1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/coredump.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/oom.h> 34 #include <linux/numa.h> 35 #include <linux/page_owner.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 /* The addr is used to check if the vma size fits */ 68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 69 70 if (!transhuge_vma_suitable(vma, addr)) 71 return false; 72 if (vma_is_anonymous(vma)) 73 return __transparent_hugepage_enabled(vma); 74 if (vma_is_shmem(vma)) 75 return shmem_huge_enabled(vma); 76 77 return false; 78 } 79 80 static struct page *get_huge_zero_page(void) 81 { 82 struct page *zero_page; 83 retry: 84 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 85 return READ_ONCE(huge_zero_page); 86 87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 88 HPAGE_PMD_ORDER); 89 if (!zero_page) { 90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 91 return NULL; 92 } 93 count_vm_event(THP_ZERO_PAGE_ALLOC); 94 preempt_disable(); 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 96 preempt_enable(); 97 __free_pages(zero_page, compound_order(zero_page)); 98 goto retry; 99 } 100 101 /* We take additional reference here. It will be put back by shrinker */ 102 atomic_set(&huge_zero_refcount, 2); 103 preempt_enable(); 104 return READ_ONCE(huge_zero_page); 105 } 106 107 static void put_huge_zero_page(void) 108 { 109 /* 110 * Counter should never go to zero here. Only shrinker can put 111 * last reference. 112 */ 113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 114 } 115 116 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 117 { 118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 119 return READ_ONCE(huge_zero_page); 120 121 if (!get_huge_zero_page()) 122 return NULL; 123 124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 125 put_huge_zero_page(); 126 127 return READ_ONCE(huge_zero_page); 128 } 129 130 void mm_put_huge_zero_page(struct mm_struct *mm) 131 { 132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 133 put_huge_zero_page(); 134 } 135 136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 137 struct shrink_control *sc) 138 { 139 /* we can free zero page only if last reference remains */ 140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 141 } 142 143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 144 struct shrink_control *sc) 145 { 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 147 struct page *zero_page = xchg(&huge_zero_page, NULL); 148 BUG_ON(zero_page == NULL); 149 __free_pages(zero_page, compound_order(zero_page)); 150 return HPAGE_PMD_NR; 151 } 152 153 return 0; 154 } 155 156 static struct shrinker huge_zero_page_shrinker = { 157 .count_objects = shrink_huge_zero_page_count, 158 .scan_objects = shrink_huge_zero_page_scan, 159 .seeks = DEFAULT_SEEKS, 160 }; 161 162 #ifdef CONFIG_SYSFS 163 static ssize_t enabled_show(struct kobject *kobj, 164 struct kobj_attribute *attr, char *buf) 165 { 166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "[always] madvise never\n"); 168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 169 return sprintf(buf, "always [madvise] never\n"); 170 else 171 return sprintf(buf, "always madvise [never]\n"); 172 } 173 174 static ssize_t enabled_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 ssize_t ret = count; 179 180 if (sysfs_streq(buf, "always")) { 181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 183 } else if (sysfs_streq(buf, "madvise")) { 184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 186 } else if (sysfs_streq(buf, "never")) { 187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 189 } else 190 ret = -EINVAL; 191 192 if (ret > 0) { 193 int err = start_stop_khugepaged(); 194 if (err) 195 ret = err; 196 } 197 return ret; 198 } 199 static struct kobj_attribute enabled_attr = 200 __ATTR(enabled, 0644, enabled_show, enabled_store); 201 202 ssize_t single_hugepage_flag_show(struct kobject *kobj, 203 struct kobj_attribute *attr, char *buf, 204 enum transparent_hugepage_flag flag) 205 { 206 return sprintf(buf, "%d\n", 207 !!test_bit(flag, &transparent_hugepage_flags)); 208 } 209 210 ssize_t single_hugepage_flag_store(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 const char *buf, size_t count, 213 enum transparent_hugepage_flag flag) 214 { 215 unsigned long value; 216 int ret; 217 218 ret = kstrtoul(buf, 10, &value); 219 if (ret < 0) 220 return ret; 221 if (value > 1) 222 return -EINVAL; 223 224 if (value) 225 set_bit(flag, &transparent_hugepage_flags); 226 else 227 clear_bit(flag, &transparent_hugepage_flags); 228 229 return count; 230 } 231 232 static ssize_t defrag_show(struct kobject *kobj, 233 struct kobj_attribute *attr, char *buf) 234 { 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 238 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 240 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 242 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 243 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 244 } 245 246 static ssize_t defrag_store(struct kobject *kobj, 247 struct kobj_attribute *attr, 248 const char *buf, size_t count) 249 { 250 if (sysfs_streq(buf, "always")) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 255 } else if (sysfs_streq(buf, "defer+madvise")) { 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 } else if (sysfs_streq(buf, "defer")) { 261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 } else if (sysfs_streq(buf, "madvise")) { 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else if (sysfs_streq(buf, "never")) { 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 275 } else 276 return -EINVAL; 277 278 return count; 279 } 280 static struct kobj_attribute defrag_attr = 281 __ATTR(defrag, 0644, defrag_show, defrag_store); 282 283 static ssize_t use_zero_page_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf) 285 { 286 return single_hugepage_flag_show(kobj, attr, buf, 287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 288 } 289 static ssize_t use_zero_page_store(struct kobject *kobj, 290 struct kobj_attribute *attr, const char *buf, size_t count) 291 { 292 return single_hugepage_flag_store(kobj, attr, buf, count, 293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 294 } 295 static struct kobj_attribute use_zero_page_attr = 296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 297 298 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 302 } 303 static struct kobj_attribute hpage_pmd_size_attr = 304 __ATTR_RO(hpage_pmd_size); 305 306 #ifdef CONFIG_DEBUG_VM 307 static ssize_t debug_cow_show(struct kobject *kobj, 308 struct kobj_attribute *attr, char *buf) 309 { 310 return single_hugepage_flag_show(kobj, attr, buf, 311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 312 } 313 static ssize_t debug_cow_store(struct kobject *kobj, 314 struct kobj_attribute *attr, 315 const char *buf, size_t count) 316 { 317 return single_hugepage_flag_store(kobj, attr, buf, count, 318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 319 } 320 static struct kobj_attribute debug_cow_attr = 321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 322 #endif /* CONFIG_DEBUG_VM */ 323 324 static struct attribute *hugepage_attr[] = { 325 &enabled_attr.attr, 326 &defrag_attr.attr, 327 &use_zero_page_attr.attr, 328 &hpage_pmd_size_attr.attr, 329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 330 &shmem_enabled_attr.attr, 331 #endif 332 #ifdef CONFIG_DEBUG_VM 333 &debug_cow_attr.attr, 334 #endif 335 NULL, 336 }; 337 338 static const struct attribute_group hugepage_attr_group = { 339 .attrs = hugepage_attr, 340 }; 341 342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 343 { 344 int err; 345 346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 347 if (unlikely(!*hugepage_kobj)) { 348 pr_err("failed to create transparent hugepage kobject\n"); 349 return -ENOMEM; 350 } 351 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 353 if (err) { 354 pr_err("failed to register transparent hugepage group\n"); 355 goto delete_obj; 356 } 357 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 359 if (err) { 360 pr_err("failed to register transparent hugepage group\n"); 361 goto remove_hp_group; 362 } 363 364 return 0; 365 366 remove_hp_group: 367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 368 delete_obj: 369 kobject_put(*hugepage_kobj); 370 return err; 371 } 372 373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 374 { 375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 377 kobject_put(hugepage_kobj); 378 } 379 #else 380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 381 { 382 return 0; 383 } 384 385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 386 { 387 } 388 #endif /* CONFIG_SYSFS */ 389 390 static int __init hugepage_init(void) 391 { 392 int err; 393 struct kobject *hugepage_kobj; 394 395 if (!has_transparent_hugepage()) { 396 transparent_hugepage_flags = 0; 397 return -EINVAL; 398 } 399 400 /* 401 * hugepages can't be allocated by the buddy allocator 402 */ 403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 404 /* 405 * we use page->mapping and page->index in second tail page 406 * as list_head: assuming THP order >= 2 407 */ 408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 409 410 err = hugepage_init_sysfs(&hugepage_kobj); 411 if (err) 412 goto err_sysfs; 413 414 err = khugepaged_init(); 415 if (err) 416 goto err_slab; 417 418 err = register_shrinker(&huge_zero_page_shrinker); 419 if (err) 420 goto err_hzp_shrinker; 421 err = register_shrinker(&deferred_split_shrinker); 422 if (err) 423 goto err_split_shrinker; 424 425 /* 426 * By default disable transparent hugepages on smaller systems, 427 * where the extra memory used could hurt more than TLB overhead 428 * is likely to save. The admin can still enable it through /sys. 429 */ 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 431 transparent_hugepage_flags = 0; 432 return 0; 433 } 434 435 err = start_stop_khugepaged(); 436 if (err) 437 goto err_khugepaged; 438 439 return 0; 440 err_khugepaged: 441 unregister_shrinker(&deferred_split_shrinker); 442 err_split_shrinker: 443 unregister_shrinker(&huge_zero_page_shrinker); 444 err_hzp_shrinker: 445 khugepaged_destroy(); 446 err_slab: 447 hugepage_exit_sysfs(hugepage_kobj); 448 err_sysfs: 449 return err; 450 } 451 subsys_initcall(hugepage_init); 452 453 static int __init setup_transparent_hugepage(char *str) 454 { 455 int ret = 0; 456 if (!str) 457 goto out; 458 if (!strcmp(str, "always")) { 459 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 460 &transparent_hugepage_flags); 461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 462 &transparent_hugepage_flags); 463 ret = 1; 464 } else if (!strcmp(str, "madvise")) { 465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 466 &transparent_hugepage_flags); 467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 468 &transparent_hugepage_flags); 469 ret = 1; 470 } else if (!strcmp(str, "never")) { 471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 472 &transparent_hugepage_flags); 473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 474 &transparent_hugepage_flags); 475 ret = 1; 476 } 477 out: 478 if (!ret) 479 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 480 return ret; 481 } 482 __setup("transparent_hugepage=", setup_transparent_hugepage); 483 484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 485 { 486 if (likely(vma->vm_flags & VM_WRITE)) 487 pmd = pmd_mkwrite(pmd); 