfs, vma->vm_mm, vm_flags) 152 ? orders : 0; 153 154 if (!vma_is_anonymous(vma)) { 155 /* 156 * Enforce sysfs THP requirements as necessary. Anonymous vmas 157 * were already handled in thp_vma_allowable_orders(). 158 */ 159 if (enforce_sysfs && 160 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 161 !hugepage_global_always()))) 162 return 0; 163 164 /* 165 * Trust that ->huge_fault() handlers know what they are doing 166 * in fault path. 167 */ 168 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 169 return orders; 170 /* Only regular file is valid in collapse path */ 171 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 172 return orders; 173 return 0; 174 } 175 176 if (vma_is_temporary_stack(vma)) 177 return 0; 178 179 /* 180 * THPeligible bit of smaps should show 1 for proper VMAs even 181 * though anon_vma is not initialized yet. 182 * 183 * Allow page fault since anon_vma may be not initialized until 184 * the first page fault. 185 */ 186 if (!vma->anon_vma) 187 return (smaps || in_pf) ? orders : 0; 188 189 return orders; 190 } 191 192 static bool get_huge_zero_page(void) 193 { 194 struct page *zero_page; 195 retry: 196 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 197 return true; 198 199 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 200 HPAGE_PMD_ORDER); 201 if (!zero_page) { 202 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 203 return false; 204 } 205 preempt_disable(); 206 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 207 preempt_enable(); 208 __free_pages(zero_page, compound_order(zero_page)); 209 goto retry; 210 } 211 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 212 213 /* We take additional reference here. It will be put back by shrinker */ 214 atomic_set(&huge_zero_refcount, 2); 215 preempt_enable(); 216 count_vm_event(THP_ZERO_PAGE_ALLOC); 217 return true; 218 } 219 220 static void put_huge_zero_page(void) 221 { 222 /* 223 * Counter should never go to zero here. Only shrinker can put 224 * last reference. 225 */ 226 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 227 } 228 229 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 230 { 231 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 232 return READ_ONCE(huge_zero_page); 233 234 if (!get_huge_zero_page()) 235 return NULL; 236 237 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 238 put_huge_zero_page(); 239 240 return READ_ONCE(huge_zero_page); 241 } 242 243 void mm_put_huge_zero_page(struct mm_struct *mm) 244 { 245 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 246 put_huge_zero_page(); 247 } 248 249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 250 struct shrink_control *sc) 251 { 252 /* we can free zero page only if last reference remains */ 253 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 254 } 255 256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 257 struct shrink_control *sc) 258 { 259 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 260 struct page *zero_page = xchg(&huge_zero_page, NULL); 261 BUG_ON(zero_page == NULL); 262 WRITE_ONCE(huge_zero_pfn, ~0UL); 263 __free_pages(zero_page, compound_order(zero_page)); 264 return HPAGE_PMD_NR; 265 } 266 267 return 0; 268 } 269 270 static struct shrinker *huge_zero_page_shrinker; 271 272 #ifdef CONFIG_SYSFS 273 static ssize_t enabled_show(struct kobject *kobj, 274 struct kobj_attribute *attr, char *buf) 275 { 276 const char *output; 277 278 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 279 output = "[always] madvise never"; 280 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 281 &transparent_hugepage_flags)) 282 output = "always [madvise] never"; 283 else 284 output = "always madvise [never]"; 285 286 return sysfs_emit(buf, "%s\n", output); 287 } 288 289 static ssize_t enabled_store(struct kobject *kobj, 290 struct kobj_attribute *attr, 291 const char *buf, size_t count) 292 { 293 ssize_t ret = count; 294 295 if (sysfs_streq(buf, "always")) { 296 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 297 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 298 } else if (sysfs_streq(buf, "madvise")) { 299 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 300 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 301 } else if (sysfs_streq(buf, "never")) { 302 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 304 } else 305 ret = -EINVAL; 306 307 if (ret > 0) { 308 int err = start_stop_khugepaged(); 309 if (err) 310 ret = err; 311 } 312 return ret; 313 } 314 315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 316 317 ssize_t single_hugepage_flag_show(struct kobject *kobj, 318 struct kobj_attribute *attr, char *buf, 319 enum transparent_hugepage_flag flag) 320 { 321 return sysfs_emit(buf, "%d\n", 322 !!test_bit(flag, &transparent_hugepage_flags)); 323 } 324 325 ssize_t single_hugepage_flag_store(struct kobject *kobj, 326 struct kobj_attribute *attr, 327 const char *buf, size_t count, 328 enum transparent_hugepage_flag flag) 329 { 330 unsigned long value; 331 int ret; 332 333 ret = kstrtoul(buf, 10, &value); 334 if (ret < 0) 335 return ret; 336 if (value > 1) 337 return -EINVAL; 338 339 if (value) 340 set_bit(flag, &transparent_hugepage_flags); 341 else 342 clear_bit(flag, &transparent_hugepage_flags); 343 344 return count; 345 } 346 347 static ssize_t defrag_show(struct kobject *kobj, 348 struct kobj_attribute *attr, char *buf) 349 { 350 const char *output; 351 352 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 353 &transparent_hugepage_flags)) 354 output = "[always] defer defer+madvise madvise never"; 355 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 356 &transparent_hugepage_flags)) 357 output = "always [defer] defer+madvise madvise never"; 358 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 359 &transparent_hugepage_flags)) 360 output = "always defer [defer+madvise] madvise never"; 361 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 362 &transparent_hugepage_flags)) 363 output = "always defer defer+madvise [madvise] never"; 364 else 365 output = "always defer defer+madvise madvise [never]"; 366 367 return sysfs_emit(buf, "%s\n", output); 368 } 369 370 static ssize_t defrag_store(struct kobject *kobj, 371 struct kobj_attribute *attr, 372 const char *buf, size_t count) 373 { 374 if (sysfs_streq(buf, "always")) { 375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 377 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 378 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 379 } else if (sysfs_streq(buf, "defer+madvise")) { 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 384 } else if (sysfs_streq(buf, "defer")) { 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 389 } else if (sysfs_streq(buf, "madvise")) { 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 394 } else if (sysfs_streq(buf, "never")) { 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 } else 400 return -EINVAL; 401 402 return count; 403 } 404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 405 406 static ssize_t use_zero_page_show(struct kobject *kobj, 407 struct kobj_attribute *attr, char *buf) 408 { 409 return single_hugepage_flag_show(kobj, attr, buf, 410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 411 } 412 static ssize_t use_zero_page_store(struct kobject *kobj, 413 struct kobj_attribute *attr, const char *buf, size_t count) 414 { 415 return single_hugepage_flag_store(kobj, attr, buf, count, 416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 417 } 418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 419 420 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 421 struct kobj_attribute *attr, char *buf) 422 { 423 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 424 } 425 static struct kobj_attribute hpage_pmd_size_attr = 426 __ATTR_RO(hpage_pmd_size); 427 428 static struct attribute *hugepage_attr[] = { 429 &enabled_attr.attr, 430 &defrag_attr.attr, 431 &use_zero_page_attr.attr, 432 &hpage_pmd_size_attr.attr, 433 #ifdef CONFIG_SHMEM 434 &shmem_enabled_attr.attr, 435 #endif 436 NULL, 437 }; 438 439 static const struct attribute_group hugepage_attr_group = { 440 .attrs = hugepage_attr, 441 }; 442 443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 444 static void thpsize_release(struct kobject *kobj); 445 static DEFINE_SPINLOCK(huge_anon_orders_lock); 446 static LIST_HEAD(thpsize_list); 447 448 struct thpsize { 449 struct kobject kobj; 450 struct list_head node; 451 int order; 452 }; 453 454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 455 456 static ssize_t thpsize_enabled_show(struct kobject *kobj, 457 struct kobj_attribute *attr, char *buf) 458 { 459 int order = to_thpsize(kobj)->order; 460 const char *output; 461 462 if (test_bit(order, &huge_anon_orders_always)) 463 output = "[always] inherit madvise never"; 464 else if (test_bit(order, &huge_anon_orders_inherit)) 465 output = "always [inherit] madvise never"; 466 else if (test_bit(order, &huge_anon_orders_madvise)) 467 output = "always inherit [madvise] never"; 468 else 469 output = "always inherit madvise [never]"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 474 static ssize_t thpsize_enabled_store(struct kobject *kobj, 475 struct kobj_attribute *attr, 476 const char *buf, size_t count) 477 { 478 int order = to_thpsize(kobj)->order; 479 ssize_t ret = count; 480 481 if (sysfs_streq(buf, "always")) { 482 spin_lock(&huge_anon_orders_lock); 483 clear_bit(order, &huge_anon_orders_inherit); 484 clear_bit(order, &huge_anon_orders_madvise); 485 set_bit(order, &huge_anon_orders_always); 486 spin_unlock(&huge_anon_orders_lock); 487 } else if (sysfs_streq(buf, "inherit")) { 488 spin_lock(&huge_anon_orders_lock); 489 clear_bit(order, &huge_anon_orders_always); 490 clear_bit(order, &huge_anon_orders_madvise); 491 set_bit(order, &huge_anon_orders_inherit); 492 spin_unlock(&huge_anon_orders_lock); 493 } else if (sysfs_streq(buf, "madvise")) { 494 spin_lock(&huge_anon_orders_lock); 495 clear_bit(order, &huge_anon_orders_always); 496 clear_bit(order, &huge_anon_orders_inherit); 497 set_bit(order, &huge_anon_orders_madvise); 498 spin_unlock(&huge_anon_orders_lock); 499 } else if (sysfs_streq(buf, "never")) { 500 spin_lock(&huge_anon_orders_lock); 501 clear_bit(order, &huge_anon_orders_always); 502 clear_bit(order, &huge_anon_orders_inherit); 503 clear_bit(order, &huge_anon_orders_madvise); 504 spin_unlock(&huge_anon_orders_lock); 505 } else 506 ret = -EINVAL; 507 508 return ret; 509 } 510 511 static struct kobj_attribute thpsize_enabled_attr = 512 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 513 514 static struct attribute *thpsize_attrs[] = { 515 &thpsize_enabled_attr.attr, 516 NULL, 517 }; 518 519 static const struct attribute_group thpsize_attr_group = { 520 .attrs = thpsize_attrs, 521 }; 522 523 static const struct kobj_type thpsize_ktype = { 524 .release = &thpsize_release, 525 .sysfs_ops = &kobj_sysfs_ops, 526 }; 527 528 static struct thpsize *thpsize_create(int order, struct kobject *parent) 529 { 530 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 531 struct thpsize *thpsize; 532 int ret; 533 534 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 535 if (!thpsize) 536 return ERR_PTR(-ENOMEM); 537 538 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 539 "hugepages-%lukB", size); 540 if (ret) { 541 kfree(thpsize); 542 return ERR_PTR(ret); 543 } 544 545 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 546 if (ret) { 547 kobject_put(&thpsize->kobj); 548 return ERR_PTR(ret); 549 } 550 551 thpsize->order = order; 552 return thpsize; 553 } 554 555 static void thpsize_release(struct kobject *kobj) 556 { 557 kfree(to_thpsize(kobj)); 558 } 559 560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 561 { 562 int err; 563 struct thpsize *thpsize; 564 unsigned long orders; 565 int order; 566 567 /* 568 * Default to setting PMD-sized THP to inherit the global setting and 569 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 570 * constant so we have to do this here. 571 */ 572 huge_anon_orders_inherit = BIT(PMD_ORDER); 573 574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 575 if (unlikely(!