xref: /linux/mm/huge_memory.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66 
67 static inline bool file_thp_enabled(struct vm_area_struct *vma)
68 {
69 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 	       (vma->vm_flags & VM_EXEC);
72 }
73 
74 bool transparent_hugepage_active(struct vm_area_struct *vma)
75 {
76 	/* The addr is used to check if the vma size fits */
77 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78 
79 	if (!transhuge_vma_suitable(vma, addr))
80 		return false;
81 	if (vma_is_anonymous(vma))
82 		return __transparent_hugepage_enabled(vma);
83 	if (vma_is_shmem(vma))
84 		return shmem_huge_enabled(vma);
85 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 		return file_thp_enabled(vma);
87 
88 	return false;
89 }
90 
91 static bool get_huge_zero_page(void)
92 {
93 	struct page *zero_page;
94 retry:
95 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96 		return true;
97 
98 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99 			HPAGE_PMD_ORDER);
100 	if (!zero_page) {
101 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102 		return false;
103 	}
104 	count_vm_event(THP_ZERO_PAGE_ALLOC);
105 	preempt_disable();
106 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107 		preempt_enable();
108 		__free_pages(zero_page, compound_order(zero_page));
109 		goto retry;
110 	}
111 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112 
113 	/* We take additional reference here. It will be put back by shrinker */
114 	atomic_set(&huge_zero_refcount, 2);
115 	preempt_enable();
116 	return true;
117 }
118 
119 static void put_huge_zero_page(void)
120 {
121 	/*
122 	 * Counter should never go to zero here. Only shrinker can put
123 	 * last reference.
124 	 */
125 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 }
127 
128 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129 {
130 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 		return READ_ONCE(huge_zero_page);
132 
133 	if (!get_huge_zero_page())
134 		return NULL;
135 
136 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 		put_huge_zero_page();
138 
139 	return READ_ONCE(huge_zero_page);
140 }
141 
142 void mm_put_huge_zero_page(struct mm_struct *mm)
143 {
144 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 		put_huge_zero_page();
146 }
147 
148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 					struct shrink_control *sc)
150 {
151 	/* we can free zero page only if last reference remains */
152 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 }
154 
155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 				       struct shrink_control *sc)
157 {
158 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 		struct page *zero_page = xchg(&huge_zero_page, NULL);
160 		BUG_ON(zero_page == NULL);
161 		WRITE_ONCE(huge_zero_pfn, ~0UL);
162 		__free_pages(zero_page, compound_order(zero_page));
163 		return HPAGE_PMD_NR;
164 	}
165 
166 	return 0;
167 }
168 
169 static struct shrinker huge_zero_page_shrinker = {
170 	.count_objects = shrink_huge_zero_page_count,
171 	.scan_objects = shrink_huge_zero_page_scan,
172 	.seeks = DEFAULT_SEEKS,
173 };
174 
175 #ifdef CONFIG_SYSFS
176 static ssize_t enabled_show(struct kobject *kobj,
177 			    struct kobj_attribute *attr, char *buf)
178 {
179 	const char *output;
180 
181 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 		output = "[always] madvise never";
183 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 			  &transparent_hugepage_flags))
185 		output = "always [madvise] never";
186 	else
187 		output = "always madvise [never]";
188 
189 	return sysfs_emit(buf, "%s\n", output);
190 }
191 
192 static ssize_t enabled_store(struct kobject *kobj,
193 			     struct kobj_attribute *attr,
194 			     const char *buf, size_t count)
195 {
196 	ssize_t ret = count;
197 
198 	if (sysfs_streq(buf, "always")) {
199 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 	} else if (sysfs_streq(buf, "madvise")) {
202 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 	} else if (sysfs_streq(buf, "never")) {
205 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 	} else
208 		ret = -EINVAL;
209 
210 	if (ret > 0) {
211 		int err = start_stop_khugepaged();
212 		if (err)
213 			ret = err;
214 	}
215 	return ret;
216 }
217 static struct kobj_attribute enabled_attr =
218 	__ATTR(enabled, 0644, enabled_show, enabled_store);
219 
220 ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 				  struct kobj_attribute *attr, char *buf,
222 				  enum transparent_hugepage_flag flag)
223 {
224 	return sysfs_emit(buf, "%d\n",
225 			  !!test_bit(flag, &transparent_hugepage_flags));
226 }
227 
228 ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 				 struct kobj_attribute *attr,
230 				 const char *buf, size_t count,
231 				 enum transparent_hugepage_flag flag)
232 {
233 	unsigned long value;
234 	int ret;
235 
236 	ret = kstrtoul(buf, 10, &value);
237 	if (ret < 0)
238 		return ret;
239 	if (value > 1)
240 		return -EINVAL;
241 
242 	if (value)
243 		set_bit(flag, &transparent_hugepage_flags);
244 	else
245 		clear_bit(flag, &transparent_hugepage_flags);
246 
247 	return count;
248 }
249 
250 static ssize_t defrag_show(struct kobject *kobj,
251 			   struct kobj_attribute *attr, char *buf)
252 {
253 	const char *output;
254 
255 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 		     &transparent_hugepage_flags))
257 		output = "[always] defer defer+madvise madvise never";
258 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 			  &transparent_hugepage_flags))
260 		output = "always [defer] defer+madvise madvise never";
261 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 			  &transparent_hugepage_flags))
263 		output = "always defer [defer+madvise] madvise never";
264 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 			  &transparent_hugepage_flags))
266 		output = "always defer defer+madvise [madvise] never";
267 	else
268 		output = "always defer defer+madvise madvise [never]";
269 
270 	return sysfs_emit(buf, "%s\n", output);
271 }
272 
273 static ssize_t defrag_store(struct kobject *kobj,
274 			    struct kobj_attribute *attr,
275 			    const char *buf, size_t count)
276 {
277 	if (sysfs_streq(buf, "always")) {
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 	} else if (sysfs_streq(buf, "defer+madvise")) {
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 	} else if (sysfs_streq(buf, "defer")) {
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292 	} else if (sysfs_streq(buf, "madvise")) {
293 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 	} else if (sysfs_streq(buf, "never")) {
298 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 	} else
303 		return -EINVAL;
304 
305 	return count;
306 }
307 static struct kobj_attribute defrag_attr =
308 	__ATTR(defrag, 0644, defrag_show, defrag_store);
309 
310 static ssize_t use_zero_page_show(struct kobject *kobj,
311 				  struct kobj_attribute *attr, char *buf)
312 {
313 	return single_hugepage_flag_show(kobj, attr, buf,
314 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 }
316 static ssize_t use_zero_page_store(struct kobject *kobj,
317 		struct kobj_attribute *attr, const char *buf, size_t count)
318 {
319 	return single_hugepage_flag_store(kobj, attr, buf, count,
320 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321 }
322 static struct kobj_attribute use_zero_page_attr =
323 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324 
325 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326 				   struct kobj_attribute *attr, char *buf)
327 {
328 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 }
330 static struct kobj_attribute hpage_pmd_size_attr =
331 	__ATTR_RO(hpage_pmd_size);
332 
333 static struct attribute *hugepage_attr[] = {
334 	&enabled_attr.attr,
335 	&defrag_attr.attr,
336 	&use_zero_page_attr.attr,
337 	&hpage_pmd_size_attr.attr,
338 #ifdef CONFIG_SHMEM
339 	&shmem_enabled_attr.attr,
340 #endif
341 	NULL,
342 };
343 
344 static const struct attribute_group hugepage_attr_group = {
345 	.attrs = hugepage_attr,
346 };
347 
348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 {
350 	int err;
351 
352 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 	if (unlikely(!*hugepage_kobj)) {
354 		pr_err("failed to create transparent hugepage kobject\n");
355 		return -ENOMEM;
356 	}
357 
358 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
359 	if (err) {
360 		pr_err("failed to register transparent hugepage group\n");
361 		goto delete_obj;
362 	}
363 
364 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
365 	if (err) {
366 		pr_err("failed to register transparent hugepage group\n");
367 		goto remove_hp_group;
368 	}
369 
370 	return 0;
371 
372 remove_hp_group:
373 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374 delete_obj:
375 	kobject_put(*hugepage_kobj);
376 	return err;
377 }
378 
379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 	kobject_put(hugepage_kobj);
384 }
385 #else
386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387 {
388 	return 0;
389 }
390 
391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 {
393 }
394 #endif /* CONFIG_SYSFS */
395 
396 static int __init hugepage_init(void)
397 {
398 	int err;
399 	struct kobject *hugepage_kobj;
400 
401 	if (!has_transparent_hugepage()) {
402 		/*
403 		 * Hardware doesn't support hugepages, hence disable
404 		 * DAX PMD support.
405 		 */
406 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
407 		return -EINVAL;
408 	}
409 
410 	/*
411 	 * hugepages can't be allocated by the buddy allocator
412 	 */
413 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 	/*
415 	 * we use page->mapping and page->index in second tail page
416 	 * as list_head: assuming THP order >= 2
417 	 */
418 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419 
420 	err = hugepage_init_sysfs(&hugepage_kobj);
421 	if (err)
422 		goto err_sysfs;
423 
424 	err = khugepaged_init();
425 	if (err)
426 		goto err_slab;
427 
428 	err = register_shrinker(&huge_zero_page_shrinker);
429 	if (err)
430 		goto err_hzp_shrinker;
431 	err = register_shrinker(&deferred_split_shrinker);
432 	if (err)
433 		goto err_split_shrinker;
434 
435 	/*
436 	 * By default disable transparent hugepages on smaller systems,
437 	 * where the extra memory used could hurt more than TLB overhead
438 	 * is likely to save.  The admin can still enable it through /sys.
439 	 */
440 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441 		transparent_hugepage_flags = 0;
442 		return 0;
443 	}
444 
445 	err = start_stop_khugepaged();
446 	if (err)
447 		goto err_khugepaged;
448 
449 	return 0;
450 err_khugepaged:
451 	unregister_shrinker(&deferred_split_shrinker);
452 err_split_shrinker:
453 	unregister_shrinker(&huge_zero_page_shrinker);
454 err_hzp_shrinker:
455 	khugepaged_destroy();
456 err_slab:
457 	hugepage_exit_sysfs(hugepage_kobj);
458 err_sysfs:
459 	return err;
460 }
461 subsys_initcall(hugepage_init);
462 
463 static int __init setup_transparent_hugepage(char *str)
464 {
465 	int ret = 0;
466 	if (!str)
467 		goto out;
468 	if (!strcmp(str, "always")) {
469 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			&transparent_hugepage_flags);
471 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			  &transparent_hugepage_flags);
473 		ret = 1;
474 	} else if (!strcmp(str, "madvise")) {
475 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 			  &transparent_hugepage_flags);
477 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 			&transparent_hugepage_flags);
479 		ret = 1;
480 	} else if (!strcmp(str, "never")) {
481 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 			  &transparent_hugepage_flags);
483 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 			  &transparent_hugepage_flags);
485 		ret = 1;
486 	}
487 out:
488 	if (!ret)
489 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 	return ret;
491 }
492 __setup("transparent_hugepage=", setup_transparent_hugepage);
493 
494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495 {
496 	if (likely(vma->vm_flags & VM_WRITE))
497 		pmd = pmd_mkwrite(pmd);
498 	return pmd;
499 }
500 
501 #ifdef CONFIG_MEMCG
502 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 {
504 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 
507 	if (memcg)
508 		return &memcg->deferred_split_queue;
509 	else
510 		return &pgdat->deferred_split_queue;
511 }
512 #else
513 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514 {
515 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516 
517 	return &pgdat->deferred_split_queue;
518 }
519 #endif
520 
521 void prep_transhuge_page(struct page *page)
522 {
523 	/*
524 	 * we use page->mapping and page->indexlru in second tail page
525 	 * as list_head: assuming THP order >= 2
526 	 */
527 
528 	INIT_LIST_HEAD(page_deferred_list(page));
529 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 }
531 
532 bool is_transparent_hugepage(struct page *page)
533 {
534 	if (!PageCompound(page))
535 		return false;
536 
537 	page = compound_head(page);
538 	return is_huge_zero_page(page) ||
539 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 }
541 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542 
543 static unsigned long __thp_get_unmapped_area(struct file *filp,
544 		unsigned long addr, unsigned long len,
545 		loff_t off, unsigned long flags, unsigned long size)
546 {
547 	loff_t off_end = off + len;
548 	loff_t off_align = round_up(off, size);
549 	unsigned long len_pad, ret;
550 
551 	if (off_end <= off_align || (off_end - off_align) < size)
552 		return 0;
553 
554 	len_pad = len + size;
555 	if (len_pad < len || (off + len_pad) < off)
556 		return 0;
557 
558 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559 					      off >> PAGE_SHIFT, flags);
560 
561 	/*
562 	 * The failure might be due to length padding. The caller will retry
563 	 * without the padding.
