xref: /linux/mm/huge_memory.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26 #include <linux/userfaultfd_k.h>
27 
28 #include <asm/tlb.h>
29 #include <asm/pgalloc.h>
30 #include "internal.h"
31 
32 /*
33  * By default transparent hugepage support is disabled in order that avoid
34  * to risk increase the memory footprint of applications without a guaranteed
35  * benefit. When transparent hugepage support is enabled, is for all mappings,
36  * and khugepaged scans all mappings.
37  * Defrag is invoked by khugepaged hugepage allocations and by page faults
38  * for all hugepage allocations.
39  */
40 unsigned long transparent_hugepage_flags __read_mostly =
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
42 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
43 #endif
44 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
45 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
46 #endif
47 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
48 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
49 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
50 
51 /* default scan 8*512 pte (or vmas) every 30 second */
52 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
53 static unsigned int khugepaged_pages_collapsed;
54 static unsigned int khugepaged_full_scans;
55 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
56 /* during fragmentation poll the hugepage allocator once every minute */
57 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
58 static struct task_struct *khugepaged_thread __read_mostly;
59 static DEFINE_MUTEX(khugepaged_mutex);
60 static DEFINE_SPINLOCK(khugepaged_mm_lock);
61 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62 /*
63  * default collapse hugepages if there is at least one pte mapped like
64  * it would have happened if the vma was large enough during page
65  * fault.
66  */
67 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68 
69 static int khugepaged(void *none);
70 static int khugepaged_slab_init(void);
71 static void khugepaged_slab_exit(void);
72 
73 #define MM_SLOTS_HASH_BITS 10
74 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
75 
76 static struct kmem_cache *mm_slot_cache __read_mostly;
77 
78 /**
79  * struct mm_slot - hash lookup from mm to mm_slot
80  * @hash: hash collision list
81  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
82  * @mm: the mm that this information is valid for
83  */
84 struct mm_slot {
85 	struct hlist_node hash;
86 	struct list_head mm_node;
87 	struct mm_struct *mm;
88 };
89 
90 /**
91  * struct khugepaged_scan - cursor for scanning
92  * @mm_head: the head of the mm list to scan
93  * @mm_slot: the current mm_slot we are scanning
94  * @address: the next address inside that to be scanned
95  *
96  * There is only the one khugepaged_scan instance of this cursor structure.
97  */
98 struct khugepaged_scan {
99 	struct list_head mm_head;
100 	struct mm_slot *mm_slot;
101 	unsigned long address;
102 };
103 static struct khugepaged_scan khugepaged_scan = {
104 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
105 };
106 
107 
108 static int set_recommended_min_free_kbytes(void)
109 {
110 	struct zone *zone;
111 	int nr_zones = 0;
112 	unsigned long recommended_min;
113 
114 	for_each_populated_zone(zone)
115 		nr_zones++;
116 
117 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
118 	recommended_min = pageblock_nr_pages * nr_zones * 2;
119 
120 	/*
121 	 * Make sure that on average at least two pageblocks are almost free
122 	 * of another type, one for a migratetype to fall back to and a
123 	 * second to avoid subsequent fallbacks of other types There are 3
124 	 * MIGRATE_TYPES we care about.
125 	 */
126 	recommended_min += pageblock_nr_pages * nr_zones *
127 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 
129 	/* don't ever allow to reserve more than 5% of the lowmem */
130 	recommended_min = min(recommended_min,
131 			      (unsigned long) nr_free_buffer_pages() / 20);
132 	recommended_min <<= (PAGE_SHIFT-10);
133 
134 	if (recommended_min > min_free_kbytes) {
135 		if (user_min_free_kbytes >= 0)
136 			pr_info("raising min_free_kbytes from %d to %lu "
137 				"to help transparent hugepage allocations\n",
138 				min_free_kbytes, recommended_min);
139 
140 		min_free_kbytes = recommended_min;
141 	}
142 	setup_per_zone_wmarks();
143 	return 0;
144 }
145 
146 static int start_stop_khugepaged(void)
147 {
148 	int err = 0;
149 	if (khugepaged_enabled()) {
150 		if (!khugepaged_thread)
151 			khugepaged_thread = kthread_run(khugepaged, NULL,
152 							"khugepaged");
153 		if (unlikely(IS_ERR(khugepaged_thread))) {
154 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
155 			err = PTR_ERR(khugepaged_thread);
156 			khugepaged_thread = NULL;
157 			goto fail;
158 		}
159 
160 		if (!list_empty(&khugepaged_scan.mm_head))
161 			wake_up_interruptible(&khugepaged_wait);
162 
163 		set_recommended_min_free_kbytes();
164 	} else if (khugepaged_thread) {
165 		kthread_stop(khugepaged_thread);
166 		khugepaged_thread = NULL;
167 	}
168 fail:
169 	return err;
170 }
171 
172 static atomic_t huge_zero_refcount;
173 struct page *huge_zero_page __read_mostly;
174 
175 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 {
177 	return is_huge_zero_page(pmd_page(pmd));
178 }
179 
180 static struct page *get_huge_zero_page(void)
181 {
182 	struct page *zero_page;
183 retry:
184 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
185 		return READ_ONCE(huge_zero_page);
186 
187 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
188 			HPAGE_PMD_ORDER);
189 	if (!zero_page) {
190 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
191 		return NULL;
192 	}
193 	count_vm_event(THP_ZERO_PAGE_ALLOC);
194 	preempt_disable();
195 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
196 		preempt_enable();
197 		__free_pages(zero_page, compound_order(zero_page));
198 		goto retry;
199 	}
200 
201 	/* We take additional reference here. It will be put back by shrinker */
202 	atomic_set(&huge_zero_refcount, 2);
203 	preempt_enable();
204 	return READ_ONCE(huge_zero_page);
205 }
206 
207 static void put_huge_zero_page(void)
208 {
209 	/*
210 	 * Counter should never go to zero here. Only shrinker can put
211 	 * last reference.
212 	 */
213 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
214 }
215 
216 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
217 					struct shrink_control *sc)
218 {
219 	/* we can free zero page only if last reference remains */
220 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221 }
222 
223 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
224 				       struct shrink_control *sc)
225 {
226 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
227 		struct page *zero_page = xchg(&huge_zero_page, NULL);
228 		BUG_ON(zero_page == NULL);
229 		__free_pages(zero_page, compound_order(zero_page));
230 		return HPAGE_PMD_NR;
231 	}
232 
233 	return 0;
234 }
235 
236 static struct shrinker huge_zero_page_shrinker = {
237 	.count_objects = shrink_huge_zero_page_count,
238 	.scan_objects = shrink_huge_zero_page_scan,
239 	.seeks = DEFAULT_SEEKS,
240 };
241 
242 #ifdef CONFIG_SYSFS
243 
244 static ssize_t double_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag enabled,
247 				enum transparent_hugepage_flag req_madv)
248 {
249 	if (test_bit(enabled, &transparent_hugepage_flags)) {
250 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
251 		return sprintf(buf, "[always] madvise never\n");
252 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
253 		return sprintf(buf, "always [madvise] never\n");
254 	else
255 		return sprintf(buf, "always madvise [never]\n");
256 }
257 static ssize_t double_flag_store(struct kobject *kobj,
258 				 struct kobj_attribute *attr,
259 				 const char *buf, size_t count,
260 				 enum transparent_hugepage_flag enabled,
261 				 enum transparent_hugepage_flag req_madv)
262 {
263 	if (!memcmp("always", buf,
264 		    min(sizeof("always")-1, count))) {
265 		set_bit(enabled, &transparent_hugepage_flags);
266 		clear_bit(req_madv, &transparent_hugepage_flags);
267 	} else if (!memcmp("madvise", buf,
268 			   min(sizeof("madvise")-1, count))) {
269 		clear_bit(enabled, &transparent_hugepage_flags);
270 		set_bit(req_madv, &transparent_hugepage_flags);
271 	} else if (!memcmp("never", buf,
272 			   min(sizeof("never")-1, count))) {
273 		clear_bit(enabled, &transparent_hugepage_flags);
274 		clear_bit(req_madv, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 
281 static ssize_t enabled_show(struct kobject *kobj,
282 			    struct kobj_attribute *attr, char *buf)
283 {
284 	return double_flag_show(kobj, attr, buf,
285 				TRANSPARENT_HUGEPAGE_FLAG,
286 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287 }
288 static ssize_t enabled_store(struct kobject *kobj,
289 			     struct kobj_attribute *attr,
290 			     const char *buf, size_t count)
291 {
292 	ssize_t ret;
293 
294 	ret = double_flag_store(kobj, attr, buf, count,
295 				TRANSPARENT_HUGEPAGE_FLAG,
296 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297 
298 	if (ret > 0) {
299 		int err;
300 
301 		mutex_lock(&khugepaged_mutex);
302 		err = start_stop_khugepaged();
303 		mutex_unlock(&khugepaged_mutex);
304 
305 		if (err)
306 			ret = err;
307 	}
308 
309 	return ret;
310 }
311 static struct kobj_attribute enabled_attr =
312 	__ATTR(enabled, 0644, enabled_show, enabled_store);
313 
314 static ssize_t single_flag_show(struct kobject *kobj,
315 				struct kobj_attribute *attr, char *buf,
316 				enum transparent_hugepage_flag flag)
317 {
318 	return sprintf(buf, "%d\n",
319 		       !!test_bit(flag, &transparent_hugepage_flags));
320 }
321 
322 static ssize_t single_flag_store(struct kobject *kobj,
323 				 struct kobj_attribute *attr,
324 				 const char *buf, size_t count,
325 				 enum transparent_hugepage_flag flag)
326 {
327 	unsigned long value;
328 	int ret;
329 
330 	ret = kstrtoul(buf, 10, &value);
331 	if (ret < 0)
332 		return ret;
333 	if (value > 1)
334 		return -EINVAL;
335 
336 	if (value)
337 		set_bit(flag, &transparent_hugepage_flags);
338 	else
339 		clear_bit(flag, &transparent_hugepage_flags);
340 
341 	return count;
342 }
343 
344 /*
345  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
346  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
347  * memory just to allocate one more hugepage.
