1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/dax.h> 22 #include <linux/khugepaged.h> 23 #include <linux/freezer.h> 24 #include <linux/pfn_t.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 38 #include <asm/tlb.h> 39 #include <asm/pgalloc.h> 40 #include "internal.h" 41 42 /* 43 * By default, transparent hugepage support is disabled in order to avoid 44 * risking an increased memory footprint for applications that are not 45 * guaranteed to benefit from it. When transparent hugepage support is 46 * enabled, it is for all mappings, and khugepaged scans all mappings. 47 * Defrag is invoked by khugepaged hugepage allocations and by page faults 48 * for all hugepage allocations. 49 */ 50 unsigned long transparent_hugepage_flags __read_mostly = 51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 53 #endif 54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 56 #endif 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 60 61 static struct shrinker deferred_split_shrinker; 62 63 static atomic_t huge_zero_refcount; 64 struct page *huge_zero_page __read_mostly; 65 unsigned long huge_zero_pfn __read_mostly = ~0UL; 66 67 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 68 { 69 /* The addr is used to check if the vma size fits */ 70 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 71 72 if (!transhuge_vma_suitable(vma, addr)) 73 return false; 74 if (vma_is_anonymous(vma)) 75 return __transparent_hugepage_enabled(vma); 76 if (vma_is_shmem(vma)) 77 return shmem_huge_enabled(vma); 78 79 return false; 80 } 81 82 static bool get_huge_zero_page(void) 83 { 84 struct page *zero_page; 85 retry: 86 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 87 return true; 88 89 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 90 HPAGE_PMD_ORDER); 91 if (!zero_page) { 92 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 93 return false; 94 } 95 count_vm_event(THP_ZERO_PAGE_ALLOC); 96 preempt_disable(); 97 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 98 preempt_enable(); 99 __free_pages(zero_page, compound_order(zero_page)); 100 goto retry; 101 } 102 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 103 104 /* We take additional reference here. It will be put back by shrinker */ 105 atomic_set(&huge_zero_refcount, 2); 106 preempt_enable(); 107 return true; 108 } 109 110 static void put_huge_zero_page(void) 111 { 112 /* 113 * Counter should never go to zero here. Only shrinker can put 114 * last reference. 115 */ 116 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 117 } 118 119 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 120 { 121 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 122 return READ_ONCE(huge_zero_page); 123 124 if (!get_huge_zero_page()) 125 return NULL; 126 127 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 128 put_huge_zero_page(); 129 130 return READ_ONCE(huge_zero_page); 131 } 132 133 void mm_put_huge_zero_page(struct mm_struct *mm) 134 { 135 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 136 put_huge_zero_page(); 137 } 138 139 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 140 struct shrink_control *sc) 141 { 142 /* we can free zero page only if last reference remains */ 143 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 144 } 145 146 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 147 struct shrink_control *sc) 148 { 149 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 150 struct page *zero_page = xchg(&huge_zero_page, NULL); 151 BUG_ON(zero_page == NULL); 152 WRITE_ONCE(huge_zero_pfn, ~0UL); 153 __free_pages(zero_page, compound_order(zero_page)); 154 return HPAGE_PMD_NR; 155 } 156 157 return 0; 158 } 159 160 static struct shrinker huge_zero_page_shrinker = { 161 .count_objects = shrink_huge_zero_page_count, 162 .scan_objects = shrink_huge_zero_page_scan, 163 .seeks = DEFAULT_SEEKS, 164 }; 165 166 #ifdef CONFIG_SYSFS 167 static ssize_t enabled_show(struct kobject *kobj, 168 struct kobj_attribute *attr, char *buf) 169 { 170 const char *output; 171 172 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 173 output = "[always] madvise never"; 174 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 175 &transparent_hugepage_flags)) 176 output = "always [madvise] never"; 177 else 178 output = "always madvise [never]"; 179 180 return sysfs_emit(buf, "%s\n", output); 181 } 182 183 static ssize_t enabled_store(struct kobject *kobj, 184 struct kobj_attribute *attr, 185 const char *buf, size_t count) 186 { 187 ssize_t ret = count; 188 189 if (sysfs_streq(buf, "always")) { 190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 191 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 192 } else if (sysfs_streq(buf, "madvise")) { 193 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 194 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 195 } else if (sysfs_streq(buf, "never")) { 196 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 197 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 198 } else 199 ret = -EINVAL; 200 201 if (ret > 0) { 202 int err = start_stop_khugepaged(); 203 if (err) 204 ret = err; 205 } 206 return ret; 207 } 208 static struct kobj_attribute enabled_attr = 209 __ATTR(enabled, 0644, enabled_show, enabled_store); 210 211 ssize_t single_hugepage_flag_show(struct kobject *kobj, 212 struct kobj_attribute *attr, char *buf, 213 enum transparent_hugepage_flag flag) 214 { 215 return sysfs_emit(buf, "%d\n", 216 !!test_bit(flag, &transparent_hugepage_flags)); 217 } 218 219 ssize_t single_hugepage_flag_store(struct kobject *kobj, 220 struct kobj_attribute *attr, 221 const char *buf, size_t count, 222 enum transparent_hugepage_flag flag) 223 { 224 unsigned long value; 225 int ret; 226 227 ret = kstrtoul(buf, 10, &value); 228 if (ret < 0) 229 return ret; 230 if (value > 1) 231 return -EINVAL; 232 233 if (value) 234 set_bit(flag, &transparent_hugepage_flags); 235 else 236 clear_bit(flag, &transparent_hugepage_flags); 237 238 return count; 239 } 240 241 static ssize_t defrag_show(struct kobject *kobj, 242 struct kobj_attribute *attr, char *buf) 243 { 244 const char *output; 245 246 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 247 &transparent_hugepage_flags)) 248 output = "[always] defer defer+madvise madvise never"; 249 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 250 &transparent_hugepage_flags)) 251 output = "always [defer] defer+madvise madvise never"; 252 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 253 &transparent_hugepage_flags)) 254 output = "always defer [defer+madvise] madvise never"; 255 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 256 &transparent_hugepage_flags)) 257 output = "always defer defer+madvise [madvise] never"; 258 else 259 output = "always defer defer+madvise madvise [never]"; 260 261 return sysfs_emit(buf, "%s\n", output); 262 } 263 264 static ssize_t defrag_store(struct kobject *kobj, 265 struct kobj_attribute *attr, 266 const char *buf, size_t count) 267 { 268 if (sysfs_streq(buf, "always")) { 269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 273 } else if (sysfs_streq(buf, "defer+madvise")) { 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 277 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 278 } else if (sysfs_streq(buf, "defer")) { 279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 282 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 283 } else if (sysfs_streq(buf, "madvise")) { 284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 287 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 288 } else if (sysfs_streq(buf, "never")) { 289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 293 } else 294 return -EINVAL; 295 296 return count; 297 } 298 static struct kobj_attribute defrag_attr = 299 __ATTR(defrag, 0644, defrag_show, defrag_store); 300 301 static ssize_t use_zero_page_show(struct kobject *kobj, 302 struct kobj_attribute *attr, char *buf) 303 { 304 return single_hugepage_flag_show(kobj, attr, buf, 305 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 306 } 307 static ssize_t use_zero_page_store(struct kobject *kobj, 308 struct kobj_attribute *attr, const char *buf, size_t count) 309 { 310 return single_hugepage_flag_store(kobj, attr, buf, count, 311 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 312 } 313 static struct kobj_attribute use_zero_page_attr = 314 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 315 316 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 317 struct kobj_attribute *attr, char *buf) 318 { 319 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 320 } 321 static struct kobj_attribute hpage_pmd_size_attr = 322 __ATTR_RO(hpage_pmd_size); 323 324 static struct attribute *hugepage_attr[] = { 325 &enabled_attr.attr, 326 &defrag_attr.attr, 327 &use_zero_page_attr.attr, 328 &hpage_pmd_size_attr.attr, 329 #ifdef CONFIG_SHMEM 330 &shmem_enabled_attr.attr, 331 #endif 332 NULL, 333 }; 334 335 static const struct attribute_group hugepage_attr_group = { 336 .attrs = hugepage_attr, 337 }; 338 339 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 340 { 341 int err; 342 343 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 344 if (unlikely(!*hugepage_kobj)) { 345 pr_err("failed to create transparent hugepage kobject\n"); 346 return -ENOMEM; 347 } 348 349 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 350 if (err) { 351 pr_err("failed to register transparent hugepage group\n"); 352 goto delete_obj; 353 } 354 355 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 356 if (err) { 357 pr_err("failed to register transparent hugepage group\n"); 358 goto remove_hp_group; 359 } 360 361 return 0; 362 363 remove_hp_group: 364 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 365 delete_obj: 366 kobject_put(*hugepage_kobj); 367 return err; 368 } 369 370 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 371 { 372 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 373 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 374 kobject_put(hugepage_kobj); 375 } 376 #else 377 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 378 { 379 return 0; 380 } 381 382 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 383 { 384 } 385 #endif /* CONFIG_SYSFS */ 386 387 static int __init hugepage_init(void) 388 { 389 int err; 390 struct kobject *hugepage_kobj; 391 392 if (!has_transparent_hugepage()) { 393 /* 394 * Hardware doesn't support hugepages, hence disable 395 * DAX PMD support. 