564 	 */
565 	if (IS_ERR_VALUE(ret))
566 		return 0;
567 
568 	/*
569 	 * Do not try to align to THP boundary if allocation at the address
570 	 * hint succeeds.
571 	 */
572 	if (ret == addr)
573 		return addr;
574 
575 	ret += (off - ret) & (size - 1);
576 	return ret;
577 }
578 
579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 		unsigned long len, unsigned long pgoff, unsigned long flags)
581 {
582 	unsigned long ret;
583 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584 
585 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 		goto out;
587 
588 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 	if (ret)
590 		return ret;
591 out:
592 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595 
596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 			struct page *page, gfp_t gfp)
598 {
599 	struct vm_area_struct *vma = vmf->vma;
600 	pgtable_t pgtable;
601 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 	vm_fault_t ret = 0;
603 
604 	VM_BUG_ON_PAGE(!PageCompound(page), page);
605 
606 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607 		put_page(page);
608 		count_vm_event(THP_FAULT_FALLBACK);
609 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 		return VM_FAULT_FALLBACK;
611 	}
612 	cgroup_throttle_swaprate(page, gfp);
613 
614 	pgtable = pte_alloc_one(vma->vm_mm);
615 	if (unlikely(!pgtable)) {
616 		ret = VM_FAULT_OOM;
617 		goto release;
618 	}
619 
620 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 	/*
622 	 * The memory barrier inside __SetPageUptodate makes sure that
623 	 * clear_huge_page writes become visible before the set_pmd_at()
624 	 * write.
625 	 */
626 	__SetPageUptodate(page);
627 
628 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 	if (unlikely(!pmd_none(*vmf->pmd))) {
630 		goto unlock_release;
631 	} else {
632 		pmd_t entry;
633 
634 		ret = check_stable_address_space(vma->vm_mm);
635 		if (ret)
636 			goto unlock_release;
637 
638 		/* Deliver the page fault to userland */
639 		if (userfaultfd_missing(vma)) {
640 			spin_unlock(vmf->ptl);
641 			put_page(page);
642 			pte_free(vma->vm_mm, pgtable);
643 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 			return ret;
646 		}
647 
648 		entry = mk_huge_pmd(page, vma->vm_page_prot);
649 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 		page_add_new_anon_rmap(page, vma, haddr, true);
651 		lru_cache_add_inactive_or_unevictable(page, vma);
652 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 		mm_inc_nr_ptes(vma->vm_mm);
657 		spin_unlock(vmf->ptl);
658 		count_vm_event(THP_FAULT_ALLOC);
659 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 	}
661 
662 	return 0;
663 unlock_release:
664 	spin_unlock(vmf->ptl);
665 release:
666 	if (pgtable)
667 		pte_free(vma->vm_mm, pgtable);
668 	put_page(page);
669 	return ret;
670 
671 }
672 
673 /*
674  * always: directly stall for all thp allocations
675  * defer: wake kswapd and fail if not immediately available
676  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677  *		  fail if not immediately available
678  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679  *	    available
680  * never: never stall for any thp allocation
681  */
682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685 
686 	/* Always do synchronous compaction */
687 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 
690 	/* Kick kcompactd and fail quickly */
691 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 
694 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 		return GFP_TRANSHUGE_LIGHT |
697 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
698 					__GFP_KSWAPD_RECLAIM);
699 
700 	/* Only do synchronous compaction if madvised */
701 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 		return GFP_TRANSHUGE_LIGHT |
703 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704 
705 	return GFP_TRANSHUGE_LIGHT;
706 }
707 
708 /* Caller must hold page table lock. */
709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 		struct page *zero_page)
712 {
713 	pmd_t entry;
714 	if (!pmd_none(*pmd))
715 		return;
716 	entry = mk_pmd(zero_page, vma->vm_page_prot);
717 	entry = pmd_mkhuge(entry);
718 	if (pgtable)
719 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 	set_pmd_at(mm, haddr, pmd, entry);
721 	mm_inc_nr_ptes(mm);
722 }
723 
724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726 	struct vm_area_struct *vma = vmf->vma;
727 	gfp_t gfp;
728 	struct page *page;
729 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730 
731 	if (!transhuge_vma_suitable(vma, haddr))
732 		return VM_FAULT_FALLBACK;
733 	if (unlikely(anon_vma_prepare(vma)))
734 		return VM_FAULT_OOM;
735 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 		return VM_FAULT_OOM;
737 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 			!mm_forbids_zeropage(vma->vm_mm) &&
739 			transparent_hugepage_use_zero_page()) {
740 		pgtable_t pgtable;
741 		struct page *zero_page;
742 		vm_fault_t ret;
743 		pgtable = pte_alloc_one(vma->vm_mm);
744 		if (unlikely(!pgtable))
745 			return VM_FAULT_OOM;
746 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 		if (unlikely(!zero_page)) {
748 			pte_free(vma->vm_mm, pgtable);
749 			count_vm_event(THP_FAULT_FALLBACK);
750 			return VM_FAULT_FALLBACK;
751 		}
752 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 		ret = 0;
754 		if (pmd_none(*vmf->pmd)) {
755 			ret = check_stable_address_space(vma->vm_mm);
756 			if (ret) {
757 				spin_unlock(vmf->ptl);
758 				pte_free(vma->vm_mm, pgtable);
759 			} else if (userfaultfd_missing(vma)) {
760 				spin_unlock(vmf->ptl);
761 				pte_free(vma->vm_mm, pgtable);
762 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 			} else {
765 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 						   haddr, vmf->pmd, zero_page);
767 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 				spin_unlock(vmf->ptl);
769 			}
770 		} else {
771 			spin_unlock(vmf->ptl);
772 			pte_free(vma->vm_mm, pgtable);
773 		}
774 		return ret;
775 	}
776 	gfp = vma_thp_gfp_mask(vma);
777 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 	if (unlikely(!page)) {
779 		count_vm_event(THP_FAULT_FALLBACK);
780 		return VM_FAULT_FALLBACK;
781 	}
782 	prep_transhuge_page(page);
783 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785 
786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 		pgtable_t pgtable)
789 {
790 	struct mm_struct *mm = vma->vm_mm;
791 	pmd_t entry;
792 	spinlock_t *ptl;
793 
794 	ptl = pmd_lock(mm, pmd);
795 	if (!pmd_none(*pmd)) {
796 		if (write) {
797 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 				goto out_unlock;
800 			}
801 			entry = pmd_mkyoung(*pmd);
802 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 				update_mmu_cache_pmd(vma, addr, pmd);
805 		}
806 
807 		goto out_unlock;
808 	}
809 
810 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 	if (pfn_t_devmap(pfn))
812 		entry = pmd_mkdevmap(entry);
813 	if (write) {
814 		entry = pmd_mkyoung(pmd_mkdirty(entry));
815 		entry = maybe_pmd_mkwrite(entry, vma);
816 	}
817 
818 	if (pgtable) {
819 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 		mm_inc_nr_ptes(mm);
821 		pgtable = NULL;
822 	}
823 
824 	set_pmd_at(mm, addr, pmd, entry);
825 	update_mmu_cache_pmd(vma, addr, pmd);
826 
827 out_unlock:
828 	spin_unlock(ptl);
829 	if (pgtable)
830 		pte_free(mm, pgtable);
831 }
832 
833 /**
834  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835  * @vmf: Structure describing the fault
836  * @pfn: pfn to insert
837  * @pgprot: page protection to use
838  * @write: whether it's a write fault
839  *
840  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841  * also consult the vmf_insert_mixed_prot() documentation when
842  * @pgprot != @vmf->vma->vm_page_prot.
843  *
844  * Return: vm_fault_t value.
845  */
846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 				   pgprot_t pgprot, bool write)
848 {
849 	unsigned long addr = vmf->address & PMD_MASK;
850 	struct vm_area_struct *vma = vmf->vma;
851 	pgtable_t pgtable = NULL;
852 
853 	/*
854 	 * If we had pmd_special, we could avoid all these restrictions,
855 	 * but we need to be consistent with PTEs and architectures that
856 	 * can't support a 'special' bit.
857 	 */
858 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 			!pfn_t_devmap(pfn));
860 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 						(VM_PFNMAP|VM_MIXEDMAP));
862 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863 
864 	if (addr < vma->vm_start || addr >= vma->vm_end)
865 		return VM_FAULT_SIGBUS;
866 
867 	if (arch_needs_pgtable_deposit()) {
868 		pgtable = pte_alloc_one(vma->vm_mm);
869 		if (!pgtable)
870 			return VM_FAULT_OOM;
871 	}
872 
873 	track_pfn_insert(vma, &pgprot, pfn);
874 
875 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 	return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879 
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883 	if (likely(vma->vm_flags & VM_WRITE))
884 		pud = pud_mkwrite(pud);
885 	return pud;
886 }
887 
888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891 	struct mm_struct *mm = vma->vm_mm;
892 	pud_t entry;
893 	spinlock_t *ptl;
894 
895 	ptl = pud_lock(mm, pud);
896 	if (!pud_none(*pud)) {
897 		if (write) {
898 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 				goto out_unlock;
901 			}
902 			entry = pud_mkyoung(*pud);
903 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 				update_mmu_cache_pud(vma, addr, pud);
906 		}
907 		goto out_unlock;
908 	}
909 
910 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 	if (pfn_t_devmap(pfn))
912 		entry = pud_mkdevmap(entry);
913 	if (write) {
914 		entry = pud_mkyoung(pud_mkdirty(entry));
915 		entry = maybe_pud_mkwrite(entry, vma);
916 	}
917 	set_pud_at(mm, addr, pud, entry);
918 	update_mmu_cache_pud(vma, addr, pud);
919 
920 out_unlock:
921 	spin_unlock(ptl);
922 }
923 
924 /**
925  * vmf_insert_pfn_pud_prot - insert a pud size pfn
926  * @vmf: Structure describing the fault
927  * @pfn: pfn to insert
928  * @pgprot: page protection to use
929  * @write: whether it's a write fault
930  *
931  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932  * also consult the vmf_insert_mixed_prot() documentation when
933  * @pgprot != @vmf->vma->vm_page_prot.
934  *
935  * Return: vm_fault_t value.
936  */
937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 				   pgprot_t pgprot, bool write)
939 {
940 	unsigned long addr = vmf->address & PUD_MASK;
941 	struct vm_area_struct *vma = vmf->vma;
942 
943 	/*
944 	 * If we had pud_special, we could avoid all these restrictions,
945 	 * but we need to be consistent with PTEs and architectures that
946 	 * can't support a 'special' bit.
