1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/kthread.h> 20 #include <linux/khugepaged.h> 21 #include <linux/freezer.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/migrate.h> 25 #include <linux/hashtable.h> 26 #include <linux/userfaultfd_k.h> 27 28 #include <asm/tlb.h> 29 #include <asm/pgalloc.h> 30 #include "internal.h" 31 32 /* 33 * By default transparent hugepage support is disabled in order that avoid 34 * to risk increase the memory footprint of applications without a guaranteed 35 * benefit. When transparent hugepage support is enabled, is for all mappings, 36 * and khugepaged scans all mappings. 37 * Defrag is invoked by khugepaged hugepage allocations and by page faults 38 * for all hugepage allocations. 39 */ 40 unsigned long transparent_hugepage_flags __read_mostly = 41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 42 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 43 #endif 44 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 45 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 46 #endif 47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 48 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 49 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 50 51 /* default scan 8*512 pte (or vmas) every 30 second */ 52 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 53 static unsigned int khugepaged_pages_collapsed; 54 static unsigned int khugepaged_full_scans; 55 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 56 /* during fragmentation poll the hugepage allocator once every minute */ 57 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 58 static struct task_struct *khugepaged_thread __read_mostly; 59 static DEFINE_MUTEX(khugepaged_mutex); 60 static DEFINE_SPINLOCK(khugepaged_mm_lock); 61 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 62 /* 63 * default collapse hugepages if there is at least one pte mapped like 64 * it would have happened if the vma was large enough during page 65 * fault. 66 */ 67 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 68 69 static int khugepaged(void *none); 70 static int khugepaged_slab_init(void); 71 static void khugepaged_slab_exit(void); 72 73 #define MM_SLOTS_HASH_BITS 10 74 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 75 76 static struct kmem_cache *mm_slot_cache __read_mostly; 77 78 /** 79 * struct mm_slot - hash lookup from mm to mm_slot 80 * @hash: hash collision list 81 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 82 * @mm: the mm that this information is valid for 83 */ 84 struct mm_slot { 85 struct hlist_node hash; 86 struct list_head mm_node; 87 struct mm_struct *mm; 88 }; 89 90 /** 91 * struct khugepaged_scan - cursor for scanning 92 * @mm_head: the head of the mm list to scan 93 * @mm_slot: the current mm_slot we are scanning 94 * @address: the next address inside that to be scanned 95 * 96 * There is only the one khugepaged_scan instance of this cursor structure. 97 */ 98 struct khugepaged_scan { 99 struct list_head mm_head; 100 struct mm_slot *mm_slot; 101 unsigned long address; 102 }; 103 static struct khugepaged_scan khugepaged_scan = { 104 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 105 }; 106 107 108 static int set_recommended_min_free_kbytes(void) 109 { 110 struct zone *zone; 111 int nr_zones = 0; 112 unsigned long recommended_min; 113 114 for_each_populated_zone(zone) 115 nr_zones++; 116 117 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 118 recommended_min = pageblock_nr_pages * nr_zones * 2; 119 120 /* 121 * Make sure that on average at least two pageblocks are almost free 122 * of another type, one for a migratetype to fall back to and a 123 * second to avoid subsequent fallbacks of other types There are 3 124 * MIGRATE_TYPES we care about. 125 */ 126 recommended_min += pageblock_nr_pages * nr_zones * 127 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 128 129 /* don't ever allow to reserve more than 5% of the lowmem */ 130 recommended_min = min(recommended_min, 131 (unsigned long) nr_free_buffer_pages() / 20); 132 recommended_min <<= (PAGE_SHIFT-10); 133 134 if (recommended_min > min_free_kbytes) { 135 if (user_min_free_kbytes >= 0) 136 pr_info("raising min_free_kbytes from %d to %lu " 137 "to help transparent hugepage allocations\n", 138 min_free_kbytes, recommended_min); 139 140 min_free_kbytes = recommended_min; 141 } 142 setup_per_zone_wmarks(); 143 return 0; 144 } 145 146 static int start_stop_khugepaged(void) 147 { 148 int err = 0; 149 if (khugepaged_enabled()) { 150 if (!khugepaged_thread) 151 khugepaged_thread = kthread_run(khugepaged, NULL, 152 "khugepaged"); 153 if (unlikely(IS_ERR(khugepaged_thread))) { 154 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 155 err = PTR_ERR(khugepaged_thread); 156 khugepaged_thread = NULL; 157 goto fail; 158 } 159 160 if (!list_empty(&khugepaged_scan.mm_head)) 161 wake_up_interruptible(&khugepaged_wait); 162 163 set_recommended_min_free_kbytes(); 164 } else if (khugepaged_thread) { 165 kthread_stop(khugepaged_thread); 166 khugepaged_thread = NULL; 167 } 168 fail: 169 return err; 170 } 171 172 static atomic_t huge_zero_refcount; 173 struct page *huge_zero_page __read_mostly; 174 175 static inline bool is_huge_zero_pmd(pmd_t pmd) 176 { 177 return is_huge_zero_page(pmd_page(pmd)); 178 } 179 180 static struct page *get_huge_zero_page(void) 181 { 182 struct page *zero_page; 183 retry: 184 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 185 return READ_ONCE(huge_zero_page); 186 187 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 188 HPAGE_PMD_ORDER); 189 if (!zero_page) { 190 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 191 return NULL; 192 } 193 count_vm_event(THP_ZERO_PAGE_ALLOC); 194 preempt_disable(); 195 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 196 preempt_enable(); 197 __free_pages(zero_page, compound_order(zero_page)); 198 goto retry; 199 } 200 201 /* We take additional reference here. It will be put back by shrinker */ 202 atomic_set(&huge_zero_refcount, 2); 203 preempt_enable(); 204 return READ_ONCE(huge_zero_page); 205 } 206 207 static void put_huge_zero_page(void) 208 { 209 /* 210 * Counter should never go to zero here. Only shrinker can put 211 * last reference. 212 */ 213 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 214 } 215 216 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 217 struct shrink_control *sc) 218 { 219 /* we can free zero page only if last reference remains */ 220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 221 } 222 223 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 224 struct shrink_control *sc) 225 { 226 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 227 struct page *zero_page = xchg(&huge_zero_page, NULL); 228 BUG_ON(zero_page == NULL); 229 __free_pages(zero_page, compound_order(zero_page)); 230 return HPAGE_PMD_NR; 231 } 232 233 return 0; 234 } 235 236 static struct shrinker huge_zero_page_shrinker = { 237 .count_objects = shrink_huge_zero_page_count, 238 .scan_objects = shrink_huge_zero_page_scan, 239 .seeks = DEFAULT_SEEKS, 240 }; 241 242 #ifdef CONFIG_SYSFS 243 244 static ssize_t double_flag_show(struct kobject *kobj, 245 struct kobj_attribute *attr, char *buf, 246 enum transparent_hugepage_flag enabled, 247 enum transparent_hugepage_flag req_madv) 248 { 249 if (test_bit(enabled, &transparent_hugepage_flags)) { 250 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 251 return sprintf(buf, "[always] madvise never\n"); 252 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 253 return sprintf(buf, "always [madvise] never\n"); 254 else 255 return sprintf(buf, "always madvise [never]\n"); 256 } 257 static ssize_t double_flag_store(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 const char *buf, size_t count, 260 enum transparent_hugepage_flag enabled, 261 enum transparent_hugepage_flag req_madv) 262 { 263 if (!memcmp("always", buf, 264 min(sizeof("always")-1, count))) { 265 set_bit(enabled, &transparent_hugepage_flags); 266 clear_bit(req_madv, &transparent_hugepage_flags); 267 } else if (!memcmp("madvise", buf, 268 min(sizeof("madvise")-1, count))) { 269 clear_bit(enabled, &transparent_hugepage_flags); 270 set_bit(req_madv, &transparent_hugepage_flags); 271 } else if (!memcmp("never", buf, 272 min(sizeof("never")-1, count))) { 273 clear_bit(enabled, &transparent_hugepage_flags); 274 clear_bit(req_madv, &transparent_hugepage_flags); 275 } else 276 return -EINVAL; 277 278 return count; 279 } 280 281 static ssize_t enabled_show(struct kobject *kobj, 282 struct kobj_attribute *attr, char *buf) 283 { 284 return double_flag_show(kobj, attr, buf, 285 TRANSPARENT_HUGEPAGE_FLAG, 286 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 287 } 288 static ssize_t enabled_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 ssize_t ret; 293 294 ret = double_flag_store(kobj, attr, buf, count, 295 TRANSPARENT_HUGEPAGE_FLAG, 296 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 297 298 if (ret > 0) { 299 int err; 300 301 mutex_lock(&khugepaged_mutex); 302 err = start_stop_khugepaged(); 303 mutex_unlock(&khugepaged_mutex); 304 305 if (err) 306 ret = err; 307 } 308 309 return ret; 310 } 311 static struct kobj_attribute enabled_attr = 312 __ATTR(enabled, 0644, enabled_show, enabled_store); 313 314 static ssize_t single_flag_show(struct kobject *kobj, 315 struct kobj_attribute *attr, char *buf, 316 enum transparent_hugepage_flag flag) 317 { 318 return sprintf(buf, "%d\n", 319 !!test_bit(flag, &transparent_hugepage_flags)); 320 } 321 322 static ssize_t single_flag_store(struct kobject *kobj, 323 struct kobj_attribute *attr, 324 const char *buf, size_t count, 325 enum transparent_hugepage_flag flag) 326 { 327 unsigned long value; 328 int ret; 329 330 ret = kstrtoul(buf, 10, &value); 331 if (ret < 0) 332 return ret; 333 if (value > 1) 334 return -EINVAL; 335 336 if (value) 337 set_bit(flag, &transparent_hugepage_flags); 338 else 339 clear_bit(flag, &transparent_hugepage_flags); 340 341 return count; 342 } 343 344 /* 345 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 346 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 347 * memory just to allocate one more hugepage. 