xref: /linux/mm/huge_memory.c (revision c5951e7c8ee5cb04b8b41c32bf567b90117a2124)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (!memcmp("always", buf,
181 		    min(sizeof("always")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("madvise", buf,
185 			   min(sizeof("madvise")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else if (!memcmp("never", buf,
189 			   min(sizeof("never")-1, count))) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 	} else
193 		ret = -EINVAL;
194 
195 	if (ret > 0) {
196 		int err = start_stop_khugepaged();
197 		if (err)
198 			ret = err;
199 	}
200 	return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 	__ATTR(enabled, 0644, enabled_show, enabled_store);
204 
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 				struct kobj_attribute *attr, char *buf,
207 				enum transparent_hugepage_flag flag)
208 {
209 	return sprintf(buf, "%d\n",
210 		       !!test_bit(flag, &transparent_hugepage_flags));
211 }
212 
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 				 struct kobj_attribute *attr,
215 				 const char *buf, size_t count,
216 				 enum transparent_hugepage_flag flag)
217 {
218 	unsigned long value;
219 	int ret;
220 
221 	ret = kstrtoul(buf, 10, &value);
222 	if (ret < 0)
223 		return ret;
224 	if (value > 1)
225 		return -EINVAL;
226 
227 	if (value)
228 		set_bit(flag, &transparent_hugepage_flags);
229 	else
230 		clear_bit(flag, &transparent_hugepage_flags);
231 
232 	return count;
233 }
234 
235 static ssize_t defrag_show(struct kobject *kobj,
236 			   struct kobj_attribute *attr, char *buf)
237 {
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248 
249 static ssize_t defrag_store(struct kobject *kobj,
250 			    struct kobj_attribute *attr,
251 			    const char *buf, size_t count)
252 {
253 	if (!memcmp("always", buf,
254 		    min(sizeof("always")-1, count))) {
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 	} else if (!memcmp("defer+madvise", buf,
260 		    min(sizeof("defer+madvise")-1, count))) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 	} else if (!memcmp("defer", buf,
266 		    min(sizeof("defer")-1, count))) {
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 	} else if (!memcmp("madvise", buf,
272 			   min(sizeof("madvise")-1, count))) {
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 	} else if (!memcmp("never", buf,
278 			   min(sizeof("never")-1, count))) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
283 	} else
284 		return -EINVAL;
285 
286 	return count;
287 }
288 static struct kobj_attribute defrag_attr =
289 	__ATTR(defrag, 0644, defrag_show, defrag_store);
290 
291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return single_hugepage_flag_show(kobj, attr, buf,
295 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 }
297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 		struct kobj_attribute *attr, const char *buf, size_t count)
299 {
300 	return single_hugepage_flag_store(kobj, attr, buf, count,
301 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static struct kobj_attribute use_zero_page_attr =
304 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 
306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 		struct kobj_attribute *attr, char *buf)
308 {
309 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310 }
311 static struct kobj_attribute hpage_pmd_size_attr =
312 	__ATTR_RO(hpage_pmd_size);
313 
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t debug_cow_show(struct kobject *kobj,
316 				struct kobj_attribute *attr, char *buf)
317 {
318 	return single_hugepage_flag_show(kobj, attr, buf,
319 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 }
321 static ssize_t debug_cow_store(struct kobject *kobj,
322 			       struct kobj_attribute *attr,
323 			       const char *buf, size_t count)
324 {
325 	return single_hugepage_flag_store(kobj, attr, buf, count,
326 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327 }
328 static struct kobj_attribute debug_cow_attr =
329 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
331 
332 static struct attribute *hugepage_attr[] = {
333 	&enabled_attr.attr,
334 	&defrag_attr.attr,
335 	&use_zero_page_attr.attr,
336 	&hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 	&shmem_enabled_attr.attr,
339 #endif
340 #ifdef CONFIG_DEBUG_VM
341 	&debug_cow_attr.attr,
342 #endif
343 	NULL,
344 };
345 
346 static const struct attribute_group hugepage_attr_group = {
347 	.attrs = hugepage_attr,
348 };
349 
350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 {
352 	int err;
353 
354 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 	if (unlikely(!*hugepage_kobj)) {
356 		pr_err("failed to create transparent hugepage kobject\n");
357 		return -ENOMEM;
358 	}
359 
360 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
361 	if (err) {
362 		pr_err("failed to register transparent hugepage group\n");
363 		goto delete_obj;
364 	}
365 
366 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
367 	if (err) {
368 		pr_err("failed to register transparent hugepage group\n");
369 		goto remove_hp_group;
370 	}
371 
372 	return 0;
373 
374 remove_hp_group:
375 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376 delete_obj:
377 	kobject_put(*hugepage_kobj);
378 	return err;
379 }
380 
381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 {
383 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 	kobject_put(hugepage_kobj);
386 }
387 #else
388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389 {
390 	return 0;
391 }
392 
393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
394 {
395 }
396 #endif /* CONFIG_SYSFS */
397 
398 static int __init hugepage_init(void)
399 {
400 	int err;
401 	struct kobject *hugepage_kobj;
402 
403 	if (!has_transparent_hugepage()) {
404 		transparent_hugepage_flags = 0;
405 		return -EINVAL;
406 	}
407 
408 	/*
409 	 * hugepages can't be allocated by the buddy allocator
410 	 */
411 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 	/*
413 	 * we use page->mapping and page->index in second tail page
414 	 * as list_head: assuming THP order >= 2
415 	 */
416 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417 
418 	err = hugepage_init_sysfs(&hugepage_kobj);
419 	if (err)
420 		goto err_sysfs;
421 
422 	err = khugepaged_init();
423 	if (err)
424 		goto err_slab;
425 
426 	err = register_shrinker(&huge_zero_page_shrinker);
427 	if (err)
428 		goto err_hzp_shrinker;
429 	err = register_shrinker(&deferred_split_shrinker);
430 	if (err)
431 		goto err_split_shrinker;
432 
433 	/*
434 	 * By default disable transparent hugepages on smaller systems,
435 	 * where the extra memory used could hurt more than TLB overhead
436 	 * is likely to save.  The admin can still enable it through /sys.