947 	 */
948 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 			!pfn_t_devmap(pfn));
950 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 						(VM_PFNMAP|VM_MIXEDMAP));
952 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953 
954 	if (addr < vma->vm_start || addr >= vma->vm_end)
955 		return VM_FAULT_SIGBUS;
956 
957 	track_pfn_insert(vma, &pgprot, pfn);
958 
959 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 	return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964 
965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 		pmd_t *pmd, int flags)
967 {
968 	pmd_t _pmd;
969 
970 	_pmd = pmd_mkyoung(*pmd);
971 	if (flags & FOLL_WRITE)
972 		_pmd = pmd_mkdirty(_pmd);
973 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 				pmd, _pmd, flags & FOLL_WRITE))
975 		update_mmu_cache_pmd(vma, addr, pmd);
976 }
977 
978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981 	unsigned long pfn = pmd_pfn(*pmd);
982 	struct mm_struct *mm = vma->vm_mm;
983 	struct page *page;
984 
985 	assert_spin_locked(pmd_lockptr(mm, pmd));
986 
987 	/*
988 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 	 * not be in this function with `flags & FOLL_COW` set.
990 	 */
991 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992 
993 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 			 (FOLL_PIN | FOLL_GET)))
996 		return NULL;
997 
998 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 		return NULL;
1000 
1001 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 		/* pass */;
1003 	else
1004 		return NULL;
1005 
1006 	if (flags & FOLL_TOUCH)
1007 		touch_pmd(vma, addr, pmd, flags);
1008 
1009 	/*
1010 	 * device mapped pages can only be returned if the
1011 	 * caller will manage the page reference count.
1012 	 */
1013 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 		return ERR_PTR(-EEXIST);
1015 
1016 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1018 	if (!*pgmap)
1019 		return ERR_PTR(-EFAULT);
1020 	page = pfn_to_page(pfn);
1021 	if (!try_grab_page(page, flags))
1022 		page = ERR_PTR(-ENOMEM);
1023 
1024 	return page;
1025 }
1026 
1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030 {
1031 	spinlock_t *dst_ptl, *src_ptl;
1032 	struct page *src_page;
1033 	pmd_t pmd;
1034 	pgtable_t pgtable = NULL;
1035 	int ret = -ENOMEM;
1036 
1037 	/* Skip if can be re-fill on fault */
1038 	if (!vma_is_anonymous(dst_vma))
1039 		return 0;
1040 
1041 	pgtable = pte_alloc_one(dst_mm);
1042 	if (unlikely(!pgtable))
1043 		goto out;
1044 
1045 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 
1049 	ret = -EAGAIN;
1050 	pmd = *src_pmd;
1051 
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 	if (unlikely(is_swap_pmd(pmd))) {
1054 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055 
1056 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 		if (is_writable_migration_entry(entry)) {
1058 			entry = make_readable_migration_entry(
1059 							swp_offset(entry));
1060 			pmd = swp_entry_to_pmd(entry);
1061 			if (pmd_swp_soft_dirty(*src_pmd))
1062 				pmd = pmd_swp_mksoft_dirty(pmd);
1063 			if (pmd_swp_uffd_wp(*src_pmd))
1064 				pmd = pmd_swp_mkuffd_wp(pmd);
1065 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 		}
1067 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 		mm_inc_nr_ptes(dst_mm);
1069 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 		if (!userfaultfd_wp(dst_vma))
1071 			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073 		ret = 0;
1074 		goto out_unlock;
1075 	}
1076 #endif
1077 
1078 	if (unlikely(!pmd_trans_huge(pmd))) {
1079 		pte_free(dst_mm, pgtable);
1080 		goto out_unlock;
1081 	}
1082 	/*
1083 	 * When page table lock is held, the huge zero pmd should not be
1084 	 * under splitting since we don't split the page itself, only pmd to
1085 	 * a page table.
1086 	 */
1087 	if (is_huge_zero_pmd(pmd)) {
1088 		/*
1089 		 * get_huge_zero_page() will never allocate a new page here,
1090 		 * since we already have a zero page to copy. It just takes a
1091 		 * reference.
1092 		 */
1093 		mm_get_huge_zero_page(dst_mm);
1094 		goto out_zero_page;
1095 	}
1096 
1097 	src_page = pmd_page(pmd);
1098 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 
1100 	/*
1101 	 * If this page is a potentially pinned page, split and retry the fault
1102 	 * with smaller page size.  Normally this should not happen because the
1103 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104 	 * best effort that the pinned pages won't be replaced by another
1105 	 * random page during the coming copy-on-write.
1106 	 */
1107 	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 		pte_free(dst_mm, pgtable);
1109 		spin_unlock(src_ptl);
1110 		spin_unlock(dst_ptl);
1111 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 		return -EAGAIN;
1113 	}
1114 
1115 	get_page(src_page);
1116 	page_dup_rmap(src_page, true);
1117 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 out_zero_page:
1119 	mm_inc_nr_ptes(dst_mm);
1120 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 	if (!userfaultfd_wp(dst_vma))
1123 		pmd = pmd_clear_uffd_wp(pmd);
1124 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1125 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126 
1127 	ret = 0;
1128 out_unlock:
1129 	spin_unlock(src_ptl);
1130 	spin_unlock(dst_ptl);
1131 out:
1132 	return ret;
1133 }
1134 
1135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137 		pud_t *pud, int flags)
1138 {
1139 	pud_t _pud;
1140 
1141 	_pud = pud_mkyoung(*pud);
1142 	if (flags & FOLL_WRITE)
1143 		_pud = pud_mkdirty(_pud);
1144 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145 				pud, _pud, flags & FOLL_WRITE))
1146 		update_mmu_cache_pud(vma, addr, pud);
1147 }
1148 
1149 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 {
1152 	unsigned long pfn = pud_pfn(*pud);
1153 	struct mm_struct *mm = vma->vm_mm;
1154 	struct page *page;
1155 
1156 	assert_spin_locked(pud_lockptr(mm, pud));
1157 
1158 	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 		return NULL;
1160 
1161 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163 			 (FOLL_PIN | FOLL_GET)))
1164 		return NULL;
1165 
1166 	if (pud_present(*pud) && pud_devmap(*pud))
1167 		/* pass */;
1168 	else
1169 		return NULL;
1170 
1171 	if (flags & FOLL_TOUCH)
1172 		touch_pud(vma, addr, pud, flags);
1173 
1174 	/*
1175 	 * device mapped pages can only be returned if the
1176 	 * caller will manage the page reference count.
1177 	 *
1178 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179 	 */
1180 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 		return ERR_PTR(-EEXIST);
1182 
1183 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1185 	if (!*pgmap)
1186 		return ERR_PTR(-EFAULT);
1187 	page = pfn_to_page(pfn);
1188 	if (!try_grab_page(page, flags))
1189 		page = ERR_PTR(-ENOMEM);
1190 
1191 	return page;
1192 }
1193 
1194 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196 		  struct vm_area_struct *vma)
1197 {
1198 	spinlock_t *dst_ptl, *src_ptl;
1199 	pud_t pud;
1200 	int ret;
1201 
1202 	dst_ptl = pud_lock(dst_mm, dst_pud);
1203 	src_ptl = pud_lockptr(src_mm, src_pud);
1204 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205 
1206 	ret = -EAGAIN;
1207 	pud = *src_pud;
1208 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209 		goto out_unlock;
1210 
1211 	/*
1212 	 * When page table lock is held, the huge zero pud should not be
1213 	 * under splitting since we don't split the page itself, only pud to
1214 	 * a page table.
1215 	 */
1216 	if (is_huge_zero_pud(pud)) {
1217 		/* No huge zero pud yet */
1218 	}
1219 
1220 	/* Please refer to comments in copy_huge_pmd() */
1221 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 		spin_unlock(src_ptl);
1223 		spin_unlock(dst_ptl);
1224 		__split_huge_pud(vma, src_pud, addr);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	pudp_set_wrprotect(src_mm, addr, src_pud);
1229 	pud = pud_mkold(pud_wrprotect(pud));
1230 	set_pud_at(dst_mm, addr, dst_pud, pud);
1231 
1232 	ret = 0;
1233 out_unlock:
1234 	spin_unlock(src_ptl);
1235 	spin_unlock(dst_ptl);
1236 	return ret;
1237 }
1238 
1239 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240 {
1241 	pud_t entry;
1242 	unsigned long haddr;
1243 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1244 
1245 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247 		goto unlock;
1248 
1249 	entry = pud_mkyoung(orig_pud);
1250 	if (write)
1251 		entry = pud_mkdirty(entry);
1252 	haddr = vmf->address & HPAGE_PUD_MASK;
1253 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255 
1256 unlock:
1257 	spin_unlock(vmf->ptl);
1258 }
1259 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260 
1261 void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 {
1263 	pmd_t entry;
1264 	unsigned long haddr;
1265 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266 	pmd_t orig_pmd = vmf->orig_pmd;
1267 
1268 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 		goto unlock;
1271 
1272 	entry = pmd_mkyoung(orig_pmd);
1273 	if (write)
1274 		entry = pmd_mkdirty(entry);
1275 	haddr = vmf->address & HPAGE_PMD_MASK;
1276 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 
1279 unlock:
1280 	spin_unlock(vmf->ptl);
1281 }
1282 
1283 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284 {
1285 	struct vm_area_struct *vma = vmf->vma;
1286 	struct page *page;
1287 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288 	pmd_t orig_pmd = vmf->orig_pmd;
1289 
1290 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292 
1293 	if (is_huge_zero_pmd(orig_pmd))
1294 		goto fallback;
1295 
1296 	spin_lock(vmf->ptl);
1297 
1298 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 		spin_unlock(vmf->ptl);
1300 		return 0;
1301 	}
1302 
1303 	page = pmd_page(orig_pmd);
1304 	VM_BUG_ON_PAGE(!PageHead(page), page);
1305 
1306 	/* Lock page for reuse_swap_page() */
1307 	if (!trylock_page(page)) {
1308 		get_page(page);
1309 		spin_unlock(vmf->ptl);
1310 		lock_page(page);
1311 		spin_lock(vmf->ptl);
1312 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313 			spin_unlock(vmf->ptl);
1314 			unlock_page(page);
1315 			put_page(page);
1316 			return 0;
1317 		}
1318 		put_page(page);
1319 	}
1320 
1321 	/*
1322 	 * We can only reuse the page if nobody else maps the huge page or it's
1323 	 * part.
1324 	 */
1325 	if (reuse_swap_page(page, NULL)) {
1326 		pmd_t entry;
1327 		entry = pmd_mkyoung(orig_pmd);
1328 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331 		unlock_page(page);
1332 		spin_unlock(vmf->ptl);
1333 		return VM_FAULT_WRITE;
1334 	}
1335 
1336 	unlock_page(page);
1337 	spin_unlock(vmf->ptl);
1338 fallback:
1339 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340 	return VM_FAULT_FALLBACK;
1341 }
1342 
1343 /*
1344  * FOLL_FORCE can write to even unwritable pmd's, but only
1345  * after we've gone through a COW cycle and they are dirty.
1346  */
1347 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348 {
1349 	return pmd_write(pmd) ||
1350 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351 }
1352 
1353 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354 				   unsigned long addr,
1355 				   pmd_t *pmd,
1356 				   unsigned int flags)
1357 {
1358 	struct mm_struct *mm = vma->vm_mm;
1359 	struct page *page = NULL;
1360 
1361 	assert_spin_locked(pmd_lockptr(mm, pmd));
1362 
1363 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364 		goto out;
1365 
1366 	/* Avoid dumping huge zero page */
1367 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368 		return ERR_PTR(-EFAULT);
1369 
1370 	/* Full NUMA hinting faults to serialise migration in fault paths */
1371 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372 		goto out;
1373 
1374 	page = pmd_page(*pmd);
1375 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376 
1377 	if (!try_grab_page(page, flags))
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	if (flags & FOLL_TOUCH)
1381 		touch_pmd(vma, addr, pmd, flags);
1382 
1383 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384 		/*
1385 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1386 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387 		 *
1388 		 * For anon THP:
1389 		 *
1390 		 * In most cases the pmd is the only mapping of the page as we
1391 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392 		 * writable private mappings in populate_vma_page_range().