348 */ 349 static ssize_t defrag_show(struct kobject *kobj, 350 struct kobj_attribute *attr, char *buf) 351 { 352 return double_flag_show(kobj, attr, buf, 353 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 354 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 355 } 356 static ssize_t defrag_store(struct kobject *kobj, 357 struct kobj_attribute *attr, 358 const char *buf, size_t count) 359 { 360 return double_flag_store(kobj, attr, buf, count, 361 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 362 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 363 } 364 static struct kobj_attribute defrag_attr = 365 __ATTR(defrag, 0644, defrag_show, defrag_store); 366 367 static ssize_t use_zero_page_show(struct kobject *kobj, 368 struct kobj_attribute *attr, char *buf) 369 { 370 return single_flag_show(kobj, attr, buf, 371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 372 } 373 static ssize_t use_zero_page_store(struct kobject *kobj, 374 struct kobj_attribute *attr, const char *buf, size_t count) 375 { 376 return single_flag_store(kobj, attr, buf, count, 377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 378 } 379 static struct kobj_attribute use_zero_page_attr = 380 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 381 #ifdef CONFIG_DEBUG_VM 382 static ssize_t debug_cow_show(struct kobject *kobj, 383 struct kobj_attribute *attr, char *buf) 384 { 385 return single_flag_show(kobj, attr, buf, 386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 387 } 388 static ssize_t debug_cow_store(struct kobject *kobj, 389 struct kobj_attribute *attr, 390 const char *buf, size_t count) 391 { 392 return single_flag_store(kobj, attr, buf, count, 393 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 394 } 395 static struct kobj_attribute debug_cow_attr = 396 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 397 #endif /* CONFIG_DEBUG_VM */ 398 399 static struct attribute *hugepage_attr[] = { 400 &enabled_attr.attr, 401 &defrag_attr.attr, 402 &use_zero_page_attr.attr, 403 #ifdef CONFIG_DEBUG_VM 404 &debug_cow_attr.attr, 405 #endif 406 NULL, 407 }; 408 409 static struct attribute_group hugepage_attr_group = { 410 .attrs = hugepage_attr, 411 }; 412 413 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 414 struct kobj_attribute *attr, 415 char *buf) 416 { 417 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 418 } 419 420 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 421 struct kobj_attribute *attr, 422 const char *buf, size_t count) 423 { 424 unsigned long msecs; 425 int err; 426 427 err = kstrtoul(buf, 10, &msecs); 428 if (err || msecs > UINT_MAX) 429 return -EINVAL; 430 431 khugepaged_scan_sleep_millisecs = msecs; 432 wake_up_interruptible(&khugepaged_wait); 433 434 return count; 435 } 436 static struct kobj_attribute scan_sleep_millisecs_attr = 437 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 438 scan_sleep_millisecs_store); 439 440 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 441 struct kobj_attribute *attr, 442 char *buf) 443 { 444 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 445 } 446 447 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 448 struct kobj_attribute *attr, 449 const char *buf, size_t count) 450 { 451 unsigned long msecs; 452 int err; 453 454 err = kstrtoul(buf, 10, &msecs); 455 if (err || msecs > UINT_MAX) 456 return -EINVAL; 457 458 khugepaged_alloc_sleep_millisecs = msecs; 459 wake_up_interruptible(&khugepaged_wait); 460 461 return count; 462 } 463 static struct kobj_attribute alloc_sleep_millisecs_attr = 464 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 465 alloc_sleep_millisecs_store); 466 467 static ssize_t pages_to_scan_show(struct kobject *kobj, 468 struct kobj_attribute *attr, 469 char *buf) 470 { 471 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 472 } 473 static ssize_t pages_to_scan_store(struct kobject *kobj, 474 struct kobj_attribute *attr, 475 const char *buf, size_t count) 476 { 477 int err; 478 unsigned long pages; 479 480 err = kstrtoul(buf, 10, &pages); 481 if (err || !pages || pages > UINT_MAX) 482 return -EINVAL; 483 484 khugepaged_pages_to_scan = pages; 485 486 return count; 487 } 488 static struct kobj_attribute pages_to_scan_attr = 489 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 490 pages_to_scan_store); 491 492 static ssize_t pages_collapsed_show(struct kobject *kobj, 493 struct kobj_attribute *attr, 494 char *buf) 495 { 496 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 497 } 498 static struct kobj_attribute pages_collapsed_attr = 499 __ATTR_RO(pages_collapsed); 500 501 static ssize_t full_scans_show(struct kobject *kobj, 502 struct kobj_attribute *attr, 503 char *buf) 504 { 505 return sprintf(buf, "%u\n", khugepaged_full_scans); 506 } 507 static struct kobj_attribute full_scans_attr = 508 __ATTR_RO(full_scans); 509 510 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 511 struct kobj_attribute *attr, char *buf) 512 { 513 return single_flag_show(kobj, attr, buf, 514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 515 } 516 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 517 struct kobj_attribute *attr, 518 const char *buf, size_t count) 519 { 520 return single_flag_store(kobj, attr, buf, count, 521 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 522 } 523 static struct kobj_attribute khugepaged_defrag_attr = 524 __ATTR(defrag, 0644, khugepaged_defrag_show, 525 khugepaged_defrag_store); 526 527 /* 528 * max_ptes_none controls if khugepaged should collapse hugepages over 529 * any unmapped ptes in turn potentially increasing the memory 530 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 531 * reduce the available free memory in the system as it 532 * runs. Increasing max_ptes_none will instead potentially reduce the 533 * free memory in the system during the khugepaged scan. 534 */ 535 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 536 struct kobj_attribute *attr, 537 char *buf) 538 { 539 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 540 } 541 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 542 struct kobj_attribute *attr, 543 const char *buf, size_t count) 544 { 545 int err; 546 unsigned long max_ptes_none; 547 548 err = kstrtoul(buf, 10, &max_ptes_none); 549 if (err || max_ptes_none > HPAGE_PMD_NR-1) 550 return -EINVAL; 551 552 khugepaged_max_ptes_none = max_ptes_none; 553 554 return count; 555 } 556 static struct kobj_attribute khugepaged_max_ptes_none_attr = 557 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 558 khugepaged_max_ptes_none_store); 559 560 static struct attribute *khugepaged_attr[] = { 561 &khugepaged_defrag_attr.attr, 562 &khugepaged_max_ptes_none_attr.attr, 563 &pages_to_scan_attr.attr, 564 &pages_collapsed_attr.attr, 565 &full_scans_attr.attr, 566 &scan_sleep_millisecs_attr.attr, 567 &alloc_sleep_millisecs_attr.attr, 568 NULL, 569 }; 570 571 static struct attribute_group khugepaged_attr_group = { 572 .attrs = khugepaged_attr, 573 .name = "khugepaged", 574 }; 575 576 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 577 { 578 int err; 579 580 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 581 if (unlikely(!*hugepage_kobj)) { 582 pr_err("failed to create transparent hugepage kobject\n"); 583 return -ENOMEM; 584 } 585 586 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 587 if (err) { 588 pr_err("failed to register transparent hugepage group\n"); 589 goto delete_obj; 590 } 591 592 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 593 if (err) { 594 pr_err("failed to register transparent hugepage group\n"); 595 goto remove_hp_group; 596 } 597 598 return 0; 599 600 remove_hp_group: 601 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 602 delete_obj: 603 kobject_put(*hugepage_kobj); 604 return err; 605 } 606 607 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 608 { 609 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 610 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 611 kobject_put(hugepage_kobj); 612 } 613 #else 614 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 615 { 616 return 0; 617 } 618 619 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 620 { 621 } 622 #endif /* CONFIG_SYSFS */ 623 624 static int __init hugepage_init(void) 625 { 626 int err; 627 struct kobject *hugepage_kobj; 628 629 if (!has_transparent_hugepage()) { 630 transparent_hugepage_flags = 0; 631 return -EINVAL; 632 } 633 634 err = hugepage_init_sysfs(&hugepage_kobj); 635 if (err) 636 goto err_sysfs; 637 638 err = khugepaged_slab_init(); 639 if (err) 640 goto err_slab; 641 642 err = register_shrinker(&huge_zero_page_shrinker); 643 if (err) 644 goto err_hzp_shrinker; 645 646 /* 647 * By default disable transparent hugepages on smaller systems, 648 * where the extra memory used could hurt more than TLB overhead 649 * is likely to save. The admin can still enable it through /sys. 650 */ 651 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 652 transparent_hugepage_flags = 0; 653 return 0; 654 } 655 656 err = start_stop_khugepaged(); 657 if (err) 658 goto err_khugepaged; 659 660 return 0; 661 err_khugepaged: 662 unregister_shrinker(&huge_zero_page_shrinker); 663 err_hzp_shrinker: 664 khugepaged_slab_exit(); 665 err_slab: 666 hugepage_exit_sysfs(hugepage_kobj); 667 err_sysfs: 668 return err; 669 } 670 subsys_initcall(hugepage_init); 671 672 static int __init setup_transparent_hugepage(char *str) 673 { 674 int ret = 0; 675 if (!str) 676 goto out; 677 if (!strcmp(str, "always")) { 678 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 679 &transparent_hugepage_flags); 680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 681 &transparent_hugepage_flags); 682 ret = 1; 683 } else if (!strcmp(str, "madvise")) { 684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 685 &transparent_hugepage_flags); 686 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 687 &transparent_hugepage_flags); 688 ret = 1; 689 } else if (!strcmp(str, "never")) { 690 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 691 &transparent_hugepage_flags); 692 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 693 &transparent_hugepage_flags); 694 ret = 1; 695 } 696 out: 697 if (!ret) 698 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 699 return ret; 700 } 701 __setup("transparent_hugepage=", setup_transparent_hugepage); 702 703 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 704 { 705 if (likely(vma->vm_flags & VM_WRITE)) 706 pmd = pmd_mkwrite(pmd); 707 return pmd; 708 } 709 710 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) 711 { 712 pmd_t entry; 713 entry = mk_pmd(page, prot); 714 entry = pmd_mkhuge(entry); 715 return entry; 716 } 717 718 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 719 struct vm_area_struct *vma, 720 unsigned long address, pmd_t *pmd, 721 struct page *page, gfp_t gfp, 722 unsigned int flags) 723 { 724 struct mem_cgroup *memcg; 725 pgtable_t pgtable; 726 spinlock_t *ptl; 727 unsigned long haddr = address & HPAGE_PMD_MASK; 728 729 VM_BUG_ON_PAGE(!PageCompound(page), page); 730 731 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) { 732 put_page(page); 733 count_vm_event(THP_FAULT_FALLBACK); 734 return VM_FAULT_FALLBACK; 735 } 736 737 pgtable = pte_alloc_one(mm, haddr); 738 if (unlikely(!pgtable)) { 739 mem_cgroup_cancel_charge(page, memcg); 740 put_page(page); 741 return VM_FAULT_OOM; 742 } 743 744 clear_huge_page(page, haddr, HPAGE_PMD_NR); 745 /* 746 * The memory barrier inside __SetPageUptodate makes sure that 747 * clear_huge_page writes become visible before the set_pmd_at() 748 * write. 