xref: /linux/mm/huge_memory.c (revision d0f482bb06f9447d44d2cae0386a0bd768c3cc16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66 
67 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
68 {
69 	/* The addr is used to check if the vma size fits */
70 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
71 
72 	if (!transhuge_vma_suitable(vma, addr))
73 		return false;
74 	if (vma_is_anonymous(vma))
75 		return __transparent_hugepage_enabled(vma);
76 	if (vma_is_shmem(vma))
77 		return shmem_huge_enabled(vma);
78 
79 	return false;
80 }
81 
82 static bool get_huge_zero_page(void)
83 {
84 	struct page *zero_page;
85 retry:
86 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
87 		return true;
88 
89 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90 			HPAGE_PMD_ORDER);
91 	if (!zero_page) {
92 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93 		return false;
94 	}
95 	count_vm_event(THP_ZERO_PAGE_ALLOC);
96 	preempt_disable();
97 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
98 		preempt_enable();
99 		__free_pages(zero_page, compound_order(zero_page));
100 		goto retry;
101 	}
102 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
103 
104 	/* We take additional reference here. It will be put back by shrinker */
105 	atomic_set(&huge_zero_refcount, 2);
106 	preempt_enable();
107 	return true;
108 }
109 
110 static void put_huge_zero_page(void)
111 {
112 	/*
113 	 * Counter should never go to zero here. Only shrinker can put
114 	 * last reference.
115 	 */
116 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
117 }
118 
119 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
120 {
121 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
122 		return READ_ONCE(huge_zero_page);
123 
124 	if (!get_huge_zero_page())
125 		return NULL;
126 
127 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 		put_huge_zero_page();
129 
130 	return READ_ONCE(huge_zero_page);
131 }
132 
133 void mm_put_huge_zero_page(struct mm_struct *mm)
134 {
135 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 		put_huge_zero_page();
137 }
138 
139 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
140 					struct shrink_control *sc)
141 {
142 	/* we can free zero page only if last reference remains */
143 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
144 }
145 
146 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
147 				       struct shrink_control *sc)
148 {
149 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
150 		struct page *zero_page = xchg(&huge_zero_page, NULL);
151 		BUG_ON(zero_page == NULL);
152 		WRITE_ONCE(huge_zero_pfn, ~0UL);
153 		__free_pages(zero_page, compound_order(zero_page));
154 		return HPAGE_PMD_NR;
155 	}
156 
157 	return 0;
158 }
159 
160 static struct shrinker huge_zero_page_shrinker = {
161 	.count_objects = shrink_huge_zero_page_count,
162 	.scan_objects = shrink_huge_zero_page_scan,
163 	.seeks = DEFAULT_SEEKS,
164 };
165 
166 #ifdef CONFIG_SYSFS
167 static ssize_t enabled_show(struct kobject *kobj,
168 			    struct kobj_attribute *attr, char *buf)
169 {
170 	const char *output;
171 
172 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
173 		output = "[always] madvise never";
174 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
175 			  &transparent_hugepage_flags))
176 		output = "always [madvise] never";
177 	else
178 		output = "always madvise [never]";
179 
180 	return sysfs_emit(buf, "%s\n", output);
181 }
182 
183 static ssize_t enabled_store(struct kobject *kobj,
184 			     struct kobj_attribute *attr,
185 			     const char *buf, size_t count)
186 {
187 	ssize_t ret = count;
188 
189 	if (sysfs_streq(buf, "always")) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
192 	} else if (sysfs_streq(buf, "madvise")) {
193 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195 	} else if (sysfs_streq(buf, "never")) {
196 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 	} else
199 		ret = -EINVAL;
200 
201 	if (ret > 0) {
202 		int err = start_stop_khugepaged();
203 		if (err)
204 			ret = err;
205 	}
206 	return ret;
207 }
208 static struct kobj_attribute enabled_attr =
209 	__ATTR(enabled, 0644, enabled_show, enabled_store);
210 
211 ssize_t single_hugepage_flag_show(struct kobject *kobj,
212 				  struct kobj_attribute *attr, char *buf,
213 				  enum transparent_hugepage_flag flag)
214 {
215 	return sysfs_emit(buf, "%d\n",
216 			  !!test_bit(flag, &transparent_hugepage_flags));
217 }
218 
219 ssize_t single_hugepage_flag_store(struct kobject *kobj,
220 				 struct kobj_attribute *attr,
221 				 const char *buf, size_t count,
222 				 enum transparent_hugepage_flag flag)
223 {
224 	unsigned long value;
225 	int ret;
226 
227 	ret = kstrtoul(buf, 10, &value);
228 	if (ret < 0)
229 		return ret;
230 	if (value > 1)
231 		return -EINVAL;
232 
233 	if (value)
234 		set_bit(flag, &transparent_hugepage_flags);
235 	else
236 		clear_bit(flag, &transparent_hugepage_flags);
237 
238 	return count;
239 }
240 
241 static ssize_t defrag_show(struct kobject *kobj,
242 			   struct kobj_attribute *attr, char *buf)
243 {
244 	const char *output;
245 
246 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
247 		     &transparent_hugepage_flags))
248 		output = "[always] defer defer+madvise madvise never";
249 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
250 			  &transparent_hugepage_flags))
251 		output = "always [defer] defer+madvise madvise never";
252 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
253 			  &transparent_hugepage_flags))
254 		output = "always defer [defer+madvise] madvise never";
255 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
256 			  &transparent_hugepage_flags))
257 		output = "always defer defer+madvise [madvise] never";
258 	else
259 		output = "always defer defer+madvise madvise [never]";
260 
261 	return sysfs_emit(buf, "%s\n", output);
262 }
263 
264 static ssize_t defrag_store(struct kobject *kobj,
265 			    struct kobj_attribute *attr,
266 			    const char *buf, size_t count)
267 {
268 	if (sysfs_streq(buf, "always")) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 	} else if (sysfs_streq(buf, "defer+madvise")) {
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 	} else if (sysfs_streq(buf, "defer")) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 	} else if (sysfs_streq(buf, "madvise")) {
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
288 	} else if (sysfs_streq(buf, "never")) {
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
290 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
291 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
292 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
293 	} else
294 		return -EINVAL;
295 
296 	return count;
297 }
298 static struct kobj_attribute defrag_attr =
299 	__ATTR(defrag, 0644, defrag_show, defrag_store);
300 
301 static ssize_t use_zero_page_show(struct kobject *kobj,
302 				  struct kobj_attribute *attr, char *buf)
303 {
304 	return single_hugepage_flag_show(kobj, attr, buf,
305 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
306 }
307 static ssize_t use_zero_page_store(struct kobject *kobj,
308 		struct kobj_attribute *attr, const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
312 }
313 static struct kobj_attribute use_zero_page_attr =
314 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
315 
316 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
317 				   struct kobj_attribute *attr, char *buf)
318 {
319 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
320 }
321 static struct kobj_attribute hpage_pmd_size_attr =
322 	__ATTR_RO(hpage_pmd_size);
323 
324 static struct attribute *hugepage_attr[] = {
325 	&enabled_attr.attr,
326 	&defrag_attr.attr,
327 	&use_zero_page_attr.attr,
328 	&hpage_pmd_size_attr.attr,
329 #ifdef CONFIG_SHMEM
330 	&shmem_enabled_attr.attr,
331 #endif
332 	NULL,
333 };
334 
335 static const struct attribute_group hugepage_attr_group = {
336 	.attrs = hugepage_attr,
337 };
338 
339 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
340 {
341 	int err;
342 
343 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
344 	if (unlikely(!*hugepage_kobj)) {
345 		pr_err("failed to create transparent hugepage kobject\n");
346 		return -ENOMEM;
347 	}
348 
349 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
350 	if (err) {
351 		pr_err("failed to register transparent hugepage group\n");
352 		goto delete_obj;
353 	}
354 
355 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
356 	if (err) {
357 		pr_err("failed to register transparent hugepage group\n");
358 		goto remove_hp_group;
359 	}
360 
361 	return 0;
362 
363 remove_hp_group:
364 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
365 delete_obj:
366 	kobject_put(*hugepage_kobj);
367 	return err;
368 }
369 
370 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
371 {
372 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
373 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
374 	kobject_put(hugepage_kobj);
375 }
376 #else
377 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
378 {
379 	return 0;
380 }
381 
382 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
383 {
384 }
385 #endif /* CONFIG_SYSFS */
386 
387 static int __init hugepage_init(void)
388 {
389 	int err;
390 	struct kobject *hugepage_kobj;
391 
392 	if (!has_transparent_hugepage()) {
393 		/*
394 		 * Hardware doesn't support hugepages, hence disable
395 		 * DAX PMD support.
396 		 */
397 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
398 		return -EINVAL;
399 	}
400 
401 	/*
402 	 * hugepages can't be allocated by the buddy allocator
403 	 */
404 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
405 	/*
406 	 * we use page->mapping and page->index in second tail page
407 	 * as list_head: assuming THP order >= 2
408 	 */
409 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
410 
411 	err = hugepage_init_sysfs(&hugepage_kobj);
412 	if (err)
413 		goto err_sysfs;
414 
415 	err = khugepaged_init();
416 	if (err)
417 		goto err_slab;
418 
419 	err = register_shrinker(&huge_zero_page_shrinker);
420 	if (err)
421 		goto err_hzp_shrinker;
422 	err = register_shrinker(&deferred_split_shrinker);
423 	if (err)
424 		goto err_split_shrinker;
425 
426 	/*
427 	 * By default disable transparent hugepages on smaller systems,
428 	 * where the extra memory used could hurt more than TLB overhead
429 	 * is likely to save.  The admin can still enable it through /sys.
430 	 */
431 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
432 		transparent_hugepage_flags = 0;
433 		return 0;
434 	}
435 
436 	err = start_stop_khugepaged();
437 	if (err)
438 		goto err_khugepaged;
439 
440 	return 0;
441 err_khugepaged:
442 	unregister_shrinker(&deferred_split_shrinker);
443 err_split_shrinker:
444 	unregister_shrinker(&huge_zero_page_shrinker);
445 err_hzp_shrinker:
446 	khugepaged_destroy();
447 err_slab:
448 	hugepage_exit_sysfs(hugepage_kobj);
449 err_sysfs:
450 	return err;
451 }
452 subsys_initcall(hugepage_init);
453 
454 static int __init setup_transparent_hugepage(char *str)
455 {
456 	int ret = 0;
457 	if (!str)
458 		goto out;
459 	if (!strcmp(str, "always")) {
460 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
461 			&transparent_hugepage_flags);
462 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463 			  &transparent_hugepage_flags);
464 		ret = 1;
465 	} else if (!strcmp(str, "madvise")) {
466 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 			  &transparent_hugepage_flags);
468 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 			&transparent_hugepage_flags);
470 		ret = 1;
471 	} else if (!strcmp(str, "never")) {
472 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 			  &transparent_hugepage_flags);
474 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 			  &transparent_hugepage_flags);
476 		ret = 1;
477 	}
478 out:
479 	if (!ret)
480 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
481 	return ret;
482 }
483 __setup("transparent_hugepage=", setup_transparent_hugepage);
484 
485 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
486 {
487 	if (likely(vma->vm_flags & VM_WRITE))
488 		pmd = pmd_mkwrite(pmd);
489 	return pmd;
490 }
491 
492 #ifdef CONFIG_MEMCG
493 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
494 {
495 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
496 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
497 
498 	if (memcg)
499 		return &memcg->deferred_split_queue;
500 	else
501 		return &pgdat->deferred_split_queue;
502 }
503 #else
504 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
505 {
506 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507 
508 	return &pgdat->deferred_split_queue;
509 }
510 #endif
511 
512 void prep_transhuge_page(struct page *page)
513 {
514 	/*
515 	 * we use page->mapping and page->indexlru in second tail page
516 	 * as list_head: assuming THP order >= 2
517 	 */
518 
519 	INIT_LIST_HEAD(page_deferred_list(page));
520 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
521 }
522 
523 bool is_transparent_hugepage(struct page *page)
524 {
525 	if (!PageCompound(page))
526 		return false;
527 
528 	page = compound_head(page);
529 	return is_huge_zero_page(page) ||
530 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
531 }
532 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
533 
534 static unsigned long __thp_get_unmapped_area(struct file *filp,
535 		unsigned long addr, unsigned long len,
536 		loff_t off, unsigned long flags, unsigned long size)
537 {
538 	loff_t off_end = off + len;
539 	loff_t off_align = round_up(off, size);
540 	unsigned long len_pad, ret;
541 
542 	if (off_end <= off_align || (off_end - off_align) < size)
543 		return 0;
544 
545 	len_pad = len + size;
546 	if (len_pad < len || (off + len_pad) < off)
547 		return 0;
548 
549 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
550 					      off >> PAGE_SHIFT, flags);
551 
552 	/*
553 	 * The failure might be due to length padding. The caller will retry
554 	 * without the padding.