488 return pmd; 489 } 490 491 #ifdef CONFIG_MEMCG 492 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 493 { 494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 496 497 if (memcg) 498 return &memcg->deferred_split_queue; 499 else 500 return &pgdat->deferred_split_queue; 501 } 502 #else 503 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 504 { 505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 506 507 return &pgdat->deferred_split_queue; 508 } 509 #endif 510 511 void prep_transhuge_page(struct page *page) 512 { 513 /* 514 * we use page->mapping and page->indexlru in second tail page 515 * as list_head: assuming THP order >= 2 516 */ 517 518 INIT_LIST_HEAD(page_deferred_list(page)); 519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 520 } 521 522 bool is_transparent_hugepage(struct page *page) 523 { 524 if (!PageCompound(page)) 525 return 0; 526 527 page = compound_head(page); 528 return is_huge_zero_page(page) || 529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 530 } 531 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 532 533 static unsigned long __thp_get_unmapped_area(struct file *filp, 534 unsigned long addr, unsigned long len, 535 loff_t off, unsigned long flags, unsigned long size) 536 { 537 loff_t off_end = off + len; 538 loff_t off_align = round_up(off, size); 539 unsigned long len_pad, ret; 540 541 if (off_end <= off_align || (off_end - off_align) < size) 542 return 0; 543 544 len_pad = len + size; 545 if (len_pad < len || (off + len_pad) < off) 546 return 0; 547 548 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 549 off >> PAGE_SHIFT, flags); 550 551 /* 552 * The failure might be due to length padding. The caller will retry 553 * without the padding. 554 */ 555 if (IS_ERR_VALUE(ret)) 556 return 0; 557 558 /* 559 * Do not try to align to THP boundary if allocation at the address 560 * hint succeeds. 561 */ 562 if (ret == addr) 563 return addr; 564 565 ret += (off - ret) & (size - 1); 566 return ret; 567 } 568 569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 570 unsigned long len, unsigned long pgoff, unsigned long flags) 571 { 572 unsigned long ret; 573 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 574 575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 576 goto out; 577 578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 579 if (ret) 580 return ret; 581 out: 582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 583 } 584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 585 586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 587 struct page *page, gfp_t gfp) 588 { 589 struct vm_area_struct *vma = vmf->vma; 590 struct mem_cgroup *memcg; 591 pgtable_t pgtable; 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 593 vm_fault_t ret = 0; 594 595 VM_BUG_ON_PAGE(!PageCompound(page), page); 596 597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) { 598 put_page(page); 599 count_vm_event(THP_FAULT_FALLBACK); 600 return VM_FAULT_FALLBACK; 601 } 602 603 pgtable = pte_alloc_one(vma->vm_mm); 604 if (unlikely(!pgtable)) { 605 ret = VM_FAULT_OOM; 606 goto release; 607 } 608 609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 610 /* 611 * The memory barrier inside __SetPageUptodate makes sure that 612 * clear_huge_page writes become visible before the set_pmd_at() 613 * write. 614 */ 615 __SetPageUptodate(page); 616 617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 618 if (unlikely(!pmd_none(*vmf->pmd))) { 619 goto unlock_release; 620 } else { 621 pmd_t entry; 622 623 ret = check_stable_address_space(vma->vm_mm); 624 if (ret) 625 goto unlock_release; 626 627 /* Deliver the page fault to userland */ 628 if (userfaultfd_missing(vma)) { 629 vm_fault_t ret2; 630 631 spin_unlock(vmf->ptl); 632 mem_cgroup_cancel_charge(page, memcg, true); 633 put_page(page); 634 pte_free(vma->vm_mm, pgtable); 635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 637 return ret2; 638 } 639 640 entry = mk_huge_pmd(page, vma->vm_page_prot); 641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 642 page_add_new_anon_rmap(page, vma, haddr, true); 643 mem_cgroup_commit_charge(page, memcg, false, true); 644 lru_cache_add_active_or_unevictable(page, vma); 645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 648 mm_inc_nr_ptes(vma->vm_mm); 649 spin_unlock(vmf->ptl); 650 count_vm_event(THP_FAULT_ALLOC); 651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1); 652 } 653 654 return 0; 655 unlock_release: 656 spin_unlock(vmf->ptl); 657 release: 658 if (pgtable) 659 pte_free(vma->vm_mm, pgtable); 660 mem_cgroup_cancel_charge(page, memcg, true); 661 put_page(page); 662 return ret; 663 664 } 665 666 /* 667 * always: directly stall for all thp allocations 668 * defer: wake kswapd and fail if not immediately available 669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 670 * fail if not immediately available 671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 672 * available 673 * never: never stall for any thp allocation 674 */ 675 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 676 { 677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 678 679 /* Always do synchronous compaction */ 680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 682 683 /* Kick kcompactd and fail quickly */ 684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 686 687 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 689 return GFP_TRANSHUGE_LIGHT | 690 (vma_madvised ? __GFP_DIRECT_RECLAIM : 691 __GFP_KSWAPD_RECLAIM); 692 693 /* Only do synchronous compaction if madvised */ 694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 695 return GFP_TRANSHUGE_LIGHT | 696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 697 698 return GFP_TRANSHUGE_LIGHT; 699 } 700 701 /* Caller must hold page table lock. */ 702 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 704 struct page *zero_page) 705 { 706 pmd_t entry; 707 if (!pmd_none(*pmd)) 708 return false; 709 entry = mk_pmd(zero_page, vma->vm_page_prot); 710 entry = pmd_mkhuge(entry); 711 if (pgtable) 712 pgtable_trans_huge_deposit(mm, pmd, pgtable); 713 set_pmd_at(mm, haddr, pmd, entry); 714 mm_inc_nr_ptes(mm); 715 return true; 716 } 717 718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 719 { 720 struct vm_area_struct *vma = vmf->vma; 721 gfp_t gfp; 722 struct page *page; 723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 724 725 if (!transhuge_vma_suitable(vma, haddr)) 726 return VM_FAULT_FALLBACK; 727 if (unlikely(anon_vma_prepare(vma))) 728 return VM_FAULT_OOM; 729 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 730 return VM_FAULT_OOM; 731 if (!(vmf->flags & FAULT_FLAG_WRITE) && 732 !mm_forbids_zeropage(vma->vm_mm) && 733 transparent_hugepage_use_zero_page()) { 734 pgtable_t pgtable; 735 struct page *zero_page; 736 bool set; 737 vm_fault_t ret; 738 pgtable = pte_alloc_one(vma->vm_mm); 739 if (unlikely(!pgtable)) 740 return VM_FAULT_OOM; 741 zero_page = mm_get_huge_zero_page(vma->vm_mm); 742 if (unlikely(!zero_page)) { 743 pte_free(vma->vm_mm, pgtable); 744 count_vm_event(THP_FAULT_FALLBACK); 745 return VM_FAULT_FALLBACK; 746 } 747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 748 ret = 0; 749 set = false; 750 if (pmd_none(*vmf->pmd)) { 751 ret = check_stable_address_space(vma->vm_mm); 752 if (ret) { 753 spin_unlock(vmf->ptl); 754 } else if (userfaultfd_missing(vma)) { 755 spin_unlock(vmf->ptl); 756 ret = handle_userfault(vmf, VM_UFFD_MISSING); 757 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 758 } else { 759 set_huge_zero_page(pgtable, vma->vm_mm, vma, 760 haddr, vmf->pmd, zero_page); 761 spin_unlock(vmf->ptl); 762 set = true; 763 } 764 } else 765 spin_unlock(vmf->ptl); 766 if (!set) 767 pte_free(vma->vm_mm, pgtable); 768 return ret; 769 } 770 gfp = alloc_hugepage_direct_gfpmask(vma); 771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 772 if (unlikely(!page)) { 773 count_vm_event(THP_FAULT_FALLBACK); 774 return VM_FAULT_FALLBACK; 775 } 776 prep_transhuge_page(page); 777 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 778 } 779 780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 782 pgtable_t pgtable) 783 { 784 struct mm_struct *mm = vma->vm_mm; 785 pmd_t entry; 786 spinlock_t *ptl; 787 788 ptl = pmd_lock(mm, pmd); 789 if (!pmd_none(*pmd)) { 790 if (write) { 791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 793 goto out_unlock; 794 } 795 entry = pmd_mkyoung(*pmd); 796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 798 update_mmu_cache_pmd(vma, addr, pmd); 799 } 800 801 goto out_unlock; 802 } 803 804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 805 if (pfn_t_devmap(pfn)) 806 entry = pmd_mkdevmap(entry); 807 if (write) { 808 entry = pmd_mkyoung(pmd_mkdirty(entry)); 809 entry = maybe_pmd_mkwrite(entry, vma); 810 } 811 812 if (pgtable) { 813 pgtable_trans_huge_deposit(mm, pmd, pgtable); 814 mm_inc_nr_ptes(mm); 815 pgtable = NULL; 816 } 817 818 set_pmd_at(mm, addr, pmd, entry); 819 update_mmu_cache_pmd(vma, addr, pmd); 820 821 out_unlock: 822 spin_unlock(ptl); 823 if (pgtable) 824 pte_free(mm, pgtable); 825 } 826 827 /** 828 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 829 * @vmf: Structure describing the fault 830 * @pfn: pfn to insert 831 * @pgprot: page protection to use 832 * @write: whether it's a write fault 833 * 834 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 835 * also consult the vmf_insert_mixed_prot() documentation when 836 * @pgprot != @vmf->vma->vm_page_prot. 837 * 838 * Return: vm_fault_t value. 839 */ 840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 841 pgprot_t pgprot, bool write) 842 { 843 unsigned long addr = vmf->address & PMD_MASK; 844 struct vm_area_struct *vma = vmf->vma; 845 pgtable_t pgtable = NULL; 846 847 /* 848 * If we had pmd_special, we could avoid all these restrictions, 849 * but we need to be consistent with PTEs and architectures that 850 * can't support a 'special' bit. 851 */ 852 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 853 !pfn_t_devmap(pfn)); 854 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 855 (VM_PFNMAP|VM_MIXEDMAP)); 856 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 857 858 if (addr < vma->vm_start || addr >= vma->vm_end) 859 return VM_FAULT_SIGBUS; 860 861 if (arch_needs_pgtable_deposit()) { 862 pgtable = pte_alloc_one(vma->vm_mm); 863 if (!pgtable) 864 return VM_FAULT_OOM; 865 } 866 867 track_pfn_insert(vma, &pgprot, pfn); 868 869 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 870 return VM_FAULT_NOPAGE; 871 } 872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 873 874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 876 { 877 if (likely(vma->vm_flags & VM_WRITE)) 878 pud = pud_mkwrite(pud); 879 return pud; 880 } 881 882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 883 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 884 { 885 struct mm_struct *mm = vma->vm_mm; 886 pud_t entry; 887 spinlock_t *ptl; 888 889 ptl = pud_lock(mm, pud); 890 if (!pud_none(*pud)) { 891 if (write) { 892 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 893 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 894 goto out_unlock; 895 } 896 entry = pud_mkyoung(*pud); 897 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 898 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 899 update_mmu_cache_pud(vma, addr, pud); 900 } 901 goto out_unlock; 902 } 903 904 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 905 if (pfn_t_devmap(pfn)) 906 entry = pud_mkdevmap(entry); 907 if (write) { 908 entry = pud_mkyoung(pud_mkdirty(entry)); 909 entry = maybe_pud_mkwrite(entry, vma); 910 } 911 set_pud_at(mm, addr, pud, entry); 912 update_mmu_cache_pud(vma, addr, pud); 913 914 out_unlock: 915 spin_unlock(ptl); 916 } 917 918 /** 919 * vmf_insert_pfn_pud_prot - insert a pud size pfn 920 * @vmf: Structure describing the fault 921 * @pfn: pfn to insert 922 * @pgprot: page protection to use 923 * @write: whether it's a write fault 924 * 925 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 926 * also consult the vmf_insert_mixed_prot() documentation when 927 * @pgprot != @vmf->vma->vm_page_prot. 928 * 929 * Return: vm_fault_t value. 