749 */ 750 __SetPageUptodate(page); 751 752 ptl = pmd_lock(mm, pmd); 753 if (unlikely(!pmd_none(*pmd))) { 754 spin_unlock(ptl); 755 mem_cgroup_cancel_charge(page, memcg); 756 put_page(page); 757 pte_free(mm, pgtable); 758 } else { 759 pmd_t entry; 760 761 /* Deliver the page fault to userland */ 762 if (userfaultfd_missing(vma)) { 763 int ret; 764 765 spin_unlock(ptl); 766 mem_cgroup_cancel_charge(page, memcg); 767 put_page(page); 768 pte_free(mm, pgtable); 769 ret = handle_userfault(vma, address, flags, 770 VM_UFFD_MISSING); 771 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 772 return ret; 773 } 774 775 entry = mk_huge_pmd(page, vma->vm_page_prot); 776 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 777 page_add_new_anon_rmap(page, vma, haddr); 778 mem_cgroup_commit_charge(page, memcg, false); 779 lru_cache_add_active_or_unevictable(page, vma); 780 pgtable_trans_huge_deposit(mm, pmd, pgtable); 781 set_pmd_at(mm, haddr, pmd, entry); 782 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 783 atomic_long_inc(&mm->nr_ptes); 784 spin_unlock(ptl); 785 count_vm_event(THP_FAULT_ALLOC); 786 } 787 788 return 0; 789 } 790 791 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 792 { 793 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 794 } 795 796 /* Caller must hold page table lock. */ 797 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 798 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 799 struct page *zero_page) 800 { 801 pmd_t entry; 802 entry = mk_pmd(zero_page, vma->vm_page_prot); 803 entry = pmd_mkhuge(entry); 804 pgtable_trans_huge_deposit(mm, pmd, pgtable); 805 set_pmd_at(mm, haddr, pmd, entry); 806 atomic_long_inc(&mm->nr_ptes); 807 } 808 809 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 810 unsigned long address, pmd_t *pmd, 811 unsigned int flags) 812 { 813 gfp_t gfp; 814 struct page *page; 815 unsigned long haddr = address & HPAGE_PMD_MASK; 816 817 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 818 return VM_FAULT_FALLBACK; 819 if (unlikely(anon_vma_prepare(vma))) 820 return VM_FAULT_OOM; 821 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 822 return VM_FAULT_OOM; 823 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) && 824 transparent_hugepage_use_zero_page()) { 825 spinlock_t *ptl; 826 pgtable_t pgtable; 827 struct page *zero_page; 828 bool set; 829 int ret; 830 pgtable = pte_alloc_one(mm, haddr); 831 if (unlikely(!pgtable)) 832 return VM_FAULT_OOM; 833 zero_page = get_huge_zero_page(); 834 if (unlikely(!zero_page)) { 835 pte_free(mm, pgtable); 836 count_vm_event(THP_FAULT_FALLBACK); 837 return VM_FAULT_FALLBACK; 838 } 839 ptl = pmd_lock(mm, pmd); 840 ret = 0; 841 set = false; 842 if (pmd_none(*pmd)) { 843 if (userfaultfd_missing(vma)) { 844 spin_unlock(ptl); 845 ret = handle_userfault(vma, address, flags, 846 VM_UFFD_MISSING); 847 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 848 } else { 849 set_huge_zero_page(pgtable, mm, vma, 850 haddr, pmd, 851 zero_page); 852 spin_unlock(ptl); 853 set = true; 854 } 855 } else 856 spin_unlock(ptl); 857 if (!set) { 858 pte_free(mm, pgtable); 859 put_huge_zero_page(); 860 } 861 return ret; 862 } 863 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 864 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 865 if (unlikely(!page)) { 866 count_vm_event(THP_FAULT_FALLBACK); 867 return VM_FAULT_FALLBACK; 868 } 869 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp, 870 flags); 871 } 872 873 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 874 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 875 struct vm_area_struct *vma) 876 { 877 spinlock_t *dst_ptl, *src_ptl; 878 struct page *src_page; 879 pmd_t pmd; 880 pgtable_t pgtable; 881 int ret; 882 883 ret = -ENOMEM; 884 pgtable = pte_alloc_one(dst_mm, addr); 885 if (unlikely(!pgtable)) 886 goto out; 887 888 dst_ptl = pmd_lock(dst_mm, dst_pmd); 889 src_ptl = pmd_lockptr(src_mm, src_pmd); 890 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 891 892 ret = -EAGAIN; 893 pmd = *src_pmd; 894 if (unlikely(!pmd_trans_huge(pmd))) { 895 pte_free(dst_mm, pgtable); 896 goto out_unlock; 897 } 898 /* 899 * When page table lock is held, the huge zero pmd should not be 900 * under splitting since we don't split the page itself, only pmd to 901 * a page table. 902 */ 903 if (is_huge_zero_pmd(pmd)) { 904 struct page *zero_page; 905 /* 906 * get_huge_zero_page() will never allocate a new page here, 907 * since we already have a zero page to copy. It just takes a 908 * reference. 909 */ 910 zero_page = get_huge_zero_page(); 911 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 912 zero_page); 913 ret = 0; 914 goto out_unlock; 915 } 916 917 if (unlikely(pmd_trans_splitting(pmd))) { 918 /* split huge page running from under us */ 919 spin_unlock(src_ptl); 920 spin_unlock(dst_ptl); 921 pte_free(dst_mm, pgtable); 922 923 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 924 goto out; 925 } 926 src_page = pmd_page(pmd); 927 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 928 get_page(src_page); 929 page_dup_rmap(src_page); 930 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 931 932 pmdp_set_wrprotect(src_mm, addr, src_pmd); 933 pmd = pmd_mkold(pmd_wrprotect(pmd)); 934 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 935 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 936 atomic_long_inc(&dst_mm->nr_ptes); 937 938 ret = 0; 939 out_unlock: 940 spin_unlock(src_ptl); 941 spin_unlock(dst_ptl); 942 out: 943 return ret; 944 } 945 946 void huge_pmd_set_accessed(struct mm_struct *mm, 947 struct vm_area_struct *vma, 948 unsigned long address, 949 pmd_t *pmd, pmd_t orig_pmd, 950 int dirty) 951 { 952 spinlock_t *ptl; 953 pmd_t entry; 954 unsigned long haddr; 955 956 ptl = pmd_lock(mm, pmd); 957 if (unlikely(!pmd_same(*pmd, orig_pmd))) 958 goto unlock; 959 960 entry = pmd_mkyoung(orig_pmd); 961 haddr = address & HPAGE_PMD_MASK; 962 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 963 update_mmu_cache_pmd(vma, address, pmd); 964 965 unlock: 966 spin_unlock(ptl); 967 } 968 969 /* 970 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages 971 * during copy_user_huge_page()'s copy_page_rep(): in the case when 972 * the source page gets split and a tail freed before copy completes. 973 * Called under pmd_lock of checked pmd, so safe from splitting itself. 974 */ 975 static void get_user_huge_page(struct page *page) 976 { 977 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 978 struct page *endpage = page + HPAGE_PMD_NR; 979 980 atomic_add(HPAGE_PMD_NR, &page->_count); 981 while (++page < endpage) 982 get_huge_page_tail(page); 983 } else { 984 get_page(page); 985 } 986 } 987 988 static void put_user_huge_page(struct page *page) 989 { 990 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 991 struct page *endpage = page + HPAGE_PMD_NR; 992 993 while (page < endpage) 994 put_page(page++); 995 } else { 996 put_page(page); 997 } 998 } 999 1000 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 1001 struct vm_area_struct *vma, 1002 unsigned long address, 1003 pmd_t *pmd, pmd_t orig_pmd, 1004 struct page *page, 1005 unsigned long haddr) 1006 { 1007 struct mem_cgroup *memcg; 1008 spinlock_t *ptl; 1009 pgtable_t pgtable; 1010 pmd_t _pmd; 1011 int ret = 0, i; 1012 struct page **pages; 1013 unsigned long mmun_start; /* For mmu_notifiers */ 1014 unsigned long mmun_end; /* For mmu_notifiers */ 1015 1016 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1017 GFP_KERNEL); 1018 if (unlikely(!pages)) { 1019 ret |= VM_FAULT_OOM; 1020 goto out; 1021 } 1022 1023 for (i = 0; i < HPAGE_PMD_NR; i++) { 1024 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 1025 __GFP_OTHER_NODE, 1026 vma, address, page_to_nid(page)); 1027 if (unlikely(!pages[i] || 1028 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL, 1029 &memcg))) { 1030 if (pages[i]) 1031 put_page(pages[i]); 1032 while (--i >= 0) { 1033 memcg = (void *)page_private(pages[i]); 1034 set_page_private(pages[i], 0); 1035 mem_cgroup_cancel_charge(pages[i], memcg); 1036 put_page(pages[i]); 1037 } 1038 kfree(pages); 1039 ret |= VM_FAULT_OOM; 1040 goto out; 1041 } 1042 set_page_private(pages[i], (unsigned long)memcg); 1043 } 1044 1045 for (i = 0; i < HPAGE_PMD_NR; i++) { 1046 copy_user_highpage(pages[i], page + i, 1047 haddr + PAGE_SIZE * i, vma); 1048 __SetPageUptodate(pages[i]); 1049 cond_resched(); 1050 } 1051 1052 mmun_start = haddr; 1053 mmun_end = haddr + HPAGE_PMD_SIZE; 1054 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1055 1056 ptl = pmd_lock(mm, pmd); 1057 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1058 goto out_free_pages; 1059 VM_BUG_ON_PAGE(!PageHead(page), page); 1060 1061 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1062 /* leave pmd empty until pte is filled */ 1063 1064 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1065 pmd_populate(mm, &_pmd, pgtable); 1066 1067 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1068 pte_t *pte, entry; 1069 entry = mk_pte(pages[i], vma->vm_page_prot); 1070 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1071 memcg = (void *)page_private(pages[i]); 1072 set_page_private(pages[i], 0); 1073 page_add_new_anon_rmap(pages[i], vma, haddr); 1074 mem_cgroup_commit_charge(pages[i], memcg, false); 1075 lru_cache_add_active_or_unevictable(pages[i], vma); 1076 pte = pte_offset_map(&_pmd, haddr); 1077 VM_BUG_ON(!pte_none(*pte)); 1078 set_pte_at(mm, haddr, pte, entry); 1079 pte_unmap(pte); 1080 } 1081 kfree(pages); 1082 1083 smp_wmb(); /* make pte visible before pmd */ 1084 pmd_populate(mm, pmd, pgtable); 1085 page_remove_rmap(page); 1086 spin_unlock(ptl); 1087 1088 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1089 1090 ret |= VM_FAULT_WRITE; 1091 put_page(page); 1092 1093 out: 1094 return ret; 1095 1096 out_free_pages: 1097 spin_unlock(ptl); 1098 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1099 for (i = 0; i < HPAGE_PMD_NR; i++) { 1100 memcg = (void *)page_private(pages[i]); 1101 set_page_private(pages[i], 0); 1102 mem_cgroup_cancel_charge(pages[i], memcg); 1103 put_page(pages[i]); 1104 } 1105 kfree(pages); 1106 goto out; 1107 } 1108 1109 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1110 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1111 { 1112 spinlock_t *ptl; 1113 int ret = 0; 1114 struct page *page = NULL, *new_page; 1115 struct mem_cgroup *memcg; 1116 unsigned long haddr; 1117 unsigned long mmun_start; /* For mmu_notifiers */ 1118 unsigned long mmun_end; /* For mmu_notifiers */ 1119 gfp_t huge_gfp; /* for allocation and charge */ 1120 1121 ptl = pmd_lockptr(mm, pmd); 1122 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1123 haddr = address & HPAGE_PMD_MASK; 1124 if (is_huge_zero_pmd(orig_pmd)) 1125 goto alloc; 1126 spin_lock(ptl); 1127 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1128 goto out_unlock; 1129 1130 page = pmd_page(orig_pmd); 1131 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1132 if (page_mapcount(page) == 1) { 1133 pmd_t entry; 1134 entry = pmd_mkyoung(orig_pmd); 1135 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1136 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1137 update_mmu_cache_pmd(vma, address, pmd); 1138 ret |= VM_FAULT_WRITE; 1139 goto out_unlock; 1140 } 1141 get_user_huge_page(page); 1142 spin_unlock(ptl); 1143 alloc: 1144 if (transparent_hugepage_enabled(vma) && 1145 !transparent_hugepage_debug_cow()) { 1146 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 1147 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1148 } else 1149 new_page = NULL; 1150 1151 if (unlikely(!new_page)) { 1152 if (!page) { 1153 split_huge_page_pmd(vma, address, pmd); 1154 ret |= VM_FAULT_FALLBACK; 1155 } else { 1156 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1157 pmd, orig_pmd, page, haddr); 1158 if (ret & VM_FAULT_OOM) { 1159 split_huge_page(page); 1160 ret |= VM_FAULT_FALLBACK; 1161 } 1162 put_user_huge_page(page); 1163 } 1164 count_vm_event(THP_FAULT_FALLBACK); 1165 goto out; 1166 } 1167 1168 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) { 1169 put_page(new_page); 1170 if (page) { 1171 split_huge_page(page); 1172 put_user_huge_page(page); 1173 } else 1174 split_huge_page_pmd(vma, address, pmd); 1175 ret |= VM_FAULT_FALLBACK; 1176 count_vm_event(THP_FAULT_FALLBACK); 1177 goto out; 1178 } 1179 1180 count_vm_event(THP_FAULT_ALLOC); 1181 1182 if (!page) 1183 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1184 else 1185 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1186 __SetPageUptodate(new_page); 1187 1188 mmun_start = haddr; 1189 mmun_end = haddr + HPAGE_PMD_SIZE; 1190 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1191 1192 spin_lock(ptl); 1193 if (page) 1194 put_user_huge_page(page); 1195 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1196 spin_unlock(ptl); 1197 mem_cgroup_cancel_charge(new_page, memcg); 1198 put_page(new_page); 1199 goto out_mn; 1200 } else { 1201 pmd_t entry; 1202 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1203 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1204 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1205 page_add_new_anon_rmap(new_page, vma, haddr); 1206 mem_cgroup_commit_charge(new_page, memcg, false); 1207 lru_cache_add_active_or_unevictable(new_page, vma); 1208 set_pmd_at(mm, haddr, pmd, entry); 1209 update_mmu_cache_pmd(vma, address, pmd); 1210 if (!page) { 1211 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1212 put_huge_zero_page(); 1213 } else { 1214 VM_BUG_ON_PAGE(!PageHead(page), page); 1215 page_remove_rmap(page); 1216 put_page(page); 1217 } 1218 ret |= VM_FAULT_WRITE; 1219 } 1220 spin_unlock(ptl); 1221 out_mn: 1222 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1223 out: 1224 return ret; 1225 out_unlock: 1226 spin_unlock(ptl); 1227 return ret; 1228 } 1229 1230 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1231 unsigned long addr, 1232 pmd_t *pmd, 1233 unsigned int flags) 1234 { 1235 struct mm_struct *mm = vma->vm_mm; 1236 struct page *page = NULL; 1237 1238 assert_spin_locked(pmd_lockptr(mm, pmd)); 1239 1240 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1241 goto out; 1242 1243 /* Avoid dumping huge zero page */ 1244 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1245 return ERR_PTR(-EFAULT); 1246 1247 /* Full NUMA hinting faults to serialise migration in fault paths */ 1248 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1249 goto out; 1250 1251 page = pmd_page(*pmd); 1252 VM_BUG_ON_PAGE(!PageHead(page), page); 1253 if (flags & FOLL_TOUCH) { 1254 pmd_t _pmd; 1255 /* 1256 * We should set the dirty bit only for FOLL_WRITE but 1257 * for now the dirty bit in the pmd is meaningless. 1258 * And if the dirty bit will become meaningful and 1259 * we'll only set it with FOLL_WRITE, an atomic 1260 * set_bit will be required on the pmd to set the 1261 * young bit, instead of the current set_pmd_at. 1262 */ 1263 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1264 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1265 pmd, _pmd, 1)) 1266 update_mmu_cache_pmd(vma, addr, pmd); 1267 } 1268 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) { 1269 if (page->mapping && trylock_page(page)) { 1270 lru_add_drain(); 1271 if (page->mapping) 1272 mlock_vma_page(page); 1273 unlock_page(page); 1274 } 1275 } 1276 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1277 VM_BUG_ON_PAGE(!PageCompound(page), page); 1278 if (flags & FOLL_GET) 1279 get_page_foll(page); 1280 1281 out: 1282 return page; 1283 } 1284 1285 /* NUMA hinting page fault entry point for trans huge pmds */ 1286 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1287 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1288 { 1289 spinlock_t *ptl; 1290 struct anon_vma *anon_vma = NULL; 1291 struct page *page; 1292 unsigned long haddr = addr & HPAGE_PMD_MASK; 1293 int page_nid = -1, this_nid = numa_node_id(); 1294 int target_nid, last_cpupid = -1; 1295 bool page_locked; 1296 bool migrated = false; 1297 bool was_writable; 1298 int flags = 0; 1299 1300 /* A PROT_NONE fault should not end up here */ 1301 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 1302 1303 ptl = pmd_lock(mm, pmdp); 1304 if (unlikely(!pmd_same(pmd, *pmdp))) 1305 goto out_unlock; 1306 1307 /* 1308 * If there are potential migrations, wait for completion and retry 1309 * without disrupting NUMA hinting information. Do not relock and 1310 * check_same as the page may no longer be mapped. 1311 */ 1312 if (unlikely(pmd_trans_migrating(*pmdp))) { 1313 page = pmd_page(*pmdp); 1314 spin_unlock(ptl); 1315 wait_on_page_locked(page); 1316 goto out; 1317 } 1318 1319 page = pmd_page(pmd); 1320 BUG_ON(is_huge_zero_page(page)); 1321 page_nid = page_to_nid(page); 1322 last_cpupid = page_cpupid_last(page); 1323 count_vm_numa_event(NUMA_HINT_FAULTS); 1324 if (page_nid == this_nid) { 1325 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1326 flags |= TNF_FAULT_LOCAL; 1327 } 1328 1329 /* See similar comment in do_numa_page for explanation */ 1330 if (!(vma->vm_flags & VM_WRITE)) 1331 flags |= TNF_NO_GROUP; 1332 1333 /* 1334 * Acquire the page lock to serialise THP migrations but avoid dropping 1335 * page_table_lock if at all possible 1336 */ 1337 page_locked = trylock_page(page); 1338 target_nid = mpol_misplaced(page, vma, haddr); 1339 if (target_nid == -1) { 1340 /* If the page was locked, there are no parallel migrations */ 1341 if (page_locked) 1342 goto clear_pmdnuma; 1343 } 1344 1345 /* Migration could have started since the pmd_trans_migrating check */ 1346 if (!page_locked) { 1347 spin_unlock(ptl); 1348 wait_on_page_locked(page); 1349 page_nid = -1; 1350 goto out; 1351 } 1352 1353 /* 1354 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1355 * to serialises splits 1356 */ 1357 get_page(page); 1358 spin_unlock(ptl); 1359 anon_vma = page_lock_anon_vma_read(page); 1360 1361 /* Confirm the PMD did not change while page_table_lock was released */ 1362 spin_lock(ptl); 1363 if (unlikely(!pmd_same(pmd, *pmdp))) { 1364 unlock_page(page); 1365 put_page(page); 1366 page_nid = -1; 1367 goto out_unlock; 1368 } 1369 1370 /* Bail if we fail to protect against THP splits for any reason */ 1371 if (unlikely(!anon_vma)) { 1372 put_page(page); 1373 page_nid = -1; 1374 goto clear_pmdnuma; 1375 } 1376 1377 /* 1378 * Migrate the THP to the requested node, returns with page unlocked 1379 * and access rights restored. 1380 */ 1381 spin_unlock(ptl); 1382 migrated = migrate_misplaced_transhuge_page(mm, vma, 1383 pmdp, pmd, addr, page, target_nid); 1384 if (migrated) { 1385 flags |= TNF_MIGRATED; 1386 page_nid = target_nid; 1387 } else 1388 flags |= TNF_MIGRATE_FAIL; 1389 1390 goto out; 1391 clear_pmdnuma: 1392 BUG_ON(!PageLocked(page)); 1393 was_writable = pmd_write(pmd); 1394 pmd = pmd_modify(pmd, vma->vm_page_prot); 1395 pmd = pmd_mkyoung(pmd); 1396 if (was_writable) 1397 pmd = pmd_mkwrite(pmd); 1398 set_pmd_at(mm, haddr, pmdp, pmd); 1399 update_mmu_cache_pmd(vma, addr, pmdp); 1400 unlock_page(page); 1401 out_unlock: 1402 spin_unlock(ptl); 1403 1404 out: 1405 if (anon_vma) 1406 page_unlock_anon_vma_read(anon_vma); 1407 1408 if (page_nid != -1) 1409 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); 1410 1411 return 0; 1412 } 1413 1414 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1415 pmd_t *pmd, unsigned long addr) 1416 { 1417 spinlock_t *ptl; 1418 int ret = 0; 1419 1420 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1421 struct page *page; 1422 pgtable_t pgtable; 1423 pmd_t orig_pmd; 1424 /* 1425 * For architectures like ppc64 we look at deposited pgtable 1426 * when calling pmdp_huge_get_and_clear. So do the 1427 * pgtable_trans_huge_withdraw after finishing pmdp related 1428 * operations. 1429 */ 1430 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1431 tlb->fullmm); 1432 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1433 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1434 if (is_huge_zero_pmd(orig_pmd)) { 1435 atomic_long_dec(&tlb->mm->nr_ptes); 1436 spin_unlock(ptl); 1437 put_huge_zero_page(); 1438 } else { 1439 page = pmd_page(orig_pmd); 1440 page_remove_rmap(page); 1441 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1442 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1443 VM_BUG_ON_PAGE(!PageHead(page), page); 1444 atomic_long_dec(&tlb->mm->nr_ptes); 1445 spin_unlock(ptl); 1446 tlb_remove_page(tlb, page); 1447 } 1448 pte_free(tlb->mm, pgtable); 1449 ret = 1; 1450 } 1451 return ret; 1452 } 1453 1454 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1455 unsigned long old_addr, 1456 unsigned long new_addr, unsigned long old_end, 1457 pmd_t *old_pmd, pmd_t *new_pmd) 1458 { 1459 spinlock_t *old_ptl, *new_ptl; 1460 int ret = 0; 1461 pmd_t pmd; 1462 1463 struct mm_struct *mm = vma->vm_mm; 1464 1465 if ((old_addr & ~HPAGE_PMD_MASK) || 1466 (new_addr & ~HPAGE_PMD_MASK) || 1467 old_end - old_addr < HPAGE_PMD_SIZE || 1468 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1469 goto out; 1470 1471 /* 1472 * The destination pmd shouldn't be established, free_pgtables() 1473 * should have release it. 1474 */ 1475 if (WARN_ON(!pmd_none(*new_pmd))) { 1476 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1477 goto out; 1478 } 1479 1480 /* 1481 * We don't have to worry about the ordering of src and dst 1482 * ptlocks because exclusive mmap_sem prevents deadlock. 1483 */ 1484 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); 1485 if (ret == 1) { 1486 new_ptl = pmd_lockptr(mm, new_pmd); 1487 if (new_ptl != old_ptl) 1488 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1489 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1490 VM_BUG_ON(!pmd_none(*new_pmd)); 1491 1492 if (pmd_move_must_withdraw(new_ptl, old_ptl)) { 1493 pgtable_t pgtable; 1494 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1495 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1496 } 1497 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1498 if (new_ptl != old_ptl) 1499 spin_unlock(new_ptl); 1500 spin_unlock(old_ptl); 1501 } 1502 out: 1503 return ret; 1504 } 1505 1506 /* 1507 * Returns 1508 * - 0 if PMD could not be locked 1509 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1510 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1511 */ 1512 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1513 unsigned long addr, pgprot_t newprot, int prot_numa) 1514 { 1515 struct mm_struct *mm = vma->vm_mm; 1516 spinlock_t *ptl; 1517 int ret = 0; 1518 1519 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1520 pmd_t entry; 1521 bool preserve_write = prot_numa && pmd_write(*pmd); 1522 ret = 1; 1523 1524 /* 1525 * Avoid trapping faults against the zero page. The read-only 1526 * data is likely to be read-cached on the local CPU and 1527 * local/remote hits to the zero page are not interesting. 