555 	 */
556 	if (IS_ERR_VALUE(ret))
557 		return 0;
558 
559 	/*
560 	 * Do not try to align to THP boundary if allocation at the address
561 	 * hint succeeds.
562 	 */
563 	if (ret == addr)
564 		return addr;
565 
566 	ret += (off - ret) & (size - 1);
567 	return ret;
568 }
569 
570 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
571 		unsigned long len, unsigned long pgoff, unsigned long flags)
572 {
573 	unsigned long ret;
574 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
575 
576 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
577 		goto out;
578 
579 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
580 	if (ret)
581 		return ret;
582 out:
583 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
584 }
585 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
586 
587 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
588 			struct page *page, gfp_t gfp)
589 {
590 	struct vm_area_struct *vma = vmf->vma;
591 	pgtable_t pgtable;
592 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593 	vm_fault_t ret = 0;
594 
595 	VM_BUG_ON_PAGE(!PageCompound(page), page);
596 
597 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
598 		put_page(page);
599 		count_vm_event(THP_FAULT_FALLBACK);
600 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 		return VM_FAULT_FALLBACK;
602 	}
603 	cgroup_throttle_swaprate(page, gfp);
604 
605 	pgtable = pte_alloc_one(vma->vm_mm);
606 	if (unlikely(!pgtable)) {
607 		ret = VM_FAULT_OOM;
608 		goto release;
609 	}
610 
611 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
612 	/*
613 	 * The memory barrier inside __SetPageUptodate makes sure that
614 	 * clear_huge_page writes become visible before the set_pmd_at()
615 	 * write.
616 	 */
617 	__SetPageUptodate(page);
618 
619 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
620 	if (unlikely(!pmd_none(*vmf->pmd))) {
621 		goto unlock_release;
622 	} else {
623 		pmd_t entry;
624 
625 		ret = check_stable_address_space(vma->vm_mm);
626 		if (ret)
627 			goto unlock_release;
628 
629 		/* Deliver the page fault to userland */
630 		if (userfaultfd_missing(vma)) {
631 			spin_unlock(vmf->ptl);
632 			put_page(page);
633 			pte_free(vma->vm_mm, pgtable);
634 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
635 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
636 			return ret;
637 		}
638 
639 		entry = mk_huge_pmd(page, vma->vm_page_prot);
640 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
641 		page_add_new_anon_rmap(page, vma, haddr, true);
642 		lru_cache_add_inactive_or_unevictable(page, vma);
643 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
644 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
645 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
646 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647 		mm_inc_nr_ptes(vma->vm_mm);
648 		spin_unlock(vmf->ptl);
649 		count_vm_event(THP_FAULT_ALLOC);
650 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651 	}
652 
653 	return 0;
654 unlock_release:
655 	spin_unlock(vmf->ptl);
656 release:
657 	if (pgtable)
658 		pte_free(vma->vm_mm, pgtable);
659 	put_page(page);
660 	return ret;
661 
662 }
663 
664 /*
665  * always: directly stall for all thp allocations
666  * defer: wake kswapd and fail if not immediately available
667  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668  *		  fail if not immediately available
669  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
670  *	    available
671  * never: never stall for any thp allocation
672  */
673 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
674 {
675 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
676 
677 	/* Always do synchronous compaction */
678 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
680 
681 	/* Kick kcompactd and fail quickly */
682 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
684 
685 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
686 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687 		return GFP_TRANSHUGE_LIGHT |
688 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
689 					__GFP_KSWAPD_RECLAIM);
690 
691 	/* Only do synchronous compaction if madvised */
692 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 		return GFP_TRANSHUGE_LIGHT |
694 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
695 
696 	return GFP_TRANSHUGE_LIGHT;
697 }
698 
699 /* Caller must hold page table lock. */
700 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702 		struct page *zero_page)
703 {
704 	pmd_t entry;
705 	if (!pmd_none(*pmd))
706 		return;
707 	entry = mk_pmd(zero_page, vma->vm_page_prot);
708 	entry = pmd_mkhuge(entry);
709 	if (pgtable)
710 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
711 	set_pmd_at(mm, haddr, pmd, entry);
712 	mm_inc_nr_ptes(mm);
713 }
714 
715 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
716 {
717 	struct vm_area_struct *vma = vmf->vma;
718 	gfp_t gfp;
719 	struct page *page;
720 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
721 
722 	if (!transhuge_vma_suitable(vma, haddr))
723 		return VM_FAULT_FALLBACK;
724 	if (unlikely(anon_vma_prepare(vma)))
725 		return VM_FAULT_OOM;
726 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
727 		return VM_FAULT_OOM;
728 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
729 			!mm_forbids_zeropage(vma->vm_mm) &&
730 			transparent_hugepage_use_zero_page()) {
731 		pgtable_t pgtable;
732 		struct page *zero_page;
733 		vm_fault_t ret;
734 		pgtable = pte_alloc_one(vma->vm_mm);
735 		if (unlikely(!pgtable))
736 			return VM_FAULT_OOM;
737 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
738 		if (unlikely(!zero_page)) {
739 			pte_free(vma->vm_mm, pgtable);
740 			count_vm_event(THP_FAULT_FALLBACK);
741 			return VM_FAULT_FALLBACK;
742 		}
743 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
744 		ret = 0;
745 		if (pmd_none(*vmf->pmd)) {
746 			ret = check_stable_address_space(vma->vm_mm);
747 			if (ret) {
748 				spin_unlock(vmf->ptl);
749 				pte_free(vma->vm_mm, pgtable);
750 			} else if (userfaultfd_missing(vma)) {
751 				spin_unlock(vmf->ptl);
752 				pte_free(vma->vm_mm, pgtable);
753 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
755 			} else {
756 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
757 						   haddr, vmf->pmd, zero_page);
758 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
759 				spin_unlock(vmf->ptl);
760 			}
761 		} else {
762 			spin_unlock(vmf->ptl);
763 			pte_free(vma->vm_mm, pgtable);
764 		}
765 		return ret;
766 	}
767 	gfp = vma_thp_gfp_mask(vma);
768 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
769 	if (unlikely(!page)) {
770 		count_vm_event(THP_FAULT_FALLBACK);
771 		return VM_FAULT_FALLBACK;
772 	}
773 	prep_transhuge_page(page);
774 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
775 }
776 
777 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
779 		pgtable_t pgtable)
780 {
781 	struct mm_struct *mm = vma->vm_mm;
782 	pmd_t entry;
783 	spinlock_t *ptl;
784 
785 	ptl = pmd_lock(mm, pmd);
786 	if (!pmd_none(*pmd)) {
787 		if (write) {
788 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
789 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
790 				goto out_unlock;
791 			}
792 			entry = pmd_mkyoung(*pmd);
793 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
794 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
795 				update_mmu_cache_pmd(vma, addr, pmd);
796 		}
797 
798 		goto out_unlock;
799 	}
800 
801 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
802 	if (pfn_t_devmap(pfn))
803 		entry = pmd_mkdevmap(entry);
804 	if (write) {
805 		entry = pmd_mkyoung(pmd_mkdirty(entry));
806 		entry = maybe_pmd_mkwrite(entry, vma);
807 	}
808 
809 	if (pgtable) {
810 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
811 		mm_inc_nr_ptes(mm);
812 		pgtable = NULL;
813 	}
814 
815 	set_pmd_at(mm, addr, pmd, entry);
816 	update_mmu_cache_pmd(vma, addr, pmd);
817 
818 out_unlock:
819 	spin_unlock(ptl);
820 	if (pgtable)
821 		pte_free(mm, pgtable);
822 }
823 
824 /**
825  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
826  * @vmf: Structure describing the fault
827  * @pfn: pfn to insert
828  * @pgprot: page protection to use
829  * @write: whether it's a write fault
830  *
831  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
832  * also consult the vmf_insert_mixed_prot() documentation when
833  * @pgprot != @vmf->vma->vm_page_prot.
834  *
835  * Return: vm_fault_t value.
836  */
837 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
838 				   pgprot_t pgprot, bool write)
839 {
840 	unsigned long addr = vmf->address & PMD_MASK;
841 	struct vm_area_struct *vma = vmf->vma;
842 	pgtable_t pgtable = NULL;
843 
844 	/*
845 	 * If we had pmd_special, we could avoid all these restrictions,
846 	 * but we need to be consistent with PTEs and architectures that
847 	 * can't support a 'special' bit.
848 	 */
849 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
850 			!pfn_t_devmap(pfn));
851 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
852 						(VM_PFNMAP|VM_MIXEDMAP));
853 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
854 
855 	if (addr < vma->vm_start || addr >= vma->vm_end)
856 		return VM_FAULT_SIGBUS;
857 
858 	if (arch_needs_pgtable_deposit()) {
859 		pgtable = pte_alloc_one(vma->vm_mm);
860 		if (!pgtable)
861 			return VM_FAULT_OOM;
862 	}
863 
864 	track_pfn_insert(vma, &pgprot, pfn);
865 
866 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
867 	return VM_FAULT_NOPAGE;
868 }
869 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
870 
871 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
872 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
873 {
874 	if (likely(vma->vm_flags & VM_WRITE))
875 		pud = pud_mkwrite(pud);
876 	return pud;
877 }
878 
879 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
880 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
881 {
882 	struct mm_struct *mm = vma->vm_mm;
883 	pud_t entry;
884 	spinlock_t *ptl;
885 
886 	ptl = pud_lock(mm, pud);
887 	if (!pud_none(*pud)) {
888 		if (write) {
889 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
890 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
891 				goto out_unlock;
892 			}
893 			entry = pud_mkyoung(*pud);
894 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
895 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
896 				update_mmu_cache_pud(vma, addr, pud);
897 		}
898 		goto out_unlock;
899 	}
900 
901 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
902 	if (pfn_t_devmap(pfn))
903 		entry = pud_mkdevmap(entry);
904 	if (write) {
905 		entry = pud_mkyoung(pud_mkdirty(entry));
906 		entry = maybe_pud_mkwrite(entry, vma);
907 	}
908 	set_pud_at(mm, addr, pud, entry);
909 	update_mmu_cache_pud(vma, addr, pud);
910 
911 out_unlock:
912 	spin_unlock(ptl);
913 }
914 
915 /**
916  * vmf_insert_pfn_pud_prot - insert a pud size pfn
917  * @vmf: Structure describing the fault
918  * @pfn: pfn to insert
919  * @pgprot: page protection to use
920  * @write: whether it's a write fault
921  *
922  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
923  * also consult the vmf_insert_mixed_prot() documentation when
924  * @pgprot != @vmf->vma->vm_page_prot.
925  *
926  * Return: vm_fault_t value.
927  */
928 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
929 				   pgprot_t pgprot, bool write)
930 {
931 	unsigned long addr = vmf->address & PUD_MASK;
932 	struct vm_area_struct *vma = vmf->vma;
933 
934 	/*
935 	 * If we had pud_special, we could avoid all these restrictions,
936 	 * but we need to be consistent with PTEs and architectures that
937 	 * can't support a 'special' bit.