930 */ 931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 932 pgprot_t pgprot, bool write) 933 { 934 unsigned long addr = vmf->address & PUD_MASK; 935 struct vm_area_struct *vma = vmf->vma; 936 937 /* 938 * If we had pud_special, we could avoid all these restrictions, 939 * but we need to be consistent with PTEs and architectures that 940 * can't support a 'special' bit. 941 */ 942 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 943 !pfn_t_devmap(pfn)); 944 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 945 (VM_PFNMAP|VM_MIXEDMAP)); 946 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 947 948 if (addr < vma->vm_start || addr >= vma->vm_end) 949 return VM_FAULT_SIGBUS; 950 951 track_pfn_insert(vma, &pgprot, pfn); 952 953 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 954 return VM_FAULT_NOPAGE; 955 } 956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 958 959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 960 pmd_t *pmd, int flags) 961 { 962 pmd_t _pmd; 963 964 _pmd = pmd_mkyoung(*pmd); 965 if (flags & FOLL_WRITE) 966 _pmd = pmd_mkdirty(_pmd); 967 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 968 pmd, _pmd, flags & FOLL_WRITE)) 969 update_mmu_cache_pmd(vma, addr, pmd); 970 } 971 972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 973 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 974 { 975 unsigned long pfn = pmd_pfn(*pmd); 976 struct mm_struct *mm = vma->vm_mm; 977 struct page *page; 978 979 assert_spin_locked(pmd_lockptr(mm, pmd)); 980 981 /* 982 * When we COW a devmap PMD entry, we split it into PTEs, so we should 983 * not be in this function with `flags & FOLL_COW` set. 984 */ 985 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 986 987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 988 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 989 (FOLL_PIN | FOLL_GET))) 990 return NULL; 991 992 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 993 return NULL; 994 995 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 996 /* pass */; 997 else 998 return NULL; 999 1000 if (flags & FOLL_TOUCH) 1001 touch_pmd(vma, addr, pmd, flags); 1002 1003 /* 1004 * device mapped pages can only be returned if the 1005 * caller will manage the page reference count. 1006 */ 1007 if (!(flags & (FOLL_GET | FOLL_PIN))) 1008 return ERR_PTR(-EEXIST); 1009 1010 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1011 *pgmap = get_dev_pagemap(pfn, *pgmap); 1012 if (!*pgmap) 1013 return ERR_PTR(-EFAULT); 1014 page = pfn_to_page(pfn); 1015 if (!try_grab_page(page, flags)) 1016 page = ERR_PTR(-ENOMEM); 1017 1018 return page; 1019 } 1020 1021 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1023 struct vm_area_struct *vma) 1024 { 1025 spinlock_t *dst_ptl, *src_ptl; 1026 struct page *src_page; 1027 pmd_t pmd; 1028 pgtable_t pgtable = NULL; 1029 int ret = -ENOMEM; 1030 1031 /* Skip if can be re-fill on fault */ 1032 if (!vma_is_anonymous(vma)) 1033 return 0; 1034 1035 pgtable = pte_alloc_one(dst_mm); 1036 if (unlikely(!pgtable)) 1037 goto out; 1038 1039 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1040 src_ptl = pmd_lockptr(src_mm, src_pmd); 1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1042 1043 ret = -EAGAIN; 1044 pmd = *src_pmd; 1045 1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1047 if (unlikely(is_swap_pmd(pmd))) { 1048 swp_entry_t entry = pmd_to_swp_entry(pmd); 1049 1050 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1051 if (is_write_migration_entry(entry)) { 1052 make_migration_entry_read(&entry); 1053 pmd = swp_entry_to_pmd(entry); 1054 if (pmd_swp_soft_dirty(*src_pmd)) 1055 pmd = pmd_swp_mksoft_dirty(pmd); 1056 set_pmd_at(src_mm, addr, src_pmd, pmd); 1057 } 1058 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1059 mm_inc_nr_ptes(dst_mm); 1060 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1061 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1062 ret = 0; 1063 goto out_unlock; 1064 } 1065 #endif 1066 1067 if (unlikely(!pmd_trans_huge(pmd))) { 1068 pte_free(dst_mm, pgtable); 1069 goto out_unlock; 1070 } 1071 /* 1072 * When page table lock is held, the huge zero pmd should not be 1073 * under splitting since we don't split the page itself, only pmd to 1074 * a page table. 1075 */ 1076 if (is_huge_zero_pmd(pmd)) { 1077 struct page *zero_page; 1078 /* 1079 * get_huge_zero_page() will never allocate a new page here, 1080 * since we already have a zero page to copy. It just takes a 1081 * reference. 1082 */ 1083 zero_page = mm_get_huge_zero_page(dst_mm); 1084 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1085 zero_page); 1086 ret = 0; 1087 goto out_unlock; 1088 } 1089 1090 src_page = pmd_page(pmd); 1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1092 get_page(src_page); 1093 page_dup_rmap(src_page, true); 1094 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1095 mm_inc_nr_ptes(dst_mm); 1096 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1097 1098 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1099 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1100 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1101 1102 ret = 0; 1103 out_unlock: 1104 spin_unlock(src_ptl); 1105 spin_unlock(dst_ptl); 1106 out: 1107 return ret; 1108 } 1109 1110 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1111 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1112 pud_t *pud, int flags) 1113 { 1114 pud_t _pud; 1115 1116 _pud = pud_mkyoung(*pud); 1117 if (flags & FOLL_WRITE) 1118 _pud = pud_mkdirty(_pud); 1119 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1120 pud, _pud, flags & FOLL_WRITE)) 1121 update_mmu_cache_pud(vma, addr, pud); 1122 } 1123 1124 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1125 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1126 { 1127 unsigned long pfn = pud_pfn(*pud); 1128 struct mm_struct *mm = vma->vm_mm; 1129 struct page *page; 1130 1131 assert_spin_locked(pud_lockptr(mm, pud)); 1132 1133 if (flags & FOLL_WRITE && !pud_write(*pud)) 1134 return NULL; 1135 1136 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1137 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1138 (FOLL_PIN | FOLL_GET))) 1139 return NULL; 1140 1141 if (pud_present(*pud) && pud_devmap(*pud)) 1142 /* pass */; 1143 else 1144 return NULL; 1145 1146 if (flags & FOLL_TOUCH) 1147 touch_pud(vma, addr, pud, flags); 1148 1149 /* 1150 * device mapped pages can only be returned if the 1151 * caller will manage the page reference count. 1152 * 1153 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1154 */ 1155 if (!(flags & (FOLL_GET | FOLL_PIN))) 1156 return ERR_PTR(-EEXIST); 1157 1158 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1159 *pgmap = get_dev_pagemap(pfn, *pgmap); 1160 if (!*pgmap) 1161 return ERR_PTR(-EFAULT); 1162 page = pfn_to_page(pfn); 1163 if (!try_grab_page(page, flags)) 1164 page = ERR_PTR(-ENOMEM); 1165 1166 return page; 1167 } 1168 1169 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1170 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1171 struct vm_area_struct *vma) 1172 { 1173 spinlock_t *dst_ptl, *src_ptl; 1174 pud_t pud; 1175 int ret; 1176 1177 dst_ptl = pud_lock(dst_mm, dst_pud); 1178 src_ptl = pud_lockptr(src_mm, src_pud); 1179 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1180 1181 ret = -EAGAIN; 1182 pud = *src_pud; 1183 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1184 goto out_unlock; 1185 1186 /* 1187 * When page table lock is held, the huge zero pud should not be 1188 * under splitting since we don't split the page itself, only pud to 1189 * a page table. 1190 */ 1191 if (is_huge_zero_pud(pud)) { 1192 /* No huge zero pud yet */ 1193 } 1194 1195 pudp_set_wrprotect(src_mm, addr, src_pud); 1196 pud = pud_mkold(pud_wrprotect(pud)); 1197 set_pud_at(dst_mm, addr, dst_pud, pud); 1198 1199 ret = 0; 1200 out_unlock: 1201 spin_unlock(src_ptl); 1202 spin_unlock(dst_ptl); 1203 return ret; 1204 } 1205 1206 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1207 { 1208 pud_t entry; 1209 unsigned long haddr; 1210 bool write = vmf->flags & FAULT_FLAG_WRITE; 1211 1212 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1213 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1214 goto unlock; 1215 1216 entry = pud_mkyoung(orig_pud); 1217 if (write) 1218 entry = pud_mkdirty(entry); 1219 haddr = vmf->address & HPAGE_PUD_MASK; 1220 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1221 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1222 1223 unlock: 1224 spin_unlock(vmf->ptl); 1225 } 1226 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1227 1228 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1229 { 1230 pmd_t entry; 1231 unsigned long haddr; 1232 bool write = vmf->flags & FAULT_FLAG_WRITE; 1233 1234 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1236 goto unlock; 1237 1238 entry = pmd_mkyoung(orig_pmd); 1239 if (write) 1240 entry = pmd_mkdirty(entry); 1241 haddr = vmf->address & HPAGE_PMD_MASK; 1242 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1243 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1244 1245 unlock: 1246 spin_unlock(vmf->ptl); 1247 } 1248 1249 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, 1250 pmd_t orig_pmd, struct page *page) 1251 { 1252 struct vm_area_struct *vma = vmf->vma; 1253 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1254 struct mem_cgroup *memcg; 1255 pgtable_t pgtable; 1256 pmd_t _pmd; 1257 int i; 1258 vm_fault_t ret = 0; 1259 struct page **pages; 1260 struct mmu_notifier_range range; 1261 1262 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *), 1263 GFP_KERNEL); 1264 if (unlikely(!pages)) { 1265 ret |= VM_FAULT_OOM; 1266 goto out; 1267 } 1268 1269 for (i = 0; i < HPAGE_PMD_NR; i++) { 1270 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1271 vmf->address, page_to_nid(page)); 1272 if (unlikely(!pages[i] || 1273 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm, 1274 GFP_KERNEL, &memcg, false))) { 1275 if (pages[i]) 1276 put_page(pages[i]); 1277 while (--i >= 0) { 1278 memcg = (void *)page_private(pages[i]); 1279 set_page_private(pages[i], 0); 1280 mem_cgroup_cancel_charge(pages[i], memcg, 1281 false); 1282 put_page(pages[i]); 1283 } 1284 kfree(pages); 1285 ret |= VM_FAULT_OOM; 1286 goto out; 1287 } 1288 set_page_private(pages[i], (unsigned long)memcg); 1289 } 1290 1291 for (i = 0; i < HPAGE_PMD_NR; i++) { 1292 copy_user_highpage(pages[i], page + i, 1293 haddr + PAGE_SIZE * i, vma); 1294 __SetPageUptodate(pages[i]); 1295 cond_resched(); 1296 } 1297 1298 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1299 haddr, haddr + HPAGE_PMD_SIZE); 1300 mmu_notifier_invalidate_range_start(&range); 1301 1302 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1304 goto out_free_pages; 1305 