xref: /linux/mm/huge_memory.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (sysfs_streq(buf, "always")) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (sysfs_streq(buf, "madvise")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "never")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else
190 		ret = -EINVAL;
191 
192 	if (ret > 0) {
193 		int err = start_stop_khugepaged();
194 		if (err)
195 			ret = err;
196 	}
197 	return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 	__ATTR(enabled, 0644, enabled_show, enabled_store);
201 
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 				struct kobj_attribute *attr, char *buf,
204 				enum transparent_hugepage_flag flag)
205 {
206 	return sprintf(buf, "%d\n",
207 		       !!test_bit(flag, &transparent_hugepage_flags));
208 }
209 
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 				 struct kobj_attribute *attr,
212 				 const char *buf, size_t count,
213 				 enum transparent_hugepage_flag flag)
214 {
215 	unsigned long value;
216 	int ret;
217 
218 	ret = kstrtoul(buf, 10, &value);
219 	if (ret < 0)
220 		return ret;
221 	if (value > 1)
222 		return -EINVAL;
223 
224 	if (value)
225 		set_bit(flag, &transparent_hugepage_flags);
226 	else
227 		clear_bit(flag, &transparent_hugepage_flags);
228 
229 	return count;
230 }
231 
232 static ssize_t defrag_show(struct kobject *kobj,
233 			   struct kobj_attribute *attr, char *buf)
234 {
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245 
246 static ssize_t defrag_store(struct kobject *kobj,
247 			    struct kobj_attribute *attr,
248 			    const char *buf, size_t count)
249 {
250 	if (sysfs_streq(buf, "always")) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (sysfs_streq(buf, "defer+madvise")) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (sysfs_streq(buf, "defer")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "never")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 	__ATTR(defrag, 0644, defrag_show, defrag_store);
282 
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 		struct kobj_attribute *attr, char *buf)
285 {
286 	return single_hugepage_flag_show(kobj, attr, buf,
287 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 		struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 	return single_hugepage_flag_store(kobj, attr, buf, count,
293 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 		struct kobj_attribute *attr, char *buf)
300 {
301 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 	__ATTR_RO(hpage_pmd_size);
305 
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 				struct kobj_attribute *attr, char *buf)
309 {
310 	return single_hugepage_flag_show(kobj, attr, buf,
311 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 			       struct kobj_attribute *attr,
315 			       const char *buf, size_t count)
316 {
317 	return single_hugepage_flag_store(kobj, attr, buf, count,
318 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static struct kobj_attribute debug_cow_attr =
321 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
323 
324 static struct attribute *hugepage_attr[] = {
325 	&enabled_attr.attr,
326 	&defrag_attr.attr,
327 	&use_zero_page_attr.attr,
328 	&hpage_pmd_size_attr.attr,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 	&shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333 	&debug_cow_attr.attr,
334 #endif
335 	NULL,
336 };
337 
338 static const struct attribute_group hugepage_attr_group = {
339 	.attrs = hugepage_attr,
340 };
341 
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 {
344 	int err;
345 
346 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 	if (unlikely(!*hugepage_kobj)) {
348 		pr_err("failed to create transparent hugepage kobject\n");
349 		return -ENOMEM;
350 	}
351 
352 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 	if (err) {
354 		pr_err("failed to register transparent hugepage group\n");
355 		goto delete_obj;
356 	}
357 
358 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 	if (err) {
360 		pr_err("failed to register transparent hugepage group\n");
361 		goto remove_hp_group;
362 	}
363 
364 	return 0;
365 
366 remove_hp_group:
367 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369 	kobject_put(*hugepage_kobj);
370 	return err;
371 }
372 
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 {
375 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 	kobject_put(hugepage_kobj);
378 }
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381 {
382 	return 0;
383 }
384 
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386 {
387 }
388 #endif /* CONFIG_SYSFS */
389 
390 static int __init hugepage_init(void)
391 {
392 	int err;
393 	struct kobject *hugepage_kobj;
394 
395 	if (!has_transparent_hugepage()) {
396 		transparent_hugepage_flags = 0;
397 		return -EINVAL;
398 	}
399 
400 	/*
401 	 * hugepages can't be allocated by the buddy allocator
402 	 */
403 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 	/*
405 	 * we use page->mapping and page->index in second tail page
406 	 * as list_head: assuming THP order >= 2
407 	 */
408 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409 
410 	err = hugepage_init_sysfs(&hugepage_kobj);
411 	if (err)
412 		goto err_sysfs;
413 
414 	err = khugepaged_init();
415 	if (err)
416 		goto err_slab;
417 
418 	err = register_shrinker(&huge_zero_page_shrinker);
419 	if (err)
420 		goto err_hzp_shrinker;
421 	err = register_shrinker(&deferred_split_shrinker);
422 	if (err)
423 		goto err_split_shrinker;
424 
425 	/*
426 	 * By default disable transparent hugepages on smaller systems,
427 	 * where the extra memory used could hurt more than TLB overhead
428 	 * is likely to save.  The admin can still enable it through /sys.
429 	 */
430 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 		transparent_hugepage_flags = 0;
432 		return 0;
433 	}
434 
435 	err = start_stop_khugepaged();
436 	if (err)
437 		goto err_khugepaged;
438 
439 	return 0;
440 err_khugepaged:
441 	unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443 	unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445 	khugepaged_destroy();
446 err_slab:
447 	hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449 	return err;
450 }
451 subsys_initcall(hugepage_init);
452 
453 static int __init setup_transparent_hugepage(char *str)
454 {
455 	int ret = 0;
456 	if (!str)
457 		goto out;
458 	if (!strcmp(str, "always")) {
459 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 			&transparent_hugepage_flags);
461 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 			  &transparent_hugepage_flags);
463 		ret = 1;
464 	} else if (!strcmp(str, "madvise")) {
465 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 			  &transparent_hugepage_flags);
467 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 			&transparent_hugepage_flags);
469 		ret = 1;
470 	} else if (!strcmp(str, "never")) {
471 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 			  &transparent_hugepage_flags);
473 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 			  &transparent_hugepage_flags);
475 		ret = 1;
476 	}
477 out:
478 	if (!ret)
479 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 	return ret;
481 }
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
483 
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 {
486 	if (likely(vma->vm_flags & VM_WRITE))
487 		pmd = pmd_mkwrite(pmd);
488 	return pmd;
489 }
490 
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493 {
494 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496 
497 	if (memcg)
498 		return &memcg->deferred_split_queue;
499 	else
500 		return &pgdat->deferred_split_queue;
501 }
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 
507 	return &pgdat->deferred_split_queue;
508 }
509 #endif
510 
511 void prep_transhuge_page(struct page *page)
512 {
513 	/*
514 	 * we use page->mapping and page->indexlru in second tail page
515 	 * as list_head: assuming THP order >= 2
516 	 */
517 
518 	INIT_LIST_HEAD(page_deferred_list(page));
519 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 }
521 
522 bool is_transparent_hugepage(struct page *page)
523 {
524 	if (!PageCompound(page))
525 		return 0;
526 
527 	page = compound_head(page);
528 	return is_huge_zero_page(page) ||
529 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530 }
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532 
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 		unsigned long addr, unsigned long len,
535 		loff_t off, unsigned long flags, unsigned long size)
536 {
537 	loff_t off_end = off + len;
538 	loff_t off_align = round_up(off, size);
539 	unsigned long len_pad, ret;
540 
541 	if (off_end <= off_align || (off_end - off_align) < size)
542 		return 0;
543 
544 	len_pad = len + size;
545 	if (len_pad < len || (off + len_pad) < off)
546 		return 0;
547 
548 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 					      off >> PAGE_SHIFT, flags);
550 
551 	/*
552 	 * The failure might be due to length padding. The caller will retry
553 	 * without the padding.
554 	 */
555 	if (IS_ERR_VALUE(ret))
556 		return 0;
557 
558 	/*
559 	 * Do not try to align to THP boundary if allocation at the address
560 	 * hint succeeds.
561 	 */
562 	if (ret == addr)
563 		return addr;
564 
565 	ret += (off - ret) & (size - 1);
566 	return ret;
567 }
568 
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 		unsigned long len, unsigned long pgoff, unsigned long flags)
571 {
572 	unsigned long ret;
573 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574 
575 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 		goto out;
577 
578 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 	if (ret)
580 		return ret;
581 out:
582 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583 }
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585 
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 			struct page *page, gfp_t gfp)
588 {
589 	struct vm_area_struct *vma = vmf->vma;
590 	struct mem_cgroup *memcg;
591 	pgtable_t pgtable;
592 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593 	vm_fault_t ret = 0;
594 
595 	VM_BUG_ON_PAGE(!PageCompound(page), page);
596 
597 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 		put_page(page);
599 		count_vm_event(THP_FAULT_FALLBACK);
600 		return VM_FAULT_FALLBACK;
601 	}
602 
603 	pgtable = pte_alloc_one(vma->vm_mm);
604 	if (unlikely(!pgtable)) {
605 		ret = VM_FAULT_OOM;
606 		goto release;
607 	}
608 
609 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
610 	/*
611 	 * The memory barrier inside __SetPageUptodate makes sure that
612 	 * clear_huge_page writes become visible before the set_pmd_at()
613 	 * write.