396 */ 397 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 398 return -EINVAL; 399 } 400 401 /* 402 * hugepages can't be allocated by the buddy allocator 403 */ 404 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 405 /* 406 * we use page->mapping and page->index in second tail page 407 * as list_head: assuming THP order >= 2 408 */ 409 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 410 411 err = hugepage_init_sysfs(&hugepage_kobj); 412 if (err) 413 goto err_sysfs; 414 415 err = khugepaged_init(); 416 if (err) 417 goto err_slab; 418 419 err = register_shrinker(&huge_zero_page_shrinker); 420 if (err) 421 goto err_hzp_shrinker; 422 err = register_shrinker(&deferred_split_shrinker); 423 if (err) 424 goto err_split_shrinker; 425 426 /* 427 * By default disable transparent hugepages on smaller systems, 428 * where the extra memory used could hurt more than TLB overhead 429 * is likely to save. The admin can still enable it through /sys. 430 */ 431 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 432 transparent_hugepage_flags = 0; 433 return 0; 434 } 435 436 err = start_stop_khugepaged(); 437 if (err) 438 goto err_khugepaged; 439 440 return 0; 441 err_khugepaged: 442 unregister_shrinker(&deferred_split_shrinker); 443 err_split_shrinker: 444 unregister_shrinker(&huge_zero_page_shrinker); 445 err_hzp_shrinker: 446 khugepaged_destroy(); 447 err_slab: 448 hugepage_exit_sysfs(hugepage_kobj); 449 err_sysfs: 450 return err; 451 } 452 subsys_initcall(hugepage_init); 453 454 static int __init setup_transparent_hugepage(char *str) 455 { 456 int ret = 0; 457 if (!str) 458 goto out; 459 if (!strcmp(str, "always")) { 460 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 461 &transparent_hugepage_flags); 462 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 463 &transparent_hugepage_flags); 464 ret = 1; 465 } else if (!strcmp(str, "madvise")) { 466 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 467 &transparent_hugepage_flags); 468 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 469 &transparent_hugepage_flags); 470 ret = 1; 471 } else if (!strcmp(str, "never")) { 472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 473 &transparent_hugepage_flags); 474 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 475 &transparent_hugepage_flags); 476 ret = 1; 477 } 478 out: 479 if (!ret) 480 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 481 return ret; 482 } 483 __setup("transparent_hugepage=", setup_transparent_hugepage); 484 485 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 486 { 487 if (likely(vma->vm_flags & VM_WRITE)) 488 pmd = pmd_mkwrite(pmd); 489 return pmd; 490 } 491 492 #ifdef CONFIG_MEMCG 493 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 494 { 495 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 496 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 497 498 if (memcg) 499 return &memcg->deferred_split_queue; 500 else 501 return &pgdat->deferred_split_queue; 502 } 503 #else 504 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 505 { 506 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 507 508 return &pgdat->deferred_split_queue; 509 } 510 #endif 511 512 void prep_transhuge_page(struct page *page) 513 { 514 /* 515 * we use page->mapping and page->indexlru in second tail page 516 * as list_head: assuming THP order >= 2 517 */ 518 519 INIT_LIST_HEAD(page_deferred_list(page)); 520 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 521 } 522 523 bool is_transparent_hugepage(struct page *page) 524 { 525 if (!PageCompound(page)) 526 return false; 527 528 page = compound_head(page); 529 return is_huge_zero_page(page) || 530 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 531 } 532 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 533 534 static unsigned long __thp_get_unmapped_area(struct file *filp, 535 unsigned long addr, unsigned long len, 536 loff_t off, unsigned long flags, unsigned long size) 537 { 538 loff_t off_end = off + len; 539 loff_t off_align = round_up(off, size); 540 unsigned long len_pad, ret; 541 542 if (off_end <= off_align || (off_end - off_align) < size) 543 return 0; 544 545 len_pad = len + size; 546 if (len_pad < len || (off + len_pad) < off) 547 return 0; 548 549 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 550 off >> PAGE_SHIFT, flags); 551 552 /* 553 * The failure might be due to length padding. The caller will retry 554 * without the padding. 555 */ 556 if (IS_ERR_VALUE(ret)) 557 return 0; 558 559 /* 560 * Do not try to align to THP boundary if allocation at the address 561 * hint succeeds. 562 */ 563 if (ret == addr) 564 return addr; 565 566 ret += (off - ret) & (size - 1); 567 return ret; 568 } 569 570 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 571 unsigned long len, unsigned long pgoff, unsigned long flags) 572 { 573 unsigned long ret; 574 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 575 576 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 577 goto out; 578 579 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 580 if (ret) 581 return ret; 582 out: 583 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 584 } 585 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 586 587 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 588 struct page *page, gfp_t gfp) 589 { 590 struct vm_area_struct *vma = vmf->vma; 591 pgtable_t pgtable; 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 593 vm_fault_t ret = 0; 594 595 VM_BUG_ON_PAGE(!PageCompound(page), page); 596 597 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 598 put_page(page); 599 count_vm_event(THP_FAULT_FALLBACK); 600 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 601 return VM_FAULT_FALLBACK; 602 } 603 cgroup_throttle_swaprate(page, gfp); 604 605 pgtable = pte_alloc_one(vma->vm_mm); 606 if (unlikely(!pgtable)) { 607 ret = VM_FAULT_OOM; 608 goto release; 609 } 610 611 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 612 /* 613 * The memory barrier inside __SetPageUptodate makes sure that 614 * clear_huge_page writes become visible before the set_pmd_at() 615 * write. 616 */ 617 __SetPageUptodate(page); 618 619 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 620 if (unlikely(!pmd_none(*vmf->pmd))) { 621 goto unlock_release; 622 } else { 623 pmd_t entry; 624 625 ret = check_stable_address_space(vma->vm_mm); 626 if (ret) 627 goto unlock_release; 628 629 /* Deliver the page fault to userland */ 630 if (userfaultfd_missing(vma)) { 631 spin_unlock(vmf->ptl); 632 put_page(page); 633 pte_free(vma->vm_mm, pgtable); 634 ret = handle_userfault(vmf, VM_UFFD_MISSING); 635 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 636 return ret; 637 } 638 639 entry = mk_huge_pmd(page, vma->vm_page_prot); 640 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 641 page_add_new_anon_rmap(page, vma, haddr, true); 642 lru_cache_add_inactive_or_unevictable(page, vma); 643 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 644 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 645 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 646 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 647 mm_inc_nr_ptes(vma->vm_mm); 648 spin_unlock(vmf->ptl); 649 count_vm_event(THP_FAULT_ALLOC); 650 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 651 } 652 653 return 0; 654 unlock_release: 655 spin_unlock(vmf->ptl); 656 release: 657 if (pgtable) 658 pte_free(vma->vm_mm, pgtable); 659 put_page(page); 660 return ret; 661 662 } 663 664 /* 665 * always: directly stall for all thp allocations 666 * defer: wake kswapd and fail if not immediately available 667 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 668 * fail if not immediately available 669 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 670 * available 671 * never: never stall for any thp allocation 672 */ 673 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 674 { 675 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 676 677 /* Always do synchronous compaction */ 678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 679 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 680 681 /* Kick kcompactd and fail quickly */ 682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 683 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 684 685 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 687 return GFP_TRANSHUGE_LIGHT | 688 (vma_madvised ? __GFP_DIRECT_RECLAIM : 689 __GFP_KSWAPD_RECLAIM); 690 691 /* Only do synchronous compaction if madvised */ 692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 693 return GFP_TRANSHUGE_LIGHT | 694 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 695 696 return GFP_TRANSHUGE_LIGHT; 697 } 698 699 /* Caller must hold page table lock. */ 700 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 701 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 702 struct page *zero_page) 703 { 704 pmd_t entry; 705 if (!pmd_none(*pmd)) 706 return; 707 entry = mk_pmd(zero_page, vma->vm_page_prot); 708 entry = pmd_mkhuge(entry); 709 if (pgtable) 710 pgtable_trans_huge_deposit(mm, pmd, pgtable); 711 set_pmd_at(mm, haddr, pmd, entry); 712 mm_inc_nr_ptes(mm); 713 } 714 715 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 716 { 717 struct vm_area_struct *vma = vmf->vma; 718 gfp_t gfp; 719 struct page *page; 720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 721 722 if (!transhuge_vma_suitable(vma, haddr)) 723 return VM_FAULT_FALLBACK; 724 if (unlikely(anon_vma_prepare(vma))) 725 return VM_FAULT_OOM; 726 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 727 return VM_FAULT_OOM; 728 if (!(vmf->flags & FAULT_FLAG_WRITE) && 729 !mm_forbids_zeropage(vma->vm_mm) && 730 transparent_hugepage_use_zero_page()) { 731 pgtable_t pgtable; 732 struct page *zero_page; 733 vm_fault_t ret; 734 pgtable = pte_alloc_one(vma->vm_mm); 735 if (unlikely(!pgtable)) 736 return VM_FAULT_OOM; 737 zero_page = mm_get_huge_zero_page(vma->vm_mm); 738 if (unlikely(!zero_page)) { 739 pte_free(vma->vm_mm, pgtable); 740 count_vm_event(THP_FAULT_FALLBACK); 741 return VM_FAULT_FALLBACK; 742 } 743 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 744 ret = 0; 745 if (pmd_none(*vmf->pmd)) { 746 ret = check_stable_address_space(vma->vm_mm); 747 if (ret) { 748 spin_unlock(vmf->ptl); 749 pte_free(vma->vm_mm, pgtable); 750 } else if (userfaultfd_missing(vma)) { 751 spin_unlock(vmf->ptl); 752 pte_free(vma->vm_mm, pgtable); 753 ret = handle_userfault(vmf, VM_UFFD_MISSING); 754 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 755 } else { 756 set_huge_zero_page(pgtable, vma->vm_mm, vma, 757 haddr, vmf->pmd, zero_page); 758 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 759 spin_unlock(vmf->ptl); 760 } 761 } else { 762 spin_unlock(vmf->ptl); 763 pte_free(vma->vm_mm, pgtable); 764 } 765 return ret; 766 } 767 gfp = vma_thp_gfp_mask(vma); 768 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 769 if (unlikely(!page)) { 770 count_vm_event(THP_FAULT_FALLBACK); 771 return VM_FAULT_FALLBACK; 772 } 773 prep_transhuge_page(page); 774 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 775 } 776 777 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 778 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 779 pgtable_t pgtable) 780 { 781 struct mm_struct *mm = vma->vm_mm; 782 pmd_t entry; 783 spinlock_t *ptl; 784 785 ptl = pmd_lock(mm, pmd); 786 if (!pmd_none(*pmd)) { 787 if (write) { 788 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 789 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 790 goto out_unlock; 791 } 792 entry = pmd_mkyoung(*pmd); 793 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 794 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 795 update_mmu_cache_pmd(vma, addr, pmd); 796 } 797 798 goto out_unlock; 799 } 800 801 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 802 if (pfn_t_devmap(pfn)) 803 entry = pmd_mkdevmap(entry); 804 if (write) { 805 entry = pmd_mkyoung(pmd_mkdirty(entry)); 806 entry = maybe_pmd_mkwrite(entry, vma); 807 } 808 809 if (pgtable) { 810 pgtable_trans_huge_deposit(mm, pmd, pgtable); 811 mm_inc_nr_ptes(mm); 812 pgtable = NULL; 813 } 814 815 set_pmd_at(mm, addr, pmd, entry); 816 update_mmu_cache_pmd(vma, addr, pmd); 817 818 out_unlock: 819 spin_unlock(ptl); 820 if (pgtable) 821 pte_free(mm, pgtable); 822 } 823 824 /** 825 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 826 * @vmf: Structure describing the fault 827 * @pfn: pfn to insert 828 * @pgprot: page protection to use 829 * @write: whether it's a write fault 830 * 831 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 832 * also consult the vmf_insert_mixed_prot() documentation when 833 * @pgprot != @vmf->vma->vm_page_prot. 834 * 835 * Return: vm_fault_t value. 