938 	 */
939 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
940 			!pfn_t_devmap(pfn));
941 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
942 						(VM_PFNMAP|VM_MIXEDMAP));
943 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
944 
945 	if (addr < vma->vm_start || addr >= vma->vm_end)
946 		return VM_FAULT_SIGBUS;
947 
948 	track_pfn_insert(vma, &pgprot, pfn);
949 
950 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
951 	return VM_FAULT_NOPAGE;
952 }
953 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
954 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
955 
956 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
957 		pmd_t *pmd, int flags)
958 {
959 	pmd_t _pmd;
960 
961 	_pmd = pmd_mkyoung(*pmd);
962 	if (flags & FOLL_WRITE)
963 		_pmd = pmd_mkdirty(_pmd);
964 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
965 				pmd, _pmd, flags & FOLL_WRITE))
966 		update_mmu_cache_pmd(vma, addr, pmd);
967 }
968 
969 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
970 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
971 {
972 	unsigned long pfn = pmd_pfn(*pmd);
973 	struct mm_struct *mm = vma->vm_mm;
974 	struct page *page;
975 
976 	assert_spin_locked(pmd_lockptr(mm, pmd));
977 
978 	/*
979 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
980 	 * not be in this function with `flags & FOLL_COW` set.
981 	 */
982 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
983 
984 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
985 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
986 			 (FOLL_PIN | FOLL_GET)))
987 		return NULL;
988 
989 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
990 		return NULL;
991 
992 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
993 		/* pass */;
994 	else
995 		return NULL;
996 
997 	if (flags & FOLL_TOUCH)
998 		touch_pmd(vma, addr, pmd, flags);
999 
1000 	/*
1001 	 * device mapped pages can only be returned if the
1002 	 * caller will manage the page reference count.
1003 	 */
1004 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1005 		return ERR_PTR(-EEXIST);
1006 
1007 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1008 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1009 	if (!*pgmap)
1010 		return ERR_PTR(-EFAULT);
1011 	page = pfn_to_page(pfn);
1012 	if (!try_grab_page(page, flags))
1013 		page = ERR_PTR(-ENOMEM);
1014 
1015 	return page;
1016 }
1017 
1018 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1019 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 		  struct vm_area_struct *vma)
1021 {
1022 	spinlock_t *dst_ptl, *src_ptl;
1023 	struct page *src_page;
1024 	pmd_t pmd;
1025 	pgtable_t pgtable = NULL;
1026 	int ret = -ENOMEM;
1027 
1028 	/* Skip if can be re-fill on fault */
1029 	if (!vma_is_anonymous(vma))
1030 		return 0;
1031 
1032 	pgtable = pte_alloc_one(dst_mm);
1033 	if (unlikely(!pgtable))
1034 		goto out;
1035 
1036 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1037 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1038 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1039 
1040 	ret = -EAGAIN;
1041 	pmd = *src_pmd;
1042 
1043 	/*
1044 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1045 	 * does not have the VM_UFFD_WP, which means that the uffd
1046 	 * fork event is not enabled.
1047 	 */
1048 	if (!(vma->vm_flags & VM_UFFD_WP))
1049 		pmd = pmd_clear_uffd_wp(pmd);
1050 
1051 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1052 	if (unlikely(is_swap_pmd(pmd))) {
1053 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1054 
1055 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1056 		if (is_write_migration_entry(entry)) {
1057 			make_migration_entry_read(&entry);
1058 			pmd = swp_entry_to_pmd(entry);
1059 			if (pmd_swp_soft_dirty(*src_pmd))
1060 				pmd = pmd_swp_mksoft_dirty(pmd);
1061 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1062 		}
1063 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1064 		mm_inc_nr_ptes(dst_mm);
1065 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1066 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1067 		ret = 0;
1068 		goto out_unlock;
1069 	}
1070 #endif
1071 
1072 	if (unlikely(!pmd_trans_huge(pmd))) {
1073 		pte_free(dst_mm, pgtable);
1074 		goto out_unlock;
1075 	}
1076 	/*
1077 	 * When page table lock is held, the huge zero pmd should not be
1078 	 * under splitting since we don't split the page itself, only pmd to
1079 	 * a page table.
1080 	 */
1081 	if (is_huge_zero_pmd(pmd)) {
1082 		struct page *zero_page;
1083 		/*
1084 		 * get_huge_zero_page() will never allocate a new page here,
1085 		 * since we already have a zero page to copy. It just takes a
1086 		 * reference.
1087 		 */
1088 		zero_page = mm_get_huge_zero_page(dst_mm);
1089 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1090 				zero_page);
1091 		ret = 0;
1092 		goto out_unlock;
1093 	}
1094 
1095 	src_page = pmd_page(pmd);
1096 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1097 
1098 	/*
1099 	 * If this page is a potentially pinned page, split and retry the fault
1100 	 * with smaller page size.  Normally this should not happen because the
1101 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1102 	 * best effort that the pinned pages won't be replaced by another
1103 	 * random page during the coming copy-on-write.
1104 	 */
1105 	if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1106 		pte_free(dst_mm, pgtable);
1107 		spin_unlock(src_ptl);
1108 		spin_unlock(dst_ptl);
1109 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1110 		return -EAGAIN;
1111 	}
1112 
1113 	get_page(src_page);
1114 	page_dup_rmap(src_page, true);
1115 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 	mm_inc_nr_ptes(dst_mm);
1117 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 
1119 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1121 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1122 
1123 	ret = 0;
1124 out_unlock:
1125 	spin_unlock(src_ptl);
1126 	spin_unlock(dst_ptl);
1127 out:
1128 	return ret;
1129 }
1130 
1131 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1132 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1133 		pud_t *pud, int flags)
1134 {
1135 	pud_t _pud;
1136 
1137 	_pud = pud_mkyoung(*pud);
1138 	if (flags & FOLL_WRITE)
1139 		_pud = pud_mkdirty(_pud);
1140 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1141 				pud, _pud, flags & FOLL_WRITE))
1142 		update_mmu_cache_pud(vma, addr, pud);
1143 }
1144 
1145 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1146 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1147 {
1148 	unsigned long pfn = pud_pfn(*pud);
1149 	struct mm_struct *mm = vma->vm_mm;
1150 	struct page *page;
1151 
1152 	assert_spin_locked(pud_lockptr(mm, pud));
1153 
1154 	if (flags & FOLL_WRITE && !pud_write(*pud))
1155 		return NULL;
1156 
1157 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1158 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1159 			 (FOLL_PIN | FOLL_GET)))
1160 		return NULL;
1161 
1162 	if (pud_present(*pud) && pud_devmap(*pud))
1163 		/* pass */;
1164 	else
1165 		return NULL;
1166 
1167 	if (flags & FOLL_TOUCH)
1168 		touch_pud(vma, addr, pud, flags);
1169 
1170 	/*
1171 	 * device mapped pages can only be returned if the
1172 	 * caller will manage the page reference count.
1173 	 *
1174 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1175 	 */
1176 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1177 		return ERR_PTR(-EEXIST);
1178 
1179 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1180 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1181 	if (!*pgmap)
1182 		return ERR_PTR(-EFAULT);
1183 	page = pfn_to_page(pfn);
1184 	if (!try_grab_page(page, flags))
1185 		page = ERR_PTR(-ENOMEM);
1186 
1187 	return page;
1188 }
1189 
1190 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1192 		  struct vm_area_struct *vma)
1193 {
1194 	spinlock_t *dst_ptl, *src_ptl;
1195 	pud_t pud;
1196 	int ret;
1197 
1198 	dst_ptl = pud_lock(dst_mm, dst_pud);
1199 	src_ptl = pud_lockptr(src_mm, src_pud);
1200 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1201 
1202 	ret = -EAGAIN;
1203 	pud = *src_pud;
1204 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1205 		goto out_unlock;
1206 
1207 	/*
1208 	 * When page table lock is held, the huge zero pud should not be
1209 	 * under splitting since we don't split the page itself, only pud to
1210 	 * a page table.
1211 	 */
1212 	if (is_huge_zero_pud(pud)) {
1213 		/* No huge zero pud yet */
1214 	}
1215 
1216 	/* Please refer to comments in copy_huge_pmd() */
1217 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1218 		spin_unlock(src_ptl);
1219 		spin_unlock(dst_ptl);
1220 		__split_huge_pud(vma, src_pud, addr);
1221 		return -EAGAIN;
1222 	}
1223 
1224 	pudp_set_wrprotect(src_mm, addr, src_pud);
1225 	pud = pud_mkold(pud_wrprotect(pud));
1226 	set_pud_at(dst_mm, addr, dst_pud, pud);
1227 
1228 	ret = 0;
1229 out_unlock:
1230 	spin_unlock(src_ptl);
1231 	spin_unlock(dst_ptl);
1232 	return ret;
1233 }
1234 
1235 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1236 {
1237 	pud_t entry;
1238 	unsigned long haddr;
1239 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1240 
1241 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1242 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1243 		goto unlock;
1244 
1245 	entry = pud_mkyoung(orig_pud);
1246 	if (write)
1247 		entry = pud_mkdirty(entry);
1248 	haddr = vmf->address & HPAGE_PUD_MASK;
1249 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1250 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1251 
1252 unlock:
1253 	spin_unlock(vmf->ptl);
1254 }
1255 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1256 
1257 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1258 {
1259 	pmd_t entry;
1260 	unsigned long haddr;
1261 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1262 
1263 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1264 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1265 		goto unlock;
1266 
1267 	entry = pmd_mkyoung(orig_pmd);
1268 	if (write)
1269 		entry = pmd_mkdirty(entry);
1270 	haddr = vmf->address & HPAGE_PMD_MASK;
1271 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1272 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1273 
1274 unlock:
1275 	spin_unlock(vmf->ptl);
1276 }
1277 
1278 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1279 {
1280 	struct vm_area_struct *vma = vmf->vma;
1281 	struct page *page;
1282 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1283 
1284 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1285 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1286 
1287 	if (is_huge_zero_pmd(orig_pmd))
1288 		goto fallback;
1289 
1290 	spin_lock(vmf->ptl);
1291 
1292 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1293 		spin_unlock(vmf->ptl);
1294 		return 0;
1295 	}
1296 
1297 	page = pmd_page(orig_pmd);
1298 	VM_BUG_ON_PAGE(!PageHead(page), page);
1299 
1300 	/* Lock page for reuse_swap_page() */
1301 	if (!trylock_page(page)) {
1302 		get_page(page);
1303 		spin_unlock(vmf->ptl);
1304 		lock_page(page);
1305 		spin_lock(vmf->ptl);
1306 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 			spin_unlock(vmf->ptl);
1308 			unlock_page(page);
1309 			put_page(page);
1310 			return 0;
1311 		}
1312 		put_page(page);
1313 	}
1314 
1315 	/*
1316 	 * We can only reuse the page if nobody else maps the huge page or it's
1317 	 * part.
1318 	 */
1319 	if (reuse_swap_page(page, NULL)) {
1320 		pmd_t entry;
1321 		entry = pmd_mkyoung(orig_pmd);
1322 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1323 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1324 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1325 		unlock_page(page);
1326 		spin_unlock(vmf->ptl);
1327 		return VM_FAULT_WRITE;
1328 	}
1329 
1330 	unlock_page(page);
1331 	spin_unlock(vmf->ptl);
1332 fallback:
1333 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1334 	return VM_FAULT_FALLBACK;
1335 }
1336 
1337 /*
1338  * FOLL_FORCE can write to even unwritable pmd's, but only
1339  * after we've gone through a COW cycle and they are dirty.
1340  */
1341 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1342 {
1343 	return pmd_write(pmd) ||
1344 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1345 }
1346 
1347 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1348 				   unsigned long addr,
1349 				   pmd_t *pmd,
1350 				   unsigned int flags)
1351 {
1352 	struct mm_struct *mm = vma->vm_mm;
1353 	struct page *page = NULL;
1354 
1355 	assert_spin_locked(pmd_lockptr(mm, pmd));
1356 
1357 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1358 		goto out;
1359 
1360 	/* Avoid dumping huge zero page */
1361 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1362 		return ERR_PTR(-EFAULT);
1363 
1364 	/* Full NUMA hinting faults to serialise migration in fault paths */
1365 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1366 		goto out;
1367 
1368 	page = pmd_page(*pmd);
1369 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1370 
1371 	if (!try_grab_page(page, flags))
1372 		return ERR_PTR(-ENOMEM);
1373 
1374 	if (flags & FOLL_TOUCH)
1375 		touch_pmd(vma, addr, pmd, flags);
1376 
1377 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1378 		/*
1379 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1380 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1381 		 *
1382 		 * For anon THP:
1383 		 *
1384 		 * In most cases the pmd is the only mapping of the page as we
1385 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1386 		 * writable private mappings in populate_vma_page_range().