348  */
349 static ssize_t defrag_show(struct kobject *kobj,
350 			   struct kobj_attribute *attr, char *buf)
351 {
352 	return double_flag_show(kobj, attr, buf,
353 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
354 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355 }
356 static ssize_t defrag_store(struct kobject *kobj,
357 			    struct kobj_attribute *attr,
358 			    const char *buf, size_t count)
359 {
360 	return double_flag_store(kobj, attr, buf, count,
361 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
362 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363 }
364 static struct kobj_attribute defrag_attr =
365 	__ATTR(defrag, 0644, defrag_show, defrag_store);
366 
367 static ssize_t use_zero_page_show(struct kobject *kobj,
368 		struct kobj_attribute *attr, char *buf)
369 {
370 	return single_flag_show(kobj, attr, buf,
371 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 }
373 static ssize_t use_zero_page_store(struct kobject *kobj,
374 		struct kobj_attribute *attr, const char *buf, size_t count)
375 {
376 	return single_flag_store(kobj, attr, buf, count,
377 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static struct kobj_attribute use_zero_page_attr =
380 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
381 #ifdef CONFIG_DEBUG_VM
382 static ssize_t debug_cow_show(struct kobject *kobj,
383 				struct kobj_attribute *attr, char *buf)
384 {
385 	return single_flag_show(kobj, attr, buf,
386 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 }
388 static ssize_t debug_cow_store(struct kobject *kobj,
389 			       struct kobj_attribute *attr,
390 			       const char *buf, size_t count)
391 {
392 	return single_flag_store(kobj, attr, buf, count,
393 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 }
395 static struct kobj_attribute debug_cow_attr =
396 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
397 #endif /* CONFIG_DEBUG_VM */
398 
399 static struct attribute *hugepage_attr[] = {
400 	&enabled_attr.attr,
401 	&defrag_attr.attr,
402 	&use_zero_page_attr.attr,
403 #ifdef CONFIG_DEBUG_VM
404 	&debug_cow_attr.attr,
405 #endif
406 	NULL,
407 };
408 
409 static struct attribute_group hugepage_attr_group = {
410 	.attrs = hugepage_attr,
411 };
412 
413 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
414 					 struct kobj_attribute *attr,
415 					 char *buf)
416 {
417 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
418 }
419 
420 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
421 					  struct kobj_attribute *attr,
422 					  const char *buf, size_t count)
423 {
424 	unsigned long msecs;
425 	int err;
426 
427 	err = kstrtoul(buf, 10, &msecs);
428 	if (err || msecs > UINT_MAX)
429 		return -EINVAL;
430 
431 	khugepaged_scan_sleep_millisecs = msecs;
432 	wake_up_interruptible(&khugepaged_wait);
433 
434 	return count;
435 }
436 static struct kobj_attribute scan_sleep_millisecs_attr =
437 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
438 	       scan_sleep_millisecs_store);
439 
440 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
441 					  struct kobj_attribute *attr,
442 					  char *buf)
443 {
444 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
445 }
446 
447 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
448 					   struct kobj_attribute *attr,
449 					   const char *buf, size_t count)
450 {
451 	unsigned long msecs;
452 	int err;
453 
454 	err = kstrtoul(buf, 10, &msecs);
455 	if (err || msecs > UINT_MAX)
456 		return -EINVAL;
457 
458 	khugepaged_alloc_sleep_millisecs = msecs;
459 	wake_up_interruptible(&khugepaged_wait);
460 
461 	return count;
462 }
463 static struct kobj_attribute alloc_sleep_millisecs_attr =
464 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
465 	       alloc_sleep_millisecs_store);
466 
467 static ssize_t pages_to_scan_show(struct kobject *kobj,
468 				  struct kobj_attribute *attr,
469 				  char *buf)
470 {
471 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472 }
473 static ssize_t pages_to_scan_store(struct kobject *kobj,
474 				   struct kobj_attribute *attr,
475 				   const char *buf, size_t count)
476 {
477 	int err;
478 	unsigned long pages;
479 
480 	err = kstrtoul(buf, 10, &pages);
481 	if (err || !pages || pages > UINT_MAX)
482 		return -EINVAL;
483 
484 	khugepaged_pages_to_scan = pages;
485 
486 	return count;
487 }
488 static struct kobj_attribute pages_to_scan_attr =
489 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
490 	       pages_to_scan_store);
491 
492 static ssize_t pages_collapsed_show(struct kobject *kobj,
493 				    struct kobj_attribute *attr,
494 				    char *buf)
495 {
496 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497 }
498 static struct kobj_attribute pages_collapsed_attr =
499 	__ATTR_RO(pages_collapsed);
500 
501 static ssize_t full_scans_show(struct kobject *kobj,
502 			       struct kobj_attribute *attr,
503 			       char *buf)
504 {
505 	return sprintf(buf, "%u\n", khugepaged_full_scans);
506 }
507 static struct kobj_attribute full_scans_attr =
508 	__ATTR_RO(full_scans);
509 
510 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
511 				      struct kobj_attribute *attr, char *buf)
512 {
513 	return single_flag_show(kobj, attr, buf,
514 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 }
516 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
517 				       struct kobj_attribute *attr,
518 				       const char *buf, size_t count)
519 {
520 	return single_flag_store(kobj, attr, buf, count,
521 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 }
523 static struct kobj_attribute khugepaged_defrag_attr =
524 	__ATTR(defrag, 0644, khugepaged_defrag_show,
525 	       khugepaged_defrag_store);
526 
527 /*
528  * max_ptes_none controls if khugepaged should collapse hugepages over
529  * any unmapped ptes in turn potentially increasing the memory
530  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
531  * reduce the available free memory in the system as it
532  * runs. Increasing max_ptes_none will instead potentially reduce the
533  * free memory in the system during the khugepaged scan.
534  */
535 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
536 					     struct kobj_attribute *attr,
537 					     char *buf)
538 {
539 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540 }
541 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
542 					      struct kobj_attribute *attr,
543 					      const char *buf, size_t count)
544 {
545 	int err;
546 	unsigned long max_ptes_none;
547 
548 	err = kstrtoul(buf, 10, &max_ptes_none);
549 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
550 		return -EINVAL;
551 
552 	khugepaged_max_ptes_none = max_ptes_none;
553 
554 	return count;
555 }
556 static struct kobj_attribute khugepaged_max_ptes_none_attr =
557 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
558 	       khugepaged_max_ptes_none_store);
559 
560 static struct attribute *khugepaged_attr[] = {
561 	&khugepaged_defrag_attr.attr,
562 	&khugepaged_max_ptes_none_attr.attr,
563 	&pages_to_scan_attr.attr,
564 	&pages_collapsed_attr.attr,
565 	&full_scans_attr.attr,
566 	&scan_sleep_millisecs_attr.attr,
567 	&alloc_sleep_millisecs_attr.attr,
568 	NULL,
569 };
570 
571 static struct attribute_group khugepaged_attr_group = {
572 	.attrs = khugepaged_attr,
573 	.name = "khugepaged",
574 };
575 
576 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
577 {
578 	int err;
579 
580 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
581 	if (unlikely(!*hugepage_kobj)) {
582 		pr_err("failed to create transparent hugepage kobject\n");
583 		return -ENOMEM;
584 	}
585 
586 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
587 	if (err) {
588 		pr_err("failed to register transparent hugepage group\n");
589 		goto delete_obj;
590 	}
591 
592 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
593 	if (err) {
594 		pr_err("failed to register transparent hugepage group\n");
595 		goto remove_hp_group;
596 	}
597 
598 	return 0;
599 
600 remove_hp_group:
601 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
602 delete_obj:
603 	kobject_put(*hugepage_kobj);
604 	return err;
605 }
606 
607 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608 {
609 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
610 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
611 	kobject_put(hugepage_kobj);
612 }
613 #else
614 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 {
616 	return 0;
617 }
618 
619 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
620 {
621 }
622 #endif /* CONFIG_SYSFS */
623 
624 static int __init hugepage_init(void)
625 {
626 	int err;
627 	struct kobject *hugepage_kobj;
628 
629 	if (!has_transparent_hugepage()) {
630 		transparent_hugepage_flags = 0;
631 		return -EINVAL;
632 	}
633 
634 	err = hugepage_init_sysfs(&hugepage_kobj);
635 	if (err)
636 		goto err_sysfs;
637 
638 	err = khugepaged_slab_init();
639 	if (err)
640 		goto err_slab;
641 
642 	err = register_shrinker(&huge_zero_page_shrinker);
643 	if (err)
644 		goto err_hzp_shrinker;
645 
646 	/*
647 	 * By default disable transparent hugepages on smaller systems,
648 	 * where the extra memory used could hurt more than TLB overhead
649 	 * is likely to save.  The admin can still enable it through /sys.
650 	 */
651 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
652 		transparent_hugepage_flags = 0;
653 		return 0;
654 	}
655 
656 	err = start_stop_khugepaged();
657 	if (err)
658 		goto err_khugepaged;
659 
660 	return 0;
661 err_khugepaged:
662 	unregister_shrinker(&huge_zero_page_shrinker);
663 err_hzp_shrinker:
664 	khugepaged_slab_exit();
665 err_slab:
666 	hugepage_exit_sysfs(hugepage_kobj);
667 err_sysfs:
668 	return err;
669 }
670 subsys_initcall(hugepage_init);
671 
672 static int __init setup_transparent_hugepage(char *str)
673 {
674 	int ret = 0;
675 	if (!str)
676 		goto out;
677 	if (!strcmp(str, "always")) {
678 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			&transparent_hugepage_flags);
680 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			  &transparent_hugepage_flags);
682 		ret = 1;
683 	} else if (!strcmp(str, "madvise")) {
684 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 			  &transparent_hugepage_flags);
686 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 			&transparent_hugepage_flags);
688 		ret = 1;
689 	} else if (!strcmp(str, "never")) {
690 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
691 			  &transparent_hugepage_flags);
692 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
693 			  &transparent_hugepage_flags);
694 		ret = 1;
695 	}
696 out:
697 	if (!ret)
698 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
699 	return ret;
700 }
701 __setup("transparent_hugepage=", setup_transparent_hugepage);
702 
703 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
704 {
705 	if (likely(vma->vm_flags & VM_WRITE))
706 		pmd = pmd_mkwrite(pmd);
707 	return pmd;
708 }
709 
710 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
711 {
712 	pmd_t entry;
713 	entry = mk_pmd(page, prot);
714 	entry = pmd_mkhuge(entry);
715 	return entry;
716 }
717 
718 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
719 					struct vm_area_struct *vma,
720 					unsigned long address, pmd_t *pmd,
721 					struct page *page, gfp_t gfp,
722 					unsigned int flags)
723 {
724 	struct mem_cgroup *memcg;
725 	pgtable_t pgtable;
726 	spinlock_t *ptl;
727 	unsigned long haddr = address & HPAGE_PMD_MASK;
728 
729 	VM_BUG_ON_PAGE(!PageCompound(page), page);
730 
731 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
732 		put_page(page);
733 		count_vm_event(THP_FAULT_FALLBACK);
734 		return VM_FAULT_FALLBACK;
735 	}
736 
737 	pgtable = pte_alloc_one(mm, haddr);
738 	if (unlikely(!pgtable)) {
739 		mem_cgroup_cancel_charge(page, memcg);
740 		put_page(page);
741 		return VM_FAULT_OOM;
742 	}
743 
744 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
745 	/*
746 	 * The memory barrier inside __SetPageUptodate makes sure that
747 	 * clear_huge_page writes become visible before the set_pmd_at()
748 	 * write.
749 	 */
750 	__SetPageUptodate(page);
751 
752 	ptl = pmd_lock(mm, pmd);
753 	if (unlikely(!pmd_none(*pmd))) {
754 		spin_unlock(ptl);
755 		mem_cgroup_cancel_charge(page, memcg);
756 		put_page(page);
757 		pte_free(mm, pgtable);
758 	} else {
759 		pmd_t entry;
760 
761 		/* Deliver the page fault to userland */
762 		if (userfaultfd_missing(vma)) {
763 			int ret;
764 
765 			spin_unlock(ptl);
766 			mem_cgroup_cancel_charge(page, memcg);
767 			put_page(page);
768 			pte_free(mm, pgtable);
769 			ret = handle_userfault(vma, address, flags,
770 					       VM_UFFD_MISSING);
771 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
772 			return ret;
773 		}
774 
775 		entry = mk_huge_pmd(page, vma->vm_page_prot);
776 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
777 		page_add_new_anon_rmap(page, vma, haddr);
778 		mem_cgroup_commit_charge(page, memcg, false);
779 		lru_cache_add_active_or_unevictable(page, vma);
780 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 		set_pmd_at(mm, haddr, pmd, entry);
782 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
783 		atomic_long_inc(&mm->nr_ptes);
784 		spin_unlock(ptl);
785 		count_vm_event(THP_FAULT_ALLOC);
786 	}
787 
788 	return 0;
789 }
790 
791 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
792 {
793 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
794 }
795 
796 /* Caller must hold page table lock. */
797 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
798 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
799 		struct page *zero_page)
800 {
801 	pmd_t entry;
802 	entry = mk_pmd(zero_page, vma->vm_page_prot);
803 	entry = pmd_mkhuge(entry);
804 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 	set_pmd_at(mm, haddr, pmd, entry);
806 	atomic_long_inc(&mm->nr_ptes);
807 }
808 
809 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
810 			       unsigned long address, pmd_t *pmd,
811 			       unsigned int flags)
812 {
813 	gfp_t gfp;
814 	struct page *page;
815 	unsigned long haddr = address & HPAGE_PMD_MASK;
816 
817 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
818 		return VM_FAULT_FALLBACK;
819 	if (unlikely(anon_vma_prepare(vma)))
820 		return VM_FAULT_OOM;
821 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
822 		return VM_FAULT_OOM;
823 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
824 			transparent_hugepage_use_zero_page()) {
825 		spinlock_t *ptl;
826 		pgtable_t pgtable;
827 		struct page *zero_page;
828 		bool set;
829 		int ret;
830 		pgtable = pte_alloc_one(mm, haddr);
831 		if (unlikely(!pgtable))
832 			return VM_FAULT_OOM;
833 		zero_page = get_huge_zero_page();
834 		if (unlikely(!zero_page)) {
835 			pte_free(mm, pgtable);
836 			count_vm_event(THP_FAULT_FALLBACK);
837 			return VM_FAULT_FALLBACK;
838 		}
839 		ptl = pmd_lock(mm, pmd);
840 		ret = 0;
841 		set = false;
842 		if (pmd_none(*pmd)) {
843 			if (userfaultfd_missing(vma)) {
844 				spin_unlock(ptl);
845 				ret = handle_userfault(vma, address, flags,
846 						       VM_UFFD_MISSING);
847 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
848 			} else {
849 				set_huge_zero_page(pgtable, mm, vma,
850 						   haddr, pmd,
851 						   zero_page);
852 				spin_unlock(ptl);
853 				set = true;
854 			}
855 		} else
856 			spin_unlock(ptl);
857 		if (!set) {
858 			pte_free(mm, pgtable);
859 			put_huge_zero_page();
860 		}
861 		return ret;
862 	}
863 	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
864 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
865 	if (unlikely(!page)) {
866 		count_vm_event(THP_FAULT_FALLBACK);
867 		return VM_FAULT_FALLBACK;
868 	}
869 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
870 					    flags);
871 }
872 
873 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
874 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
875 		  struct vm_area_struct *vma)
876 {
877 	spinlock_t *dst_ptl, *src_ptl;
878 	struct page *src_page;
879 	pmd_t pmd;
880 	pgtable_t pgtable;
881 	int ret;
882 
883 	ret = -ENOMEM;
884 	pgtable = pte_alloc_one(dst_mm, addr);
885 	if (unlikely(!pgtable))
886 		goto out;
887 
888 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
889 	src_ptl = pmd_lockptr(src_mm, src_pmd);
890 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
891 
892 	ret = -EAGAIN;
893 	pmd = *src_pmd;
894 	if (unlikely(!pmd_trans_huge(pmd))) {
895 		pte_free(dst_mm, pgtable);
896 		goto out_unlock;
897 	}
898 	/*
899 	 * When page table lock is held, the huge zero pmd should not be
900 	 * under splitting since we don't split the page itself, only pmd to
901 	 * a page table.