437 	 */
438 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 		transparent_hugepage_flags = 0;
440 		return 0;
441 	}
442 
443 	err = start_stop_khugepaged();
444 	if (err)
445 		goto err_khugepaged;
446 
447 	return 0;
448 err_khugepaged:
449 	unregister_shrinker(&deferred_split_shrinker);
450 err_split_shrinker:
451 	unregister_shrinker(&huge_zero_page_shrinker);
452 err_hzp_shrinker:
453 	khugepaged_destroy();
454 err_slab:
455 	hugepage_exit_sysfs(hugepage_kobj);
456 err_sysfs:
457 	return err;
458 }
459 subsys_initcall(hugepage_init);
460 
461 static int __init setup_transparent_hugepage(char *str)
462 {
463 	int ret = 0;
464 	if (!str)
465 		goto out;
466 	if (!strcmp(str, "always")) {
467 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 			&transparent_hugepage_flags);
469 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 			  &transparent_hugepage_flags);
471 		ret = 1;
472 	} else if (!strcmp(str, "madvise")) {
473 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 			  &transparent_hugepage_flags);
475 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 			&transparent_hugepage_flags);
477 		ret = 1;
478 	} else if (!strcmp(str, "never")) {
479 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 			  &transparent_hugepage_flags);
481 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 			  &transparent_hugepage_flags);
483 		ret = 1;
484 	}
485 out:
486 	if (!ret)
487 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 	return ret;
489 }
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
491 
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493 {
494 	if (likely(vma->vm_flags & VM_WRITE))
495 		pmd = pmd_mkwrite(pmd);
496 	return pmd;
497 }
498 
499 #ifdef CONFIG_MEMCG
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 {
502 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
503 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504 
505 	if (memcg)
506 		return &memcg->deferred_split_queue;
507 	else
508 		return &pgdat->deferred_split_queue;
509 }
510 #else
511 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
512 {
513 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
514 
515 	return &pgdat->deferred_split_queue;
516 }
517 #endif
518 
519 void prep_transhuge_page(struct page *page)
520 {
521 	/*
522 	 * we use page->mapping and page->indexlru in second tail page
523 	 * as list_head: assuming THP order >= 2
524 	 */
525 
526 	INIT_LIST_HEAD(page_deferred_list(page));
527 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
528 }
529 
530 bool is_transparent_hugepage(struct page *page)
531 {
532 	if (!PageCompound(page))
533 		return 0;
534 
535 	page = compound_head(page);
536 	return is_huge_zero_page(page) ||
537 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
538 }
539 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
540 
541 static unsigned long __thp_get_unmapped_area(struct file *filp,
542 		unsigned long addr, unsigned long len,
543 		loff_t off, unsigned long flags, unsigned long size)
544 {
545 	loff_t off_end = off + len;
546 	loff_t off_align = round_up(off, size);
547 	unsigned long len_pad, ret;
548 
549 	if (off_end <= off_align || (off_end - off_align) < size)
550 		return 0;
551 
552 	len_pad = len + size;
553 	if (len_pad < len || (off + len_pad) < off)
554 		return 0;
555 
556 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
557 					      off >> PAGE_SHIFT, flags);
558 
559 	/*
560 	 * The failure might be due to length padding. The caller will retry
561 	 * without the padding.
562 	 */
563 	if (IS_ERR_VALUE(ret))
564 		return 0;
565 
566 	/*
567 	 * Do not try to align to THP boundary if allocation at the address
568 	 * hint succeeds.
569 	 */
570 	if (ret == addr)
571 		return addr;
572 
573 	ret += (off - ret) & (size - 1);
574 	return ret;
575 }
576 
577 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
578 		unsigned long len, unsigned long pgoff, unsigned long flags)
579 {
580 	unsigned long ret;
581 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
582 
583 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
584 		goto out;
585 
586 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
587 	if (ret)
588 		return ret;
589 out:
590 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
591 }
592 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
593 
594 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
595 			struct page *page, gfp_t gfp)
596 {
597 	struct vm_area_struct *vma = vmf->vma;
598 	struct mem_cgroup *memcg;
599 	pgtable_t pgtable;
600 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
601 	vm_fault_t ret = 0;
602 
603 	VM_BUG_ON_PAGE(!PageCompound(page), page);
604 
605 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
606 		put_page(page);
607 		count_vm_event(THP_FAULT_FALLBACK);
608 		return VM_FAULT_FALLBACK;
609 	}
610 
611 	pgtable = pte_alloc_one(vma->vm_mm);
612 	if (unlikely(!pgtable)) {
613 		ret = VM_FAULT_OOM;
614 		goto release;
615 	}
616 
617 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
618 	/*
619 	 * The memory barrier inside __SetPageUptodate makes sure that
620 	 * clear_huge_page writes become visible before the set_pmd_at()
621 	 * write.