1393 		 *
1394 		 * The only scenario when we have the page shared here is if we
1395 		 * mlocking read-only mapping shared over fork(). We skip
1396 		 * mlocking such pages.
1397 		 *
1398 		 * For file THP:
1399 		 *
1400 		 * We can expect PageDoubleMap() to be stable under page lock:
1401 		 * for file pages we set it in page_add_file_rmap(), which
1402 		 * requires page to be locked.
1403 		 */
1404 
1405 		if (PageAnon(page) && compound_mapcount(page) != 1)
1406 			goto skip_mlock;
1407 		if (PageDoubleMap(page) || !page->mapping)
1408 			goto skip_mlock;
1409 		if (!trylock_page(page))
1410 			goto skip_mlock;
1411 		if (page->mapping && !PageDoubleMap(page))
1412 			mlock_vma_page(page);
1413 		unlock_page(page);
1414 	}
1415 skip_mlock:
1416 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1418 
1419 out:
1420 	return page;
1421 }
1422 
1423 /* NUMA hinting page fault entry point for trans huge pmds */
1424 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425 {
1426 	struct vm_area_struct *vma = vmf->vma;
1427 	pmd_t oldpmd = vmf->orig_pmd;
1428 	pmd_t pmd;
1429 	struct page *page;
1430 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431 	int page_nid = NUMA_NO_NODE;
1432 	int target_nid, last_cpupid = -1;
1433 	bool migrated = false;
1434 	bool was_writable = pmd_savedwrite(oldpmd);
1435 	int flags = 0;
1436 
1437 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1439 		spin_unlock(vmf->ptl);
1440 		goto out;
1441 	}
1442 
1443 	/*
1444 	 * Since we took the NUMA fault, we must have observed the !accessible
1445 	 * bit. Make sure all other CPUs agree with that, to avoid them
1446 	 * modifying the page we're about to migrate.
1447 	 *
1448 	 * Must be done under PTL such that we'll observe the relevant
1449 	 * inc_tlb_flush_pending().
1450 	 *
1451 	 * We are not sure a pending tlb flush here is for a huge page
1452 	 * mapping or not. Hence use the tlb range variant
1453 	 */
1454 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1455 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1456 		/*
1457 		 * change_huge_pmd() released the pmd lock before
1458 		 * invalidating the secondary MMUs sharing the primary
1459 		 * MMU pagetables (with ->invalidate_range()). The
1460 		 * mmu_notifier_invalidate_range_end() (which
1461 		 * internally calls ->invalidate_range()) in
1462 		 * change_pmd_range() will run after us, so we can't
1463 		 * rely on it here and we need an explicit invalidate.
1464 		 */
1465 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1466 					      haddr + HPAGE_PMD_SIZE);
1467 	}
1468 
1469 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1470 	page = vm_normal_page_pmd(vma, haddr, pmd);
1471 	if (!page)
1472 		goto out_map;
1473 
1474 	/* See similar comment in do_numa_page for explanation */
1475 	if (!was_writable)
1476 		flags |= TNF_NO_GROUP;
1477 
1478 	page_nid = page_to_nid(page);
1479 	last_cpupid = page_cpupid_last(page);
1480 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1481 				       &flags);
1482 
1483 	if (target_nid == NUMA_NO_NODE) {
1484 		put_page(page);
1485 		goto out_map;
1486 	}
1487 
1488 	spin_unlock(vmf->ptl);
1489 
1490 	migrated = migrate_misplaced_page(page, vma, target_nid);
1491 	if (migrated) {
1492 		flags |= TNF_MIGRATED;
1493 		page_nid = target_nid;
1494 	} else {
1495 		flags |= TNF_MIGRATE_FAIL;
1496 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1497 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1498 			spin_unlock(vmf->ptl);
1499 			goto out;
1500 		}
1501 		goto out_map;
1502 	}
1503 
1504 out:
1505 	if (page_nid != NUMA_NO_NODE)
1506 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1507 				flags);
1508 
1509 	return 0;
1510 
1511 out_map:
1512 	/* Restore the PMD */
1513 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1514 	pmd = pmd_mkyoung(pmd);
1515 	if (was_writable)
1516 		pmd = pmd_mkwrite(pmd);
1517 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1518 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1519 	spin_unlock(vmf->ptl);
1520 	goto out;
1521 }
1522 
1523 /*
1524  * Return true if we do MADV_FREE successfully on entire pmd page.
1525  * Otherwise, return false.
1526  */
1527 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1528 		pmd_t *pmd, unsigned long addr, unsigned long next)
1529 {
1530 	spinlock_t *ptl;
1531 	pmd_t orig_pmd;
1532 	struct page *page;
1533 	struct mm_struct *mm = tlb->mm;
1534 	bool ret = false;
1535 
1536 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1537 
1538 	ptl = pmd_trans_huge_lock(pmd, vma);
1539 	if (!ptl)
1540 		goto out_unlocked;
1541 
1542 	orig_pmd = *pmd;
1543 	if (is_huge_zero_pmd(orig_pmd))
1544 		goto out;
1545 
1546 	if (unlikely(!pmd_present(orig_pmd))) {
1547 		VM_BUG_ON(thp_migration_supported() &&
1548 				  !is_pmd_migration_entry(orig_pmd));
1549 		goto out;
1550 	}
1551 
1552 	page = pmd_page(orig_pmd);
1553 	/*
1554 	 * If other processes are mapping this page, we couldn't discard
1555 	 * the page unless they all do MADV_FREE so let's skip the page.
1556 	 */
1557 	if (total_mapcount(page) != 1)
1558 		goto out;
1559 
1560 	if (!trylock_page(page))
1561 		goto out;
1562 
1563 	/*
1564 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1565 	 * will deactivate only them.
1566 	 */
1567 	if (next - addr != HPAGE_PMD_SIZE) {
1568 		get_page(page);
1569 		spin_unlock(ptl);
1570 		split_huge_page(page);
1571 		unlock_page(page);
1572 		put_page(page);
1573 		goto out_unlocked;
1574 	}
1575 
1576 	if (PageDirty(page))
1577 		ClearPageDirty(page);
1578 	unlock_page(page);
1579 
1580 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1581 		pmdp_invalidate(vma, addr, pmd);
1582 		orig_pmd = pmd_mkold(orig_pmd);
1583 		orig_pmd = pmd_mkclean(orig_pmd);
1584 
1585 		set_pmd_at(mm, addr, pmd, orig_pmd);
1586 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1587 	}
1588 
1589 	mark_page_lazyfree(page);
1590 	ret = true;
1591 out:
1592 	spin_unlock(ptl);
1593 out_unlocked:
1594 	return ret;
1595 }
1596 
1597 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1598 {
1599 	pgtable_t pgtable;
1600 
1601 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1602 	pte_free(mm, pgtable);
1603 	mm_dec_nr_ptes(mm);
1604 }
1605 
1606 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1607 		 pmd_t *pmd, unsigned long addr)
1608 {
1609 	pmd_t orig_pmd;
1610 	spinlock_t *ptl;
1611 
1612 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1613 
1614 	ptl = __pmd_trans_huge_lock(pmd, vma);
1615 	if (!ptl)
1616 		return 0;
1617 	/*
1618 	 * For architectures like ppc64 we look at deposited pgtable
1619 	 * when calling pmdp_huge_get_and_clear. So do the
1620 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1621 	 * operations.
1622 	 */
1623 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1624 						tlb->fullmm);
1625 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1626 	if (vma_is_special_huge(vma)) {
1627 		if (arch_needs_pgtable_deposit())
1628 			zap_deposited_table(tlb->mm, pmd);
1629 		spin_unlock(ptl);
1630 	} else if (is_huge_zero_pmd(orig_pmd)) {
1631 		zap_deposited_table(tlb->mm, pmd);
1632 		spin_unlock(ptl);
1633 	} else {
1634 		struct page *page = NULL;
1635 		int flush_needed = 1;
1636 
1637 		if (pmd_present(orig_pmd)) {
1638 			page = pmd_page(orig_pmd);
1639 			page_remove_rmap(page, true);
1640 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1641 			VM_BUG_ON_PAGE(!PageHead(page), page);
1642 		} else if (thp_migration_supported()) {
1643 			swp_entry_t entry;
1644 
1645 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1646 			entry = pmd_to_swp_entry(orig_pmd);
1647 			page = pfn_swap_entry_to_page(entry);
1648 			flush_needed = 0;
1649 		} else
1650 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1651 
1652 		if (PageAnon(page)) {
1653 			zap_deposited_table(tlb->mm, pmd);
1654 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1655 		} else {
1656 			if (arch_needs_pgtable_deposit())
1657 				zap_deposited_table(tlb->mm, pmd);
1658 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1659 		}
1660 
1661 		spin_unlock(ptl);
1662 		if (flush_needed)
1663 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1664 	}
1665 	return 1;
1666 }
1667 
1668 #ifndef pmd_move_must_withdraw
1669 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1670 					 spinlock_t *old_pmd_ptl,
1671 					 struct vm_area_struct *vma)
1672 {
1673 	/*
1674 	 * With split pmd lock we also need to move preallocated
1675 	 * PTE page table if new_pmd is on different PMD page table.
1676 	 *
1677 	 * We also don't deposit and withdraw tables for file pages.
1678 	 */
1679 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1680 }
1681 #endif
1682 
1683 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1684 {
1685 #ifdef CONFIG_MEM_SOFT_DIRTY
1686 	if (unlikely(is_pmd_migration_entry(pmd)))
1687 		pmd = pmd_swp_mksoft_dirty(pmd);
1688 	else if (pmd_present(pmd))
1689 		pmd = pmd_mksoft_dirty(pmd);
1690 #endif
1691 	return pmd;
1692 }
1693 
1694 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1695 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1696 {
1697 	spinlock_t *old_ptl, *new_ptl;
1698 	pmd_t pmd;
1699 	struct mm_struct *mm = vma->vm_mm;
1700 	bool force_flush = false;
1701 
1702 	/*
1703 	 * The destination pmd shouldn't be established, free_pgtables()
1704 	 * should have release it.
1705 	 */
1706 	if (WARN_ON(!pmd_none(*new_pmd))) {
1707 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1708 		return false;
1709 	}
1710 
1711 	/*
1712 	 * We don't have to worry about the ordering of src and dst
1713 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1714 	 */
1715 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716 	if (old_ptl) {
1717 		new_ptl = pmd_lockptr(mm, new_pmd);
1718 		if (new_ptl != old_ptl)
1719 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1720 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1721 		if (pmd_present(pmd))
1722 			force_flush = true;
1723 		VM_BUG_ON(!pmd_none(*new_pmd));
1724 
1725 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1726 			pgtable_t pgtable;
1727 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1729 		}
1730 		pmd = move_soft_dirty_pmd(pmd);
1731 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1732 		if (force_flush)
1733 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1734 		if (new_ptl != old_ptl)
1735 			spin_unlock(new_ptl);
1736 		spin_unlock(old_ptl);
1737 		return true;
1738 	}
1739 	return false;
1740 }
1741 
1742 /*
1743  * Returns
1744  *  - 0 if PMD could not be locked
1745  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1746  *      or if prot_numa but THP migration is not supported
1747  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1748  */
1749 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1750 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1751 {
1752 	struct mm_struct *mm = vma->vm_mm;
1753 	spinlock_t *ptl;
1754 	pmd_t entry;
1755 	bool preserve_write;
1756 	int ret;
1757 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1758 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1759 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1760 
1761 	if (prot_numa && !thp_migration_supported())
1762 		return 1;
1763 
1764 	ptl = __pmd_trans_huge_lock(pmd, vma);
1765 	if (!ptl)
1766 		return 0;
1767 
1768 	preserve_write = prot_numa && pmd_write(*pmd);
1769 	ret = 1;
1770 
1771 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1772 	if (is_swap_pmd(*pmd)) {
1773 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1774 
1775 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1776 		if (is_writable_migration_entry(entry)) {
1777 			pmd_t newpmd;
1778 			/*
1779 			 * A protection check is difficult so
1780 			 * just be safe and disable write
1781 			 */
1782 			entry = make_readable_migration_entry(
1783 							swp_offset(entry));
1784 			newpmd = swp_entry_to_pmd(entry);
1785 			if (pmd_swp_soft_dirty(*pmd))
1786 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1787 			if (pmd_swp_uffd_wp(*pmd))
1788 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1789 			set_pmd_at(mm, addr, pmd, newpmd);
1790 		}
1791 		goto unlock;
1792 	}
1793 #endif
1794 
1795 	/*
1796 	 * Avoid trapping faults against the zero page. The read-only
1797 	 * data is likely to be read-cached on the local CPU and
1798 	 * local/remote hits to the zero page are not interesting.