902 	 */
903 	if (is_huge_zero_pmd(pmd)) {
904 		struct page *zero_page;
905 		/*
906 		 * get_huge_zero_page() will never allocate a new page here,
907 		 * since we already have a zero page to copy. It just takes a
908 		 * reference.
909 		 */
910 		zero_page = get_huge_zero_page();
911 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
912 				zero_page);
913 		ret = 0;
914 		goto out_unlock;
915 	}
916 
917 	if (unlikely(pmd_trans_splitting(pmd))) {
918 		/* split huge page running from under us */
919 		spin_unlock(src_ptl);
920 		spin_unlock(dst_ptl);
921 		pte_free(dst_mm, pgtable);
922 
923 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
924 		goto out;
925 	}
926 	src_page = pmd_page(pmd);
927 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
928 	get_page(src_page);
929 	page_dup_rmap(src_page);
930 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
931 
932 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
933 	pmd = pmd_mkold(pmd_wrprotect(pmd));
934 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
935 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
936 	atomic_long_inc(&dst_mm->nr_ptes);
937 
938 	ret = 0;
939 out_unlock:
940 	spin_unlock(src_ptl);
941 	spin_unlock(dst_ptl);
942 out:
943 	return ret;
944 }
945 
946 void huge_pmd_set_accessed(struct mm_struct *mm,
947 			   struct vm_area_struct *vma,
948 			   unsigned long address,
949 			   pmd_t *pmd, pmd_t orig_pmd,
950 			   int dirty)
951 {
952 	spinlock_t *ptl;
953 	pmd_t entry;
954 	unsigned long haddr;
955 
956 	ptl = pmd_lock(mm, pmd);
957 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
958 		goto unlock;
959 
960 	entry = pmd_mkyoung(orig_pmd);
961 	haddr = address & HPAGE_PMD_MASK;
962 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
963 		update_mmu_cache_pmd(vma, address, pmd);
964 
965 unlock:
966 	spin_unlock(ptl);
967 }
968 
969 /*
970  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
971  * during copy_user_huge_page()'s copy_page_rep(): in the case when
972  * the source page gets split and a tail freed before copy completes.
973  * Called under pmd_lock of checked pmd, so safe from splitting itself.
974  */
975 static void get_user_huge_page(struct page *page)
976 {
977 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
978 		struct page *endpage = page + HPAGE_PMD_NR;
979 
980 		atomic_add(HPAGE_PMD_NR, &page->_count);
981 		while (++page < endpage)
982 			get_huge_page_tail(page);
983 	} else {
984 		get_page(page);
985 	}
986 }
987 
988 static void put_user_huge_page(struct page *page)
989 {
990 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
991 		struct page *endpage = page + HPAGE_PMD_NR;
992 
993 		while (page < endpage)
994 			put_page(page++);
995 	} else {
996 		put_page(page);
997 	}
998 }
999 
1000 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1001 					struct vm_area_struct *vma,
1002 					unsigned long address,
1003 					pmd_t *pmd, pmd_t orig_pmd,
1004 					struct page *page,
1005 					unsigned long haddr)
1006 {
1007 	struct mem_cgroup *memcg;
1008 	spinlock_t *ptl;
1009 	pgtable_t pgtable;
1010 	pmd_t _pmd;
1011 	int ret = 0, i;
1012 	struct page **pages;
1013 	unsigned long mmun_start;	/* For mmu_notifiers */
1014 	unsigned long mmun_end;		/* For mmu_notifiers */
1015 
1016 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1017 			GFP_KERNEL);
1018 	if (unlikely(!pages)) {
1019 		ret |= VM_FAULT_OOM;
1020 		goto out;
1021 	}
1022 
1023 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1024 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1025 					       __GFP_OTHER_NODE,
1026 					       vma, address, page_to_nid(page));
1027 		if (unlikely(!pages[i] ||
1028 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1029 						   &memcg))) {
1030 			if (pages[i])
1031 				put_page(pages[i]);
1032 			while (--i >= 0) {
1033 				memcg = (void *)page_private(pages[i]);
1034 				set_page_private(pages[i], 0);
1035 				mem_cgroup_cancel_charge(pages[i], memcg);
1036 				put_page(pages[i]);
1037 			}
1038 			kfree(pages);
1039 			ret |= VM_FAULT_OOM;
1040 			goto out;
1041 		}
1042 		set_page_private(pages[i], (unsigned long)memcg);
1043 	}
1044 
1045 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1046 		copy_user_highpage(pages[i], page + i,
1047 				   haddr + PAGE_SIZE * i, vma);
1048 		__SetPageUptodate(pages[i]);
1049 		cond_resched();
1050 	}
1051 
1052 	mmun_start = haddr;
1053 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1054 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1055 
1056 	ptl = pmd_lock(mm, pmd);
1057 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1058 		goto out_free_pages;
1059 	VM_BUG_ON_PAGE(!PageHead(page), page);
1060 
1061 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1062 	/* leave pmd empty until pte is filled */
1063 
1064 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1065 	pmd_populate(mm, &_pmd, pgtable);
1066 
1067 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1068 		pte_t *pte, entry;
1069 		entry = mk_pte(pages[i], vma->vm_page_prot);
1070 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1071 		memcg = (void *)page_private(pages[i]);
1072 		set_page_private(pages[i], 0);
1073 		page_add_new_anon_rmap(pages[i], vma, haddr);
1074 		mem_cgroup_commit_charge(pages[i], memcg, false);
1075 		lru_cache_add_active_or_unevictable(pages[i], vma);
1076 		pte = pte_offset_map(&_pmd, haddr);
1077 		VM_BUG_ON(!pte_none(*pte));
1078 		set_pte_at(mm, haddr, pte, entry);
1079 		pte_unmap(pte);
1080 	}
1081 	kfree(pages);
1082 
1083 	smp_wmb(); /* make pte visible before pmd */
1084 	pmd_populate(mm, pmd, pgtable);
1085 	page_remove_rmap(page);
1086 	spin_unlock(ptl);
1087 
1088 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1089 
1090 	ret |= VM_FAULT_WRITE;
1091 	put_page(page);
1092 
1093 out:
1094 	return ret;
1095 
1096 out_free_pages:
1097 	spin_unlock(ptl);
1098 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1099 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1100 		memcg = (void *)page_private(pages[i]);
1101 		set_page_private(pages[i], 0);
1102 		mem_cgroup_cancel_charge(pages[i], memcg);
1103 		put_page(pages[i]);
1104 	}
1105 	kfree(pages);
1106 	goto out;
1107 }
1108 
1109 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1110 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1111 {
1112 	spinlock_t *ptl;
1113 	int ret = 0;
1114 	struct page *page = NULL, *new_page;
1115 	struct mem_cgroup *memcg;
1116 	unsigned long haddr;
1117 	unsigned long mmun_start;	/* For mmu_notifiers */
1118 	unsigned long mmun_end;		/* For mmu_notifiers */
1119 	gfp_t huge_gfp;			/* for allocation and charge */
1120 
1121 	ptl = pmd_lockptr(mm, pmd);
1122 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1123 	haddr = address & HPAGE_PMD_MASK;
1124 	if (is_huge_zero_pmd(orig_pmd))
1125 		goto alloc;
1126 	spin_lock(ptl);
1127 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1128 		goto out_unlock;
1129 
1130 	page = pmd_page(orig_pmd);
1131 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1132 	if (page_mapcount(page) == 1) {
1133 		pmd_t entry;
1134 		entry = pmd_mkyoung(orig_pmd);
1135 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1136 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1137 			update_mmu_cache_pmd(vma, address, pmd);
1138 		ret |= VM_FAULT_WRITE;
1139 		goto out_unlock;
1140 	}
1141 	get_user_huge_page(page);
1142 	spin_unlock(ptl);
1143 alloc:
1144 	if (transparent_hugepage_enabled(vma) &&
1145 	    !transparent_hugepage_debug_cow()) {
1146 		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1147 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1148 	} else
1149 		new_page = NULL;
1150 
1151 	if (unlikely(!new_page)) {
1152 		if (!page) {
1153 			split_huge_page_pmd(vma, address, pmd);
1154 			ret |= VM_FAULT_FALLBACK;
1155 		} else {
1156 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1157 					pmd, orig_pmd, page, haddr);
1158 			if (ret & VM_FAULT_OOM) {
1159 				split_huge_page(page);
1160 				ret |= VM_FAULT_FALLBACK;
1161 			}
1162 			put_user_huge_page(page);
1163 		}
1164 		count_vm_event(THP_FAULT_FALLBACK);
1165 		goto out;
1166 	}
1167 
1168 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1169 		put_page(new_page);
1170 		if (page) {
1171 			split_huge_page(page);
1172 			put_user_huge_page(page);
1173 		} else
1174 			split_huge_page_pmd(vma, address, pmd);
1175 		ret |= VM_FAULT_FALLBACK;
1176 		count_vm_event(THP_FAULT_FALLBACK);
1177 		goto out;
1178 	}
1179 
1180 	count_vm_event(THP_FAULT_ALLOC);
1181 
1182 	if (!page)
1183 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1184 	else
1185 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1186 	__SetPageUptodate(new_page);
1187 
1188 	mmun_start = haddr;
1189 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1190 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1191 
1192 	spin_lock(ptl);
1193 	if (page)
1194 		put_user_huge_page(page);
1195 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1196 		spin_unlock(ptl);
1197 		mem_cgroup_cancel_charge(new_page, memcg);
1198 		put_page(new_page);
1199 		goto out_mn;
1200 	} else {
1201 		pmd_t entry;
1202 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1203 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1204 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1205 		page_add_new_anon_rmap(new_page, vma, haddr);
1206 		mem_cgroup_commit_charge(new_page, memcg, false);
1207 		lru_cache_add_active_or_unevictable(new_page, vma);
1208 		set_pmd_at(mm, haddr, pmd, entry);
1209 		update_mmu_cache_pmd(vma, address, pmd);
1210 		if (!page) {
1211 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1212 			put_huge_zero_page();
1213 		} else {
1214 			VM_BUG_ON_PAGE(!PageHead(page), page);
1215 			page_remove_rmap(page);
1216 			put_page(page);
1217 		}
1218 		ret |= VM_FAULT_WRITE;
1219 	}
1220 	spin_unlock(ptl);
1221 out_mn:
1222 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1223 out:
1224 	return ret;
1225 out_unlock:
1226 	spin_unlock(ptl);
1227 	return ret;
1228 }
1229 
1230 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1231 				   unsigned long addr,
1232 				   pmd_t *pmd,
1233 				   unsigned int flags)
1234 {
1235 	struct mm_struct *mm = vma->vm_mm;
1236 	struct page *page = NULL;
1237 
1238 	assert_spin_locked(pmd_lockptr(mm, pmd));
1239 
1240 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1241 		goto out;
1242 
1243 	/* Avoid dumping huge zero page */
1244 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1245 		return ERR_PTR(-EFAULT);
1246 
1247 	/* Full NUMA hinting faults to serialise migration in fault paths */
1248 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1249 		goto out;
1250 
1251 	page = pmd_page(*pmd);
1252 	VM_BUG_ON_PAGE(!PageHead(page), page);
1253 	if (flags & FOLL_TOUCH) {
1254 		pmd_t _pmd;
1255 		/*
1256 		 * We should set the dirty bit only for FOLL_WRITE but
1257 		 * for now the dirty bit in the pmd is meaningless.