836 */ 837 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 838 pgprot_t pgprot, bool write) 839 { 840 unsigned long addr = vmf->address & PMD_MASK; 841 struct vm_area_struct *vma = vmf->vma; 842 pgtable_t pgtable = NULL; 843 844 /* 845 * If we had pmd_special, we could avoid all these restrictions, 846 * but we need to be consistent with PTEs and architectures that 847 * can't support a 'special' bit. 848 */ 849 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 850 !pfn_t_devmap(pfn)); 851 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 852 (VM_PFNMAP|VM_MIXEDMAP)); 853 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 854 855 if (addr < vma->vm_start || addr >= vma->vm_end) 856 return VM_FAULT_SIGBUS; 857 858 if (arch_needs_pgtable_deposit()) { 859 pgtable = pte_alloc_one(vma->vm_mm); 860 if (!pgtable) 861 return VM_FAULT_OOM; 862 } 863 864 track_pfn_insert(vma, &pgprot, pfn); 865 866 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 867 return VM_FAULT_NOPAGE; 868 } 869 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 870 871 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 872 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 873 { 874 if (likely(vma->vm_flags & VM_WRITE)) 875 pud = pud_mkwrite(pud); 876 return pud; 877 } 878 879 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 880 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 881 { 882 struct mm_struct *mm = vma->vm_mm; 883 pud_t entry; 884 spinlock_t *ptl; 885 886 ptl = pud_lock(mm, pud); 887 if (!pud_none(*pud)) { 888 if (write) { 889 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 890 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 891 goto out_unlock; 892 } 893 entry = pud_mkyoung(*pud); 894 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 895 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 896 update_mmu_cache_pud(vma, addr, pud); 897 } 898 goto out_unlock; 899 } 900 901 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 902 if (pfn_t_devmap(pfn)) 903 entry = pud_mkdevmap(entry); 904 if (write) { 905 entry = pud_mkyoung(pud_mkdirty(entry)); 906 entry = maybe_pud_mkwrite(entry, vma); 907 } 908 set_pud_at(mm, addr, pud, entry); 909 update_mmu_cache_pud(vma, addr, pud); 910 911 out_unlock: 912 spin_unlock(ptl); 913 } 914 915 /** 916 * vmf_insert_pfn_pud_prot - insert a pud size pfn 917 * @vmf: Structure describing the fault 918 * @pfn: pfn to insert 919 * @pgprot: page protection to use 920 * @write: whether it's a write fault 921 * 922 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 923 * also consult the vmf_insert_mixed_prot() documentation when 924 * @pgprot != @vmf->vma->vm_page_prot. 925 * 926 * Return: vm_fault_t value. 927 */ 928 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 929 pgprot_t pgprot, bool write) 930 { 931 unsigned long addr = vmf->address & PUD_MASK; 932 struct vm_area_struct *vma = vmf->vma; 933 934 /* 935 * If we had pud_special, we could avoid all these restrictions, 936 * but we need to be consistent with PTEs and architectures that 937 * can't support a 'special' bit. 938 */ 939 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 940 !pfn_t_devmap(pfn)); 941 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 942 (VM_PFNMAP|VM_MIXEDMAP)); 943 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 944 945 if (addr < vma->vm_start || addr >= vma->vm_end) 946 return VM_FAULT_SIGBUS; 947 948 track_pfn_insert(vma, &pgprot, pfn); 949 950 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 951 return VM_FAULT_NOPAGE; 952 } 953 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 954 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 955 956 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 957 pmd_t *pmd, int flags) 958 { 959 pmd_t _pmd; 960 961 _pmd = pmd_mkyoung(*pmd); 962 if (flags & FOLL_WRITE) 963 _pmd = pmd_mkdirty(_pmd); 964 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 965 pmd, _pmd, flags & FOLL_WRITE)) 966 update_mmu_cache_pmd(vma, addr, pmd); 967 } 968 969 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 970 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 971 { 972 unsigned long pfn = pmd_pfn(*pmd); 973 struct mm_struct *mm = vma->vm_mm; 974 struct page *page; 975 976 assert_spin_locked(pmd_lockptr(mm, pmd)); 977 978 /* 979 * When we COW a devmap PMD entry, we split it into PTEs, so we should 980 * not be in this function with `flags & FOLL_COW` set. 981 */ 982 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 983 984 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 985 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 986 (FOLL_PIN | FOLL_GET))) 987 return NULL; 988 989 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 990 return NULL; 991 992 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 993 /* pass */; 994 else 995 return NULL; 996 997 if (flags & FOLL_TOUCH) 998 touch_pmd(vma, addr, pmd, flags); 999 1000 /* 1001 * device mapped pages can only be returned if the 1002 * caller will manage the page reference count. 1003 */ 1004 if (!(flags & (FOLL_GET | FOLL_PIN))) 1005 return ERR_PTR(-EEXIST); 1006 1007 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1008 *pgmap = get_dev_pagemap(pfn, *pgmap); 1009 if (!*pgmap) 1010 return ERR_PTR(-EFAULT); 1011 page = pfn_to_page(pfn); 1012 if (!try_grab_page(page, flags)) 1013 page = ERR_PTR(-ENOMEM); 1014 1015 return page; 1016 } 1017 1018 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1020 struct vm_area_struct *vma) 1021 { 1022 spinlock_t *dst_ptl, *src_ptl; 1023 struct page *src_page; 1024 pmd_t pmd; 1025 pgtable_t pgtable = NULL; 1026 int ret = -ENOMEM; 1027 1028 /* Skip if can be re-fill on fault */ 1029 if (!vma_is_anonymous(vma)) 1030 return 0; 1031 1032 pgtable = pte_alloc_one(dst_mm); 1033 if (unlikely(!pgtable)) 1034 goto out; 1035 1036 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1037 src_ptl = pmd_lockptr(src_mm, src_pmd); 1038 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1039 1040 ret = -EAGAIN; 1041 pmd = *src_pmd; 1042 1043 /* 1044 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 1045 * does not have the VM_UFFD_WP, which means that the uffd 1046 * fork event is not enabled. 1047 */ 1048 if (!(vma->vm_flags & VM_UFFD_WP)) 1049 pmd = pmd_clear_uffd_wp(pmd); 1050 1051 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1052 if (unlikely(is_swap_pmd(pmd))) { 1053 swp_entry_t entry = pmd_to_swp_entry(pmd); 1054 1055 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1056 if (is_write_migration_entry(entry)) { 1057 make_migration_entry_read(&entry); 1058 pmd = swp_entry_to_pmd(entry); 1059 if (pmd_swp_soft_dirty(*src_pmd)) 1060 pmd = pmd_swp_mksoft_dirty(pmd); 1061 set_pmd_at(src_mm, addr, src_pmd, pmd); 1062 } 1063 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1064 mm_inc_nr_ptes(dst_mm); 1065 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1066 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1067 ret = 0; 1068 goto out_unlock; 1069 } 1070 #endif 1071 1072 if (unlikely(!pmd_trans_huge(pmd))) { 1073 pte_free(dst_mm, pgtable); 1074 goto out_unlock; 1075 } 1076 /* 1077 * When page table lock is held, the huge zero pmd should not be 1078 * under splitting since we don't split the page itself, only pmd to 1079 * a page table. 1080 */ 1081 if (is_huge_zero_pmd(pmd)) { 1082 struct page *zero_page; 1083 /* 1084 * get_huge_zero_page() will never allocate a new page here, 1085 * since we already have a zero page to copy. It just takes a 1086 * reference. 1087 */ 1088 zero_page = mm_get_huge_zero_page(dst_mm); 1089 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1090 zero_page); 1091 ret = 0; 1092 goto out_unlock; 1093 } 1094 1095 src_page = pmd_page(pmd); 1096 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1097 1098 /* 1099 * If this page is a potentially pinned page, split and retry the fault 1100 * with smaller page size. Normally this should not happen because the 1101 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1102 * best effort that the pinned pages won't be replaced by another 1103 * random page during the coming copy-on-write. 1104 */ 1105 if (unlikely(page_needs_cow_for_dma(vma, src_page))) { 1106 pte_free(dst_mm, pgtable); 1107 spin_unlock(src_ptl); 1108 spin_unlock(dst_ptl); 1109 __split_huge_pmd(vma, src_pmd, addr, false, NULL); 1110 return -EAGAIN; 1111 } 1112 1113 get_page(src_page); 1114 page_dup_rmap(src_page, true); 1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1116 mm_inc_nr_ptes(dst_mm); 1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1118 1119 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1120 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1121 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1122 1123 ret = 0; 1124 out_unlock: 1125 spin_unlock(src_ptl); 1126 spin_unlock(dst_ptl); 1127 out: 1128 return ret; 1129 } 1130 1131 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1132 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1133 pud_t *pud, int flags) 1134 { 1135 pud_t _pud; 1136 1137 _pud = pud_mkyoung(*pud); 1138 if (flags & FOLL_WRITE) 1139 _pud = pud_mkdirty(_pud); 1140 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1141 pud, _pud, flags & FOLL_WRITE)) 1142 update_mmu_cache_pud(vma, addr, pud); 1143 } 1144 1145 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1146 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1147 { 1148 unsigned long pfn = pud_pfn(*pud); 1149 struct mm_struct *mm = vma->vm_mm; 1150 struct page *page; 1151 1152 assert_spin_locked(pud_lockptr(mm, pud)); 1153 1154 if (flags & FOLL_WRITE && !pud_write(*pud)) 1155 return NULL; 1156 1157 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1158 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1159 (FOLL_PIN | FOLL_GET))) 1160 return NULL; 1161 1162 if (pud_present(*pud) && pud_devmap(*pud)) 1163 /* pass */; 1164 else 1165 return NULL; 1166 1167 if (flags & FOLL_TOUCH) 1168 touch_pud(vma, addr, pud, flags); 1169 1170 /* 1171 * device mapped pages can only be returned if the 1172 * caller will manage the page reference count. 1173 * 1174 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1175 */ 1176 if (!(flags & (FOLL_GET | FOLL_PIN))) 1177 return ERR_PTR(-EEXIST); 1178 1179 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1180 *pgmap = get_dev_pagemap(pfn, *pgmap); 1181 if (!*pgmap) 1182 return ERR_PTR(-EFAULT); 1183 page = pfn_to_page(pfn); 1184 if (!try_grab_page(page, flags)) 1185 page = ERR_PTR(-ENOMEM); 1186 1187 return page; 1188 } 1189 1190 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1191 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1192 struct vm_area_struct *vma) 1193 { 1194 spinlock_t *dst_ptl, *src_ptl; 1195 pud_t pud; 1196 int ret; 1197 1198 dst_ptl = pud_lock(dst_mm, dst_pud); 1199 src_ptl = pud_lockptr(src_mm, src_pud); 1200 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1201 1202 ret = -EAGAIN; 1203 pud = *src_pud; 1204 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1205 goto out_unlock; 1206 1207 /* 1208 * When page table lock is held, the huge zero pud should not be 1209 * under splitting since we don't split the page itself, only pud to 1210 * a page table. 