1799 	 */
1800 	if (prot_numa && is_huge_zero_pmd(*pmd))
1801 		goto unlock;
1802 
1803 	if (prot_numa && pmd_protnone(*pmd))
1804 		goto unlock;
1805 
1806 	/*
1807 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1808 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1809 	 * which is also under mmap_read_lock(mm):
1810 	 *
1811 	 *	CPU0:				CPU1:
1812 	 *				change_huge_pmd(prot_numa=1)
1813 	 *				 pmdp_huge_get_and_clear_notify()
1814 	 * madvise_dontneed()
1815 	 *  zap_pmd_range()
1816 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1817 	 *   // skip the pmd
1818 	 *				 set_pmd_at();
1819 	 *				 // pmd is re-established
1820 	 *
1821 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1822 	 * which may break userspace.
1823 	 *
1824 	 * pmdp_invalidate() is required to make sure we don't miss
1825 	 * dirty/young flags set by hardware.
1826 	 */
1827 	entry = pmdp_invalidate(vma, addr, pmd);
1828 
1829 	entry = pmd_modify(entry, newprot);
1830 	if (preserve_write)
1831 		entry = pmd_mk_savedwrite(entry);
1832 	if (uffd_wp) {
1833 		entry = pmd_wrprotect(entry);
1834 		entry = pmd_mkuffd_wp(entry);
1835 	} else if (uffd_wp_resolve) {
1836 		/*
1837 		 * Leave the write bit to be handled by PF interrupt
1838 		 * handler, then things like COW could be properly
1839 		 * handled.
1840 		 */
1841 		entry = pmd_clear_uffd_wp(entry);
1842 	}
1843 	ret = HPAGE_PMD_NR;
1844 	set_pmd_at(mm, addr, pmd, entry);
1845 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1846 unlock:
1847 	spin_unlock(ptl);
1848 	return ret;
1849 }
1850 
1851 /*
1852  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1853  *
1854  * Note that if it returns page table lock pointer, this routine returns without
1855  * unlocking page table lock. So callers must unlock it.
1856  */
1857 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1858 {
1859 	spinlock_t *ptl;
1860 	ptl = pmd_lock(vma->vm_mm, pmd);
1861 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1862 			pmd_devmap(*pmd)))
1863 		return ptl;
1864 	spin_unlock(ptl);
1865 	return NULL;
1866 }
1867 
1868 /*
1869  * Returns true if a given pud maps a thp, false otherwise.
1870  *
1871  * Note that if it returns true, this routine returns without unlocking page
1872  * table lock. So callers must unlock it.
1873  */
1874 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1875 {
1876 	spinlock_t *ptl;
1877 
1878 	ptl = pud_lock(vma->vm_mm, pud);
1879 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1880 		return ptl;
1881 	spin_unlock(ptl);
1882 	return NULL;
1883 }
1884 
1885 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1886 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1887 		 pud_t *pud, unsigned long addr)
1888 {
1889 	spinlock_t *ptl;
1890 
1891 	ptl = __pud_trans_huge_lock(pud, vma);
1892 	if (!ptl)
1893 		return 0;
1894 	/*
1895 	 * For architectures like ppc64 we look at deposited pgtable
1896 	 * when calling pudp_huge_get_and_clear. So do the
1897 	 * pgtable_trans_huge_withdraw after finishing pudp related
1898 	 * operations.
1899 	 */
1900 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1901 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1902 	if (vma_is_special_huge(vma)) {
1903 		spin_unlock(ptl);
1904 		/* No zero page support yet */
1905 	} else {
1906 		/* No support for anonymous PUD pages yet */
1907 		BUG();
1908 	}
1909 	return 1;
1910 }
1911 
1912 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1913 		unsigned long haddr)
1914 {
1915 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1916 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1917 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1918 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1919 
1920 	count_vm_event(THP_SPLIT_PUD);
1921 
1922 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1923 }
1924 
1925 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1926 		unsigned long address)
1927 {
1928 	spinlock_t *ptl;
1929 	struct mmu_notifier_range range;
1930 
1931 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1932 				address & HPAGE_PUD_MASK,
1933 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1934 	mmu_notifier_invalidate_range_start(&range);
1935 	ptl = pud_lock(vma->vm_mm, pud);
1936 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1937 		goto out;
1938 	__split_huge_pud_locked(vma, pud, range.start);
1939 
1940 out:
1941 	spin_unlock(ptl);
1942 	/*
1943 	 * No need to double call mmu_notifier->invalidate_range() callback as
1944 	 * the above pudp_huge_clear_flush_notify() did already call it.
1945 	 */
1946 	mmu_notifier_invalidate_range_only_end(&range);
1947 }
1948 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1949 
1950 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1951 		unsigned long haddr, pmd_t *pmd)
1952 {
1953 	struct mm_struct *mm = vma->vm_mm;
1954 	pgtable_t pgtable;
1955 	pmd_t _pmd;
1956 	int i;
1957 
1958 	/*
1959 	 * Leave pmd empty until pte is filled note that it is fine to delay
1960 	 * notification until mmu_notifier_invalidate_range_end() as we are
1961 	 * replacing a zero pmd write protected page with a zero pte write
1962 	 * protected page.
1963 	 *
1964 	 * See Documentation/vm/mmu_notifier.rst
1965 	 */
1966 	pmdp_huge_clear_flush(vma, haddr, pmd);
1967 
1968 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1969 	pmd_populate(mm, &_pmd, pgtable);
1970 
1971 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1972 		pte_t *pte, entry;
1973 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1974 		entry = pte_mkspecial(entry);
1975 		pte = pte_offset_map(&_pmd, haddr);
1976 		VM_BUG_ON(!pte_none(*pte));
1977 		set_pte_at(mm, haddr, pte, entry);
1978 		pte_unmap(pte);
1979 	}
1980 	smp_wmb(); /* make pte visible before pmd */
1981 	pmd_populate(mm, pmd, pgtable);
1982 }
1983 
1984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1985 		unsigned long haddr, bool freeze)
1986 {
1987 	struct mm_struct *mm = vma->vm_mm;
1988 	struct page *page;
1989 	pgtable_t pgtable;
1990 	pmd_t old_pmd, _pmd;
1991 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1992 	unsigned long addr;
1993 	int i;
1994 
1995 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1996 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1998 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1999 				&& !pmd_devmap(*pmd));
2000 
2001 	count_vm_event(THP_SPLIT_PMD);
2002 
2003 	if (!vma_is_anonymous(vma)) {
2004 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2005 		/*
2006 		 * We are going to unmap this huge page. So
2007 		 * just go ahead and zap it
2008 		 */
2009 		if (arch_needs_pgtable_deposit())
2010 			zap_deposited_table(mm, pmd);
2011 		if (vma_is_special_huge(vma))
2012 			return;
2013 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2014 			swp_entry_t entry;
2015 
2016 			entry = pmd_to_swp_entry(old_pmd);
2017 			page = pfn_swap_entry_to_page(entry);
2018 		} else {
2019 			page = pmd_page(old_pmd);
2020 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2021 				set_page_dirty(page);
2022 			if (!PageReferenced(page) && pmd_young(old_pmd))
2023 				SetPageReferenced(page);
2024 			page_remove_rmap(page, true);
2025 			put_page(page);
2026 		}
2027 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2028 		return;
2029 	}
2030 
2031 	if (is_huge_zero_pmd(*pmd)) {
2032 		/*
2033 		 * FIXME: Do we want to invalidate secondary mmu by calling
2034 		 * mmu_notifier_invalidate_range() see comments below inside
2035 		 * __split_huge_pmd() ?
2036 		 *
2037 		 * We are going from a zero huge page write protected to zero
2038 		 * small page also write protected so it does not seems useful
2039 		 * to invalidate secondary mmu at this time.
2040 		 */
2041 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2042 	}
2043 
2044 	/*
2045 	 * Up to this point the pmd is present and huge and userland has the
2046 	 * whole access to the hugepage during the split (which happens in
2047 	 * place). If we overwrite the pmd with the not-huge version pointing
2048 	 * to the pte here (which of course we could if all CPUs were bug
2049 	 * free), userland could trigger a small page size TLB miss on the
2050 	 * small sized TLB while the hugepage TLB entry is still established in
2051 	 * the huge TLB. Some CPU doesn't like that.
2052 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2053 	 * 383 on page 105. Intel should be safe but is also warns that it's
2054 	 * only safe if the permission and cache attributes of the two entries
2055 	 * loaded in the two TLB is identical (which should be the case here).
2056 	 * But it is generally safer to never allow small and huge TLB entries
2057 	 * for the same virtual address to be loaded simultaneously. So instead
2058 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2060 	 * must remain set at all times on the pmd until the split is complete
2061 	 * for this pmd), then we flush the SMP TLB and finally we write the
2062 	 * non-huge version of the pmd entry with pmd_populate.
2063 	 */
2064 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2065 
2066 	pmd_migration = is_pmd_migration_entry(old_pmd);
2067 	if (unlikely(pmd_migration)) {
2068 		swp_entry_t entry;
2069 
2070 		entry = pmd_to_swp_entry(old_pmd);
2071 		page = pfn_swap_entry_to_page(entry);
2072 		write = is_writable_migration_entry(entry);
2073 		young = false;
2074 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2075 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2076 	} else {
2077 		page = pmd_page(old_pmd);
2078 		if (pmd_dirty(old_pmd))
2079 			SetPageDirty(page);
2080 		write = pmd_write(old_pmd);
2081 		young = pmd_young(old_pmd);
2082 		soft_dirty = pmd_soft_dirty(old_pmd);
2083 		uffd_wp = pmd_uffd_wp(old_pmd);
2084 	}
2085 	VM_BUG_ON_PAGE(!page_count(page), page);
2086 	page_ref_add(page, HPAGE_PMD_NR - 1);
2087 
2088 	/*
2089 	 * Withdraw the table only after we mark the pmd entry invalid.
2090 	 * This's critical for some architectures (Power).
2091 	 */
2092 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2093 	pmd_populate(mm, &_pmd, pgtable);
2094 
2095 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2096 		pte_t entry, *pte;
2097 		/*
2098 		 * Note that NUMA hinting access restrictions are not
2099 		 * transferred to avoid any possibility of altering
2100 		 * permissions across VMAs.
2101 		 */
2102 		if (freeze || pmd_migration) {
2103 			swp_entry_t swp_entry;
2104 			if (write)
2105 				swp_entry = make_writable_migration_entry(
2106 							page_to_pfn(page + i));
2107 			else
2108 				swp_entry = make_readable_migration_entry(
2109 							page_to_pfn(page + i));
2110 			entry = swp_entry_to_pte(swp_entry);
2111 			if (soft_dirty)
2112 				entry = pte_swp_mksoft_dirty(entry);
2113 			if (uffd_wp)
2114 				entry = pte_swp_mkuffd_wp(entry);
2115 		} else {
2116 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117 			entry = maybe_mkwrite(entry, vma);
2118 			if (!write)
2119 				entry = pte_wrprotect(entry);
2120 			if (!young)
2121 				entry = pte_mkold(entry);
2122 			if (soft_dirty)
2123 				entry = pte_mksoft_dirty(entry);
2124 			if (uffd_wp)
2125 				entry = pte_mkuffd_wp(entry);
2126 		}
2127 		pte = pte_offset_map(&_pmd, addr);
2128 		BUG_ON(!pte_none(*pte));
2129 		set_pte_at(mm, addr, pte, entry);
2130 		if (!pmd_migration)
2131 			atomic_inc(&page[i]._mapcount);
2132 		pte_unmap(pte);
2133 	}
2134 
2135 	if (!pmd_migration) {
2136 		/*
2137 		 * Set PG_double_map before dropping compound_mapcount to avoid
2138 		 * false-negative page_mapped().