622 	 */
623 	__SetPageUptodate(page);
624 
625 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
626 	if (unlikely(!pmd_none(*vmf->pmd))) {
627 		goto unlock_release;
628 	} else {
629 		pmd_t entry;
630 
631 		ret = check_stable_address_space(vma->vm_mm);
632 		if (ret)
633 			goto unlock_release;
634 
635 		/* Deliver the page fault to userland */
636 		if (userfaultfd_missing(vma)) {
637 			vm_fault_t ret2;
638 
639 			spin_unlock(vmf->ptl);
640 			mem_cgroup_cancel_charge(page, memcg, true);
641 			put_page(page);
642 			pte_free(vma->vm_mm, pgtable);
643 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
644 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
645 			return ret2;
646 		}
647 
648 		entry = mk_huge_pmd(page, vma->vm_page_prot);
649 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 		page_add_new_anon_rmap(page, vma, haddr, true);
651 		mem_cgroup_commit_charge(page, memcg, false, true);
652 		lru_cache_add_active_or_unevictable(page, vma);
653 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
654 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
655 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 		mm_inc_nr_ptes(vma->vm_mm);
657 		spin_unlock(vmf->ptl);
658 		count_vm_event(THP_FAULT_ALLOC);
659 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
660 	}
661 
662 	return 0;
663 unlock_release:
664 	spin_unlock(vmf->ptl);
665 release:
666 	if (pgtable)
667 		pte_free(vma->vm_mm, pgtable);
668 	mem_cgroup_cancel_charge(page, memcg, true);
669 	put_page(page);
670 	return ret;
671 
672 }
673 
674 /*
675  * always: directly stall for all thp allocations
676  * defer: wake kswapd and fail if not immediately available
677  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
678  *		  fail if not immediately available
679  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
680  *	    available
681  * never: never stall for any thp allocation
682  */
683 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
684 {
685 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
686 
687 	/* Always do synchronous compaction */
688 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
689 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
690 
691 	/* Kick kcompactd and fail quickly */
692 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
693 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
694 
695 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
696 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
697 		return GFP_TRANSHUGE_LIGHT |
698 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
699 					__GFP_KSWAPD_RECLAIM);
700 
701 	/* Only do synchronous compaction if madvised */
702 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
703 		return GFP_TRANSHUGE_LIGHT |
704 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
705 
706 	return GFP_TRANSHUGE_LIGHT;
707 }
708 
709 /* Caller must hold page table lock. */
710 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
711 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
712 		struct page *zero_page)
713 {
714 	pmd_t entry;
715 	if (!pmd_none(*pmd))
716 		return false;
717 	entry = mk_pmd(zero_page, vma->vm_page_prot);
718 	entry = pmd_mkhuge(entry);
719 	if (pgtable)
720 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
721 	set_pmd_at(mm, haddr, pmd, entry);
722 	mm_inc_nr_ptes(mm);
723 	return true;
724 }
725 
726 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
727 {
728 	struct vm_area_struct *vma = vmf->vma;
729 	gfp_t gfp;
730 	struct page *page;
731 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
732 
733 	if (!transhuge_vma_suitable(vma, haddr))
734 		return VM_FAULT_FALLBACK;
735 	if (unlikely(anon_vma_prepare(vma)))
736 		return VM_FAULT_OOM;
737 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
738 		return VM_FAULT_OOM;
739 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
740 			!mm_forbids_zeropage(vma->vm_mm) &&
741 			transparent_hugepage_use_zero_page()) {
742 		pgtable_t pgtable;
743 		struct page *zero_page;
744 		bool set;
745 		vm_fault_t ret;
746 		pgtable = pte_alloc_one(vma->vm_mm);
747 		if (unlikely(!pgtable))
748 			return VM_FAULT_OOM;
749 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
750 		if (unlikely(!zero_page)) {
751 			pte_free(vma->vm_mm, pgtable);
752 			count_vm_event(THP_FAULT_FALLBACK);
753 			return VM_FAULT_FALLBACK;
754 		}
755 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
756 		ret = 0;
757 		set = false;
758 		if (pmd_none(*vmf->pmd)) {
759 			ret = check_stable_address_space(vma->vm_mm);
760 			if (ret) {
761 				spin_unlock(vmf->ptl);
762 			} else if (userfaultfd_missing(vma)) {
763 				spin_unlock(vmf->ptl);
764 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
765 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
766 			} else {
767 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
768 						   haddr, vmf->pmd, zero_page);
769 				spin_unlock(vmf->ptl);
770 				set = true;
771 			}
772 		} else
773 			spin_unlock(vmf->ptl);
774 		if (!set)
775 			pte_free(vma->vm_mm, pgtable);
776 		return ret;
777 	}
778 	gfp = alloc_hugepage_direct_gfpmask(vma);
779 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
780 	if (unlikely(!page)) {
781 		count_vm_event(THP_FAULT_FALLBACK);
782 		return VM_FAULT_FALLBACK;
783 	}
784 	prep_transhuge_page(page);
785 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
786 }
787 
788 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
789 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
790 		pgtable_t pgtable)
791 {
792 	struct mm_struct *mm = vma->vm_mm;
793 	pmd_t entry;
794 	spinlock_t *ptl;
795 
796 	ptl = pmd_lock(mm, pmd);
797 	if (!pmd_none(*pmd)) {
798 		if (write) {
799 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
800 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
801 				goto out_unlock;
802 			}
803 			entry = pmd_mkyoung(*pmd);
804 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
805 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
806 				update_mmu_cache_pmd(vma, addr, pmd);
807 		}
808 
809 		goto out_unlock;
810 	}
811 
812 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
813 	if (pfn_t_devmap(pfn))
814 		entry = pmd_mkdevmap(entry);
815 	if (write) {
816 		entry = pmd_mkyoung(pmd_mkdirty(entry));
817 		entry = maybe_pmd_mkwrite(entry, vma);
818 	}
819 
820 	if (pgtable) {
821 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
822 		mm_inc_nr_ptes(mm);
823 		pgtable = NULL;
824 	}
825 
826 	set_pmd_at(mm, addr, pmd, entry);
827 	update_mmu_cache_pmd(vma, addr, pmd);
828 
829 out_unlock:
830 	spin_unlock(ptl);
831 	if (pgtable)
832 		pte_free(mm, pgtable);
833 }
834 
835 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
836 {
837 	unsigned long addr = vmf->address & PMD_MASK;
838 	struct vm_area_struct *vma = vmf->vma;
839 	pgprot_t pgprot = vma->vm_page_prot;
840 	pgtable_t pgtable = NULL;
841 
842 	/*
843 	 * If we had pmd_special, we could avoid all these restrictions,
844 	 * but we need to be consistent with PTEs and architectures that
845 	 * can't support a 'special' bit.
846 	 */
847 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
848 			!pfn_t_devmap(pfn));
849 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
850 						(VM_PFNMAP|VM_MIXEDMAP));
851 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
852 
853 	if (addr < vma->vm_start || addr >= vma->vm_end)
854 		return VM_FAULT_SIGBUS;
855 
856 	if (arch_needs_pgtable_deposit()) {
857 		pgtable = pte_alloc_one(vma->vm_mm);
858 		if (!pgtable)
859 			return VM_FAULT_OOM;
860 	}
861 
862 	track_pfn_insert(vma, &pgprot, pfn);
863 
864 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
865 	return VM_FAULT_NOPAGE;
866 }
867 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
868 
869 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
870 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
871 {
872 	if (likely(vma->vm_flags & VM_WRITE))
873 		pud = pud_mkwrite(pud);
874 	return pud;
875 }
876 
877 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
878 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
879 {
880 	struct mm_struct *mm = vma->vm_mm;
881 	pud_t entry;
882 	spinlock_t *ptl;
883 
884 	ptl = pud_lock(mm, pud);
885 	if (!pud_none(*pud)) {
886 		if (write) {
887 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
888 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
889 				goto out_unlock;
890 			}
891 			entry = pud_mkyoung(*pud);
892 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
893 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
894 				update_mmu_cache_pud(vma, addr, pud);
895 		}
896 		goto out_unlock;
897 	}
898 
899 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
900 	if (pfn_t_devmap(pfn))
901 		entry = pud_mkdevmap(entry);
902 	if (write) {
903 		entry = pud_mkyoung(pud_mkdirty(entry));
904 		entry = maybe_pud_mkwrite(entry, vma);
905 	}
906 	set_pud_at(mm, addr, pud, entry);
907 	update_mmu_cache_pud(vma, addr, pud);
908 
909 out_unlock:
910 	spin_unlock(ptl);
911 }
912 
913 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
914 {
915 	unsigned long addr = vmf->address & PUD_MASK;
916 	struct vm_area_struct *vma = vmf->vma;
917 	pgprot_t pgprot = vma->vm_page_prot;
918 
919 	/*
920 	 * If we had pud_special, we could avoid all these restrictions,
921 	 * but we need to be consistent with PTEs and architectures that
922 	 * can't support a 'special' bit.