1258 		 * And if the dirty bit will become meaningful and
1259 		 * we'll only set it with FOLL_WRITE, an atomic
1260 		 * set_bit will be required on the pmd to set the
1261 		 * young bit, instead of the current set_pmd_at.
1262 		 */
1263 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1264 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1265 					  pmd, _pmd,  1))
1266 			update_mmu_cache_pmd(vma, addr, pmd);
1267 	}
1268 	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
1269 		if (page->mapping && trylock_page(page)) {
1270 			lru_add_drain();
1271 			if (page->mapping)
1272 				mlock_vma_page(page);
1273 			unlock_page(page);
1274 		}
1275 	}
1276 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1277 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1278 	if (flags & FOLL_GET)
1279 		get_page_foll(page);
1280 
1281 out:
1282 	return page;
1283 }
1284 
1285 /* NUMA hinting page fault entry point for trans huge pmds */
1286 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1287 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1288 {
1289 	spinlock_t *ptl;
1290 	struct anon_vma *anon_vma = NULL;
1291 	struct page *page;
1292 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1293 	int page_nid = -1, this_nid = numa_node_id();
1294 	int target_nid, last_cpupid = -1;
1295 	bool page_locked;
1296 	bool migrated = false;
1297 	bool was_writable;
1298 	int flags = 0;
1299 
1300 	/* A PROT_NONE fault should not end up here */
1301 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1302 
1303 	ptl = pmd_lock(mm, pmdp);
1304 	if (unlikely(!pmd_same(pmd, *pmdp)))
1305 		goto out_unlock;
1306 
1307 	/*
1308 	 * If there are potential migrations, wait for completion and retry
1309 	 * without disrupting NUMA hinting information. Do not relock and
1310 	 * check_same as the page may no longer be mapped.
1311 	 */
1312 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1313 		page = pmd_page(*pmdp);
1314 		spin_unlock(ptl);
1315 		wait_on_page_locked(page);
1316 		goto out;
1317 	}
1318 
1319 	page = pmd_page(pmd);
1320 	BUG_ON(is_huge_zero_page(page));
1321 	page_nid = page_to_nid(page);
1322 	last_cpupid = page_cpupid_last(page);
1323 	count_vm_numa_event(NUMA_HINT_FAULTS);
1324 	if (page_nid == this_nid) {
1325 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1326 		flags |= TNF_FAULT_LOCAL;
1327 	}
1328 
1329 	/* See similar comment in do_numa_page for explanation */
1330 	if (!(vma->vm_flags & VM_WRITE))
1331 		flags |= TNF_NO_GROUP;
1332 
1333 	/*
1334 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1335 	 * page_table_lock if at all possible
1336 	 */
1337 	page_locked = trylock_page(page);
1338 	target_nid = mpol_misplaced(page, vma, haddr);
1339 	if (target_nid == -1) {
1340 		/* If the page was locked, there are no parallel migrations */
1341 		if (page_locked)
1342 			goto clear_pmdnuma;
1343 	}
1344 
1345 	/* Migration could have started since the pmd_trans_migrating check */
1346 	if (!page_locked) {
1347 		spin_unlock(ptl);
1348 		wait_on_page_locked(page);
1349 		page_nid = -1;
1350 		goto out;
1351 	}
1352 
1353 	/*
1354 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1355 	 * to serialises splits
1356 	 */
1357 	get_page(page);
1358 	spin_unlock(ptl);
1359 	anon_vma = page_lock_anon_vma_read(page);
1360 
1361 	/* Confirm the PMD did not change while page_table_lock was released */
1362 	spin_lock(ptl);
1363 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1364 		unlock_page(page);
1365 		put_page(page);
1366 		page_nid = -1;
1367 		goto out_unlock;
1368 	}
1369 
1370 	/* Bail if we fail to protect against THP splits for any reason */
1371 	if (unlikely(!anon_vma)) {
1372 		put_page(page);
1373 		page_nid = -1;
1374 		goto clear_pmdnuma;
1375 	}
1376 
1377 	/*
1378 	 * Migrate the THP to the requested node, returns with page unlocked
1379 	 * and access rights restored.
1380 	 */
1381 	spin_unlock(ptl);
1382 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1383 				pmdp, pmd, addr, page, target_nid);
1384 	if (migrated) {
1385 		flags |= TNF_MIGRATED;
1386 		page_nid = target_nid;
1387 	} else
1388 		flags |= TNF_MIGRATE_FAIL;
1389 
1390 	goto out;
1391 clear_pmdnuma:
1392 	BUG_ON(!PageLocked(page));
1393 	was_writable = pmd_write(pmd);
1394 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1395 	pmd = pmd_mkyoung(pmd);
1396 	if (was_writable)
1397 		pmd = pmd_mkwrite(pmd);
1398 	set_pmd_at(mm, haddr, pmdp, pmd);
1399 	update_mmu_cache_pmd(vma, addr, pmdp);
1400 	unlock_page(page);
1401 out_unlock:
1402 	spin_unlock(ptl);
1403 
1404 out:
1405 	if (anon_vma)
1406 		page_unlock_anon_vma_read(anon_vma);
1407 
1408 	if (page_nid != -1)
1409 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1410 
1411 	return 0;
1412 }
1413 
1414 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1415 		 pmd_t *pmd, unsigned long addr)
1416 {
1417 	spinlock_t *ptl;
1418 	int ret = 0;
1419 
1420 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1421 		struct page *page;
1422 		pgtable_t pgtable;
1423 		pmd_t orig_pmd;
1424 		/*
1425 		 * For architectures like ppc64 we look at deposited pgtable
1426 		 * when calling pmdp_huge_get_and_clear. So do the
1427 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1428 		 * operations.
1429 		 */
1430 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1431 							tlb->fullmm);
1432 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1433 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1434 		if (is_huge_zero_pmd(orig_pmd)) {
1435 			atomic_long_dec(&tlb->mm->nr_ptes);
1436 			spin_unlock(ptl);
1437 			put_huge_zero_page();
1438 		} else {
1439 			page = pmd_page(orig_pmd);
1440 			page_remove_rmap(page);
1441 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1442 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1443 			VM_BUG_ON_PAGE(!PageHead(page), page);
1444 			atomic_long_dec(&tlb->mm->nr_ptes);
1445 			spin_unlock(ptl);
1446 			tlb_remove_page(tlb, page);
1447 		}
1448 		pte_free(tlb->mm, pgtable);
1449 		ret = 1;
1450 	}
1451 	return ret;
1452 }
1453 
1454 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1455 		  unsigned long old_addr,
1456 		  unsigned long new_addr, unsigned long old_end,
1457 		  pmd_t *old_pmd, pmd_t *new_pmd)
1458 {
1459 	spinlock_t *old_ptl, *new_ptl;
1460 	int ret = 0;
1461 	pmd_t pmd;
1462 
1463 	struct mm_struct *mm = vma->vm_mm;
1464 
1465 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1466 	    (new_addr & ~HPAGE_PMD_MASK) ||
1467 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1468 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1469 		goto out;
1470 
1471 	/*
1472 	 * The destination pmd shouldn't be established, free_pgtables()
1473 	 * should have release it.
1474 	 */
1475 	if (WARN_ON(!pmd_none(*new_pmd))) {
1476 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1477 		goto out;
1478 	}
1479 
1480 	/*
1481 	 * We don't have to worry about the ordering of src and dst
1482 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1483 	 */
1484 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1485 	if (ret == 1) {
1486 		new_ptl = pmd_lockptr(mm, new_pmd);
1487 		if (new_ptl != old_ptl)
1488 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1489 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1490 		VM_BUG_ON(!pmd_none(*new_pmd));
1491 
1492 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1493 			pgtable_t pgtable;
1494 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1495 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1496 		}
1497 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1498 		if (new_ptl != old_ptl)
1499 			spin_unlock(new_ptl);
1500 		spin_unlock(old_ptl);
1501 	}
1502 out:
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Returns
1508  *  - 0 if PMD could not be locked
1509  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1510  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1511  */
1512 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1513 		unsigned long addr, pgprot_t newprot, int prot_numa)
1514 {
1515 	struct mm_struct *mm = vma->vm_mm;
1516 	spinlock_t *ptl;
1517 	int ret = 0;
1518 
1519 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1520 		pmd_t entry;
1521 		bool preserve_write = prot_numa && pmd_write(*pmd);
1522 		ret = 1;
1523 
1524 		/*
1525 		 * Avoid trapping faults against the zero page. The read-only
1526 		 * data is likely to be read-cached on the local CPU and
1527 		 * local/remote hits to the zero page are not interesting.
1528 		 */
1529 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1530 			spin_unlock(ptl);
1531 			return ret;
1532 		}
1533 
1534 		if (!prot_numa || !pmd_protnone(*pmd)) {
1535 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1536 			entry = pmd_modify(entry, newprot);
1537 			if (preserve_write)
1538 				entry = pmd_mkwrite(entry);
1539 			ret = HPAGE_PMD_NR;
1540 			set_pmd_at(mm, addr, pmd, entry);
1541 			BUG_ON(!preserve_write && pmd_write(entry));
1542 		}
1543 		spin_unlock(ptl);
1544 	}
1545 
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1551  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1552  *
1553  * Note that if it returns 1, this routine returns without unlocking page
1554  * table locks. So callers must unlock them.
1555  */
1556 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1557 		spinlock_t **ptl)
1558 {
1559 	*ptl = pmd_lock(vma->vm_mm, pmd);
1560 	if (likely(pmd_trans_huge(*pmd))) {
1561 		if (unlikely(pmd_trans_splitting(*pmd))) {
1562 			spin_unlock(*ptl);
1563 			wait_split_huge_page(vma->anon_vma, pmd);
1564 			return -1;
1565 		} else {
1566 			/* Thp mapped by 'pmd' is stable, so we can
1567 			 * handle it as it is. */
1568 			return 1;
1569 		}
1570 	}
1571 	spin_unlock(*ptl);
1572 	return 0;
1573 }
1574 
1575 /*
1576  * This function returns whether a given @page is mapped onto the @address
1577  * in the virtual space of @mm.
1578  *
1579  * When it's true, this function returns *pmd with holding the page table lock
1580  * and passing it back to the caller via @ptl.
1581  * If it's false, returns NULL without holding the page table lock.