*hugepage_kobj)) { 576 pr_err("failed to create transparent hugepage kobject\n"); 577 return -ENOMEM; 578 } 579 580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 581 if (err) { 582 pr_err("failed to register transparent hugepage group\n"); 583 goto delete_obj; 584 } 585 586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 587 if (err) { 588 pr_err("failed to register transparent hugepage group\n"); 589 goto remove_hp_group; 590 } 591 592 orders = THP_ORDERS_ALL_ANON; 593 order = highest_order(orders); 594 while (orders) { 595 thpsize = thpsize_create(order, *hugepage_kobj); 596 if (IS_ERR(thpsize)) { 597 pr_err("failed to create thpsize for order %d\n", order); 598 err = PTR_ERR(thpsize); 599 goto remove_all; 600 } 601 list_add(&thpsize->node, &thpsize_list); 602 order = next_order(&orders, order); 603 } 604 605 return 0; 606 607 remove_all: 608 hugepage_exit_sysfs(*hugepage_kobj); 609 return err; 610 remove_hp_group: 611 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 612 delete_obj: 613 kobject_put(*hugepage_kobj); 614 return err; 615 } 616 617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 618 { 619 struct thpsize *thpsize, *tmp; 620 621 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 622 list_del(&thpsize->node); 623 kobject_put(&thpsize->kobj); 624 } 625 626 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 627 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 628 kobject_put(hugepage_kobj); 629 } 630 #else 631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 632 { 633 return 0; 634 } 635 636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 637 { 638 } 639 #endif /* CONFIG_SYSFS */ 640 641 static int __init thp_shrinker_init(void) 642 { 643 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 644 if (!huge_zero_page_shrinker) 645 return -ENOMEM; 646 647 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 648 SHRINKER_MEMCG_AWARE | 649 SHRINKER_NONSLAB, 650 "thp-deferred_split"); 651 if (!deferred_split_shrinker) { 652 shrinker_free(huge_zero_page_shrinker); 653 return -ENOMEM; 654 } 655 656 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 657 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 658 shrinker_register(huge_zero_page_shrinker); 659 660 deferred_split_shrinker->count_objects = deferred_split_count; 661 deferred_split_shrinker->scan_objects = deferred_split_scan; 662 shrinker_register(deferred_split_shrinker); 663 664 return 0; 665 } 666 667 static void __init thp_shrinker_exit(void) 668 { 669 shrinker_free(huge_zero_page_shrinker); 670 shrinker_free(deferred_split_shrinker); 671 } 672 673 static int __init hugepage_init(void) 674 { 675 int err; 676 struct kobject *hugepage_kobj; 677 678 if (!has_transparent_hugepage()) { 679 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 680 return -EINVAL; 681 } 682 683 /* 684 * hugepages can't be allocated by the buddy allocator 685 */ 686 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 687 /* 688 * we use page->mapping and page->index in second tail page 689 * as list_head: assuming THP order >= 2 690 */ 691 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 692 693 err = hugepage_init_sysfs(&hugepage_kobj); 694 if (err) 695 goto err_sysfs; 696 697 err = khugepaged_init(); 698 if (err) 699 goto err_slab; 700 701 err = thp_shrinker_init(); 702 if (err) 703 goto err_shrinker; 704 705 /* 706 * By default disable transparent hugepages on smaller systems, 707 * where the extra memory used could hurt more than TLB overhead 708 * is likely to save. The admin can still enable it through /sys. 709 */ 710 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 711 transparent_hugepage_flags = 0; 712 return 0; 713 } 714 715 err = start_stop_khugepaged(); 716 if (err) 717 goto err_khugepaged; 718 719 return 0; 720 err_khugepaged: 721 thp_shrinker_exit(); 722 err_shrinker: 723 khugepaged_destroy(); 724 err_slab: 725 hugepage_exit_sysfs(hugepage_kobj); 726 err_sysfs: 727 return err; 728 } 729 subsys_initcall(hugepage_init); 730 731 static int __init setup_transparent_hugepage(char *str) 732 { 733 int ret = 0; 734 if (!str) 735 goto out; 736 if (!strcmp(str, "always")) { 737 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 738 &transparent_hugepage_flags); 739 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 740 &transparent_hugepage_flags); 741 ret = 1; 742 } else if (!strcmp(str, "madvise")) { 743 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 744 &transparent_hugepage_flags); 745 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 746 &transparent_hugepage_flags); 747 ret = 1; 748 } else if (!strcmp(str, "never")) { 749 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 750 &transparent_hugepage_flags); 751 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 752 &transparent_hugepage_flags); 753 ret = 1; 754 } 755 out: 756 if (!ret) 757 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 758 return ret; 759 } 760 __setup("transparent_hugepage=", setup_transparent_hugepage); 761 762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 763 { 764 if (likely(vma->vm_flags & VM_WRITE)) 765 pmd = pmd_mkwrite(pmd, vma); 766 return pmd; 767 } 768 769 #ifdef CONFIG_MEMCG 770 static inline 771 struct deferred_split *get_deferred_split_queue(struct folio *folio) 772 { 773 struct mem_cgroup *memcg = folio_memcg(folio); 774 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 775 776 if (memcg) 777 return &memcg->deferred_split_queue; 778 else 779 return &pgdat->deferred_split_queue; 780 } 781 #else 782 static inline 783 struct deferred_split *get_deferred_split_queue(struct folio *folio) 784 { 785 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 786 787 return &pgdat->deferred_split_queue; 788 } 789 #endif 790 791 void folio_prep_large_rmappable(struct folio *folio) 792 { 793 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 794 INIT_LIST_HEAD(&folio->_deferred_list); 795 folio_set_large_rmappable(folio); 796 } 797 798 static inline bool is_transparent_hugepage(struct folio *folio) 799 { 800 if (!folio_test_large(folio)) 801 return false; 802 803 return is_huge_zero_page(&folio->page) || 804 folio_test_large_rmappable(folio); 805 } 806 807 static unsigned long __thp_get_unmapped_area(struct file *filp, 808 unsigned long addr, unsigned long len, 809 loff_t off, unsigned long flags, unsigned long size) 810 { 811 loff_t off_end = off + len; 812 loff_t off_align = round_up(off, size); 813 unsigned long len_pad, ret, off_sub; 814 815 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall()) 816 return 0; 817 818 if (off_end <= off_align || (off_end - off_align) < size) 819 return 0; 820 821 len_pad = len + size; 822 if (len_pad < len || (off + len_pad) < off) 823 return 0; 824 825 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 826 off >> PAGE_SHIFT, flags); 827 828 /* 829 * The failure might be due to length padding. The caller will retry 830 * without the padding. 831 */ 832 if (IS_ERR_VALUE(ret)) 833 return 0; 834 835 /* 836 * Do not try to align to THP boundary if allocation at the address 837 * hint succeeds. 838 */ 839 if (ret == addr) 840 return addr; 841 842 off_sub = (off - ret) & (size - 1); 843 844 if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown && 845 !off_sub) 846 return ret + size; 847 848 ret += off_sub; 849 return ret; 850 } 851 852 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 853 unsigned long len, unsigned long pgoff, unsigned long flags) 854 { 855 unsigned long ret; 856 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 857 858 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 859 if (ret) 860 return ret; 861 862 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 863 } 864 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 865 866 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 867 struct page *page, gfp_t gfp) 868 { 869 struct vm_area_struct *vma = vmf->vma; 870 struct folio *folio = page_folio(page); 871 pgtable_t pgtable; 872 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 873 vm_fault_t ret = 0; 874 875 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 876 877 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 878 folio_put(folio); 879 count_vm_event(THP_FAULT_FALLBACK); 880 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 881 return VM_FAULT_FALLBACK; 882 } 883 folio_throttle_swaprate(folio, gfp); 884 885 pgtable = pte_alloc_one(vma->vm_mm); 886 if (unlikely(!pgtable)) { 887 ret = VM_FAULT_OOM; 888 goto release; 889 } 890 891 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 892 /* 893 * The memory barrier inside __folio_mark_uptodate makes sure that 894 * clear_huge_page writes become visible before the set_pmd_at() 895 * write. 896 */ 897 __folio_mark_uptodate(folio); 898 899 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 900 if (unlikely(!pmd_none(*vmf->pmd))) { 901 goto unlock_release; 902 } else { 903 pmd_t entry; 904 905 ret = check_stable_address_space(vma->vm_mm); 906 if (ret) 907 goto unlock_release; 908 909 /* Deliver the page fault to userland */ 910 if (userfaultfd_missing(vma)) { 911 spin_unlock(vmf->ptl); 912 folio_put(folio); 913 pte_free(vma->vm_mm, pgtable); 914 ret = handle_userfault(vmf, VM_UFFD_MISSING); 915 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 916 return ret; 917 } 918 919 entry = mk_huge_pmd(page, vma->vm_page_prot); 920 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 921 folio_add_new_anon_rmap(folio, vma, haddr); 922 folio_add_lru_vma(folio, vma); 923 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 924 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 925 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 926 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 927 mm_inc_nr_ptes(vma->vm_mm); 928 spin_unlock(vmf->ptl); 929 count_vm_event(THP_FAULT_ALLOC); 930 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 931 } 932 933 return 0; 934 unlock_release: 935 spin_unlock(vmf->ptl); 936 release: 937 if (pgtable) 938 pte_free(vma->vm_mm, pgtable); 939 folio_put(folio); 940 return ret; 941 942 } 943 944 /* 945 * always: directly stall for all thp allocations 946 * defer: wake kswapd and fail if not immediately available 947 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 948 * fail if not immediately available 949 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 950 * available 951 * never: never stall for any thp allocation 952 */ 953 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 954 { 955 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 956 957 /* Always do synchronous compaction */ 958 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 959 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 960 961 /* Kick kcompactd and fail quickly */ 962 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 963 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 964 965 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 966 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 967 return GFP_TRANSHUGE_LIGHT | 968 (vma_madvised ? __GFP_DIRECT_RECLAIM : 969 __GFP_KSWAPD_RECLAIM); 970 971 /* Only do synchronous compaction if madvised */ 972 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 973 return GFP_TRANSHUGE_LIGHT | 974 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 975 976 return GFP_TRANSHUGE_LIGHT; 977 } 978 979 /* Caller must hold page table lock. */ 980 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 981 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 982 struct page *zero_page) 983 { 984 pmd_t entry; 985 if (!pmd_none(*pmd)) 986 return; 987 entry = mk_pmd(zero_page, vma->vm_page_prot); 988 entry = pmd_mkhuge(entry); 989 pgtable_trans_huge_deposit(mm, pmd, pgtable); 990 set_pmd_at(mm, haddr, pmd, entry); 991 mm_inc_nr_ptes(mm); 992 } 993 994 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 995 { 996 struct vm_area_struct *vma = vmf->vma; 997 gfp_t gfp; 998 struct folio *folio; 999 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1000 1001 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1002 return VM_FAULT_FALLBACK; 1003 if (unlikely(anon_vma_prepare(vma))) 1004 return VM_FAULT_OOM; 1005 khugepaged_enter_vma(vma, vma->vm_flags); 1006 1007 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1008 !mm_forbids_zeropage(vma->vm_mm) && 1009 transparent_hugepage_use_zero_page()) { 1010 pgtable_t pgtable; 1011 struct page *zero_page; 1012 vm_fault_t ret; 1013 pgtable = pte_alloc_one(vma->vm_mm); 1014 if (unlikely(!pgtable)) 1015 return VM_FAULT_OOM; 1016 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1017 if (unlikely(!zero_page)) { 1018 pte_free(vma->vm_mm, pgtable); 1019 count_vm_event(THP_FAULT_FALLBACK); 1020 return VM_FAULT_FALLBACK; 1021 } 1022 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1023 ret = 0; 1024 if (pmd_none(*vmf->pmd)) { 1025 ret = check_stable_address_space(vma->vm_mm); 1026 if (ret) { 1027 spin_unlock(vmf->ptl); 1028 pte_free(vma->vm_mm, pgtable); 1029 } else if (userfaultfd_missing(vma)) { 1030 spin_unlock(vmf->ptl); 1031 pte_free(vma->vm_mm, pgtable); 1032 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1033 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1034 } else { 1035 set_huge_zero_page(pgtable, vma->vm_mm, vma, 1036 haddr, vmf->pmd, zero_page); 1037 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1038 spin_unlock(vmf->ptl); 1039 } 1040 } else { 1041 spin_unlock(vmf->ptl); 1042 pte_free(vma->vm_mm, pgtable); 1043 } 1044 return ret; 1045 } 1046 gfp = vma_thp_gfp_mask(vma); 1047 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1048 if (unlikely(!folio)) { 1049 count_vm_event(THP_FAULT_FALLBACK); 1050 return VM_FAULT_FALLBACK; 1051 } 1052 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1053 } 1054 1055 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1056 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1057 pgtable_t pgtable) 1058 { 1059 struct mm_struct *mm = vma->vm_mm; 1060 pmd_t entry; 1061 spinlock_t *ptl; 1062 1063 ptl = pmd_lock(mm, pmd); 1064 if (!pmd_none(*pmd)) { 1065 if (write) { 1066 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1067 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1068 goto out_unlock; 1069 } 1070 entry = pmd_mkyoung(*pmd); 1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1072 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1073 update_mmu_cache_pmd(vma, addr, pmd); 1074 } 1075 1076 goto out_unlock; 1077 } 1078 1079 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1080 if (pfn_t_devmap(pfn)) 1081 entry = pmd_mkdevmap(entry); 1082 if (write) { 1083 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1084 entry = maybe_pmd_mkwrite(entry, vma); 1085 } 1086 1087 if (pgtable) { 1088 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1089 mm_inc_nr_ptes(mm); 1090 pgtable = NULL; 1091 } 1092 1093 set_pmd_at(mm, addr, pmd, entry); 1094 update_mmu_cache_pmd(vma, addr, pmd); 1095 1096 out_unlock: 1097 spin_unlock(ptl); 1098 if (pgtable) 1099 pte_free(mm, pgtable); 1100 } 1101 1102 /** 1103 * vmf_insert_pfn_pmd - insert a pmd size pfn 1104 * @vmf: Structure describing the fault 1105 * @pfn: pfn to insert 1106 * @write: whether it's a write fault 1107 * 1108 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1109 * 1110 * Return: vm_fault_t value. 