923 	 */
924 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
925 			!pfn_t_devmap(pfn));
926 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
927 						(VM_PFNMAP|VM_MIXEDMAP));
928 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
929 
930 	if (addr < vma->vm_start || addr >= vma->vm_end)
931 		return VM_FAULT_SIGBUS;
932 
933 	track_pfn_insert(vma, &pgprot, pfn);
934 
935 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
936 	return VM_FAULT_NOPAGE;
937 }
938 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
939 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
940 
941 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
942 		pmd_t *pmd, int flags)
943 {
944 	pmd_t _pmd;
945 
946 	_pmd = pmd_mkyoung(*pmd);
947 	if (flags & FOLL_WRITE)
948 		_pmd = pmd_mkdirty(_pmd);
949 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
950 				pmd, _pmd, flags & FOLL_WRITE))
951 		update_mmu_cache_pmd(vma, addr, pmd);
952 }
953 
954 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
955 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
956 {
957 	unsigned long pfn = pmd_pfn(*pmd);
958 	struct mm_struct *mm = vma->vm_mm;
959 	struct page *page;
960 
961 	assert_spin_locked(pmd_lockptr(mm, pmd));
962 
963 	/*
964 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
965 	 * not be in this function with `flags & FOLL_COW` set.
966 	 */
967 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
968 
969 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 		return NULL;
971 
972 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 		/* pass */;
974 	else
975 		return NULL;
976 
977 	if (flags & FOLL_TOUCH)
978 		touch_pmd(vma, addr, pmd, flags);
979 
980 	/*
981 	 * device mapped pages can only be returned if the
982 	 * caller will manage the page reference count.
983 	 */
984 	if (!(flags & FOLL_GET))
985 		return ERR_PTR(-EEXIST);
986 
987 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 	*pgmap = get_dev_pagemap(pfn, *pgmap);
989 	if (!*pgmap)
990 		return ERR_PTR(-EFAULT);
991 	page = pfn_to_page(pfn);
992 	get_page(page);
993 
994 	return page;
995 }
996 
997 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 		  struct vm_area_struct *vma)
1000 {
1001 	spinlock_t *dst_ptl, *src_ptl;
1002 	struct page *src_page;
1003 	pmd_t pmd;
1004 	pgtable_t pgtable = NULL;
1005 	int ret = -ENOMEM;
1006 
1007 	/* Skip if can be re-fill on fault */
1008 	if (!vma_is_anonymous(vma))
1009 		return 0;
1010 
1011 	pgtable = pte_alloc_one(dst_mm);
1012 	if (unlikely(!pgtable))
1013 		goto out;
1014 
1015 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1016 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1017 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1018 
1019 	ret = -EAGAIN;
1020 	pmd = *src_pmd;
1021 
1022 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1023 	if (unlikely(is_swap_pmd(pmd))) {
1024 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1025 
1026 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1027 		if (is_write_migration_entry(entry)) {
1028 			make_migration_entry_read(&entry);
1029 			pmd = swp_entry_to_pmd(entry);
1030 			if (pmd_swp_soft_dirty(*src_pmd))
1031 				pmd = pmd_swp_mksoft_dirty(pmd);
1032 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1033 		}
1034 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1035 		mm_inc_nr_ptes(dst_mm);
1036 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1037 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1038 		ret = 0;
1039 		goto out_unlock;
1040 	}
1041 #endif
1042 
1043 	if (unlikely(!pmd_trans_huge(pmd))) {
1044 		pte_free(dst_mm, pgtable);
1045 		goto out_unlock;
1046 	}
1047 	/*
1048 	 * When page table lock is held, the huge zero pmd should not be
1049 	 * under splitting since we don't split the page itself, only pmd to
1050 	 * a page table.
1051 	 */
1052 	if (is_huge_zero_pmd(pmd)) {
1053 		struct page *zero_page;
1054 		/*
1055 		 * get_huge_zero_page() will never allocate a new page here,
1056 		 * since we already have a zero page to copy. It just takes a
1057 		 * reference.
1058 		 */
1059 		zero_page = mm_get_huge_zero_page(dst_mm);
1060 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1061 				zero_page);
1062 		ret = 0;
1063 		goto out_unlock;
1064 	}
1065 
1066 	src_page = pmd_page(pmd);
1067 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1068 	get_page(src_page);
1069 	page_dup_rmap(src_page, true);
1070 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1071 	mm_inc_nr_ptes(dst_mm);
1072 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1073 
1074 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1075 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1076 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1077 
1078 	ret = 0;
1079 out_unlock:
1080 	spin_unlock(src_ptl);
1081 	spin_unlock(dst_ptl);
1082 out:
1083 	return ret;
1084 }
1085 
1086 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1087 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1088 		pud_t *pud, int flags)
1089 {
1090 	pud_t _pud;
1091 
1092 	_pud = pud_mkyoung(*pud);
1093 	if (flags & FOLL_WRITE)
1094 		_pud = pud_mkdirty(_pud);
1095 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1096 				pud, _pud, flags & FOLL_WRITE))
1097 		update_mmu_cache_pud(vma, addr, pud);
1098 }
1099 
1100 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1101 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1102 {
1103 	unsigned long pfn = pud_pfn(*pud);
1104 	struct mm_struct *mm = vma->vm_mm;
1105 	struct page *page;
1106 
1107 	assert_spin_locked(pud_lockptr(mm, pud));
1108 
1109 	if (flags & FOLL_WRITE && !pud_write(*pud))
1110 		return NULL;
1111 
1112 	if (pud_present(*pud) && pud_devmap(*pud))
1113 		/* pass */;
1114 	else
1115 		return NULL;
1116 
1117 	if (flags & FOLL_TOUCH)
1118 		touch_pud(vma, addr, pud, flags);
1119 
1120 	/*
1121 	 * device mapped pages can only be returned if the
1122 	 * caller will manage the page reference count.