1528 */ 1529 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1530 spin_unlock(ptl); 1531 return ret; 1532 } 1533 1534 if (!prot_numa || !pmd_protnone(*pmd)) { 1535 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1536 entry = pmd_modify(entry, newprot); 1537 if (preserve_write) 1538 entry = pmd_mkwrite(entry); 1539 ret = HPAGE_PMD_NR; 1540 set_pmd_at(mm, addr, pmd, entry); 1541 BUG_ON(!preserve_write && pmd_write(entry)); 1542 } 1543 spin_unlock(ptl); 1544 } 1545 1546 return ret; 1547 } 1548 1549 /* 1550 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1551 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1552 * 1553 * Note that if it returns 1, this routine returns without unlocking page 1554 * table locks. So callers must unlock them. 1555 */ 1556 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, 1557 spinlock_t **ptl) 1558 { 1559 *ptl = pmd_lock(vma->vm_mm, pmd); 1560 if (likely(pmd_trans_huge(*pmd))) { 1561 if (unlikely(pmd_trans_splitting(*pmd))) { 1562 spin_unlock(*ptl); 1563 wait_split_huge_page(vma->anon_vma, pmd); 1564 return -1; 1565 } else { 1566 /* Thp mapped by 'pmd' is stable, so we can 1567 * handle it as it is. */ 1568 return 1; 1569 } 1570 } 1571 spin_unlock(*ptl); 1572 return 0; 1573 } 1574 1575 /* 1576 * This function returns whether a given @page is mapped onto the @address 1577 * in the virtual space of @mm. 1578 * 1579 * When it's true, this function returns *pmd with holding the page table lock 1580 * and passing it back to the caller via @ptl. 1581 * If it's false, returns NULL without holding the page table lock. 1582 */ 1583 pmd_t *page_check_address_pmd(struct page *page, 1584 struct mm_struct *mm, 1585 unsigned long address, 1586 enum page_check_address_pmd_flag flag, 1587 spinlock_t **ptl) 1588 { 1589 pgd_t *pgd; 1590 pud_t *pud; 1591 pmd_t *pmd; 1592 1593 if (address & ~HPAGE_PMD_MASK) 1594 return NULL; 1595 1596 pgd = pgd_offset(mm, address); 1597 if (!pgd_present(*pgd)) 1598 return NULL; 1599 pud = pud_offset(pgd, address); 1600 if (!pud_present(*pud)) 1601 return NULL; 1602 pmd = pmd_offset(pud, address); 1603 1604 *ptl = pmd_lock(mm, pmd); 1605 if (!pmd_present(*pmd)) 1606 goto unlock; 1607 if (pmd_page(*pmd) != page) 1608 goto unlock; 1609 /* 1610 * split_vma() may create temporary aliased mappings. There is 1611 * no risk as long as all huge pmd are found and have their 1612 * splitting bit set before __split_huge_page_refcount 1613 * runs. Finding the same huge pmd more than once during the 1614 * same rmap walk is not a problem. 1615 */ 1616 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1617 pmd_trans_splitting(*pmd)) 1618 goto unlock; 1619 if (pmd_trans_huge(*pmd)) { 1620 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1621 !pmd_trans_splitting(*pmd)); 1622 return pmd; 1623 } 1624 unlock: 1625 spin_unlock(*ptl); 1626 return NULL; 1627 } 1628 1629 static int __split_huge_page_splitting(struct page *page, 1630 struct vm_area_struct *vma, 1631 unsigned long address) 1632 { 1633 struct mm_struct *mm = vma->vm_mm; 1634 spinlock_t *ptl; 1635 pmd_t *pmd; 1636 int ret = 0; 1637 /* For mmu_notifiers */ 1638 const unsigned long mmun_start = address; 1639 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1640 1641 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1642 pmd = page_check_address_pmd(page, mm, address, 1643 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); 1644 if (pmd) { 1645 /* 1646 * We can't temporarily set the pmd to null in order 1647 * to split it, the pmd must remain marked huge at all 1648 * times or the VM won't take the pmd_trans_huge paths 1649 * and it won't wait on the anon_vma->root->rwsem to 1650 * serialize against split_huge_page*. 1651 */ 1652 pmdp_splitting_flush(vma, address, pmd); 1653 1654 ret = 1; 1655 spin_unlock(ptl); 1656 } 1657 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1658 1659 return ret; 1660 } 1661 1662 static void __split_huge_page_refcount(struct page *page, 1663 struct list_head *list) 1664 { 1665 int i; 1666 struct zone *zone = page_zone(page); 1667 struct lruvec *lruvec; 1668 int tail_count = 0; 1669 1670 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1671 spin_lock_irq(&zone->lru_lock); 1672 lruvec = mem_cgroup_page_lruvec(page, zone); 1673 1674 compound_lock(page); 1675 /* complete memcg works before add pages to LRU */ 1676 mem_cgroup_split_huge_fixup(page); 1677 1678 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1679 struct page *page_tail = page + i; 1680 1681 /* tail_page->_mapcount cannot change */ 1682 BUG_ON(page_mapcount(page_tail) < 0); 1683 tail_count += page_mapcount(page_tail); 1684 /* check for overflow */ 1685 BUG_ON(tail_count < 0); 1686 BUG_ON(atomic_read(&page_tail->_count) != 0); 1687 /* 1688 * tail_page->_count is zero and not changing from 1689 * under us. But get_page_unless_zero() may be running 1690 * from under us on the tail_page. If we used 1691 * atomic_set() below instead of atomic_add(), we 1692 * would then run atomic_set() concurrently with 1693 * get_page_unless_zero(), and atomic_set() is 1694 * implemented in C not using locked ops. spin_unlock 1695 * on x86 sometime uses locked ops because of PPro 1696 * errata 66, 92, so unless somebody can guarantee 1697 * atomic_set() here would be safe on all archs (and 1698 * not only on x86), it's safer to use atomic_add(). 1699 */ 1700 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1701 &page_tail->_count); 1702 1703 /* after clearing PageTail the gup refcount can be released */ 1704 smp_mb__after_atomic(); 1705 1706 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1707 page_tail->flags |= (page->flags & 1708 ((1L << PG_referenced) | 1709 (1L << PG_swapbacked) | 1710 (1L << PG_mlocked) | 1711 (1L << PG_uptodate) | 1712 (1L << PG_active) | 1713 (1L << PG_unevictable))); 1714 page_tail->flags |= (1L << PG_dirty); 1715 1716 /* clear PageTail before overwriting first_page */ 1717 smp_wmb(); 1718 1719 /* 1720 * __split_huge_page_splitting() already set the 1721 * splitting bit in all pmd that could map this 1722 * hugepage, that will ensure no CPU can alter the 1723 * mapcount on the head page. The mapcount is only 1724 * accounted in the head page and it has to be 1725 * transferred to all tail pages in the below code. So 1726 * for this code to be safe, the split the mapcount 1727 * can't change. But that doesn't mean userland can't 1728 * keep changing and reading the page contents while 1729 * we transfer the mapcount, so the pmd splitting 1730 * status is achieved setting a reserved bit in the 1731 * pmd, not by clearing the present bit. 1732 */ 1733 page_tail->_mapcount = page->_mapcount; 1734 1735 BUG_ON(page_tail->mapping); 1736 page_tail->mapping = page->mapping; 1737 1738 page_tail->index = page->index + i; 1739 page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); 1740 1741 BUG_ON(!PageAnon(page_tail)); 1742 BUG_ON(!PageUptodate(page_tail)); 1743 BUG_ON(!PageDirty(page_tail)); 1744 BUG_ON(!PageSwapBacked(page_tail)); 1745 1746 lru_add_page_tail(page, page_tail, lruvec, list); 1747 } 1748 atomic_sub(tail_count, &page->_count); 1749 BUG_ON(atomic_read(&page->_count) <= 0); 1750 1751 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1752 1753 ClearPageCompound(page); 1754 compound_unlock(page); 1755 spin_unlock_irq(&zone->lru_lock); 1756 1757 for (i = 1; i < HPAGE_PMD_NR; i++) { 1758 struct page *page_tail = page + i; 1759 BUG_ON(page_count(page_tail) <= 0); 1760 /* 1761 * Tail pages may be freed if there wasn't any mapping 1762 * like if add_to_swap() is running on a lru page that 1763 * had its mapping zapped. And freeing these pages 1764 * requires taking the lru_lock so we do the put_page 1765 * of the tail pages after the split is complete. 1766 */ 1767 put_page(page_tail); 1768 } 1769 1770 /* 1771 * Only the head page (now become a regular page) is required 1772 * to be pinned by the caller. 1773 */ 1774 BUG_ON(page_count(page) <= 0); 1775 } 1776 1777 static int __split_huge_page_map(struct page *page, 1778 struct vm_area_struct *vma, 1779 unsigned long address) 1780 { 1781 struct mm_struct *mm = vma->vm_mm; 1782 spinlock_t *ptl; 1783 pmd_t *pmd, _pmd; 1784 int ret = 0, i; 1785 pgtable_t pgtable; 1786 unsigned long haddr; 1787 1788 pmd = page_check_address_pmd(page, mm, address, 1789 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); 1790 if (pmd) { 1791 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1792 pmd_populate(mm, &_pmd, pgtable); 1793 if (pmd_write(*pmd)) 1794 BUG_ON(page_mapcount(page) != 1); 1795 1796 haddr = address; 1797 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1798 pte_t *pte, entry; 1799 BUG_ON(PageCompound(page+i)); 1800 /* 1801 * Note that NUMA hinting access restrictions are not 1802 * transferred to avoid any possibility of altering 1803 * permissions across VMAs. 1804 */ 1805 entry = mk_pte(page + i, vma->vm_page_prot); 1806 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1807 if (!pmd_write(*pmd)) 1808 entry = pte_wrprotect(entry); 1809 if (!pmd_young(*pmd)) 1810 entry = pte_mkold(entry); 1811 pte = pte_offset_map(&_pmd, haddr); 1812 BUG_ON(!pte_none(*pte)); 1813 set_pte_at(mm, haddr, pte, entry); 1814 pte_unmap(pte); 1815 } 1816 1817 smp_wmb(); /* make pte visible before pmd */ 1818 /* 1819 * Up to this point the pmd is present and huge and 1820 * userland has the whole access to the hugepage 1821 * during the split (which happens in place). If we 1822 * overwrite the pmd with the not-huge version 1823 * pointing to the pte here (which of course we could 1824 * if all CPUs were bug free), userland could trigger 1825 * a small page size TLB miss on the small sized TLB 1826 * while the hugepage TLB entry is still established 1827 * in the huge TLB. Some CPU doesn't like that. See 1828 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1829 * Erratum 383 on page 93. Intel should be safe but is 1830 * also warns that it's only safe if the permission 1831 * and cache attributes of the two entries loaded in 1832 * the two TLB is identical (which should be the case 1833 * here). But it is generally safer to never allow 1834 * small and huge TLB entries for the same virtual 1835 * address to be loaded simultaneously. So instead of 1836 * doing "pmd_populate(); flush_tlb_range();" we first 1837 * mark the current pmd notpresent (atomically because 1838 * here the pmd_trans_huge and pmd_trans_splitting 1839 * must remain set at all times on the pmd until the 1840 * split is complete for this pmd), then we flush the 1841 * SMP TLB and finally we write the non-huge version 1842 * of the pmd entry with pmd_populate. 