1387 		 *
1388 		 * The only scenario when we have the page shared here is if we
1389 		 * mlocking read-only mapping shared over fork(). We skip
1390 		 * mlocking such pages.
1391 		 *
1392 		 * For file THP:
1393 		 *
1394 		 * We can expect PageDoubleMap() to be stable under page lock:
1395 		 * for file pages we set it in page_add_file_rmap(), which
1396 		 * requires page to be locked.
1397 		 */
1398 
1399 		if (PageAnon(page) && compound_mapcount(page) != 1)
1400 			goto skip_mlock;
1401 		if (PageDoubleMap(page) || !page->mapping)
1402 			goto skip_mlock;
1403 		if (!trylock_page(page))
1404 			goto skip_mlock;
1405 		if (page->mapping && !PageDoubleMap(page))
1406 			mlock_vma_page(page);
1407 		unlock_page(page);
1408 	}
1409 skip_mlock:
1410 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1411 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1412 
1413 out:
1414 	return page;
1415 }
1416 
1417 /* NUMA hinting page fault entry point for trans huge pmds */
1418 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1419 {
1420 	struct vm_area_struct *vma = vmf->vma;
1421 	struct anon_vma *anon_vma = NULL;
1422 	struct page *page;
1423 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1424 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1425 	int target_nid, last_cpupid = -1;
1426 	bool page_locked;
1427 	bool migrated = false;
1428 	bool was_writable;
1429 	int flags = 0;
1430 
1431 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1432 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1433 		goto out_unlock;
1434 
1435 	/*
1436 	 * If there are potential migrations, wait for completion and retry
1437 	 * without disrupting NUMA hinting information. Do not relock and
1438 	 * check_same as the page may no longer be mapped.
1439 	 */
1440 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1441 		page = pmd_page(*vmf->pmd);
1442 		if (!get_page_unless_zero(page))
1443 			goto out_unlock;
1444 		spin_unlock(vmf->ptl);
1445 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1446 		goto out;
1447 	}
1448 
1449 	page = pmd_page(pmd);
1450 	BUG_ON(is_huge_zero_page(page));
1451 	page_nid = page_to_nid(page);
1452 	last_cpupid = page_cpupid_last(page);
1453 	count_vm_numa_event(NUMA_HINT_FAULTS);
1454 	if (page_nid == this_nid) {
1455 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1456 		flags |= TNF_FAULT_LOCAL;
1457 	}
1458 
1459 	/* See similar comment in do_numa_page for explanation */
1460 	if (!pmd_savedwrite(pmd))
1461 		flags |= TNF_NO_GROUP;
1462 
1463 	/*
1464 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1465 	 * page_table_lock if at all possible
1466 	 */
1467 	page_locked = trylock_page(page);
1468 	target_nid = mpol_misplaced(page, vma, haddr);
1469 	/* Migration could have started since the pmd_trans_migrating check */
1470 	if (!page_locked) {
1471 		page_nid = NUMA_NO_NODE;
1472 		if (!get_page_unless_zero(page))
1473 			goto out_unlock;
1474 		spin_unlock(vmf->ptl);
1475 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1476 		goto out;
1477 	} else if (target_nid == NUMA_NO_NODE) {
1478 		/* There are no parallel migrations and page is in the right
1479 		 * node. Clear the numa hinting info in this pmd.
1480 		 */
1481 		goto clear_pmdnuma;
1482 	}
1483 
1484 	/*
1485 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1486 	 * to serialises splits
1487 	 */
1488 	get_page(page);
1489 	spin_unlock(vmf->ptl);
1490 	anon_vma = page_lock_anon_vma_read(page);
1491 
1492 	/* Confirm the PMD did not change while page_table_lock was released */
1493 	spin_lock(vmf->ptl);
1494 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1495 		unlock_page(page);
1496 		put_page(page);
1497 		page_nid = NUMA_NO_NODE;
1498 		goto out_unlock;
1499 	}
1500 
1501 	/* Bail if we fail to protect against THP splits for any reason */
1502 	if (unlikely(!anon_vma)) {
1503 		put_page(page);
1504 		page_nid = NUMA_NO_NODE;
1505 		goto clear_pmdnuma;
1506 	}
1507 
1508 	/*
1509 	 * Since we took the NUMA fault, we must have observed the !accessible
1510 	 * bit. Make sure all other CPUs agree with that, to avoid them
1511 	 * modifying the page we're about to migrate.
1512 	 *
1513 	 * Must be done under PTL such that we'll observe the relevant
1514 	 * inc_tlb_flush_pending().
1515 	 *
1516 	 * We are not sure a pending tlb flush here is for a huge page
1517 	 * mapping or not. Hence use the tlb range variant
1518 	 */
1519 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1520 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1521 		/*
1522 		 * change_huge_pmd() released the pmd lock before
1523 		 * invalidating the secondary MMUs sharing the primary
1524 		 * MMU pagetables (with ->invalidate_range()). The
1525 		 * mmu_notifier_invalidate_range_end() (which
1526 		 * internally calls ->invalidate_range()) in
1527 		 * change_pmd_range() will run after us, so we can't
1528 		 * rely on it here and we need an explicit invalidate.
1529 		 */
1530 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1531 					      haddr + HPAGE_PMD_SIZE);
1532 	}
1533 
1534 	/*
1535 	 * Migrate the THP to the requested node, returns with page unlocked
1536 	 * and access rights restored.
1537 	 */
1538 	spin_unlock(vmf->ptl);
1539 
1540 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1541 				vmf->pmd, pmd, vmf->address, page, target_nid);
1542 	if (migrated) {
1543 		flags |= TNF_MIGRATED;
1544 		page_nid = target_nid;
1545 	} else
1546 		flags |= TNF_MIGRATE_FAIL;
1547 
1548 	goto out;
1549 clear_pmdnuma:
1550 	BUG_ON(!PageLocked(page));
1551 	was_writable = pmd_savedwrite(pmd);
1552 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1553 	pmd = pmd_mkyoung(pmd);
1554 	if (was_writable)
1555 		pmd = pmd_mkwrite(pmd);
1556 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1558 	unlock_page(page);
1559 out_unlock:
1560 	spin_unlock(vmf->ptl);
1561 
1562 out:
1563 	if (anon_vma)
1564 		page_unlock_anon_vma_read(anon_vma);
1565 
1566 	if (page_nid != NUMA_NO_NODE)
1567 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1568 				flags);
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Return true if we do MADV_FREE successfully on entire pmd page.
1575  * Otherwise, return false.
1576  */
1577 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1578 		pmd_t *pmd, unsigned long addr, unsigned long next)
1579 {
1580 	spinlock_t *ptl;
1581 	pmd_t orig_pmd;
1582 	struct page *page;
1583 	struct mm_struct *mm = tlb->mm;
1584 	bool ret = false;
1585 
1586 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587 
1588 	ptl = pmd_trans_huge_lock(pmd, vma);
1589 	if (!ptl)
1590 		goto out_unlocked;
1591 
1592 	orig_pmd = *pmd;
1593 	if (is_huge_zero_pmd(orig_pmd))
1594 		goto out;
1595 
1596 	if (unlikely(!pmd_present(orig_pmd))) {
1597 		VM_BUG_ON(thp_migration_supported() &&
1598 				  !is_pmd_migration_entry(orig_pmd));
1599 		goto out;
1600 	}
1601 
1602 	page = pmd_page(orig_pmd);
1603 	/*
1604 	 * If other processes are mapping this page, we couldn't discard
1605 	 * the page unless they all do MADV_FREE so let's skip the page.
1606 	 */
1607 	if (page_mapcount(page) != 1)
1608 		goto out;
1609 
1610 	if (!trylock_page(page))
1611 		goto out;
1612 
1613 	/*
1614 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1615 	 * will deactivate only them.
1616 	 */
1617 	if (next - addr != HPAGE_PMD_SIZE) {
1618 		get_page(page);
1619 		spin_unlock(ptl);
1620 		split_huge_page(page);
1621 		unlock_page(page);
1622 		put_page(page);
1623 		goto out_unlocked;
1624 	}
1625 
1626 	if (PageDirty(page))
1627 		ClearPageDirty(page);
1628 	unlock_page(page);
1629 
1630 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1631 		pmdp_invalidate(vma, addr, pmd);
1632 		orig_pmd = pmd_mkold(orig_pmd);
1633 		orig_pmd = pmd_mkclean(orig_pmd);
1634 
1635 		set_pmd_at(mm, addr, pmd, orig_pmd);
1636 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1637 	}
1638 
1639 	mark_page_lazyfree(page);
1640 	ret = true;
1641 out:
1642 	spin_unlock(ptl);
1643 out_unlocked:
1644 	return ret;
1645 }
1646 
1647 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1648 {
1649 	pgtable_t pgtable;
1650 
1651 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1652 	pte_free(mm, pgtable);
1653 	mm_dec_nr_ptes(mm);
1654 }
1655 
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657 		 pmd_t *pmd, unsigned long addr)
1658 {
1659 	pmd_t orig_pmd;
1660 	spinlock_t *ptl;
1661 
1662 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1663 
1664 	ptl = __pmd_trans_huge_lock(pmd, vma);
1665 	if (!ptl)
1666 		return 0;
1667 	/*
1668 	 * For architectures like ppc64 we look at deposited pgtable
1669 	 * when calling pmdp_huge_get_and_clear. So do the
1670 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1671 	 * operations.
1672 	 */
1673 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1674 						tlb->fullmm);
1675 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1676 	if (vma_is_special_huge(vma)) {
1677 		if (arch_needs_pgtable_deposit())
1678 			zap_deposited_table(tlb->mm, pmd);
1679 		spin_unlock(ptl);
1680 		if (is_huge_zero_pmd(orig_pmd))
1681 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682 	} else if (is_huge_zero_pmd(orig_pmd)) {
1683 		zap_deposited_table(tlb->mm, pmd);
1684 		spin_unlock(ptl);
1685 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1686 	} else {
1687 		struct page *page = NULL;
1688 		int flush_needed = 1;
1689 
1690 		if (pmd_present(orig_pmd)) {
1691 			page = pmd_page(orig_pmd);
1692 			page_remove_rmap(page, true);
1693 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694 			VM_BUG_ON_PAGE(!PageHead(page), page);
1695 		} else if (thp_migration_supported()) {
1696 			swp_entry_t entry;
1697 
1698 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699 			entry = pmd_to_swp_entry(orig_pmd);
1700 			page = migration_entry_to_page(entry);
1701 			flush_needed = 0;
1702 		} else
1703 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704 
1705 		if (PageAnon(page)) {
1706 			zap_deposited_table(tlb->mm, pmd);
1707 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708 		} else {
1709 			if (arch_needs_pgtable_deposit())
1710 				zap_deposited_table(tlb->mm, pmd);
1711 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1712 		}
1713 
1714 		spin_unlock(ptl);
1715 		if (flush_needed)
1716 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1717 	}
1718 	return 1;
1719 }
1720 
1721 #ifndef pmd_move_must_withdraw
1722 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723 					 spinlock_t *old_pmd_ptl,
1724 					 struct vm_area_struct *vma)
1725 {
1726 	/*
1727 	 * With split pmd lock we also need to move preallocated
1728 	 * PTE page table if new_pmd is on different PMD page table.
1729 	 *
1730 	 * We also don't deposit and withdraw tables for file pages.
1731 	 */
1732 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733 }
1734 #endif
1735 
1736 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737 {
1738 #ifdef CONFIG_MEM_SOFT_DIRTY
1739 	if (unlikely(is_pmd_migration_entry(pmd)))
1740 		pmd = pmd_swp_mksoft_dirty(pmd);
1741 	else if (pmd_present(pmd))
1742 		pmd = pmd_mksoft_dirty(pmd);
1743 #endif
1744 	return pmd;
1745 }
1746 
1747 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1748 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1749 {
1750 	spinlock_t *old_ptl, *new_ptl;
1751 	pmd_t pmd;
1752 	struct mm_struct *mm = vma->vm_mm;
1753 	bool force_flush = false;
1754 
1755 	/*
1756 	 * The destination pmd shouldn't be established, free_pgtables()
1757 	 * should have release it.