614 	 */
615 	__SetPageUptodate(page);
616 
617 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 	if (unlikely(!pmd_none(*vmf->pmd))) {
619 		goto unlock_release;
620 	} else {
621 		pmd_t entry;
622 
623 		ret = check_stable_address_space(vma->vm_mm);
624 		if (ret)
625 			goto unlock_release;
626 
627 		/* Deliver the page fault to userland */
628 		if (userfaultfd_missing(vma)) {
629 			vm_fault_t ret2;
630 
631 			spin_unlock(vmf->ptl);
632 			mem_cgroup_cancel_charge(page, memcg, true);
633 			put_page(page);
634 			pte_free(vma->vm_mm, pgtable);
635 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 			return ret2;
638 		}
639 
640 		entry = mk_huge_pmd(page, vma->vm_page_prot);
641 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642 		page_add_new_anon_rmap(page, vma, haddr, true);
643 		mem_cgroup_commit_charge(page, memcg, false, true);
644 		lru_cache_add_active_or_unevictable(page, vma);
645 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
647 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648 		mm_inc_nr_ptes(vma->vm_mm);
649 		spin_unlock(vmf->ptl);
650 		count_vm_event(THP_FAULT_ALLOC);
651 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
652 	}
653 
654 	return 0;
655 unlock_release:
656 	spin_unlock(vmf->ptl);
657 release:
658 	if (pgtable)
659 		pte_free(vma->vm_mm, pgtable);
660 	mem_cgroup_cancel_charge(page, memcg, true);
661 	put_page(page);
662 	return ret;
663 
664 }
665 
666 /*
667  * always: directly stall for all thp allocations
668  * defer: wake kswapd and fail if not immediately available
669  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670  *		  fail if not immediately available
671  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
672  *	    available
673  * never: never stall for any thp allocation
674  */
675 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
676 {
677 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
678 
679 	/* Always do synchronous compaction */
680 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
682 
683 	/* Kick kcompactd and fail quickly */
684 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
686 
687 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
688 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 		return GFP_TRANSHUGE_LIGHT |
690 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
691 					__GFP_KSWAPD_RECLAIM);
692 
693 	/* Only do synchronous compaction if madvised */
694 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 		return GFP_TRANSHUGE_LIGHT |
696 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
697 
698 	return GFP_TRANSHUGE_LIGHT;
699 }
700 
701 /* Caller must hold page table lock. */
702 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704 		struct page *zero_page)
705 {
706 	pmd_t entry;
707 	if (!pmd_none(*pmd))
708 		return false;
709 	entry = mk_pmd(zero_page, vma->vm_page_prot);
710 	entry = pmd_mkhuge(entry);
711 	if (pgtable)
712 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
713 	set_pmd_at(mm, haddr, pmd, entry);
714 	mm_inc_nr_ptes(mm);
715 	return true;
716 }
717 
718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719 {
720 	struct vm_area_struct *vma = vmf->vma;
721 	gfp_t gfp;
722 	struct page *page;
723 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724 
725 	if (!transhuge_vma_suitable(vma, haddr))
726 		return VM_FAULT_FALLBACK;
727 	if (unlikely(anon_vma_prepare(vma)))
728 		return VM_FAULT_OOM;
729 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
730 		return VM_FAULT_OOM;
731 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 			!mm_forbids_zeropage(vma->vm_mm) &&
733 			transparent_hugepage_use_zero_page()) {
734 		pgtable_t pgtable;
735 		struct page *zero_page;
736 		bool set;
737 		vm_fault_t ret;
738 		pgtable = pte_alloc_one(vma->vm_mm);
739 		if (unlikely(!pgtable))
740 			return VM_FAULT_OOM;
741 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 		if (unlikely(!zero_page)) {
743 			pte_free(vma->vm_mm, pgtable);
744 			count_vm_event(THP_FAULT_FALLBACK);
745 			return VM_FAULT_FALLBACK;
746 		}
747 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 		ret = 0;
749 		set = false;
750 		if (pmd_none(*vmf->pmd)) {
751 			ret = check_stable_address_space(vma->vm_mm);
752 			if (ret) {
753 				spin_unlock(vmf->ptl);
754 			} else if (userfaultfd_missing(vma)) {
755 				spin_unlock(vmf->ptl);
756 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 			} else {
759 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 						   haddr, vmf->pmd, zero_page);
761 				spin_unlock(vmf->ptl);
762 				set = true;
763 			}
764 		} else
765 			spin_unlock(vmf->ptl);
766 		if (!set)
767 			pte_free(vma->vm_mm, pgtable);
768 		return ret;
769 	}
770 	gfp = alloc_hugepage_direct_gfpmask(vma);
771 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 	if (unlikely(!page)) {
773 		count_vm_event(THP_FAULT_FALLBACK);
774 		return VM_FAULT_FALLBACK;
775 	}
776 	prep_transhuge_page(page);
777 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
778 }
779 
780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 		pgtable_t pgtable)
783 {
784 	struct mm_struct *mm = vma->vm_mm;
785 	pmd_t entry;
786 	spinlock_t *ptl;
787 
788 	ptl = pmd_lock(mm, pmd);
789 	if (!pmd_none(*pmd)) {
790 		if (write) {
791 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 				goto out_unlock;
794 			}
795 			entry = pmd_mkyoung(*pmd);
796 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 				update_mmu_cache_pmd(vma, addr, pmd);
799 		}
800 
801 		goto out_unlock;
802 	}
803 
804 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 	if (pfn_t_devmap(pfn))
806 		entry = pmd_mkdevmap(entry);
807 	if (write) {
808 		entry = pmd_mkyoung(pmd_mkdirty(entry));
809 		entry = maybe_pmd_mkwrite(entry, vma);
810 	}
811 
812 	if (pgtable) {
813 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
814 		mm_inc_nr_ptes(mm);
815 		pgtable = NULL;
816 	}
817 
818 	set_pmd_at(mm, addr, pmd, entry);
819 	update_mmu_cache_pmd(vma, addr, pmd);
820 
821 out_unlock:
822 	spin_unlock(ptl);
823 	if (pgtable)
824 		pte_free(mm, pgtable);
825 }
826 
827 /**
828  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
829  * @vmf: Structure describing the fault
830  * @pfn: pfn to insert
831  * @pgprot: page protection to use
832  * @write: whether it's a write fault
833  *
834  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
835  * also consult the vmf_insert_mixed_prot() documentation when
836  * @pgprot != @vmf->vma->vm_page_prot.
837  *
838  * Return: vm_fault_t value.
839  */
840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
841 				   pgprot_t pgprot, bool write)
842 {
843 	unsigned long addr = vmf->address & PMD_MASK;
844 	struct vm_area_struct *vma = vmf->vma;
845 	pgtable_t pgtable = NULL;
846 
847 	/*
848 	 * If we had pmd_special, we could avoid all these restrictions,
849 	 * but we need to be consistent with PTEs and architectures that
850 	 * can't support a 'special' bit.
851 	 */
852 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 			!pfn_t_devmap(pfn));
854 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
855 						(VM_PFNMAP|VM_MIXEDMAP));
856 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
857 
858 	if (addr < vma->vm_start || addr >= vma->vm_end)
859 		return VM_FAULT_SIGBUS;
860 
861 	if (arch_needs_pgtable_deposit()) {
862 		pgtable = pte_alloc_one(vma->vm_mm);
863 		if (!pgtable)
864 			return VM_FAULT_OOM;
865 	}
866 
867 	track_pfn_insert(vma, &pgprot, pfn);
868 
869 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
870 	return VM_FAULT_NOPAGE;
871 }
872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873 
874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876 {
877 	if (likely(vma->vm_flags & VM_WRITE))
878 		pud = pud_mkwrite(pud);
879 	return pud;
880 }
881 
882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
883 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 	pud_t entry;
887 	spinlock_t *ptl;
888 
889 	ptl = pud_lock(mm, pud);
890 	if (!pud_none(*pud)) {
891 		if (write) {
892 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
893 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
894 				goto out_unlock;
895 			}
896 			entry = pud_mkyoung(*pud);
897 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
898 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
899 				update_mmu_cache_pud(vma, addr, pud);
900 		}
901 		goto out_unlock;
902 	}
903 
904 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
905 	if (pfn_t_devmap(pfn))
906 		entry = pud_mkdevmap(entry);
907 	if (write) {
908 		entry = pud_mkyoung(pud_mkdirty(entry));
909 		entry = maybe_pud_mkwrite(entry, vma);
910 	}
911 	set_pud_at(mm, addr, pud, entry);
912 	update_mmu_cache_pud(vma, addr, pud);
913 
914 out_unlock:
915 	spin_unlock(ptl);
916 }
917 
918 /**
919  * vmf_insert_pfn_pud_prot - insert a pud size pfn
920  * @vmf: Structure describing the fault
921  * @pfn: pfn to insert
922  * @pgprot: page protection to use
923  * @write: whether it's a write fault
924  *
925  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
926  * also consult the vmf_insert_mixed_prot() documentation when
927  * @pgprot != @vmf->vma->vm_page_prot.
928  *
929  * Return: vm_fault_t value.
930  */
931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
932 				   pgprot_t pgprot, bool write)
933 {
934 	unsigned long addr = vmf->address & PUD_MASK;
935 	struct vm_area_struct *vma = vmf->vma;
936 
937 	/*
938 	 * If we had pud_special, we could avoid all these restrictions,
939 	 * but we need to be consistent with PTEs and architectures that
940 	 * can't support a 'special' bit.
941 	 */
942 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 			!pfn_t_devmap(pfn));
944 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
945 						(VM_PFNMAP|VM_MIXEDMAP));
946 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
947 
948 	if (addr < vma->vm_start || addr >= vma->vm_end)
949 		return VM_FAULT_SIGBUS;
950 
951 	track_pfn_insert(vma, &pgprot, pfn);
952 
953 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
954 	return VM_FAULT_NOPAGE;
955 }
956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958 
959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
960 		pmd_t *pmd, int flags)
961 {
962 	pmd_t _pmd;
963 
964 	_pmd = pmd_mkyoung(*pmd);
965 	if (flags & FOLL_WRITE)
966 		_pmd = pmd_mkdirty(_pmd);
967 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
968 				pmd, _pmd, flags & FOLL_WRITE))
969 		update_mmu_cache_pmd(vma, addr, pmd);
970 }
971 
972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
973 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 {
975 	unsigned long pfn = pmd_pfn(*pmd);
976 	struct mm_struct *mm = vma->vm_mm;
977 	struct page *page;
978 
979 	assert_spin_locked(pmd_lockptr(mm, pmd));
980 
981 	/*
982 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
983 	 * not be in this function with `flags & FOLL_COW` set.
984 	 */
985 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
986 
987 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
988 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
989 			 (FOLL_PIN | FOLL_GET)))
990 		return NULL;
991 
992 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
993 		return NULL;
994 
995 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
996 		/* pass */;
997 	else
998 		return NULL;
999 
1000 	if (flags & FOLL_TOUCH)
1001 		touch_pmd(vma, addr, pmd, flags);
1002 
1003 	/*
1004 	 * device mapped pages can only be returned if the
1005 	 * caller will manage the page reference count.
1006 	 */
1007 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1008 		return ERR_PTR(-EEXIST);
1009 
1010 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1011 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1012 	if (!*pgmap)
1013 		return ERR_PTR(-EFAULT);
1014 	page = pfn_to_page(pfn);
1015 	if (!try_grab_page(page, flags))
1016 		page = ERR_PTR(-ENOMEM);
1017 
1018 	return page;
1019 }
1020 
1021 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 		  struct vm_area_struct *vma)
1024 {
1025 	spinlock_t *dst_ptl, *src_ptl;
1026 	struct page *src_page;
1027 	pmd_t pmd;
1028 	pgtable_t pgtable = NULL;
1029 	int ret = -ENOMEM;
1030 
1031 	/* Skip if can be re-fill on fault */
1032 	if (!vma_is_anonymous(vma))
1033 		return 0;
1034 
1035 	pgtable = pte_alloc_one(dst_mm);
1036 	if (unlikely(!pgtable))
1037 		goto out;
1038 
1039 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1040 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1041 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 
1043 	ret = -EAGAIN;
1044 	pmd = *src_pmd;
1045 
1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047 	if (unlikely(is_swap_pmd(pmd))) {
1048 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1049 
1050 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051 		if (is_write_migration_entry(entry)) {
1052 			make_migration_entry_read(&entry);
1053 			pmd = swp_entry_to_pmd(entry);
1054 			if (pmd_swp_soft_dirty(*src_pmd))
1055 				pmd = pmd_swp_mksoft_dirty(pmd);
1056 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1057 		}
1058 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1059 		mm_inc_nr_ptes(dst_mm);
1060 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1061 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1062 		ret = 0;
1063 		goto out_unlock;
1064 	}
1065 #endif
1066 
1067 	if (unlikely(!pmd_trans_huge(pmd))) {
1068 		pte_free(dst_mm, pgtable);
1069 		goto out_unlock;
1070 	}
1071 	/*
1072 	 * When page table lock is held, the huge zero pmd should not be
1073 	 * under splitting since we don't split the page itself, only pmd to
1074 	 * a page table.