1211 */ 1212 if (is_huge_zero_pud(pud)) { 1213 /* No huge zero pud yet */ 1214 } 1215 1216 /* Please refer to comments in copy_huge_pmd() */ 1217 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) { 1218 spin_unlock(src_ptl); 1219 spin_unlock(dst_ptl); 1220 __split_huge_pud(vma, src_pud, addr); 1221 return -EAGAIN; 1222 } 1223 1224 pudp_set_wrprotect(src_mm, addr, src_pud); 1225 pud = pud_mkold(pud_wrprotect(pud)); 1226 set_pud_at(dst_mm, addr, dst_pud, pud); 1227 1228 ret = 0; 1229 out_unlock: 1230 spin_unlock(src_ptl); 1231 spin_unlock(dst_ptl); 1232 return ret; 1233 } 1234 1235 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1236 { 1237 pud_t entry; 1238 unsigned long haddr; 1239 bool write = vmf->flags & FAULT_FLAG_WRITE; 1240 1241 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1242 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1243 goto unlock; 1244 1245 entry = pud_mkyoung(orig_pud); 1246 if (write) 1247 entry = pud_mkdirty(entry); 1248 haddr = vmf->address & HPAGE_PUD_MASK; 1249 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1250 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1251 1252 unlock: 1253 spin_unlock(vmf->ptl); 1254 } 1255 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1256 1257 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1258 { 1259 pmd_t entry; 1260 unsigned long haddr; 1261 bool write = vmf->flags & FAULT_FLAG_WRITE; 1262 1263 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1264 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1265 goto unlock; 1266 1267 entry = pmd_mkyoung(orig_pmd); 1268 if (write) 1269 entry = pmd_mkdirty(entry); 1270 haddr = vmf->address & HPAGE_PMD_MASK; 1271 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1272 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1273 1274 unlock: 1275 spin_unlock(vmf->ptl); 1276 } 1277 1278 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1279 { 1280 struct vm_area_struct *vma = vmf->vma; 1281 struct page *page; 1282 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1283 1284 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1285 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1286 1287 if (is_huge_zero_pmd(orig_pmd)) 1288 goto fallback; 1289 1290 spin_lock(vmf->ptl); 1291 1292 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1293 spin_unlock(vmf->ptl); 1294 return 0; 1295 } 1296 1297 page = pmd_page(orig_pmd); 1298 VM_BUG_ON_PAGE(!PageHead(page), page); 1299 1300 /* Lock page for reuse_swap_page() */ 1301 if (!trylock_page(page)) { 1302 get_page(page); 1303 spin_unlock(vmf->ptl); 1304 lock_page(page); 1305 spin_lock(vmf->ptl); 1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1307 spin_unlock(vmf->ptl); 1308 unlock_page(page); 1309 put_page(page); 1310 return 0; 1311 } 1312 put_page(page); 1313 } 1314 1315 /* 1316 * We can only reuse the page if nobody else maps the huge page or it's 1317 * part. 1318 */ 1319 if (reuse_swap_page(page, NULL)) { 1320 pmd_t entry; 1321 entry = pmd_mkyoung(orig_pmd); 1322 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1323 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1324 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1325 unlock_page(page); 1326 spin_unlock(vmf->ptl); 1327 return VM_FAULT_WRITE; 1328 } 1329 1330 unlock_page(page); 1331 spin_unlock(vmf->ptl); 1332 fallback: 1333 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1334 return VM_FAULT_FALLBACK; 1335 } 1336 1337 /* 1338 * FOLL_FORCE can write to even unwritable pmd's, but only 1339 * after we've gone through a COW cycle and they are dirty. 1340 */ 1341 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1342 { 1343 return pmd_write(pmd) || 1344 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1345 } 1346 1347 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1348 unsigned long addr, 1349 pmd_t *pmd, 1350 unsigned int flags) 1351 { 1352 struct mm_struct *mm = vma->vm_mm; 1353 struct page *page = NULL; 1354 1355 assert_spin_locked(pmd_lockptr(mm, pmd)); 1356 1357 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1358 goto out; 1359 1360 /* Avoid dumping huge zero page */ 1361 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1362 return ERR_PTR(-EFAULT); 1363 1364 /* Full NUMA hinting faults to serialise migration in fault paths */ 1365 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1366 goto out; 1367 1368 page = pmd_page(*pmd); 1369 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1370 1371 if (!try_grab_page(page, flags)) 1372 return ERR_PTR(-ENOMEM); 1373 1374 if (flags & FOLL_TOUCH) 1375 touch_pmd(vma, addr, pmd, flags); 1376 1377 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1378 /* 1379 * We don't mlock() pte-mapped THPs. This way we can avoid 1380 * leaking mlocked pages into non-VM_LOCKED VMAs. 1381 * 1382 * For anon THP: 1383 * 1384 * In most cases the pmd is the only mapping of the page as we 1385 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1386 * writable private mappings in populate_vma_page_range(). 1387 * 1388 * The only scenario when we have the page shared here is if we 1389 * mlocking read-only mapping shared over fork(). We skip 1390 * mlocking such pages. 1391 * 1392 * For file THP: 1393 * 1394 * We can expect PageDoubleMap() to be stable under page lock: 1395 * for file pages we set it in page_add_file_rmap(), which 1396 * requires page to be locked. 1397 */ 1398 1399 if (PageAnon(page) && compound_mapcount(page) != 1) 1400 goto skip_mlock; 1401 if (PageDoubleMap(page) || !page->mapping) 1402 goto skip_mlock; 1403 if (!trylock_page(page)) 1404 goto skip_mlock; 1405 if (page->mapping && !PageDoubleMap(page)) 1406 mlock_vma_page(page); 1407 unlock_page(page); 1408 } 1409 skip_mlock: 1410 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1411 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1412 1413 out: 1414 return page; 1415 } 1416 1417 /* NUMA hinting page fault entry point for trans huge pmds */ 1418 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1419 { 1420 struct vm_area_struct *vma = vmf->vma; 1421 struct anon_vma *anon_vma = NULL; 1422 struct page *page; 1423 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1424 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1425 int target_nid, last_cpupid = -1; 1426 bool page_locked; 1427 bool migrated = false; 1428 bool was_writable; 1429 int flags = 0; 1430 1431 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1432 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1433 goto out_unlock; 1434 1435 /* 1436 * If there are potential migrations, wait for completion and retry 1437 * without disrupting NUMA hinting information. Do not relock and 1438 * check_same as the page may no longer be mapped. 1439 */ 1440 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1441 page = pmd_page(*vmf->pmd); 1442 if (!get_page_unless_zero(page)) 1443 goto out_unlock; 1444 spin_unlock(vmf->ptl); 1445 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 1446 goto out; 1447 } 1448 1449 page = pmd_page(pmd); 1450 BUG_ON(is_huge_zero_page(page)); 1451 page_nid = page_to_nid(page); 1452 last_cpupid = page_cpupid_last(page); 1453 count_vm_numa_event(NUMA_HINT_FAULTS); 1454 if (page_nid == this_nid) { 1455 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1456 flags |= TNF_FAULT_LOCAL; 1457 } 1458 1459 /* See similar comment in do_numa_page for explanation */ 1460 if (!pmd_savedwrite(pmd)) 1461 flags |= TNF_NO_GROUP; 1462 1463 /* 1464 * Acquire the page lock to serialise THP migrations but avoid dropping 1465 * page_table_lock if at all possible 1466 */ 1467 page_locked = trylock_page(page); 1468 target_nid = mpol_misplaced(page, vma, haddr); 1469 /* Migration could have started since the pmd_trans_migrating check */ 1470 if (!page_locked) { 1471 page_nid = NUMA_NO_NODE; 1472 if (!get_page_unless_zero(page)) 1473 goto out_unlock; 1474 spin_unlock(vmf->ptl); 1475 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 1476 goto out; 1477 } else if (target_nid == NUMA_NO_NODE) { 1478 /* There are no parallel migrations and page is in the right 1479 * node. Clear the numa hinting info in this pmd. 1480 */ 1481 goto clear_pmdnuma; 1482 } 1483 1484 /* 1485 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1486 * to serialises splits 1487 */ 1488 get_page(page); 1489 spin_unlock(vmf->ptl); 1490 anon_vma = page_lock_anon_vma_read(page); 1491 1492 /* Confirm the PMD did not change while page_table_lock was released */ 1493 spin_lock(vmf->ptl); 1494 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1495 unlock_page(page); 1496 put_page(page); 1497 page_nid = NUMA_NO_NODE; 1498 goto out_unlock; 1499 } 1500 1501 /* Bail if we fail to protect against THP splits for any reason */ 1502 if (unlikely(!anon_vma)) { 1503 put_page(page); 1504 page_nid = NUMA_NO_NODE; 1505 goto clear_pmdnuma; 1506 } 1507 1508 /* 1509 * Since we took the NUMA fault, we must have observed the !accessible 1510 * bit. Make sure all other CPUs agree with that, to avoid them 1511 * modifying the page we're about to migrate. 1512 * 1513 * Must be done under PTL such that we'll observe the relevant 1514 * inc_tlb_flush_pending(). 1515 * 1516 * We are not sure a pending tlb flush here is for a huge page 1517 * mapping or not. Hence use the tlb range variant 1518 */ 1519 if (mm_tlb_flush_pending(vma->vm_mm)) { 1520 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1521 /* 1522 * change_huge_pmd() released the pmd lock before 1523 * invalidating the secondary MMUs sharing the primary 1524 * MMU pagetables (with ->invalidate_range()). The 1525 * mmu_notifier_invalidate_range_end() (which 1526 * internally calls ->invalidate_range()) in 1527 * change_pmd_range() will run after us, so we can't 1528 * rely on it here and we need an explicit invalidate. 1529 */ 1530 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1531 haddr + HPAGE_PMD_SIZE); 1532 } 1533 1534 /* 1535 * Migrate the THP to the requested node, returns with page unlocked 1536 * and access rights restored. 1537 */ 1538 spin_unlock(vmf->ptl); 1539 1540 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1541 vmf->pmd, pmd, vmf->address, page, target_nid); 1542 if (migrated) { 1543 flags |= TNF_MIGRATED; 1544 page_nid = target_nid; 1545 } else 1546 flags |= TNF_MIGRATE_FAIL; 1547 1548 goto out; 1549 clear_pmdnuma: 1550 BUG_ON(!PageLocked(page)); 1551 was_writable = pmd_savedwrite(pmd); 1552 pmd = pmd_modify(pmd, vma->vm_page_prot); 1553 pmd = pmd_mkyoung(pmd); 1554 if (was_writable) 1555 pmd = pmd_mkwrite(pmd); 1556 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1557 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1558 unlock_page(page); 1559 out_unlock: 1560 spin_unlock(vmf->ptl); 1561 1562 out: 1563 if (anon_vma) 1564 page_unlock_anon_vma_read(anon_vma); 1565 1566 if (page_nid != NUMA_NO_NODE) 1567 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1568 flags); 1569 1570 return 0; 1571 } 1572 1573 /* 1574 * Return true if we do MADV_FREE successfully on entire pmd page. 1575 * Otherwise, return false. 1576 */ 1577 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1578 pmd_t *pmd, unsigned long addr, unsigned long next) 1579 { 1580 spinlock_t *ptl; 1581 pmd_t orig_pmd; 1582 struct page *page; 1583 struct mm_struct *mm = tlb->mm; 1584 bool ret = false; 1585 1586 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1587 1588 ptl = pmd_trans_huge_lock(pmd, vma); 1589 if (!ptl) 1590 goto out_unlocked; 1591 1592 orig_pmd = *pmd; 1593 if (is_huge_zero_pmd(orig_pmd)) 1594 goto out; 1595 1596 if (unlikely(!pmd_present(orig_pmd))) { 1597 VM_BUG_ON(thp_migration_supported() && 1598 !is_pmd_migration_entry(orig_pmd)); 1599 goto out; 1600 } 1601 1602 page = pmd_page(orig_pmd); 1603 /* 1604 * If other processes are mapping this page, we couldn't discard 1605 * the page unless they all do MADV_FREE so let's skip the page. 1606 */ 1607 if (page_mapcount(page) != 1) 1608 goto out; 1609 1610 if (!trylock_page(page)) 1611 goto out; 1612 1613 /* 1614 * If user want to discard part-pages of THP, split it so MADV_FREE 1615 * will deactivate only them. 1616 */ 1617 if (next - addr != HPAGE_PMD_SIZE) { 1618 get_page(page); 1619 spin_unlock(ptl); 1620 split_huge_page(page); 1621 unlock_page(page); 1622 put_page(page); 1623 goto out_unlocked; 1624 } 1625 1626 if (PageDirty(page)) 1627 ClearPageDirty(page); 1628 unlock_page(page); 1629 1630 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1631 pmdp_invalidate(vma, addr, pmd); 1632 orig_pmd = pmd_mkold(orig_pmd); 1633 orig_pmd = pmd_mkclean(orig_pmd); 1634 1635 set_pmd_at(mm, addr, pmd, orig_pmd); 1636 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1637 } 1638 1639 mark_page_lazyfree(page); 1640 ret = true; 1641 out: 1642 spin_unlock(ptl); 1643 out_unlocked: 1644 return ret; 1645 } 1646 1647 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1648 { 1649 pgtable_t pgtable; 1650 1651 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1652 pte_free(mm, pgtable); 1653 mm_dec_nr_ptes(mm); 1654 } 1655 1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1657 pmd_t *pmd, unsigned long addr) 1658 { 1659 pmd_t orig_pmd; 1660 spinlock_t *ptl; 1661 1662 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1663 1664 ptl = __pmd_trans_huge_lock(pmd, vma); 1665 if (!ptl) 1666 return 0; 1667 /* 1668 * For architectures like ppc64 we look at deposited pgtable 1669 * when calling pmdp_huge_get_and_clear. So do the 1670 * pgtable_trans_huge_withdraw after finishing pmdp related 1671 * operations. 