2139 		 */
2140 		if (compound_mapcount(page) > 1 &&
2141 		    !TestSetPageDoubleMap(page)) {
2142 			for (i = 0; i < HPAGE_PMD_NR; i++)
2143 				atomic_inc(&page[i]._mapcount);
2144 		}
2145 
2146 		lock_page_memcg(page);
2147 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2148 			/* Last compound_mapcount is gone. */
2149 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2150 						-HPAGE_PMD_NR);
2151 			if (TestClearPageDoubleMap(page)) {
2152 				/* No need in mapcount reference anymore */
2153 				for (i = 0; i < HPAGE_PMD_NR; i++)
2154 					atomic_dec(&page[i]._mapcount);
2155 			}
2156 		}
2157 		unlock_page_memcg(page);
2158 	}
2159 
2160 	smp_wmb(); /* make pte visible before pmd */
2161 	pmd_populate(mm, pmd, pgtable);
2162 
2163 	if (freeze) {
2164 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2165 			page_remove_rmap(page + i, false);
2166 			put_page(page + i);
2167 		}
2168 	}
2169 }
2170 
2171 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2172 		unsigned long address, bool freeze, struct page *page)
2173 {
2174 	spinlock_t *ptl;
2175 	struct mmu_notifier_range range;
2176 	bool do_unlock_page = false;
2177 	pmd_t _pmd;
2178 
2179 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2180 				address & HPAGE_PMD_MASK,
2181 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2182 	mmu_notifier_invalidate_range_start(&range);
2183 	ptl = pmd_lock(vma->vm_mm, pmd);
2184 
2185 	/*
2186 	 * If caller asks to setup a migration entries, we need a page to check
2187 	 * pmd against. Otherwise we can end up replacing wrong page.
2188 	 */
2189 	VM_BUG_ON(freeze && !page);
2190 	if (page) {
2191 		VM_WARN_ON_ONCE(!PageLocked(page));
2192 		if (page != pmd_page(*pmd))
2193 			goto out;
2194 	}
2195 
2196 repeat:
2197 	if (pmd_trans_huge(*pmd)) {
2198 		if (!page) {
2199 			page = pmd_page(*pmd);
2200 			/*
2201 			 * An anonymous page must be locked, to ensure that a
2202 			 * concurrent reuse_swap_page() sees stable mapcount;
2203 			 * but reuse_swap_page() is not used on shmem or file,
2204 			 * and page lock must not be taken when zap_pmd_range()
2205 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2206 			 */
2207 			if (PageAnon(page)) {
2208 				if (unlikely(!trylock_page(page))) {
2209 					get_page(page);
2210 					_pmd = *pmd;
2211 					spin_unlock(ptl);
2212 					lock_page(page);
2213 					spin_lock(ptl);
2214 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2215 						unlock_page(page);
2216 						put_page(page);
2217 						page = NULL;
2218 						goto repeat;
2219 					}
2220 					put_page(page);
2221 				}
2222 				do_unlock_page = true;
2223 			}
2224 		}
2225 		if (PageMlocked(page))
2226 			clear_page_mlock(page);
2227 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2228 		goto out;
2229 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2230 out:
2231 	spin_unlock(ptl);
2232 	if (do_unlock_page)
2233 		unlock_page(page);
2234 	/*
2235 	 * No need to double call mmu_notifier->invalidate_range() callback.
2236 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2237 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2238 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2239 	 *    fault will trigger a flush_notify before pointing to a new page
2240 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2241 	 *    page in the meantime)
2242 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2243 	 *     to invalidate secondary tlb entry they are all still valid.
2244 	 *     any further changes to individual pte will notify. So no need
2245 	 *     to call mmu_notifier->invalidate_range()
2246 	 */
2247 	mmu_notifier_invalidate_range_only_end(&range);
2248 }
2249 
2250 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2251 		bool freeze, struct page *page)
2252 {
2253 	pgd_t *pgd;
2254 	p4d_t *p4d;
2255 	pud_t *pud;
2256 	pmd_t *pmd;
2257 
2258 	pgd = pgd_offset(vma->vm_mm, address);
2259 	if (!pgd_present(*pgd))
2260 		return;
2261 
2262 	p4d = p4d_offset(pgd, address);
2263 	if (!p4d_present(*p4d))
2264 		return;
2265 
2266 	pud = pud_offset(p4d, address);
2267 	if (!pud_present(*pud))
2268 		return;
2269 
2270 	pmd = pmd_offset(pud, address);
2271 
2272 	__split_huge_pmd(vma, pmd, address, freeze, page);
2273 }
2274 
2275 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2276 {
2277 	/*
2278 	 * If the new address isn't hpage aligned and it could previously
2279 	 * contain an hugepage: check if we need to split an huge pmd.
2280 	 */
2281 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2282 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2283 			 ALIGN(address, HPAGE_PMD_SIZE)))
2284 		split_huge_pmd_address(vma, address, false, NULL);
2285 }
2286 
2287 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2288 			     unsigned long start,
2289 			     unsigned long end,
2290 			     long adjust_next)
2291 {
2292 	/* Check if we need to split start first. */
2293 	split_huge_pmd_if_needed(vma, start);
2294 
2295 	/* Check if we need to split end next. */
2296 	split_huge_pmd_if_needed(vma, end);
2297 
2298 	/*
2299 	 * If we're also updating the vma->vm_next->vm_start,
2300 	 * check if we need to split it.
2301 	 */
2302 	if (adjust_next > 0) {
2303 		struct vm_area_struct *next = vma->vm_next;
2304 		unsigned long nstart = next->vm_start;
2305 		nstart += adjust_next;
2306 		split_huge_pmd_if_needed(next, nstart);
2307 	}
2308 }
2309 
2310 static void unmap_page(struct page *page)
2311 {
2312 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2313 		TTU_SYNC;
2314 
2315 	VM_BUG_ON_PAGE(!PageHead(page), page);
2316 
2317 	/*
2318 	 * Anon pages need migration entries to preserve them, but file
2319 	 * pages can simply be left unmapped, then faulted back on demand.
2320 	 * If that is ever changed (perhaps for mlock), update remap_page().
2321 	 */
2322 	if (PageAnon(page))
2323 		try_to_migrate(page, ttu_flags);
2324 	else
2325 		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2326 
2327 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2328 }
2329 
2330 static void remap_page(struct page *page, unsigned int nr)
2331 {
2332 	int i;
2333 
2334 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2335 	if (!PageAnon(page))
2336 		return;
2337 	if (PageTransHuge(page)) {
2338 		remove_migration_ptes(page, page, true);
2339 	} else {
2340 		for (i = 0; i < nr; i++)
2341 			remove_migration_ptes(page + i, page + i, true);
2342 	}
2343 }
2344 
2345 static void lru_add_page_tail(struct page *head, struct page *tail,
2346 		struct lruvec *lruvec, struct list_head *list)
2347 {
2348 	VM_BUG_ON_PAGE(!PageHead(head), head);
2349 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2350 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2351 	lockdep_assert_held(&lruvec->lru_lock);
2352 
2353 	if (list) {
2354 		/* page reclaim is reclaiming a huge page */
2355 		VM_WARN_ON(PageLRU(head));
2356 		get_page(tail);
2357 		list_add_tail(&tail->lru, list);
2358 	} else {
2359 		/* head is still on lru (and we have it frozen) */
2360 		VM_WARN_ON(!PageLRU(head));
2361 		SetPageLRU(tail);
2362 		list_add_tail(&tail->lru, &head->lru);
2363 	}
2364 }
2365 
2366 static void __split_huge_page_tail(struct page *head, int tail,
2367 		struct lruvec *lruvec, struct list_head *list)
2368 {
2369 	struct page *page_tail = head + tail;
2370 
2371 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2372 
2373 	/*
2374 	 * Clone page flags before unfreezing refcount.
2375 	 *
2376 	 * After successful get_page_unless_zero() might follow flags change,
2377 	 * for example lock_page() which set PG_waiters.
2378 	 */
2379 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380 	page_tail->flags |= (head->flags &
2381 			((1L << PG_referenced) |
2382 			 (1L << PG_swapbacked) |
2383 			 (1L << PG_swapcache) |
2384 			 (1L << PG_mlocked) |
2385 			 (1L << PG_uptodate) |
2386 			 (1L << PG_active) |
2387 			 (1L << PG_workingset) |
2388 			 (1L << PG_locked) |
2389 			 (1L << PG_unevictable) |
2390 #ifdef CONFIG_64BIT
2391 			 (1L << PG_arch_2) |
2392 #endif
2393 			 (1L << PG_dirty)));
2394 
2395 	/* ->mapping in first tail page is compound_mapcount */
2396 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2397 			page_tail);
2398 	page_tail->mapping = head->mapping;
2399 	page_tail->index = head->index + tail;
2400 
2401 	/* Page flags must be visible before we make the page non-compound. */
2402 	smp_wmb();
2403 
2404 	/*
2405 	 * Clear PageTail before unfreezing page refcount.
2406 	 *
2407 	 * After successful get_page_unless_zero() might follow put_page()
2408 	 * which needs correct compound_head().
2409 	 */
2410 	clear_compound_head(page_tail);
2411 
2412 	/* Finally unfreeze refcount. Additional reference from page cache. */
2413 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2414 					  PageSwapCache(head)));
2415 
2416 	if (page_is_young(head))
2417 		set_page_young(page_tail);
2418 	if (page_is_idle(head))
2419 		set_page_idle(page_tail);
2420 
2421 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2422 
2423 	/*
2424 	 * always add to the tail because some iterators expect new
2425 	 * pages to show after the currently processed elements - e.g.
2426 	 * migrate_pages
2427 	 */
2428 	lru_add_page_tail(head, page_tail, lruvec, list);
2429 }
2430 
2431 static void __split_huge_page(struct page *page, struct list_head *list,
2432 		pgoff_t end)
2433 {
2434 	struct page *head = compound_head(page);
2435 	struct lruvec *lruvec;
2436 	struct address_space *swap_cache = NULL;
2437 	unsigned long offset = 0;
2438 	unsigned int nr = thp_nr_pages(head);
2439 	int i;
2440 
2441 	/* complete memcg works before add pages to LRU */
2442 	split_page_memcg(head, nr);
2443 
2444 	if (PageAnon(head) && PageSwapCache(head)) {
2445 		swp_entry_t entry = { .val = page_private(head) };
2446 
2447 		offset = swp_offset(entry);
2448 		swap_cache = swap_address_space(entry);
2449 		xa_lock(&swap_cache->i_pages);
2450 	}
2451 
2452 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2453 	lruvec = lock_page_lruvec(head);
2454 
2455 	for (i = nr - 1; i >= 1; i--) {
2456 		__split_huge_page_tail(head, i, lruvec, list);
2457 		/* Some pages can be beyond i_size: drop them from page cache */
2458 		if (head[i].index >= end) {
2459 			ClearPageDirty(head + i);
2460 			__delete_from_page_cache(head + i, NULL);
2461 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2462 				shmem_uncharge(head->mapping->host, 1);
2463 			put_page(head + i);
2464 		} else if (!PageAnon(page)) {
2465 			__xa_store(&head->mapping->i_pages, head[i].index,
2466 					head + i, 0);
2467 		} else if (swap_cache) {
2468 			__xa_store(&swap_cache->i_pages, offset + i,
2469 					head + i, 0);
2470 		}
2471 	}
2472 
2473 	ClearPageCompound(head);
2474 	unlock_page_lruvec(lruvec);
2475 	/* Caller disabled irqs, so they are still disabled here */
2476 
2477 	split_page_owner(head, nr);
2478 
2479 	/* See comment in __split_huge_page_tail() */
2480 	if (PageAnon(head)) {
2481 		/* Additional pin to swap cache */
2482 		if (PageSwapCache(head)) {
2483 			page_ref_add(head, 2);
2484 			xa_unlock(&swap_cache->i_pages);
2485 		} else {
2486 			page_ref_inc(head);
2487 		}
2488 	} else {
2489 		/* Additional pin to page cache */
2490 		page_ref_add(head, 2);
2491 		xa_unlock(&head->mapping->i_pages);
2492 	}
2493 	local_irq_enable();
2494 
2495 	remap_page(head, nr);
2496 
2497 	if (PageSwapCache(head)) {
2498 		swp_entry_t entry = { .val = page_private(head) };
2499 
2500 		split_swap_cluster(entry);
2501 	}
2502 
2503 	for (i = 0; i < nr; i++) {
2504 		struct page *subpage = head + i;
2505 		if (subpage == page)
2506 			continue;
2507 		unlock_page(subpage);
2508 
2509 		/*
2510 		 * Subpages may be freed if there wasn't any mapping
2511 		 * like if add_to_swap() is running on a lru page that
2512 		 * had its mapping zapped. And freeing these pages
2513 		 * requires taking the lru_lock so we do the put_page
2514 		 * of the tail pages after the split is complete.