1758 	 */
1759 	if (WARN_ON(!pmd_none(*new_pmd))) {
1760 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1761 		return false;
1762 	}
1763 
1764 	/*
1765 	 * We don't have to worry about the ordering of src and dst
1766 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1767 	 */
1768 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769 	if (old_ptl) {
1770 		new_ptl = pmd_lockptr(mm, new_pmd);
1771 		if (new_ptl != old_ptl)
1772 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1773 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1774 		if (pmd_present(pmd))
1775 			force_flush = true;
1776 		VM_BUG_ON(!pmd_none(*new_pmd));
1777 
1778 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1779 			pgtable_t pgtable;
1780 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1782 		}
1783 		pmd = move_soft_dirty_pmd(pmd);
1784 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1785 		if (force_flush)
1786 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1787 		if (new_ptl != old_ptl)
1788 			spin_unlock(new_ptl);
1789 		spin_unlock(old_ptl);
1790 		return true;
1791 	}
1792 	return false;
1793 }
1794 
1795 /*
1796  * Returns
1797  *  - 0 if PMD could not be locked
1798  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1799  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1800  */
1801 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1802 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1803 {
1804 	struct mm_struct *mm = vma->vm_mm;
1805 	spinlock_t *ptl;
1806 	pmd_t entry;
1807 	bool preserve_write;
1808 	int ret;
1809 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1810 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1812 
1813 	ptl = __pmd_trans_huge_lock(pmd, vma);
1814 	if (!ptl)
1815 		return 0;
1816 
1817 	preserve_write = prot_numa && pmd_write(*pmd);
1818 	ret = 1;
1819 
1820 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 	if (is_swap_pmd(*pmd)) {
1822 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823 
1824 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825 		if (is_write_migration_entry(entry)) {
1826 			pmd_t newpmd;
1827 			/*
1828 			 * A protection check is difficult so
1829 			 * just be safe and disable write
1830 			 */
1831 			make_migration_entry_read(&entry);
1832 			newpmd = swp_entry_to_pmd(entry);
1833 			if (pmd_swp_soft_dirty(*pmd))
1834 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1835 			set_pmd_at(mm, addr, pmd, newpmd);
1836 		}
1837 		goto unlock;
1838 	}
1839 #endif
1840 
1841 	/*
1842 	 * Avoid trapping faults against the zero page. The read-only
1843 	 * data is likely to be read-cached on the local CPU and
1844 	 * local/remote hits to the zero page are not interesting.
1845 	 */
1846 	if (prot_numa && is_huge_zero_pmd(*pmd))
1847 		goto unlock;
1848 
1849 	if (prot_numa && pmd_protnone(*pmd))
1850 		goto unlock;
1851 
1852 	/*
1853 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1854 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1855 	 * which is also under mmap_read_lock(mm):
1856 	 *
1857 	 *	CPU0:				CPU1:
1858 	 *				change_huge_pmd(prot_numa=1)
1859 	 *				 pmdp_huge_get_and_clear_notify()
1860 	 * madvise_dontneed()
1861 	 *  zap_pmd_range()
1862 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1863 	 *   // skip the pmd
1864 	 *				 set_pmd_at();
1865 	 *				 // pmd is re-established
1866 	 *
1867 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1868 	 * which may break userspace.
1869 	 *
1870 	 * pmdp_invalidate() is required to make sure we don't miss
1871 	 * dirty/young flags set by hardware.
1872 	 */
1873 	entry = pmdp_invalidate(vma, addr, pmd);
1874 
1875 	entry = pmd_modify(entry, newprot);
1876 	if (preserve_write)
1877 		entry = pmd_mk_savedwrite(entry);
1878 	if (uffd_wp) {
1879 		entry = pmd_wrprotect(entry);
1880 		entry = pmd_mkuffd_wp(entry);
1881 	} else if (uffd_wp_resolve) {
1882 		/*
1883 		 * Leave the write bit to be handled by PF interrupt
1884 		 * handler, then things like COW could be properly
1885 		 * handled.
1886 		 */
1887 		entry = pmd_clear_uffd_wp(entry);
1888 	}
1889 	ret = HPAGE_PMD_NR;
1890 	set_pmd_at(mm, addr, pmd, entry);
1891 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1892 unlock:
1893 	spin_unlock(ptl);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899  *
1900  * Note that if it returns page table lock pointer, this routine returns without
1901  * unlocking page table lock. So callers must unlock it.
1902  */
1903 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1904 {
1905 	spinlock_t *ptl;
1906 	ptl = pmd_lock(vma->vm_mm, pmd);
1907 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1908 			pmd_devmap(*pmd)))
1909 		return ptl;
1910 	spin_unlock(ptl);
1911 	return NULL;
1912 }
1913 
1914 /*
1915  * Returns true if a given pud maps a thp, false otherwise.
1916  *
1917  * Note that if it returns true, this routine returns without unlocking page
1918  * table lock. So callers must unlock it.
1919  */
1920 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1921 {
1922 	spinlock_t *ptl;
1923 
1924 	ptl = pud_lock(vma->vm_mm, pud);
1925 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1926 		return ptl;
1927 	spin_unlock(ptl);
1928 	return NULL;
1929 }
1930 
1931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1932 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1933 		 pud_t *pud, unsigned long addr)
1934 {
1935 	spinlock_t *ptl;
1936 
1937 	ptl = __pud_trans_huge_lock(pud, vma);
1938 	if (!ptl)
1939 		return 0;
1940 	/*
1941 	 * For architectures like ppc64 we look at deposited pgtable
1942 	 * when calling pudp_huge_get_and_clear. So do the
1943 	 * pgtable_trans_huge_withdraw after finishing pudp related
1944 	 * operations.
1945 	 */
1946 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1947 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1948 	if (vma_is_special_huge(vma)) {
1949 		spin_unlock(ptl);
1950 		/* No zero page support yet */
1951 	} else {
1952 		/* No support for anonymous PUD pages yet */
1953 		BUG();
1954 	}
1955 	return 1;
1956 }
1957 
1958 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1959 		unsigned long haddr)
1960 {
1961 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1962 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1963 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1964 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1965 
1966 	count_vm_event(THP_SPLIT_PUD);
1967 
1968 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1969 }
1970 
1971 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1972 		unsigned long address)
1973 {
1974 	spinlock_t *ptl;
1975 	struct mmu_notifier_range range;
1976 
1977 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1978 				address & HPAGE_PUD_MASK,
1979 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1980 	mmu_notifier_invalidate_range_start(&range);
1981 	ptl = pud_lock(vma->vm_mm, pud);
1982 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1983 		goto out;
1984 	__split_huge_pud_locked(vma, pud, range.start);
1985 
1986 out:
1987 	spin_unlock(ptl);
1988 	/*
1989 	 * No need to double call mmu_notifier->invalidate_range() callback as
1990 	 * the above pudp_huge_clear_flush_notify() did already call it.
1991 	 */
1992 	mmu_notifier_invalidate_range_only_end(&range);
1993 }
1994 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1995 
1996 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1997 		unsigned long haddr, pmd_t *pmd)
1998 {
1999 	struct mm_struct *mm = vma->vm_mm;
2000 	pgtable_t pgtable;
2001 	pmd_t _pmd;
2002 	int i;
2003 
2004 	/*
2005 	 * Leave pmd empty until pte is filled note that it is fine to delay
2006 	 * notification until mmu_notifier_invalidate_range_end() as we are
2007 	 * replacing a zero pmd write protected page with a zero pte write
2008 	 * protected page.
2009 	 *
2010 	 * See Documentation/vm/mmu_notifier.rst
2011 	 */
2012 	pmdp_huge_clear_flush(vma, haddr, pmd);
2013 
2014 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2015 	pmd_populate(mm, &_pmd, pgtable);
2016 
2017 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2018 		pte_t *pte, entry;
2019 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2020 		entry = pte_mkspecial(entry);
2021 		pte = pte_offset_map(&_pmd, haddr);
2022 		VM_BUG_ON(!pte_none(*pte));
2023 		set_pte_at(mm, haddr, pte, entry);
2024 		pte_unmap(pte);
2025 	}
2026 	smp_wmb(); /* make pte visible before pmd */
2027 	pmd_populate(mm, pmd, pgtable);
2028 }
2029 
2030 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2031 		unsigned long haddr, bool freeze)
2032 {
2033 	struct mm_struct *mm = vma->vm_mm;
2034 	struct page *page;
2035 	pgtable_t pgtable;
2036 	pmd_t old_pmd, _pmd;
2037 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2038 	unsigned long addr;
2039 	int i;
2040 
2041 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2042 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2043 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2044 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2045 				&& !pmd_devmap(*pmd));
2046 
2047 	count_vm_event(THP_SPLIT_PMD);
2048 
2049 	if (!vma_is_anonymous(vma)) {
2050 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2051 		/*
2052 		 * We are going to unmap this huge page. So
2053 		 * just go ahead and zap it
2054 		 */
2055 		if (arch_needs_pgtable_deposit())
2056 			zap_deposited_table(mm, pmd);
2057 		if (vma_is_special_huge(vma))
2058 			return;
2059 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2060 			swp_entry_t entry;
2061 
2062 			entry = pmd_to_swp_entry(old_pmd);
2063 			page = migration_entry_to_page(entry);
2064 		} else {
2065 			page = pmd_page(old_pmd);
2066 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2067 				set_page_dirty(page);
2068 			if (!PageReferenced(page) && pmd_young(old_pmd))
2069 				SetPageReferenced(page);
2070 			page_remove_rmap(page, true);
2071 			put_page(page);
2072 		}
2073 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2074 		return;
2075 	}
2076 
2077 	if (is_huge_zero_pmd(*pmd)) {
2078 		/*
2079 		 * FIXME: Do we want to invalidate secondary mmu by calling
2080 		 * mmu_notifier_invalidate_range() see comments below inside
2081 		 * __split_huge_pmd() ?
2082 		 *
2083 		 * We are going from a zero huge page write protected to zero
2084 		 * small page also write protected so it does not seems useful
2085 		 * to invalidate secondary mmu at this time.
2086 		 */
2087 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2088 	}
2089 
2090 	/*
2091 	 * Up to this point the pmd is present and huge and userland has the
2092 	 * whole access to the hugepage during the split (which happens in
2093 	 * place). If we overwrite the pmd with the not-huge version pointing
2094 	 * to the pte here (which of course we could if all CPUs were bug
2095 	 * free), userland could trigger a small page size TLB miss on the
2096 	 * small sized TLB while the hugepage TLB entry is still established in
2097 	 * the huge TLB. Some CPU doesn't like that.
2098 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2099 	 * 383 on page 105. Intel should be safe but is also warns that it's
2100 	 * only safe if the permission and cache attributes of the two entries
2101 	 * loaded in the two TLB is identical (which should be the case here).
2102 	 * But it is generally safer to never allow small and huge TLB entries
2103 	 * for the same virtual address to be loaded simultaneously. So instead
2104 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2105 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2106 	 * must remain set at all times on the pmd until the split is complete
2107 	 * for this pmd), then we flush the SMP TLB and finally we write the
2108 	 * non-huge version of the pmd entry with pmd_populate.
2109 	 */
2110 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2111 
2112 	pmd_migration = is_pmd_migration_entry(old_pmd);
2113 	if (unlikely(pmd_migration)) {
2114 		swp_entry_t entry;
2115 
2116 		entry = pmd_to_swp_entry(old_pmd);
2117 		page = migration_entry_to_page(entry);
2118 		write = is_write_migration_entry(entry);
2119 		young = false;
2120 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2121 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2122 	} else {
2123 		page = pmd_page(old_pmd);
2124 		if (pmd_dirty(old_pmd))
2125 			SetPageDirty(page);
2126 		write = pmd_write(old_pmd);
2127 		young = pmd_young(old_pmd);
2128 		soft_dirty = pmd_soft_dirty(old_pmd);
2129 		uffd_wp = pmd_uffd_wp(old_pmd);
2130 	}
2131 	VM_BUG_ON_PAGE(!page_count(page), page);
2132 	page_ref_add(page, HPAGE_PMD_NR - 1);
2133 
2134 	/*
2135 	 * Withdraw the table only after we mark the pmd entry invalid.