1672 */ 1673 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1674 tlb->fullmm); 1675 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1676 if (vma_is_special_huge(vma)) { 1677 if (arch_needs_pgtable_deposit()) 1678 zap_deposited_table(tlb->mm, pmd); 1679 spin_unlock(ptl); 1680 if (is_huge_zero_pmd(orig_pmd)) 1681 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1682 } else if (is_huge_zero_pmd(orig_pmd)) { 1683 zap_deposited_table(tlb->mm, pmd); 1684 spin_unlock(ptl); 1685 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1686 } else { 1687 struct page *page = NULL; 1688 int flush_needed = 1; 1689 1690 if (pmd_present(orig_pmd)) { 1691 page = pmd_page(orig_pmd); 1692 page_remove_rmap(page, true); 1693 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1694 VM_BUG_ON_PAGE(!PageHead(page), page); 1695 } else if (thp_migration_supported()) { 1696 swp_entry_t entry; 1697 1698 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1699 entry = pmd_to_swp_entry(orig_pmd); 1700 page = migration_entry_to_page(entry); 1701 flush_needed = 0; 1702 } else 1703 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1704 1705 if (PageAnon(page)) { 1706 zap_deposited_table(tlb->mm, pmd); 1707 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1708 } else { 1709 if (arch_needs_pgtable_deposit()) 1710 zap_deposited_table(tlb->mm, pmd); 1711 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1712 } 1713 1714 spin_unlock(ptl); 1715 if (flush_needed) 1716 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1717 } 1718 return 1; 1719 } 1720 1721 #ifndef pmd_move_must_withdraw 1722 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1723 spinlock_t *old_pmd_ptl, 1724 struct vm_area_struct *vma) 1725 { 1726 /* 1727 * With split pmd lock we also need to move preallocated 1728 * PTE page table if new_pmd is on different PMD page table. 1729 * 1730 * We also don't deposit and withdraw tables for file pages. 1731 */ 1732 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1733 } 1734 #endif 1735 1736 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1737 { 1738 #ifdef CONFIG_MEM_SOFT_DIRTY 1739 if (unlikely(is_pmd_migration_entry(pmd))) 1740 pmd = pmd_swp_mksoft_dirty(pmd); 1741 else if (pmd_present(pmd)) 1742 pmd = pmd_mksoft_dirty(pmd); 1743 #endif 1744 return pmd; 1745 } 1746 1747 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1748 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1749 { 1750 spinlock_t *old_ptl, *new_ptl; 1751 pmd_t pmd; 1752 struct mm_struct *mm = vma->vm_mm; 1753 bool force_flush = false; 1754 1755 /* 1756 * The destination pmd shouldn't be established, free_pgtables() 1757 * should have release it. 1758 */ 1759 if (WARN_ON(!pmd_none(*new_pmd))) { 1760 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1761 return false; 1762 } 1763 1764 /* 1765 * We don't have to worry about the ordering of src and dst 1766 * ptlocks because exclusive mmap_lock prevents deadlock. 1767 */ 1768 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1769 if (old_ptl) { 1770 new_ptl = pmd_lockptr(mm, new_pmd); 1771 if (new_ptl != old_ptl) 1772 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1773 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1774 if (pmd_present(pmd)) 1775 force_flush = true; 1776 VM_BUG_ON(!pmd_none(*new_pmd)); 1777 1778 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1779 pgtable_t pgtable; 1780 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1781 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1782 } 1783 pmd = move_soft_dirty_pmd(pmd); 1784 set_pmd_at(mm, new_addr, new_pmd, pmd); 1785 if (force_flush) 1786 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1787 if (new_ptl != old_ptl) 1788 spin_unlock(new_ptl); 1789 spin_unlock(old_ptl); 1790 return true; 1791 } 1792 return false; 1793 } 1794 1795 /* 1796 * Returns 1797 * - 0 if PMD could not be locked 1798 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1799 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1800 */ 1801 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1802 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1803 { 1804 struct mm_struct *mm = vma->vm_mm; 1805 spinlock_t *ptl; 1806 pmd_t entry; 1807 bool preserve_write; 1808 int ret; 1809 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1810 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1811 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1812 1813 ptl = __pmd_trans_huge_lock(pmd, vma); 1814 if (!ptl) 1815 return 0; 1816 1817 preserve_write = prot_numa && pmd_write(*pmd); 1818 ret = 1; 1819 1820 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1821 if (is_swap_pmd(*pmd)) { 1822 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1823 1824 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1825 if (is_write_migration_entry(entry)) { 1826 pmd_t newpmd; 1827 /* 1828 * A protection check is difficult so 1829 * just be safe and disable write 1830 */ 1831 make_migration_entry_read(&entry); 1832 newpmd = swp_entry_to_pmd(entry); 1833 if (pmd_swp_soft_dirty(*pmd)) 1834 newpmd = pmd_swp_mksoft_dirty(newpmd); 1835 set_pmd_at(mm, addr, pmd, newpmd); 1836 } 1837 goto unlock; 1838 } 1839 #endif 1840 1841 /* 1842 * Avoid trapping faults against the zero page. The read-only 1843 * data is likely to be read-cached on the local CPU and 1844 * local/remote hits to the zero page are not interesting. 1845 */ 1846 if (prot_numa && is_huge_zero_pmd(*pmd)) 1847 goto unlock; 1848 1849 if (prot_numa && pmd_protnone(*pmd)) 1850 goto unlock; 1851 1852 /* 1853 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1854 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1855 * which is also under mmap_read_lock(mm): 1856 * 1857 * CPU0: CPU1: 1858 * change_huge_pmd(prot_numa=1) 1859 * pmdp_huge_get_and_clear_notify() 1860 * madvise_dontneed() 1861 * zap_pmd_range() 1862 * pmd_trans_huge(*pmd) == 0 (without ptl) 1863 * // skip the pmd 1864 * set_pmd_at(); 1865 * // pmd is re-established 1866 * 1867 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1868 * which may break userspace. 1869 * 1870 * pmdp_invalidate() is required to make sure we don't miss 1871 * dirty/young flags set by hardware. 1872 */ 1873 entry = pmdp_invalidate(vma, addr, pmd); 1874 1875 entry = pmd_modify(entry, newprot); 1876 if (preserve_write) 1877 entry = pmd_mk_savedwrite(entry); 1878 if (uffd_wp) { 1879 entry = pmd_wrprotect(entry); 1880 entry = pmd_mkuffd_wp(entry); 1881 } else if (uffd_wp_resolve) { 1882 /* 1883 * Leave the write bit to be handled by PF interrupt 1884 * handler, then things like COW could be properly 1885 * handled. 1886 */ 1887 entry = pmd_clear_uffd_wp(entry); 1888 } 1889 ret = HPAGE_PMD_NR; 1890 set_pmd_at(mm, addr, pmd, entry); 1891 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1892 unlock: 1893 spin_unlock(ptl); 1894 return ret; 1895 } 1896 1897 /* 1898 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1899 * 1900 * Note that if it returns page table lock pointer, this routine returns without 1901 * unlocking page table lock. So callers must unlock it. 1902 */ 1903 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1904 { 1905 spinlock_t *ptl; 1906 ptl = pmd_lock(vma->vm_mm, pmd); 1907 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1908 pmd_devmap(*pmd))) 1909 return ptl; 1910 spin_unlock(ptl); 1911 return NULL; 1912 } 1913 1914 /* 1915 * Returns true if a given pud maps a thp, false otherwise. 1916 * 1917 * Note that if it returns true, this routine returns without unlocking page 1918 * table lock. So callers must unlock it. 1919 */ 1920 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1921 { 1922 spinlock_t *ptl; 1923 1924 ptl = pud_lock(vma->vm_mm, pud); 1925 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1926 return ptl; 1927 spin_unlock(ptl); 1928 return NULL; 1929 } 1930 1931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1932 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1933 pud_t *pud, unsigned long addr) 1934 { 1935 spinlock_t *ptl; 1936 1937 ptl = __pud_trans_huge_lock(pud, vma); 1938 if (!ptl) 1939 return 0; 1940 /* 1941 * For architectures like ppc64 we look at deposited pgtable 1942 * when calling pudp_huge_get_and_clear. So do the 1943 * pgtable_trans_huge_withdraw after finishing pudp related 1944 * operations. 1945 */ 1946 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1947 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1948 if (vma_is_special_huge(vma)) { 1949 spin_unlock(ptl); 1950 /* No zero page support yet */ 1951 } else { 1952 /* No support for anonymous PUD pages yet */ 1953 BUG(); 1954 } 1955 return 1; 1956 } 1957 1958 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1959 unsigned long haddr) 1960 { 1961 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1962 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1963 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1964 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1965 1966 count_vm_event(THP_SPLIT_PUD); 1967 1968 pudp_huge_clear_flush_notify(vma, haddr, pud); 1969 } 1970 1971 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1972 unsigned long address) 1973 { 1974 spinlock_t *ptl; 1975 struct mmu_notifier_range range; 1976 1977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1978 address & HPAGE_PUD_MASK, 1979 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1980 mmu_notifier_invalidate_range_start(&range); 1981 ptl = pud_lock(vma->vm_mm, pud); 1982 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1983 goto out; 1984 __split_huge_pud_locked(vma, pud, range.start); 1985 1986 out: 1987 spin_unlock(ptl); 1988 /* 1989 * No need to double call mmu_notifier->invalidate_range() callback as 1990 * the above pudp_huge_clear_flush_notify() did already call it. 1991 */ 1992 mmu_notifier_invalidate_range_only_end(&range); 1993 } 1994 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1995 1996 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1997 unsigned long haddr, pmd_t *pmd) 1998 { 1999 struct mm_struct *mm = vma->vm_mm; 2000 pgtable_t pgtable; 2001 pmd_t _pmd; 2002 int i; 2003 2004 /* 2005 * Leave pmd empty until pte is filled note that it is fine to delay 2006 * notification until mmu_notifier_invalidate_range_end() as we are 2007 * replacing a zero pmd write protected page with a zero pte write 2008 * protected page. 2009 * 2010 * See Documentation/vm/mmu_notifier.rst 2011 */ 2012 pmdp_huge_clear_flush(vma, haddr, pmd); 2013 2014 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2015 pmd_populate(mm, &_pmd, pgtable); 2016 2017 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2018 pte_t *pte, entry; 2019 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2020 entry = pte_mkspecial(entry); 2021 pte = pte_offset_map(&_pmd, haddr); 2022 VM_BUG_ON(!pte_none(*pte)); 2023 set_pte_at(mm, haddr, pte, entry); 2024 pte_unmap(pte); 2025 } 2026 smp_wmb(); /* make pte visible before pmd */ 2027 pmd_populate(mm, pmd, pgtable); 2028 } 2029 2030 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2031 unsigned long haddr, bool freeze) 2032 { 2033 struct mm_struct *mm = vma->vm_mm; 2034 struct page *page; 2035 pgtable_t pgtable; 2036 pmd_t old_pmd, _pmd; 2037 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2038 unsigned long addr; 2039 int i; 2040 2041 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2042 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2043 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2044 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2045 && !pmd_devmap(*pmd)); 2046 2047 count_vm_event(THP_SPLIT_PMD); 2048 2049 if (!vma_is_anonymous(vma)) { 2050 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2051 /* 2052 * We are going to unmap this huge page. So 2053 * just go ahead and zap it 2054 */ 2055 if (arch_needs_pgtable_deposit()) 2056 zap_deposited_table(mm, pmd); 2057 if (vma_is_special_huge(vma)) 2058 return; 2059 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2060 swp_entry_t entry; 2061 2062 entry = pmd_to_swp_entry(old_pmd); 2063 page = migration_entry_to_page(entry); 2064 } else { 2065 page = pmd_page(old_pmd); 2066 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2067 set_page_dirty(page); 2068 if (!PageReferenced(page) && pmd_young(old_pmd)) 2069 SetPageReferenced(page); 2070 page_remove_rmap(page, true); 2071 put_page(page); 2072 } 2073 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2074 return; 2075 } 2076 2077 if (is_huge_zero_pmd(*pmd)) { 2078 /* 2079 * FIXME: Do we want to invalidate secondary mmu by calling 2080 * mmu_notifier_invalidate_range() see comments below inside 2081 * __split_huge_pmd() ? 