1075 	 */
1076 	if (is_huge_zero_pmd(pmd)) {
1077 		struct page *zero_page;
1078 		/*
1079 		 * get_huge_zero_page() will never allocate a new page here,
1080 		 * since we already have a zero page to copy. It just takes a
1081 		 * reference.
1082 		 */
1083 		zero_page = mm_get_huge_zero_page(dst_mm);
1084 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085 				zero_page);
1086 		ret = 0;
1087 		goto out_unlock;
1088 	}
1089 
1090 	src_page = pmd_page(pmd);
1091 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092 	get_page(src_page);
1093 	page_dup_rmap(src_page, true);
1094 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1095 	mm_inc_nr_ptes(dst_mm);
1096 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1097 
1098 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1099 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1100 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1101 
1102 	ret = 0;
1103 out_unlock:
1104 	spin_unlock(src_ptl);
1105 	spin_unlock(dst_ptl);
1106 out:
1107 	return ret;
1108 }
1109 
1110 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1111 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1112 		pud_t *pud, int flags)
1113 {
1114 	pud_t _pud;
1115 
1116 	_pud = pud_mkyoung(*pud);
1117 	if (flags & FOLL_WRITE)
1118 		_pud = pud_mkdirty(_pud);
1119 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1120 				pud, _pud, flags & FOLL_WRITE))
1121 		update_mmu_cache_pud(vma, addr, pud);
1122 }
1123 
1124 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1125 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1126 {
1127 	unsigned long pfn = pud_pfn(*pud);
1128 	struct mm_struct *mm = vma->vm_mm;
1129 	struct page *page;
1130 
1131 	assert_spin_locked(pud_lockptr(mm, pud));
1132 
1133 	if (flags & FOLL_WRITE && !pud_write(*pud))
1134 		return NULL;
1135 
1136 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1137 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1138 			 (FOLL_PIN | FOLL_GET)))
1139 		return NULL;
1140 
1141 	if (pud_present(*pud) && pud_devmap(*pud))
1142 		/* pass */;
1143 	else
1144 		return NULL;
1145 
1146 	if (flags & FOLL_TOUCH)
1147 		touch_pud(vma, addr, pud, flags);
1148 
1149 	/*
1150 	 * device mapped pages can only be returned if the
1151 	 * caller will manage the page reference count.
1152 	 *
1153 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1154 	 */
1155 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1156 		return ERR_PTR(-EEXIST);
1157 
1158 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1159 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1160 	if (!*pgmap)
1161 		return ERR_PTR(-EFAULT);
1162 	page = pfn_to_page(pfn);
1163 	if (!try_grab_page(page, flags))
1164 		page = ERR_PTR(-ENOMEM);
1165 
1166 	return page;
1167 }
1168 
1169 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1170 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1171 		  struct vm_area_struct *vma)
1172 {
1173 	spinlock_t *dst_ptl, *src_ptl;
1174 	pud_t pud;
1175 	int ret;
1176 
1177 	dst_ptl = pud_lock(dst_mm, dst_pud);
1178 	src_ptl = pud_lockptr(src_mm, src_pud);
1179 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1180 
1181 	ret = -EAGAIN;
1182 	pud = *src_pud;
1183 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1184 		goto out_unlock;
1185 
1186 	/*
1187 	 * When page table lock is held, the huge zero pud should not be
1188 	 * under splitting since we don't split the page itself, only pud to
1189 	 * a page table.
1190 	 */
1191 	if (is_huge_zero_pud(pud)) {
1192 		/* No huge zero pud yet */
1193 	}
1194 
1195 	pudp_set_wrprotect(src_mm, addr, src_pud);
1196 	pud = pud_mkold(pud_wrprotect(pud));
1197 	set_pud_at(dst_mm, addr, dst_pud, pud);
1198 
1199 	ret = 0;
1200 out_unlock:
1201 	spin_unlock(src_ptl);
1202 	spin_unlock(dst_ptl);
1203 	return ret;
1204 }
1205 
1206 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1207 {
1208 	pud_t entry;
1209 	unsigned long haddr;
1210 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1211 
1212 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1213 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1214 		goto unlock;
1215 
1216 	entry = pud_mkyoung(orig_pud);
1217 	if (write)
1218 		entry = pud_mkdirty(entry);
1219 	haddr = vmf->address & HPAGE_PUD_MASK;
1220 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1221 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1222 
1223 unlock:
1224 	spin_unlock(vmf->ptl);
1225 }
1226 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1227 
1228 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1229 {
1230 	pmd_t entry;
1231 	unsigned long haddr;
1232 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1233 
1234 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1235 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1236 		goto unlock;
1237 
1238 	entry = pmd_mkyoung(orig_pmd);
1239 	if (write)
1240 		entry = pmd_mkdirty(entry);
1241 	haddr = vmf->address & HPAGE_PMD_MASK;
1242 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1243 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1244 
1245 unlock:
1246 	spin_unlock(vmf->ptl);
1247 }
1248 
1249 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1250 			pmd_t orig_pmd, struct page *page)
1251 {
1252 	struct vm_area_struct *vma = vmf->vma;
1253 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1254 	struct mem_cgroup *memcg;
1255 	pgtable_t pgtable;
1256 	pmd_t _pmd;
1257 	int i;
1258 	vm_fault_t ret = 0;
1259 	struct page **pages;
1260 	struct mmu_notifier_range range;
1261 
1262 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1263 			      GFP_KERNEL);
1264 	if (unlikely(!pages)) {
1265 		ret |= VM_FAULT_OOM;
1266 		goto out;
1267 	}
1268 
1269 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1270 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1271 					       vmf->address, page_to_nid(page));
1272 		if (unlikely(!pages[i] ||
1273 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1274 				     GFP_KERNEL, &memcg, false))) {
1275 			if (pages[i])
1276 				put_page(pages[i]);
1277 			while (--i >= 0) {
1278 				memcg = (void *)page_private(pages[i]);
1279 				set_page_private(pages[i], 0);
1280 				mem_cgroup_cancel_charge(pages[i], memcg,
1281 						false);
1282 				put_page(pages[i]);
1283 			}
1284 			kfree(pages);
1285 			ret |= VM_FAULT_OOM;
1286 			goto out;
1287 		}
1288 		set_page_private(pages[i], (unsigned long)memcg);
1289 	}
1290 
1291 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1292 		copy_user_highpage(pages[i], page + i,
1293 				   haddr + PAGE_SIZE * i, vma);
1294 		__SetPageUptodate(pages[i]);
1295 		cond_resched();
1296 	}
1297 
1298 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1299 				haddr, haddr + HPAGE_PMD_SIZE);
1300 	mmu_notifier_invalidate_range_start(&range);
1301 
1302 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1303 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1304 		goto out_free_pages;
1305 	VM_BUG_ON_PAGE(!PageHead(page), page);
1306 
1307 	/*
1308 	 * Leave pmd empty until pte is filled note we must notify here as
1309 	 * concurrent CPU thread might write to new page before the call to
1310 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1311 	 * device seeing memory write in different order than CPU.
1312 	 *
1313 	 * See Documentation/vm/mmu_notifier.rst
1314 	 */
1315 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1316 
1317 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1318 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1319 
1320 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1321 		pte_t entry;
1322 		entry = mk_pte(pages[i], vma->vm_page_prot);
1323 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1324 		memcg = (void *)page_private(pages[i]);
1325 		set_page_private(pages[i], 0);
1326 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1327 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1328 		lru_cache_add_active_or_unevictable(pages[i], vma);
1329 		vmf->pte = pte_offset_map(&_pmd, haddr);
1330 		VM_BUG_ON(!pte_none(*vmf->pte));
1331 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1332 		pte_unmap(vmf->pte);
1333 	}
1334 	kfree(pages);
1335 
1336 	smp_wmb(); /* make pte visible before pmd */
1337 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1338 	page_remove_rmap(page, true);
1339 	spin_unlock(vmf->ptl);
1340 
1341 	/*
1342 	 * No need to double call mmu_notifier->invalidate_range() callback as
1343 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1344 	 */
1345 	mmu_notifier_invalidate_range_only_end(&range);
1346 
1347 	ret |= VM_FAULT_WRITE;
1348 	put_page(page);
1349 
1350 out:
1351 	return ret;
1352 
1353 out_free_pages:
1354 	spin_unlock(vmf->ptl);
1355 	mmu_notifier_invalidate_range_end(&range);
1356 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1357 		memcg = (void *)page_private(pages[i]);
1358 		set_page_private(pages[i], 0);
1359 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1360 		put_page(pages[i]);
1361 	}
1362 	kfree(pages);
1363 	goto out;
1364 }
1365 
1366 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1367 {
1368 	struct vm_area_struct *vma = vmf->vma;
1369 	struct page *page = NULL, *new_page;
1370 	struct mem_cgroup *memcg;
1371 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1372 	struct mmu_notifier_range range;
1373 	gfp_t huge_gfp;			/* for allocation and charge */
1374 	vm_fault_t ret = 0;
1375 
1376 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1377 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1378 	if (is_huge_zero_pmd(orig_pmd))
1379 		goto alloc;
1380 	spin_lock(vmf->ptl);
1381 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1382 		goto out_unlock;
1383 
1384 	page = pmd_page(orig_pmd);
1385 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1386 	/*
1387 	 * We can only reuse the page if nobody else maps the huge page or it's
1388 	 * part.