2136 	 * This's critical for some architectures (Power).
2137 	 */
2138 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2139 	pmd_populate(mm, &_pmd, pgtable);
2140 
2141 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2142 		pte_t entry, *pte;
2143 		/*
2144 		 * Note that NUMA hinting access restrictions are not
2145 		 * transferred to avoid any possibility of altering
2146 		 * permissions across VMAs.
2147 		 */
2148 		if (freeze || pmd_migration) {
2149 			swp_entry_t swp_entry;
2150 			swp_entry = make_migration_entry(page + i, write);
2151 			entry = swp_entry_to_pte(swp_entry);
2152 			if (soft_dirty)
2153 				entry = pte_swp_mksoft_dirty(entry);
2154 			if (uffd_wp)
2155 				entry = pte_swp_mkuffd_wp(entry);
2156 		} else {
2157 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2158 			entry = maybe_mkwrite(entry, vma);
2159 			if (!write)
2160 				entry = pte_wrprotect(entry);
2161 			if (!young)
2162 				entry = pte_mkold(entry);
2163 			if (soft_dirty)
2164 				entry = pte_mksoft_dirty(entry);
2165 			if (uffd_wp)
2166 				entry = pte_mkuffd_wp(entry);
2167 		}
2168 		pte = pte_offset_map(&_pmd, addr);
2169 		BUG_ON(!pte_none(*pte));
2170 		set_pte_at(mm, addr, pte, entry);
2171 		if (!pmd_migration)
2172 			atomic_inc(&page[i]._mapcount);
2173 		pte_unmap(pte);
2174 	}
2175 
2176 	if (!pmd_migration) {
2177 		/*
2178 		 * Set PG_double_map before dropping compound_mapcount to avoid
2179 		 * false-negative page_mapped().
2180 		 */
2181 		if (compound_mapcount(page) > 1 &&
2182 		    !TestSetPageDoubleMap(page)) {
2183 			for (i = 0; i < HPAGE_PMD_NR; i++)
2184 				atomic_inc(&page[i]._mapcount);
2185 		}
2186 
2187 		lock_page_memcg(page);
2188 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2189 			/* Last compound_mapcount is gone. */
2190 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2191 						-HPAGE_PMD_NR);
2192 			if (TestClearPageDoubleMap(page)) {
2193 				/* No need in mapcount reference anymore */
2194 				for (i = 0; i < HPAGE_PMD_NR; i++)
2195 					atomic_dec(&page[i]._mapcount);
2196 			}
2197 		}
2198 		unlock_page_memcg(page);
2199 	}
2200 
2201 	smp_wmb(); /* make pte visible before pmd */
2202 	pmd_populate(mm, pmd, pgtable);
2203 
2204 	if (freeze) {
2205 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2206 			page_remove_rmap(page + i, false);
2207 			put_page(page + i);
2208 		}
2209 	}
2210 }
2211 
2212 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2213 		unsigned long address, bool freeze, struct page *page)
2214 {
2215 	spinlock_t *ptl;
2216 	struct mmu_notifier_range range;
2217 	bool do_unlock_page = false;
2218 	pmd_t _pmd;
2219 
2220 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2221 				address & HPAGE_PMD_MASK,
2222 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2223 	mmu_notifier_invalidate_range_start(&range);
2224 	ptl = pmd_lock(vma->vm_mm, pmd);
2225 
2226 	/*
2227 	 * If caller asks to setup a migration entries, we need a page to check
2228 	 * pmd against. Otherwise we can end up replacing wrong page.
2229 	 */
2230 	VM_BUG_ON(freeze && !page);
2231 	if (page) {
2232 		VM_WARN_ON_ONCE(!PageLocked(page));
2233 		if (page != pmd_page(*pmd))
2234 			goto out;
2235 	}
2236 
2237 repeat:
2238 	if (pmd_trans_huge(*pmd)) {
2239 		if (!page) {
2240 			page = pmd_page(*pmd);
2241 			/*
2242 			 * An anonymous page must be locked, to ensure that a
2243 			 * concurrent reuse_swap_page() sees stable mapcount;
2244 			 * but reuse_swap_page() is not used on shmem or file,
2245 			 * and page lock must not be taken when zap_pmd_range()
2246 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2247 			 */
2248 			if (PageAnon(page)) {
2249 				if (unlikely(!trylock_page(page))) {
2250 					get_page(page);
2251 					_pmd = *pmd;
2252 					spin_unlock(ptl);
2253 					lock_page(page);
2254 					spin_lock(ptl);
2255 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2256 						unlock_page(page);
2257 						put_page(page);
2258 						page = NULL;
2259 						goto repeat;
2260 					}
2261 					put_page(page);
2262 				}
2263 				do_unlock_page = true;
2264 			}
2265 		}
2266 		if (PageMlocked(page))
2267 			clear_page_mlock(page);
2268 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2269 		goto out;
2270 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2271 out:
2272 	spin_unlock(ptl);
2273 	if (do_unlock_page)
2274 		unlock_page(page);
2275 	/*
2276 	 * No need to double call mmu_notifier->invalidate_range() callback.
2277 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2278 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2279 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2280 	 *    fault will trigger a flush_notify before pointing to a new page
2281 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2282 	 *    page in the meantime)
2283 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2284 	 *     to invalidate secondary tlb entry they are all still valid.
2285 	 *     any further changes to individual pte will notify. So no need
2286 	 *     to call mmu_notifier->invalidate_range()
2287 	 */
2288 	mmu_notifier_invalidate_range_only_end(&range);
2289 }
2290 
2291 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2292 		bool freeze, struct page *page)
2293 {
2294 	pgd_t *pgd;
2295 	p4d_t *p4d;
2296 	pud_t *pud;
2297 	pmd_t *pmd;
2298 
2299 	pgd = pgd_offset(vma->vm_mm, address);
2300 	if (!pgd_present(*pgd))
2301 		return;
2302 
2303 	p4d = p4d_offset(pgd, address);
2304 	if (!p4d_present(*p4d))
2305 		return;
2306 
2307 	pud = pud_offset(p4d, address);
2308 	if (!pud_present(*pud))
2309 		return;
2310 
2311 	pmd = pmd_offset(pud, address);
2312 
2313 	__split_huge_pmd(vma, pmd, address, freeze, page);
2314 }
2315 
2316 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2317 {
2318 	/*
2319 	 * If the new address isn't hpage aligned and it could previously
2320 	 * contain an hugepage: check if we need to split an huge pmd.
2321 	 */
2322 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2323 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2324 			 ALIGN(address, HPAGE_PMD_SIZE)))
2325 		split_huge_pmd_address(vma, address, false, NULL);
2326 }
2327 
2328 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2329 			     unsigned long start,
2330 			     unsigned long end,
2331 			     long adjust_next)
2332 {
2333 	/* Check if we need to split start first. */
2334 	split_huge_pmd_if_needed(vma, start);
2335 
2336 	/* Check if we need to split end next. */
2337 	split_huge_pmd_if_needed(vma, end);
2338 
2339 	/*
2340 	 * If we're also updating the vma->vm_next->vm_start,
2341 	 * check if we need to split it.
2342 	 */
2343 	if (adjust_next > 0) {
2344 		struct vm_area_struct *next = vma->vm_next;
2345 		unsigned long nstart = next->vm_start;
2346 		nstart += adjust_next;
2347 		split_huge_pmd_if_needed(next, nstart);
2348 	}
2349 }
2350 
2351 static void unmap_page(struct page *page)
2352 {
2353 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2354 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2355 
2356 	VM_BUG_ON_PAGE(!PageHead(page), page);
2357 
2358 	if (PageAnon(page))
2359 		ttu_flags |= TTU_SPLIT_FREEZE;
2360 
2361 	try_to_unmap(page, ttu_flags);
2362 
2363 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2364 }
2365 
2366 static void remap_page(struct page *page, unsigned int nr)
2367 {
2368 	int i;
2369 	if (PageTransHuge(page)) {
2370 		remove_migration_ptes(page, page, true);
2371 	} else {
2372 		for (i = 0; i < nr; i++)
2373 			remove_migration_ptes(page + i, page + i, true);
2374 	}
2375 }
2376 
2377 static void lru_add_page_tail(struct page *head, struct page *tail,
2378 		struct lruvec *lruvec, struct list_head *list)
2379 {
2380 	VM_BUG_ON_PAGE(!PageHead(head), head);
2381 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2382 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2383 	lockdep_assert_held(&lruvec->lru_lock);
2384 
2385 	if (list) {
2386 		/* page reclaim is reclaiming a huge page */
2387 		VM_WARN_ON(PageLRU(head));
2388 		get_page(tail);
2389 		list_add_tail(&tail->lru, list);
2390 	} else {
2391 		/* head is still on lru (and we have it frozen) */
2392 		VM_WARN_ON(!PageLRU(head));
2393 		SetPageLRU(tail);
2394 		list_add_tail(&tail->lru, &head->lru);
2395 	}
2396 }
2397 
2398 static void __split_huge_page_tail(struct page *head, int tail,
2399 		struct lruvec *lruvec, struct list_head *list)
2400 {
2401 	struct page *page_tail = head + tail;
2402 
2403 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2404 
2405 	/*
2406 	 * Clone page flags before unfreezing refcount.
2407 	 *
2408 	 * After successful get_page_unless_zero() might follow flags change,
2409 	 * for example lock_page() which set PG_waiters.
2410 	 */
2411 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2412 	page_tail->flags |= (head->flags &
2413 			((1L << PG_referenced) |
2414 			 (1L << PG_swapbacked) |
2415 			 (1L << PG_swapcache) |
2416 			 (1L << PG_mlocked) |
2417 			 (1L << PG_uptodate) |
2418 			 (1L << PG_active) |
2419 			 (1L << PG_workingset) |
2420 			 (1L << PG_locked) |
2421 			 (1L << PG_unevictable) |
2422 #ifdef CONFIG_64BIT
2423 			 (1L << PG_arch_2) |
2424 #endif
2425 			 (1L << PG_dirty)));
2426 
2427 	/* ->mapping in first tail page is compound_mapcount */
2428 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 			page_tail);
2430 	page_tail->mapping = head->mapping;
2431 	page_tail->index = head->index + tail;
2432 
2433 	/* Page flags must be visible before we make the page non-compound. */
2434 	smp_wmb();
2435 
2436 	/*
2437 	 * Clear PageTail before unfreezing page refcount.
2438 	 *
2439 	 * After successful get_page_unless_zero() might follow put_page()
2440 	 * which needs correct compound_head().
2441 	 */
2442 	clear_compound_head(page_tail);
2443 
2444 	/* Finally unfreeze refcount. Additional reference from page cache. */
2445 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 					  PageSwapCache(head)));
2447 
2448 	if (page_is_young(head))
2449 		set_page_young(page_tail);
2450 	if (page_is_idle(head))
2451 		set_page_idle(page_tail);
2452 
2453 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2454 
2455 	/*
2456 	 * always add to the tail because some iterators expect new
2457 	 * pages to show after the currently processed elements - e.g.