2082 * 2083 * We are going from a zero huge page write protected to zero 2084 * small page also write protected so it does not seems useful 2085 * to invalidate secondary mmu at this time. 2086 */ 2087 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2088 } 2089 2090 /* 2091 * Up to this point the pmd is present and huge and userland has the 2092 * whole access to the hugepage during the split (which happens in 2093 * place). If we overwrite the pmd with the not-huge version pointing 2094 * to the pte here (which of course we could if all CPUs were bug 2095 * free), userland could trigger a small page size TLB miss on the 2096 * small sized TLB while the hugepage TLB entry is still established in 2097 * the huge TLB. Some CPU doesn't like that. 2098 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2099 * 383 on page 105. Intel should be safe but is also warns that it's 2100 * only safe if the permission and cache attributes of the two entries 2101 * loaded in the two TLB is identical (which should be the case here). 2102 * But it is generally safer to never allow small and huge TLB entries 2103 * for the same virtual address to be loaded simultaneously. So instead 2104 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2105 * current pmd notpresent (atomically because here the pmd_trans_huge 2106 * must remain set at all times on the pmd until the split is complete 2107 * for this pmd), then we flush the SMP TLB and finally we write the 2108 * non-huge version of the pmd entry with pmd_populate. 2109 */ 2110 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2111 2112 pmd_migration = is_pmd_migration_entry(old_pmd); 2113 if (unlikely(pmd_migration)) { 2114 swp_entry_t entry; 2115 2116 entry = pmd_to_swp_entry(old_pmd); 2117 page = migration_entry_to_page(entry); 2118 write = is_write_migration_entry(entry); 2119 young = false; 2120 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2121 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2122 } else { 2123 page = pmd_page(old_pmd); 2124 if (pmd_dirty(old_pmd)) 2125 SetPageDirty(page); 2126 write = pmd_write(old_pmd); 2127 young = pmd_young(old_pmd); 2128 soft_dirty = pmd_soft_dirty(old_pmd); 2129 uffd_wp = pmd_uffd_wp(old_pmd); 2130 } 2131 VM_BUG_ON_PAGE(!page_count(page), page); 2132 page_ref_add(page, HPAGE_PMD_NR - 1); 2133 2134 /* 2135 * Withdraw the table only after we mark the pmd entry invalid. 2136 * This's critical for some architectures (Power). 2137 */ 2138 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2139 pmd_populate(mm, &_pmd, pgtable); 2140 2141 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2142 pte_t entry, *pte; 2143 /* 2144 * Note that NUMA hinting access restrictions are not 2145 * transferred to avoid any possibility of altering 2146 * permissions across VMAs. 2147 */ 2148 if (freeze || pmd_migration) { 2149 swp_entry_t swp_entry; 2150 swp_entry = make_migration_entry(page + i, write); 2151 entry = swp_entry_to_pte(swp_entry); 2152 if (soft_dirty) 2153 entry = pte_swp_mksoft_dirty(entry); 2154 if (uffd_wp) 2155 entry = pte_swp_mkuffd_wp(entry); 2156 } else { 2157 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2158 entry = maybe_mkwrite(entry, vma); 2159 if (!write) 2160 entry = pte_wrprotect(entry); 2161 if (!young) 2162 entry = pte_mkold(entry); 2163 if (soft_dirty) 2164 entry = pte_mksoft_dirty(entry); 2165 if (uffd_wp) 2166 entry = pte_mkuffd_wp(entry); 2167 } 2168 pte = pte_offset_map(&_pmd, addr); 2169 BUG_ON(!pte_none(*pte)); 2170 set_pte_at(mm, addr, pte, entry); 2171 if (!pmd_migration) 2172 atomic_inc(&page[i]._mapcount); 2173 pte_unmap(pte); 2174 } 2175 2176 if (!pmd_migration) { 2177 /* 2178 * Set PG_double_map before dropping compound_mapcount to avoid 2179 * false-negative page_mapped(). 2180 */ 2181 if (compound_mapcount(page) > 1 && 2182 !TestSetPageDoubleMap(page)) { 2183 for (i = 0; i < HPAGE_PMD_NR; i++) 2184 atomic_inc(&page[i]._mapcount); 2185 } 2186 2187 lock_page_memcg(page); 2188 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2189 /* Last compound_mapcount is gone. */ 2190 __mod_lruvec_page_state(page, NR_ANON_THPS, 2191 -HPAGE_PMD_NR); 2192 if (TestClearPageDoubleMap(page)) { 2193 /* No need in mapcount reference anymore */ 2194 for (i = 0; i < HPAGE_PMD_NR; i++) 2195 atomic_dec(&page[i]._mapcount); 2196 } 2197 } 2198 unlock_page_memcg(page); 2199 } 2200 2201 smp_wmb(); /* make pte visible before pmd */ 2202 pmd_populate(mm, pmd, pgtable); 2203 2204 if (freeze) { 2205 for (i = 0; i < HPAGE_PMD_NR; i++) { 2206 page_remove_rmap(page + i, false); 2207 put_page(page + i); 2208 } 2209 } 2210 } 2211 2212 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2213 unsigned long address, bool freeze, struct page *page) 2214 { 2215 spinlock_t *ptl; 2216 struct mmu_notifier_range range; 2217 bool do_unlock_page = false; 2218 pmd_t _pmd; 2219 2220 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2221 address & HPAGE_PMD_MASK, 2222 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2223 mmu_notifier_invalidate_range_start(&range); 2224 ptl = pmd_lock(vma->vm_mm, pmd); 2225 2226 /* 2227 * If caller asks to setup a migration entries, we need a page to check 2228 * pmd against. Otherwise we can end up replacing wrong page. 2229 */ 2230 VM_BUG_ON(freeze && !page); 2231 if (page) { 2232 VM_WARN_ON_ONCE(!PageLocked(page)); 2233 if (page != pmd_page(*pmd)) 2234 goto out; 2235 } 2236 2237 repeat: 2238 if (pmd_trans_huge(*pmd)) { 2239 if (!page) { 2240 page = pmd_page(*pmd); 2241 /* 2242 * An anonymous page must be locked, to ensure that a 2243 * concurrent reuse_swap_page() sees stable mapcount; 2244 * but reuse_swap_page() is not used on shmem or file, 2245 * and page lock must not be taken when zap_pmd_range() 2246 * calls __split_huge_pmd() while i_mmap_lock is held. 2247 */ 2248 if (PageAnon(page)) { 2249 if (unlikely(!trylock_page(page))) { 2250 get_page(page); 2251 _pmd = *pmd; 2252 spin_unlock(ptl); 2253 lock_page(page); 2254 spin_lock(ptl); 2255 if (unlikely(!pmd_same(*pmd, _pmd))) { 2256 unlock_page(page); 2257 put_page(page); 2258 page = NULL; 2259 goto repeat; 2260 } 2261 put_page(page); 2262 } 2263 do_unlock_page = true; 2264 } 2265 } 2266 if (PageMlocked(page)) 2267 clear_page_mlock(page); 2268 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2269 goto out; 2270 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2271 out: 2272 spin_unlock(ptl); 2273 if (do_unlock_page) 2274 unlock_page(page); 2275 /* 2276 * No need to double call mmu_notifier->invalidate_range() callback. 2277 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2278 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2279 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2280 * fault will trigger a flush_notify before pointing to a new page 2281 * (it is fine if the secondary mmu keeps pointing to the old zero 2282 * page in the meantime) 2283 * 3) Split a huge pmd into pte pointing to the same page. No need 2284 * to invalidate secondary tlb entry they are all still valid. 2285 * any further changes to individual pte will notify. So no need 2286 * to call mmu_notifier->invalidate_range() 2287 */ 2288 mmu_notifier_invalidate_range_only_end(&range); 2289 } 2290 2291 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2292 bool freeze, struct page *page) 2293 { 2294 pgd_t *pgd; 2295 p4d_t *p4d; 2296 pud_t *pud; 2297 pmd_t *pmd; 2298 2299 pgd = pgd_offset(vma->vm_mm, address); 2300 if (!pgd_present(*pgd)) 2301 return; 2302 2303 p4d = p4d_offset(pgd, address); 2304 if (!p4d_present(*p4d)) 2305 return; 2306 2307 pud = pud_offset(p4d, address); 2308 if (!pud_present(*pud)) 2309 return; 2310 2311 pmd = pmd_offset(pud, address); 2312 2313 __split_huge_pmd(vma, pmd, address, freeze, page); 2314 } 2315 2316 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2317 { 2318 /* 2319 * If the new address isn't hpage aligned and it could previously 2320 * contain an hugepage: check if we need to split an huge pmd. 2321 */ 2322 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2323 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2324 ALIGN(address, HPAGE_PMD_SIZE))) 2325 split_huge_pmd_address(vma, address, false, NULL); 2326 } 2327 2328 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2329 unsigned long start, 2330 unsigned long end, 2331 long adjust_next) 2332 { 2333 /* Check if we need to split start first. */ 2334 split_huge_pmd_if_needed(vma, start); 2335 2336 /* Check if we need to split end next. */ 2337 split_huge_pmd_if_needed(vma, end); 2338 2339 /* 2340 * If we're also updating the vma->vm_next->vm_start, 2341 * check if we need to split it. 2342 */ 2343 if (adjust_next > 0) { 2344 struct vm_area_struct *next = vma->vm_next; 2345 unsigned long nstart = next->vm_start; 2346 nstart += adjust_next; 2347 split_huge_pmd_if_needed(next, nstart); 2348 } 2349 } 2350 2351 static void unmap_page(struct page *page) 2352 { 2353 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC | 2354 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2355 2356 VM_BUG_ON_PAGE(!PageHead(page), page); 2357 2358 if (PageAnon(page)) 2359 ttu_flags |= TTU_SPLIT_FREEZE; 2360 2361 try_to_unmap(page, ttu_flags); 2362 2363 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page); 2364 } 2365 2366 static void remap_page(struct page *page, unsigned int nr) 2367 { 2368 int i; 2369 if (PageTransHuge(page)) { 2370 remove_migration_ptes(page, page, true); 2371 } else { 2372 for (i = 0; i < nr; i++) 2373 remove_migration_ptes(page + i, page + i, true); 2374 } 2375 } 2376 2377 static void lru_add_page_tail(struct page *head, struct page *tail, 2378 struct lruvec *lruvec, struct list_head *list) 2379 { 2380 VM_BUG_ON_PAGE(!PageHead(head), head); 2381 VM_BUG_ON_PAGE(PageCompound(tail), head); 2382 VM_BUG_ON_PAGE(PageLRU(tail), head); 2383 lockdep_assert_held(&lruvec->lru_lock); 2384 2385 if (list) { 2386 /* page reclaim is reclaiming a huge page */ 2387 VM_WARN_ON(PageLRU(head)); 2388 get_page(tail); 2389 list_add_tail(&tail->lru, list); 2390 } else { 2391 /* head is still on lru (and we have it frozen) */ 2392 VM_WARN_ON(!PageLRU(head)); 2393 SetPageLRU(tail); 2394 list_add_tail(&tail->lru, &head->lru); 2395 } 2396 } 2397 2398 static void __split_huge_page_tail(struct page *head, int tail, 2399 struct lruvec *lruvec, struct list_head *list) 2400 { 2401 struct page *page_tail = head + tail; 2402 2403 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2404 2405 /* 2406 * Clone page flags before unfreezing refcount. 2407 * 2408 * After successful get_page_unless_zero() might follow flags change, 2409 * for example lock_page() which set PG_waiters. 2410 */ 2411 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2412 page_tail->flags |= (head->flags & 2413 ((1L << PG_referenced) | 2414 (1L << PG_swapbacked) | 2415 (1L << PG_swapcache) | 2416 (1L << PG_mlocked) | 2417 (1L << PG_uptodate) | 2418 (1L << PG_active) | 2419 (1L << PG_workingset) | 2420 (1L << PG_locked) | 2421 (1L << PG_unevictable) | 2422 #ifdef CONFIG_64BIT 2423 (1L << PG_arch_2) | 2424 #endif 2425 (1L << PG_dirty))); 2426 2427 /* ->mapping in first tail page is compound_mapcount */ 2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2429 page_tail); 2430 page_tail->mapping = head->mapping; 2431 page_tail->index = head->index + tail; 2432 2433 /* Page flags must be visible before we make the page non-compound. */ 2434 smp_wmb(); 2435 2436 /* 2437 * Clear PageTail before unfreezing page refcount. 