1389 	 */
1390 	if (!trylock_page(page)) {
1391 		get_page(page);
1392 		spin_unlock(vmf->ptl);
1393 		lock_page(page);
1394 		spin_lock(vmf->ptl);
1395 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1396 			unlock_page(page);
1397 			put_page(page);
1398 			goto out_unlock;
1399 		}
1400 		put_page(page);
1401 	}
1402 	if (reuse_swap_page(page, NULL)) {
1403 		pmd_t entry;
1404 		entry = pmd_mkyoung(orig_pmd);
1405 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1406 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1407 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1408 		ret |= VM_FAULT_WRITE;
1409 		unlock_page(page);
1410 		goto out_unlock;
1411 	}
1412 	unlock_page(page);
1413 	get_page(page);
1414 	spin_unlock(vmf->ptl);
1415 alloc:
1416 	if (__transparent_hugepage_enabled(vma) &&
1417 	    !transparent_hugepage_debug_cow()) {
1418 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1419 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1420 	} else
1421 		new_page = NULL;
1422 
1423 	if (likely(new_page)) {
1424 		prep_transhuge_page(new_page);
1425 	} else {
1426 		if (!page) {
1427 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1428 			ret |= VM_FAULT_FALLBACK;
1429 		} else {
1430 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1431 			if (ret & VM_FAULT_OOM) {
1432 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1433 				ret |= VM_FAULT_FALLBACK;
1434 			}
1435 			put_page(page);
1436 		}
1437 		count_vm_event(THP_FAULT_FALLBACK);
1438 		goto out;
1439 	}
1440 
1441 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1442 					huge_gfp, &memcg, true))) {
1443 		put_page(new_page);
1444 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1445 		if (page)
1446 			put_page(page);
1447 		ret |= VM_FAULT_FALLBACK;
1448 		count_vm_event(THP_FAULT_FALLBACK);
1449 		goto out;
1450 	}
1451 
1452 	count_vm_event(THP_FAULT_ALLOC);
1453 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1454 
1455 	if (!page)
1456 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1457 	else
1458 		copy_user_huge_page(new_page, page, vmf->address,
1459 				    vma, HPAGE_PMD_NR);
1460 	__SetPageUptodate(new_page);
1461 
1462 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1463 				haddr, haddr + HPAGE_PMD_SIZE);
1464 	mmu_notifier_invalidate_range_start(&range);
1465 
1466 	spin_lock(vmf->ptl);
1467 	if (page)
1468 		put_page(page);
1469 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1470 		spin_unlock(vmf->ptl);
1471 		mem_cgroup_cancel_charge(new_page, memcg, true);
1472 		put_page(new_page);
1473 		goto out_mn;
1474 	} else {
1475 		pmd_t entry;
1476 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1477 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1478 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1479 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1480 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1481 		lru_cache_add_active_or_unevictable(new_page, vma);
1482 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1483 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1484 		if (!page) {
1485 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1486 		} else {
1487 			VM_BUG_ON_PAGE(!PageHead(page), page);
1488 			page_remove_rmap(page, true);
1489 			put_page(page);
1490 		}
1491 		ret |= VM_FAULT_WRITE;
1492 	}
1493 	spin_unlock(vmf->ptl);
1494 out_mn:
1495 	/*
1496 	 * No need to double call mmu_notifier->invalidate_range() callback as
1497 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1498 	 */
1499 	mmu_notifier_invalidate_range_only_end(&range);
1500 out:
1501 	return ret;
1502 out_unlock:
1503 	spin_unlock(vmf->ptl);
1504 	return ret;
1505 }
1506 
1507 /*
1508  * FOLL_FORCE can write to even unwritable pmd's, but only
1509  * after we've gone through a COW cycle and they are dirty.
1510  */
1511 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1512 {
1513 	return pmd_write(pmd) ||
1514 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1515 }
1516 
1517 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1518 				   unsigned long addr,
1519 				   pmd_t *pmd,
1520 				   unsigned int flags)
1521 {
1522 	struct mm_struct *mm = vma->vm_mm;
1523 	struct page *page = NULL;
1524 
1525 	assert_spin_locked(pmd_lockptr(mm, pmd));
1526 
1527 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1528 		goto out;
1529 
1530 	/* Avoid dumping huge zero page */
1531 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1532 		return ERR_PTR(-EFAULT);
1533 
1534 	/* Full NUMA hinting faults to serialise migration in fault paths */
1535 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1536 		goto out;
1537 
1538 	page = pmd_page(*pmd);
1539 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1540 
1541 	if (!try_grab_page(page, flags))
1542 		return ERR_PTR(-ENOMEM);
1543 
1544 	if (flags & FOLL_TOUCH)
1545 		touch_pmd(vma, addr, pmd, flags);
1546 
1547 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1548 		/*
1549 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1550 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1551 		 *
1552 		 * For anon THP:
1553 		 *
1554 		 * In most cases the pmd is the only mapping of the page as we
1555 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1556 		 * writable private mappings in populate_vma_page_range().
1557 		 *
1558 		 * The only scenario when we have the page shared here is if we
1559 		 * mlocking read-only mapping shared over fork(). We skip
1560 		 * mlocking such pages.
1561 		 *
1562 		 * For file THP:
1563 		 *
1564 		 * We can expect PageDoubleMap() to be stable under page lock:
1565 		 * for file pages we set it in page_add_file_rmap(), which
1566 		 * requires page to be locked.
1567 		 */
1568 
1569 		if (PageAnon(page) && compound_mapcount(page) != 1)
1570 			goto skip_mlock;
1571 		if (PageDoubleMap(page) || !page->mapping)
1572 			goto skip_mlock;
1573 		if (!trylock_page(page))
1574 			goto skip_mlock;
1575 		lru_add_drain();
1576 		if (page->mapping && !PageDoubleMap(page))
1577 			mlock_vma_page(page);
1578 		unlock_page(page);
1579 	}
1580 skip_mlock:
1581 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1582 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1583 
1584 out:
1585 	return page;
1586 }
1587 
1588 /* NUMA hinting page fault entry point for trans huge pmds */
1589 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1590 {
1591 	struct vm_area_struct *vma = vmf->vma;
1592 	struct anon_vma *anon_vma = NULL;
1593 	struct page *page;
1594 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1595 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1596 	int target_nid, last_cpupid = -1;
1597 	bool page_locked;
1598 	bool migrated = false;
1599 	bool was_writable;
1600 	int flags = 0;
1601 
1602 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1603 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1604 		goto out_unlock;
1605 
1606 	/*
1607 	 * If there are potential migrations, wait for completion and retry
1608 	 * without disrupting NUMA hinting information. Do not relock and
1609 	 * check_same as the page may no longer be mapped.
1610 	 */
1611 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1612 		page = pmd_page(*vmf->pmd);
1613 		if (!get_page_unless_zero(page))
1614 			goto out_unlock;
1615 		spin_unlock(vmf->ptl);
1616 		put_and_wait_on_page_locked(page);
1617 		goto out;
1618 	}
1619 
1620 	page = pmd_page(pmd);
1621 	BUG_ON(is_huge_zero_page(page));
1622 	page_nid = page_to_nid(page);
1623 	last_cpupid = page_cpupid_last(page);
1624 	count_vm_numa_event(NUMA_HINT_FAULTS);
1625 	if (page_nid == this_nid) {
1626 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1627 		flags |= TNF_FAULT_LOCAL;
1628 	}
1629 
1630 	/* See similar comment in do_numa_page for explanation */
1631 	if (!pmd_savedwrite(pmd))
1632 		flags |= TNF_NO_GROUP;
1633 
1634 	/*
1635 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1636 	 * page_table_lock if at all possible
1637 	 */
1638 	page_locked = trylock_page(page);
1639 	target_nid = mpol_misplaced(page, vma, haddr);
1640 	if (target_nid == NUMA_NO_NODE) {
1641 		/* If the page was locked, there are no parallel migrations */
1642 		if (page_locked)
1643 			goto clear_pmdnuma;
1644 	}
1645 
1646 	/* Migration could have started since the pmd_trans_migrating check */
1647 	if (!page_locked) {
1648 		page_nid = NUMA_NO_NODE;
1649 		if (!get_page_unless_zero(page))
1650 			goto out_unlock;
1651 		spin_unlock(vmf->ptl);
1652 		put_and_wait_on_page_locked(page);
1653 		goto out;
1654 	}
1655 
1656 	/*
1657 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1658 	 * to serialises splits
1659 	 */
1660 	get_page(page);
1661 	spin_unlock(vmf->ptl);
1662 	anon_vma = page_lock_anon_vma_read(page);
1663 
1664 	/* Confirm the PMD did not change while page_table_lock was released */
1665 	spin_lock(vmf->ptl);
1666 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1667 		unlock_page(page);
1668 		put_page(page);
1669 		page_nid = NUMA_NO_NODE;
1670 		goto out_unlock;
1671 	}
1672 
1673 	/* Bail if we fail to protect against THP splits for any reason */
1674 	if (unlikely(!anon_vma)) {
1675 		put_page(page);
1676 		page_nid = NUMA_NO_NODE;
1677 		goto clear_pmdnuma;
1678 	}
1679 
1680 	/*
1681 	 * Since we took the NUMA fault, we must have observed the !accessible
1682 	 * bit. Make sure all other CPUs agree with that, to avoid them
1683 	 * modifying the page we're about to migrate.
1684 	 *
1685 	 * Must be done under PTL such that we'll observe the relevant
1686 	 * inc_tlb_flush_pending().
1687 	 *
1688 	 * We are not sure a pending tlb flush here is for a huge page
1689 	 * mapping or not. Hence use the tlb range variant
1690 	 */
1691 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1692 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1693 		/*
1694 		 * change_huge_pmd() released the pmd lock before
1695 		 * invalidating the secondary MMUs sharing the primary
1696 		 * MMU pagetables (with ->invalidate_range()). The
1697 		 * mmu_notifier_invalidate_range_end() (which
1698 		 * internally calls ->invalidate_range()) in
1699 		 * change_pmd_range() will run after us, so we can't
1700 		 * rely on it here and we need an explicit invalidate.
1701 		 */
1702 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1703 					      haddr + HPAGE_PMD_SIZE);
1704 	}
1705 
1706 	/*
1707 	 * Migrate the THP to the requested node, returns with page unlocked
1708 	 * and access rights restored.
1709 	 */
1710 	spin_unlock(vmf->ptl);
1711 
1712 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1713 				vmf->pmd, pmd, vmf->address, page, target_nid);
1714 	if (migrated) {
1715 		flags |= TNF_MIGRATED;
1716 		page_nid = target_nid;
1717 	} else
1718 		flags |= TNF_MIGRATE_FAIL;
1719 
1720 	goto out;
1721 clear_pmdnuma:
1722 	BUG_ON(!PageLocked(page));
1723 	was_writable = pmd_savedwrite(pmd);
1724 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1725 	pmd = pmd_mkyoung(pmd);
1726 	if (was_writable)
1727 		pmd = pmd_mkwrite(pmd);
1728 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1729 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1730 	unlock_page(page);
1731 out_unlock:
1732 	spin_unlock(vmf->ptl);
1733 
1734 out:
1735 	if (anon_vma)
1736 		page_unlock_anon_vma_read(anon_vma);
1737 
1738 	if (page_nid != NUMA_NO_NODE)
1739 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1740 				flags);
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Return true if we do MADV_FREE successfully on entire pmd page.
1747  * Otherwise, return false.
1748  */
1749 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1750 		pmd_t *pmd, unsigned long addr, unsigned long next)
1751 {
1752 	spinlock_t *ptl;
1753 	pmd_t orig_pmd;
1754 	struct page *page;
1755 	struct mm_struct *mm = tlb->mm;
1756 	bool ret = false;
1757 
1758 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1759 
1760 	ptl = pmd_trans_huge_lock(pmd, vma);
1761 	if (!ptl)
1762 		goto out_unlocked;
1763 
1764 	orig_pmd = *pmd;
1765 	if (is_huge_zero_pmd(orig_pmd))
1766 		goto out;
1767 
1768 	if (unlikely(!pmd_present(orig_pmd))) {
1769 		VM_BUG_ON(thp_migration_supported() &&
1770 				  !is_pmd_migration_entry(orig_pmd));
1771 		goto out;
1772 	}
1773 
1774 	page = pmd_page(orig_pmd);
1775 	/*
1776 	 * If other processes are mapping this page, we couldn't discard
1777 	 * the page unless they all do MADV_FREE so let's skip the page.
1778 	 */
1779 	if (page_mapcount(page) != 1)
1780 		goto out;
1781 
1782 	if (!trylock_page(page))
1783 		goto out;
1784 
1785 	/*
1786 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1787 	 * will deactivate only them.