1843 */ 1844 pmdp_invalidate(vma, address, pmd); 1845 pmd_populate(mm, pmd, pgtable); 1846 ret = 1; 1847 spin_unlock(ptl); 1848 } 1849 1850 return ret; 1851 } 1852 1853 /* must be called with anon_vma->root->rwsem held */ 1854 static void __split_huge_page(struct page *page, 1855 struct anon_vma *anon_vma, 1856 struct list_head *list) 1857 { 1858 int mapcount, mapcount2; 1859 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1860 struct anon_vma_chain *avc; 1861 1862 BUG_ON(!PageHead(page)); 1863 BUG_ON(PageTail(page)); 1864 1865 mapcount = 0; 1866 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1867 struct vm_area_struct *vma = avc->vma; 1868 unsigned long addr = vma_address(page, vma); 1869 BUG_ON(is_vma_temporary_stack(vma)); 1870 mapcount += __split_huge_page_splitting(page, vma, addr); 1871 } 1872 /* 1873 * It is critical that new vmas are added to the tail of the 1874 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1875 * and establishes a child pmd before 1876 * __split_huge_page_splitting() freezes the parent pmd (so if 1877 * we fail to prevent copy_huge_pmd() from running until the 1878 * whole __split_huge_page() is complete), we will still see 1879 * the newly established pmd of the child later during the 1880 * walk, to be able to set it as pmd_trans_splitting too. 1881 */ 1882 if (mapcount != page_mapcount(page)) { 1883 pr_err("mapcount %d page_mapcount %d\n", 1884 mapcount, page_mapcount(page)); 1885 BUG(); 1886 } 1887 1888 __split_huge_page_refcount(page, list); 1889 1890 mapcount2 = 0; 1891 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1892 struct vm_area_struct *vma = avc->vma; 1893 unsigned long addr = vma_address(page, vma); 1894 BUG_ON(is_vma_temporary_stack(vma)); 1895 mapcount2 += __split_huge_page_map(page, vma, addr); 1896 } 1897 if (mapcount != mapcount2) { 1898 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", 1899 mapcount, mapcount2, page_mapcount(page)); 1900 BUG(); 1901 } 1902 } 1903 1904 /* 1905 * Split a hugepage into normal pages. This doesn't change the position of head 1906 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1907 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1908 * from the hugepage. 1909 * Return 0 if the hugepage is split successfully otherwise return 1. 1910 */ 1911 int split_huge_page_to_list(struct page *page, struct list_head *list) 1912 { 1913 struct anon_vma *anon_vma; 1914 int ret = 1; 1915 1916 BUG_ON(is_huge_zero_page(page)); 1917 BUG_ON(!PageAnon(page)); 1918 1919 /* 1920 * The caller does not necessarily hold an mmap_sem that would prevent 1921 * the anon_vma disappearing so we first we take a reference to it 1922 * and then lock the anon_vma for write. This is similar to 1923 * page_lock_anon_vma_read except the write lock is taken to serialise 1924 * against parallel split or collapse operations. 1925 */ 1926 anon_vma = page_get_anon_vma(page); 1927 if (!anon_vma) 1928 goto out; 1929 anon_vma_lock_write(anon_vma); 1930 1931 ret = 0; 1932 if (!PageCompound(page)) 1933 goto out_unlock; 1934 1935 BUG_ON(!PageSwapBacked(page)); 1936 __split_huge_page(page, anon_vma, list); 1937 count_vm_event(THP_SPLIT); 1938 1939 BUG_ON(PageCompound(page)); 1940 out_unlock: 1941 anon_vma_unlock_write(anon_vma); 1942 put_anon_vma(anon_vma); 1943 out: 1944 return ret; 1945 } 1946 1947 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) 1948 1949 int hugepage_madvise(struct vm_area_struct *vma, 1950 unsigned long *vm_flags, int advice) 1951 { 1952 switch (advice) { 1953 case MADV_HUGEPAGE: 1954 #ifdef CONFIG_S390 1955 /* 1956 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 1957 * can't handle this properly after s390_enable_sie, so we simply 1958 * ignore the madvise to prevent qemu from causing a SIGSEGV. 1959 */ 1960 if (mm_has_pgste(vma->vm_mm)) 1961 return 0; 1962 #endif 1963 /* 1964 * Be somewhat over-protective like KSM for now! 1965 */ 1966 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1967 return -EINVAL; 1968 *vm_flags &= ~VM_NOHUGEPAGE; 1969 *vm_flags |= VM_HUGEPAGE; 1970 /* 1971 * If the vma become good for khugepaged to scan, 1972 * register it here without waiting a page fault that 1973 * may not happen any time soon. 1974 */ 1975 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags))) 1976 return -ENOMEM; 1977 break; 1978 case MADV_NOHUGEPAGE: 1979 /* 1980 * Be somewhat over-protective like KSM for now! 1981 */ 1982 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1983 return -EINVAL; 1984 *vm_flags &= ~VM_HUGEPAGE; 1985 *vm_flags |= VM_NOHUGEPAGE; 1986 /* 1987 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1988 * this vma even if we leave the mm registered in khugepaged if 1989 * it got registered before VM_NOHUGEPAGE was set. 1990 */ 1991 break; 1992 } 1993 1994 return 0; 1995 } 1996 1997 static int __init khugepaged_slab_init(void) 1998 { 1999 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 2000 sizeof(struct mm_slot), 2001 __alignof__(struct mm_slot), 0, NULL); 2002 if (!mm_slot_cache) 2003 return -ENOMEM; 2004 2005 return 0; 2006 } 2007 2008 static void __init khugepaged_slab_exit(void) 2009 { 2010 kmem_cache_destroy(mm_slot_cache); 2011 } 2012 2013 static inline struct mm_slot *alloc_mm_slot(void) 2014 { 2015 if (!mm_slot_cache) /* initialization failed */ 2016 return NULL; 2017 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 2018 } 2019 2020 static inline void free_mm_slot(struct mm_slot *mm_slot) 2021 { 2022 kmem_cache_free(mm_slot_cache, mm_slot); 2023 } 2024 2025 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 2026 { 2027 struct mm_slot *mm_slot; 2028 2029 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 2030 if (mm == mm_slot->mm) 2031 return mm_slot; 2032 2033 return NULL; 2034 } 2035 2036 static void insert_to_mm_slots_hash(struct mm_struct *mm, 2037 struct mm_slot *mm_slot) 2038 { 2039 mm_slot->mm = mm; 2040 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 2041 } 2042 2043 static inline int khugepaged_test_exit(struct mm_struct *mm) 2044 { 2045 return atomic_read(&mm->mm_users) == 0; 2046 } 2047 2048 int __khugepaged_enter(struct mm_struct *mm) 2049 { 2050 struct mm_slot *mm_slot; 2051 int wakeup; 2052 2053 mm_slot = alloc_mm_slot(); 2054 if (!mm_slot) 2055 return -ENOMEM; 2056 2057 /* __khugepaged_exit() must not run from under us */ 2058 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 2059 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 2060 free_mm_slot(mm_slot); 2061 return 0; 2062 } 2063 2064 spin_lock(&khugepaged_mm_lock); 2065 insert_to_mm_slots_hash(mm, mm_slot); 2066 /* 2067 * Insert just behind the scanning cursor, to let the area settle 2068 * down a little. 2069 */ 2070 wakeup = list_empty(&khugepaged_scan.mm_head); 2071 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 2072 spin_unlock(&khugepaged_mm_lock); 2073 2074 atomic_inc(&mm->mm_count); 2075 if (wakeup) 2076 wake_up_interruptible(&khugepaged_wait); 2077 2078 return 0; 2079 } 2080 2081 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 2082 unsigned long vm_flags) 2083 { 2084 unsigned long hstart, hend; 2085 if (!vma->anon_vma) 2086 /* 2087 * Not yet faulted in so we will register later in the 2088 * page fault if needed. 2089 */ 2090 return 0; 2091 if (vma->vm_ops) 2092 /* khugepaged not yet working on file or special mappings */ 2093 return 0; 2094 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma); 2095 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2096 hend = vma->vm_end & HPAGE_PMD_MASK; 2097 if (hstart < hend) 2098 return khugepaged_enter(vma, vm_flags); 2099 return 0; 2100 } 2101 2102 void __khugepaged_exit(struct mm_struct *mm) 2103 { 2104 struct mm_slot *mm_slot; 2105 int free = 0; 2106 2107 spin_lock(&khugepaged_mm_lock); 2108 mm_slot = get_mm_slot(mm); 2109 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 2110 hash_del(&mm_slot->hash); 2111 list_del(&mm_slot->mm_node); 2112 free = 1; 2113 } 2114 spin_unlock(&khugepaged_mm_lock); 2115 2116 if (free) { 2117 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2118 free_mm_slot(mm_slot); 2119 mmdrop(mm); 2120 } else if (mm_slot) { 2121 /* 2122 * This is required to serialize against 2123 * khugepaged_test_exit() (which is guaranteed to run 2124 * under mmap sem read mode). Stop here (after we 2125 * return all pagetables will be destroyed) until 2126 * khugepaged has finished working on the pagetables 2127 * under the mmap_sem. 2128 */ 2129 down_write(&mm->mmap_sem); 2130 up_write(&mm->mmap_sem); 2131 } 2132 } 2133 2134 static void release_pte_page(struct page *page) 2135 { 2136 /* 0 stands for page_is_file_cache(page) == false */ 2137 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2138 unlock_page(page); 2139 putback_lru_page(page); 2140 } 2141 2142 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2143 { 2144 while (--_pte >= pte) { 2145 pte_t pteval = *_pte; 2146 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) 2147 release_pte_page(pte_page(pteval)); 2148 } 2149 } 2150 2151 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2152 unsigned long address, 2153 pte_t *pte) 2154 { 2155 struct page *page; 2156 pte_t *_pte; 2157 int none_or_zero = 0; 2158 bool referenced = false, writable = false; 2159 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2160 _pte++, address += PAGE_SIZE) { 2161 pte_t pteval = *_pte; 2162 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2163 if (!userfaultfd_armed(vma) && 2164 ++none_or_zero <= khugepaged_max_ptes_none) 2165 continue; 2166 else 2167 goto out; 2168 } 2169 if (!pte_present(pteval)) 2170 goto out; 2171 page = vm_normal_page(vma, address, pteval); 2172 if (unlikely(!page)) 2173 goto out; 2174 2175 VM_BUG_ON_PAGE(PageCompound(page), page); 2176 VM_BUG_ON_PAGE(!PageAnon(page), page); 2177 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2178 2179 /* 2180 * We can do it before isolate_lru_page because the 2181 * page can't be freed from under us. NOTE: PG_lock 2182 * is needed to serialize against split_huge_page 2183 * when invoked from the VM. 2184 */ 2185 if (!trylock_page(page)) 2186 goto out; 2187 2188 /* 2189 * cannot use mapcount: can't collapse if there's a gup pin. 2190 * The page must only be referenced by the scanned process 2191 * and page swap cache. 2192 */ 2193 if (page_count(page) != 1 + !!PageSwapCache(page)) { 2194 unlock_page(page); 2195 goto out; 2196 } 2197 if (pte_write(pteval)) { 2198 writable = true; 2199 } else { 2200 if (PageSwapCache(page) && !reuse_swap_page(page)) { 2201 unlock_page(page); 2202 goto out; 2203 } 2204 /* 2205 * Page is not in the swap cache. It can be collapsed 2206 * into a THP. 2207 */ 2208 } 2209 2210 /* 2211 * Isolate the page to avoid collapsing an hugepage 2212 * currently in use by the VM. 2213 */ 2214 if (isolate_lru_page(page)) { 2215 unlock_page(page); 2216 goto out; 2217 } 2218 /* 0 stands for page_is_file_cache(page) == false */ 2219 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2220 VM_BUG_ON_PAGE(!PageLocked(page), page); 2221 VM_BUG_ON_PAGE(PageLRU(page), page); 2222 2223 /* If there is no mapped pte young don't collapse the page */ 2224 if (pte_young(pteval) || PageReferenced(page) || 2225 mmu_notifier_test_young(vma->vm_mm, address)) 2226 referenced = true; 2227 } 2228 if (likely(referenced && writable)) 2229 return 1; 2230 out: 2231 release_pte_pages(pte, _pte); 2232 return 0; 2233 } 2234 2235 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2236 struct vm_area_struct *vma, 2237 unsigned long address, 2238 spinlock_t *ptl) 2239 { 2240 pte_t *_pte; 2241 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2242 pte_t pteval = *_pte; 2243 struct page *src_page; 2244 2245 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2246 clear_user_highpage(page, address); 2247 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2248 if (is_zero_pfn(pte_pfn(pteval))) { 2249 /* 2250 * ptl mostly unnecessary. 