1111 */ 1112 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1113 { 1114 unsigned long addr = vmf->address & PMD_MASK; 1115 struct vm_area_struct *vma = vmf->vma; 1116 pgprot_t pgprot = vma->vm_page_prot; 1117 pgtable_t pgtable = NULL; 1118 1119 /* 1120 * If we had pmd_special, we could avoid all these restrictions, 1121 * but we need to be consistent with PTEs and architectures that 1122 * can't support a 'special' bit. 1123 */ 1124 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1125 !pfn_t_devmap(pfn)); 1126 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1127 (VM_PFNMAP|VM_MIXEDMAP)); 1128 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1129 1130 if (addr < vma->vm_start || addr >= vma->vm_end) 1131 return VM_FAULT_SIGBUS; 1132 1133 if (arch_needs_pgtable_deposit()) { 1134 pgtable = pte_alloc_one(vma->vm_mm); 1135 if (!pgtable) 1136 return VM_FAULT_OOM; 1137 } 1138 1139 track_pfn_insert(vma, &pgprot, pfn); 1140 1141 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1142 return VM_FAULT_NOPAGE; 1143 } 1144 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1145 1146 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1147 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1148 { 1149 if (likely(vma->vm_flags & VM_WRITE)) 1150 pud = pud_mkwrite(pud); 1151 return pud; 1152 } 1153 1154 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1155 pud_t *pud, pfn_t pfn, bool write) 1156 { 1157 struct mm_struct *mm = vma->vm_mm; 1158 pgprot_t prot = vma->vm_page_prot; 1159 pud_t entry; 1160 spinlock_t *ptl; 1161 1162 ptl = pud_lock(mm, pud); 1163 if (!pud_none(*pud)) { 1164 if (write) { 1165 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1166 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1167 goto out_unlock; 1168 } 1169 entry = pud_mkyoung(*pud); 1170 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1171 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1172 update_mmu_cache_pud(vma, addr, pud); 1173 } 1174 goto out_unlock; 1175 } 1176 1177 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1178 if (pfn_t_devmap(pfn)) 1179 entry = pud_mkdevmap(entry); 1180 if (write) { 1181 entry = pud_mkyoung(pud_mkdirty(entry)); 1182 entry = maybe_pud_mkwrite(entry, vma); 1183 } 1184 set_pud_at(mm, addr, pud, entry); 1185 update_mmu_cache_pud(vma, addr, pud); 1186 1187 out_unlock: 1188 spin_unlock(ptl); 1189 } 1190 1191 /** 1192 * vmf_insert_pfn_pud - insert a pud size pfn 1193 * @vmf: Structure describing the fault 1194 * @pfn: pfn to insert 1195 * @write: whether it's a write fault 1196 * 1197 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1198 * 1199 * Return: vm_fault_t value. 1200 */ 1201 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1202 { 1203 unsigned long addr = vmf->address & PUD_MASK; 1204 struct vm_area_struct *vma = vmf->vma; 1205 pgprot_t pgprot = vma->vm_page_prot; 1206 1207 /* 1208 * If we had pud_special, we could avoid all these restrictions, 1209 * but we need to be consistent with PTEs and architectures that 1210 * can't support a 'special' bit. 1211 */ 1212 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1213 !pfn_t_devmap(pfn)); 1214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1215 (VM_PFNMAP|VM_MIXEDMAP)); 1216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1217 1218 if (addr < vma->vm_start || addr >= vma->vm_end) 1219 return VM_FAULT_SIGBUS; 1220 1221 track_pfn_insert(vma, &pgprot, pfn); 1222 1223 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1224 return VM_FAULT_NOPAGE; 1225 } 1226 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1227 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1228 1229 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1230 pmd_t *pmd, bool write) 1231 { 1232 pmd_t _pmd; 1233 1234 _pmd = pmd_mkyoung(*pmd); 1235 if (write) 1236 _pmd = pmd_mkdirty(_pmd); 1237 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1238 pmd, _pmd, write)) 1239 update_mmu_cache_pmd(vma, addr, pmd); 1240 } 1241 1242 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1243 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1244 { 1245 unsigned long pfn = pmd_pfn(*pmd); 1246 struct mm_struct *mm = vma->vm_mm; 1247 struct page *page; 1248 int ret; 1249 1250 assert_spin_locked(pmd_lockptr(mm, pmd)); 1251 1252 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1253 return NULL; 1254 1255 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1256 /* pass */; 1257 else 1258 return NULL; 1259 1260 if (flags & FOLL_TOUCH) 1261 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1262 1263 /* 1264 * device mapped pages can only be returned if the 1265 * caller will manage the page reference count. 1266 */ 1267 if (!(flags & (FOLL_GET | FOLL_PIN))) 1268 return ERR_PTR(-EEXIST); 1269 1270 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1271 *pgmap = get_dev_pagemap(pfn, *pgmap); 1272 if (!*pgmap) 1273 return ERR_PTR(-EFAULT); 1274 page = pfn_to_page(pfn); 1275 ret = try_grab_page(page, flags); 1276 if (ret) 1277 page = ERR_PTR(ret); 1278 1279 return page; 1280 } 1281 1282 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1283 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1284 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1285 { 1286 spinlock_t *dst_ptl, *src_ptl; 1287 struct page *src_page; 1288 struct folio *src_folio; 1289 pmd_t pmd; 1290 pgtable_t pgtable = NULL; 1291 int ret = -ENOMEM; 1292 1293 /* Skip if can be re-fill on fault */ 1294 if (!vma_is_anonymous(dst_vma)) 1295 return 0; 1296 1297 pgtable = pte_alloc_one(dst_mm); 1298 if (unlikely(!pgtable)) 1299 goto out; 1300 1301 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1302 src_ptl = pmd_lockptr(src_mm, src_pmd); 1303 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1304 1305 ret = -EAGAIN; 1306 pmd = *src_pmd; 1307 1308 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1309 if (unlikely(is_swap_pmd(pmd))) { 1310 swp_entry_t entry = pmd_to_swp_entry(pmd); 1311 1312 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1313 if (!is_readable_migration_entry(entry)) { 1314 entry = make_readable_migration_entry( 1315 swp_offset(entry)); 1316 pmd = swp_entry_to_pmd(entry); 1317 if (pmd_swp_soft_dirty(*src_pmd)) 1318 pmd = pmd_swp_mksoft_dirty(pmd); 1319 if (pmd_swp_uffd_wp(*src_pmd)) 1320 pmd = pmd_swp_mkuffd_wp(pmd); 1321 set_pmd_at(src_mm, addr, src_pmd, pmd); 1322 } 1323 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1324 mm_inc_nr_ptes(dst_mm); 1325 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1326 if (!userfaultfd_wp(dst_vma)) 1327 pmd = pmd_swp_clear_uffd_wp(pmd); 1328 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1329 ret = 0; 1330 goto out_unlock; 1331 } 1332 #endif 1333 1334 if (unlikely(!pmd_trans_huge(pmd))) { 1335 pte_free(dst_mm, pgtable); 1336 goto out_unlock; 1337 } 1338 /* 1339 * When page table lock is held, the huge zero pmd should not be 1340 * under splitting since we don't split the page itself, only pmd to 1341 * a page table. 1342 */ 1343 if (is_huge_zero_pmd(pmd)) { 1344 /* 1345 * get_huge_zero_page() will never allocate a new page here, 1346 * since we already have a zero page to copy. It just takes a 1347 * reference. 1348 */ 1349 mm_get_huge_zero_page(dst_mm); 1350 goto out_zero_page; 1351 } 1352 1353 src_page = pmd_page(pmd); 1354 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1355 src_folio = page_folio(src_page); 1356 1357 folio_get(src_folio); 1358 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1359 /* Page maybe pinned: split and retry the fault on PTEs. */ 1360 folio_put(src_folio); 1361 pte_free(dst_mm, pgtable); 1362 spin_unlock(src_ptl); 1363 spin_unlock(dst_ptl); 1364 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1365 return -EAGAIN; 1366 } 1367 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1368 out_zero_page: 1369 mm_inc_nr_ptes(dst_mm); 1370 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1371 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1372 if (!userfaultfd_wp(dst_vma)) 1373 pmd = pmd_clear_uffd_wp(pmd); 1374 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1375 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1376 1377 ret = 0; 1378 out_unlock: 1379 spin_unlock(src_ptl); 1380 spin_unlock(dst_ptl); 1381 out: 1382 return ret; 1383 } 1384 1385 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1386 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1387 pud_t *pud, bool write) 1388 { 1389 pud_t _pud; 1390 1391 _pud = pud_mkyoung(*pud); 1392 if (write) 1393 _pud = pud_mkdirty(_pud); 1394 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1395 pud, _pud, write)) 1396 update_mmu_cache_pud(vma, addr, pud); 1397 } 1398 1399 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1400 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1401 { 1402 unsigned long pfn = pud_pfn(*pud); 1403 struct mm_struct *mm = vma->vm_mm; 1404 struct page *page; 1405 int ret; 1406 1407 assert_spin_locked(pud_lockptr(mm, pud)); 1408 1409 if (flags & FOLL_WRITE && !pud_write(*pud)) 1410 return NULL; 1411 1412 if (pud_present(*pud) && pud_devmap(*pud)) 1413 /* pass */; 1414 else 1415 return NULL; 1416 1417 if (flags & FOLL_TOUCH) 1418 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1419 1420 /* 1421 * device mapped pages can only be returned if the 1422 * caller will manage the page reference count. 1423 * 1424 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1425 */ 1426 if (!(flags & (FOLL_GET | FOLL_PIN))) 1427 return ERR_PTR(-EEXIST); 1428 1429 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1430 *pgmap = get_dev_pagemap(pfn, *pgmap); 1431 if (!*pgmap) 1432 return ERR_PTR(-EFAULT); 1433 page = pfn_to_page(pfn); 1434 1435 ret = try_grab_page(page, flags); 1436 if (ret) 1437 page = ERR_PTR(ret); 1438 1439 return page; 1440 } 1441 1442 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1443 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1444 struct vm_area_struct *vma) 1445 { 1446 spinlock_t *dst_ptl, *src_ptl; 1447 pud_t pud; 1448 int ret; 1449 1450 dst_ptl = pud_lock(dst_mm, dst_pud); 1451 src_ptl = pud_lockptr(src_mm, src_pud); 1452 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1453 1454 ret = -EAGAIN; 1455 pud = *src_pud; 1456 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1457 goto out_unlock; 1458 1459 /* 1460 * When page table lock is held, the huge zero pud should not be 1461 * under splitting since we don't split the page itself, only pud to 1462 * a page table. 