1582  */
1583 pmd_t *page_check_address_pmd(struct page *page,
1584 			      struct mm_struct *mm,
1585 			      unsigned long address,
1586 			      enum page_check_address_pmd_flag flag,
1587 			      spinlock_t **ptl)
1588 {
1589 	pgd_t *pgd;
1590 	pud_t *pud;
1591 	pmd_t *pmd;
1592 
1593 	if (address & ~HPAGE_PMD_MASK)
1594 		return NULL;
1595 
1596 	pgd = pgd_offset(mm, address);
1597 	if (!pgd_present(*pgd))
1598 		return NULL;
1599 	pud = pud_offset(pgd, address);
1600 	if (!pud_present(*pud))
1601 		return NULL;
1602 	pmd = pmd_offset(pud, address);
1603 
1604 	*ptl = pmd_lock(mm, pmd);
1605 	if (!pmd_present(*pmd))
1606 		goto unlock;
1607 	if (pmd_page(*pmd) != page)
1608 		goto unlock;
1609 	/*
1610 	 * split_vma() may create temporary aliased mappings. There is
1611 	 * no risk as long as all huge pmd are found and have their
1612 	 * splitting bit set before __split_huge_page_refcount
1613 	 * runs. Finding the same huge pmd more than once during the
1614 	 * same rmap walk is not a problem.
1615 	 */
1616 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1617 	    pmd_trans_splitting(*pmd))
1618 		goto unlock;
1619 	if (pmd_trans_huge(*pmd)) {
1620 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1621 			  !pmd_trans_splitting(*pmd));
1622 		return pmd;
1623 	}
1624 unlock:
1625 	spin_unlock(*ptl);
1626 	return NULL;
1627 }
1628 
1629 static int __split_huge_page_splitting(struct page *page,
1630 				       struct vm_area_struct *vma,
1631 				       unsigned long address)
1632 {
1633 	struct mm_struct *mm = vma->vm_mm;
1634 	spinlock_t *ptl;
1635 	pmd_t *pmd;
1636 	int ret = 0;
1637 	/* For mmu_notifiers */
1638 	const unsigned long mmun_start = address;
1639 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1640 
1641 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1642 	pmd = page_check_address_pmd(page, mm, address,
1643 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1644 	if (pmd) {
1645 		/*
1646 		 * We can't temporarily set the pmd to null in order
1647 		 * to split it, the pmd must remain marked huge at all
1648 		 * times or the VM won't take the pmd_trans_huge paths
1649 		 * and it won't wait on the anon_vma->root->rwsem to
1650 		 * serialize against split_huge_page*.
1651 		 */
1652 		pmdp_splitting_flush(vma, address, pmd);
1653 
1654 		ret = 1;
1655 		spin_unlock(ptl);
1656 	}
1657 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1658 
1659 	return ret;
1660 }
1661 
1662 static void __split_huge_page_refcount(struct page *page,
1663 				       struct list_head *list)
1664 {
1665 	int i;
1666 	struct zone *zone = page_zone(page);
1667 	struct lruvec *lruvec;
1668 	int tail_count = 0;
1669 
1670 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1671 	spin_lock_irq(&zone->lru_lock);
1672 	lruvec = mem_cgroup_page_lruvec(page, zone);
1673 
1674 	compound_lock(page);
1675 	/* complete memcg works before add pages to LRU */
1676 	mem_cgroup_split_huge_fixup(page);
1677 
1678 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1679 		struct page *page_tail = page + i;
1680 
1681 		/* tail_page->_mapcount cannot change */
1682 		BUG_ON(page_mapcount(page_tail) < 0);
1683 		tail_count += page_mapcount(page_tail);
1684 		/* check for overflow */
1685 		BUG_ON(tail_count < 0);
1686 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1687 		/*
1688 		 * tail_page->_count is zero and not changing from
1689 		 * under us. But get_page_unless_zero() may be running
1690 		 * from under us on the tail_page. If we used
1691 		 * atomic_set() below instead of atomic_add(), we
1692 		 * would then run atomic_set() concurrently with
1693 		 * get_page_unless_zero(), and atomic_set() is
1694 		 * implemented in C not using locked ops. spin_unlock
1695 		 * on x86 sometime uses locked ops because of PPro
1696 		 * errata 66, 92, so unless somebody can guarantee
1697 		 * atomic_set() here would be safe on all archs (and
1698 		 * not only on x86), it's safer to use atomic_add().
1699 		 */
1700 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1701 			   &page_tail->_count);
1702 
1703 		/* after clearing PageTail the gup refcount can be released */
1704 		smp_mb__after_atomic();
1705 
1706 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1707 		page_tail->flags |= (page->flags &
1708 				     ((1L << PG_referenced) |
1709 				      (1L << PG_swapbacked) |
1710 				      (1L << PG_mlocked) |
1711 				      (1L << PG_uptodate) |
1712 				      (1L << PG_active) |
1713 				      (1L << PG_unevictable)));
1714 		page_tail->flags |= (1L << PG_dirty);
1715 
1716 		/* clear PageTail before overwriting first_page */
1717 		smp_wmb();
1718 
1719 		/*
1720 		 * __split_huge_page_splitting() already set the
1721 		 * splitting bit in all pmd that could map this
1722 		 * hugepage, that will ensure no CPU can alter the
1723 		 * mapcount on the head page. The mapcount is only
1724 		 * accounted in the head page and it has to be
1725 		 * transferred to all tail pages in the below code. So
1726 		 * for this code to be safe, the split the mapcount
1727 		 * can't change. But that doesn't mean userland can't
1728 		 * keep changing and reading the page contents while
1729 		 * we transfer the mapcount, so the pmd splitting
1730 		 * status is achieved setting a reserved bit in the
1731 		 * pmd, not by clearing the present bit.
1732 		*/
1733 		page_tail->_mapcount = page->_mapcount;
1734 
1735 		BUG_ON(page_tail->mapping);
1736 		page_tail->mapping = page->mapping;
1737 
1738 		page_tail->index = page->index + i;
1739 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1740 
1741 		BUG_ON(!PageAnon(page_tail));
1742 		BUG_ON(!PageUptodate(page_tail));
1743 		BUG_ON(!PageDirty(page_tail));
1744 		BUG_ON(!PageSwapBacked(page_tail));
1745 
1746 		lru_add_page_tail(page, page_tail, lruvec, list);
1747 	}
1748 	atomic_sub(tail_count, &page->_count);
1749 	BUG_ON(atomic_read(&page->_count) <= 0);
1750 
1751 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1752 
1753 	ClearPageCompound(page);
1754 	compound_unlock(page);
1755 	spin_unlock_irq(&zone->lru_lock);
1756 
1757 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1758 		struct page *page_tail = page + i;
1759 		BUG_ON(page_count(page_tail) <= 0);
1760 		/*
1761 		 * Tail pages may be freed if there wasn't any mapping
1762 		 * like if add_to_swap() is running on a lru page that
1763 		 * had its mapping zapped. And freeing these pages
1764 		 * requires taking the lru_lock so we do the put_page
1765 		 * of the tail pages after the split is complete.
1766 		 */
1767 		put_page(page_tail);
1768 	}
1769 
1770 	/*
1771 	 * Only the head page (now become a regular page) is required
1772 	 * to be pinned by the caller.
1773 	 */
1774 	BUG_ON(page_count(page) <= 0);
1775 }
1776 
1777 static int __split_huge_page_map(struct page *page,
1778 				 struct vm_area_struct *vma,
1779 				 unsigned long address)
1780 {
1781 	struct mm_struct *mm = vma->vm_mm;
1782 	spinlock_t *ptl;
1783 	pmd_t *pmd, _pmd;
1784 	int ret = 0, i;
1785 	pgtable_t pgtable;
1786 	unsigned long haddr;
1787 
1788 	pmd = page_check_address_pmd(page, mm, address,
1789 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1790 	if (pmd) {
1791 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1792 		pmd_populate(mm, &_pmd, pgtable);
1793 		if (pmd_write(*pmd))
1794 			BUG_ON(page_mapcount(page) != 1);
1795 
1796 		haddr = address;
1797 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1798 			pte_t *pte, entry;
1799 			BUG_ON(PageCompound(page+i));
1800 			/*
1801 			 * Note that NUMA hinting access restrictions are not
1802 			 * transferred to avoid any possibility of altering
1803 			 * permissions across VMAs.
1804 			 */
1805 			entry = mk_pte(page + i, vma->vm_page_prot);
1806 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1807 			if (!pmd_write(*pmd))
1808 				entry = pte_wrprotect(entry);
1809 			if (!pmd_young(*pmd))
1810 				entry = pte_mkold(entry);
1811 			pte = pte_offset_map(&_pmd, haddr);
1812 			BUG_ON(!pte_none(*pte));
1813 			set_pte_at(mm, haddr, pte, entry);
1814 			pte_unmap(pte);
1815 		}
1816 
1817 		smp_wmb(); /* make pte visible before pmd */
1818 		/*
1819 		 * Up to this point the pmd is present and huge and
1820 		 * userland has the whole access to the hugepage
1821 		 * during the split (which happens in place). If we
1822 		 * overwrite the pmd with the not-huge version
1823 		 * pointing to the pte here (which of course we could
1824 		 * if all CPUs were bug free), userland could trigger
1825 		 * a small page size TLB miss on the small sized TLB
1826 		 * while the hugepage TLB entry is still established
1827 		 * in the huge TLB. Some CPU doesn't like that. See
1828 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1829 		 * Erratum 383 on page 93. Intel should be safe but is
1830 		 * also warns that it's only safe if the permission
1831 		 * and cache attributes of the two entries loaded in
1832 		 * the two TLB is identical (which should be the case
1833 		 * here). But it is generally safer to never allow
1834 		 * small and huge TLB entries for the same virtual
1835 		 * address to be loaded simultaneously. So instead of
1836 		 * doing "pmd_populate(); flush_tlb_range();" we first
1837 		 * mark the current pmd notpresent (atomically because
1838 		 * here the pmd_trans_huge and pmd_trans_splitting
1839 		 * must remain set at all times on the pmd until the
1840 		 * split is complete for this pmd), then we flush the
1841 		 * SMP TLB and finally we write the non-huge version
1842 		 * of the pmd entry with pmd_populate.
1843 		 */
1844 		pmdp_invalidate(vma, address, pmd);
1845 		pmd_populate(mm, pmd, pgtable);
1846 		ret = 1;
1847 		spin_unlock(ptl);
1848 	}
1849 
1850 	return ret;
1851 }
1852 
1853 /* must be called with anon_vma->root->rwsem held */
1854 static void __split_huge_page(struct page *page,
1855 			      struct anon_vma *anon_vma,
1856 			      struct list_head *list)
1857 {
1858 	int mapcount, mapcount2;
1859 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1860 	struct anon_vma_chain *avc;
1861 
1862 	BUG_ON(!PageHead(page));
1863 	BUG_ON(PageTail(page));
1864 
1865 	mapcount = 0;
1866 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1867 		struct vm_area_struct *vma = avc->vma;
1868 		unsigned long addr = vma_address(page, vma);
1869 		BUG_ON(is_vma_temporary_stack(vma));
1870 		mapcount += __split_huge_page_splitting(page, vma, addr);
1871 	}
1872 	/*
1873 	 * It is critical that new vmas are added to the tail of the
1874 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1875 	 * and establishes a child pmd before
1876 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1877 	 * we fail to prevent copy_huge_pmd() from running until the
1878 	 * whole __split_huge_page() is complete), we will still see
1879 	 * the newly established pmd of the child later during the
1880 	 * walk, to be able to set it as pmd_trans_splitting too.
1881 	 */
1882 	if (mapcount != page_mapcount(page)) {
1883 		pr_err("mapcount %d page_mapcount %d\n",
1884 			mapcount, page_mapcount(page));
1885 		BUG();
1886 	}
1887 
1888 	__split_huge_page_refcount(page, list);
1889 
1890 	mapcount2 = 0;
1891 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1892 		struct vm_area_struct *vma = avc->vma;
1893 		unsigned long addr = vma_address(page, vma);
1894 		BUG_ON(is_vma_temporary_stack(vma));
1895 		mapcount2 += __split_huge_page_map(page, vma, addr);
1896 	}
1897 	if (mapcount != mapcount2) {
1898 		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1899 			mapcount, mapcount2, page_mapcount(page));
1900 		BUG();
1901 	}
1902 }
1903 
1904 /*
1905  * Split a hugepage into normal pages. This doesn't change the position of head
1906  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1907  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1908  * from the hugepage.