1123 	 */
1124 	if (!(flags & FOLL_GET))
1125 		return ERR_PTR(-EEXIST);
1126 
1127 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1128 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1129 	if (!*pgmap)
1130 		return ERR_PTR(-EFAULT);
1131 	page = pfn_to_page(pfn);
1132 	get_page(page);
1133 
1134 	return page;
1135 }
1136 
1137 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1138 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1139 		  struct vm_area_struct *vma)
1140 {
1141 	spinlock_t *dst_ptl, *src_ptl;
1142 	pud_t pud;
1143 	int ret;
1144 
1145 	dst_ptl = pud_lock(dst_mm, dst_pud);
1146 	src_ptl = pud_lockptr(src_mm, src_pud);
1147 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1148 
1149 	ret = -EAGAIN;
1150 	pud = *src_pud;
1151 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1152 		goto out_unlock;
1153 
1154 	/*
1155 	 * When page table lock is held, the huge zero pud should not be
1156 	 * under splitting since we don't split the page itself, only pud to
1157 	 * a page table.
1158 	 */
1159 	if (is_huge_zero_pud(pud)) {
1160 		/* No huge zero pud yet */
1161 	}
1162 
1163 	pudp_set_wrprotect(src_mm, addr, src_pud);
1164 	pud = pud_mkold(pud_wrprotect(pud));
1165 	set_pud_at(dst_mm, addr, dst_pud, pud);
1166 
1167 	ret = 0;
1168 out_unlock:
1169 	spin_unlock(src_ptl);
1170 	spin_unlock(dst_ptl);
1171 	return ret;
1172 }
1173 
1174 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1175 {
1176 	pud_t entry;
1177 	unsigned long haddr;
1178 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1179 
1180 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1181 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1182 		goto unlock;
1183 
1184 	entry = pud_mkyoung(orig_pud);
1185 	if (write)
1186 		entry = pud_mkdirty(entry);
1187 	haddr = vmf->address & HPAGE_PUD_MASK;
1188 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1189 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1190 
1191 unlock:
1192 	spin_unlock(vmf->ptl);
1193 }
1194 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1195 
1196 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1197 {
1198 	pmd_t entry;
1199 	unsigned long haddr;
1200 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1201 
1202 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1203 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1204 		goto unlock;
1205 
1206 	entry = pmd_mkyoung(orig_pmd);
1207 	if (write)
1208 		entry = pmd_mkdirty(entry);
1209 	haddr = vmf->address & HPAGE_PMD_MASK;
1210 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1211 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1212 
1213 unlock:
1214 	spin_unlock(vmf->ptl);
1215 }
1216 
1217 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1218 			pmd_t orig_pmd, struct page *page)
1219 {
1220 	struct vm_area_struct *vma = vmf->vma;
1221 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222 	struct mem_cgroup *memcg;
1223 	pgtable_t pgtable;
1224 	pmd_t _pmd;
1225 	int i;
1226 	vm_fault_t ret = 0;
1227 	struct page **pages;
1228 	struct mmu_notifier_range range;
1229 
1230 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1231 			      GFP_KERNEL);
1232 	if (unlikely(!pages)) {
1233 		ret |= VM_FAULT_OOM;
1234 		goto out;
1235 	}
1236 
1237 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1238 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1239 					       vmf->address, page_to_nid(page));
1240 		if (unlikely(!pages[i] ||
1241 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1242 				     GFP_KERNEL, &memcg, false))) {
1243 			if (pages[i])
1244 				put_page(pages[i]);
1245 			while (--i >= 0) {
1246 				memcg = (void *)page_private(pages[i]);
1247 				set_page_private(pages[i], 0);
1248 				mem_cgroup_cancel_charge(pages[i], memcg,
1249 						false);
1250 				put_page(pages[i]);
1251 			}
1252 			kfree(pages);
1253 			ret |= VM_FAULT_OOM;
1254 			goto out;
1255 		}
1256 		set_page_private(pages[i], (unsigned long)memcg);
1257 	}
1258 
1259 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1260 		copy_user_highpage(pages[i], page + i,
1261 				   haddr + PAGE_SIZE * i, vma);
1262 		__SetPageUptodate(pages[i]);
1263 		cond_resched();
1264 	}
1265 
1266 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1267 				haddr, haddr + HPAGE_PMD_SIZE);
1268 	mmu_notifier_invalidate_range_start(&range);
1269 
1270 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1271 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1272 		goto out_free_pages;
1273 	VM_BUG_ON_PAGE(!PageHead(page), page);
1274 
1275 	/*
1276 	 * Leave pmd empty until pte is filled note we must notify here as
1277 	 * concurrent CPU thread might write to new page before the call to
1278 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1279 	 * device seeing memory write in different order than CPU.
1280 	 *
1281 	 * See Documentation/vm/mmu_notifier.rst
1282 	 */
1283 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1284 
1285 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1286 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1287 
1288 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1289 		pte_t entry;
1290 		entry = mk_pte(pages[i], vma->vm_page_prot);
1291 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1292 		memcg = (void *)page_private(pages[i]);
1293 		set_page_private(pages[i], 0);
1294 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1295 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1296 		lru_cache_add_active_or_unevictable(pages[i], vma);
1297 		vmf->pte = pte_offset_map(&_pmd, haddr);
1298 		VM_BUG_ON(!pte_none(*vmf->pte));
1299 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1300 		pte_unmap(vmf->pte);
1301 	}
1302 	kfree(pages);
1303 
1304 	smp_wmb(); /* make pte visible before pmd */
1305 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1306 	page_remove_rmap(page, true);
1307 	spin_unlock(vmf->ptl);
1308 
1309 	/*
1310 	 * No need to double call mmu_notifier->invalidate_range() callback as
1311 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1312 	 */
1313 	mmu_notifier_invalidate_range_only_end(&range);
1314 
1315 	ret |= VM_FAULT_WRITE;
1316 	put_page(page);
1317 
1318 out:
1319 	return ret;
1320 
1321 out_free_pages:
1322 	spin_unlock(vmf->ptl);
1323 	mmu_notifier_invalidate_range_end(&range);
1324 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1325 		memcg = (void *)page_private(pages[i]);
1326 		set_page_private(pages[i], 0);
1327 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1328 		put_page(pages[i]);
1329 	}
1330 	kfree(pages);
1331 	goto out;
1332 }
1333 
1334 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1335 {
1336 	struct vm_area_struct *vma = vmf->vma;
1337 	struct page *page = NULL, *new_page;
1338 	struct mem_cgroup *memcg;
1339 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1340 	struct mmu_notifier_range range;
1341 	gfp_t huge_gfp;			/* for allocation and charge */
1342 	vm_fault_t ret = 0;
1343 
1344 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1345 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1346 	if (is_huge_zero_pmd(orig_pmd))
1347 		goto alloc;
1348 	spin_lock(vmf->ptl);
1349 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1350 		goto out_unlock;
1351 
1352 	page = pmd_page(orig_pmd);
1353 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1354 	/*
1355 	 * We can only reuse the page if nobody else maps the huge page or it's
1356 	 * part.