1788 	 */
1789 	if (next - addr != HPAGE_PMD_SIZE) {
1790 		get_page(page);
1791 		spin_unlock(ptl);
1792 		split_huge_page(page);
1793 		unlock_page(page);
1794 		put_page(page);
1795 		goto out_unlocked;
1796 	}
1797 
1798 	if (PageDirty(page))
1799 		ClearPageDirty(page);
1800 	unlock_page(page);
1801 
1802 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1803 		pmdp_invalidate(vma, addr, pmd);
1804 		orig_pmd = pmd_mkold(orig_pmd);
1805 		orig_pmd = pmd_mkclean(orig_pmd);
1806 
1807 		set_pmd_at(mm, addr, pmd, orig_pmd);
1808 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1809 	}
1810 
1811 	mark_page_lazyfree(page);
1812 	ret = true;
1813 out:
1814 	spin_unlock(ptl);
1815 out_unlocked:
1816 	return ret;
1817 }
1818 
1819 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1820 {
1821 	pgtable_t pgtable;
1822 
1823 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1824 	pte_free(mm, pgtable);
1825 	mm_dec_nr_ptes(mm);
1826 }
1827 
1828 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1829 		 pmd_t *pmd, unsigned long addr)
1830 {
1831 	pmd_t orig_pmd;
1832 	spinlock_t *ptl;
1833 
1834 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1835 
1836 	ptl = __pmd_trans_huge_lock(pmd, vma);
1837 	if (!ptl)
1838 		return 0;
1839 	/*
1840 	 * For architectures like ppc64 we look at deposited pgtable
1841 	 * when calling pmdp_huge_get_and_clear. So do the
1842 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1843 	 * operations.
1844 	 */
1845 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1846 			tlb->fullmm);
1847 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1848 	if (vma_is_special_huge(vma)) {
1849 		if (arch_needs_pgtable_deposit())
1850 			zap_deposited_table(tlb->mm, pmd);
1851 		spin_unlock(ptl);
1852 		if (is_huge_zero_pmd(orig_pmd))
1853 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1854 	} else if (is_huge_zero_pmd(orig_pmd)) {
1855 		zap_deposited_table(tlb->mm, pmd);
1856 		spin_unlock(ptl);
1857 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1858 	} else {
1859 		struct page *page = NULL;
1860 		int flush_needed = 1;
1861 
1862 		if (pmd_present(orig_pmd)) {
1863 			page = pmd_page(orig_pmd);
1864 			page_remove_rmap(page, true);
1865 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1866 			VM_BUG_ON_PAGE(!PageHead(page), page);
1867 		} else if (thp_migration_supported()) {
1868 			swp_entry_t entry;
1869 
1870 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1871 			entry = pmd_to_swp_entry(orig_pmd);
1872 			page = pfn_to_page(swp_offset(entry));
1873 			flush_needed = 0;
1874 		} else
1875 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1876 
1877 		if (PageAnon(page)) {
1878 			zap_deposited_table(tlb->mm, pmd);
1879 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1880 		} else {
1881 			if (arch_needs_pgtable_deposit())
1882 				zap_deposited_table(tlb->mm, pmd);
1883 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1884 		}
1885 
1886 		spin_unlock(ptl);
1887 		if (flush_needed)
1888 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1889 	}
1890 	return 1;
1891 }
1892 
1893 #ifndef pmd_move_must_withdraw
1894 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1895 					 spinlock_t *old_pmd_ptl,
1896 					 struct vm_area_struct *vma)
1897 {
1898 	/*
1899 	 * With split pmd lock we also need to move preallocated
1900 	 * PTE page table if new_pmd is on different PMD page table.
1901 	 *
1902 	 * We also don't deposit and withdraw tables for file pages.
1903 	 */
1904 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1905 }
1906 #endif
1907 
1908 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1909 {
1910 #ifdef CONFIG_MEM_SOFT_DIRTY
1911 	if (unlikely(is_pmd_migration_entry(pmd)))
1912 		pmd = pmd_swp_mksoft_dirty(pmd);
1913 	else if (pmd_present(pmd))
1914 		pmd = pmd_mksoft_dirty(pmd);
1915 #endif
1916 	return pmd;
1917 }
1918 
1919 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1920 		  unsigned long new_addr, unsigned long old_end,
1921 		  pmd_t *old_pmd, pmd_t *new_pmd)
1922 {
1923 	spinlock_t *old_ptl, *new_ptl;
1924 	pmd_t pmd;
1925 	struct mm_struct *mm = vma->vm_mm;
1926 	bool force_flush = false;
1927 
1928 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1929 	    (new_addr & ~HPAGE_PMD_MASK) ||
1930 	    old_end - old_addr < HPAGE_PMD_SIZE)
1931 		return false;
1932 
1933 	/*
1934 	 * The destination pmd shouldn't be established, free_pgtables()
1935 	 * should have release it.
1936 	 */
1937 	if (WARN_ON(!pmd_none(*new_pmd))) {
1938 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1939 		return false;
1940 	}
1941 
1942 	/*
1943 	 * We don't have to worry about the ordering of src and dst
1944 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1945 	 */
1946 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1947 	if (old_ptl) {
1948 		new_ptl = pmd_lockptr(mm, new_pmd);
1949 		if (new_ptl != old_ptl)
1950 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1951 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1952 		if (pmd_present(pmd))
1953 			force_flush = true;
1954 		VM_BUG_ON(!pmd_none(*new_pmd));
1955 
1956 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1957 			pgtable_t pgtable;
1958 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1959 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1960 		}
1961 		pmd = move_soft_dirty_pmd(pmd);
1962 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1963 		if (force_flush)
1964 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1965 		if (new_ptl != old_ptl)
1966 			spin_unlock(new_ptl);
1967 		spin_unlock(old_ptl);
1968 		return true;
1969 	}
1970 	return false;
1971 }
1972 
1973 /*
1974  * Returns
1975  *  - 0 if PMD could not be locked
1976  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1977  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1978  */
1979 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1980 		unsigned long addr, pgprot_t newprot, int prot_numa)
1981 {
1982 	struct mm_struct *mm = vma->vm_mm;
1983 	spinlock_t *ptl;
1984 	pmd_t entry;
1985 	bool preserve_write;
1986 	int ret;
1987 
1988 	ptl = __pmd_trans_huge_lock(pmd, vma);
1989 	if (!ptl)
1990 		return 0;
1991 
1992 	preserve_write = prot_numa && pmd_write(*pmd);
1993 	ret = 1;
1994 
1995 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1996 	if (is_swap_pmd(*pmd)) {
1997 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1998 
1999 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2000 		if (is_write_migration_entry(entry)) {
2001 			pmd_t newpmd;
2002 			/*
2003 			 * A protection check is difficult so
2004 			 * just be safe and disable write
2005 			 */
2006 			make_migration_entry_read(&entry);
2007 			newpmd = swp_entry_to_pmd(entry);
2008 			if (pmd_swp_soft_dirty(*pmd))
2009 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2010 			set_pmd_at(mm, addr, pmd, newpmd);
2011 		}
2012 		goto unlock;
2013 	}
2014 #endif
2015 
2016 	/*
2017 	 * Avoid trapping faults against the zero page. The read-only
2018 	 * data is likely to be read-cached on the local CPU and
2019 	 * local/remote hits to the zero page are not interesting.
2020 	 */
2021 	if (prot_numa && is_huge_zero_pmd(*pmd))
2022 		goto unlock;
2023 
2024 	if (prot_numa && pmd_protnone(*pmd))
2025 		goto unlock;
2026 
2027 	/*
2028 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2029 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2030 	 * which is also under down_read(mmap_sem):
2031 	 *
2032 	 *	CPU0:				CPU1:
2033 	 *				change_huge_pmd(prot_numa=1)
2034 	 *				 pmdp_huge_get_and_clear_notify()
2035 	 * madvise_dontneed()
2036 	 *  zap_pmd_range()
2037 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2038 	 *   // skip the pmd
2039 	 *				 set_pmd_at();
2040 	 *				 // pmd is re-established
2041 	 *
2042 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2043 	 * which may break userspace.
2044 	 *
2045 	 * pmdp_invalidate() is required to make sure we don't miss
2046 	 * dirty/young flags set by hardware.
2047 	 */
2048 	entry = pmdp_invalidate(vma, addr, pmd);
2049 
2050 	entry = pmd_modify(entry, newprot);
2051 	if (preserve_write)
2052 		entry = pmd_mk_savedwrite(entry);
2053 	ret = HPAGE_PMD_NR;
2054 	set_pmd_at(mm, addr, pmd, entry);
2055 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2056 unlock:
2057 	spin_unlock(ptl);
2058 	return ret;
2059 }
2060 
2061 /*
2062  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2063  *
2064  * Note that if it returns page table lock pointer, this routine returns without
2065  * unlocking page table lock. So callers must unlock it.
2066  */
2067 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2068 {
2069 	spinlock_t *ptl;
2070 	ptl = pmd_lock(vma->vm_mm, pmd);
2071 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2072 			pmd_devmap(*pmd)))
2073 		return ptl;
2074 	spin_unlock(ptl);
2075 	return NULL;
2076 }
2077 
2078 /*
2079  * Returns true if a given pud maps a thp, false otherwise.
2080  *
2081  * Note that if it returns true, this routine returns without unlocking page
2082  * table lock. So callers must unlock it.
2083  */
2084 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2085 {
2086 	spinlock_t *ptl;
2087 
2088 	ptl = pud_lock(vma->vm_mm, pud);
2089 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2090 		return ptl;
2091 	spin_unlock(ptl);
2092 	return NULL;
2093 }
2094 
2095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2096 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2097 		 pud_t *pud, unsigned long addr)
2098 {
2099 	spinlock_t *ptl;
2100 
2101 	ptl = __pud_trans_huge_lock(pud, vma);
2102 	if (!ptl)
2103 		return 0;
2104 	/*
2105 	 * For architectures like ppc64 we look at deposited pgtable
2106 	 * when calling pudp_huge_get_and_clear. So do the
2107 	 * pgtable_trans_huge_withdraw after finishing pudp related
2108 	 * operations.
2109 	 */
2110 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2111 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2112 	if (vma_is_special_huge(vma)) {
2113 		spin_unlock(ptl);
2114 		/* No zero page support yet */
2115 	} else {
2116 		/* No support for anonymous PUD pages yet */
2117 		BUG();
2118 	}
2119 	return 1;
2120 }
2121 
2122 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2123 		unsigned long haddr)
2124 {
2125 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2126 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2127 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2128 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2129 
2130 	count_vm_event(THP_SPLIT_PUD);
2131 
2132 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2133 }
2134 
2135 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2136 		unsigned long address)
2137 {
2138 	spinlock_t *ptl;
2139 	struct mmu_notifier_range range;
2140 
2141 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2142 				address & HPAGE_PUD_MASK,
2143 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2144 	mmu_notifier_invalidate_range_start(&range);
2145 	ptl = pud_lock(vma->vm_mm, pud);
2146 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2147 		goto out;
2148 	__split_huge_pud_locked(vma, pud, range.start);
2149 
2150 out:
2151 	spin_unlock(ptl);
2152 	/*
2153 	 * No need to double call mmu_notifier->invalidate_range() callback as
2154 	 * the above pudp_huge_clear_flush_notify() did already call it.