2515 		 */
2516 		put_page(subpage);
2517 	}
2518 }
2519 
2520 int total_mapcount(struct page *page)
2521 {
2522 	int i, compound, nr, ret;
2523 
2524 	VM_BUG_ON_PAGE(PageTail(page), page);
2525 
2526 	if (likely(!PageCompound(page)))
2527 		return atomic_read(&page->_mapcount) + 1;
2528 
2529 	compound = compound_mapcount(page);
2530 	nr = compound_nr(page);
2531 	if (PageHuge(page))
2532 		return compound;
2533 	ret = compound;
2534 	for (i = 0; i < nr; i++)
2535 		ret += atomic_read(&page[i]._mapcount) + 1;
2536 	/* File pages has compound_mapcount included in _mapcount */
2537 	if (!PageAnon(page))
2538 		return ret - compound * nr;
2539 	if (PageDoubleMap(page))
2540 		ret -= nr;
2541 	return ret;
2542 }
2543 
2544 /*
2545  * This calculates accurately how many mappings a transparent hugepage
2546  * has (unlike page_mapcount() which isn't fully accurate). This full
2547  * accuracy is primarily needed to know if copy-on-write faults can
2548  * reuse the page and change the mapping to read-write instead of
2549  * copying them. At the same time this returns the total_mapcount too.
2550  *
2551  * The function returns the highest mapcount any one of the subpages
2552  * has. If the return value is one, even if different processes are
2553  * mapping different subpages of the transparent hugepage, they can
2554  * all reuse it, because each process is reusing a different subpage.
2555  *
2556  * The total_mapcount is instead counting all virtual mappings of the
2557  * subpages. If the total_mapcount is equal to "one", it tells the
2558  * caller all mappings belong to the same "mm" and in turn the
2559  * anon_vma of the transparent hugepage can become the vma->anon_vma
2560  * local one as no other process may be mapping any of the subpages.
2561  *
2562  * It would be more accurate to replace page_mapcount() with
2563  * page_trans_huge_mapcount(), however we only use
2564  * page_trans_huge_mapcount() in the copy-on-write faults where we
2565  * need full accuracy to avoid breaking page pinning, because
2566  * page_trans_huge_mapcount() is slower than page_mapcount().
2567  */
2568 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2569 {
2570 	int i, ret, _total_mapcount, mapcount;
2571 
2572 	/* hugetlbfs shouldn't call it */
2573 	VM_BUG_ON_PAGE(PageHuge(page), page);
2574 
2575 	if (likely(!PageTransCompound(page))) {
2576 		mapcount = atomic_read(&page->_mapcount) + 1;
2577 		if (total_mapcount)
2578 			*total_mapcount = mapcount;
2579 		return mapcount;
2580 	}
2581 
2582 	page = compound_head(page);
2583 
2584 	_total_mapcount = ret = 0;
2585 	for (i = 0; i < thp_nr_pages(page); i++) {
2586 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2587 		ret = max(ret, mapcount);
2588 		_total_mapcount += mapcount;
2589 	}
2590 	if (PageDoubleMap(page)) {
2591 		ret -= 1;
2592 		_total_mapcount -= thp_nr_pages(page);
2593 	}
2594 	mapcount = compound_mapcount(page);
2595 	ret += mapcount;
2596 	_total_mapcount += mapcount;
2597 	if (total_mapcount)
2598 		*total_mapcount = _total_mapcount;
2599 	return ret;
2600 }
2601 
2602 /* Racy check whether the huge page can be split */
2603 bool can_split_huge_page(struct page *page, int *pextra_pins)
2604 {
2605 	int extra_pins;
2606 
2607 	/* Additional pins from page cache */
2608 	if (PageAnon(page))
2609 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2610 	else
2611 		extra_pins = thp_nr_pages(page);
2612 	if (pextra_pins)
2613 		*pextra_pins = extra_pins;
2614 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2615 }
2616 
2617 /*
2618  * This function splits huge page into normal pages. @page can point to any
2619  * subpage of huge page to split. Split doesn't change the position of @page.
2620  *
2621  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2622  * The huge page must be locked.
2623  *
2624  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2625  *
2626  * Both head page and tail pages will inherit mapping, flags, and so on from
2627  * the hugepage.
2628  *
2629  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2630  * they are not mapped.
2631  *
2632  * Returns 0 if the hugepage is split successfully.
2633  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2634  * us.
2635  */
2636 int split_huge_page_to_list(struct page *page, struct list_head *list)
2637 {
2638 	struct page *head = compound_head(page);
2639 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2640 	struct anon_vma *anon_vma = NULL;
2641 	struct address_space *mapping = NULL;
2642 	int extra_pins, ret;
2643 	pgoff_t end;
2644 
2645 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2646 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2647 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2648 
2649 	if (PageWriteback(head))
2650 		return -EBUSY;
2651 
2652 	if (PageAnon(head)) {
2653 		/*
2654 		 * The caller does not necessarily hold an mmap_lock that would
2655 		 * prevent the anon_vma disappearing so we first we take a
2656 		 * reference to it and then lock the anon_vma for write. This
2657 		 * is similar to page_lock_anon_vma_read except the write lock
2658 		 * is taken to serialise against parallel split or collapse
2659 		 * operations.
2660 		 */
2661 		anon_vma = page_get_anon_vma(head);
2662 		if (!anon_vma) {
2663 			ret = -EBUSY;
2664 			goto out;
2665 		}
2666 		end = -1;
2667 		mapping = NULL;
2668 		anon_vma_lock_write(anon_vma);
2669 	} else {
2670 		mapping = head->mapping;
2671 
2672 		/* Truncated ? */
2673 		if (!mapping) {
2674 			ret = -EBUSY;
2675 			goto out;
2676 		}
2677 
2678 		anon_vma = NULL;
2679 		i_mmap_lock_read(mapping);
2680 
2681 		/*
2682 		 *__split_huge_page() may need to trim off pages beyond EOF:
2683 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2684 		 * which cannot be nested inside the page tree lock. So note
2685 		 * end now: i_size itself may be changed at any moment, but
2686 		 * head page lock is good enough to serialize the trimming.
2687 		 */
2688 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2689 	}
2690 
2691 	/*
2692 	 * Racy check if we can split the page, before unmap_page() will
2693 	 * split PMDs
2694 	 */
2695 	if (!can_split_huge_page(head, &extra_pins)) {
2696 		ret = -EBUSY;
2697 		goto out_unlock;
2698 	}
2699 
2700 	unmap_page(head);
2701 
2702 	/* block interrupt reentry in xa_lock and spinlock */
2703 	local_irq_disable();
2704 	if (mapping) {
2705 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2706 
2707 		/*
2708 		 * Check if the head page is present in page cache.
2709 		 * We assume all tail are present too, if head is there.
2710 		 */
2711 		xa_lock(&mapping->i_pages);
2712 		if (xas_load(&xas) != head)
2713 			goto fail;
2714 	}
2715 
2716 	/* Prevent deferred_split_scan() touching ->_refcount */
2717 	spin_lock(&ds_queue->split_queue_lock);
2718 	if (page_ref_freeze(head, 1 + extra_pins)) {
2719 		if (!list_empty(page_deferred_list(head))) {
2720 			ds_queue->split_queue_len--;
2721 			list_del(page_deferred_list(head));
2722 		}
2723 		spin_unlock(&ds_queue->split_queue_lock);
2724 		if (mapping) {
2725 			int nr = thp_nr_pages(head);
2726 
2727 			if (PageSwapBacked(head))
2728 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2729 							-nr);
2730 			else
2731 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2732 							-nr);
2733 		}
2734 
2735 		__split_huge_page(page, list, end);
2736 		ret = 0;
2737 	} else {
2738 		spin_unlock(&ds_queue->split_queue_lock);
2739 fail:
2740 		if (mapping)
2741 			xa_unlock(&mapping->i_pages);
2742 		local_irq_enable();
2743 		remap_page(head, thp_nr_pages(head));
2744 		ret = -EBUSY;
2745 	}
2746 
2747 out_unlock:
2748 	if (anon_vma) {
2749 		anon_vma_unlock_write(anon_vma);
2750 		put_anon_vma(anon_vma);
2751 	}
2752 	if (mapping)
2753 		i_mmap_unlock_read(mapping);
2754 out:
2755 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2756 	return ret;
2757 }
2758 
2759 void free_transhuge_page(struct page *page)
2760 {
2761 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2762 	unsigned long flags;
2763 
2764 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2765 	if (!list_empty(page_deferred_list(page))) {
2766 		ds_queue->split_queue_len--;
2767 		list_del(page_deferred_list(page));
2768 	}
2769 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2770 	free_compound_page(page);
2771 }
2772 
2773 void deferred_split_huge_page(struct page *page)
2774 {
2775 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2776 #ifdef CONFIG_MEMCG
2777 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2778 #endif
2779 	unsigned long flags;
2780 
2781 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2782 
2783 	/*
2784 	 * The try_to_unmap() in page reclaim path might reach here too,
2785 	 * this may cause a race condition to corrupt deferred split queue.
2786 	 * And, if page reclaim is already handling the same page, it is
2787 	 * unnecessary to handle it again in shrinker.
2788 	 *
2789 	 * Check PageSwapCache to determine if the page is being
2790 	 * handled by page reclaim since THP swap would add the page into
2791 	 * swap cache before calling try_to_unmap().