VM_BUG_ON_PAGE(!PageHead(page), page); 1306 1307 /* 1308 * Leave pmd empty until pte is filled note we must notify here as 1309 * concurrent CPU thread might write to new page before the call to 1310 * mmu_notifier_invalidate_range_end() happens which can lead to a 1311 * device seeing memory write in different order than CPU. 1312 * 1313 * See Documentation/vm/mmu_notifier.rst 1314 */ 1315 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1316 1317 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1318 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1319 1320 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1321 pte_t entry; 1322 entry = mk_pte(pages[i], vma->vm_page_prot); 1323 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1324 memcg = (void *)page_private(pages[i]); 1325 set_page_private(pages[i], 0); 1326 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1327 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1328 lru_cache_add_active_or_unevictable(pages[i], vma); 1329 vmf->pte = pte_offset_map(&_pmd, haddr); 1330 VM_BUG_ON(!pte_none(*vmf->pte)); 1331 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1332 pte_unmap(vmf->pte); 1333 } 1334 kfree(pages); 1335 1336 smp_wmb(); /* make pte visible before pmd */ 1337 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1338 page_remove_rmap(page, true); 1339 spin_unlock(vmf->ptl); 1340 1341 /* 1342 * No need to double call mmu_notifier->invalidate_range() callback as 1343 * the above pmdp_huge_clear_flush_notify() did already call it. 1344 */ 1345 mmu_notifier_invalidate_range_only_end(&range); 1346 1347 ret |= VM_FAULT_WRITE; 1348 put_page(page); 1349 1350 out: 1351 return ret; 1352 1353 out_free_pages: 1354 spin_unlock(vmf->ptl); 1355 mmu_notifier_invalidate_range_end(&range); 1356 for (i = 0; i < HPAGE_PMD_NR; i++) { 1357 memcg = (void *)page_private(pages[i]); 1358 set_page_private(pages[i], 0); 1359 mem_cgroup_cancel_charge(pages[i], memcg, false); 1360 put_page(pages[i]); 1361 } 1362 kfree(pages); 1363 goto out; 1364 } 1365 1366 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1367 { 1368 struct vm_area_struct *vma = vmf->vma; 1369 struct page *page = NULL, *new_page; 1370 struct mem_cgroup *memcg; 1371 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1372 struct mmu_notifier_range range; 1373 gfp_t huge_gfp; /* for allocation and charge */ 1374 vm_fault_t ret = 0; 1375 1376 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1377 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1378 if (is_huge_zero_pmd(orig_pmd)) 1379 goto alloc; 1380 spin_lock(vmf->ptl); 1381 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1382 goto out_unlock; 1383 1384 page = pmd_page(orig_pmd); 1385 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1386 /* 1387 * We can only reuse the page if nobody else maps the huge page or it's 1388 * part. 1389 */ 1390 if (!trylock_page(page)) { 1391 get_page(page); 1392 spin_unlock(vmf->ptl); 1393 lock_page(page); 1394 spin_lock(vmf->ptl); 1395 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1396 unlock_page(page); 1397 put_page(page); 1398 goto out_unlock; 1399 } 1400 put_page(page); 1401 } 1402 if (reuse_swap_page(page, NULL)) { 1403 pmd_t entry; 1404 entry = pmd_mkyoung(orig_pmd); 1405 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1406 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1407 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1408 ret |= VM_FAULT_WRITE; 1409 unlock_page(page); 1410 goto out_unlock; 1411 } 1412 unlock_page(page); 1413 get_page(page); 1414 spin_unlock(vmf->ptl); 1415 alloc: 1416 if (__transparent_hugepage_enabled(vma) && 1417 !transparent_hugepage_debug_cow()) { 1418 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1419 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1420 } else 1421 new_page = NULL; 1422 1423 if (likely(new_page)) { 1424 prep_transhuge_page(new_page); 1425 } else { 1426 if (!page) { 1427 split_huge_pmd(vma, vmf->pmd, vmf->address); 1428 ret |= VM_FAULT_FALLBACK; 1429 } else { 1430 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1431 if (ret & VM_FAULT_OOM) { 1432 split_huge_pmd(vma, vmf->pmd, vmf->address); 1433 ret |= VM_FAULT_FALLBACK; 1434 } 1435 put_page(page); 1436 } 1437 count_vm_event(THP_FAULT_FALLBACK); 1438 goto out; 1439 } 1440 1441 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm, 1442 huge_gfp, &memcg, true))) { 1443 put_page(new_page); 1444 split_huge_pmd(vma, vmf->pmd, vmf->address); 1445 if (page) 1446 put_page(page); 1447 ret |= VM_FAULT_FALLBACK; 1448 count_vm_event(THP_FAULT_FALLBACK); 1449 goto out; 1450 } 1451 1452 count_vm_event(THP_FAULT_ALLOC); 1453 count_memcg_events(memcg, THP_FAULT_ALLOC, 1); 1454 1455 if (!page) 1456 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR); 1457 else 1458 copy_user_huge_page(new_page, page, vmf->address, 1459 vma, HPAGE_PMD_NR); 1460 __SetPageUptodate(new_page); 1461 1462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1463 haddr, haddr + HPAGE_PMD_SIZE); 1464 mmu_notifier_invalidate_range_start(&range); 1465 1466 spin_lock(vmf->ptl); 1467 if (page) 1468 put_page(page); 1469 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1470 spin_unlock(vmf->ptl); 1471 mem_cgroup_cancel_charge(new_page, memcg, true); 1472 put_page(new_page); 1473 goto out_mn; 1474 } else { 1475 pmd_t entry; 1476 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1477 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1478 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1479 page_add_new_anon_rmap(new_page, vma, haddr, true); 1480 mem_cgroup_commit_charge(new_page, memcg, false, true); 1481 lru_cache_add_active_or_unevictable(new_page, vma); 1482 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1483 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1484 if (!page) { 1485 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1486 } else { 1487 VM_BUG_ON_PAGE(!PageHead(page), page); 1488 page_remove_rmap(page, true); 1489 put_page(page); 1490 } 1491 ret |= VM_FAULT_WRITE; 1492 } 1493 spin_unlock(vmf->ptl); 1494 out_mn: 1495 /* 1496 * No need to double call mmu_notifier->invalidate_range() callback as 1497 * the above pmdp_huge_clear_flush_notify() did already call it. 1498 */ 1499 mmu_notifier_invalidate_range_only_end(&range); 1500 out: 1501 return ret; 1502 out_unlock: 1503 spin_unlock(vmf->ptl); 1504 return ret; 1505 } 1506 1507 /* 1508 * FOLL_FORCE can write to even unwritable pmd's, but only 1509 * after we've gone through a COW cycle and they are dirty. 1510 */ 1511 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1512 { 1513 return pmd_write(pmd) || 1514 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1515 } 1516 1517 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1518 unsigned long addr, 1519 pmd_t *pmd, 1520 unsigned int flags) 1521 { 1522 struct mm_struct *mm = vma->vm_mm; 1523 struct page *page = NULL; 1524 1525 assert_spin_locked(pmd_lockptr(mm, pmd)); 1526 1527 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1528 goto out; 1529 1530 /* Avoid dumping huge zero page */ 1531 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1532 return ERR_PTR(-EFAULT); 1533 1534 /* Full NUMA hinting faults to serialise migration in fault paths */ 1535 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1536 goto out; 1537 1538 page = pmd_page(*pmd); 1539 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1540 1541 if (!try_grab_page(page, flags)) 1542 return ERR_PTR(-ENOMEM); 1543 1544 if (flags & FOLL_TOUCH) 1545 touch_pmd(vma, addr, pmd, flags); 1546 1547 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1548 /* 1549 * We don't mlock() pte-mapped THPs. This way we can avoid 1550 * leaking mlocked pages into non-VM_LOCKED VMAs. 1551 * 1552 * For anon THP: 1553 * 1554 * In most cases the pmd is the only mapping of the page as we 1555 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1556 * writable private mappings in populate_vma_page_range(). 1557 * 1558 * The only scenario when we have the page shared here is if we 1559 * mlocking read-only mapping shared over fork(). We skip 1560 * mlocking such pages. 1561 * 1562 * For file THP: 1563 * 1564 * We can expect PageDoubleMap() to be stable under page lock: 1565 * for file pages we set it in page_add_file_rmap(), which 1566 * requires page to be locked. 1567 */ 1568 1569 if (PageAnon(page) && compound_mapcount(page) != 1) 1570 goto skip_mlock; 1571 if (PageDoubleMap(page) || !page->mapping) 1572 goto skip_mlock; 1573 if (!trylock_page(page)) 1574 goto skip_mlock; 1575 lru_add_drain(); 1576 if (page->mapping && !PageDoubleMap(page)) 1577 mlock_vma_page(page); 1578 unlock_page(page); 1579 } 1580 skip_mlock: 1581 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1582 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1583 1584 out: 1585 return page; 1586 } 1587 1588 /* NUMA hinting page fault entry point for trans huge pmds */ 1589 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1590 { 1591 struct vm_area_struct *vma = vmf->vma; 1592 struct anon_vma *anon_vma = NULL; 1593 struct page *page; 1594 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1595 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1596 int target_nid, last_cpupid = -1; 1597 bool page_locked; 1598 bool migrated = false; 1599 bool was_writable; 1600 int flags = 0; 1601 1602 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1603 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1604 goto out_unlock; 1605 1606 /* 1607 * If there are potential migrations, wait for completion and retry 1608 * without disrupting NUMA hinting information. Do not relock and 1609 * check_same as the page may no longer be mapped. 1610 */ 1611 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1612 page = pmd_page(*vmf->pmd); 1613 if (!get_page_unless_zero(page)) 1614 goto out_unlock; 1615 spin_unlock(vmf->ptl); 1616 put_and_wait_on_page_locked(page); 1617 goto out; 1618 } 1619 1620 page = pmd_page(pmd); 1621 BUG_ON(is_huge_zero_page(page)); 1622 page_nid = page_to_nid(page); 1623 last_cpupid = page_cpupid_last(page); 1624 count_vm_numa_event(NUMA_HINT_FAULTS); 1625 if (page_nid == this_nid) { 1626 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1627 flags |= TNF_FAULT_LOCAL; 1628 } 1629 1630 /* See similar comment in do_numa_page for explanation */ 1631 if (!pmd_savedwrite(pmd)) 1632 flags |= TNF_NO_GROUP; 1633 1634 /* 1635 * Acquire the page lock to serialise THP migrations but avoid dropping 1636 * page_table_lock if at all possible 1637 */ 1638 page_locked = trylock_page(page); 1639 target_nid = mpol_misplaced(page, vma, haddr); 1640 if (target_nid == NUMA_NO_NODE) { 1641 /* If the page was locked, there are no parallel migrations */ 1642 if (page_locked) 1643 goto clear_pmdnuma; 1644 } 1645 1646 /* Migration could have started since the pmd_trans_migrating check */ 1647 if (!page_locked) { 1648 page_nid = NUMA_NO_NODE; 1649 if (!get_page_unless_zero(page)) 1650 goto out_unlock; 1651 spin_unlock(vmf->ptl); 1652 put_and_wait_on_page_locked(page); 1653 goto out; 1654 } 1655 1656 /* 1657 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1658 * to serialises splits 1659 */ 1660 get_page(page); 1661 spin_unlock(vmf->ptl); 1662 anon_vma = page_lock_anon_vma_read(page); 1663 1664 /* Confirm the PMD did not change while page_table_lock was released */ 1665 spin_lock(vmf->ptl); 1666 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1667 unlock_page(page); 1668 put_page(page); 1669 page_nid = NUMA_NO_NODE; 1670 goto out_unlock; 1671 } 1672 1673 /* Bail if we fail to protect against THP splits for any reason */ 1674 if (unlikely(!anon_vma)) { 1675 put_page(page); 1676 page_nid = NUMA_NO_NODE; 1677 goto clear_pmdnuma; 1678 } 1679 1680 /* 1681 * Since we took the NUMA fault, we must have observed the !accessible 1682 * bit. Make sure all other CPUs agree with that, to avoid them 1683 * modifying the page we're about to migrate. 