1909  * Return 0 if the hugepage is split successfully otherwise return 1.
1910  */
1911 int split_huge_page_to_list(struct page *page, struct list_head *list)
1912 {
1913 	struct anon_vma *anon_vma;
1914 	int ret = 1;
1915 
1916 	BUG_ON(is_huge_zero_page(page));
1917 	BUG_ON(!PageAnon(page));
1918 
1919 	/*
1920 	 * The caller does not necessarily hold an mmap_sem that would prevent
1921 	 * the anon_vma disappearing so we first we take a reference to it
1922 	 * and then lock the anon_vma for write. This is similar to
1923 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1924 	 * against parallel split or collapse operations.
1925 	 */
1926 	anon_vma = page_get_anon_vma(page);
1927 	if (!anon_vma)
1928 		goto out;
1929 	anon_vma_lock_write(anon_vma);
1930 
1931 	ret = 0;
1932 	if (!PageCompound(page))
1933 		goto out_unlock;
1934 
1935 	BUG_ON(!PageSwapBacked(page));
1936 	__split_huge_page(page, anon_vma, list);
1937 	count_vm_event(THP_SPLIT);
1938 
1939 	BUG_ON(PageCompound(page));
1940 out_unlock:
1941 	anon_vma_unlock_write(anon_vma);
1942 	put_anon_vma(anon_vma);
1943 out:
1944 	return ret;
1945 }
1946 
1947 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1948 
1949 int hugepage_madvise(struct vm_area_struct *vma,
1950 		     unsigned long *vm_flags, int advice)
1951 {
1952 	switch (advice) {
1953 	case MADV_HUGEPAGE:
1954 #ifdef CONFIG_S390
1955 		/*
1956 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1957 		 * can't handle this properly after s390_enable_sie, so we simply
1958 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1959 		 */
1960 		if (mm_has_pgste(vma->vm_mm))
1961 			return 0;
1962 #endif
1963 		/*
1964 		 * Be somewhat over-protective like KSM for now!
1965 		 */
1966 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1967 			return -EINVAL;
1968 		*vm_flags &= ~VM_NOHUGEPAGE;
1969 		*vm_flags |= VM_HUGEPAGE;
1970 		/*
1971 		 * If the vma become good for khugepaged to scan,
1972 		 * register it here without waiting a page fault that
1973 		 * may not happen any time soon.
1974 		 */
1975 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1976 			return -ENOMEM;
1977 		break;
1978 	case MADV_NOHUGEPAGE:
1979 		/*
1980 		 * Be somewhat over-protective like KSM for now!
1981 		 */
1982 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1983 			return -EINVAL;
1984 		*vm_flags &= ~VM_HUGEPAGE;
1985 		*vm_flags |= VM_NOHUGEPAGE;
1986 		/*
1987 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1988 		 * this vma even if we leave the mm registered in khugepaged if
1989 		 * it got registered before VM_NOHUGEPAGE was set.
1990 		 */
1991 		break;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int __init khugepaged_slab_init(void)
1998 {
1999 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2000 					  sizeof(struct mm_slot),
2001 					  __alignof__(struct mm_slot), 0, NULL);
2002 	if (!mm_slot_cache)
2003 		return -ENOMEM;
2004 
2005 	return 0;
2006 }
2007 
2008 static void __init khugepaged_slab_exit(void)
2009 {
2010 	kmem_cache_destroy(mm_slot_cache);
2011 }
2012 
2013 static inline struct mm_slot *alloc_mm_slot(void)
2014 {
2015 	if (!mm_slot_cache)	/* initialization failed */
2016 		return NULL;
2017 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2018 }
2019 
2020 static inline void free_mm_slot(struct mm_slot *mm_slot)
2021 {
2022 	kmem_cache_free(mm_slot_cache, mm_slot);
2023 }
2024 
2025 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2026 {
2027 	struct mm_slot *mm_slot;
2028 
2029 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2030 		if (mm == mm_slot->mm)
2031 			return mm_slot;
2032 
2033 	return NULL;
2034 }
2035 
2036 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2037 				    struct mm_slot *mm_slot)
2038 {
2039 	mm_slot->mm = mm;
2040 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2041 }
2042 
2043 static inline int khugepaged_test_exit(struct mm_struct *mm)
2044 {
2045 	return atomic_read(&mm->mm_users) == 0;
2046 }
2047 
2048 int __khugepaged_enter(struct mm_struct *mm)
2049 {
2050 	struct mm_slot *mm_slot;
2051 	int wakeup;
2052 
2053 	mm_slot = alloc_mm_slot();
2054 	if (!mm_slot)
2055 		return -ENOMEM;
2056 
2057 	/* __khugepaged_exit() must not run from under us */
2058 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2059 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2060 		free_mm_slot(mm_slot);
2061 		return 0;
2062 	}
2063 
2064 	spin_lock(&khugepaged_mm_lock);
2065 	insert_to_mm_slots_hash(mm, mm_slot);
2066 	/*
2067 	 * Insert just behind the scanning cursor, to let the area settle
2068 	 * down a little.
2069 	 */
2070 	wakeup = list_empty(&khugepaged_scan.mm_head);
2071 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2072 	spin_unlock(&khugepaged_mm_lock);
2073 
2074 	atomic_inc(&mm->mm_count);
2075 	if (wakeup)
2076 		wake_up_interruptible(&khugepaged_wait);
2077 
2078 	return 0;
2079 }
2080 
2081 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2082 			       unsigned long vm_flags)
2083 {
2084 	unsigned long hstart, hend;
2085 	if (!vma->anon_vma)
2086 		/*
2087 		 * Not yet faulted in so we will register later in the
2088 		 * page fault if needed.
2089 		 */
2090 		return 0;
2091 	if (vma->vm_ops)
2092 		/* khugepaged not yet working on file or special mappings */
2093 		return 0;
2094 	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2095 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2096 	hend = vma->vm_end & HPAGE_PMD_MASK;
2097 	if (hstart < hend)
2098 		return khugepaged_enter(vma, vm_flags);
2099 	return 0;
2100 }
2101 
2102 void __khugepaged_exit(struct mm_struct *mm)
2103 {
2104 	struct mm_slot *mm_slot;
2105 	int free = 0;
2106 
2107 	spin_lock(&khugepaged_mm_lock);
2108 	mm_slot = get_mm_slot(mm);
2109 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2110 		hash_del(&mm_slot->hash);
2111 		list_del(&mm_slot->mm_node);
2112 		free = 1;
2113 	}
2114 	spin_unlock(&khugepaged_mm_lock);
2115 
2116 	if (free) {
2117 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2118 		free_mm_slot(mm_slot);
2119 		mmdrop(mm);
2120 	} else if (mm_slot) {
2121 		/*
2122 		 * This is required to serialize against
2123 		 * khugepaged_test_exit() (which is guaranteed to run
2124 		 * under mmap sem read mode). Stop here (after we
2125 		 * return all pagetables will be destroyed) until
2126 		 * khugepaged has finished working on the pagetables
2127 		 * under the mmap_sem.
2128 		 */
2129 		down_write(&mm->mmap_sem);
2130 		up_write(&mm->mmap_sem);
2131 	}
2132 }
2133 
2134 static void release_pte_page(struct page *page)
2135 {
2136 	/* 0 stands for page_is_file_cache(page) == false */
2137 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2138 	unlock_page(page);
2139 	putback_lru_page(page);
2140 }
2141 
2142 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2143 {
2144 	while (--_pte >= pte) {
2145 		pte_t pteval = *_pte;
2146 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2147 			release_pte_page(pte_page(pteval));
2148 	}
2149 }
2150 
2151 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2152 					unsigned long address,
2153 					pte_t *pte)
2154 {
2155 	struct page *page;
2156 	pte_t *_pte;
2157 	int none_or_zero = 0;
2158 	bool referenced = false, writable = false;
2159 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2160 	     _pte++, address += PAGE_SIZE) {
2161 		pte_t pteval = *_pte;
2162 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2163 			if (!userfaultfd_armed(vma) &&
2164 			    ++none_or_zero <= khugepaged_max_ptes_none)
2165 				continue;
2166 			else
2167 				goto out;
2168 		}
2169 		if (!pte_present(pteval))
2170 			goto out;
2171 		page = vm_normal_page(vma, address, pteval);
2172 		if (unlikely(!page))
2173 			goto out;
2174 
2175 		VM_BUG_ON_PAGE(PageCompound(page), page);
2176 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2177 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2178 
2179 		/*
2180 		 * We can do it before isolate_lru_page because the
2181 		 * page can't be freed from under us. NOTE: PG_lock
2182 		 * is needed to serialize against split_huge_page
2183 		 * when invoked from the VM.
2184 		 */
2185 		if (!trylock_page(page))
2186 			goto out;
2187 
2188 		/*
2189 		 * cannot use mapcount: can't collapse if there's a gup pin.
2190 		 * The page must only be referenced by the scanned process
2191 		 * and page swap cache.
2192 		 */
2193 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2194 			unlock_page(page);
2195 			goto out;
2196 		}
2197 		if (pte_write(pteval)) {
2198 			writable = true;
2199 		} else {
2200 			if (PageSwapCache(page) && !reuse_swap_page(page)) {
2201 				unlock_page(page);
2202 				goto out;
2203 			}
2204 			/*
2205 			 * Page is not in the swap cache. It can be collapsed
2206 			 * into a THP.
2207 			 */
2208 		}
2209 
2210 		/*
2211 		 * Isolate the page to avoid collapsing an hugepage
2212 		 * currently in use by the VM.
2213 		 */
2214 		if (isolate_lru_page(page)) {
2215 			unlock_page(page);
2216 			goto out;
2217 		}
2218 		/* 0 stands for page_is_file_cache(page) == false */
2219 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2220 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2221 		VM_BUG_ON_PAGE(PageLRU(page), page);
2222 
2223 		/* If there is no mapped pte young don't collapse the page */
2224 		if (pte_young(pteval) || PageReferenced(page) ||
2225 		    mmu_notifier_test_young(vma->vm_mm, address))
2226 			referenced = true;
2227 	}
2228 	if (likely(referenced && writable))
2229 		return 1;
2230 out:
2231 	release_pte_pages(pte, _pte);
2232 	return 0;
2233 }
2234 
2235 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2236 				      struct vm_area_struct *vma,
2237 				      unsigned long address,
2238 				      spinlock_t *ptl)
2239 {
2240 	pte_t *_pte;
2241 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2242 		pte_t pteval = *_pte;
2243 		struct page *src_page;
2244 
2245 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2246 			clear_user_highpage(page, address);
2247 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2248 			if (is_zero_pfn(pte_pfn(pteval))) {
2249 				/*
2250 				 * ptl mostly unnecessary.
2251 				 */
2252 				spin_lock(ptl);
2253 				/*
2254 				 * paravirt calls inside pte_clear here are
2255 				 * superfluous.
2256 				 */
2257 				pte_clear(vma->vm_mm, address, _pte);
2258 				spin_unlock(ptl);
2259 			}
2260 		} else {
2261 			src_page = pte_page(pteval);
2262 			copy_user_highpage(page, src_page, address, vma);
2263 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2264 			release_pte_page(src_page);
2265 			/*
2266 			 * ptl mostly unnecessary, but preempt has to
2267 			 * be disabled to update the per-cpu stats
2268 			 * inside page_remove_rmap().
2269 			 */
2270 			spin_lock(ptl);
2271 			/*
2272 			 * paravirt calls inside pte_clear here are
2273 			 * superfluous.