2251 */ 2252 spin_lock(ptl); 2253 /* 2254 * paravirt calls inside pte_clear here are 2255 * superfluous. 2256 */ 2257 pte_clear(vma->vm_mm, address, _pte); 2258 spin_unlock(ptl); 2259 } 2260 } else { 2261 src_page = pte_page(pteval); 2262 copy_user_highpage(page, src_page, address, vma); 2263 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); 2264 release_pte_page(src_page); 2265 /* 2266 * ptl mostly unnecessary, but preempt has to 2267 * be disabled to update the per-cpu stats 2268 * inside page_remove_rmap(). 2269 */ 2270 spin_lock(ptl); 2271 /* 2272 * paravirt calls inside pte_clear here are 2273 * superfluous. 2274 */ 2275 pte_clear(vma->vm_mm, address, _pte); 2276 page_remove_rmap(src_page); 2277 spin_unlock(ptl); 2278 free_page_and_swap_cache(src_page); 2279 } 2280 2281 address += PAGE_SIZE; 2282 page++; 2283 } 2284 } 2285 2286 static void khugepaged_alloc_sleep(void) 2287 { 2288 wait_event_freezable_timeout(khugepaged_wait, false, 2289 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2290 } 2291 2292 static int khugepaged_node_load[MAX_NUMNODES]; 2293 2294 static bool khugepaged_scan_abort(int nid) 2295 { 2296 int i; 2297 2298 /* 2299 * If zone_reclaim_mode is disabled, then no extra effort is made to 2300 * allocate memory locally. 2301 */ 2302 if (!zone_reclaim_mode) 2303 return false; 2304 2305 /* If there is a count for this node already, it must be acceptable */ 2306 if (khugepaged_node_load[nid]) 2307 return false; 2308 2309 for (i = 0; i < MAX_NUMNODES; i++) { 2310 if (!khugepaged_node_load[i]) 2311 continue; 2312 if (node_distance(nid, i) > RECLAIM_DISTANCE) 2313 return true; 2314 } 2315 return false; 2316 } 2317 2318 #ifdef CONFIG_NUMA 2319 static int khugepaged_find_target_node(void) 2320 { 2321 static int last_khugepaged_target_node = NUMA_NO_NODE; 2322 int nid, target_node = 0, max_value = 0; 2323 2324 /* find first node with max normal pages hit */ 2325 for (nid = 0; nid < MAX_NUMNODES; nid++) 2326 if (khugepaged_node_load[nid] > max_value) { 2327 max_value = khugepaged_node_load[nid]; 2328 target_node = nid; 2329 } 2330 2331 /* do some balance if several nodes have the same hit record */ 2332 if (target_node <= last_khugepaged_target_node) 2333 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 2334 nid++) 2335 if (max_value == khugepaged_node_load[nid]) { 2336 target_node = nid; 2337 break; 2338 } 2339 2340 last_khugepaged_target_node = target_node; 2341 return target_node; 2342 } 2343 2344 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2345 { 2346 if (IS_ERR(*hpage)) { 2347 if (!*wait) 2348 return false; 2349 2350 *wait = false; 2351 *hpage = NULL; 2352 khugepaged_alloc_sleep(); 2353 } else if (*hpage) { 2354 put_page(*hpage); 2355 *hpage = NULL; 2356 } 2357 2358 return true; 2359 } 2360 2361 static struct page * 2362 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, 2363 struct vm_area_struct *vma, unsigned long address, 2364 int node) 2365 { 2366 VM_BUG_ON_PAGE(*hpage, *hpage); 2367 2368 /* 2369 * Before allocating the hugepage, release the mmap_sem read lock. 2370 * The allocation can take potentially a long time if it involves 2371 * sync compaction, and we do not need to hold the mmap_sem during 2372 * that. We will recheck the vma after taking it again in write mode. 2373 */ 2374 up_read(&mm->mmap_sem); 2375 2376 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER); 2377 if (unlikely(!*hpage)) { 2378 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2379 *hpage = ERR_PTR(-ENOMEM); 2380 return NULL; 2381 } 2382 2383 count_vm_event(THP_COLLAPSE_ALLOC); 2384 return *hpage; 2385 } 2386 #else 2387 static int khugepaged_find_target_node(void) 2388 { 2389 return 0; 2390 } 2391 2392 static inline struct page *alloc_hugepage(int defrag) 2393 { 2394 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 2395 HPAGE_PMD_ORDER); 2396 } 2397 2398 static struct page *khugepaged_alloc_hugepage(bool *wait) 2399 { 2400 struct page *hpage; 2401 2402 do { 2403 hpage = alloc_hugepage(khugepaged_defrag()); 2404 if (!hpage) { 2405 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2406 if (!*wait) 2407 return NULL; 2408 2409 *wait = false; 2410 khugepaged_alloc_sleep(); 2411 } else 2412 count_vm_event(THP_COLLAPSE_ALLOC); 2413 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2414 2415 return hpage; 2416 } 2417 2418 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2419 { 2420 if (!*hpage) 2421 *hpage = khugepaged_alloc_hugepage(wait); 2422 2423 if (unlikely(!*hpage)) 2424 return false; 2425 2426 return true; 2427 } 2428 2429 static struct page * 2430 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm, 2431 struct vm_area_struct *vma, unsigned long address, 2432 int node) 2433 { 2434 up_read(&mm->mmap_sem); 2435 VM_BUG_ON(!*hpage); 2436 2437 return *hpage; 2438 } 2439 #endif 2440 2441 static bool hugepage_vma_check(struct vm_area_struct *vma) 2442 { 2443 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2444 (vma->vm_flags & VM_NOHUGEPAGE)) 2445 return false; 2446 2447 if (!vma->anon_vma || vma->vm_ops) 2448 return false; 2449 if (is_vma_temporary_stack(vma)) 2450 return false; 2451 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma); 2452 return true; 2453 } 2454 2455 static void collapse_huge_page(struct mm_struct *mm, 2456 unsigned long address, 2457 struct page **hpage, 2458 struct vm_area_struct *vma, 2459 int node) 2460 { 2461 pmd_t *pmd, _pmd; 2462 pte_t *pte; 2463 pgtable_t pgtable; 2464 struct page *new_page; 2465 spinlock_t *pmd_ptl, *pte_ptl; 2466 int isolated; 2467 unsigned long hstart, hend; 2468 struct mem_cgroup *memcg; 2469 unsigned long mmun_start; /* For mmu_notifiers */ 2470 unsigned long mmun_end; /* For mmu_notifiers */ 2471 gfp_t gfp; 2472 2473 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2474 2475 /* Only allocate from the target node */ 2476 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) | 2477 __GFP_THISNODE; 2478 2479 /* release the mmap_sem read lock. */ 2480 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node); 2481 if (!new_page) 2482 return; 2483 2484 if (unlikely(mem_cgroup_try_charge(new_page, mm, 2485 gfp, &memcg))) 2486 return; 2487 2488 /* 2489 * Prevent all access to pagetables with the exception of 2490 * gup_fast later hanlded by the ptep_clear_flush and the VM 2491 * handled by the anon_vma lock + PG_lock. 2492 */ 2493 down_write(&mm->mmap_sem); 2494 if (unlikely(khugepaged_test_exit(mm))) 2495 goto out; 2496 2497 vma = find_vma(mm, address); 2498 if (!vma) 2499 goto out; 2500 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2501 hend = vma->vm_end & HPAGE_PMD_MASK; 2502 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2503 goto out; 2504 if (!hugepage_vma_check(vma)) 2505 goto out; 2506 pmd = mm_find_pmd(mm, address); 2507 if (!pmd) 2508 goto out; 2509 2510 anon_vma_lock_write(vma->anon_vma); 2511 2512 pte = pte_offset_map(pmd, address); 2513 pte_ptl = pte_lockptr(mm, pmd); 2514 2515 mmun_start = address; 2516 mmun_end = address + HPAGE_PMD_SIZE; 2517 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2518 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 2519 /* 2520 * After this gup_fast can't run anymore. This also removes 2521 * any huge TLB entry from the CPU so we won't allow 2522 * huge and small TLB entries for the same virtual address 2523 * to avoid the risk of CPU bugs in that area. 2524 */ 2525 _pmd = pmdp_collapse_flush(vma, address, pmd); 2526 spin_unlock(pmd_ptl); 2527 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2528 2529 spin_lock(pte_ptl); 2530 isolated = __collapse_huge_page_isolate(vma, address, pte); 2531 spin_unlock(pte_ptl); 2532 2533 if (unlikely(!isolated)) { 2534 pte_unmap(pte); 2535 spin_lock(pmd_ptl); 2536 BUG_ON(!pmd_none(*pmd)); 2537 /* 2538 * We can only use set_pmd_at when establishing 2539 * hugepmds and never for establishing regular pmds that 2540 * points to regular pagetables. Use pmd_populate for that 2541 */ 2542 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2543 spin_unlock(pmd_ptl); 2544 anon_vma_unlock_write(vma->anon_vma); 2545 goto out; 2546 } 2547 2548 /* 2549 * All pages are isolated and locked so anon_vma rmap 2550 * can't run anymore. 2551 */ 2552 anon_vma_unlock_write(vma->anon_vma); 2553 2554 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); 2555 pte_unmap(pte); 2556 __SetPageUptodate(new_page); 2557 pgtable = pmd_pgtable(_pmd); 2558 2559 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 2560 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 2561 2562 /* 2563 * spin_lock() below is not the equivalent of smp_wmb(), so 2564 * this is needed to avoid the copy_huge_page writes to become 2565 * visible after the set_pmd_at() write. 2566 */ 2567 smp_wmb(); 2568 2569 spin_lock(pmd_ptl); 2570 BUG_ON(!pmd_none(*pmd)); 2571 page_add_new_anon_rmap(new_page, vma, address); 2572 mem_cgroup_commit_charge(new_page, memcg, false); 2573 lru_cache_add_active_or_unevictable(new_page, vma); 2574 pgtable_trans_huge_deposit(mm, pmd, pgtable); 2575 set_pmd_at(mm, address, pmd, _pmd); 2576 update_mmu_cache_pmd(vma, address, pmd); 2577 spin_unlock(pmd_ptl); 2578 2579 *hpage = NULL; 2580 2581 khugepaged_pages_collapsed++; 2582 out_up_write: 2583 up_write(&mm->mmap_sem); 2584 return; 2585 2586 out: 2587 mem_cgroup_cancel_charge(new_page, memcg); 2588 goto out_up_write; 2589 } 2590 2591 static int khugepaged_scan_pmd(struct mm_struct *mm, 2592 struct vm_area_struct *vma, 2593 unsigned long address, 2594 struct page **hpage) 2595 { 2596 pmd_t *pmd; 2597 pte_t *pte, *_pte; 2598 int ret = 0, none_or_zero = 0; 2599 struct page *page; 2600 unsigned long _address; 2601 spinlock_t *ptl; 2602 int node = NUMA_NO_NODE; 2603 bool writable = false, referenced = false; 2604 2605 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2606 2607 pmd = mm_find_pmd(mm, address); 2608 if (!pmd) 2609 goto out; 2610 2611 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2612 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2613 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2614 _pte++, _address += PAGE_SIZE) { 2615 pte_t pteval = *_pte; 2616 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 2617 if (!userfaultfd_armed(vma) && 2618 ++none_or_zero <= khugepaged_max_ptes_none) 2619 continue; 2620 else 2621 goto out_unmap; 2622 } 2623 if (!pte_present(pteval)) 2624 goto out_unmap; 2625 if (pte_write(pteval)) 2626 writable = true; 2627 2628 page = vm_normal_page(vma, _address, pteval); 2629 if (unlikely(!page)) 2630 goto out_unmap; 2631 /* 2632 * Record which node the original page is from and save this 2633 * information to khugepaged_node_load[]. 2634 * Khupaged will allocate hugepage from the node has the max 2635 * hit record. 