1684 * 1685 * Must be done under PTL such that we'll observe the relevant 1686 * inc_tlb_flush_pending(). 1687 * 1688 * We are not sure a pending tlb flush here is for a huge page 1689 * mapping or not. Hence use the tlb range variant 1690 */ 1691 if (mm_tlb_flush_pending(vma->vm_mm)) { 1692 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1693 /* 1694 * change_huge_pmd() released the pmd lock before 1695 * invalidating the secondary MMUs sharing the primary 1696 * MMU pagetables (with ->invalidate_range()). The 1697 * mmu_notifier_invalidate_range_end() (which 1698 * internally calls ->invalidate_range()) in 1699 * change_pmd_range() will run after us, so we can't 1700 * rely on it here and we need an explicit invalidate. 1701 */ 1702 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1703 haddr + HPAGE_PMD_SIZE); 1704 } 1705 1706 /* 1707 * Migrate the THP to the requested node, returns with page unlocked 1708 * and access rights restored. 1709 */ 1710 spin_unlock(vmf->ptl); 1711 1712 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1713 vmf->pmd, pmd, vmf->address, page, target_nid); 1714 if (migrated) { 1715 flags |= TNF_MIGRATED; 1716 page_nid = target_nid; 1717 } else 1718 flags |= TNF_MIGRATE_FAIL; 1719 1720 goto out; 1721 clear_pmdnuma: 1722 BUG_ON(!PageLocked(page)); 1723 was_writable = pmd_savedwrite(pmd); 1724 pmd = pmd_modify(pmd, vma->vm_page_prot); 1725 pmd = pmd_mkyoung(pmd); 1726 if (was_writable) 1727 pmd = pmd_mkwrite(pmd); 1728 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1729 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1730 unlock_page(page); 1731 out_unlock: 1732 spin_unlock(vmf->ptl); 1733 1734 out: 1735 if (anon_vma) 1736 page_unlock_anon_vma_read(anon_vma); 1737 1738 if (page_nid != NUMA_NO_NODE) 1739 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1740 flags); 1741 1742 return 0; 1743 } 1744 1745 /* 1746 * Return true if we do MADV_FREE successfully on entire pmd page. 1747 * Otherwise, return false. 1748 */ 1749 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1750 pmd_t *pmd, unsigned long addr, unsigned long next) 1751 { 1752 spinlock_t *ptl; 1753 pmd_t orig_pmd; 1754 struct page *page; 1755 struct mm_struct *mm = tlb->mm; 1756 bool ret = false; 1757 1758 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1759 1760 ptl = pmd_trans_huge_lock(pmd, vma); 1761 if (!ptl) 1762 goto out_unlocked; 1763 1764 orig_pmd = *pmd; 1765 if (is_huge_zero_pmd(orig_pmd)) 1766 goto out; 1767 1768 if (unlikely(!pmd_present(orig_pmd))) { 1769 VM_BUG_ON(thp_migration_supported() && 1770 !is_pmd_migration_entry(orig_pmd)); 1771 goto out; 1772 } 1773 1774 page = pmd_page(orig_pmd); 1775 /* 1776 * If other processes are mapping this page, we couldn't discard 1777 * the page unless they all do MADV_FREE so let's skip the page. 1778 */ 1779 if (page_mapcount(page) != 1) 1780 goto out; 1781 1782 if (!trylock_page(page)) 1783 goto out; 1784 1785 /* 1786 * If user want to discard part-pages of THP, split it so MADV_FREE 1787 * will deactivate only them. 1788 */ 1789 if (next - addr != HPAGE_PMD_SIZE) { 1790 get_page(page); 1791 spin_unlock(ptl); 1792 split_huge_page(page); 1793 unlock_page(page); 1794 put_page(page); 1795 goto out_unlocked; 1796 } 1797 1798 if (PageDirty(page)) 1799 ClearPageDirty(page); 1800 unlock_page(page); 1801 1802 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1803 pmdp_invalidate(vma, addr, pmd); 1804 orig_pmd = pmd_mkold(orig_pmd); 1805 orig_pmd = pmd_mkclean(orig_pmd); 1806 1807 set_pmd_at(mm, addr, pmd, orig_pmd); 1808 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1809 } 1810 1811 mark_page_lazyfree(page); 1812 ret = true; 1813 out: 1814 spin_unlock(ptl); 1815 out_unlocked: 1816 return ret; 1817 } 1818 1819 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1820 { 1821 pgtable_t pgtable; 1822 1823 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1824 pte_free(mm, pgtable); 1825 mm_dec_nr_ptes(mm); 1826 } 1827 1828 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1829 pmd_t *pmd, unsigned long addr) 1830 { 1831 pmd_t orig_pmd; 1832 spinlock_t *ptl; 1833 1834 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1835 1836 ptl = __pmd_trans_huge_lock(pmd, vma); 1837 if (!ptl) 1838 return 0; 1839 /* 1840 * For architectures like ppc64 we look at deposited pgtable 1841 * when calling pmdp_huge_get_and_clear. So do the 1842 * pgtable_trans_huge_withdraw after finishing pmdp related 1843 * operations. 1844 */ 1845 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1846 tlb->fullmm); 1847 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1848 if (vma_is_special_huge(vma)) { 1849 if (arch_needs_pgtable_deposit()) 1850 zap_deposited_table(tlb->mm, pmd); 1851 spin_unlock(ptl); 1852 if (is_huge_zero_pmd(orig_pmd)) 1853 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1854 } else if (is_huge_zero_pmd(orig_pmd)) { 1855 zap_deposited_table(tlb->mm, pmd); 1856 spin_unlock(ptl); 1857 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1858 } else { 1859 struct page *page = NULL; 1860 int flush_needed = 1; 1861 1862 if (pmd_present(orig_pmd)) { 1863 page = pmd_page(orig_pmd); 1864 page_remove_rmap(page, true); 1865 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1866 VM_BUG_ON_PAGE(!PageHead(page), page); 1867 } else if (thp_migration_supported()) { 1868 swp_entry_t entry; 1869 1870 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1871 entry = pmd_to_swp_entry(orig_pmd); 1872 page = pfn_to_page(swp_offset(entry)); 1873 flush_needed = 0; 1874 } else 1875 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1876 1877 if (PageAnon(page)) { 1878 zap_deposited_table(tlb->mm, pmd); 1879 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1880 } else { 1881 if (arch_needs_pgtable_deposit()) 1882 zap_deposited_table(tlb->mm, pmd); 1883 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1884 } 1885 1886 spin_unlock(ptl); 1887 if (flush_needed) 1888 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1889 } 1890 return 1; 1891 } 1892 1893 #ifndef pmd_move_must_withdraw 1894 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1895 spinlock_t *old_pmd_ptl, 1896 struct vm_area_struct *vma) 1897 { 1898 /* 1899 * With split pmd lock we also need to move preallocated 1900 * PTE page table if new_pmd is on different PMD page table. 1901 * 1902 * We also don't deposit and withdraw tables for file pages. 1903 */ 1904 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1905 } 1906 #endif 1907 1908 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1909 { 1910 #ifdef CONFIG_MEM_SOFT_DIRTY 1911 if (unlikely(is_pmd_migration_entry(pmd))) 1912 pmd = pmd_swp_mksoft_dirty(pmd); 1913 else if (pmd_present(pmd)) 1914 pmd = pmd_mksoft_dirty(pmd); 1915 #endif 1916 return pmd; 1917 } 1918 1919 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1920 unsigned long new_addr, unsigned long old_end, 1921 pmd_t *old_pmd, pmd_t *new_pmd) 1922 { 1923 spinlock_t *old_ptl, *new_ptl; 1924 pmd_t pmd; 1925 struct mm_struct *mm = vma->vm_mm; 1926 bool force_flush = false; 1927 1928 if ((old_addr & ~HPAGE_PMD_MASK) || 1929 (new_addr & ~HPAGE_PMD_MASK) || 1930 old_end - old_addr < HPAGE_PMD_SIZE) 1931 return false; 1932 1933 /* 1934 * The destination pmd shouldn't be established, free_pgtables() 1935 * should have release it. 1936 */ 1937 if (WARN_ON(!pmd_none(*new_pmd))) { 1938 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1939 return false; 1940 } 1941 1942 /* 1943 * We don't have to worry about the ordering of src and dst 1944 * ptlocks because exclusive mmap_sem prevents deadlock. 1945 */ 1946 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1947 if (old_ptl) { 1948 new_ptl = pmd_lockptr(mm, new_pmd); 1949 if (new_ptl != old_ptl) 1950 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1951 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1952 if (pmd_present(pmd)) 1953 force_flush = true; 1954 VM_BUG_ON(!pmd_none(*new_pmd)); 1955 1956 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1957 pgtable_t pgtable; 1958 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1959 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1960 } 1961 pmd = move_soft_dirty_pmd(pmd); 1962 set_pmd_at(mm, new_addr, new_pmd, pmd); 1963 if (force_flush) 1964 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1965 if (new_ptl != old_ptl) 1966 spin_unlock(new_ptl); 1967 spin_unlock(old_ptl); 1968 return true; 1969 } 1970 return false; 1971 } 1972 1973 /* 1974 * Returns 1975 * - 0 if PMD could not be locked 1976 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1977 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1978 */ 1979 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1980 unsigned long addr, pgprot_t newprot, int prot_numa) 1981 { 1982 struct mm_struct *mm = vma->vm_mm; 1983 spinlock_t *ptl; 1984 pmd_t entry; 1985 bool preserve_write; 1986 int ret; 1987 1988 ptl = __pmd_trans_huge_lock(pmd, vma); 1989 if (!ptl) 1990 return 0; 1991 1992 preserve_write = prot_numa && pmd_write(*pmd); 1993 ret = 1; 1994 1995 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1996 if (is_swap_pmd(*pmd)) { 1997 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1998 1999 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2000 if (is_write_migration_entry(entry)) { 2001 pmd_t newpmd; 2002 /* 2003 * A protection check is difficult so 2004 * just be safe and disable write 2005 */ 2006 make_migration_entry_read(&entry); 2007 newpmd = swp_entry_to_pmd(entry); 2008 if (pmd_swp_soft_dirty(*pmd)) 2009 newpmd = pmd_swp_mksoft_dirty(newpmd); 2010 set_pmd_at(mm, addr, pmd, newpmd); 2011 } 2012 goto unlock; 2013 } 2014 #endif 2015 2016 /* 2017 * Avoid trapping faults against the zero page. The read-only 2018 * data is likely to be read-cached on the local CPU and 2019 * local/remote hits to the zero page are not interesting. 2020 */ 2021 if (prot_numa && is_huge_zero_pmd(*pmd)) 2022 goto unlock; 2023 2024 if (prot_numa && pmd_protnone(*pmd)) 2025 goto unlock; 2026 2027 /* 2028 * In case prot_numa, we are under down_read(mmap_sem). It's critical 2029 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2030 * which is also under down_read(mmap_sem): 2031 * 2032 * CPU0: CPU1: 2033 * change_huge_pmd(prot_numa=1) 2034 * pmdp_huge_get_and_clear_notify() 2035 * madvise_dontneed() 2036 * zap_pmd_range() 2037 * pmd_trans_huge(*pmd) == 0 (without ptl) 2038 * // skip the pmd 2039 * set_pmd_at(); 2040 * // pmd is re-established 2041 * 2042 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2043 * which may break userspace. 2044 * 2045 * pmdp_invalidate() is required to make sure we don't miss 2046 * dirty/young flags set by hardware. 