2155 	 */
2156 	mmu_notifier_invalidate_range_only_end(&range);
2157 }
2158 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2159 
2160 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2161 		unsigned long haddr, pmd_t *pmd)
2162 {
2163 	struct mm_struct *mm = vma->vm_mm;
2164 	pgtable_t pgtable;
2165 	pmd_t _pmd;
2166 	int i;
2167 
2168 	/*
2169 	 * Leave pmd empty until pte is filled note that it is fine to delay
2170 	 * notification until mmu_notifier_invalidate_range_end() as we are
2171 	 * replacing a zero pmd write protected page with a zero pte write
2172 	 * protected page.
2173 	 *
2174 	 * See Documentation/vm/mmu_notifier.rst
2175 	 */
2176 	pmdp_huge_clear_flush(vma, haddr, pmd);
2177 
2178 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2179 	pmd_populate(mm, &_pmd, pgtable);
2180 
2181 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2182 		pte_t *pte, entry;
2183 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2184 		entry = pte_mkspecial(entry);
2185 		pte = pte_offset_map(&_pmd, haddr);
2186 		VM_BUG_ON(!pte_none(*pte));
2187 		set_pte_at(mm, haddr, pte, entry);
2188 		pte_unmap(pte);
2189 	}
2190 	smp_wmb(); /* make pte visible before pmd */
2191 	pmd_populate(mm, pmd, pgtable);
2192 }
2193 
2194 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2195 		unsigned long haddr, bool freeze)
2196 {
2197 	struct mm_struct *mm = vma->vm_mm;
2198 	struct page *page;
2199 	pgtable_t pgtable;
2200 	pmd_t old_pmd, _pmd;
2201 	bool young, write, soft_dirty, pmd_migration = false;
2202 	unsigned long addr;
2203 	int i;
2204 
2205 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2206 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2207 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2208 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2209 				&& !pmd_devmap(*pmd));
2210 
2211 	count_vm_event(THP_SPLIT_PMD);
2212 
2213 	if (!vma_is_anonymous(vma)) {
2214 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2215 		/*
2216 		 * We are going to unmap this huge page. So
2217 		 * just go ahead and zap it
2218 		 */
2219 		if (arch_needs_pgtable_deposit())
2220 			zap_deposited_table(mm, pmd);
2221 		if (vma_is_special_huge(vma))
2222 			return;
2223 		page = pmd_page(_pmd);
2224 		if (!PageDirty(page) && pmd_dirty(_pmd))
2225 			set_page_dirty(page);
2226 		if (!PageReferenced(page) && pmd_young(_pmd))
2227 			SetPageReferenced(page);
2228 		page_remove_rmap(page, true);
2229 		put_page(page);
2230 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2231 		return;
2232 	} else if (is_huge_zero_pmd(*pmd)) {
2233 		/*
2234 		 * FIXME: Do we want to invalidate secondary mmu by calling
2235 		 * mmu_notifier_invalidate_range() see comments below inside
2236 		 * __split_huge_pmd() ?
2237 		 *
2238 		 * We are going from a zero huge page write protected to zero
2239 		 * small page also write protected so it does not seems useful
2240 		 * to invalidate secondary mmu at this time.
2241 		 */
2242 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2243 	}
2244 
2245 	/*
2246 	 * Up to this point the pmd is present and huge and userland has the
2247 	 * whole access to the hugepage during the split (which happens in
2248 	 * place). If we overwrite the pmd with the not-huge version pointing
2249 	 * to the pte here (which of course we could if all CPUs were bug
2250 	 * free), userland could trigger a small page size TLB miss on the
2251 	 * small sized TLB while the hugepage TLB entry is still established in
2252 	 * the huge TLB. Some CPU doesn't like that.
2253 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2254 	 * 383 on page 93. Intel should be safe but is also warns that it's
2255 	 * only safe if the permission and cache attributes of the two entries
2256 	 * loaded in the two TLB is identical (which should be the case here).
2257 	 * But it is generally safer to never allow small and huge TLB entries
2258 	 * for the same virtual address to be loaded simultaneously. So instead
2259 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2260 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2261 	 * must remain set at all times on the pmd until the split is complete
2262 	 * for this pmd), then we flush the SMP TLB and finally we write the
2263 	 * non-huge version of the pmd entry with pmd_populate.
2264 	 */
2265 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2266 
2267 	pmd_migration = is_pmd_migration_entry(old_pmd);
2268 	if (unlikely(pmd_migration)) {
2269 		swp_entry_t entry;
2270 
2271 		entry = pmd_to_swp_entry(old_pmd);
2272 		page = pfn_to_page(swp_offset(entry));
2273 		write = is_write_migration_entry(entry);
2274 		young = false;
2275 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2276 	} else {
2277 		page = pmd_page(old_pmd);
2278 		if (pmd_dirty(old_pmd))
2279 			SetPageDirty(page);
2280 		write = pmd_write(old_pmd);
2281 		young = pmd_young(old_pmd);
2282 		soft_dirty = pmd_soft_dirty(old_pmd);
2283 	}
2284 	VM_BUG_ON_PAGE(!page_count(page), page);
2285 	page_ref_add(page, HPAGE_PMD_NR - 1);
2286 
2287 	/*
2288 	 * Withdraw the table only after we mark the pmd entry invalid.
2289 	 * This's critical for some architectures (Power).
2290 	 */
2291 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2292 	pmd_populate(mm, &_pmd, pgtable);
2293 
2294 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2295 		pte_t entry, *pte;
2296 		/*
2297 		 * Note that NUMA hinting access restrictions are not
2298 		 * transferred to avoid any possibility of altering
2299 		 * permissions across VMAs.
2300 		 */
2301 		if (freeze || pmd_migration) {
2302 			swp_entry_t swp_entry;
2303 			swp_entry = make_migration_entry(page + i, write);
2304 			entry = swp_entry_to_pte(swp_entry);
2305 			if (soft_dirty)
2306 				entry = pte_swp_mksoft_dirty(entry);
2307 		} else {
2308 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2309 			entry = maybe_mkwrite(entry, vma);
2310 			if (!write)
2311 				entry = pte_wrprotect(entry);
2312 			if (!young)
2313 				entry = pte_mkold(entry);
2314 			if (soft_dirty)
2315 				entry = pte_mksoft_dirty(entry);
2316 		}
2317 		pte = pte_offset_map(&_pmd, addr);
2318 		BUG_ON(!pte_none(*pte));
2319 		set_pte_at(mm, addr, pte, entry);
2320 		atomic_inc(&page[i]._mapcount);
2321 		pte_unmap(pte);
2322 	}
2323 
2324 	/*
2325 	 * Set PG_double_map before dropping compound_mapcount to avoid
2326 	 * false-negative page_mapped().
2327 	 */
2328 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2329 		for (i = 0; i < HPAGE_PMD_NR; i++)
2330 			atomic_inc(&page[i]._mapcount);
2331 	}
2332 
2333 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2334 		/* Last compound_mapcount is gone. */
2335 		__dec_node_page_state(page, NR_ANON_THPS);
2336 		if (TestClearPageDoubleMap(page)) {
2337 			/* No need in mapcount reference anymore */
2338 			for (i = 0; i < HPAGE_PMD_NR; i++)
2339 				atomic_dec(&page[i]._mapcount);
2340 		}
2341 	}
2342 
2343 	smp_wmb(); /* make pte visible before pmd */
2344 	pmd_populate(mm, pmd, pgtable);
2345 
2346 	if (freeze) {
2347 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2348 			page_remove_rmap(page + i, false);
2349 			put_page(page + i);
2350 		}
2351 	}
2352 }
2353 
2354 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2355 		unsigned long address, bool freeze, struct page *page)
2356 {
2357 	spinlock_t *ptl;
2358 	struct mmu_notifier_range range;
2359 
2360 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2361 				address & HPAGE_PMD_MASK,
2362 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2363 	mmu_notifier_invalidate_range_start(&range);
2364 	ptl = pmd_lock(vma->vm_mm, pmd);
2365 
2366 	/*
2367 	 * If caller asks to setup a migration entries, we need a page to check
2368 	 * pmd against. Otherwise we can end up replacing wrong page.
2369 	 */
2370 	VM_BUG_ON(freeze && !page);
2371 	if (page && page != pmd_page(*pmd))
2372 	        goto out;
2373 
2374 	if (pmd_trans_huge(*pmd)) {
2375 		page = pmd_page(*pmd);
2376 		if (PageMlocked(page))
2377 			clear_page_mlock(page);
2378 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2379 		goto out;
2380 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2381 out:
2382 	spin_unlock(ptl);
2383 	/*
2384 	 * No need to double call mmu_notifier->invalidate_range() callback.
2385 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2386 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2387 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2388 	 *    fault will trigger a flush_notify before pointing to a new page
2389 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2390 	 *    page in the meantime)
2391 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2392 	 *     to invalidate secondary tlb entry they are all still valid.
2393 	 *     any further changes to individual pte will notify. So no need
2394 	 *     to call mmu_notifier->invalidate_range()
2395 	 */
2396 	mmu_notifier_invalidate_range_only_end(&range);
2397 }
2398 
2399 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2400 		bool freeze, struct page *page)
2401 {
2402 	pgd_t *pgd;
2403 	p4d_t *p4d;
2404 	pud_t *pud;
2405 	pmd_t *pmd;
2406 
2407 	pgd = pgd_offset(vma->vm_mm, address);
2408 	if (!pgd_present(*pgd))
2409 		return;
2410 
2411 	p4d = p4d_offset(pgd, address);
2412 	if (!p4d_present(*p4d))
2413 		return;
2414 
2415 	pud = pud_offset(p4d, address);
2416 	if (!pud_present(*pud))
2417 		return;
2418 
2419 	pmd = pmd_offset(pud, address);
2420 
2421 	__split_huge_pmd(vma, pmd, address, freeze, page);
2422 }
2423 
2424 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2425 			     unsigned long start,
2426 			     unsigned long end,
2427 			     long adjust_next)
2428 {
2429 	/*
2430 	 * If the new start address isn't hpage aligned and it could
2431 	 * previously contain an hugepage: check if we need to split
2432 	 * an huge pmd.
2433 	 */
2434 	if (start & ~HPAGE_PMD_MASK &&
2435 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2436 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2437 		split_huge_pmd_address(vma, start, false, NULL);
2438 
2439 	/*
2440 	 * If the new end address isn't hpage aligned and it could
2441 	 * previously contain an hugepage: check if we need to split
2442 	 * an huge pmd.
2443 	 */
2444 	if (end & ~HPAGE_PMD_MASK &&
2445 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2446 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2447 		split_huge_pmd_address(vma, end, false, NULL);
2448 
2449 	/*
2450 	 * If we're also updating the vma->vm_next->vm_start, if the new
2451 	 * vm_next->vm_start isn't page aligned and it could previously
2452 	 * contain an hugepage: check if we need to split an huge pmd.