2636 */ 2637 node = page_to_nid(page); 2638 if (khugepaged_scan_abort(node)) 2639 goto out_unmap; 2640 khugepaged_node_load[node]++; 2641 VM_BUG_ON_PAGE(PageCompound(page), page); 2642 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2643 goto out_unmap; 2644 /* 2645 * cannot use mapcount: can't collapse if there's a gup pin. 2646 * The page must only be referenced by the scanned process 2647 * and page swap cache. 2648 */ 2649 if (page_count(page) != 1 + !!PageSwapCache(page)) 2650 goto out_unmap; 2651 if (pte_young(pteval) || PageReferenced(page) || 2652 mmu_notifier_test_young(vma->vm_mm, address)) 2653 referenced = true; 2654 } 2655 if (referenced && writable) 2656 ret = 1; 2657 out_unmap: 2658 pte_unmap_unlock(pte, ptl); 2659 if (ret) { 2660 node = khugepaged_find_target_node(); 2661 /* collapse_huge_page will return with the mmap_sem released */ 2662 collapse_huge_page(mm, address, hpage, vma, node); 2663 } 2664 out: 2665 return ret; 2666 } 2667 2668 static void collect_mm_slot(struct mm_slot *mm_slot) 2669 { 2670 struct mm_struct *mm = mm_slot->mm; 2671 2672 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2673 2674 if (khugepaged_test_exit(mm)) { 2675 /* free mm_slot */ 2676 hash_del(&mm_slot->hash); 2677 list_del(&mm_slot->mm_node); 2678 2679 /* 2680 * Not strictly needed because the mm exited already. 2681 * 2682 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2683 */ 2684 2685 /* khugepaged_mm_lock actually not necessary for the below */ 2686 free_mm_slot(mm_slot); 2687 mmdrop(mm); 2688 } 2689 } 2690 2691 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2692 struct page **hpage) 2693 __releases(&khugepaged_mm_lock) 2694 __acquires(&khugepaged_mm_lock) 2695 { 2696 struct mm_slot *mm_slot; 2697 struct mm_struct *mm; 2698 struct vm_area_struct *vma; 2699 int progress = 0; 2700 2701 VM_BUG_ON(!pages); 2702 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2703 2704 if (khugepaged_scan.mm_slot) 2705 mm_slot = khugepaged_scan.mm_slot; 2706 else { 2707 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2708 struct mm_slot, mm_node); 2709 khugepaged_scan.address = 0; 2710 khugepaged_scan.mm_slot = mm_slot; 2711 } 2712 spin_unlock(&khugepaged_mm_lock); 2713 2714 mm = mm_slot->mm; 2715 down_read(&mm->mmap_sem); 2716 if (unlikely(khugepaged_test_exit(mm))) 2717 vma = NULL; 2718 else 2719 vma = find_vma(mm, khugepaged_scan.address); 2720 2721 progress++; 2722 for (; vma; vma = vma->vm_next) { 2723 unsigned long hstart, hend; 2724 2725 cond_resched(); 2726 if (unlikely(khugepaged_test_exit(mm))) { 2727 progress++; 2728 break; 2729 } 2730 if (!hugepage_vma_check(vma)) { 2731 skip: 2732 progress++; 2733 continue; 2734 } 2735 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2736 hend = vma->vm_end & HPAGE_PMD_MASK; 2737 if (hstart >= hend) 2738 goto skip; 2739 if (khugepaged_scan.address > hend) 2740 goto skip; 2741 if (khugepaged_scan.address < hstart) 2742 khugepaged_scan.address = hstart; 2743 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2744 2745 while (khugepaged_scan.address < hend) { 2746 int ret; 2747 cond_resched(); 2748 if (unlikely(khugepaged_test_exit(mm))) 2749 goto breakouterloop; 2750 2751 VM_BUG_ON(khugepaged_scan.address < hstart || 2752 khugepaged_scan.address + HPAGE_PMD_SIZE > 2753 hend); 2754 ret = khugepaged_scan_pmd(mm, vma, 2755 khugepaged_scan.address, 2756 hpage); 2757 /* move to next address */ 2758 khugepaged_scan.address += HPAGE_PMD_SIZE; 2759 progress += HPAGE_PMD_NR; 2760 if (ret) 2761 /* we released mmap_sem so break loop */ 2762 goto breakouterloop_mmap_sem; 2763 if (progress >= pages) 2764 goto breakouterloop; 2765 } 2766 } 2767 breakouterloop: 2768 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2769 breakouterloop_mmap_sem: 2770 2771 spin_lock(&khugepaged_mm_lock); 2772 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2773 /* 2774 * Release the current mm_slot if this mm is about to die, or 2775 * if we scanned all vmas of this mm. 2776 */ 2777 if (khugepaged_test_exit(mm) || !vma) { 2778 /* 2779 * Make sure that if mm_users is reaching zero while 2780 * khugepaged runs here, khugepaged_exit will find 2781 * mm_slot not pointing to the exiting mm. 2782 */ 2783 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2784 khugepaged_scan.mm_slot = list_entry( 2785 mm_slot->mm_node.next, 2786 struct mm_slot, mm_node); 2787 khugepaged_scan.address = 0; 2788 } else { 2789 khugepaged_scan.mm_slot = NULL; 2790 khugepaged_full_scans++; 2791 } 2792 2793 collect_mm_slot(mm_slot); 2794 } 2795 2796 return progress; 2797 } 2798 2799 static int khugepaged_has_work(void) 2800 { 2801 return !list_empty(&khugepaged_scan.mm_head) && 2802 khugepaged_enabled(); 2803 } 2804 2805 static int khugepaged_wait_event(void) 2806 { 2807 return !list_empty(&khugepaged_scan.mm_head) || 2808 kthread_should_stop(); 2809 } 2810 2811 static void khugepaged_do_scan(void) 2812 { 2813 struct page *hpage = NULL; 2814 unsigned int progress = 0, pass_through_head = 0; 2815 unsigned int pages = khugepaged_pages_to_scan; 2816 bool wait = true; 2817 2818 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2819 2820 while (progress < pages) { 2821 if (!khugepaged_prealloc_page(&hpage, &wait)) 2822 break; 2823 2824 cond_resched(); 2825 2826 if (unlikely(kthread_should_stop() || try_to_freeze())) 2827 break; 2828 2829 spin_lock(&khugepaged_mm_lock); 2830 if (!khugepaged_scan.mm_slot) 2831 pass_through_head++; 2832 if (khugepaged_has_work() && 2833 pass_through_head < 2) 2834 progress += khugepaged_scan_mm_slot(pages - progress, 2835 &hpage); 2836 else 2837 progress = pages; 2838 spin_unlock(&khugepaged_mm_lock); 2839 } 2840 2841 if (!IS_ERR_OR_NULL(hpage)) 2842 put_page(hpage); 2843 } 2844 2845 static void khugepaged_wait_work(void) 2846 { 2847 if (khugepaged_has_work()) { 2848 if (!khugepaged_scan_sleep_millisecs) 2849 return; 2850 2851 wait_event_freezable_timeout(khugepaged_wait, 2852 kthread_should_stop(), 2853 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2854 return; 2855 } 2856 2857 if (khugepaged_enabled()) 2858 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2859 } 2860 2861 static int khugepaged(void *none) 2862 { 2863 struct mm_slot *mm_slot; 2864 2865 set_freezable(); 2866 set_user_nice(current, MAX_NICE); 2867 2868 while (!kthread_should_stop()) { 2869 khugepaged_do_scan(); 2870 khugepaged_wait_work(); 2871 } 2872 2873 spin_lock(&khugepaged_mm_lock); 2874 mm_slot = khugepaged_scan.mm_slot; 2875 khugepaged_scan.mm_slot = NULL; 2876 if (mm_slot) 2877 collect_mm_slot(mm_slot); 2878 spin_unlock(&khugepaged_mm_lock); 2879 return 0; 2880 } 2881 2882 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2883 unsigned long haddr, pmd_t *pmd) 2884 { 2885 struct mm_struct *mm = vma->vm_mm; 2886 pgtable_t pgtable; 2887 pmd_t _pmd; 2888 int i; 2889 2890 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2891 /* leave pmd empty until pte is filled */ 2892 2893 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2894 pmd_populate(mm, &_pmd, pgtable); 2895 2896 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2897 pte_t *pte, entry; 2898 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2899 entry = pte_mkspecial(entry); 2900 pte = pte_offset_map(&_pmd, haddr); 2901 VM_BUG_ON(!pte_none(*pte)); 2902 set_pte_at(mm, haddr, pte, entry); 2903 pte_unmap(pte); 2904 } 2905 smp_wmb(); /* make pte visible before pmd */ 2906 pmd_populate(mm, pmd, pgtable); 2907 put_huge_zero_page(); 2908 } 2909 2910 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2911 pmd_t *pmd) 2912 { 2913 spinlock_t *ptl; 2914 struct page *page; 2915 struct mm_struct *mm = vma->vm_mm; 2916 unsigned long haddr = address & HPAGE_PMD_MASK; 2917 unsigned long mmun_start; /* For mmu_notifiers */ 2918 unsigned long mmun_end; /* For mmu_notifiers */ 2919 2920 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2921 2922 mmun_start = haddr; 2923 mmun_end = haddr + HPAGE_PMD_SIZE; 2924 again: 2925 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2926 ptl = pmd_lock(mm, pmd); 2927 if (unlikely(!pmd_trans_huge(*pmd))) { 2928 spin_unlock(ptl); 2929 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2930 return; 2931 } 2932 if (is_huge_zero_pmd(*pmd)) { 2933 __split_huge_zero_page_pmd(vma, haddr, pmd); 2934 spin_unlock(ptl); 2935 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2936 return; 2937 } 2938 page = pmd_page(*pmd); 2939 VM_BUG_ON_PAGE(!page_count(page), page); 2940 get_page(page); 2941 spin_unlock(ptl); 2942 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2943 2944 split_huge_page(page); 2945 2946 put_page(page); 2947 2948 /* 2949 * We don't always have down_write of mmap_sem here: a racing 2950 * do_huge_pmd_wp_page() might have copied-on-write to another 2951 * huge page before our split_huge_page() got the anon_vma lock. 2952 */ 2953 if (unlikely(pmd_trans_huge(*pmd))) 2954 goto again; 2955 } 2956 2957 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2958 pmd_t *pmd) 2959 { 2960 struct vm_area_struct *vma; 2961 2962 vma = find_vma(mm, address); 2963 BUG_ON(vma == NULL); 2964 split_huge_page_pmd(vma, address, pmd); 2965 } 2966 2967 static void split_huge_page_address(struct mm_struct *mm, 2968 unsigned long address) 2969 { 2970 pgd_t *pgd; 2971 pud_t *pud; 2972 pmd_t *pmd; 2973 2974 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2975 2976 pgd = pgd_offset(mm, address); 2977 if (!pgd_present(*pgd)) 2978 return; 2979 2980 pud = pud_offset(pgd, address); 2981 if (!pud_present(*pud)) 2982 return; 2983 2984 pmd = pmd_offset(pud, address); 2985 if (!pmd_present(*pmd)) 2986 return; 2987 /* 2988 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2989 * materialize from under us. 2990 */ 2991 split_huge_page_pmd_mm(mm, address, pmd); 2992 } 2993 2994 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2995 unsigned long start, 2996 unsigned long end, 2997 long adjust_next) 2998 { 2999 /* 3000 * If the new start address isn't hpage aligned and it could 3001 * previously contain an hugepage: check if we need to split 3002 * an huge pmd. 3003 */ 3004 if (start & ~HPAGE_PMD_MASK && 3005 (start & HPAGE_PMD_MASK) >= vma->vm_start && 3006 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 3007 split_huge_page_address(vma->vm_mm, start); 3008 3009 /* 3010 * If the new end address isn't hpage aligned and it could 3011 * previously contain an hugepage: check if we need to split 3012 * an huge pmd. 3013 */ 3014 if (end & ~HPAGE_PMD_MASK && 3015 (end & HPAGE_PMD_MASK) >= vma->vm_start && 3016 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 3017 split_huge_page_address(vma->vm_mm, end); 3018 3019 /* 3020 * If we're also updating the vma->vm_next->vm_start, if the new 3021 * vm_next->vm_start isn't page aligned and it could previously 3022 * contain an hugepage: check if we need to split an huge pmd. 3023 */ 3024 if (adjust_next > 0) { 3025 struct vm_area_struct *next = vma->vm_next; 3026 unsigned long nstart = next->vm_start; 3027 nstart += adjust_next << PAGE_SHIFT; 3028 if (nstart & ~HPAGE_PMD_MASK && 3029 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 3030 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 3031 split_huge_page_address(next->vm_mm, nstart); 3032 } 3033 } 3034