2458 	 * migrate_pages
2459 	 */
2460 	lru_add_page_tail(head, page_tail, lruvec, list);
2461 }
2462 
2463 static void __split_huge_page(struct page *page, struct list_head *list,
2464 		pgoff_t end)
2465 {
2466 	struct page *head = compound_head(page);
2467 	struct lruvec *lruvec;
2468 	struct address_space *swap_cache = NULL;
2469 	unsigned long offset = 0;
2470 	unsigned int nr = thp_nr_pages(head);
2471 	int i;
2472 
2473 	/* complete memcg works before add pages to LRU */
2474 	split_page_memcg(head, nr);
2475 
2476 	if (PageAnon(head) && PageSwapCache(head)) {
2477 		swp_entry_t entry = { .val = page_private(head) };
2478 
2479 		offset = swp_offset(entry);
2480 		swap_cache = swap_address_space(entry);
2481 		xa_lock(&swap_cache->i_pages);
2482 	}
2483 
2484 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2485 	lruvec = lock_page_lruvec(head);
2486 
2487 	for (i = nr - 1; i >= 1; i--) {
2488 		__split_huge_page_tail(head, i, lruvec, list);
2489 		/* Some pages can be beyond i_size: drop them from page cache */
2490 		if (head[i].index >= end) {
2491 			ClearPageDirty(head + i);
2492 			__delete_from_page_cache(head + i, NULL);
2493 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2494 				shmem_uncharge(head->mapping->host, 1);
2495 			put_page(head + i);
2496 		} else if (!PageAnon(page)) {
2497 			__xa_store(&head->mapping->i_pages, head[i].index,
2498 					head + i, 0);
2499 		} else if (swap_cache) {
2500 			__xa_store(&swap_cache->i_pages, offset + i,
2501 					head + i, 0);
2502 		}
2503 	}
2504 
2505 	ClearPageCompound(head);
2506 	unlock_page_lruvec(lruvec);
2507 	/* Caller disabled irqs, so they are still disabled here */
2508 
2509 	split_page_owner(head, nr);
2510 
2511 	/* See comment in __split_huge_page_tail() */
2512 	if (PageAnon(head)) {
2513 		/* Additional pin to swap cache */
2514 		if (PageSwapCache(head)) {
2515 			page_ref_add(head, 2);
2516 			xa_unlock(&swap_cache->i_pages);
2517 		} else {
2518 			page_ref_inc(head);
2519 		}
2520 	} else {
2521 		/* Additional pin to page cache */
2522 		page_ref_add(head, 2);
2523 		xa_unlock(&head->mapping->i_pages);
2524 	}
2525 	local_irq_enable();
2526 
2527 	remap_page(head, nr);
2528 
2529 	if (PageSwapCache(head)) {
2530 		swp_entry_t entry = { .val = page_private(head) };
2531 
2532 		split_swap_cluster(entry);
2533 	}
2534 
2535 	for (i = 0; i < nr; i++) {
2536 		struct page *subpage = head + i;
2537 		if (subpage == page)
2538 			continue;
2539 		unlock_page(subpage);
2540 
2541 		/*
2542 		 * Subpages may be freed if there wasn't any mapping
2543 		 * like if add_to_swap() is running on a lru page that
2544 		 * had its mapping zapped. And freeing these pages
2545 		 * requires taking the lru_lock so we do the put_page
2546 		 * of the tail pages after the split is complete.
2547 		 */
2548 		put_page(subpage);
2549 	}
2550 }
2551 
2552 int total_mapcount(struct page *page)
2553 {
2554 	int i, compound, nr, ret;
2555 
2556 	VM_BUG_ON_PAGE(PageTail(page), page);
2557 
2558 	if (likely(!PageCompound(page)))
2559 		return atomic_read(&page->_mapcount) + 1;
2560 
2561 	compound = compound_mapcount(page);
2562 	nr = compound_nr(page);
2563 	if (PageHuge(page))
2564 		return compound;
2565 	ret = compound;
2566 	for (i = 0; i < nr; i++)
2567 		ret += atomic_read(&page[i]._mapcount) + 1;
2568 	/* File pages has compound_mapcount included in _mapcount */
2569 	if (!PageAnon(page))
2570 		return ret - compound * nr;
2571 	if (PageDoubleMap(page))
2572 		ret -= nr;
2573 	return ret;
2574 }
2575 
2576 /*
2577  * This calculates accurately how many mappings a transparent hugepage
2578  * has (unlike page_mapcount() which isn't fully accurate). This full
2579  * accuracy is primarily needed to know if copy-on-write faults can
2580  * reuse the page and change the mapping to read-write instead of
2581  * copying them. At the same time this returns the total_mapcount too.
2582  *
2583  * The function returns the highest mapcount any one of the subpages
2584  * has. If the return value is one, even if different processes are
2585  * mapping different subpages of the transparent hugepage, they can
2586  * all reuse it, because each process is reusing a different subpage.
2587  *
2588  * The total_mapcount is instead counting all virtual mappings of the
2589  * subpages. If the total_mapcount is equal to "one", it tells the
2590  * caller all mappings belong to the same "mm" and in turn the
2591  * anon_vma of the transparent hugepage can become the vma->anon_vma
2592  * local one as no other process may be mapping any of the subpages.
2593  *
2594  * It would be more accurate to replace page_mapcount() with
2595  * page_trans_huge_mapcount(), however we only use
2596  * page_trans_huge_mapcount() in the copy-on-write faults where we
2597  * need full accuracy to avoid breaking page pinning, because
2598  * page_trans_huge_mapcount() is slower than page_mapcount().
2599  */
2600 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601 {
2602 	int i, ret, _total_mapcount, mapcount;
2603 
2604 	/* hugetlbfs shouldn't call it */
2605 	VM_BUG_ON_PAGE(PageHuge(page), page);
2606 
2607 	if (likely(!PageTransCompound(page))) {
2608 		mapcount = atomic_read(&page->_mapcount) + 1;
2609 		if (total_mapcount)
2610 			*total_mapcount = mapcount;
2611 		return mapcount;
2612 	}
2613 
2614 	page = compound_head(page);
2615 
2616 	_total_mapcount = ret = 0;
2617 	for (i = 0; i < thp_nr_pages(page); i++) {
2618 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 		ret = max(ret, mapcount);
2620 		_total_mapcount += mapcount;
2621 	}
2622 	if (PageDoubleMap(page)) {
2623 		ret -= 1;
2624 		_total_mapcount -= thp_nr_pages(page);
2625 	}
2626 	mapcount = compound_mapcount(page);
2627 	ret += mapcount;
2628 	_total_mapcount += mapcount;
2629 	if (total_mapcount)
2630 		*total_mapcount = _total_mapcount;
2631 	return ret;
2632 }
2633 
2634 /* Racy check whether the huge page can be split */
2635 bool can_split_huge_page(struct page *page, int *pextra_pins)
2636 {
2637 	int extra_pins;
2638 
2639 	/* Additional pins from page cache */
2640 	if (PageAnon(page))
2641 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2642 	else
2643 		extra_pins = thp_nr_pages(page);
2644 	if (pextra_pins)
2645 		*pextra_pins = extra_pins;
2646 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647 }
2648 
2649 /*
2650  * This function splits huge page into normal pages. @page can point to any
2651  * subpage of huge page to split. Split doesn't change the position of @page.
2652  *
2653  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654  * The huge page must be locked.
2655  *
2656  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657  *
2658  * Both head page and tail pages will inherit mapping, flags, and so on from
2659  * the hugepage.
2660  *
2661  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662  * they are not mapped.
2663  *
2664  * Returns 0 if the hugepage is split successfully.
2665  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666  * us.
2667  */
2668 int split_huge_page_to_list(struct page *page, struct list_head *list)
2669 {
2670 	struct page *head = compound_head(page);
2671 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2672 	struct anon_vma *anon_vma = NULL;
2673 	struct address_space *mapping = NULL;
2674 	int extra_pins, ret;
2675 	pgoff_t end;
2676 
2677 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2678 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2679 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2680 
2681 	if (PageWriteback(head))
2682 		return -EBUSY;
2683 
2684 	if (PageAnon(head)) {
2685 		/*
2686 		 * The caller does not necessarily hold an mmap_lock that would
2687 		 * prevent the anon_vma disappearing so we first we take a
2688 		 * reference to it and then lock the anon_vma for write. This
2689 		 * is similar to page_lock_anon_vma_read except the write lock
2690 		 * is taken to serialise against parallel split or collapse
2691 		 * operations.
2692 		 */
2693 		anon_vma = page_get_anon_vma(head);
2694 		if (!anon_vma) {
2695 			ret = -EBUSY;
2696 			goto out;
2697 		}
2698 		end = -1;
2699 		mapping = NULL;
2700 		anon_vma_lock_write(anon_vma);
2701 	} else {
2702 		mapping = head->mapping;
2703 
2704 		/* Truncated ? */
2705 		if (!mapping) {
2706 			ret = -EBUSY;
2707 			goto out;
2708 		}
2709 
2710 		anon_vma = NULL;
2711 		i_mmap_lock_read(mapping);
2712 
2713 		/*
2714 		 *__split_huge_page() may need to trim off pages beyond EOF:
2715 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 		 * which cannot be nested inside the page tree lock. So note
2717 		 * end now: i_size itself may be changed at any moment, but
2718 		 * head page lock is good enough to serialize the trimming.
2719 		 */
2720 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721 	}
2722 
2723 	/*
2724 	 * Racy check if we can split the page, before unmap_page() will
2725 	 * split PMDs
2726 	 */
2727 	if (!can_split_huge_page(head, &extra_pins)) {
2728 		ret = -EBUSY;
2729 		goto out_unlock;
2730 	}
2731 
2732 	unmap_page(head);
2733 
2734 	/* block interrupt reentry in xa_lock and spinlock */
2735 	local_irq_disable();
2736 	if (mapping) {
2737 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2738 
2739 		/*
2740 		 * Check if the head page is present in page cache.
2741 		 * We assume all tail are present too, if head is there.
2742 		 */
2743 		xa_lock(&mapping->i_pages);
2744 		if (xas_load(&xas) != head)
2745 			goto fail;
2746 	}
2747 
2748 	/* Prevent deferred_split_scan() touching ->_refcount */
2749 	spin_lock(&ds_queue->split_queue_lock);
2750 	if (page_ref_freeze(head, 1 + extra_pins)) {
2751 		if (!list_empty(page_deferred_list(head))) {
2752 			ds_queue->split_queue_len--;
2753 			list_del(page_deferred_list(head));
2754 		}
2755 		spin_unlock(&ds_queue->split_queue_lock);
2756 		if (mapping) {
2757 			int nr = thp_nr_pages(head);
2758 
2759 			if (PageSwapBacked(head))
2760 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2761 							-nr);
2762 			else
2763 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2764 							-nr);
2765 		}
2766 
2767 		__split_huge_page(page, list, end);
2768 		ret = 0;
2769 	} else {
2770 		spin_unlock(&ds_queue->split_queue_lock);
2771 fail:
2772 		if (mapping)
2773 			xa_unlock(&mapping->i_pages);
2774 		local_irq_enable();
2775 		remap_page(head, thp_nr_pages(head));
2776 		ret = -EBUSY;
2777 	}
2778 
2779 out_unlock:
2780 	if (anon_vma) {
2781 		anon_vma_unlock_write(anon_vma);
2782 		put_anon_vma(anon_vma);
2783 	}
2784 	if (mapping)
2785 		i_mmap_unlock_read(mapping);
2786 out:
2787 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2788 	return ret;
2789 }
2790 
2791 void free_transhuge_page(struct page *page)
2792 {
2793 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2794 	unsigned long flags;
2795 
2796 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797 	if (!list_empty(page_deferred_list(page))) {
2798 		ds_queue->split_queue_len--;
2799 		list_del(page_deferred_list(page));
2800 	}
2801 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 	free_compound_page(page);
2803 }
2804 
2805 void deferred_split_huge_page(struct page *page)
2806 {
2807 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2808 #ifdef CONFIG_MEMCG
2809 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2810 #endif
2811 	unsigned long flags;
2812 
2813 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814 
2815 	/*
2816 	 * The try_to_unmap() in page reclaim path might reach here too,
2817 	 * this may cause a race condition to corrupt deferred split queue.
2818 	 * And, if page reclaim is already handling the same page, it is
2819 	 * unnecessary to handle it again in shrinker.
2820 	 *
2821 	 * Check PageSwapCache to determine if the page is being
2822 	 * handled by page reclaim since THP swap would add the page into
2823 	 * swap cache before calling try_to_unmap().