1463 */ 1464 if (is_huge_zero_pud(pud)) { 1465 /* No huge zero pud yet */ 1466 } 1467 1468 /* 1469 * TODO: once we support anonymous pages, use 1470 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1471 */ 1472 pudp_set_wrprotect(src_mm, addr, src_pud); 1473 pud = pud_mkold(pud_wrprotect(pud)); 1474 set_pud_at(dst_mm, addr, dst_pud, pud); 1475 1476 ret = 0; 1477 out_unlock: 1478 spin_unlock(src_ptl); 1479 spin_unlock(dst_ptl); 1480 return ret; 1481 } 1482 1483 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1484 { 1485 bool write = vmf->flags & FAULT_FLAG_WRITE; 1486 1487 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1488 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1489 goto unlock; 1490 1491 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1492 unlock: 1493 spin_unlock(vmf->ptl); 1494 } 1495 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1496 1497 void huge_pmd_set_accessed(struct vm_fault *vmf) 1498 { 1499 bool write = vmf->flags & FAULT_FLAG_WRITE; 1500 1501 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1502 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1503 goto unlock; 1504 1505 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1506 1507 unlock: 1508 spin_unlock(vmf->ptl); 1509 } 1510 1511 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1512 { 1513 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1514 struct vm_area_struct *vma = vmf->vma; 1515 struct folio *folio; 1516 struct page *page; 1517 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1518 pmd_t orig_pmd = vmf->orig_pmd; 1519 1520 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1521 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1522 1523 if (is_huge_zero_pmd(orig_pmd)) 1524 goto fallback; 1525 1526 spin_lock(vmf->ptl); 1527 1528 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1529 spin_unlock(vmf->ptl); 1530 return 0; 1531 } 1532 1533 page = pmd_page(orig_pmd); 1534 folio = page_folio(page); 1535 VM_BUG_ON_PAGE(!PageHead(page), page); 1536 1537 /* Early check when only holding the PT lock. */ 1538 if (PageAnonExclusive(page)) 1539 goto reuse; 1540 1541 if (!folio_trylock(folio)) { 1542 folio_get(folio); 1543 spin_unlock(vmf->ptl); 1544 folio_lock(folio); 1545 spin_lock(vmf->ptl); 1546 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1547 spin_unlock(vmf->ptl); 1548 folio_unlock(folio); 1549 folio_put(folio); 1550 return 0; 1551 } 1552 folio_put(folio); 1553 } 1554 1555 /* Recheck after temporarily dropping the PT lock. */ 1556 if (PageAnonExclusive(page)) { 1557 folio_unlock(folio); 1558 goto reuse; 1559 } 1560 1561 /* 1562 * See do_wp_page(): we can only reuse the folio exclusively if 1563 * there are no additional references. Note that we always drain 1564 * the LRU cache immediately after adding a THP. 1565 */ 1566 if (folio_ref_count(folio) > 1567 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1568 goto unlock_fallback; 1569 if (folio_test_swapcache(folio)) 1570 folio_free_swap(folio); 1571 if (folio_ref_count(folio) == 1) { 1572 pmd_t entry; 1573 1574 folio_move_anon_rmap(folio, vma); 1575 SetPageAnonExclusive(page); 1576 folio_unlock(folio); 1577 reuse: 1578 if (unlikely(unshare)) { 1579 spin_unlock(vmf->ptl); 1580 return 0; 1581 } 1582 entry = pmd_mkyoung(orig_pmd); 1583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1584 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1585 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1586 spin_unlock(vmf->ptl); 1587 return 0; 1588 } 1589 1590 unlock_fallback: 1591 folio_unlock(folio); 1592 spin_unlock(vmf->ptl); 1593 fallback: 1594 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1595 return VM_FAULT_FALLBACK; 1596 } 1597 1598 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1599 unsigned long addr, pmd_t pmd) 1600 { 1601 struct page *page; 1602 1603 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1604 return false; 1605 1606 /* Don't touch entries that are not even readable (NUMA hinting). */ 1607 if (pmd_protnone(pmd)) 1608 return false; 1609 1610 /* Do we need write faults for softdirty tracking? */ 1611 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1612 return false; 1613 1614 /* Do we need write faults for uffd-wp tracking? */ 1615 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1616 return false; 1617 1618 if (!(vma->vm_flags & VM_SHARED)) { 1619 /* See can_change_pte_writable(). */ 1620 page = vm_normal_page_pmd(vma, addr, pmd); 1621 return page && PageAnon(page) && PageAnonExclusive(page); 1622 } 1623 1624 /* See can_change_pte_writable(). */ 1625 return pmd_dirty(pmd); 1626 } 1627 1628 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1629 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1630 struct vm_area_struct *vma, 1631 unsigned int flags) 1632 { 1633 /* If the pmd is writable, we can write to the page. */ 1634 if (pmd_write(pmd)) 1635 return true; 1636 1637 /* Maybe FOLL_FORCE is set to override it? */ 1638 if (!(flags & FOLL_FORCE)) 1639 return false; 1640 1641 /* But FOLL_FORCE has no effect on shared mappings */ 1642 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1643 return false; 1644 1645 /* ... or read-only private ones */ 1646 if (!(vma->vm_flags & VM_MAYWRITE)) 1647 return false; 1648 1649 /* ... or already writable ones that just need to take a write fault */ 1650 if (vma->vm_flags & VM_WRITE) 1651 return false; 1652 1653 /* 1654 * See can_change_pte_writable(): we broke COW and could map the page 1655 * writable if we have an exclusive anonymous page ... 1656 */ 1657 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1658 return false; 1659 1660 /* ... and a write-fault isn't required for other reasons. */ 1661 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1662 return false; 1663 return !userfaultfd_huge_pmd_wp(vma, pmd); 1664 } 1665 1666 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1667 unsigned long addr, 1668 pmd_t *pmd, 1669 unsigned int flags) 1670 { 1671 struct mm_struct *mm = vma->vm_mm; 1672 struct page *page; 1673 int ret; 1674 1675 assert_spin_locked(pmd_lockptr(mm, pmd)); 1676 1677 page = pmd_page(*pmd); 1678 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1679 1680 if ((flags & FOLL_WRITE) && 1681 !can_follow_write_pmd(*pmd, page, vma, flags)) 1682 return NULL; 1683 1684 /* Avoid dumping huge zero page */ 1685 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1686 return ERR_PTR(-EFAULT); 1687 1688 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1689 return NULL; 1690 1691 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1692 return ERR_PTR(-EMLINK); 1693 1694 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1695 !PageAnonExclusive(page), page); 1696 1697 ret = try_grab_page(page, flags); 1698 if (ret) 1699 return ERR_PTR(ret); 1700 1701 if (flags & FOLL_TOUCH) 1702 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1703 1704 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1705 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1706 1707 return page; 1708 } 1709 1710 /* NUMA hinting page fault entry point for trans huge pmds */ 1711 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1712 { 1713 struct vm_area_struct *vma = vmf->vma; 1714 pmd_t oldpmd = vmf->orig_pmd; 1715 pmd_t pmd; 1716 struct folio *folio; 1717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1718 int nid = NUMA_NO_NODE; 1719 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1720 bool migrated = false, writable = false; 1721 int flags = 0; 1722 1723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1724 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1725 spin_unlock(vmf->ptl); 1726 goto out; 1727 } 1728 1729 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1730 1731 /* 1732 * Detect now whether the PMD could be writable; this information 1733 * is only valid while holding the PT lock. 1734 */ 1735 writable = pmd_write(pmd); 1736 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1737 can_change_pmd_writable(vma, vmf->address, pmd)) 1738 writable = true; 1739 1740 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1741 if (!folio) 1742 goto out_map; 1743 1744 /* See similar comment in do_numa_page for explanation */ 1745 if (!writable) 1746 flags |= TNF_NO_GROUP; 1747 1748 nid = folio_nid(folio); 1749 /* 1750 * For memory tiering mode, cpupid of slow memory page is used 1751 * to record page access time. So use default value. 1752 */ 1753 if (node_is_toptier(nid)) 1754 last_cpupid = folio_last_cpupid(folio); 1755 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags); 1756 if (target_nid == NUMA_NO_NODE) { 1757 folio_put(folio); 1758 goto out_map; 1759 } 1760 1761 spin_unlock(vmf->ptl); 1762 writable = false; 1763 1764 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1765 if (migrated) { 1766 flags |= TNF_MIGRATED; 1767 nid = target_nid; 1768 } else { 1769 flags |= TNF_MIGRATE_FAIL; 1770 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1771 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1772 spin_unlock(vmf->ptl); 1773 goto out; 1774 } 1775 goto out_map; 1776 } 1777 1778 out: 1779 if (nid != NUMA_NO_NODE) 1780 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1781 1782 return 0; 1783 1784 out_map: 1785 /* Restore the PMD */ 1786 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1787 pmd = pmd_mkyoung(pmd); 1788 if (writable) 1789 pmd = pmd_mkwrite(pmd, vma); 1790 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1791 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1792 spin_unlock(vmf->ptl); 1793 goto out; 1794 } 1795 1796 /* 1797 * Return true if we do MADV_FREE successfully on entire pmd page. 1798 * Otherwise, return false. 1799 */ 1800 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1801 pmd_t *pmd, unsigned long addr, unsigned long next) 1802 { 1803 spinlock_t *ptl; 1804 pmd_t orig_pmd; 1805 struct folio *folio; 1806 struct mm_struct *mm = tlb->mm; 1807 bool ret = false; 1808 1809 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1810 1811 ptl = pmd_trans_huge_lock(pmd, vma); 1812 if (!ptl) 1813 goto out_unlocked; 1814 1815 orig_pmd = *pmd; 1816 if (is_huge_zero_pmd(orig_pmd)) 1817 goto out; 1818 1819 if (unlikely(!pmd_present(orig_pmd))) { 1820 VM_BUG_ON(thp_migration_supported() && 1821 !is_pmd_migration_entry(orig_pmd)); 1822 goto out; 1823 } 1824 1825 folio = pfn_folio(pmd_pfn(orig_pmd)); 1826 /* 1827 * If other processes are mapping this folio, we couldn't discard 1828 * the folio unless they all do MADV_FREE so let's skip the folio. 1829 */ 1830 if (folio_estimated_sharers(folio) != 1) 1831 goto out; 1832 1833 if (!folio_trylock(folio)) 1834 goto out; 1835 1836 /* 1837 * If user want to discard part-pages of THP, split it so MADV_FREE 1838 * will deactivate only them. 1839 */ 1840 if (next - addr != HPAGE_PMD_SIZE) { 1841 folio_get(folio); 1842 spin_unlock(ptl); 1843 split_folio(folio); 1844 folio_unlock(folio); 1845 folio_put(folio); 1846 goto out_unlocked; 1847 } 1848 1849 if (folio_test_dirty(folio)) 1850 folio_clear_dirty(folio); 1851 folio_unlock(folio); 1852 1853 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1854 pmdp_invalidate(vma, addr, pmd); 1855 orig_pmd = pmd_mkold(orig_pmd); 1856 orig_pmd = pmd_mkclean(orig_pmd); 1857 1858 set_pmd_at(mm, addr, pmd, orig_pmd); 1859 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1860 } 1861 1862 folio_mark_lazyfree(folio); 1863 ret = true; 1864 out: 1865 spin_unlock(ptl); 1866 out_unlocked: 1867 return ret; 1868 } 1869 1870 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1871 { 1872 pgtable_t pgtable; 1873 1874 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1875 pte_free(mm, pgtable); 1876 mm_dec_nr_ptes(mm); 1877 } 1878 1879 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1880 pmd_t *pmd, unsigned long addr) 1881 { 1882 pmd_t orig_pmd; 1883 spinlock_t *ptl; 1884 1885 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1886 1887 ptl = __pmd_trans_huge_lock(pmd, vma); 1888 if (!ptl) 1889 return 0; 1890 /* 1891 * For architectures like ppc64 we look at deposited pgtable 1892 * when calling pmdp_huge_get_and_clear. So do the 1893 * pgtable_trans_huge_withdraw after finishing pmdp related 1894 * operations. 1895 */ 1896 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1897 tlb->fullmm); 1898 arch_check_zapped_pmd(vma, orig_pmd); 1899 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1900 if (vma_is_special_huge(vma)) { 1901 if (arch_needs_pgtable_deposit()) 1902 zap_deposited_table(tlb->mm, pmd); 1903 spin_unlock(ptl); 1904 } else if (is_huge_zero_pmd(orig_pmd)) { 1905 zap_deposited_table(tlb->mm, pmd); 1906 spin_unlock(ptl); 1907 } else { 1908 struct folio *folio = NULL; 1909 int flush_needed = 1; 1910 1911 if (pmd_present(orig_pmd)) { 1912 struct page *page = pmd_page(orig_pmd); 1913 1914 folio = page_folio(page); 1915 folio_remove_rmap_pmd(folio, page, vma); 1916 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1917 VM_BUG_ON_PAGE(!PageHead(page), page); 1918 } else if (thp_migration_supported()) { 1919 swp_entry_t entry; 1920 1921 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1922 entry = pmd_to_swp_entry(orig_pmd); 1923 folio = pfn_swap_entry_folio(entry); 1924 flush_needed = 0; 1925 } else 1926 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1927 1928 if (folio_test_anon(folio)) { 1929 zap_deposited_table(tlb->mm, pmd); 1930 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1931 } else { 1932 if (arch_needs_pgtable_deposit()) 1933 zap_deposited_table(tlb->mm, pmd); 1934 add_mm_counter(tlb->mm, mm_counter_file(folio), 1935 -HPAGE_PMD_NR); 1936 } 1937 1938 spin_unlock(ptl); 1939 if (flush_needed) 1940 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1941 } 1942 return 1; 1943 } 1944 1945 #ifndef pmd_move_must_withdraw 1946 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1947 spinlock_t *old_pmd_ptl, 1948 struct vm_area_struct *vma) 1949 { 1950 /* 1951 * With split pmd lock we also need to move preallocated 1952 * PTE page table if new_pmd is on different PMD page table. 