1357 	 */
1358 	if (!trylock_page(page)) {
1359 		get_page(page);
1360 		spin_unlock(vmf->ptl);
1361 		lock_page(page);
1362 		spin_lock(vmf->ptl);
1363 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1364 			unlock_page(page);
1365 			put_page(page);
1366 			goto out_unlock;
1367 		}
1368 		put_page(page);
1369 	}
1370 	if (reuse_swap_page(page, NULL)) {
1371 		pmd_t entry;
1372 		entry = pmd_mkyoung(orig_pmd);
1373 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1375 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1376 		ret |= VM_FAULT_WRITE;
1377 		unlock_page(page);
1378 		goto out_unlock;
1379 	}
1380 	unlock_page(page);
1381 	get_page(page);
1382 	spin_unlock(vmf->ptl);
1383 alloc:
1384 	if (__transparent_hugepage_enabled(vma) &&
1385 	    !transparent_hugepage_debug_cow()) {
1386 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1387 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1388 	} else
1389 		new_page = NULL;
1390 
1391 	if (likely(new_page)) {
1392 		prep_transhuge_page(new_page);
1393 	} else {
1394 		if (!page) {
1395 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1396 			ret |= VM_FAULT_FALLBACK;
1397 		} else {
1398 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1399 			if (ret & VM_FAULT_OOM) {
1400 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1401 				ret |= VM_FAULT_FALLBACK;
1402 			}
1403 			put_page(page);
1404 		}
1405 		count_vm_event(THP_FAULT_FALLBACK);
1406 		goto out;
1407 	}
1408 
1409 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1410 					huge_gfp, &memcg, true))) {
1411 		put_page(new_page);
1412 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1413 		if (page)
1414 			put_page(page);
1415 		ret |= VM_FAULT_FALLBACK;
1416 		count_vm_event(THP_FAULT_FALLBACK);
1417 		goto out;
1418 	}
1419 
1420 	count_vm_event(THP_FAULT_ALLOC);
1421 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1422 
1423 	if (!page)
1424 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1425 	else
1426 		copy_user_huge_page(new_page, page, vmf->address,
1427 				    vma, HPAGE_PMD_NR);
1428 	__SetPageUptodate(new_page);
1429 
1430 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1431 				haddr, haddr + HPAGE_PMD_SIZE);
1432 	mmu_notifier_invalidate_range_start(&range);
1433 
1434 	spin_lock(vmf->ptl);
1435 	if (page)
1436 		put_page(page);
1437 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1438 		spin_unlock(vmf->ptl);
1439 		mem_cgroup_cancel_charge(new_page, memcg, true);
1440 		put_page(new_page);
1441 		goto out_mn;
1442 	} else {
1443 		pmd_t entry;
1444 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1445 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1446 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1447 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1448 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1449 		lru_cache_add_active_or_unevictable(new_page, vma);
1450 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1451 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1452 		if (!page) {
1453 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1454 		} else {
1455 			VM_BUG_ON_PAGE(!PageHead(page), page);
1456 			page_remove_rmap(page, true);
1457 			put_page(page);
1458 		}
1459 		ret |= VM_FAULT_WRITE;
1460 	}
1461 	spin_unlock(vmf->ptl);
1462 out_mn:
1463 	/*
1464 	 * No need to double call mmu_notifier->invalidate_range() callback as
1465 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1466 	 */
1467 	mmu_notifier_invalidate_range_only_end(&range);
1468 out:
1469 	return ret;
1470 out_unlock:
1471 	spin_unlock(vmf->ptl);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * FOLL_FORCE can write to even unwritable pmd's, but only
1477  * after we've gone through a COW cycle and they are dirty.
1478  */
1479 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1480 {
1481 	return pmd_write(pmd) ||
1482 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1483 }
1484 
1485 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1486 				   unsigned long addr,
1487 				   pmd_t *pmd,
1488 				   unsigned int flags)
1489 {
1490 	struct mm_struct *mm = vma->vm_mm;
1491 	struct page *page = NULL;
1492 
1493 	assert_spin_locked(pmd_lockptr(mm, pmd));
1494 
1495 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1496 		goto out;
1497 
1498 	/* Avoid dumping huge zero page */
1499 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1500 		return ERR_PTR(-EFAULT);
1501 
1502 	/* Full NUMA hinting faults to serialise migration in fault paths */
1503 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1504 		goto out;
1505 
1506 	page = pmd_page(*pmd);
1507 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1508 	if (flags & FOLL_TOUCH)
1509 		touch_pmd(vma, addr, pmd, flags);
1510 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1511 		/*
1512 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1513 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1514 		 *
1515 		 * For anon THP:
1516 		 *
1517 		 * In most cases the pmd is the only mapping of the page as we
1518 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1519 		 * writable private mappings in populate_vma_page_range().
1520 		 *
1521 		 * The only scenario when we have the page shared here is if we
1522 		 * mlocking read-only mapping shared over fork(). We skip
1523 		 * mlocking such pages.
1524 		 *
1525 		 * For file THP:
1526 		 *
1527 		 * We can expect PageDoubleMap() to be stable under page lock:
1528 		 * for file pages we set it in page_add_file_rmap(), which
1529 		 * requires page to be locked.