2824 	 */
2825 	if (PageSwapCache(page))
2826 		return;
2827 
2828 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 	if (list_empty(page_deferred_list(page))) {
2830 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2832 		ds_queue->split_queue_len++;
2833 #ifdef CONFIG_MEMCG
2834 		if (memcg)
2835 			set_shrinker_bit(memcg, page_to_nid(page),
2836 					 deferred_split_shrinker.id);
2837 #endif
2838 	}
2839 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 }
2841 
2842 static unsigned long deferred_split_count(struct shrinker *shrink,
2843 		struct shrink_control *sc)
2844 {
2845 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 
2848 #ifdef CONFIG_MEMCG
2849 	if (sc->memcg)
2850 		ds_queue = &sc->memcg->deferred_split_queue;
2851 #endif
2852 	return READ_ONCE(ds_queue->split_queue_len);
2853 }
2854 
2855 static unsigned long deferred_split_scan(struct shrinker *shrink,
2856 		struct shrink_control *sc)
2857 {
2858 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 	unsigned long flags;
2861 	LIST_HEAD(list), *pos, *next;
2862 	struct page *page;
2863 	int split = 0;
2864 
2865 #ifdef CONFIG_MEMCG
2866 	if (sc->memcg)
2867 		ds_queue = &sc->memcg->deferred_split_queue;
2868 #endif
2869 
2870 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871 	/* Take pin on all head pages to avoid freeing them under us */
2872 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2873 		page = list_entry((void *)pos, struct page, mapping);
2874 		page = compound_head(page);
2875 		if (get_page_unless_zero(page)) {
2876 			list_move(page_deferred_list(page), &list);
2877 		} else {
2878 			/* We lost race with put_compound_page() */
2879 			list_del_init(page_deferred_list(page));
2880 			ds_queue->split_queue_len--;
2881 		}
2882 		if (!--sc->nr_to_scan)
2883 			break;
2884 	}
2885 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2886 
2887 	list_for_each_safe(pos, next, &list) {
2888 		page = list_entry((void *)pos, struct page, mapping);
2889 		if (!trylock_page(page))
2890 			goto next;
2891 		/* split_huge_page() removes page from list on success */
2892 		if (!split_huge_page(page))
2893 			split++;
2894 		unlock_page(page);
2895 next:
2896 		put_page(page);
2897 	}
2898 
2899 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2900 	list_splice_tail(&list, &ds_queue->split_queue);
2901 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902 
2903 	/*
2904 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2905 	 * This can happen if pages were freed under us.
2906 	 */
2907 	if (!split && list_empty(&ds_queue->split_queue))
2908 		return SHRINK_STOP;
2909 	return split;
2910 }
2911 
2912 static struct shrinker deferred_split_shrinker = {
2913 	.count_objects = deferred_split_count,
2914 	.scan_objects = deferred_split_scan,
2915 	.seeks = DEFAULT_SEEKS,
2916 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2917 		 SHRINKER_NONSLAB,
2918 };
2919 
2920 #ifdef CONFIG_DEBUG_FS
2921 static void split_huge_pages_all(void)
2922 {
2923 	struct zone *zone;
2924 	struct page *page;
2925 	unsigned long pfn, max_zone_pfn;
2926 	unsigned long total = 0, split = 0;
2927 
2928 	pr_debug("Split all THPs\n");
2929 	for_each_populated_zone(zone) {
2930 		max_zone_pfn = zone_end_pfn(zone);
2931 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2932 			if (!pfn_valid(pfn))
2933 				continue;
2934 
2935 			page = pfn_to_page(pfn);
2936 			if (!get_page_unless_zero(page))
2937 				continue;
2938 
2939 			if (zone != page_zone(page))
2940 				goto next;
2941 
2942 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2943 				goto next;
2944 
2945 			total++;
2946 			lock_page(page);
2947 			if (!split_huge_page(page))
2948 				split++;
2949 			unlock_page(page);
2950 next:
2951 			put_page(page);
2952 			cond_resched();
2953 		}
2954 	}
2955 
2956 	pr_debug("%lu of %lu THP split\n", split, total);
2957 }
2958 
2959 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2960 {
2961 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2962 		    is_vm_hugetlb_page(vma);
2963 }
2964 
2965 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2966 				unsigned long vaddr_end)
2967 {
2968 	int ret = 0;
2969 	struct task_struct *task;
2970 	struct mm_struct *mm;
2971 	unsigned long total = 0, split = 0;
2972 	unsigned long addr;
2973 
2974 	vaddr_start &= PAGE_MASK;
2975 	vaddr_end &= PAGE_MASK;
2976 
2977 	/* Find the task_struct from pid */
2978 	rcu_read_lock();
2979 	task = find_task_by_vpid(pid);
2980 	if (!task) {
2981 		rcu_read_unlock();
2982 		ret = -ESRCH;
2983 		goto out;
2984 	}
2985 	get_task_struct(task);
2986 	rcu_read_unlock();
2987 
2988 	/* Find the mm_struct */
2989 	mm = get_task_mm(task);
2990 	put_task_struct(task);
2991 
2992 	if (!mm) {
2993 		ret = -EINVAL;
2994 		goto out;
2995 	}
2996 
2997 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2998 		 pid, vaddr_start, vaddr_end);
2999 
3000 	mmap_read_lock(mm);
3001 	/*
3002 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3003 	 * table filled with PTE-mapped THPs, each of which is distinct.
3004 	 */
3005 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3006 		struct vm_area_struct *vma = find_vma(mm, addr);
3007 		unsigned int follflags;
3008 		struct page *page;
3009 
3010 		if (!vma || addr < vma->vm_start)
3011 			break;
3012 
3013 		/* skip special VMA and hugetlb VMA */
3014 		if (vma_not_suitable_for_thp_split(vma)) {
3015 			addr = vma->vm_end;
3016 			continue;
3017 		}
3018 
3019 		/* FOLL_DUMP to ignore special (like zero) pages */
3020 		follflags = FOLL_GET | FOLL_DUMP;
3021 		page = follow_page(vma, addr, follflags);
3022 
3023 		if (IS_ERR(page))
3024 			continue;
3025 		if (!page)
3026 			continue;
3027 
3028 		if (!is_transparent_hugepage(page))
3029 			goto next;
3030 
3031 		total++;
3032 		if (!can_split_huge_page(compound_head(page), NULL))
3033 			goto next;
3034 
3035 		if (!trylock_page(page))
3036 			goto next;
3037 
3038 		if (!split_huge_page(page))
3039 			split++;
3040 
3041 		unlock_page(page);
3042 next:
3043 		put_page(page);
3044 		cond_resched();
3045 	}
3046 	mmap_read_unlock(mm);
3047 	mmput(mm);
3048 
3049 	pr_debug("%lu of %lu THP split\n", split, total);
3050 
3051 out:
3052 	return ret;
3053 }
3054 
3055 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3056 				pgoff_t off_end)
3057 {
3058 	struct filename *file;
3059 	struct file *candidate;
3060 	struct address_space *mapping;
3061 	int ret = -EINVAL;
3062 	pgoff_t index;
3063 	int nr_pages = 1;
3064 	unsigned long total = 0, split = 0;
3065 
3066 	file = getname_kernel(file_path);
3067 	if (IS_ERR(file))
3068 		return ret;
3069 
3070 	candidate = file_open_name(file, O_RDONLY, 0);
3071 	if (IS_ERR(candidate))
3072 		goto out;
3073 
3074 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3075 		 file_path, off_start, off_end);
3076 
3077 	mapping = candidate->f_mapping;
3078 
3079 	for (index = off_start; index < off_end; index += nr_pages) {
3080 		struct page *fpage = pagecache_get_page(mapping, index,
3081 						FGP_ENTRY | FGP_HEAD, 0);
3082 
3083 		nr_pages = 1;
3084 		if (xa_is_value(fpage) || !fpage)
3085 			continue;
3086 
3087 		if (!is_transparent_hugepage(fpage))
3088 			goto next;
3089 
3090 		total++;
3091 		nr_pages = thp_nr_pages(fpage);
3092 
3093 		if (!trylock_page(fpage))
3094 			goto next;
3095 
3096 		if (!split_huge_page(fpage))
3097 			split++;
3098 
3099 		unlock_page(fpage);
3100 next:
3101 		put_page(fpage);
3102 		cond_resched();
3103 	}
3104 
3105 	filp_close(candidate, NULL);
3106 	ret = 0;
3107 
3108 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3109 out:
3110 	putname(file);
3111 	return ret;
3112 }
3113 
3114 #define MAX_INPUT_BUF_SZ 255
3115 
3116 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3117 				size_t count, loff_t *ppops)
3118 {
3119 	static DEFINE_MUTEX(split_debug_mutex);
3120 	ssize_t ret;
3121 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3122 	char input_buf[MAX_INPUT_BUF_SZ];
3123 	int pid;
3124 	unsigned long vaddr_start, vaddr_end;
3125 
3126 	ret = mutex_lock_interruptible(&split_debug_mutex);
3127 	if (ret)
3128 		return ret;
3129 
3130 	ret = -EFAULT;
3131 
3132 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3133 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3134 		goto out;
3135 
3136 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3137 
3138 	if (input_buf[0] == '/') {
3139 		char *tok;
3140 		char *buf = input_buf;
3141 		char file_path[MAX_INPUT_BUF_SZ];
3142 		pgoff_t off_start = 0, off_end = 0;
3143 		size_t input_len = strlen(input_buf);
3144 
3145 		tok = strsep(&buf, ",");
3146 		if (tok) {
3147 			strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3148 		} else {
3149 			ret = -EINVAL;
3150 			goto out;
3151 		}
3152 
3153 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3154 		if (ret != 2) {
3155 			ret = -EINVAL;
3156 			goto out;
3157 		}
3158 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3159 		if (!ret)
3160 			ret = input_len;
3161 
3162 		goto out;
3163 	}
3164 
3165 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3166 	if (ret == 1 && pid == 1) {
3167 		split_huge_pages_all();
3168 		ret = strlen(input_buf);
3169 		goto out;
3170 	} else if (ret != 3) {
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 
3175 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3176 	if (!ret)
3177 		ret = strlen(input_buf);
3178 out:
3179 	mutex_unlock(&split_debug_mutex);
3180 	return ret;
3181 
3182 }
3183 
3184 static const struct file_operations split_huge_pages_fops = {
3185 	.owner	 = THIS_MODULE,
3186 	.write	 = split_huge_pages_write,
3187 	.llseek  = no_llseek,
3188 };
3189 
3190 static int __init split_huge_pages_debugfs(void)
3191 {
3192 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3193 			    &split_huge_pages_fops);
3194 	return 0;
3195 }
3196 late_initcall(split_huge_pages_debugfs);
3197 #endif
3198 
3199 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3200 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3201 		struct page *page)
3202 {
3203 	struct vm_area_struct *vma = pvmw->vma;
3204 	struct mm_struct *mm = vma->vm_mm;
3205 	unsigned long address = pvmw->address;
3206 	pmd_t pmdval;
3207 	swp_entry_t entry;
3208 	pmd_t pmdswp;
3209 
3210 	if (!(pvmw->pmd && !pvmw->pte))
3211 		return;
3212 
3213 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3214 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3215 	if (pmd_dirty(pmdval))
3216 		set_page_dirty(page);
3217 	entry = make_migration_entry(page, pmd_write(pmdval));
3218 	pmdswp = swp_entry_to_pmd(entry);
3219 	if (pmd_soft_dirty(pmdval))
3220 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3221 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3222 	page_remove_rmap(page, true);
3223 	put_page(page);
3224 }
3225 
3226 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3227 {
3228 	struct vm_area_struct *vma = pvmw->vma;
3229 	struct mm_struct *mm = vma->vm_mm;
3230 	unsigned long address = pvmw->address;
3231 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3232 	pmd_t pmde;
3233 	swp_entry_t entry;
3234 
3235 	if (!(pvmw->pmd && !pvmw->pte))
3236 		return;
3237 
3238 	entry = pmd_to_swp_entry(*pvmw->pmd);
3239 	get_page(new);
3240 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3241 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3242 		pmde = pmd_mksoft_dirty(pmde);
3243 	if (is_write_migration_entry(entry))
3244 		pmde = maybe_pmd_mkwrite(pmde, vma);
3245 
3246 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3247 	if (PageAnon(new))
3248 		page_add_anon_rmap(new, vma, mmun_start, true);
3249 	else
3250 		page_add_file_rmap(new, true);
3251 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3252 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3253 		mlock_vma_page(new);
3254 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3255 }
3256 #endif
3257