2438 * 2439 * After successful get_page_unless_zero() might follow put_page() 2440 * which needs correct compound_head(). 2441 */ 2442 clear_compound_head(page_tail); 2443 2444 /* Finally unfreeze refcount. Additional reference from page cache. */ 2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2446 PageSwapCache(head))); 2447 2448 if (page_is_young(head)) 2449 set_page_young(page_tail); 2450 if (page_is_idle(head)) 2451 set_page_idle(page_tail); 2452 2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2454 2455 /* 2456 * always add to the tail because some iterators expect new 2457 * pages to show after the currently processed elements - e.g. 2458 * migrate_pages 2459 */ 2460 lru_add_page_tail(head, page_tail, lruvec, list); 2461 } 2462 2463 static void __split_huge_page(struct page *page, struct list_head *list, 2464 pgoff_t end) 2465 { 2466 struct page *head = compound_head(page); 2467 struct lruvec *lruvec; 2468 struct address_space *swap_cache = NULL; 2469 unsigned long offset = 0; 2470 unsigned int nr = thp_nr_pages(head); 2471 int i; 2472 2473 /* complete memcg works before add pages to LRU */ 2474 split_page_memcg(head, nr); 2475 2476 if (PageAnon(head) && PageSwapCache(head)) { 2477 swp_entry_t entry = { .val = page_private(head) }; 2478 2479 offset = swp_offset(entry); 2480 swap_cache = swap_address_space(entry); 2481 xa_lock(&swap_cache->i_pages); 2482 } 2483 2484 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2485 lruvec = lock_page_lruvec(head); 2486 2487 for (i = nr - 1; i >= 1; i--) { 2488 __split_huge_page_tail(head, i, lruvec, list); 2489 /* Some pages can be beyond i_size: drop them from page cache */ 2490 if (head[i].index >= end) { 2491 ClearPageDirty(head + i); 2492 __delete_from_page_cache(head + i, NULL); 2493 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2494 shmem_uncharge(head->mapping->host, 1); 2495 put_page(head + i); 2496 } else if (!PageAnon(page)) { 2497 __xa_store(&head->mapping->i_pages, head[i].index, 2498 head + i, 0); 2499 } else if (swap_cache) { 2500 __xa_store(&swap_cache->i_pages, offset + i, 2501 head + i, 0); 2502 } 2503 } 2504 2505 ClearPageCompound(head); 2506 unlock_page_lruvec(lruvec); 2507 /* Caller disabled irqs, so they are still disabled here */ 2508 2509 split_page_owner(head, nr); 2510 2511 /* See comment in __split_huge_page_tail() */ 2512 if (PageAnon(head)) { 2513 /* Additional pin to swap cache */ 2514 if (PageSwapCache(head)) { 2515 page_ref_add(head, 2); 2516 xa_unlock(&swap_cache->i_pages); 2517 } else { 2518 page_ref_inc(head); 2519 } 2520 } else { 2521 /* Additional pin to page cache */ 2522 page_ref_add(head, 2); 2523 xa_unlock(&head->mapping->i_pages); 2524 } 2525 local_irq_enable(); 2526 2527 remap_page(head, nr); 2528 2529 if (PageSwapCache(head)) { 2530 swp_entry_t entry = { .val = page_private(head) }; 2531 2532 split_swap_cluster(entry); 2533 } 2534 2535 for (i = 0; i < nr; i++) { 2536 struct page *subpage = head + i; 2537 if (subpage == page) 2538 continue; 2539 unlock_page(subpage); 2540 2541 /* 2542 * Subpages may be freed if there wasn't any mapping 2543 * like if add_to_swap() is running on a lru page that 2544 * had its mapping zapped. And freeing these pages 2545 * requires taking the lru_lock so we do the put_page 2546 * of the tail pages after the split is complete. 2547 */ 2548 put_page(subpage); 2549 } 2550 } 2551 2552 int total_mapcount(struct page *page) 2553 { 2554 int i, compound, nr, ret; 2555 2556 VM_BUG_ON_PAGE(PageTail(page), page); 2557 2558 if (likely(!PageCompound(page))) 2559 return atomic_read(&page->_mapcount) + 1; 2560 2561 compound = compound_mapcount(page); 2562 nr = compound_nr(page); 2563 if (PageHuge(page)) 2564 return compound; 2565 ret = compound; 2566 for (i = 0; i < nr; i++) 2567 ret += atomic_read(&page[i]._mapcount) + 1; 2568 /* File pages has compound_mapcount included in _mapcount */ 2569 if (!PageAnon(page)) 2570 return ret - compound * nr; 2571 if (PageDoubleMap(page)) 2572 ret -= nr; 2573 return ret; 2574 } 2575 2576 /* 2577 * This calculates accurately how many mappings a transparent hugepage 2578 * has (unlike page_mapcount() which isn't fully accurate). This full 2579 * accuracy is primarily needed to know if copy-on-write faults can 2580 * reuse the page and change the mapping to read-write instead of 2581 * copying them. At the same time this returns the total_mapcount too. 2582 * 2583 * The function returns the highest mapcount any one of the subpages 2584 * has. If the return value is one, even if different processes are 2585 * mapping different subpages of the transparent hugepage, they can 2586 * all reuse it, because each process is reusing a different subpage. 2587 * 2588 * The total_mapcount is instead counting all virtual mappings of the 2589 * subpages. If the total_mapcount is equal to "one", it tells the 2590 * caller all mappings belong to the same "mm" and in turn the 2591 * anon_vma of the transparent hugepage can become the vma->anon_vma 2592 * local one as no other process may be mapping any of the subpages. 2593 * 2594 * It would be more accurate to replace page_mapcount() with 2595 * page_trans_huge_mapcount(), however we only use 2596 * page_trans_huge_mapcount() in the copy-on-write faults where we 2597 * need full accuracy to avoid breaking page pinning, because 2598 * page_trans_huge_mapcount() is slower than page_mapcount(). 2599 */ 2600 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2601 { 2602 int i, ret, _total_mapcount, mapcount; 2603 2604 /* hugetlbfs shouldn't call it */ 2605 VM_BUG_ON_PAGE(PageHuge(page), page); 2606 2607 if (likely(!PageTransCompound(page))) { 2608 mapcount = atomic_read(&page->_mapcount) + 1; 2609 if (total_mapcount) 2610 *total_mapcount = mapcount; 2611 return mapcount; 2612 } 2613 2614 page = compound_head(page); 2615 2616 _total_mapcount = ret = 0; 2617 for (i = 0; i < thp_nr_pages(page); i++) { 2618 mapcount = atomic_read(&page[i]._mapcount) + 1; 2619 ret = max(ret, mapcount); 2620 _total_mapcount += mapcount; 2621 } 2622 if (PageDoubleMap(page)) { 2623 ret -= 1; 2624 _total_mapcount -= thp_nr_pages(page); 2625 } 2626 mapcount = compound_mapcount(page); 2627 ret += mapcount; 2628 _total_mapcount += mapcount; 2629 if (total_mapcount) 2630 *total_mapcount = _total_mapcount; 2631 return ret; 2632 } 2633 2634 /* Racy check whether the huge page can be split */ 2635 bool can_split_huge_page(struct page *page, int *pextra_pins) 2636 { 2637 int extra_pins; 2638 2639 /* Additional pins from page cache */ 2640 if (PageAnon(page)) 2641 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2642 else 2643 extra_pins = thp_nr_pages(page); 2644 if (pextra_pins) 2645 *pextra_pins = extra_pins; 2646 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2647 } 2648 2649 /* 2650 * This function splits huge page into normal pages. @page can point to any 2651 * subpage of huge page to split. Split doesn't change the position of @page. 2652 * 2653 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2654 * The huge page must be locked. 2655 * 2656 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2657 * 2658 * Both head page and tail pages will inherit mapping, flags, and so on from 2659 * the hugepage. 2660 * 2661 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2662 * they are not mapped. 2663 * 2664 * Returns 0 if the hugepage is split successfully. 2665 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2666 * us. 2667 */ 2668 int split_huge_page_to_list(struct page *page, struct list_head *list) 2669 { 2670 struct page *head = compound_head(page); 2671 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2672 struct anon_vma *anon_vma = NULL; 2673 struct address_space *mapping = NULL; 2674 int extra_pins, ret; 2675 pgoff_t end; 2676 2677 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2678 VM_BUG_ON_PAGE(!PageLocked(head), head); 2679 VM_BUG_ON_PAGE(!PageCompound(head), head); 2680 2681 if (PageWriteback(head)) 2682 return -EBUSY; 2683 2684 if (PageAnon(head)) { 2685 /* 2686 * The caller does not necessarily hold an mmap_lock that would 2687 * prevent the anon_vma disappearing so we first we take a 2688 * reference to it and then lock the anon_vma for write. This 2689 * is similar to page_lock_anon_vma_read except the write lock 2690 * is taken to serialise against parallel split or collapse 2691 * operations. 2692 */ 2693 anon_vma = page_get_anon_vma(head); 2694 if (!anon_vma) { 2695 ret = -EBUSY; 2696 goto out; 2697 } 2698 end = -1; 2699 mapping = NULL; 2700 anon_vma_lock_write(anon_vma); 2701 } else { 2702 mapping = head->mapping; 2703 2704 /* Truncated ? */ 2705 if (!mapping) { 2706 ret = -EBUSY; 2707 goto out; 2708 } 2709 2710 anon_vma = NULL; 2711 i_mmap_lock_read(mapping); 2712 2713 /* 2714 *__split_huge_page() may need to trim off pages beyond EOF: 2715 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2716 * which cannot be nested inside the page tree lock. So note 2717 * end now: i_size itself may be changed at any moment, but 2718 * head page lock is good enough to serialize the trimming. 2719 */ 2720 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2721 } 2722 2723 /* 2724 * Racy check if we can split the page, before unmap_page() will 2725 * split PMDs 2726 */ 2727 if (!can_split_huge_page(head, &extra_pins)) { 2728 ret = -EBUSY; 2729 goto out_unlock; 2730 } 2731 2732 unmap_page(head); 2733 2734 /* block interrupt reentry in xa_lock and spinlock */ 2735 local_irq_disable(); 2736 if (mapping) { 2737 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2738 2739 /* 2740 * Check if the head page is present in page cache. 2741 * We assume all tail are present too, if head is there. 2742 */ 2743 xa_lock(&mapping->i_pages); 2744 if (xas_load(&xas) != head) 2745 goto fail; 2746 } 2747 2748 /* Prevent deferred_split_scan() touching ->_refcount */ 2749 spin_lock(&ds_queue->split_queue_lock); 2750 if (page_ref_freeze(head, 1 + extra_pins)) { 2751 if (!list_empty(page_deferred_list(head))) { 2752 ds_queue->split_queue_len--; 2753 list_del(page_deferred_list(head)); 2754 } 2755 spin_unlock(&ds_queue->split_queue_lock); 2756 if (mapping) { 2757 int nr = thp_nr_pages(head); 2758 2759 if (PageSwapBacked(head)) 2760 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2761 -nr); 2762 else 2763 __mod_lruvec_page_state(head, NR_FILE_THPS, 2764 -nr); 2765 } 2766 2767 __split_huge_page(page, list, end); 2768 ret = 0; 2769 } else { 2770 spin_unlock(&ds_queue->split_queue_lock); 2771 fail: 2772 if (mapping) 2773 xa_unlock(&mapping->i_pages); 2774 local_irq_enable(); 2775 remap_page(head, thp_nr_pages(head)); 2776 ret = -EBUSY; 2777 } 2778 2779 out_unlock: 2780 if (anon_vma) { 2781 anon_vma_unlock_write(anon_vma); 2782 put_anon_vma(anon_vma); 2783 } 2784 if (mapping) 2785 i_mmap_unlock_read(mapping); 2786 out: 2787 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2788 return ret; 2789 } 2790 2791 void free_transhuge_page(struct page *page) 2792 { 2793 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2794 unsigned long flags; 2795 2796 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2797 if (!list_empty(page_deferred_list(page))) { 2798 ds_queue->split_queue_len--; 2799 list_del(page_deferred_list(page)); 2800 } 2801 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2802 free_compound_page(page); 2803 } 2804 2805 void deferred_split_huge_page(struct page *page) 2806 { 2807 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2808 #ifdef CONFIG_MEMCG 2809 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2810 #endif 2811 unsigned long flags; 2812 2813 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2814 2815 /* 2816 * The try_to_unmap() in page reclaim path might reach here too, 2817 * this may cause a race condition to corrupt deferred split queue. 