1953 * 1954 * We also don't deposit and withdraw tables for file pages. 1955 */ 1956 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1957 } 1958 #endif 1959 1960 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1961 { 1962 #ifdef CONFIG_MEM_SOFT_DIRTY 1963 if (unlikely(is_pmd_migration_entry(pmd))) 1964 pmd = pmd_swp_mksoft_dirty(pmd); 1965 else if (pmd_present(pmd)) 1966 pmd = pmd_mksoft_dirty(pmd); 1967 #endif 1968 return pmd; 1969 } 1970 1971 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1972 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1973 { 1974 spinlock_t *old_ptl, *new_ptl; 1975 pmd_t pmd; 1976 struct mm_struct *mm = vma->vm_mm; 1977 bool force_flush = false; 1978 1979 /* 1980 * The destination pmd shouldn't be established, free_pgtables() 1981 * should have released it; but move_page_tables() might have already 1982 * inserted a page table, if racing against shmem/file collapse. 1983 */ 1984 if (!pmd_none(*new_pmd)) { 1985 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1986 return false; 1987 } 1988 1989 /* 1990 * We don't have to worry about the ordering of src and dst 1991 * ptlocks because exclusive mmap_lock prevents deadlock. 1992 */ 1993 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1994 if (old_ptl) { 1995 new_ptl = pmd_lockptr(mm, new_pmd); 1996 if (new_ptl != old_ptl) 1997 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1998 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1999 if (pmd_present(pmd)) 2000 force_flush = true; 2001 VM_BUG_ON(!pmd_none(*new_pmd)); 2002 2003 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2004 pgtable_t pgtable; 2005 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2006 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2007 } 2008 pmd = move_soft_dirty_pmd(pmd); 2009 set_pmd_at(mm, new_addr, new_pmd, pmd); 2010 if (force_flush) 2011 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2012 if (new_ptl != old_ptl) 2013 spin_unlock(new_ptl); 2014 spin_unlock(old_ptl); 2015 return true; 2016 } 2017 return false; 2018 } 2019 2020 /* 2021 * Returns 2022 * - 0 if PMD could not be locked 2023 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2024 * or if prot_numa but THP migration is not supported 2025 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2026 */ 2027 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2028 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2029 unsigned long cp_flags) 2030 { 2031 struct mm_struct *mm = vma->vm_mm; 2032 spinlock_t *ptl; 2033 pmd_t oldpmd, entry; 2034 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2035 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2036 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2037 int ret = 1; 2038 2039 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2040 2041 if (prot_numa && !thp_migration_supported()) 2042 return 1; 2043 2044 ptl = __pmd_trans_huge_lock(pmd, vma); 2045 if (!ptl) 2046 return 0; 2047 2048 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2049 if (is_swap_pmd(*pmd)) { 2050 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2051 struct folio *folio = pfn_swap_entry_folio(entry); 2052 pmd_t newpmd; 2053 2054 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2055 if (is_writable_migration_entry(entry)) { 2056 /* 2057 * A protection check is difficult so 2058 * just be safe and disable write 2059 */ 2060 if (folio_test_anon(folio)) 2061 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2062 else 2063 entry = make_readable_migration_entry(swp_offset(entry)); 2064 newpmd = swp_entry_to_pmd(entry); 2065 if (pmd_swp_soft_dirty(*pmd)) 2066 newpmd = pmd_swp_mksoft_dirty(newpmd); 2067 } else { 2068 newpmd = *pmd; 2069 } 2070 2071 if (uffd_wp) 2072 newpmd = pmd_swp_mkuffd_wp(newpmd); 2073 else if (uffd_wp_resolve) 2074 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2075 if (!pmd_same(*pmd, newpmd)) 2076 set_pmd_at(mm, addr, pmd, newpmd); 2077 goto unlock; 2078 } 2079 #endif 2080 2081 if (prot_numa) { 2082 struct folio *folio; 2083 bool toptier; 2084 /* 2085 * Avoid trapping faults against the zero page. The read-only 2086 * data is likely to be read-cached on the local CPU and 2087 * local/remote hits to the zero page are not interesting. 2088 */ 2089 if (is_huge_zero_pmd(*pmd)) 2090 goto unlock; 2091 2092 if (pmd_protnone(*pmd)) 2093 goto unlock; 2094 2095 folio = page_folio(pmd_page(*pmd)); 2096 toptier = node_is_toptier(folio_nid(folio)); 2097 /* 2098 * Skip scanning top tier node if normal numa 2099 * balancing is disabled 2100 */ 2101 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2102 toptier) 2103 goto unlock; 2104 2105 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2106 !toptier) 2107 folio_xchg_access_time(folio, 2108 jiffies_to_msecs(jiffies)); 2109 } 2110 /* 2111 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2112 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2113 * which is also under mmap_read_lock(mm): 2114 * 2115 * CPU0: CPU1: 2116 * change_huge_pmd(prot_numa=1) 2117 * pmdp_huge_get_and_clear_notify() 2118 * madvise_dontneed() 2119 * zap_pmd_range() 2120 * pmd_trans_huge(*pmd) == 0 (without ptl) 2121 * // skip the pmd 2122 * set_pmd_at(); 2123 * // pmd is re-established 2124 * 2125 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2126 * which may break userspace. 2127 * 2128 * pmdp_invalidate_ad() is required to make sure we don't miss 2129 * dirty/young flags set by hardware. 2130 */ 2131 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2132 2133 entry = pmd_modify(oldpmd, newprot); 2134 if (uffd_wp) 2135 entry = pmd_mkuffd_wp(entry); 2136 else if (uffd_wp_resolve) 2137 /* 2138 * Leave the write bit to be handled by PF interrupt 2139 * handler, then things like COW could be properly 2140 * handled. 2141 */ 2142 entry = pmd_clear_uffd_wp(entry); 2143 2144 /* See change_pte_range(). */ 2145 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2146 can_change_pmd_writable(vma, addr, entry)) 2147 entry = pmd_mkwrite(entry, vma); 2148 2149 ret = HPAGE_PMD_NR; 2150 set_pmd_at(mm, addr, pmd, entry); 2151 2152 if (huge_pmd_needs_flush(oldpmd, entry)) 2153 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2154 unlock: 2155 spin_unlock(ptl); 2156 return ret; 2157 } 2158 2159 #ifdef CONFIG_USERFAULTFD 2160 /* 2161 * The PT lock for src_pmd and the mmap_lock for reading are held by 2162 * the caller, but it must return after releasing the page_table_lock. 2163 * Just move the page from src_pmd to dst_pmd if possible. 2164 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2165 * repeated by the caller, or other errors in case of failure. 2166 */ 2167 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2168 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2169 unsigned long dst_addr, unsigned long src_addr) 2170 { 2171 pmd_t _dst_pmd, src_pmdval; 2172 struct page *src_page; 2173 struct folio *src_folio; 2174 struct anon_vma *src_anon_vma; 2175 spinlock_t *src_ptl, *dst_ptl; 2176 pgtable_t src_pgtable; 2177 struct mmu_notifier_range range; 2178 int err = 0; 2179 2180 src_pmdval = *src_pmd; 2181 src_ptl = pmd_lockptr(mm, src_pmd); 2182 2183 lockdep_assert_held(src_ptl); 2184 mmap_assert_locked(mm); 2185 2186 /* Sanity checks before the operation */ 2187 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2188 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2189 spin_unlock(src_ptl); 2190 return -EINVAL; 2191 } 2192 2193 if (!pmd_trans_huge(src_pmdval)) { 2194 spin_unlock(src_ptl); 2195 if (is_pmd_migration_entry(src_pmdval)) { 2196 pmd_migration_entry_wait(mm, &src_pmdval); 2197 return -EAGAIN; 2198 } 2199 return -ENOENT; 2200 } 2201 2202 src_page = pmd_page(src_pmdval); 2203 2204 if (!is_huge_zero_pmd(src_pmdval)) { 2205 if (unlikely(!PageAnonExclusive(src_page))) { 2206 spin_unlock(src_ptl); 2207 return -EBUSY; 2208 } 2209 2210 src_folio = page_folio(src_page); 2211 folio_get(src_folio); 2212 } else 2213 src_folio = NULL; 2214 2215 spin_unlock(src_ptl); 2216 2217 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2218 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2219 src_addr + HPAGE_PMD_SIZE); 2220 mmu_notifier_invalidate_range_start(&range); 2221 2222 if (src_folio) { 2223 folio_lock(src_folio); 2224 2225 /* 2226 * split_huge_page walks the anon_vma chain without the page 2227 * lock. Serialize against it with the anon_vma lock, the page 2228 * lock is not enough. 2229 */ 2230 src_anon_vma = folio_get_anon_vma(src_folio); 2231 if (!src_anon_vma) { 2232 err = -EAGAIN; 2233 goto unlock_folio; 2234 } 2235 anon_vma_lock_write(src_anon_vma); 2236 } else 2237 src_anon_vma = NULL; 2238 2239 dst_ptl = pmd_lockptr(mm, dst_pmd); 2240 double_pt_lock(src_ptl, dst_ptl); 2241 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2242 !pmd_same(*dst_pmd, dst_pmdval))) { 2243 err = -EAGAIN; 2244 goto unlock_ptls; 2245 } 2246 if (src_folio) { 2247 if (folio_maybe_dma_pinned(src_folio) || 2248 !PageAnonExclusive(&src_folio->page)) { 2249 err = -EBUSY; 2250 goto unlock_ptls; 2251 } 2252 2253 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2254 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2255 err = -EBUSY; 2256 goto unlock_ptls; 2257 } 2258 2259 folio_move_anon_rmap(src_folio, dst_vma); 2260 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr)); 2261 2262 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2263 /* Folio got pinned from under us. Put it back and fail the move. */ 2264 if (folio_maybe_dma_pinned(src_folio)) { 2265 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2266 err = -EBUSY; 2267 goto unlock_ptls; 2268 } 2269 2270 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2271 /* Follow mremap() behavior and treat the entry dirty after the move */ 2272 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2273 } else { 2274 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2275 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2276 } 2277 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2278 2279 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2280 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2281 unlock_ptls: 2282 double_pt_unlock(src_ptl, dst_ptl); 2283 if (src_anon_vma) { 2284 anon_vma_unlock_write(src_anon_vma); 2285 put_anon_vma(src_anon_vma); 2286 } 2287 unlock_folio: 2288 /* unblock rmap walks */ 2289 if (src_folio) 2290 folio_unlock(src_folio); 2291 mmu_notifier_invalidate_range_end(&range); 2292 if (src_folio) 2293 folio_put(src_folio); 2294 return err; 2295 } 2296 #endif /* CONFIG_USERFAULTFD */ 2297 2298 /* 2299 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2300 * 2301 * Note that if it returns page table lock pointer, this routine returns without 2302 * unlocking page table lock. So callers must unlock it. 2303 */ 2304 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2305 { 2306 spinlock_t *ptl; 2307 ptl = pmd_lock(vma->vm_mm, pmd); 2308 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2309 pmd_devmap(*pmd))) 2310 return ptl; 2311 spin_unlock(ptl); 2312 return NULL; 2313 } 2314 2315 /* 2316 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2317 * 2318 * Note that if it returns page table lock pointer, this routine returns without 2319 * unlocking page table lock. So callers must unlock it. 2320 */ 2321 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2322 { 2323 spinlock_t *ptl; 2324 2325 ptl = pud_lock(vma->vm_mm, pud); 2326 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2327 return ptl; 2328 spin_unlock(ptl); 2329 return NULL; 2330 } 2331 2332 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2333 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2334 pud_t *pud, unsigned long addr) 2335 { 2336 spinlock_t *ptl; 2337 2338 ptl = __pud_trans_huge_lock(pud, vma); 2339 if (!ptl) 2340 return 0; 2341 2342 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2343 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2344 if (vma_is_special_huge(vma)) { 2345 spin_unlock(ptl); 2346 /* No zero page support yet */ 2347 } else { 2348 /* No support for anonymous PUD pages yet */ 2349 BUG(); 2350 } 2351 return 1; 2352 } 2353 2354 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2355 unsigned long haddr) 2356 { 2357 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2358 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2359 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2360 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2361 2362 count_vm_event(THP_SPLIT_PUD); 2363 2364 pudp_huge_clear_flush(vma, haddr, pud); 2365 } 2366 2367 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2368 unsigned long address) 2369 { 2370 spinlock_t *ptl; 2371 struct mmu_notifier_range range; 2372 2373 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2374 address & HPAGE_PUD_MASK, 2375 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2376 