1530 		 */
1531 
1532 		if (PageAnon(page) && compound_mapcount(page) != 1)
1533 			goto skip_mlock;
1534 		if (PageDoubleMap(page) || !page->mapping)
1535 			goto skip_mlock;
1536 		if (!trylock_page(page))
1537 			goto skip_mlock;
1538 		lru_add_drain();
1539 		if (page->mapping && !PageDoubleMap(page))
1540 			mlock_vma_page(page);
1541 		unlock_page(page);
1542 	}
1543 skip_mlock:
1544 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1545 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1546 	if (flags & FOLL_GET)
1547 		get_page(page);
1548 
1549 out:
1550 	return page;
1551 }
1552 
1553 /* NUMA hinting page fault entry point for trans huge pmds */
1554 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1555 {
1556 	struct vm_area_struct *vma = vmf->vma;
1557 	struct anon_vma *anon_vma = NULL;
1558 	struct page *page;
1559 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1560 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1561 	int target_nid, last_cpupid = -1;
1562 	bool page_locked;
1563 	bool migrated = false;
1564 	bool was_writable;
1565 	int flags = 0;
1566 
1567 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1568 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1569 		goto out_unlock;
1570 
1571 	/*
1572 	 * If there are potential migrations, wait for completion and retry
1573 	 * without disrupting NUMA hinting information. Do not relock and
1574 	 * check_same as the page may no longer be mapped.
1575 	 */
1576 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1577 		page = pmd_page(*vmf->pmd);
1578 		if (!get_page_unless_zero(page))
1579 			goto out_unlock;
1580 		spin_unlock(vmf->ptl);
1581 		put_and_wait_on_page_locked(page);
1582 		goto out;
1583 	}
1584 
1585 	page = pmd_page(pmd);
1586 	BUG_ON(is_huge_zero_page(page));
1587 	page_nid = page_to_nid(page);
1588 	last_cpupid = page_cpupid_last(page);
1589 	count_vm_numa_event(NUMA_HINT_FAULTS);
1590 	if (page_nid == this_nid) {
1591 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1592 		flags |= TNF_FAULT_LOCAL;
1593 	}
1594 
1595 	/* See similar comment in do_numa_page for explanation */
1596 	if (!pmd_savedwrite(pmd))
1597 		flags |= TNF_NO_GROUP;
1598 
1599 	/*
1600 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1601 	 * page_table_lock if at all possible
1602 	 */
1603 	page_locked = trylock_page(page);
1604 	target_nid = mpol_misplaced(page, vma, haddr);
1605 	if (target_nid == NUMA_NO_NODE) {
1606 		/* If the page was locked, there are no parallel migrations */
1607 		if (page_locked)
1608 			goto clear_pmdnuma;
1609 	}
1610 
1611 	/* Migration could have started since the pmd_trans_migrating check */
1612 	if (!page_locked) {
1613 		page_nid = NUMA_NO_NODE;
1614 		if (!get_page_unless_zero(page))
1615 			goto out_unlock;
1616 		spin_unlock(vmf->ptl);
1617 		put_and_wait_on_page_locked(page);
1618 		goto out;
1619 	}
1620 
1621 	/*
1622 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1623 	 * to serialises splits
1624 	 */
1625 	get_page(page);
1626 	spin_unlock(vmf->ptl);
1627 	anon_vma = page_lock_anon_vma_read(page);
1628 
1629 	/* Confirm the PMD did not change while page_table_lock was released */
1630 	spin_lock(vmf->ptl);
1631 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1632 		unlock_page(page);
1633 		put_page(page);
1634 		page_nid = NUMA_NO_NODE;
1635 		goto out_unlock;
1636 	}
1637 
1638 	/* Bail if we fail to protect against THP splits for any reason */
1639 	if (unlikely(!anon_vma)) {
1640 		put_page(page);
1641 		page_nid = NUMA_NO_NODE;
1642 		goto clear_pmdnuma;
1643 	}
1644 
1645 	/*
1646 	 * Since we took the NUMA fault, we must have observed the !accessible
1647 	 * bit. Make sure all other CPUs agree with that, to avoid them
1648 	 * modifying the page we're about to migrate.
1649 	 *
1650 	 * Must be done under PTL such that we'll observe the relevant
1651 	 * inc_tlb_flush_pending().
1652 	 *
1653 	 * We are not sure a pending tlb flush here is for a huge page
1654 	 * mapping or not. Hence use the tlb range variant
1655 	 */
1656 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1657 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1658 		/*
1659 		 * change_huge_pmd() released the pmd lock before
1660 		 * invalidating the secondary MMUs sharing the primary
1661 		 * MMU pagetables (with ->invalidate_range()). The
1662 		 * mmu_notifier_invalidate_range_end() (which
1663 		 * internally calls ->invalidate_range()) in
1664 		 * change_pmd_range() will run after us, so we can't
1665 		 * rely on it here and we need an explicit invalidate.
1666 		 */
1667 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1668 					      haddr + HPAGE_PMD_SIZE);
1669 	}
1670 
1671 	/*
1672 	 * Migrate the THP to the requested node, returns with page unlocked
1673 	 * and access rights restored.
1674 	 */
1675 	spin_unlock(vmf->ptl);
1676 
1677 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1678 				vmf->pmd, pmd, vmf->address, page, target_nid);
1679 	if (migrated) {
1680 		flags |= TNF_MIGRATED;
1681 		page_nid = target_nid;
1682 	} else
1683 		flags |= TNF_MIGRATE_FAIL;
1684 
1685 	goto out;
1686 clear_pmdnuma:
1687 	BUG_ON(!PageLocked(page));
1688 	was_writable = pmd_savedwrite(pmd);
1689 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1690 	pmd = pmd_mkyoung(pmd);
1691 	if (was_writable)
1692 		pmd = pmd_mkwrite(pmd);
1693 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1694 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1695 	unlock_page(page);
1696 out_unlock:
1697 	spin_unlock(vmf->ptl);
1698 
1699 out:
1700 	if (anon_vma)
1701 		page_unlock_anon_vma_read(anon_vma);
1702 
1703 	if (page_nid != NUMA_NO_NODE)
1704 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1705 				flags);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Return true if we do MADV_FREE successfully on entire pmd page.
1712  * Otherwise, return false.