2047 */ 2048 entry = pmdp_invalidate(vma, addr, pmd); 2049 2050 entry = pmd_modify(entry, newprot); 2051 if (preserve_write) 2052 entry = pmd_mk_savedwrite(entry); 2053 ret = HPAGE_PMD_NR; 2054 set_pmd_at(mm, addr, pmd, entry); 2055 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 2056 unlock: 2057 spin_unlock(ptl); 2058 return ret; 2059 } 2060 2061 /* 2062 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2063 * 2064 * Note that if it returns page table lock pointer, this routine returns without 2065 * unlocking page table lock. So callers must unlock it. 2066 */ 2067 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2068 { 2069 spinlock_t *ptl; 2070 ptl = pmd_lock(vma->vm_mm, pmd); 2071 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2072 pmd_devmap(*pmd))) 2073 return ptl; 2074 spin_unlock(ptl); 2075 return NULL; 2076 } 2077 2078 /* 2079 * Returns true if a given pud maps a thp, false otherwise. 2080 * 2081 * Note that if it returns true, this routine returns without unlocking page 2082 * table lock. So callers must unlock it. 2083 */ 2084 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2085 { 2086 spinlock_t *ptl; 2087 2088 ptl = pud_lock(vma->vm_mm, pud); 2089 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2090 return ptl; 2091 spin_unlock(ptl); 2092 return NULL; 2093 } 2094 2095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2096 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2097 pud_t *pud, unsigned long addr) 2098 { 2099 spinlock_t *ptl; 2100 2101 ptl = __pud_trans_huge_lock(pud, vma); 2102 if (!ptl) 2103 return 0; 2104 /* 2105 * For architectures like ppc64 we look at deposited pgtable 2106 * when calling pudp_huge_get_and_clear. So do the 2107 * pgtable_trans_huge_withdraw after finishing pudp related 2108 * operations. 2109 */ 2110 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 2111 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2112 if (vma_is_special_huge(vma)) { 2113 spin_unlock(ptl); 2114 /* No zero page support yet */ 2115 } else { 2116 /* No support for anonymous PUD pages yet */ 2117 BUG(); 2118 } 2119 return 1; 2120 } 2121 2122 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2123 unsigned long haddr) 2124 { 2125 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2126 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2127 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2128 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2129 2130 count_vm_event(THP_SPLIT_PUD); 2131 2132 pudp_huge_clear_flush_notify(vma, haddr, pud); 2133 } 2134 2135 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2136 unsigned long address) 2137 { 2138 spinlock_t *ptl; 2139 struct mmu_notifier_range range; 2140 2141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2142 address & HPAGE_PUD_MASK, 2143 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2144 mmu_notifier_invalidate_range_start(&range); 2145 ptl = pud_lock(vma->vm_mm, pud); 2146 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2147 goto out; 2148 __split_huge_pud_locked(vma, pud, range.start); 2149 2150 out: 2151 spin_unlock(ptl); 2152 /* 2153 * No need to double call mmu_notifier->invalidate_range() callback as 2154 * the above pudp_huge_clear_flush_notify() did already call it. 2155 */ 2156 mmu_notifier_invalidate_range_only_end(&range); 2157 } 2158 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2159 2160 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2161 unsigned long haddr, pmd_t *pmd) 2162 { 2163 struct mm_struct *mm = vma->vm_mm; 2164 pgtable_t pgtable; 2165 pmd_t _pmd; 2166 int i; 2167 2168 /* 2169 * Leave pmd empty until pte is filled note that it is fine to delay 2170 * notification until mmu_notifier_invalidate_range_end() as we are 2171 * replacing a zero pmd write protected page with a zero pte write 2172 * protected page. 2173 * 2174 * See Documentation/vm/mmu_notifier.rst 2175 */ 2176 pmdp_huge_clear_flush(vma, haddr, pmd); 2177 2178 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2179 pmd_populate(mm, &_pmd, pgtable); 2180 2181 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2182 pte_t *pte, entry; 2183 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2184 entry = pte_mkspecial(entry); 2185 pte = pte_offset_map(&_pmd, haddr); 2186 VM_BUG_ON(!pte_none(*pte)); 2187 set_pte_at(mm, haddr, pte, entry); 2188 pte_unmap(pte); 2189 } 2190 smp_wmb(); /* make pte visible before pmd */ 2191 pmd_populate(mm, pmd, pgtable); 2192 } 2193 2194 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2195 unsigned long haddr, bool freeze) 2196 { 2197 struct mm_struct *mm = vma->vm_mm; 2198 struct page *page; 2199 pgtable_t pgtable; 2200 pmd_t old_pmd, _pmd; 2201 bool young, write, soft_dirty, pmd_migration = false; 2202 unsigned long addr; 2203 int i; 2204 2205 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2206 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2207 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2208 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2209 && !pmd_devmap(*pmd)); 2210 2211 count_vm_event(THP_SPLIT_PMD); 2212 2213 if (!vma_is_anonymous(vma)) { 2214 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2215 /* 2216 * We are going to unmap this huge page. So 2217 * just go ahead and zap it 2218 */ 2219 if (arch_needs_pgtable_deposit()) 2220 zap_deposited_table(mm, pmd); 2221 if (vma_is_special_huge(vma)) 2222 return; 2223 page = pmd_page(_pmd); 2224 if (!PageDirty(page) && pmd_dirty(_pmd)) 2225 set_page_dirty(page); 2226 if (!PageReferenced(page) && pmd_young(_pmd)) 2227 SetPageReferenced(page); 2228 page_remove_rmap(page, true); 2229 put_page(page); 2230 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2231 return; 2232 } else if (is_huge_zero_pmd(*pmd)) { 2233 /* 2234 * FIXME: Do we want to invalidate secondary mmu by calling 2235 * mmu_notifier_invalidate_range() see comments below inside 2236 * __split_huge_pmd() ? 2237 * 2238 * We are going from a zero huge page write protected to zero 2239 * small page also write protected so it does not seems useful 2240 * to invalidate secondary mmu at this time. 2241 */ 2242 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2243 } 2244 2245 /* 2246 * Up to this point the pmd is present and huge and userland has the 2247 * whole access to the hugepage during the split (which happens in 2248 * place). If we overwrite the pmd with the not-huge version pointing 2249 * to the pte here (which of course we could if all CPUs were bug 2250 * free), userland could trigger a small page size TLB miss on the 2251 * small sized TLB while the hugepage TLB entry is still established in 2252 * the huge TLB. Some CPU doesn't like that. 2253 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2254 * 383 on page 93. Intel should be safe but is also warns that it's 2255 * only safe if the permission and cache attributes of the two entries 2256 * loaded in the two TLB is identical (which should be the case here). 2257 * But it is generally safer to never allow small and huge TLB entries 2258 * for the same virtual address to be loaded simultaneously. So instead 2259 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2260 * current pmd notpresent (atomically because here the pmd_trans_huge 2261 * must remain set at all times on the pmd until the split is complete 2262 * for this pmd), then we flush the SMP TLB and finally we write the 2263 * non-huge version of the pmd entry with pmd_populate. 2264 */ 2265 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2266 2267 pmd_migration = is_pmd_migration_entry(old_pmd); 2268 if (unlikely(pmd_migration)) { 2269 swp_entry_t entry; 2270 2271 entry = pmd_to_swp_entry(old_pmd); 2272 page = pfn_to_page(swp_offset(entry)); 2273 write = is_write_migration_entry(entry); 2274 young = false; 2275 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2276 } else { 2277 page = pmd_page(old_pmd); 2278 if (pmd_dirty(old_pmd)) 2279 SetPageDirty(page); 2280 write = pmd_write(old_pmd); 2281 young = pmd_young(old_pmd); 2282 soft_dirty = pmd_soft_dirty(old_pmd); 2283 } 2284 VM_BUG_ON_PAGE(!page_count(page), page); 2285 page_ref_add(page, HPAGE_PMD_NR - 1); 2286 2287 /* 2288 * Withdraw the table only after we mark the pmd entry invalid. 2289 * This's critical for some architectures (Power). 2290 */ 2291 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2292 pmd_populate(mm, &_pmd, pgtable); 2293 2294 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2295 pte_t entry, *pte; 2296 /* 2297 * Note that NUMA hinting access restrictions are not 2298 * transferred to avoid any possibility of altering 2299 * permissions across VMAs. 2300 */ 2301 if (freeze || pmd_migration) { 2302 swp_entry_t swp_entry; 2303 swp_entry = make_migration_entry(page + i, write); 2304 entry = swp_entry_to_pte(swp_entry); 2305 if (soft_dirty) 2306 entry = pte_swp_mksoft_dirty(entry); 2307 } else { 2308 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2309 entry = maybe_mkwrite(entry, vma); 2310 if (!write) 2311 entry = pte_wrprotect(entry); 2312 if (!young) 2313 entry = pte_mkold(entry); 2314 if (soft_dirty) 2315 entry = pte_mksoft_dirty(entry); 2316 } 2317 pte = pte_offset_map(&_pmd, addr); 2318 BUG_ON(!pte_none(*pte)); 2319 set_pte_at(mm, addr, pte, entry); 2320 atomic_inc(&page[i]._mapcount); 2321 pte_unmap(pte); 2322 } 2323 2324 /* 2325 * Set PG_double_map before dropping compound_mapcount to avoid 2326 * false-negative page_mapped(). 2327 */ 2328 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2329 for (i = 0; i < HPAGE_PMD_NR; i++) 2330 atomic_inc(&page[i]._mapcount); 2331 } 2332 2333 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2334 /* Last compound_mapcount is gone. */ 2335 __dec_node_page_state(page, NR_ANON_THPS); 2336 if (TestClearPageDoubleMap(page)) { 2337 /* No need in mapcount reference anymore */ 2338 for (i = 0; i < HPAGE_PMD_NR; i++) 2339 atomic_dec(&page[i]._mapcount); 2340 } 2341 } 2342 2343 smp_wmb(); /* make pte visible before pmd */ 2344 pmd_populate(mm, pmd, pgtable); 2345 2346 if (freeze) { 2347 for (i = 0; i < HPAGE_PMD_NR; i++) { 2348 page_remove_rmap(page + i, false); 2349 put_page(page + i); 2350 } 2351 } 2352 } 2353 2354 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2355 unsigned long address, bool freeze, struct page *page) 2356 { 2357 spinlock_t *ptl; 2358 struct mmu_notifier_range range; 2359 2360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2361 address & HPAGE_PMD_MASK, 2362 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2363 mmu_notifier_invalidate_range_start(&range); 2364 ptl = pmd_lock(vma->vm_mm, pmd); 2365 2366 /* 2367 * If caller asks to setup a migration entries, we need a page to check 2368 * pmd against. Otherwise we can end up replacing wrong page. 2369 */ 2370 VM_BUG_ON(freeze && !page); 2371 if (page && page != pmd_page(*pmd)) 2372 goto out; 2373 2374 if (pmd_trans_huge(*pmd)) { 2375 page = pmd_page(*pmd); 2376 if (PageMlocked(page)) 2377 clear_page_mlock(page); 2378 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2379 goto out; 2380 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2381 out: 2382 spin_unlock(ptl); 2383 /* 2384 * No need to double call mmu_notifier->invalidate_range() callback. 2385 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2386 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2387 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2388 * fault will trigger a flush_notify before pointing to a new page 2389 * (it is fine if the secondary mmu keeps pointing to the old zero 2390 * page in the meantime) 2391 * 3) Split a huge pmd into pte pointing to the same page. No need 2392 * to invalidate secondary tlb entry they are all still valid. 