mmu_notifier_invalidate_range_start(&range); 2377 ptl = pud_lock(vma->vm_mm, pud); 2378 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2379 goto out; 2380 __split_huge_pud_locked(vma, pud, range.start); 2381 2382 out: 2383 spin_unlock(ptl); 2384 mmu_notifier_invalidate_range_end(&range); 2385 } 2386 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2387 2388 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2389 unsigned long haddr, pmd_t *pmd) 2390 { 2391 struct mm_struct *mm = vma->vm_mm; 2392 pgtable_t pgtable; 2393 pmd_t _pmd, old_pmd; 2394 unsigned long addr; 2395 pte_t *pte; 2396 int i; 2397 2398 /* 2399 * Leave pmd empty until pte is filled note that it is fine to delay 2400 * notification until mmu_notifier_invalidate_range_end() as we are 2401 * replacing a zero pmd write protected page with a zero pte write 2402 * protected page. 2403 * 2404 * See Documentation/mm/mmu_notifier.rst 2405 */ 2406 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2407 2408 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2409 pmd_populate(mm, &_pmd, pgtable); 2410 2411 pte = pte_offset_map(&_pmd, haddr); 2412 VM_BUG_ON(!pte); 2413 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2414 pte_t entry; 2415 2416 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2417 entry = pte_mkspecial(entry); 2418 if (pmd_uffd_wp(old_pmd)) 2419 entry = pte_mkuffd_wp(entry); 2420 VM_BUG_ON(!pte_none(ptep_get(pte))); 2421 set_pte_at(mm, addr, pte, entry); 2422 pte++; 2423 } 2424 pte_unmap(pte - 1); 2425 smp_wmb(); /* make pte visible before pmd */ 2426 pmd_populate(mm, pmd, pgtable); 2427 } 2428 2429 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2430 unsigned long haddr, bool freeze) 2431 { 2432 struct mm_struct *mm = vma->vm_mm; 2433 struct folio *folio; 2434 struct page *page; 2435 pgtable_t pgtable; 2436 pmd_t old_pmd, _pmd; 2437 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2438 bool anon_exclusive = false, dirty = false; 2439 unsigned long addr; 2440 pte_t *pte; 2441 int i; 2442 2443 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2444 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2445 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2446 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2447 && !pmd_devmap(*pmd)); 2448 2449 count_vm_event(THP_SPLIT_PMD); 2450 2451 if (!vma_is_anonymous(vma)) { 2452 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2453 /* 2454 * We are going to unmap this huge page. So 2455 * just go ahead and zap it 2456 */ 2457 if (arch_needs_pgtable_deposit()) 2458 zap_deposited_table(mm, pmd); 2459 if (vma_is_special_huge(vma)) 2460 return; 2461 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2462 swp_entry_t entry; 2463 2464 entry = pmd_to_swp_entry(old_pmd); 2465 folio = pfn_swap_entry_folio(entry); 2466 } else { 2467 page = pmd_page(old_pmd); 2468 folio = page_folio(page); 2469 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2470 folio_mark_dirty(folio); 2471 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2472 folio_set_referenced(folio); 2473 folio_remove_rmap_pmd(folio, page, vma); 2474 folio_put(folio); 2475 } 2476 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2477 return; 2478 } 2479 2480 if (is_huge_zero_pmd(*pmd)) { 2481 /* 2482 * FIXME: Do we want to invalidate secondary mmu by calling 2483 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2484 * inside __split_huge_pmd() ? 2485 * 2486 * We are going from a zero huge page write protected to zero 2487 * small page also write protected so it does not seems useful 2488 * to invalidate secondary mmu at this time. 2489 */ 2490 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2491 } 2492 2493 /* 2494 * Up to this point the pmd is present and huge and userland has the 2495 * whole access to the hugepage during the split (which happens in 2496 * place). If we overwrite the pmd with the not-huge version pointing 2497 * to the pte here (which of course we could if all CPUs were bug 2498 * free), userland could trigger a small page size TLB miss on the 2499 * small sized TLB while the hugepage TLB entry is still established in 2500 * the huge TLB. Some CPU doesn't like that. 2501 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2502 * 383 on page 105. Intel should be safe but is also warns that it's 2503 * only safe if the permission and cache attributes of the two entries 2504 * loaded in the two TLB is identical (which should be the case here). 2505 * But it is generally safer to never allow small and huge TLB entries 2506 * for the same virtual address to be loaded simultaneously. So instead 2507 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2508 * current pmd notpresent (atomically because here the pmd_trans_huge 2509 * must remain set at all times on the pmd until the split is complete 2510 * for this pmd), then we flush the SMP TLB and finally we write the 2511 * non-huge version of the pmd entry with pmd_populate. 2512 */ 2513 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2514 2515 pmd_migration = is_pmd_migration_entry(old_pmd); 2516 if (unlikely(pmd_migration)) { 2517 swp_entry_t entry; 2518 2519 entry = pmd_to_swp_entry(old_pmd); 2520 page = pfn_swap_entry_to_page(entry); 2521 write = is_writable_migration_entry(entry); 2522 if (PageAnon(page)) 2523 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2524 young = is_migration_entry_young(entry); 2525 dirty = is_migration_entry_dirty(entry); 2526 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2527 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2528 } else { 2529 page = pmd_page(old_pmd); 2530 folio = page_folio(page); 2531 if (pmd_dirty(old_pmd)) { 2532 dirty = true; 2533 folio_set_dirty(folio); 2534 } 2535 write = pmd_write(old_pmd); 2536 young = pmd_young(old_pmd); 2537 soft_dirty = pmd_soft_dirty(old_pmd); 2538 uffd_wp = pmd_uffd_wp(old_pmd); 2539 2540 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2541 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2542 2543 /* 2544 * Without "freeze", we'll simply split the PMD, propagating the 2545 * PageAnonExclusive() flag for each PTE by setting it for 2546 * each subpage -- no need to (temporarily) clear. 2547 * 2548 * With "freeze" we want to replace mapped pages by 2549 * migration entries right away. This is only possible if we 2550 * managed to clear PageAnonExclusive() -- see 2551 * set_pmd_migration_entry(). 2552 * 2553 * In case we cannot clear PageAnonExclusive(), split the PMD 2554 * only and let try_to_migrate_one() fail later. 2555 * 2556 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2557 */ 2558 anon_exclusive = PageAnonExclusive(page); 2559 if (freeze && anon_exclusive && 2560 folio_try_share_anon_rmap_pmd(folio, page)) 2561 freeze = false; 2562 if (!freeze) { 2563 rmap_t rmap_flags = RMAP_NONE; 2564 2565 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2566 if (anon_exclusive) 2567 rmap_flags |= RMAP_EXCLUSIVE; 2568 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2569 vma, haddr, rmap_flags); 2570 } 2571 } 2572 2573 /* 2574 * Withdraw the table only after we mark the pmd entry invalid. 2575 * This's critical for some architectures (Power). 2576 */ 2577 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2578 pmd_populate(mm, &_pmd, pgtable); 2579 2580 pte = pte_offset_map(&_pmd, haddr); 2581 VM_BUG_ON(!pte); 2582 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2583 pte_t entry; 2584 /* 2585 * Note that NUMA hinting access restrictions are not 2586 * transferred to avoid any possibility of altering 2587 * permissions across VMAs. 2588 */ 2589 if (freeze || pmd_migration) { 2590 swp_entry_t swp_entry; 2591 if (write) 2592 swp_entry = make_writable_migration_entry( 2593 page_to_pfn(page + i)); 2594 else if (anon_exclusive) 2595 swp_entry = make_readable_exclusive_migration_entry( 2596 page_to_pfn(page + i)); 2597 else 2598 swp_entry = make_readable_migration_entry( 2599 page_to_pfn(page + i)); 2600 if (young) 2601 swp_entry = make_migration_entry_young(swp_entry); 2602 if (dirty) 2603 swp_entry = make_migration_entry_dirty(swp_entry); 2604 entry = swp_entry_to_pte(swp_entry); 2605 if (soft_dirty) 2606 entry = pte_swp_mksoft_dirty(entry); 2607 if (uffd_wp) 2608 entry = pte_swp_mkuffd_wp(entry); 2609 } else { 2610 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2611 if (write) 2612 entry = pte_mkwrite(entry, vma); 2613 if (!young) 2614 entry = pte_mkold(entry); 2615 /* NOTE: this may set soft-dirty too on some archs */ 2616 if (dirty) 2617 entry = pte_mkdirty(entry); 2618 if (soft_dirty) 2619 entry = pte_mksoft_dirty(entry); 2620 if (uffd_wp) 2621 entry = pte_mkuffd_wp(entry); 2622 } 2623 VM_BUG_ON(!pte_none(ptep_get(pte))); 2624 set_pte_at(mm, addr, pte, entry); 2625 pte++; 2626 } 2627 pte_unmap(pte - 1); 2628 2629 if (!pmd_migration) 2630 folio_remove_rmap_pmd(folio, page, vma); 2631 if (freeze) 2632 put_page(page); 2633 2634 smp_wmb(); /* make pte visible before pmd */ 2635 pmd_populate(mm, pmd, pgtable); 2636 } 2637 2638 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2639 unsigned long address, bool freeze, struct folio *folio) 2640 { 2641 spinlock_t *ptl; 2642 struct mmu_notifier_range range; 2643 2644 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2645 address & HPAGE_PMD_MASK, 2646 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2647 mmu_notifier_invalidate_range_start(&range); 2648 ptl = pmd_lock(vma->vm_mm, pmd); 2649 2650 /* 2651 * If caller asks to setup a migration entry, we need a folio to check 2652 * pmd against. Otherwise we can end up replacing wrong folio. 2653 */ 2654 VM_BUG_ON(freeze && !folio); 2655 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2656 2657 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2658 is_pmd_migration_entry(*pmd)) { 2659 /* 2660 * It's safe to call pmd_page when folio is set because it's 2661 * guaranteed that pmd is present. 2662 */ 2663 if (folio && folio != page_folio(pmd_page(*pmd))) 2664 goto out; 2665 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2666 } 2667 2668 out: 2669 spin_unlock(ptl); 2670 mmu_notifier_invalidate_range_end(&range); 2671 } 2672 2673 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2674 bool freeze, struct folio *folio) 2675 { 2676 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2677 2678 if (!pmd) 2679 return; 2680 2681 __split_huge_pmd(vma, pmd, address, freeze, folio); 2682 } 2683 2684 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2685 { 2686 /* 2687 * If the new address isn't hpage aligned and it could previously 2688 * contain an hugepage: check if we need to split an huge pmd. 2689 */ 2690 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2691 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2692 ALIGN(address, HPAGE_PMD_SIZE))) 2693 split_huge_pmd_address(vma, address, false, NULL); 2694 } 2695 2696 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2697 unsigned long start, 2698 unsigned long end, 2699 long adjust_next) 2700 { 2701 /* Check if we need to split start first. */ 2702 split_huge_pmd_if_needed(vma, start); 2703 2704 /* Check if we need to split end next. */ 2705 split_huge_pmd_if_needed(vma, end); 2706 2707 /* 2708 * If we're also updating the next vma vm_start, 2709 * check if we need to split it. 2710 */ 2711 if (adjust_next > 0) { 2712 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2713 unsigned long nstart = next->vm_start; 2714 nstart += adjust_next; 2715 split_huge_pmd_if_needed(next, nstart); 2716 } 2717 } 2718 2719 static void unmap_folio(struct folio *folio) 2720 { 2721 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2722 TTU_SYNC | TTU_BATCH_FLUSH; 2723 2724 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2725 2726 /* 2727 * Anon pages need migration entries to preserve them, but file 2728 * pages can simply be left unmapped, then faulted back on demand. 2729 * If that is ever changed (perhaps for mlock), update remap_page(). 2730 */ 2731 if (folio_test_anon(folio)) 2732 try_to_migrate(folio, ttu_flags); 2733 else 2734 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2735 2736 try_to_unmap_flush(); 2737 } 2738 2739 static void remap_page(struct folio *folio, unsigned long nr) 2740 { 2741 int i = 0; 2742 2743 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2744 if (!folio_test_anon(folio)) 2745 return; 2746 for (;;) { 2747 remove_migration_ptes(folio, folio, true); 2748 i += folio_nr_pages(folio); 2749 if (i >= nr) 2750 break; 2751 folio = folio_next(folio); 2752 } 2753 } 2754 2755 static void lru_add_page_tail(struct page *head, struct page *tail, 2756 struct lruvec *lruvec, struct list_head *list) 2757 { 2758 VM_BUG_ON_PAGE(!PageHead(head), head); 2759 VM_BUG_ON_PAGE(PageCompound(tail), head); 2760 VM_BUG_ON_PAGE(PageLRU(tail), head); 2761 lockdep_assert_held(&lruvec->lru_lock); 2762 2763 if (list) { 2764 /* page reclaim is reclaiming a huge page */ 2765 VM_WARN_ON(PageLRU(head)); 2766 get_page(tail); 2767 list_add_tail(&tail->lru, list); 2768 } else { 2769 /* head is still on lru (and we have it frozen) */ 2770 VM_WARN_ON(!PageLRU(head)); 2771 if (PageUnevictable(tail)) 2772 tail->mlock_count = 0; 2773 else 2774 list_add_tail(&tail->lru, &head->lru); 2775 SetPageLRU(tail); 2776 } 2777 } 2778 2779 static void __split_huge_page_tail(struct folio *folio, int tail, 2780 struct lruvec *lruvec, struct list_head *list) 2781 { 2782 struct page *head = &folio->page; 2783 struct page *page_tail = head + tail; 2784 /* 2785 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2786 * Don't pass it around before clear_compound_head(). 