2274 			 */
2275 			pte_clear(vma->vm_mm, address, _pte);
2276 			page_remove_rmap(src_page);
2277 			spin_unlock(ptl);
2278 			free_page_and_swap_cache(src_page);
2279 		}
2280 
2281 		address += PAGE_SIZE;
2282 		page++;
2283 	}
2284 }
2285 
2286 static void khugepaged_alloc_sleep(void)
2287 {
2288 	wait_event_freezable_timeout(khugepaged_wait, false,
2289 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2290 }
2291 
2292 static int khugepaged_node_load[MAX_NUMNODES];
2293 
2294 static bool khugepaged_scan_abort(int nid)
2295 {
2296 	int i;
2297 
2298 	/*
2299 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2300 	 * allocate memory locally.
2301 	 */
2302 	if (!zone_reclaim_mode)
2303 		return false;
2304 
2305 	/* If there is a count for this node already, it must be acceptable */
2306 	if (khugepaged_node_load[nid])
2307 		return false;
2308 
2309 	for (i = 0; i < MAX_NUMNODES; i++) {
2310 		if (!khugepaged_node_load[i])
2311 			continue;
2312 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2313 			return true;
2314 	}
2315 	return false;
2316 }
2317 
2318 #ifdef CONFIG_NUMA
2319 static int khugepaged_find_target_node(void)
2320 {
2321 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2322 	int nid, target_node = 0, max_value = 0;
2323 
2324 	/* find first node with max normal pages hit */
2325 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2326 		if (khugepaged_node_load[nid] > max_value) {
2327 			max_value = khugepaged_node_load[nid];
2328 			target_node = nid;
2329 		}
2330 
2331 	/* do some balance if several nodes have the same hit record */
2332 	if (target_node <= last_khugepaged_target_node)
2333 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2334 				nid++)
2335 			if (max_value == khugepaged_node_load[nid]) {
2336 				target_node = nid;
2337 				break;
2338 			}
2339 
2340 	last_khugepaged_target_node = target_node;
2341 	return target_node;
2342 }
2343 
2344 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2345 {
2346 	if (IS_ERR(*hpage)) {
2347 		if (!*wait)
2348 			return false;
2349 
2350 		*wait = false;
2351 		*hpage = NULL;
2352 		khugepaged_alloc_sleep();
2353 	} else if (*hpage) {
2354 		put_page(*hpage);
2355 		*hpage = NULL;
2356 	}
2357 
2358 	return true;
2359 }
2360 
2361 static struct page *
2362 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2363 		       struct vm_area_struct *vma, unsigned long address,
2364 		       int node)
2365 {
2366 	VM_BUG_ON_PAGE(*hpage, *hpage);
2367 
2368 	/*
2369 	 * Before allocating the hugepage, release the mmap_sem read lock.
2370 	 * The allocation can take potentially a long time if it involves
2371 	 * sync compaction, and we do not need to hold the mmap_sem during
2372 	 * that. We will recheck the vma after taking it again in write mode.
2373 	 */
2374 	up_read(&mm->mmap_sem);
2375 
2376 	*hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
2377 	if (unlikely(!*hpage)) {
2378 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2379 		*hpage = ERR_PTR(-ENOMEM);
2380 		return NULL;
2381 	}
2382 
2383 	count_vm_event(THP_COLLAPSE_ALLOC);
2384 	return *hpage;
2385 }
2386 #else
2387 static int khugepaged_find_target_node(void)
2388 {
2389 	return 0;
2390 }
2391 
2392 static inline struct page *alloc_hugepage(int defrag)
2393 {
2394 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2395 			   HPAGE_PMD_ORDER);
2396 }
2397 
2398 static struct page *khugepaged_alloc_hugepage(bool *wait)
2399 {
2400 	struct page *hpage;
2401 
2402 	do {
2403 		hpage = alloc_hugepage(khugepaged_defrag());
2404 		if (!hpage) {
2405 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2406 			if (!*wait)
2407 				return NULL;
2408 
2409 			*wait = false;
2410 			khugepaged_alloc_sleep();
2411 		} else
2412 			count_vm_event(THP_COLLAPSE_ALLOC);
2413 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2414 
2415 	return hpage;
2416 }
2417 
2418 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2419 {
2420 	if (!*hpage)
2421 		*hpage = khugepaged_alloc_hugepage(wait);
2422 
2423 	if (unlikely(!*hpage))
2424 		return false;
2425 
2426 	return true;
2427 }
2428 
2429 static struct page *
2430 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2431 		       struct vm_area_struct *vma, unsigned long address,
2432 		       int node)
2433 {
2434 	up_read(&mm->mmap_sem);
2435 	VM_BUG_ON(!*hpage);
2436 
2437 	return  *hpage;
2438 }
2439 #endif
2440 
2441 static bool hugepage_vma_check(struct vm_area_struct *vma)
2442 {
2443 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2444 	    (vma->vm_flags & VM_NOHUGEPAGE))
2445 		return false;
2446 
2447 	if (!vma->anon_vma || vma->vm_ops)
2448 		return false;
2449 	if (is_vma_temporary_stack(vma))
2450 		return false;
2451 	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2452 	return true;
2453 }
2454 
2455 static void collapse_huge_page(struct mm_struct *mm,
2456 				   unsigned long address,
2457 				   struct page **hpage,
2458 				   struct vm_area_struct *vma,
2459 				   int node)
2460 {
2461 	pmd_t *pmd, _pmd;
2462 	pte_t *pte;
2463 	pgtable_t pgtable;
2464 	struct page *new_page;
2465 	spinlock_t *pmd_ptl, *pte_ptl;
2466 	int isolated;
2467 	unsigned long hstart, hend;
2468 	struct mem_cgroup *memcg;
2469 	unsigned long mmun_start;	/* For mmu_notifiers */
2470 	unsigned long mmun_end;		/* For mmu_notifiers */
2471 	gfp_t gfp;
2472 
2473 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2474 
2475 	/* Only allocate from the target node */
2476 	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2477 		__GFP_THISNODE;
2478 
2479 	/* release the mmap_sem read lock. */
2480 	new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
2481 	if (!new_page)
2482 		return;
2483 
2484 	if (unlikely(mem_cgroup_try_charge(new_page, mm,
2485 					   gfp, &memcg)))
2486 		return;
2487 
2488 	/*
2489 	 * Prevent all access to pagetables with the exception of
2490 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2491 	 * handled by the anon_vma lock + PG_lock.
2492 	 */
2493 	down_write(&mm->mmap_sem);
2494 	if (unlikely(khugepaged_test_exit(mm)))
2495 		goto out;
2496 
2497 	vma = find_vma(mm, address);
2498 	if (!vma)
2499 		goto out;
2500 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2501 	hend = vma->vm_end & HPAGE_PMD_MASK;
2502 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2503 		goto out;
2504 	if (!hugepage_vma_check(vma))
2505 		goto out;
2506 	pmd = mm_find_pmd(mm, address);
2507 	if (!pmd)
2508 		goto out;
2509 
2510 	anon_vma_lock_write(vma->anon_vma);
2511 
2512 	pte = pte_offset_map(pmd, address);
2513 	pte_ptl = pte_lockptr(mm, pmd);
2514 
2515 	mmun_start = address;
2516 	mmun_end   = address + HPAGE_PMD_SIZE;
2517 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2518 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2519 	/*
2520 	 * After this gup_fast can't run anymore. This also removes
2521 	 * any huge TLB entry from the CPU so we won't allow
2522 	 * huge and small TLB entries for the same virtual address
2523 	 * to avoid the risk of CPU bugs in that area.
2524 	 */
2525 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2526 	spin_unlock(pmd_ptl);
2527 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2528 
2529 	spin_lock(pte_ptl);
2530 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2531 	spin_unlock(pte_ptl);
2532 
2533 	if (unlikely(!isolated)) {
2534 		pte_unmap(pte);
2535 		spin_lock(pmd_ptl);
2536 		BUG_ON(!pmd_none(*pmd));
2537 		/*
2538 		 * We can only use set_pmd_at when establishing
2539 		 * hugepmds and never for establishing regular pmds that
2540 		 * points to regular pagetables. Use pmd_populate for that
2541 		 */
2542 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2543 		spin_unlock(pmd_ptl);
2544 		anon_vma_unlock_write(vma->anon_vma);
2545 		goto out;
2546 	}
2547 
2548 	/*
2549 	 * All pages are isolated and locked so anon_vma rmap
2550 	 * can't run anymore.
2551 	 */
2552 	anon_vma_unlock_write(vma->anon_vma);
2553 
2554 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2555 	pte_unmap(pte);
2556 	__SetPageUptodate(new_page);
2557 	pgtable = pmd_pgtable(_pmd);
2558 
2559 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2560 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2561 
2562 	/*
2563 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2564 	 * this is needed to avoid the copy_huge_page writes to become
2565 	 * visible after the set_pmd_at() write.
2566 	 */
2567 	smp_wmb();
2568 
2569 	spin_lock(pmd_ptl);
2570 	BUG_ON(!pmd_none(*pmd));
2571 	page_add_new_anon_rmap(new_page, vma, address);
2572 	mem_cgroup_commit_charge(new_page, memcg, false);
2573 	lru_cache_add_active_or_unevictable(new_page, vma);
2574 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2575 	set_pmd_at(mm, address, pmd, _pmd);
2576 	update_mmu_cache_pmd(vma, address, pmd);
2577 	spin_unlock(pmd_ptl);
2578 
2579 	*hpage = NULL;
2580 
2581 	khugepaged_pages_collapsed++;
2582 out_up_write:
2583 	up_write(&mm->mmap_sem);
2584 	return;
2585 
2586 out:
2587 	mem_cgroup_cancel_charge(new_page, memcg);
2588 	goto out_up_write;
2589 }
2590 
2591 static int khugepaged_scan_pmd(struct mm_struct *mm,
2592 			       struct vm_area_struct *vma,
2593 			       unsigned long address,
2594 			       struct page **hpage)
2595 {
2596 	pmd_t *pmd;
2597 	pte_t *pte, *_pte;
2598 	int ret = 0, none_or_zero = 0;
2599 	struct page *page;
2600 	unsigned long _address;
2601 	spinlock_t *ptl;
2602 	int node = NUMA_NO_NODE;
2603 	bool writable = false, referenced = false;
2604 
2605 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2606 
2607 	pmd = mm_find_pmd(mm, address);
2608 	if (!pmd)
2609 		goto out;
2610 
2611 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2612 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2613 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2614 	     _pte++, _address += PAGE_SIZE) {
2615 		pte_t pteval = *_pte;
2616 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2617 			if (!userfaultfd_armed(vma) &&
2618 			    ++none_or_zero <= khugepaged_max_ptes_none)
2619 				continue;
2620 			else
2621 				goto out_unmap;
2622 		}
2623 		if (!pte_present(pteval))
2624 			goto out_unmap;
2625 		if (pte_write(pteval))
2626 			writable = true;
2627 
2628 		page = vm_normal_page(vma, _address, pteval);
2629 		if (unlikely(!page))
2630 			goto out_unmap;
2631 		/*
2632 		 * Record which node the original page is from and save this
2633 		 * information to khugepaged_node_load[].
2634 		 * Khupaged will allocate hugepage from the node has the max
2635 		 * hit record.
2636 		 */
2637 		node = page_to_nid(page);
2638 		if (khugepaged_scan_abort(node))
2639 			goto out_unmap;
2640 		khugepaged_node_load[node]++;
2641 		VM_BUG_ON_PAGE(PageCompound(page), page);
2642 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2643 			goto out_unmap;
2644 		/*
2645 		 * cannot use mapcount: can't collapse if there's a gup pin.
2646 		 * The page must only be referenced by the scanned process
2647 		 * and page swap cache.