2818 * And, if page reclaim is already handling the same page, it is 2819 * unnecessary to handle it again in shrinker. 2820 * 2821 * Check PageSwapCache to determine if the page is being 2822 * handled by page reclaim since THP swap would add the page into 2823 * swap cache before calling try_to_unmap(). 2824 */ 2825 if (PageSwapCache(page)) 2826 return; 2827 2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2829 if (list_empty(page_deferred_list(page))) { 2830 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2831 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2832 ds_queue->split_queue_len++; 2833 #ifdef CONFIG_MEMCG 2834 if (memcg) 2835 set_shrinker_bit(memcg, page_to_nid(page), 2836 deferred_split_shrinker.id); 2837 #endif 2838 } 2839 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2840 } 2841 2842 static unsigned long deferred_split_count(struct shrinker *shrink, 2843 struct shrink_control *sc) 2844 { 2845 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2846 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2847 2848 #ifdef CONFIG_MEMCG 2849 if (sc->memcg) 2850 ds_queue = &sc->memcg->deferred_split_queue; 2851 #endif 2852 return READ_ONCE(ds_queue->split_queue_len); 2853 } 2854 2855 static unsigned long deferred_split_scan(struct shrinker *shrink, 2856 struct shrink_control *sc) 2857 { 2858 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2859 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2860 unsigned long flags; 2861 LIST_HEAD(list), *pos, *next; 2862 struct page *page; 2863 int split = 0; 2864 2865 #ifdef CONFIG_MEMCG 2866 if (sc->memcg) 2867 ds_queue = &sc->memcg->deferred_split_queue; 2868 #endif 2869 2870 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2871 /* Take pin on all head pages to avoid freeing them under us */ 2872 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2873 page = list_entry((void *)pos, struct page, mapping); 2874 page = compound_head(page); 2875 if (get_page_unless_zero(page)) { 2876 list_move(page_deferred_list(page), &list); 2877 } else { 2878 /* We lost race with put_compound_page() */ 2879 list_del_init(page_deferred_list(page)); 2880 ds_queue->split_queue_len--; 2881 } 2882 if (!--sc->nr_to_scan) 2883 break; 2884 } 2885 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2886 2887 list_for_each_safe(pos, next, &list) { 2888 page = list_entry((void *)pos, struct page, mapping); 2889 if (!trylock_page(page)) 2890 goto next; 2891 /* split_huge_page() removes page from list on success */ 2892 if (!split_huge_page(page)) 2893 split++; 2894 unlock_page(page); 2895 next: 2896 put_page(page); 2897 } 2898 2899 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2900 list_splice_tail(&list, &ds_queue->split_queue); 2901 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2902 2903 /* 2904 * Stop shrinker if we didn't split any page, but the queue is empty. 2905 * This can happen if pages were freed under us. 2906 */ 2907 if (!split && list_empty(&ds_queue->split_queue)) 2908 return SHRINK_STOP; 2909 return split; 2910 } 2911 2912 static struct shrinker deferred_split_shrinker = { 2913 .count_objects = deferred_split_count, 2914 .scan_objects = deferred_split_scan, 2915 .seeks = DEFAULT_SEEKS, 2916 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2917 SHRINKER_NONSLAB, 2918 }; 2919 2920 #ifdef CONFIG_DEBUG_FS 2921 static void split_huge_pages_all(void) 2922 { 2923 struct zone *zone; 2924 struct page *page; 2925 unsigned long pfn, max_zone_pfn; 2926 unsigned long total = 0, split = 0; 2927 2928 pr_debug("Split all THPs\n"); 2929 for_each_populated_zone(zone) { 2930 max_zone_pfn = zone_end_pfn(zone); 2931 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2932 if (!pfn_valid(pfn)) 2933 continue; 2934 2935 page = pfn_to_page(pfn); 2936 if (!get_page_unless_zero(page)) 2937 continue; 2938 2939 if (zone != page_zone(page)) 2940 goto next; 2941 2942 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2943 goto next; 2944 2945 total++; 2946 lock_page(page); 2947 if (!split_huge_page(page)) 2948 split++; 2949 unlock_page(page); 2950 next: 2951 put_page(page); 2952 cond_resched(); 2953 } 2954 } 2955 2956 pr_debug("%lu of %lu THP split\n", split, total); 2957 } 2958 2959 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2960 { 2961 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2962 is_vm_hugetlb_page(vma); 2963 } 2964 2965 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2966 unsigned long vaddr_end) 2967 { 2968 int ret = 0; 2969 struct task_struct *task; 2970 struct mm_struct *mm; 2971 unsigned long total = 0, split = 0; 2972 unsigned long addr; 2973 2974 vaddr_start &= PAGE_MASK; 2975 vaddr_end &= PAGE_MASK; 2976 2977 /* Find the task_struct from pid */ 2978 rcu_read_lock(); 2979 task = find_task_by_vpid(pid); 2980 if (!task) { 2981 rcu_read_unlock(); 2982 ret = -ESRCH; 2983 goto out; 2984 } 2985 get_task_struct(task); 2986 rcu_read_unlock(); 2987 2988 /* Find the mm_struct */ 2989 mm = get_task_mm(task); 2990 put_task_struct(task); 2991 2992 if (!mm) { 2993 ret = -EINVAL; 2994 goto out; 2995 } 2996 2997 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2998 pid, vaddr_start, vaddr_end); 2999 3000 mmap_read_lock(mm); 3001 /* 3002 * always increase addr by PAGE_SIZE, since we could have a PTE page 3003 * table filled with PTE-mapped THPs, each of which is distinct. 3004 */ 3005 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3006 struct vm_area_struct *vma = find_vma(mm, addr); 3007 unsigned int follflags; 3008 struct page *page; 3009 3010 if (!vma || addr < vma->vm_start) 3011 break; 3012 3013 /* skip special VMA and hugetlb VMA */ 3014 if (vma_not_suitable_for_thp_split(vma)) { 3015 addr = vma->vm_end; 3016 continue; 3017 } 3018 3019 /* FOLL_DUMP to ignore special (like zero) pages */ 3020 follflags = FOLL_GET | FOLL_DUMP; 3021 page = follow_page(vma, addr, follflags); 3022 3023 if (IS_ERR(page)) 3024 continue; 3025 if (!page) 3026 continue; 3027 3028 if (!is_transparent_hugepage(page)) 3029 goto next; 3030 3031 total++; 3032 if (!can_split_huge_page(compound_head(page), NULL)) 3033 goto next; 3034 3035 if (!trylock_page(page)) 3036 goto next; 3037 3038 if (!split_huge_page(page)) 3039 split++; 3040 3041 unlock_page(page); 3042 next: 3043 put_page(page); 3044 cond_resched(); 3045 } 3046 mmap_read_unlock(mm); 3047 mmput(mm); 3048 3049 pr_debug("%lu of %lu THP split\n", split, total); 3050 3051 out: 3052 return ret; 3053 } 3054 3055 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3056 pgoff_t off_end) 3057 { 3058 struct filename *file; 3059 struct file *candidate; 3060 struct address_space *mapping; 3061 int ret = -EINVAL; 3062 pgoff_t index; 3063 int nr_pages = 1; 3064 unsigned long total = 0, split = 0; 3065 3066 file = getname_kernel(file_path); 3067 if (IS_ERR(file)) 3068 return ret; 3069 3070 candidate = file_open_name(file, O_RDONLY, 0); 3071 if (IS_ERR(candidate)) 3072 goto out; 3073 3074 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3075 file_path, off_start, off_end); 3076 3077 mapping = candidate->f_mapping; 3078 3079 for (index = off_start; index < off_end; index += nr_pages) { 3080 struct page *fpage = pagecache_get_page(mapping, index, 3081 FGP_ENTRY | FGP_HEAD, 0); 3082 3083 nr_pages = 1; 3084 if (xa_is_value(fpage) || !fpage) 3085 continue; 3086 3087 if (!is_transparent_hugepage(fpage)) 3088 goto next; 3089 3090 total++; 3091 nr_pages = thp_nr_pages(fpage); 3092 3093 if (!trylock_page(fpage)) 3094 goto next; 3095 3096 if (!split_huge_page(fpage)) 3097 split++; 3098 3099 unlock_page(fpage); 3100 next: 3101 put_page(fpage); 3102 cond_resched(); 3103 } 3104 3105 filp_close(candidate, NULL); 3106 ret = 0; 3107 3108 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3109 out: 3110 putname(file); 3111 return ret; 3112 } 3113 3114 #define MAX_INPUT_BUF_SZ 255 3115 3116 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3117 size_t count, loff_t *ppops) 3118 { 3119 static DEFINE_MUTEX(split_debug_mutex); 3120 ssize_t ret; 3121 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3122 char input_buf[MAX_INPUT_BUF_SZ]; 3123 int pid; 3124 unsigned long vaddr_start, vaddr_end; 3125 3126 ret = mutex_lock_interruptible(&split_debug_mutex); 3127 if (ret) 3128 return ret; 3129 3130 ret = -EFAULT; 3131 3132 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3133 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3134 goto out; 3135 3136 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3137 3138 if (input_buf[0] == '/') { 3139 char *tok; 3140 char *buf = input_buf; 3141 char file_path[MAX_INPUT_BUF_SZ]; 3142 pgoff_t off_start = 0, off_end = 0; 3143 size_t input_len = strlen(input_buf); 3144 3145 tok = strsep(&buf, ","); 3146 if (tok) { 3147 strncpy(file_path, tok, MAX_INPUT_BUF_SZ); 3148 } else { 3149 ret = -EINVAL; 3150 goto out; 3151 } 3152 3153 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3154 if (ret != 2) { 3155 ret = -EINVAL; 3156 goto out; 3157 } 3158 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3159 if (!ret) 3160 ret = input_len; 3161 3162 goto out; 3163 } 3164 3165 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3166 if (ret == 1 && pid == 1) { 3167 split_huge_pages_all(); 3168 ret = strlen(input_buf); 3169 goto out; 3170 } else if (ret != 3) { 3171 ret = -EINVAL; 3172 goto out; 3173 } 3174 3175 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3176 if (!ret) 3177 ret = strlen(input_buf); 3178 out: 3179 mutex_unlock(&split_debug_mutex); 3180 return ret; 3181 3182 } 3183 3184 static const struct file_operations split_huge_pages_fops = { 3185 .owner = THIS_MODULE, 3186 .write = split_huge_pages_write, 3187 .llseek = no_llseek, 3188 }; 3189 3190 static int __init split_huge_pages_debugfs(void) 3191 { 3192 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3193 &split_huge_pages_fops); 3194 return 0; 3195 } 3196 late_initcall(split_huge_pages_debugfs); 3197 #endif 3198 3199 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3200 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3201 struct page *page) 3202 { 3203 struct vm_area_struct *vma = pvmw->vma; 3204 struct mm_struct *mm = vma->vm_mm; 3205 unsigned long address = pvmw->address; 3206 pmd_t pmdval; 3207 swp_entry_t entry; 3208 pmd_t pmdswp; 3209 3210 if (!(pvmw->pmd && !pvmw->pte)) 3211 return; 3212 3213 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3214 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3215 if (pmd_dirty(pmdval)) 3216 set_page_dirty(page); 3217 entry = make_migration_entry(page, pmd_write(pmdval)); 3218 pmdswp = swp_entry_to_pmd(entry); 3219 if (pmd_soft_dirty(pmdval)) 3220 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3221 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3222 page_remove_rmap(page, true); 3223 put_page(page); 3224 } 3225 3226 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3227 { 3228 struct vm_area_struct *vma = pvmw->vma; 3229 struct mm_struct *mm = vma->vm_mm; 3230 unsigned long address = pvmw->address; 3231 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3232 pmd_t pmde; 3233 swp_entry_t entry; 3234 3235 if (!(pvmw->pmd && !pvmw->pte)) 3236 return; 3237 3238 entry = pmd_to_swp_entry(*pvmw->pmd); 3239 get_page(new); 3240 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3241 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3242 pmde = pmd_mksoft_dirty(pmde); 3243 if (is_write_migration_entry(entry)) 3244 pmde = maybe_pmd_mkwrite(pmde, vma); 3245 3246 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 3247 if (PageAnon(new)) 3248 page_add_anon_rmap(new, vma, mmun_start, true); 3249 else 3250 page_add_file_rmap(new, true); 3251 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3252 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 3253 mlock_vma_page(new); 3254 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3255 } 3256 #endif 3257