2453 	 */
2454 	if (adjust_next > 0) {
2455 		struct vm_area_struct *next = vma->vm_next;
2456 		unsigned long nstart = next->vm_start;
2457 		nstart += adjust_next << PAGE_SHIFT;
2458 		if (nstart & ~HPAGE_PMD_MASK &&
2459 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2460 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2461 			split_huge_pmd_address(next, nstart, false, NULL);
2462 	}
2463 }
2464 
2465 static void unmap_page(struct page *page)
2466 {
2467 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2468 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2469 	bool unmap_success;
2470 
2471 	VM_BUG_ON_PAGE(!PageHead(page), page);
2472 
2473 	if (PageAnon(page))
2474 		ttu_flags |= TTU_SPLIT_FREEZE;
2475 
2476 	unmap_success = try_to_unmap(page, ttu_flags);
2477 	VM_BUG_ON_PAGE(!unmap_success, page);
2478 }
2479 
2480 static void remap_page(struct page *page)
2481 {
2482 	int i;
2483 	if (PageTransHuge(page)) {
2484 		remove_migration_ptes(page, page, true);
2485 	} else {
2486 		for (i = 0; i < HPAGE_PMD_NR; i++)
2487 			remove_migration_ptes(page + i, page + i, true);
2488 	}
2489 }
2490 
2491 static void __split_huge_page_tail(struct page *head, int tail,
2492 		struct lruvec *lruvec, struct list_head *list)
2493 {
2494 	struct page *page_tail = head + tail;
2495 
2496 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2497 
2498 	/*
2499 	 * Clone page flags before unfreezing refcount.
2500 	 *
2501 	 * After successful get_page_unless_zero() might follow flags change,
2502 	 * for exmaple lock_page() which set PG_waiters.
2503 	 */
2504 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2505 	page_tail->flags |= (head->flags &
2506 			((1L << PG_referenced) |
2507 			 (1L << PG_swapbacked) |
2508 			 (1L << PG_swapcache) |
2509 			 (1L << PG_mlocked) |
2510 			 (1L << PG_uptodate) |
2511 			 (1L << PG_active) |
2512 			 (1L << PG_workingset) |
2513 			 (1L << PG_locked) |
2514 			 (1L << PG_unevictable) |
2515 			 (1L << PG_dirty)));
2516 
2517 	/* ->mapping in first tail page is compound_mapcount */
2518 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2519 			page_tail);
2520 	page_tail->mapping = head->mapping;
2521 	page_tail->index = head->index + tail;
2522 
2523 	/* Page flags must be visible before we make the page non-compound. */
2524 	smp_wmb();
2525 
2526 	/*
2527 	 * Clear PageTail before unfreezing page refcount.
2528 	 *
2529 	 * After successful get_page_unless_zero() might follow put_page()
2530 	 * which needs correct compound_head().
2531 	 */
2532 	clear_compound_head(page_tail);
2533 
2534 	/* Finally unfreeze refcount. Additional reference from page cache. */
2535 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2536 					  PageSwapCache(head)));
2537 
2538 	if (page_is_young(head))
2539 		set_page_young(page_tail);
2540 	if (page_is_idle(head))
2541 		set_page_idle(page_tail);
2542 
2543 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2544 
2545 	/*
2546 	 * always add to the tail because some iterators expect new
2547 	 * pages to show after the currently processed elements - e.g.
2548 	 * migrate_pages
2549 	 */
2550 	lru_add_page_tail(head, page_tail, lruvec, list);
2551 }
2552 
2553 static void __split_huge_page(struct page *page, struct list_head *list,
2554 		pgoff_t end, unsigned long flags)
2555 {
2556 	struct page *head = compound_head(page);
2557 	pg_data_t *pgdat = page_pgdat(head);
2558 	struct lruvec *lruvec;
2559 	struct address_space *swap_cache = NULL;
2560 	unsigned long offset = 0;
2561 	int i;
2562 
2563 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2564 
2565 	/* complete memcg works before add pages to LRU */
2566 	mem_cgroup_split_huge_fixup(head);
2567 
2568 	if (PageAnon(head) && PageSwapCache(head)) {
2569 		swp_entry_t entry = { .val = page_private(head) };
2570 
2571 		offset = swp_offset(entry);
2572 		swap_cache = swap_address_space(entry);
2573 		xa_lock(&swap_cache->i_pages);
2574 	}
2575 
2576 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2577 		__split_huge_page_tail(head, i, lruvec, list);
2578 		/* Some pages can be beyond i_size: drop them from page cache */
2579 		if (head[i].index >= end) {
2580 			ClearPageDirty(head + i);
2581 			__delete_from_page_cache(head + i, NULL);
2582 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2583 				shmem_uncharge(head->mapping->host, 1);
2584 			put_page(head + i);
2585 		} else if (!PageAnon(page)) {
2586 			__xa_store(&head->mapping->i_pages, head[i].index,
2587 					head + i, 0);
2588 		} else if (swap_cache) {
2589 			__xa_store(&swap_cache->i_pages, offset + i,
2590 					head + i, 0);
2591 		}
2592 	}
2593 
2594 	ClearPageCompound(head);
2595 
2596 	split_page_owner(head, HPAGE_PMD_ORDER);
2597 
2598 	/* See comment in __split_huge_page_tail() */
2599 	if (PageAnon(head)) {
2600 		/* Additional pin to swap cache */
2601 		if (PageSwapCache(head)) {
2602 			page_ref_add(head, 2);
2603 			xa_unlock(&swap_cache->i_pages);
2604 		} else {
2605 			page_ref_inc(head);
2606 		}
2607 	} else {
2608 		/* Additional pin to page cache */
2609 		page_ref_add(head, 2);
2610 		xa_unlock(&head->mapping->i_pages);
2611 	}
2612 
2613 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2614 
2615 	remap_page(head);
2616 
2617 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2618 		struct page *subpage = head + i;
2619 		if (subpage == page)
2620 			continue;
2621 		unlock_page(subpage);
2622 
2623 		/*
2624 		 * Subpages may be freed if there wasn't any mapping
2625 		 * like if add_to_swap() is running on a lru page that
2626 		 * had its mapping zapped. And freeing these pages
2627 		 * requires taking the lru_lock so we do the put_page
2628 		 * of the tail pages after the split is complete.
2629 		 */
2630 		put_page(subpage);
2631 	}
2632 }
2633 
2634 int total_mapcount(struct page *page)
2635 {
2636 	int i, compound, ret;
2637 
2638 	VM_BUG_ON_PAGE(PageTail(page), page);
2639 
2640 	if (likely(!PageCompound(page)))
2641 		return atomic_read(&page->_mapcount) + 1;
2642 
2643 	compound = compound_mapcount(page);
2644 	if (PageHuge(page))
2645 		return compound;
2646 	ret = compound;
2647 	for (i = 0; i < HPAGE_PMD_NR; i++)
2648 		ret += atomic_read(&page[i]._mapcount) + 1;
2649 	/* File pages has compound_mapcount included in _mapcount */
2650 	if (!PageAnon(page))
2651 		return ret - compound * HPAGE_PMD_NR;
2652 	if (PageDoubleMap(page))
2653 		ret -= HPAGE_PMD_NR;
2654 	return ret;
2655 }
2656 
2657 /*
2658  * This calculates accurately how many mappings a transparent hugepage
2659  * has (unlike page_mapcount() which isn't fully accurate). This full
2660  * accuracy is primarily needed to know if copy-on-write faults can
2661  * reuse the page and change the mapping to read-write instead of
2662  * copying them. At the same time this returns the total_mapcount too.
2663  *
2664  * The function returns the highest mapcount any one of the subpages
2665  * has. If the return value is one, even if different processes are
2666  * mapping different subpages of the transparent hugepage, they can
2667  * all reuse it, because each process is reusing a different subpage.
2668  *
2669  * The total_mapcount is instead counting all virtual mappings of the
2670  * subpages. If the total_mapcount is equal to "one", it tells the
2671  * caller all mappings belong to the same "mm" and in turn the
2672  * anon_vma of the transparent hugepage can become the vma->anon_vma
2673  * local one as no other process may be mapping any of the subpages.
2674  *
2675  * It would be more accurate to replace page_mapcount() with
2676  * page_trans_huge_mapcount(), however we only use
2677  * page_trans_huge_mapcount() in the copy-on-write faults where we
2678  * need full accuracy to avoid breaking page pinning, because
2679  * page_trans_huge_mapcount() is slower than page_mapcount().
2680  */
2681 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2682 {
2683 	int i, ret, _total_mapcount, mapcount;
2684 
2685 	/* hugetlbfs shouldn't call it */
2686 	VM_BUG_ON_PAGE(PageHuge(page), page);
2687 
2688 	if (likely(!PageTransCompound(page))) {
2689 		mapcount = atomic_read(&page->_mapcount) + 1;
2690 		if (total_mapcount)
2691 			*total_mapcount = mapcount;
2692 		return mapcount;
2693 	}
2694 
2695 	page = compound_head(page);
2696 
2697 	_total_mapcount = ret = 0;
2698 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2699 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2700 		ret = max(ret, mapcount);
2701 		_total_mapcount += mapcount;
2702 	}
2703 	if (PageDoubleMap(page)) {
2704 		ret -= 1;
2705 		_total_mapcount -= HPAGE_PMD_NR;
2706 	}
2707 	mapcount = compound_mapcount(page);
2708 	ret += mapcount;
2709 	_total_mapcount += mapcount;
2710 	if (total_mapcount)
2711 		*total_mapcount = _total_mapcount;
2712 	return ret;
2713 }
2714 
2715 /* Racy check whether the huge page can be split */
2716 bool can_split_huge_page(struct page *page, int *pextra_pins)
2717 {
2718 	int extra_pins;
2719 
2720 	/* Additional pins from page cache */
2721 	if (PageAnon(page))
2722 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2723 	else
2724 		extra_pins = HPAGE_PMD_NR;
2725 	if (pextra_pins)
2726 		*pextra_pins = extra_pins;
2727 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2728 }
2729 
2730 /*
2731  * This function splits huge page into normal pages. @page can point to any
2732  * subpage of huge page to split. Split doesn't change the position of @page.
2733  *
2734  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2735  * The huge page must be locked.
2736  *
2737  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2738  *
2739  * Both head page and tail pages will inherit mapping, flags, and so on from
2740  * the hugepage.
2741  *
2742  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2743  * they are not mapped.
2744  *
2745  * Returns 0 if the hugepage is split successfully.
2746  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2747  * us.
2748  */
2749 int split_huge_page_to_list(struct page *page, struct list_head *list)
2750 {
2751 	struct page *head = compound_head(page);
2752 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2753 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2754 	struct anon_vma *anon_vma = NULL;
2755 	struct address_space *mapping = NULL;
2756 	int count, mapcount, extra_pins, ret;
2757 	bool mlocked;
2758 	unsigned long flags;
2759 	pgoff_t end;
2760 
2761 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2762 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2763 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2764 
2765 	if (PageWriteback(head))
2766 		return -EBUSY;
2767 
2768 	if (PageAnon(head)) {
2769 		/*
2770 		 * The caller does not necessarily hold an mmap_sem that would
2771 		 * prevent the anon_vma disappearing so we first we take a
2772 		 * reference to it and then lock the anon_vma for write. This
2773 		 * is similar to page_lock_anon_vma_read except the write lock
2774 		 * is taken to serialise against parallel split or collapse
2775 		 * operations.