2393 * any further changes to individual pte will notify. So no need 2394 * to call mmu_notifier->invalidate_range() 2395 */ 2396 mmu_notifier_invalidate_range_only_end(&range); 2397 } 2398 2399 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2400 bool freeze, struct page *page) 2401 { 2402 pgd_t *pgd; 2403 p4d_t *p4d; 2404 pud_t *pud; 2405 pmd_t *pmd; 2406 2407 pgd = pgd_offset(vma->vm_mm, address); 2408 if (!pgd_present(*pgd)) 2409 return; 2410 2411 p4d = p4d_offset(pgd, address); 2412 if (!p4d_present(*p4d)) 2413 return; 2414 2415 pud = pud_offset(p4d, address); 2416 if (!pud_present(*pud)) 2417 return; 2418 2419 pmd = pmd_offset(pud, address); 2420 2421 __split_huge_pmd(vma, pmd, address, freeze, page); 2422 } 2423 2424 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2425 unsigned long start, 2426 unsigned long end, 2427 long adjust_next) 2428 { 2429 /* 2430 * If the new start address isn't hpage aligned and it could 2431 * previously contain an hugepage: check if we need to split 2432 * an huge pmd. 2433 */ 2434 if (start & ~HPAGE_PMD_MASK && 2435 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2436 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2437 split_huge_pmd_address(vma, start, false, NULL); 2438 2439 /* 2440 * If the new end address isn't hpage aligned and it could 2441 * previously contain an hugepage: check if we need to split 2442 * an huge pmd. 2443 */ 2444 if (end & ~HPAGE_PMD_MASK && 2445 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2446 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2447 split_huge_pmd_address(vma, end, false, NULL); 2448 2449 /* 2450 * If we're also updating the vma->vm_next->vm_start, if the new 2451 * vm_next->vm_start isn't page aligned and it could previously 2452 * contain an hugepage: check if we need to split an huge pmd. 2453 */ 2454 if (adjust_next > 0) { 2455 struct vm_area_struct *next = vma->vm_next; 2456 unsigned long nstart = next->vm_start; 2457 nstart += adjust_next << PAGE_SHIFT; 2458 if (nstart & ~HPAGE_PMD_MASK && 2459 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2460 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2461 split_huge_pmd_address(next, nstart, false, NULL); 2462 } 2463 } 2464 2465 static void unmap_page(struct page *page) 2466 { 2467 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2468 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2469 bool unmap_success; 2470 2471 VM_BUG_ON_PAGE(!PageHead(page), page); 2472 2473 if (PageAnon(page)) 2474 ttu_flags |= TTU_SPLIT_FREEZE; 2475 2476 unmap_success = try_to_unmap(page, ttu_flags); 2477 VM_BUG_ON_PAGE(!unmap_success, page); 2478 } 2479 2480 static void remap_page(struct page *page) 2481 { 2482 int i; 2483 if (PageTransHuge(page)) { 2484 remove_migration_ptes(page, page, true); 2485 } else { 2486 for (i = 0; i < HPAGE_PMD_NR; i++) 2487 remove_migration_ptes(page + i, page + i, true); 2488 } 2489 } 2490 2491 static void __split_huge_page_tail(struct page *head, int tail, 2492 struct lruvec *lruvec, struct list_head *list) 2493 { 2494 struct page *page_tail = head + tail; 2495 2496 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2497 2498 /* 2499 * Clone page flags before unfreezing refcount. 2500 * 2501 * After successful get_page_unless_zero() might follow flags change, 2502 * for exmaple lock_page() which set PG_waiters. 2503 */ 2504 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2505 page_tail->flags |= (head->flags & 2506 ((1L << PG_referenced) | 2507 (1L << PG_swapbacked) | 2508 (1L << PG_swapcache) | 2509 (1L << PG_mlocked) | 2510 (1L << PG_uptodate) | 2511 (1L << PG_active) | 2512 (1L << PG_workingset) | 2513 (1L << PG_locked) | 2514 (1L << PG_unevictable) | 2515 (1L << PG_dirty))); 2516 2517 /* ->mapping in first tail page is compound_mapcount */ 2518 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2519 page_tail); 2520 page_tail->mapping = head->mapping; 2521 page_tail->index = head->index + tail; 2522 2523 /* Page flags must be visible before we make the page non-compound. */ 2524 smp_wmb(); 2525 2526 /* 2527 * Clear PageTail before unfreezing page refcount. 2528 * 2529 * After successful get_page_unless_zero() might follow put_page() 2530 * which needs correct compound_head(). 2531 */ 2532 clear_compound_head(page_tail); 2533 2534 /* Finally unfreeze refcount. Additional reference from page cache. */ 2535 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2536 PageSwapCache(head))); 2537 2538 if (page_is_young(head)) 2539 set_page_young(page_tail); 2540 if (page_is_idle(head)) 2541 set_page_idle(page_tail); 2542 2543 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2544 2545 /* 2546 * always add to the tail because some iterators expect new 2547 * pages to show after the currently processed elements - e.g. 2548 * migrate_pages 2549 */ 2550 lru_add_page_tail(head, page_tail, lruvec, list); 2551 } 2552 2553 static void __split_huge_page(struct page *page, struct list_head *list, 2554 pgoff_t end, unsigned long flags) 2555 { 2556 struct page *head = compound_head(page); 2557 pg_data_t *pgdat = page_pgdat(head); 2558 struct lruvec *lruvec; 2559 struct address_space *swap_cache = NULL; 2560 unsigned long offset = 0; 2561 int i; 2562 2563 lruvec = mem_cgroup_page_lruvec(head, pgdat); 2564 2565 /* complete memcg works before add pages to LRU */ 2566 mem_cgroup_split_huge_fixup(head); 2567 2568 if (PageAnon(head) && PageSwapCache(head)) { 2569 swp_entry_t entry = { .val = page_private(head) }; 2570 2571 offset = swp_offset(entry); 2572 swap_cache = swap_address_space(entry); 2573 xa_lock(&swap_cache->i_pages); 2574 } 2575 2576 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2577 __split_huge_page_tail(head, i, lruvec, list); 2578 /* Some pages can be beyond i_size: drop them from page cache */ 2579 if (head[i].index >= end) { 2580 ClearPageDirty(head + i); 2581 __delete_from_page_cache(head + i, NULL); 2582 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2583 shmem_uncharge(head->mapping->host, 1); 2584 put_page(head + i); 2585 } else if (!PageAnon(page)) { 2586 __xa_store(&head->mapping->i_pages, head[i].index, 2587 head + i, 0); 2588 } else if (swap_cache) { 2589 __xa_store(&swap_cache->i_pages, offset + i, 2590 head + i, 0); 2591 } 2592 } 2593 2594 ClearPageCompound(head); 2595 2596 split_page_owner(head, HPAGE_PMD_ORDER); 2597 2598 /* See comment in __split_huge_page_tail() */ 2599 if (PageAnon(head)) { 2600 /* Additional pin to swap cache */ 2601 if (PageSwapCache(head)) { 2602 page_ref_add(head, 2); 2603 xa_unlock(&swap_cache->i_pages); 2604 } else { 2605 page_ref_inc(head); 2606 } 2607 } else { 2608 /* Additional pin to page cache */ 2609 page_ref_add(head, 2); 2610 xa_unlock(&head->mapping->i_pages); 2611 } 2612 2613 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 2614 2615 remap_page(head); 2616 2617 for (i = 0; i < HPAGE_PMD_NR; i++) { 2618 struct page *subpage = head + i; 2619 if (subpage == page) 2620 continue; 2621 unlock_page(subpage); 2622 2623 /* 2624 * Subpages may be freed if there wasn't any mapping 2625 * like if add_to_swap() is running on a lru page that 2626 * had its mapping zapped. And freeing these pages 2627 * requires taking the lru_lock so we do the put_page 2628 * of the tail pages after the split is complete. 2629 */ 2630 put_page(subpage); 2631 } 2632 } 2633 2634 int total_mapcount(struct page *page) 2635 { 2636 int i, compound, ret; 2637 2638 VM_BUG_ON_PAGE(PageTail(page), page); 2639 2640 if (likely(!PageCompound(page))) 2641 return atomic_read(&page->_mapcount) + 1; 2642 2643 compound = compound_mapcount(page); 2644 if (PageHuge(page)) 2645 return compound; 2646 ret = compound; 2647 for (i = 0; i < HPAGE_PMD_NR; i++) 2648 ret += atomic_read(&page[i]._mapcount) + 1; 2649 /* File pages has compound_mapcount included in _mapcount */ 2650 if (!PageAnon(page)) 2651 return ret - compound * HPAGE_PMD_NR; 2652 if (PageDoubleMap(page)) 2653 ret -= HPAGE_PMD_NR; 2654 return ret; 2655 } 2656 2657 /* 2658 * This calculates accurately how many mappings a transparent hugepage 2659 * has (unlike page_mapcount() which isn't fully accurate). This full 2660 * accuracy is primarily needed to know if copy-on-write faults can 2661 * reuse the page and change the mapping to read-write instead of 2662 * copying them. At the same time this returns the total_mapcount too. 2663 * 2664 * The function returns the highest mapcount any one of the subpages 2665 * has. If the return value is one, even if different processes are 2666 * mapping different subpages of the transparent hugepage, they can 2667 * all reuse it, because each process is reusing a different subpage. 2668 * 2669 * The total_mapcount is instead counting all virtual mappings of the 2670 * subpages. If the total_mapcount is equal to "one", it tells the 2671 * caller all mappings belong to the same "mm" and in turn the 2672 * anon_vma of the transparent hugepage can become the vma->anon_vma 2673 * local one as no other process may be mapping any of the subpages. 2674 * 2675 * It would be more accurate to replace page_mapcount() with 2676 * page_trans_huge_mapcount(), however we only use 2677 * page_trans_huge_mapcount() in the copy-on-write faults where we 2678 * need full accuracy to avoid breaking page pinning, because 2679 * page_trans_huge_mapcount() is slower than page_mapcount(). 2680 */ 2681 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2682 { 2683 int i, ret, _total_mapcount, mapcount; 2684 2685 /* hugetlbfs shouldn't call it */ 2686 VM_BUG_ON_PAGE(PageHuge(page), page); 2687 2688 if (likely(!PageTransCompound(page))) { 2689 mapcount = atomic_read(&page->_mapcount) + 1; 2690 if (total_mapcount) 2691 *total_mapcount = mapcount; 2692 return mapcount; 2693 } 2694 2695 page = compound_head(page); 2696 2697 _total_mapcount = ret = 0; 2698 for (i = 0; i < HPAGE_PMD_NR; i++) { 2699 mapcount = atomic_read(&page[i]._mapcount) + 1; 2700 ret = max(ret, mapcount); 2701 _total_mapcount += mapcount; 2702 } 2703 if (PageDoubleMap(page)) { 2704 ret -= 1; 2705 _total_mapcount -= HPAGE_PMD_NR; 2706 } 2707 mapcount = compound_mapcount(page); 2708 ret += mapcount; 2709 _total_mapcount += mapcount; 2710 if (total_mapcount) 2711 *total_mapcount = _total_mapcount; 2712 return ret; 2713 } 2714 2715 /* Racy check whether the huge page can be split */ 2716 bool can_split_huge_page(struct page *page, int *pextra_pins) 2717 { 2718 int extra_pins; 2719 2720 /* Additional pins from page cache */ 2721 if (PageAnon(page)) 2722 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2723 else 2724 extra_pins = HPAGE_PMD_NR; 2725 if (pextra_pins) 2726 *pextra_pins = extra_pins; 2727 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2728 } 2729 2730 /* 2731 * This function splits huge page into normal pages. @page can point to any 2732 * subpage of huge page to split. Split doesn't change the position of @page. 2733 * 2734 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2735 * The huge page must be locked. 2736 * 2737 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2738 * 2739 * Both head page and tail pages will inherit mapping, flags, and so on from 2740 * the hugepage. 2741 * 2742 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2743 * they are not mapped. 2744 * 2745 * Returns 0 if the hugepage is split successfully. 