2787 */ 2788 struct folio *new_folio = (struct folio *)page_tail; 2789 2790 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2791 2792 /* 2793 * Clone page flags before unfreezing refcount. 2794 * 2795 * After successful get_page_unless_zero() might follow flags change, 2796 * for example lock_page() which set PG_waiters. 2797 * 2798 * Note that for mapped sub-pages of an anonymous THP, 2799 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2800 * the migration entry instead from where remap_page() will restore it. 2801 * We can still have PG_anon_exclusive set on effectively unmapped and 2802 * unreferenced sub-pages of an anonymous THP: we can simply drop 2803 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2804 */ 2805 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2806 page_tail->flags |= (head->flags & 2807 ((1L << PG_referenced) | 2808 (1L << PG_swapbacked) | 2809 (1L << PG_swapcache) | 2810 (1L << PG_mlocked) | 2811 (1L << PG_uptodate) | 2812 (1L << PG_active) | 2813 (1L << PG_workingset) | 2814 (1L << PG_locked) | 2815 (1L << PG_unevictable) | 2816 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2817 (1L << PG_arch_2) | 2818 (1L << PG_arch_3) | 2819 #endif 2820 (1L << PG_dirty) | 2821 LRU_GEN_MASK | LRU_REFS_MASK)); 2822 2823 /* ->mapping in first and second tail page is replaced by other uses */ 2824 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2825 page_tail); 2826 page_tail->mapping = head->mapping; 2827 page_tail->index = head->index + tail; 2828 2829 /* 2830 * page->private should not be set in tail pages. Fix up and warn once 2831 * if private is unexpectedly set. 2832 */ 2833 if (unlikely(page_tail->private)) { 2834 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2835 page_tail->private = 0; 2836 } 2837 if (folio_test_swapcache(folio)) 2838 new_folio->swap.val = folio->swap.val + tail; 2839 2840 /* Page flags must be visible before we make the page non-compound. */ 2841 smp_wmb(); 2842 2843 /* 2844 * Clear PageTail before unfreezing page refcount. 2845 * 2846 * After successful get_page_unless_zero() might follow put_page() 2847 * which needs correct compound_head(). 2848 */ 2849 clear_compound_head(page_tail); 2850 2851 /* Finally unfreeze refcount. Additional reference from page cache. */ 2852 page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) || 2853 folio_test_swapcache(folio))); 2854 2855 if (folio_test_young(folio)) 2856 folio_set_young(new_folio); 2857 if (folio_test_idle(folio)) 2858 folio_set_idle(new_folio); 2859 2860 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2861 2862 /* 2863 * always add to the tail because some iterators expect new 2864 * pages to show after the currently processed elements - e.g. 2865 * migrate_pages 2866 */ 2867 lru_add_page_tail(head, page_tail, lruvec, list); 2868 } 2869 2870 static void __split_huge_page(struct page *page, struct list_head *list, 2871 pgoff_t end) 2872 { 2873 struct folio *folio = page_folio(page); 2874 struct page *head = &folio->page; 2875 struct lruvec *lruvec; 2876 struct address_space *swap_cache = NULL; 2877 unsigned long offset = 0; 2878 unsigned int nr = thp_nr_pages(head); 2879 int i, nr_dropped = 0; 2880 2881 /* complete memcg works before add pages to LRU */ 2882 split_page_memcg(head, nr); 2883 2884 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2885 offset = swp_offset(folio->swap); 2886 swap_cache = swap_address_space(folio->swap); 2887 xa_lock(&swap_cache->i_pages); 2888 } 2889 2890 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2891 lruvec = folio_lruvec_lock(folio); 2892 2893 ClearPageHasHWPoisoned(head); 2894 2895 for (i = nr - 1; i >= 1; i--) { 2896 __split_huge_page_tail(folio, i, lruvec, list); 2897 /* Some pages can be beyond EOF: drop them from page cache */ 2898 if (head[i].index >= end) { 2899 struct folio *tail = page_folio(head + i); 2900 2901 if (shmem_mapping(head->mapping)) 2902 nr_dropped++; 2903 else if (folio_test_clear_dirty(tail)) 2904 folio_account_cleaned(tail, 2905 inode_to_wb(folio->mapping->host)); 2906 __filemap_remove_folio(tail, NULL); 2907 folio_put(tail); 2908 } else if (!PageAnon(page)) { 2909 __xa_store(&head->mapping->i_pages, head[i].index, 2910 head + i, 0); 2911 } else if (swap_cache) { 2912 __xa_store(&swap_cache->i_pages, offset + i, 2913 head + i, 0); 2914 } 2915 } 2916 2917 ClearPageCompound(head); 2918 unlock_page_lruvec(lruvec); 2919 /* Caller disabled irqs, so they are still disabled here */ 2920 2921 split_page_owner(head, nr); 2922 2923 /* See comment in __split_huge_page_tail() */ 2924 if (PageAnon(head)) { 2925 /* Additional pin to swap cache */ 2926 if (PageSwapCache(head)) { 2927 page_ref_add(head, 2); 2928 xa_unlock(&swap_cache->i_pages); 2929 } else { 2930 page_ref_inc(head); 2931 } 2932 } else { 2933 /* Additional pin to page cache */ 2934 page_ref_add(head, 2); 2935 xa_unlock(&head->mapping->i_pages); 2936 } 2937 local_irq_enable(); 2938 2939 if (nr_dropped) 2940 shmem_uncharge(head->mapping->host, nr_dropped); 2941 remap_page(folio, nr); 2942 2943 if (folio_test_swapcache(folio)) 2944 split_swap_cluster(folio->swap); 2945 2946 for (i = 0; i < nr; i++) { 2947 struct page *subpage = head + i; 2948 if (subpage == page) 2949 continue; 2950 unlock_page(subpage); 2951 2952 /* 2953 * Subpages may be freed if there wasn't any mapping 2954 * like if add_to_swap() is running on a lru page that 2955 * had its mapping zapped. And freeing these pages 2956 * requires taking the lru_lock so we do the put_page 2957 * of the tail pages after the split is complete. 2958 */ 2959 free_page_and_swap_cache(subpage); 2960 } 2961 } 2962 2963 /* Racy check whether the huge page can be split */ 2964 bool can_split_folio(struct folio *folio, int *pextra_pins) 2965 { 2966 int extra_pins; 2967 2968 /* Additional pins from page cache */ 2969 if (folio_test_anon(folio)) 2970 extra_pins = folio_test_swapcache(folio) ? 2971 folio_nr_pages(folio) : 0; 2972 else 2973 extra_pins = folio_nr_pages(folio); 2974 if (pextra_pins) 2975 *pextra_pins = extra_pins; 2976 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2977 } 2978 2979 /* 2980 * This function splits huge page into normal pages. @page can point to any 2981 * subpage of huge page to split. Split doesn't change the position of @page. 2982 * 2983 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2984 * The huge page must be locked. 2985 * 2986 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2987 * 2988 * Both head page and tail pages will inherit mapping, flags, and so on from 2989 * the hugepage. 2990 * 2991 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2992 * they are not mapped. 2993 * 2994 * Returns 0 if the hugepage is split successfully. 2995 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2996 * us. 2997 */ 2998 int split_huge_page_to_list(struct page *page, struct list_head *list) 2999 { 3000 struct folio *folio = page_folio(page); 3001 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3002 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 3003 struct anon_vma *anon_vma = NULL; 3004 struct address_space *mapping = NULL; 3005 int extra_pins, ret; 3006 pgoff_t end; 3007 bool is_hzp; 3008 3009 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3010 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3011 3012 is_hzp = is_huge_zero_page(&folio->page); 3013 if (is_hzp) { 3014 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3015 return -EBUSY; 3016 } 3017 3018 if (folio_test_writeback(folio)) 3019 return -EBUSY; 3020 3021 if (folio_test_anon(folio)) { 3022 /* 3023 * The caller does not necessarily hold an mmap_lock that would 3024 * prevent the anon_vma disappearing so we first we take a 3025 * reference to it and then lock the anon_vma for write. This 3026 * is similar to folio_lock_anon_vma_read except the write lock 3027 * is taken to serialise against parallel split or collapse 3028 * operations. 3029 */ 3030 anon_vma = folio_get_anon_vma(folio); 3031 if (!anon_vma) { 3032 ret = -EBUSY; 3033 goto out; 3034 } 3035 end = -1; 3036 mapping = NULL; 3037 anon_vma_lock_write(anon_vma); 3038 } else { 3039 gfp_t gfp; 3040 3041 mapping = folio->mapping; 3042 3043 /* Truncated ? */ 3044 if (!mapping) { 3045 ret = -EBUSY; 3046 goto out; 3047 } 3048 3049 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3050 GFP_RECLAIM_MASK); 3051 3052 if (!filemap_release_folio(folio, gfp)) { 3053 ret = -EBUSY; 3054 goto out; 3055 } 3056 3057 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3058 if (xas_error(&xas)) { 3059 ret = xas_error(&xas); 3060 goto out; 3061 } 3062 3063 anon_vma = NULL; 3064 i_mmap_lock_read(mapping); 3065 3066 /* 3067 *__split_huge_page() may need to trim off pages beyond EOF: 3068 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3069 * which cannot be nested inside the page tree lock. So note 3070 * end now: i_size itself may be changed at any moment, but 3071 * folio lock is good enough to serialize the trimming. 3072 */ 3073 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3074 if (shmem_mapping(mapping)) 3075 end = shmem_fallocend(mapping->host, end); 3076 } 3077 3078 /* 3079 * Racy check if we can split the page, before unmap_folio() will 3080 * split PMDs 3081 */ 3082 if (!can_split_folio(folio, &extra_pins)) { 3083 ret = -EAGAIN; 3084 goto out_unlock; 3085 } 3086 3087 unmap_folio(folio); 3088 3089 /* block interrupt reentry in xa_lock and spinlock */ 3090 local_irq_disable(); 3091 if (mapping) { 3092 /* 3093 * Check if the folio is present in page cache. 3094 * We assume all tail are present too, if folio is there. 3095 */ 3096 xas_lock(&xas); 3097 xas_reset(&xas); 3098 if (xas_load(&xas) != folio) 3099 goto fail; 3100 } 3101 3102 /* Prevent deferred_split_scan() touching ->_refcount */ 3103 spin_lock(&ds_queue->split_queue_lock); 3104 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3105 if (!list_empty(&folio->_deferred_list)) { 3106 ds_queue->split_queue_len--; 3107 list_del(&folio->_deferred_list); 3108 } 3109 spin_unlock(&ds_queue->split_queue_lock); 3110 if (mapping) { 3111 int nr = folio_nr_pages(folio); 3112 3113 xas_split(&xas, folio, folio_order(folio)); 3114 if (folio_test_pmd_mappable(folio)) { 3115 if (folio_test_swapbacked(folio)) { 3116 __lruvec_stat_mod_folio(folio, 3117 NR_SHMEM_THPS, -nr); 3118 } else { 3119 __lruvec_stat_mod_folio(folio, 3120 NR_FILE_THPS, -nr); 3121 filemap_nr_thps_dec(mapping); 3122 } 3123 } 3124 } 3125 3126 __split_huge_page(page, list, end); 3127 ret = 0; 3128 } else { 3129 spin_unlock(&ds_queue->split_queue_lock); 3130 fail: 3131 if (mapping) 3132 xas_unlock(&xas); 3133 local_irq_enable(); 3134 remap_page(folio, folio_nr_pages(folio)); 3135 ret = -EAGAIN; 3136 } 3137 3138 out_unlock: 3139 if (anon_vma) { 3140 anon_vma_unlock_write(anon_vma); 3141 put_anon_vma(anon_vma); 3142 } 3143 if (mapping) 3144 i_mmap_unlock_read(mapping); 3145 out: 3146 xas_destroy(&xas); 3147 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3148 return ret; 3149 } 3150 3151 void folio_undo_large_rmappable(struct folio *folio) 3152 { 3153 struct deferred_split *ds_queue; 3154 unsigned long flags; 3155 3156 /* 3157 * At this point, there is no one trying to add the folio to 3158 * deferred_list. If folio is not in deferred_list, it's safe 3159 * to check without acquiring the split_queue_lock. 3160 */ 3161 if (data_race(list_empty(&folio->_deferred_list))) 3162 return; 3163 3164 ds_queue = get_deferred_split_queue(folio); 3165 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3166 if (!list_empty(&folio->_deferred_list)) { 3167 ds_queue->split_queue_len--; 3168 list_del_init(&folio->_deferred_list); 3169 } 3170 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3171 } 3172 3173 void deferred_split_folio(struct folio *folio) 3174 { 3175 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3176 #ifdef CONFIG_MEMCG 3177 struct mem_cgroup *memcg = folio_memcg(folio); 3178 #endif 3179 unsigned long flags; 3180 3181 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 3182 3183 /* 3184 * The try_to_unmap() in page reclaim path might reach here too, 3185 * this may cause a race condition to corrupt deferred split queue. 3186 * And, if page reclaim is already handling the same folio, it is 3187 * unnecessary to handle it again in shrinker. 