2648 		 */
2649 		if (page_count(page) != 1 + !!PageSwapCache(page))
2650 			goto out_unmap;
2651 		if (pte_young(pteval) || PageReferenced(page) ||
2652 		    mmu_notifier_test_young(vma->vm_mm, address))
2653 			referenced = true;
2654 	}
2655 	if (referenced && writable)
2656 		ret = 1;
2657 out_unmap:
2658 	pte_unmap_unlock(pte, ptl);
2659 	if (ret) {
2660 		node = khugepaged_find_target_node();
2661 		/* collapse_huge_page will return with the mmap_sem released */
2662 		collapse_huge_page(mm, address, hpage, vma, node);
2663 	}
2664 out:
2665 	return ret;
2666 }
2667 
2668 static void collect_mm_slot(struct mm_slot *mm_slot)
2669 {
2670 	struct mm_struct *mm = mm_slot->mm;
2671 
2672 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2673 
2674 	if (khugepaged_test_exit(mm)) {
2675 		/* free mm_slot */
2676 		hash_del(&mm_slot->hash);
2677 		list_del(&mm_slot->mm_node);
2678 
2679 		/*
2680 		 * Not strictly needed because the mm exited already.
2681 		 *
2682 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2683 		 */
2684 
2685 		/* khugepaged_mm_lock actually not necessary for the below */
2686 		free_mm_slot(mm_slot);
2687 		mmdrop(mm);
2688 	}
2689 }
2690 
2691 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2692 					    struct page **hpage)
2693 	__releases(&khugepaged_mm_lock)
2694 	__acquires(&khugepaged_mm_lock)
2695 {
2696 	struct mm_slot *mm_slot;
2697 	struct mm_struct *mm;
2698 	struct vm_area_struct *vma;
2699 	int progress = 0;
2700 
2701 	VM_BUG_ON(!pages);
2702 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2703 
2704 	if (khugepaged_scan.mm_slot)
2705 		mm_slot = khugepaged_scan.mm_slot;
2706 	else {
2707 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2708 				     struct mm_slot, mm_node);
2709 		khugepaged_scan.address = 0;
2710 		khugepaged_scan.mm_slot = mm_slot;
2711 	}
2712 	spin_unlock(&khugepaged_mm_lock);
2713 
2714 	mm = mm_slot->mm;
2715 	down_read(&mm->mmap_sem);
2716 	if (unlikely(khugepaged_test_exit(mm)))
2717 		vma = NULL;
2718 	else
2719 		vma = find_vma(mm, khugepaged_scan.address);
2720 
2721 	progress++;
2722 	for (; vma; vma = vma->vm_next) {
2723 		unsigned long hstart, hend;
2724 
2725 		cond_resched();
2726 		if (unlikely(khugepaged_test_exit(mm))) {
2727 			progress++;
2728 			break;
2729 		}
2730 		if (!hugepage_vma_check(vma)) {
2731 skip:
2732 			progress++;
2733 			continue;
2734 		}
2735 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2736 		hend = vma->vm_end & HPAGE_PMD_MASK;
2737 		if (hstart >= hend)
2738 			goto skip;
2739 		if (khugepaged_scan.address > hend)
2740 			goto skip;
2741 		if (khugepaged_scan.address < hstart)
2742 			khugepaged_scan.address = hstart;
2743 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2744 
2745 		while (khugepaged_scan.address < hend) {
2746 			int ret;
2747 			cond_resched();
2748 			if (unlikely(khugepaged_test_exit(mm)))
2749 				goto breakouterloop;
2750 
2751 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2752 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2753 				  hend);
2754 			ret = khugepaged_scan_pmd(mm, vma,
2755 						  khugepaged_scan.address,
2756 						  hpage);
2757 			/* move to next address */
2758 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2759 			progress += HPAGE_PMD_NR;
2760 			if (ret)
2761 				/* we released mmap_sem so break loop */
2762 				goto breakouterloop_mmap_sem;
2763 			if (progress >= pages)
2764 				goto breakouterloop;
2765 		}
2766 	}
2767 breakouterloop:
2768 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2769 breakouterloop_mmap_sem:
2770 
2771 	spin_lock(&khugepaged_mm_lock);
2772 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2773 	/*
2774 	 * Release the current mm_slot if this mm is about to die, or
2775 	 * if we scanned all vmas of this mm.
2776 	 */
2777 	if (khugepaged_test_exit(mm) || !vma) {
2778 		/*
2779 		 * Make sure that if mm_users is reaching zero while
2780 		 * khugepaged runs here, khugepaged_exit will find
2781 		 * mm_slot not pointing to the exiting mm.
2782 		 */
2783 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2784 			khugepaged_scan.mm_slot = list_entry(
2785 				mm_slot->mm_node.next,
2786 				struct mm_slot, mm_node);
2787 			khugepaged_scan.address = 0;
2788 		} else {
2789 			khugepaged_scan.mm_slot = NULL;
2790 			khugepaged_full_scans++;
2791 		}
2792 
2793 		collect_mm_slot(mm_slot);
2794 	}
2795 
2796 	return progress;
2797 }
2798 
2799 static int khugepaged_has_work(void)
2800 {
2801 	return !list_empty(&khugepaged_scan.mm_head) &&
2802 		khugepaged_enabled();
2803 }
2804 
2805 static int khugepaged_wait_event(void)
2806 {
2807 	return !list_empty(&khugepaged_scan.mm_head) ||
2808 		kthread_should_stop();
2809 }
2810 
2811 static void khugepaged_do_scan(void)
2812 {
2813 	struct page *hpage = NULL;
2814 	unsigned int progress = 0, pass_through_head = 0;
2815 	unsigned int pages = khugepaged_pages_to_scan;
2816 	bool wait = true;
2817 
2818 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2819 
2820 	while (progress < pages) {
2821 		if (!khugepaged_prealloc_page(&hpage, &wait))
2822 			break;
2823 
2824 		cond_resched();
2825 
2826 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2827 			break;
2828 
2829 		spin_lock(&khugepaged_mm_lock);
2830 		if (!khugepaged_scan.mm_slot)
2831 			pass_through_head++;
2832 		if (khugepaged_has_work() &&
2833 		    pass_through_head < 2)
2834 			progress += khugepaged_scan_mm_slot(pages - progress,
2835 							    &hpage);
2836 		else
2837 			progress = pages;
2838 		spin_unlock(&khugepaged_mm_lock);
2839 	}
2840 
2841 	if (!IS_ERR_OR_NULL(hpage))
2842 		put_page(hpage);
2843 }
2844 
2845 static void khugepaged_wait_work(void)
2846 {
2847 	if (khugepaged_has_work()) {
2848 		if (!khugepaged_scan_sleep_millisecs)
2849 			return;
2850 
2851 		wait_event_freezable_timeout(khugepaged_wait,
2852 					     kthread_should_stop(),
2853 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2854 		return;
2855 	}
2856 
2857 	if (khugepaged_enabled())
2858 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2859 }
2860 
2861 static int khugepaged(void *none)
2862 {
2863 	struct mm_slot *mm_slot;
2864 
2865 	set_freezable();
2866 	set_user_nice(current, MAX_NICE);
2867 
2868 	while (!kthread_should_stop()) {
2869 		khugepaged_do_scan();
2870 		khugepaged_wait_work();
2871 	}
2872 
2873 	spin_lock(&khugepaged_mm_lock);
2874 	mm_slot = khugepaged_scan.mm_slot;
2875 	khugepaged_scan.mm_slot = NULL;
2876 	if (mm_slot)
2877 		collect_mm_slot(mm_slot);
2878 	spin_unlock(&khugepaged_mm_lock);
2879 	return 0;
2880 }
2881 
2882 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2883 		unsigned long haddr, pmd_t *pmd)
2884 {
2885 	struct mm_struct *mm = vma->vm_mm;
2886 	pgtable_t pgtable;
2887 	pmd_t _pmd;
2888 	int i;
2889 
2890 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2891 	/* leave pmd empty until pte is filled */
2892 
2893 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2894 	pmd_populate(mm, &_pmd, pgtable);
2895 
2896 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2897 		pte_t *pte, entry;
2898 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2899 		entry = pte_mkspecial(entry);
2900 		pte = pte_offset_map(&_pmd, haddr);
2901 		VM_BUG_ON(!pte_none(*pte));
2902 		set_pte_at(mm, haddr, pte, entry);
2903 		pte_unmap(pte);
2904 	}
2905 	smp_wmb(); /* make pte visible before pmd */
2906 	pmd_populate(mm, pmd, pgtable);
2907 	put_huge_zero_page();
2908 }
2909 
2910 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2911 		pmd_t *pmd)
2912 {
2913 	spinlock_t *ptl;
2914 	struct page *page;
2915 	struct mm_struct *mm = vma->vm_mm;
2916 	unsigned long haddr = address & HPAGE_PMD_MASK;
2917 	unsigned long mmun_start;	/* For mmu_notifiers */
2918 	unsigned long mmun_end;		/* For mmu_notifiers */
2919 
2920 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2921 
2922 	mmun_start = haddr;
2923 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2924 again:
2925 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2926 	ptl = pmd_lock(mm, pmd);
2927 	if (unlikely(!pmd_trans_huge(*pmd))) {
2928 		spin_unlock(ptl);
2929 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2930 		return;
2931 	}
2932 	if (is_huge_zero_pmd(*pmd)) {
2933 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2934 		spin_unlock(ptl);
2935 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2936 		return;
2937 	}
2938 	page = pmd_page(*pmd);
2939 	VM_BUG_ON_PAGE(!page_count(page), page);
2940 	get_page(page);
2941 	spin_unlock(ptl);
2942 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2943 
2944 	split_huge_page(page);
2945 
2946 	put_page(page);
2947 
2948 	/*
2949 	 * We don't always have down_write of mmap_sem here: a racing
2950 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2951 	 * huge page before our split_huge_page() got the anon_vma lock.
2952 	 */
2953 	if (unlikely(pmd_trans_huge(*pmd)))
2954 		goto again;
2955 }
2956 
2957 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2958 		pmd_t *pmd)
2959 {
2960 	struct vm_area_struct *vma;
2961 
2962 	vma = find_vma(mm, address);
2963 	BUG_ON(vma == NULL);
2964 	split_huge_page_pmd(vma, address, pmd);
2965 }
2966 
2967 static void split_huge_page_address(struct mm_struct *mm,
2968 				    unsigned long address)
2969 {
2970 	pgd_t *pgd;
2971 	pud_t *pud;
2972 	pmd_t *pmd;
2973 
2974 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2975 
2976 	pgd = pgd_offset(mm, address);
2977 	if (!pgd_present(*pgd))
2978 		return;
2979 
2980 	pud = pud_offset(pgd, address);
2981 	if (!pud_present(*pud))
2982 		return;
2983 
2984 	pmd = pmd_offset(pud, address);
2985 	if (!pmd_present(*pmd))
2986 		return;
2987 	/*
2988 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2989 	 * materialize from under us.
2990 	 */
2991 	split_huge_page_pmd_mm(mm, address, pmd);
2992 }
2993 
2994 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2995 			     unsigned long start,
2996 			     unsigned long end,
2997 			     long adjust_next)
2998 {
2999 	/*
3000 	 * If the new start address isn't hpage aligned and it could
3001 	 * previously contain an hugepage: check if we need to split
3002 	 * an huge pmd.
3003 	 */
3004 	if (start & ~HPAGE_PMD_MASK &&
3005 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3006 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3007 		split_huge_page_address(vma->vm_mm, start);
3008 
3009 	/*
3010 	 * If the new end address isn't hpage aligned and it could
3011 	 * previously contain an hugepage: check if we need to split
3012 	 * an huge pmd.
3013 	 */
3014 	if (end & ~HPAGE_PMD_MASK &&
3015 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3016 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3017 		split_huge_page_address(vma->vm_mm, end);
3018 
3019 	/*
3020 	 * If we're also updating the vma->vm_next->vm_start, if the new
3021 	 * vm_next->vm_start isn't page aligned and it could previously
3022 	 * contain an hugepage: check if we need to split an huge pmd.
3023 	 */
3024 	if (adjust_next > 0) {
3025 		struct vm_area_struct *next = vma->vm_next;
3026 		unsigned long nstart = next->vm_start;
3027 		nstart += adjust_next << PAGE_SHIFT;
3028 		if (nstart & ~HPAGE_PMD_MASK &&
3029 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3030 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3031 			split_huge_page_address(next->vm_mm, nstart);
3032 	}
3033 }
3034