2746 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2747 * us. 2748 */ 2749 int split_huge_page_to_list(struct page *page, struct list_head *list) 2750 { 2751 struct page *head = compound_head(page); 2752 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2753 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2754 struct anon_vma *anon_vma = NULL; 2755 struct address_space *mapping = NULL; 2756 int count, mapcount, extra_pins, ret; 2757 bool mlocked; 2758 unsigned long flags; 2759 pgoff_t end; 2760 2761 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2762 VM_BUG_ON_PAGE(!PageLocked(head), head); 2763 VM_BUG_ON_PAGE(!PageCompound(head), head); 2764 2765 if (PageWriteback(head)) 2766 return -EBUSY; 2767 2768 if (PageAnon(head)) { 2769 /* 2770 * The caller does not necessarily hold an mmap_sem that would 2771 * prevent the anon_vma disappearing so we first we take a 2772 * reference to it and then lock the anon_vma for write. This 2773 * is similar to page_lock_anon_vma_read except the write lock 2774 * is taken to serialise against parallel split or collapse 2775 * operations. 2776 */ 2777 anon_vma = page_get_anon_vma(head); 2778 if (!anon_vma) { 2779 ret = -EBUSY; 2780 goto out; 2781 } 2782 end = -1; 2783 mapping = NULL; 2784 anon_vma_lock_write(anon_vma); 2785 } else { 2786 mapping = head->mapping; 2787 2788 /* Truncated ? */ 2789 if (!mapping) { 2790 ret = -EBUSY; 2791 goto out; 2792 } 2793 2794 anon_vma = NULL; 2795 i_mmap_lock_read(mapping); 2796 2797 /* 2798 *__split_huge_page() may need to trim off pages beyond EOF: 2799 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2800 * which cannot be nested inside the page tree lock. So note 2801 * end now: i_size itself may be changed at any moment, but 2802 * head page lock is good enough to serialize the trimming. 2803 */ 2804 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2805 } 2806 2807 /* 2808 * Racy check if we can split the page, before unmap_page() will 2809 * split PMDs 2810 */ 2811 if (!can_split_huge_page(head, &extra_pins)) { 2812 ret = -EBUSY; 2813 goto out_unlock; 2814 } 2815 2816 mlocked = PageMlocked(head); 2817 unmap_page(head); 2818 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2819 2820 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2821 if (mlocked) 2822 lru_add_drain(); 2823 2824 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2825 spin_lock_irqsave(&pgdata->lru_lock, flags); 2826 2827 if (mapping) { 2828 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2829 2830 /* 2831 * Check if the head page is present in page cache. 2832 * We assume all tail are present too, if head is there. 2833 */ 2834 xa_lock(&mapping->i_pages); 2835 if (xas_load(&xas) != head) 2836 goto fail; 2837 } 2838 2839 /* Prevent deferred_split_scan() touching ->_refcount */ 2840 spin_lock(&ds_queue->split_queue_lock); 2841 count = page_count(head); 2842 mapcount = total_mapcount(head); 2843 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2844 if (!list_empty(page_deferred_list(head))) { 2845 ds_queue->split_queue_len--; 2846 list_del(page_deferred_list(head)); 2847 } 2848 spin_unlock(&ds_queue->split_queue_lock); 2849 if (mapping) { 2850 if (PageSwapBacked(head)) 2851 __dec_node_page_state(head, NR_SHMEM_THPS); 2852 else 2853 __dec_node_page_state(head, NR_FILE_THPS); 2854 } 2855 2856 __split_huge_page(page, list, end, flags); 2857 if (PageSwapCache(head)) { 2858 swp_entry_t entry = { .val = page_private(head) }; 2859 2860 ret = split_swap_cluster(entry); 2861 } else 2862 ret = 0; 2863 } else { 2864 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2865 pr_alert("total_mapcount: %u, page_count(): %u\n", 2866 mapcount, count); 2867 if (PageTail(page)) 2868 dump_page(head, NULL); 2869 dump_page(page, "total_mapcount(head) > 0"); 2870 BUG(); 2871 } 2872 spin_unlock(&ds_queue->split_queue_lock); 2873 fail: if (mapping) 2874 xa_unlock(&mapping->i_pages); 2875 spin_unlock_irqrestore(&pgdata->lru_lock, flags); 2876 remap_page(head); 2877 ret = -EBUSY; 2878 } 2879 2880 out_unlock: 2881 if (anon_vma) { 2882 anon_vma_unlock_write(anon_vma); 2883 put_anon_vma(anon_vma); 2884 } 2885 if (mapping) 2886 i_mmap_unlock_read(mapping); 2887 out: 2888 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2889 return ret; 2890 } 2891 2892 void free_transhuge_page(struct page *page) 2893 { 2894 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2895 unsigned long flags; 2896 2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2898 if (!list_empty(page_deferred_list(page))) { 2899 ds_queue->split_queue_len--; 2900 list_del(page_deferred_list(page)); 2901 } 2902 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2903 free_compound_page(page); 2904 } 2905 2906 void deferred_split_huge_page(struct page *page) 2907 { 2908 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2909 #ifdef CONFIG_MEMCG 2910 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 2911 #endif 2912 unsigned long flags; 2913 2914 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2915 2916 /* 2917 * The try_to_unmap() in page reclaim path might reach here too, 2918 * this may cause a race condition to corrupt deferred split queue. 2919 * And, if page reclaim is already handling the same page, it is 2920 * unnecessary to handle it again in shrinker. 2921 * 2922 * Check PageSwapCache to determine if the page is being 2923 * handled by page reclaim since THP swap would add the page into 2924 * swap cache before calling try_to_unmap(). 2925 */ 2926 if (PageSwapCache(page)) 2927 return; 2928 2929 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2930 if (list_empty(page_deferred_list(page))) { 2931 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2932 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2933 ds_queue->split_queue_len++; 2934 #ifdef CONFIG_MEMCG 2935 if (memcg) 2936 memcg_set_shrinker_bit(memcg, page_to_nid(page), 2937 deferred_split_shrinker.id); 2938 #endif 2939 } 2940 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2941 } 2942 2943 static unsigned long deferred_split_count(struct shrinker *shrink, 2944 struct shrink_control *sc) 2945 { 2946 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2947 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2948 2949 #ifdef CONFIG_MEMCG 2950 if (sc->memcg) 2951 ds_queue = &sc->memcg->deferred_split_queue; 2952 #endif 2953 return READ_ONCE(ds_queue->split_queue_len); 2954 } 2955 2956 static unsigned long deferred_split_scan(struct shrinker *shrink, 2957 struct shrink_control *sc) 2958 { 2959 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2960 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2961 unsigned long flags; 2962 LIST_HEAD(list), *pos, *next; 2963 struct page *page; 2964 int split = 0; 2965 2966 #ifdef CONFIG_MEMCG 2967 if (sc->memcg) 2968 ds_queue = &sc->memcg->deferred_split_queue; 2969 #endif 2970 2971 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2972 /* Take pin on all head pages to avoid freeing them under us */ 2973 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2974 page = list_entry((void *)pos, struct page, mapping); 2975 page = compound_head(page); 2976 if (get_page_unless_zero(page)) { 2977 list_move(page_deferred_list(page), &list); 2978 } else { 2979 /* We lost race with put_compound_page() */ 2980 list_del_init(page_deferred_list(page)); 2981 ds_queue->split_queue_len--; 2982 } 2983 if (!--sc->nr_to_scan) 2984 break; 2985 } 2986 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2987 2988 list_for_each_safe(pos, next, &list) { 2989 page = list_entry((void *)pos, struct page, mapping); 2990 if (!trylock_page(page)) 2991 goto next; 2992 /* split_huge_page() removes page from list on success */ 2993 if (!split_huge_page(page)) 2994 split++; 2995 unlock_page(page); 2996 next: 2997 put_page(page); 2998 } 2999 3000 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3001 list_splice_tail(&list, &ds_queue->split_queue); 3002 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3003 3004 /* 3005 * Stop shrinker if we didn't split any page, but the queue is empty. 3006 * This can happen if pages were freed under us. 3007 */ 3008 if (!split && list_empty(&ds_queue->split_queue)) 3009 return SHRINK_STOP; 3010 return split; 3011 } 3012 3013 static struct shrinker deferred_split_shrinker = { 3014 .count_objects = deferred_split_count, 3015 .scan_objects = deferred_split_scan, 3016 .seeks = DEFAULT_SEEKS, 3017 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 3018 SHRINKER_NONSLAB, 3019 }; 3020 3021 #ifdef CONFIG_DEBUG_FS 3022 static int split_huge_pages_set(void *data, u64 val) 3023 { 3024 struct zone *zone; 3025 struct page *page; 3026 unsigned long pfn, max_zone_pfn; 3027 unsigned long total = 0, split = 0; 3028 3029 if (val != 1) 3030 return -EINVAL; 3031 3032 for_each_populated_zone(zone) { 3033 max_zone_pfn = zone_end_pfn(zone); 3034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3035 if (!pfn_valid(pfn)) 3036 continue; 3037 3038 page = pfn_to_page(pfn); 3039 if (!get_page_unless_zero(page)) 3040 continue; 3041 3042 if (zone != page_zone(page)) 3043 goto next; 3044 3045 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 3046 goto next; 3047 3048 total++; 3049 lock_page(page); 3050 if (!split_huge_page(page)) 3051 split++; 3052 unlock_page(page); 3053 next: 3054 put_page(page); 3055 } 3056 } 3057 3058 pr_info("%lu of %lu THP split\n", split, total); 3059 3060 return 0; 3061 } 3062 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 3063 "%llu\n"); 3064 3065 static int __init split_huge_pages_debugfs(void) 3066 { 3067 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3068 &split_huge_pages_fops); 3069 return 0; 3070 } 3071 late_initcall(split_huge_pages_debugfs); 3072 #endif 3073 3074 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3075 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3076 struct page *page) 3077 { 3078 struct vm_area_struct *vma = pvmw->vma; 3079 struct mm_struct *mm = vma->vm_mm; 3080 unsigned long address = pvmw->address; 3081 pmd_t pmdval; 3082 swp_entry_t entry; 3083 pmd_t pmdswp; 3084 3085 if (!(pvmw->pmd && !pvmw->pte)) 3086 return; 3087 3088 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3089 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3090 if (pmd_dirty(pmdval)) 3091 set_page_dirty(page); 3092 entry = make_migration_entry(page, pmd_write(pmdval)); 3093 pmdswp = swp_entry_to_pmd(entry); 3094 if (pmd_soft_dirty(pmdval)) 3095 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3096 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3097 page_remove_rmap(page, true); 3098 put_page(page); 3099 } 3100 3101 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3102 { 3103 struct vm_area_struct *vma = pvmw->vma; 3104 struct mm_struct *mm = vma->vm_mm; 3105 unsigned long address = pvmw->address; 3106 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3107 pmd_t pmde; 3108 swp_entry_t entry; 3109 3110 if (!(pvmw->pmd && !pvmw->pte)) 3111 return; 3112 3113 entry = pmd_to_swp_entry(*pvmw->pmd); 3114 get_page(new); 3115 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3116 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3117 pmde = pmd_mksoft_dirty(pmde); 3118 if (is_write_migration_entry(entry)) 3119 pmde = maybe_pmd_mkwrite(pmde, vma); 3120 3121 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 3122 if (PageAnon(new)) 3123 page_add_anon_rmap(new, vma, mmun_start, true); 3124 else 3125 page_add_file_rmap(new, true); 3126 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3127 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 3128 mlock_vma_page(new); 3129 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3130 } 3131 #endif 3132