3188 * 3189 * Check the swapcache flag to determine if the folio is being 3190 * handled by page reclaim since THP swap would add the folio into 3191 * swap cache before calling try_to_unmap(). 3192 */ 3193 if (folio_test_swapcache(folio)) 3194 return; 3195 3196 if (!list_empty(&folio->_deferred_list)) 3197 return; 3198 3199 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3200 if (list_empty(&folio->_deferred_list)) { 3201 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3202 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3203 ds_queue->split_queue_len++; 3204 #ifdef CONFIG_MEMCG 3205 if (memcg) 3206 set_shrinker_bit(memcg, folio_nid(folio), 3207 deferred_split_shrinker->id); 3208 #endif 3209 } 3210 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3211 } 3212 3213 static unsigned long deferred_split_count(struct shrinker *shrink, 3214 struct shrink_control *sc) 3215 { 3216 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3217 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3218 3219 #ifdef CONFIG_MEMCG 3220 if (sc->memcg) 3221 ds_queue = &sc->memcg->deferred_split_queue; 3222 #endif 3223 return READ_ONCE(ds_queue->split_queue_len); 3224 } 3225 3226 static unsigned long deferred_split_scan(struct shrinker *shrink, 3227 struct shrink_control *sc) 3228 { 3229 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3230 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3231 unsigned long flags; 3232 LIST_HEAD(list); 3233 struct folio *folio, *next; 3234 int split = 0; 3235 3236 #ifdef CONFIG_MEMCG 3237 if (sc->memcg) 3238 ds_queue = &sc->memcg->deferred_split_queue; 3239 #endif 3240 3241 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3242 /* Take pin on all head pages to avoid freeing them under us */ 3243 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3244 _deferred_list) { 3245 if (folio_try_get(folio)) { 3246 list_move(&folio->_deferred_list, &list); 3247 } else { 3248 /* We lost race with folio_put() */ 3249 list_del_init(&folio->_deferred_list); 3250 ds_queue->split_queue_len--; 3251 } 3252 if (!--sc->nr_to_scan) 3253 break; 3254 } 3255 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3256 3257 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3258 if (!folio_trylock(folio)) 3259 goto next; 3260 /* split_huge_page() removes page from list on success */ 3261 if (!split_folio(folio)) 3262 split++; 3263 folio_unlock(folio); 3264 next: 3265 folio_put(folio); 3266 } 3267 3268 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3269 list_splice_tail(&list, &ds_queue->split_queue); 3270 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3271 3272 /* 3273 * Stop shrinker if we didn't split any page, but the queue is empty. 3274 * This can happen if pages were freed under us. 3275 */ 3276 if (!split && list_empty(&ds_queue->split_queue)) 3277 return SHRINK_STOP; 3278 return split; 3279 } 3280 3281 #ifdef CONFIG_DEBUG_FS 3282 static void split_huge_pages_all(void) 3283 { 3284 struct zone *zone; 3285 struct page *page; 3286 struct folio *folio; 3287 unsigned long pfn, max_zone_pfn; 3288 unsigned long total = 0, split = 0; 3289 3290 pr_debug("Split all THPs\n"); 3291 for_each_zone(zone) { 3292 if (!managed_zone(zone)) 3293 continue; 3294 max_zone_pfn = zone_end_pfn(zone); 3295 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3296 int nr_pages; 3297 3298 page = pfn_to_online_page(pfn); 3299 if (!page || PageTail(page)) 3300 continue; 3301 folio = page_folio(page); 3302 if (!folio_try_get(folio)) 3303 continue; 3304 3305 if (unlikely(page_folio(page) != folio)) 3306 goto next; 3307 3308 if (zone != folio_zone(folio)) 3309 goto next; 3310 3311 if (!folio_test_large(folio) 3312 || folio_test_hugetlb(folio) 3313 || !folio_test_lru(folio)) 3314 goto next; 3315 3316 total++; 3317 folio_lock(folio); 3318 nr_pages = folio_nr_pages(folio); 3319 if (!split_folio(folio)) 3320 split++; 3321 pfn += nr_pages - 1; 3322 folio_unlock(folio); 3323 next: 3324 folio_put(folio); 3325 cond_resched(); 3326 } 3327 } 3328 3329 pr_debug("%lu of %lu THP split\n", split, total); 3330 } 3331 3332 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3333 { 3334 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3335 is_vm_hugetlb_page(vma); 3336 } 3337 3338 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3339 unsigned long vaddr_end) 3340 { 3341 int ret = 0; 3342 struct task_struct *task; 3343 struct mm_struct *mm; 3344 unsigned long total = 0, split = 0; 3345 unsigned long addr; 3346 3347 vaddr_start &= PAGE_MASK; 3348 vaddr_end &= PAGE_MASK; 3349 3350 /* Find the task_struct from pid */ 3351 rcu_read_lock(); 3352 task = find_task_by_vpid(pid); 3353 if (!task) { 3354 rcu_read_unlock(); 3355 ret = -ESRCH; 3356 goto out; 3357 } 3358 get_task_struct(task); 3359 rcu_read_unlock(); 3360 3361 /* Find the mm_struct */ 3362 mm = get_task_mm(task); 3363 put_task_struct(task); 3364 3365 if (!mm) { 3366 ret = -EINVAL; 3367 goto out; 3368 } 3369 3370 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3371 pid, vaddr_start, vaddr_end); 3372 3373 mmap_read_lock(mm); 3374 /* 3375 * always increase addr by PAGE_SIZE, since we could have a PTE page 3376 * table filled with PTE-mapped THPs, each of which is distinct. 3377 */ 3378 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3379 struct vm_area_struct *vma = vma_lookup(mm, addr); 3380 struct page *page; 3381 struct folio *folio; 3382 3383 if (!vma) 3384 break; 3385 3386 /* skip special VMA and hugetlb VMA */ 3387 if (vma_not_suitable_for_thp_split(vma)) { 3388 addr = vma->vm_end; 3389 continue; 3390 } 3391 3392 /* FOLL_DUMP to ignore special (like zero) pages */ 3393 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3394 3395 if (IS_ERR_OR_NULL(page)) 3396 continue; 3397 3398 folio = page_folio(page); 3399 if (!is_transparent_hugepage(folio)) 3400 goto next; 3401 3402 total++; 3403 if (!can_split_folio(folio, NULL)) 3404 goto next; 3405 3406 if (!folio_trylock(folio)) 3407 goto next; 3408 3409 if (!split_folio(folio)) 3410 split++; 3411 3412 folio_unlock(folio); 3413 next: 3414 folio_put(folio); 3415 cond_resched(); 3416 } 3417 mmap_read_unlock(mm); 3418 mmput(mm); 3419 3420 pr_debug("%lu of %lu THP split\n", split, total); 3421 3422 out: 3423 return ret; 3424 } 3425 3426 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3427 pgoff_t off_end) 3428 { 3429 struct filename *file; 3430 struct file *candidate; 3431 struct address_space *mapping; 3432 int ret = -EINVAL; 3433 pgoff_t index; 3434 int nr_pages = 1; 3435 unsigned long total = 0, split = 0; 3436 3437 file = getname_kernel(file_path); 3438 if (IS_ERR(file)) 3439 return ret; 3440 3441 candidate = file_open_name(file, O_RDONLY, 0); 3442 if (IS_ERR(candidate)) 3443 goto out; 3444 3445 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3446 file_path, off_start, off_end); 3447 3448 mapping = candidate->f_mapping; 3449 3450 for (index = off_start; index < off_end; index += nr_pages) { 3451 struct folio *folio = filemap_get_folio(mapping, index); 3452 3453 nr_pages = 1; 3454 if (IS_ERR(folio)) 3455 continue; 3456 3457 if (!folio_test_large(folio)) 3458 goto next; 3459 3460 total++; 3461 nr_pages = folio_nr_pages(folio); 3462 3463 if (!folio_trylock(folio)) 3464 goto next; 3465 3466 if (!split_folio(folio)) 3467 split++; 3468 3469 folio_unlock(folio); 3470 next: 3471 folio_put(folio); 3472 cond_resched(); 3473 } 3474 3475 filp_close(candidate, NULL); 3476 ret = 0; 3477 3478 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3479 out: 3480 putname(file); 3481 return ret; 3482 } 3483 3484 #define MAX_INPUT_BUF_SZ 255 3485 3486 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3487 size_t count, loff_t *ppops) 3488 { 3489 static DEFINE_MUTEX(split_debug_mutex); 3490 ssize_t ret; 3491 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3492 char input_buf[MAX_INPUT_BUF_SZ]; 3493 int pid; 3494 unsigned long vaddr_start, vaddr_end; 3495 3496 ret = mutex_lock_interruptible(&split_debug_mutex); 3497 if (ret) 3498 return ret; 3499 3500 ret = -EFAULT; 3501 3502 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3503 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3504 goto out; 3505 3506 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3507 3508 if (input_buf[0] == '/') { 3509 char *tok; 3510 char *buf = input_buf; 3511 char file_path[MAX_INPUT_BUF_SZ]; 3512 pgoff_t off_start = 0, off_end = 0; 3513 size_t input_len = strlen(input_buf); 3514 3515 tok = strsep(&buf, ","); 3516 if (tok) { 3517 strcpy(file_path, tok); 3518 } else { 3519 ret = -EINVAL; 3520 goto out; 3521 } 3522 3523 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3524 if (ret != 2) { 3525 ret = -EINVAL; 3526 goto out; 3527 } 3528 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3529 if (!ret) 3530 ret = input_len; 3531 3532 goto out; 3533 } 3534 3535 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3536 if (ret == 1 && pid == 1) { 3537 split_huge_pages_all(); 3538 ret = strlen(input_buf); 3539 goto out; 3540 } else if (ret != 3) { 3541 ret = -EINVAL; 3542 goto out; 3543 } 3544 3545 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3546 if (!ret) 3547 ret = strlen(input_buf); 3548 out: 3549 mutex_unlock(&split_debug_mutex); 3550 return ret; 3551 3552 } 3553 3554 static const struct file_operations split_huge_pages_fops = { 3555 .owner = THIS_MODULE, 3556 .write = split_huge_pages_write, 3557 .llseek = no_llseek, 3558 }; 3559 3560 static int __init split_huge_pages_debugfs(void) 3561 { 3562 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3563 &split_huge_pages_fops); 3564 return 0; 3565 } 3566 late_initcall(split_huge_pages_debugfs); 3567 #endif 3568 3569 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3570 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3571 struct page *page) 3572 { 3573 struct folio *folio = page_folio(page); 3574 struct vm_area_struct *vma = pvmw->vma; 3575 struct mm_struct *mm = vma->vm_mm; 3576 unsigned long address = pvmw->address; 3577 bool anon_exclusive; 3578 pmd_t pmdval; 3579 swp_entry_t entry; 3580 pmd_t pmdswp; 3581 3582 if (!(pvmw->pmd && !pvmw->pte)) 3583 return 0; 3584 3585 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3586 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3587 3588 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3589 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3590 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3591 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3592 return -EBUSY; 3593 } 3594 3595 if (pmd_dirty(pmdval)) 3596 folio_mark_dirty(folio); 3597 if (pmd_write(pmdval)) 3598 entry = make_writable_migration_entry(page_to_pfn(page)); 3599 else if (anon_exclusive) 3600 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3601 else 3602 entry = make_readable_migration_entry(page_to_pfn(page)); 3603 if (pmd_young(pmdval)) 3604 entry = make_migration_entry_young(entry); 3605 if (pmd_dirty(pmdval)) 3606 entry = make_migration_entry_dirty(entry); 3607 pmdswp = swp_entry_to_pmd(entry); 3608 if (pmd_soft_dirty(pmdval)) 3609 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3610 if (pmd_uffd_wp(pmdval)) 3611 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3612 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3613 folio_remove_rmap_pmd(folio, page, vma); 3614 folio_put(folio); 3615 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3616 3617 return 0; 3618 } 3619 3620 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3621 { 3622 struct folio *folio = page_folio(new); 3623 struct vm_area_struct *vma = pvmw->vma; 3624 struct mm_struct *mm = vma->vm_mm; 3625 unsigned long address = pvmw->address; 3626 unsigned long haddr = address & HPAGE_PMD_MASK; 3627 pmd_t pmde; 3628 swp_entry_t entry; 3629 3630 if (!(pvmw->pmd && !pvmw->pte)) 3631 return; 3632 3633 entry = pmd_to_swp_entry(*pvmw->pmd); 3634 folio_get(folio); 3635 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3636 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3637 pmde = pmd_mksoft_dirty(pmde); 3638 if (is_writable_migration_entry(entry)) 3639 pmde = pmd_mkwrite(pmde, vma); 3640 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3641 pmde = pmd_mkuffd_wp(pmde); 3642 if (!is_migration_entry_young(entry)) 3643 pmde = pmd_mkold(pmde); 3644 /* NOTE: this may contain setting soft-dirty on some archs */ 3645 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3646 pmde = pmd_mkdirty(pmde); 3647 3648 if (folio_test_anon(folio)) { 3649 rmap_t rmap_flags = RMAP_NONE; 3650 3651 if (!is_readable_migration_entry(entry)) 3652 rmap_flags |= RMAP_EXCLUSIVE; 3653 3654 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3655 } else { 3656 folio_add_file_rmap_pmd(folio, new, vma); 3657 } 3658 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3659 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3660 3661 /* No need to invalidate - it was non-present before */ 3662 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3663 trace_remove_migration_pmd(address, pmd_val(pmde)); 3664 } 3665 #endif 3666