2792 	 */
2793 	if (PageSwapCache(page))
2794 		return;
2795 
2796 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797 	if (list_empty(page_deferred_list(page))) {
2798 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2799 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2800 		ds_queue->split_queue_len++;
2801 #ifdef CONFIG_MEMCG
2802 		if (memcg)
2803 			set_shrinker_bit(memcg, page_to_nid(page),
2804 					 deferred_split_shrinker.id);
2805 #endif
2806 	}
2807 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 }
2809 
2810 static unsigned long deferred_split_count(struct shrinker *shrink,
2811 		struct shrink_control *sc)
2812 {
2813 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2814 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2815 
2816 #ifdef CONFIG_MEMCG
2817 	if (sc->memcg)
2818 		ds_queue = &sc->memcg->deferred_split_queue;
2819 #endif
2820 	return READ_ONCE(ds_queue->split_queue_len);
2821 }
2822 
2823 static unsigned long deferred_split_scan(struct shrinker *shrink,
2824 		struct shrink_control *sc)
2825 {
2826 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2827 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2828 	unsigned long flags;
2829 	LIST_HEAD(list), *pos, *next;
2830 	struct page *page;
2831 	int split = 0;
2832 
2833 #ifdef CONFIG_MEMCG
2834 	if (sc->memcg)
2835 		ds_queue = &sc->memcg->deferred_split_queue;
2836 #endif
2837 
2838 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2839 	/* Take pin on all head pages to avoid freeing them under us */
2840 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2841 		page = list_entry((void *)pos, struct page, deferred_list);
2842 		page = compound_head(page);
2843 		if (get_page_unless_zero(page)) {
2844 			list_move(page_deferred_list(page), &list);
2845 		} else {
2846 			/* We lost race with put_compound_page() */
2847 			list_del_init(page_deferred_list(page));
2848 			ds_queue->split_queue_len--;
2849 		}
2850 		if (!--sc->nr_to_scan)
2851 			break;
2852 	}
2853 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2854 
2855 	list_for_each_safe(pos, next, &list) {
2856 		page = list_entry((void *)pos, struct page, deferred_list);
2857 		if (!trylock_page(page))
2858 			goto next;
2859 		/* split_huge_page() removes page from list on success */
2860 		if (!split_huge_page(page))
2861 			split++;
2862 		unlock_page(page);
2863 next:
2864 		put_page(page);
2865 	}
2866 
2867 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2868 	list_splice_tail(&list, &ds_queue->split_queue);
2869 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2870 
2871 	/*
2872 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2873 	 * This can happen if pages were freed under us.
2874 	 */
2875 	if (!split && list_empty(&ds_queue->split_queue))
2876 		return SHRINK_STOP;
2877 	return split;
2878 }
2879 
2880 static struct shrinker deferred_split_shrinker = {
2881 	.count_objects = deferred_split_count,
2882 	.scan_objects = deferred_split_scan,
2883 	.seeks = DEFAULT_SEEKS,
2884 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2885 		 SHRINKER_NONSLAB,
2886 };
2887 
2888 #ifdef CONFIG_DEBUG_FS
2889 static void split_huge_pages_all(void)
2890 {
2891 	struct zone *zone;
2892 	struct page *page;
2893 	unsigned long pfn, max_zone_pfn;
2894 	unsigned long total = 0, split = 0;
2895 
2896 	pr_debug("Split all THPs\n");
2897 	for_each_populated_zone(zone) {
2898 		max_zone_pfn = zone_end_pfn(zone);
2899 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2900 			if (!pfn_valid(pfn))
2901 				continue;
2902 
2903 			page = pfn_to_page(pfn);
2904 			if (!get_page_unless_zero(page))
2905 				continue;
2906 
2907 			if (zone != page_zone(page))
2908 				goto next;
2909 
2910 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2911 				goto next;
2912 
2913 			total++;
2914 			lock_page(page);
2915 			if (!split_huge_page(page))
2916 				split++;
2917 			unlock_page(page);
2918 next:
2919 			put_page(page);
2920 			cond_resched();
2921 		}
2922 	}
2923 
2924 	pr_debug("%lu of %lu THP split\n", split, total);
2925 }
2926 
2927 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2928 {
2929 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2930 		    is_vm_hugetlb_page(vma);
2931 }
2932 
2933 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2934 				unsigned long vaddr_end)
2935 {
2936 	int ret = 0;
2937 	struct task_struct *task;
2938 	struct mm_struct *mm;
2939 	unsigned long total = 0, split = 0;
2940 	unsigned long addr;
2941 
2942 	vaddr_start &= PAGE_MASK;
2943 	vaddr_end &= PAGE_MASK;
2944 
2945 	/* Find the task_struct from pid */
2946 	rcu_read_lock();
2947 	task = find_task_by_vpid(pid);
2948 	if (!task) {
2949 		rcu_read_unlock();
2950 		ret = -ESRCH;
2951 		goto out;
2952 	}
2953 	get_task_struct(task);
2954 	rcu_read_unlock();
2955 
2956 	/* Find the mm_struct */
2957 	mm = get_task_mm(task);
2958 	put_task_struct(task);
2959 
2960 	if (!mm) {
2961 		ret = -EINVAL;
2962 		goto out;
2963 	}
2964 
2965 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2966 		 pid, vaddr_start, vaddr_end);
2967 
2968 	mmap_read_lock(mm);
2969 	/*
2970 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2971 	 * table filled with PTE-mapped THPs, each of which is distinct.
2972 	 */
2973 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2974 		struct vm_area_struct *vma = find_vma(mm, addr);
2975 		unsigned int follflags;
2976 		struct page *page;
2977 
2978 		if (!vma || addr < vma->vm_start)
2979 			break;
2980 
2981 		/* skip special VMA and hugetlb VMA */
2982 		if (vma_not_suitable_for_thp_split(vma)) {
2983 			addr = vma->vm_end;
2984 			continue;
2985 		}
2986 
2987 		/* FOLL_DUMP to ignore special (like zero) pages */
2988 		follflags = FOLL_GET | FOLL_DUMP;
2989 		page = follow_page(vma, addr, follflags);
2990 
2991 		if (IS_ERR(page))
2992 			continue;
2993 		if (!page)
2994 			continue;
2995 
2996 		if (!is_transparent_hugepage(page))
2997 			goto next;
2998 
2999 		total++;
3000 		if (!can_split_huge_page(compound_head(page), NULL))
3001 			goto next;
3002 
3003 		if (!trylock_page(page))
3004 			goto next;
3005 
3006 		if (!split_huge_page(page))
3007 			split++;
3008 
3009 		unlock_page(page);
3010 next:
3011 		put_page(page);
3012 		cond_resched();
3013 	}
3014 	mmap_read_unlock(mm);
3015 	mmput(mm);
3016 
3017 	pr_debug("%lu of %lu THP split\n", split, total);
3018 
3019 out:
3020 	return ret;
3021 }
3022 
3023 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3024 				pgoff_t off_end)
3025 {
3026 	struct filename *file;
3027 	struct file *candidate;
3028 	struct address_space *mapping;
3029 	int ret = -EINVAL;
3030 	pgoff_t index;
3031 	int nr_pages = 1;
3032 	unsigned long total = 0, split = 0;
3033 
3034 	file = getname_kernel(file_path);
3035 	if (IS_ERR(file))
3036 		return ret;
3037 
3038 	candidate = file_open_name(file, O_RDONLY, 0);
3039 	if (IS_ERR(candidate))
3040 		goto out;
3041 
3042 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3043 		 file_path, off_start, off_end);
3044 
3045 	mapping = candidate->f_mapping;
3046 
3047 	for (index = off_start; index < off_end; index += nr_pages) {
3048 		struct page *fpage = pagecache_get_page(mapping, index,
3049 						FGP_ENTRY | FGP_HEAD, 0);
3050 
3051 		nr_pages = 1;
3052 		if (xa_is_value(fpage) || !fpage)
3053 			continue;
3054 
3055 		if (!is_transparent_hugepage(fpage))
3056 			goto next;
3057 
3058 		total++;
3059 		nr_pages = thp_nr_pages(fpage);
3060 
3061 		if (!trylock_page(fpage))
3062 			goto next;
3063 
3064 		if (!split_huge_page(fpage))
3065 			split++;
3066 
3067 		unlock_page(fpage);
3068 next:
3069 		put_page(fpage);
3070 		cond_resched();
3071 	}
3072 
3073 	filp_close(candidate, NULL);
3074 	ret = 0;
3075 
3076 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3077 out:
3078 	putname(file);
3079 	return ret;
3080 }
3081 
3082 #define MAX_INPUT_BUF_SZ 255
3083 
3084 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3085 				size_t count, loff_t *ppops)
3086 {
3087 	static DEFINE_MUTEX(split_debug_mutex);
3088 	ssize_t ret;
3089 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3090 	char input_buf[MAX_INPUT_BUF_SZ];
3091 	int pid;
3092 	unsigned long vaddr_start, vaddr_end;
3093 
3094 	ret = mutex_lock_interruptible(&split_debug_mutex);
3095 	if (ret)
3096 		return ret;
3097 
3098 	ret = -EFAULT;
3099 
3100 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3101 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3102 		goto out;
3103 
3104 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3105 
3106 	if (input_buf[0] == '/') {
3107 		char *tok;
3108 		char *buf = input_buf;
3109 		char file_path[MAX_INPUT_BUF_SZ];
3110 		pgoff_t off_start = 0, off_end = 0;
3111 		size_t input_len = strlen(input_buf);
3112 
3113 		tok = strsep(&buf, ",");
3114 		if (tok) {
3115 			strcpy(file_path, tok);
3116 		} else {
3117 			ret = -EINVAL;
3118 			goto out;
3119 		}
3120 
3121 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3122 		if (ret != 2) {
3123 			ret = -EINVAL;
3124 			goto out;
3125 		}
3126 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3127 		if (!ret)
3128 			ret = input_len;
3129 
3130 		goto out;
3131 	}
3132 
3133 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3134 	if (ret == 1 && pid == 1) {
3135 		split_huge_pages_all();
3136 		ret = strlen(input_buf);
3137 		goto out;
3138 	} else if (ret != 3) {
3139 		ret = -EINVAL;
3140 		goto out;
3141 	}
3142 
3143 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3144 	if (!ret)
3145 		ret = strlen(input_buf);
3146 out:
3147 	mutex_unlock(&split_debug_mutex);
3148 	return ret;
3149 
3150 }
3151 
3152 static const struct file_operations split_huge_pages_fops = {
3153 	.owner	 = THIS_MODULE,
3154 	.write	 = split_huge_pages_write,
3155 	.llseek  = no_llseek,
3156 };
3157 
3158 static int __init split_huge_pages_debugfs(void)
3159 {
3160 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3161 			    &split_huge_pages_fops);
3162 	return 0;
3163 }
3164 late_initcall(split_huge_pages_debugfs);
3165 #endif
3166 
3167 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3168 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3169 		struct page *page)
3170 {
3171 	struct vm_area_struct *vma = pvmw->vma;
3172 	struct mm_struct *mm = vma->vm_mm;
3173 	unsigned long address = pvmw->address;
3174 	pmd_t pmdval;
3175 	swp_entry_t entry;
3176 	pmd_t pmdswp;
3177 
3178 	if (!(pvmw->pmd && !pvmw->pte))
3179 		return;
3180 
3181 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3182 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3183 	if (pmd_dirty(pmdval))
3184 		set_page_dirty(page);
3185 	if (pmd_write(pmdval))
3186 		entry = make_writable_migration_entry(page_to_pfn(page));
3187 	else
3188 		entry = make_readable_migration_entry(page_to_pfn(page));
3189 	pmdswp = swp_entry_to_pmd(entry);
3190 	if (pmd_soft_dirty(pmdval))
3191 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3192 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3193 	page_remove_rmap(page, true);
3194 	put_page(page);
3195 }
3196 
3197 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3198 {
3199 	struct vm_area_struct *vma = pvmw->vma;
3200 	struct mm_struct *mm = vma->vm_mm;
3201 	unsigned long address = pvmw->address;
3202 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3203 	pmd_t pmde;
3204 	swp_entry_t entry;
3205 
3206 	if (!(pvmw->pmd && !pvmw->pte))
3207 		return;
3208 
3209 	entry = pmd_to_swp_entry(*pvmw->pmd);
3210 	get_page(new);
3211 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3212 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3213 		pmde = pmd_mksoft_dirty(pmde);
3214 	if (is_writable_migration_entry(entry))
3215 		pmde = maybe_pmd_mkwrite(pmde, vma);
3216 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3217 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3218 
3219 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3220 	if (PageAnon(new))
3221 		page_add_anon_rmap(new, vma, mmun_start, true);
3222 	else
3223 		page_add_file_rmap(new, true);
3224 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3225 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3226 		mlock_vma_page(new);
3227 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3228 }
3229 #endif
3230