2776 		 */
2777 		anon_vma = page_get_anon_vma(head);
2778 		if (!anon_vma) {
2779 			ret = -EBUSY;
2780 			goto out;
2781 		}
2782 		end = -1;
2783 		mapping = NULL;
2784 		anon_vma_lock_write(anon_vma);
2785 	} else {
2786 		mapping = head->mapping;
2787 
2788 		/* Truncated ? */
2789 		if (!mapping) {
2790 			ret = -EBUSY;
2791 			goto out;
2792 		}
2793 
2794 		anon_vma = NULL;
2795 		i_mmap_lock_read(mapping);
2796 
2797 		/*
2798 		 *__split_huge_page() may need to trim off pages beyond EOF:
2799 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2800 		 * which cannot be nested inside the page tree lock. So note
2801 		 * end now: i_size itself may be changed at any moment, but
2802 		 * head page lock is good enough to serialize the trimming.
2803 		 */
2804 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2805 	}
2806 
2807 	/*
2808 	 * Racy check if we can split the page, before unmap_page() will
2809 	 * split PMDs
2810 	 */
2811 	if (!can_split_huge_page(head, &extra_pins)) {
2812 		ret = -EBUSY;
2813 		goto out_unlock;
2814 	}
2815 
2816 	mlocked = PageMlocked(head);
2817 	unmap_page(head);
2818 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2819 
2820 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2821 	if (mlocked)
2822 		lru_add_drain();
2823 
2824 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2825 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2826 
2827 	if (mapping) {
2828 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2829 
2830 		/*
2831 		 * Check if the head page is present in page cache.
2832 		 * We assume all tail are present too, if head is there.
2833 		 */
2834 		xa_lock(&mapping->i_pages);
2835 		if (xas_load(&xas) != head)
2836 			goto fail;
2837 	}
2838 
2839 	/* Prevent deferred_split_scan() touching ->_refcount */
2840 	spin_lock(&ds_queue->split_queue_lock);
2841 	count = page_count(head);
2842 	mapcount = total_mapcount(head);
2843 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2844 		if (!list_empty(page_deferred_list(head))) {
2845 			ds_queue->split_queue_len--;
2846 			list_del(page_deferred_list(head));
2847 		}
2848 		spin_unlock(&ds_queue->split_queue_lock);
2849 		if (mapping) {
2850 			if (PageSwapBacked(head))
2851 				__dec_node_page_state(head, NR_SHMEM_THPS);
2852 			else
2853 				__dec_node_page_state(head, NR_FILE_THPS);
2854 		}
2855 
2856 		__split_huge_page(page, list, end, flags);
2857 		if (PageSwapCache(head)) {
2858 			swp_entry_t entry = { .val = page_private(head) };
2859 
2860 			ret = split_swap_cluster(entry);
2861 		} else
2862 			ret = 0;
2863 	} else {
2864 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2865 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2866 					mapcount, count);
2867 			if (PageTail(page))
2868 				dump_page(head, NULL);
2869 			dump_page(page, "total_mapcount(head) > 0");
2870 			BUG();
2871 		}
2872 		spin_unlock(&ds_queue->split_queue_lock);
2873 fail:		if (mapping)
2874 			xa_unlock(&mapping->i_pages);
2875 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2876 		remap_page(head);
2877 		ret = -EBUSY;
2878 	}
2879 
2880 out_unlock:
2881 	if (anon_vma) {
2882 		anon_vma_unlock_write(anon_vma);
2883 		put_anon_vma(anon_vma);
2884 	}
2885 	if (mapping)
2886 		i_mmap_unlock_read(mapping);
2887 out:
2888 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2889 	return ret;
2890 }
2891 
2892 void free_transhuge_page(struct page *page)
2893 {
2894 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2895 	unsigned long flags;
2896 
2897 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 	if (!list_empty(page_deferred_list(page))) {
2899 		ds_queue->split_queue_len--;
2900 		list_del(page_deferred_list(page));
2901 	}
2902 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2903 	free_compound_page(page);
2904 }
2905 
2906 void deferred_split_huge_page(struct page *page)
2907 {
2908 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2909 #ifdef CONFIG_MEMCG
2910 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2911 #endif
2912 	unsigned long flags;
2913 
2914 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2915 
2916 	/*
2917 	 * The try_to_unmap() in page reclaim path might reach here too,
2918 	 * this may cause a race condition to corrupt deferred split queue.
2919 	 * And, if page reclaim is already handling the same page, it is
2920 	 * unnecessary to handle it again in shrinker.
2921 	 *
2922 	 * Check PageSwapCache to determine if the page is being
2923 	 * handled by page reclaim since THP swap would add the page into
2924 	 * swap cache before calling try_to_unmap().
2925 	 */
2926 	if (PageSwapCache(page))
2927 		return;
2928 
2929 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2930 	if (list_empty(page_deferred_list(page))) {
2931 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2932 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2933 		ds_queue->split_queue_len++;
2934 #ifdef CONFIG_MEMCG
2935 		if (memcg)
2936 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2937 					       deferred_split_shrinker.id);
2938 #endif
2939 	}
2940 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2941 }
2942 
2943 static unsigned long deferred_split_count(struct shrinker *shrink,
2944 		struct shrink_control *sc)
2945 {
2946 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2947 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2948 
2949 #ifdef CONFIG_MEMCG
2950 	if (sc->memcg)
2951 		ds_queue = &sc->memcg->deferred_split_queue;
2952 #endif
2953 	return READ_ONCE(ds_queue->split_queue_len);
2954 }
2955 
2956 static unsigned long deferred_split_scan(struct shrinker *shrink,
2957 		struct shrink_control *sc)
2958 {
2959 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2960 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2961 	unsigned long flags;
2962 	LIST_HEAD(list), *pos, *next;
2963 	struct page *page;
2964 	int split = 0;
2965 
2966 #ifdef CONFIG_MEMCG
2967 	if (sc->memcg)
2968 		ds_queue = &sc->memcg->deferred_split_queue;
2969 #endif
2970 
2971 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2972 	/* Take pin on all head pages to avoid freeing them under us */
2973 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2974 		page = list_entry((void *)pos, struct page, mapping);
2975 		page = compound_head(page);
2976 		if (get_page_unless_zero(page)) {
2977 			list_move(page_deferred_list(page), &list);
2978 		} else {
2979 			/* We lost race with put_compound_page() */
2980 			list_del_init(page_deferred_list(page));
2981 			ds_queue->split_queue_len--;
2982 		}
2983 		if (!--sc->nr_to_scan)
2984 			break;
2985 	}
2986 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2987 
2988 	list_for_each_safe(pos, next, &list) {
2989 		page = list_entry((void *)pos, struct page, mapping);
2990 		if (!trylock_page(page))
2991 			goto next;
2992 		/* split_huge_page() removes page from list on success */
2993 		if (!split_huge_page(page))
2994 			split++;
2995 		unlock_page(page);
2996 next:
2997 		put_page(page);
2998 	}
2999 
3000 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3001 	list_splice_tail(&list, &ds_queue->split_queue);
3002 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3003 
3004 	/*
3005 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3006 	 * This can happen if pages were freed under us.
3007 	 */
3008 	if (!split && list_empty(&ds_queue->split_queue))
3009 		return SHRINK_STOP;
3010 	return split;
3011 }
3012 
3013 static struct shrinker deferred_split_shrinker = {
3014 	.count_objects = deferred_split_count,
3015 	.scan_objects = deferred_split_scan,
3016 	.seeks = DEFAULT_SEEKS,
3017 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3018 		 SHRINKER_NONSLAB,
3019 };
3020 
3021 #ifdef CONFIG_DEBUG_FS
3022 static int split_huge_pages_set(void *data, u64 val)
3023 {
3024 	struct zone *zone;
3025 	struct page *page;
3026 	unsigned long pfn, max_zone_pfn;
3027 	unsigned long total = 0, split = 0;
3028 
3029 	if (val != 1)
3030 		return -EINVAL;
3031 
3032 	for_each_populated_zone(zone) {
3033 		max_zone_pfn = zone_end_pfn(zone);
3034 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3035 			if (!pfn_valid(pfn))
3036 				continue;
3037 
3038 			page = pfn_to_page(pfn);
3039 			if (!get_page_unless_zero(page))
3040 				continue;
3041 
3042 			if (zone != page_zone(page))
3043 				goto next;
3044 
3045 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3046 				goto next;
3047 
3048 			total++;
3049 			lock_page(page);
3050 			if (!split_huge_page(page))
3051 				split++;
3052 			unlock_page(page);
3053 next:
3054 			put_page(page);
3055 		}
3056 	}
3057 
3058 	pr_info("%lu of %lu THP split\n", split, total);
3059 
3060 	return 0;
3061 }
3062 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3063 		"%llu\n");
3064 
3065 static int __init split_huge_pages_debugfs(void)
3066 {
3067 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3068 			    &split_huge_pages_fops);
3069 	return 0;
3070 }
3071 late_initcall(split_huge_pages_debugfs);
3072 #endif
3073 
3074 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3075 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3076 		struct page *page)
3077 {
3078 	struct vm_area_struct *vma = pvmw->vma;
3079 	struct mm_struct *mm = vma->vm_mm;
3080 	unsigned long address = pvmw->address;
3081 	pmd_t pmdval;
3082 	swp_entry_t entry;
3083 	pmd_t pmdswp;
3084 
3085 	if (!(pvmw->pmd && !pvmw->pte))
3086 		return;
3087 
3088 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3089 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3090 	if (pmd_dirty(pmdval))
3091 		set_page_dirty(page);
3092 	entry = make_migration_entry(page, pmd_write(pmdval));
3093 	pmdswp = swp_entry_to_pmd(entry);
3094 	if (pmd_soft_dirty(pmdval))
3095 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3096 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3097 	page_remove_rmap(page, true);
3098 	put_page(page);
3099 }
3100 
3101 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3102 {
3103 	struct vm_area_struct *vma = pvmw->vma;
3104 	struct mm_struct *mm = vma->vm_mm;
3105 	unsigned long address = pvmw->address;
3106 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3107 	pmd_t pmde;
3108 	swp_entry_t entry;
3109 
3110 	if (!(pvmw->pmd && !pvmw->pte))
3111 		return;
3112 
3113 	entry = pmd_to_swp_entry(*pvmw->pmd);
3114 	get_page(new);
3115 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3116 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3117 		pmde = pmd_mksoft_dirty(pmde);
3118 	if (is_write_migration_entry(entry))
3119 		pmde = maybe_pmd_mkwrite(pmde, vma);
3120 
3121 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3122 	if (PageAnon(new))
3123 		page_add_anon_rmap(new, vma, mmun_start, true);
3124 	else
3125 		page_add_file_rmap(new, true);
3126 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3127 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3128 		mlock_vma_page(new);
3129 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3130 }
3131 #endif
3132