1713  */
1714 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1715 		pmd_t *pmd, unsigned long addr, unsigned long next)
1716 {
1717 	spinlock_t *ptl;
1718 	pmd_t orig_pmd;
1719 	struct page *page;
1720 	struct mm_struct *mm = tlb->mm;
1721 	bool ret = false;
1722 
1723 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1724 
1725 	ptl = pmd_trans_huge_lock(pmd, vma);
1726 	if (!ptl)
1727 		goto out_unlocked;
1728 
1729 	orig_pmd = *pmd;
1730 	if (is_huge_zero_pmd(orig_pmd))
1731 		goto out;
1732 
1733 	if (unlikely(!pmd_present(orig_pmd))) {
1734 		VM_BUG_ON(thp_migration_supported() &&
1735 				  !is_pmd_migration_entry(orig_pmd));
1736 		goto out;
1737 	}
1738 
1739 	page = pmd_page(orig_pmd);
1740 	/*
1741 	 * If other processes are mapping this page, we couldn't discard
1742 	 * the page unless they all do MADV_FREE so let's skip the page.
1743 	 */
1744 	if (page_mapcount(page) != 1)
1745 		goto out;
1746 
1747 	if (!trylock_page(page))
1748 		goto out;
1749 
1750 	/*
1751 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1752 	 * will deactivate only them.
1753 	 */
1754 	if (next - addr != HPAGE_PMD_SIZE) {
1755 		get_page(page);
1756 		spin_unlock(ptl);
1757 		split_huge_page(page);
1758 		unlock_page(page);
1759 		put_page(page);
1760 		goto out_unlocked;
1761 	}
1762 
1763 	if (PageDirty(page))
1764 		ClearPageDirty(page);
1765 	unlock_page(page);
1766 
1767 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1768 		pmdp_invalidate(vma, addr, pmd);
1769 		orig_pmd = pmd_mkold(orig_pmd);
1770 		orig_pmd = pmd_mkclean(orig_pmd);
1771 
1772 		set_pmd_at(mm, addr, pmd, orig_pmd);
1773 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1774 	}
1775 
1776 	mark_page_lazyfree(page);
1777 	ret = true;
1778 out:
1779 	spin_unlock(ptl);
1780 out_unlocked:
1781 	return ret;
1782 }
1783 
1784 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1785 {
1786 	pgtable_t pgtable;
1787 
1788 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1789 	pte_free(mm, pgtable);
1790 	mm_dec_nr_ptes(mm);
1791 }
1792 
1793 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1794 		 pmd_t *pmd, unsigned long addr)
1795 {
1796 	pmd_t orig_pmd;
1797 	spinlock_t *ptl;
1798 
1799 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1800 
1801 	ptl = __pmd_trans_huge_lock(pmd, vma);
1802 	if (!ptl)
1803 		return 0;
1804 	/*
1805 	 * For architectures like ppc64 we look at deposited pgtable
1806 	 * when calling pmdp_huge_get_and_clear. So do the
1807 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1808 	 * operations.
1809 	 */
1810 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1811 			tlb->fullmm);
1812 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1813 	if (vma_is_dax(vma)) {
1814 		if (arch_needs_pgtable_deposit())
1815 			zap_deposited_table(tlb->mm, pmd);
1816 		spin_unlock(ptl);
1817 		if (is_huge_zero_pmd(orig_pmd))
1818 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1819 	} else if (is_huge_zero_pmd(orig_pmd)) {
1820 		zap_deposited_table(tlb->mm, pmd);
1821 		spin_unlock(ptl);
1822 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1823 	} else {
1824 		struct page *page = NULL;
1825 		int flush_needed = 1;
1826 
1827 		if (pmd_present(orig_pmd)) {
1828 			page = pmd_page(orig_pmd);
1829 			page_remove_rmap(page, true);
1830 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1831 			VM_BUG_ON_PAGE(!PageHead(page), page);
1832 		} else if (thp_migration_supported()) {
1833 			swp_entry_t entry;
1834 
1835 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1836 			entry = pmd_to_swp_entry(orig_pmd);
1837 			page = pfn_to_page(swp_offset(entry));
1838 			flush_needed = 0;
1839 		} else
1840 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1841 
1842 		if (PageAnon(page)) {
1843 			zap_deposited_table(tlb->mm, pmd);
1844 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1845 		} else {
1846 			if (arch_needs_pgtable_deposit())
1847 				zap_deposited_table(tlb->mm, pmd);
1848 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1849 		}
1850 
1851 		spin_unlock(ptl);
1852 		if (flush_needed)
1853 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1854 	}
1855 	return 1;
1856 }
1857 
1858 #ifndef pmd_move_must_withdraw
1859 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1860 					 spinlock_t *old_pmd_ptl,
1861 					 struct vm_area_struct *vma)
1862 {
1863 	/*
1864 	 * With split pmd lock we also need to move preallocated
1865 	 * PTE page table if new_pmd is on different PMD page table.
1866 	 *
1867 	 * We also don't deposit and withdraw tables for file pages.
1868 	 */
1869 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1870 }
1871 #endif
1872 
1873 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1874 {
1875 #ifdef CONFIG_MEM_SOFT_DIRTY
1876 	if (unlikely(is_pmd_migration_entry(pmd)))
1877 		pmd = pmd_swp_mksoft_dirty(pmd);
1878 	else if (pmd_present(pmd))
1879 		pmd = pmd_mksoft_dirty(pmd);
1880 #endif
1881 	return pmd;
1882 }
1883 
1884 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1885 		  unsigned long new_addr, unsigned long old_end,
1886 		  pmd_t *old_pmd, pmd_t *new_pmd)
1887 {
1888 	spinlock_t *old_ptl, *new_ptl;
1889 	pmd_t pmd;
1890 	struct mm_struct *mm = vma->vm_mm;
1891 	bool force_flush = false;
1892 
1893 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1894 	    (new_addr & ~HPAGE_PMD_MASK) ||
1895 	    old_end - old_addr < HPAGE_PMD_SIZE)
1896 		return false;
1897 
1898 	/*
1899 	 * The destination pmd shouldn't be established, free_pgtables()
1900 	 * should have release it.
1901 	 */
1902 	if (WARN_ON(!pmd_none(*new_pmd))) {
1903 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1904 		return false;
1905 	}
1906 
1907 	/*
1908 	 * We don't have to worry about the ordering of src and dst
1909 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1910 	 */
1911 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1912 	if (old_ptl) {
1913 		new_ptl = pmd_lockptr(mm, new_pmd);
1914 		if (new_ptl != old_ptl)
1915 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1916 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1917 		if (pmd_present(pmd))
1918 			force_flush = true;
1919 		VM_BUG_ON(!pmd_none(*new_pmd));
1920 
1921 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1922 			pgtable_t pgtable;
1923 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1924 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1925 		}
1926 		pmd = move_soft_dirty_pmd(pmd);
1927 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1928 		if (force_flush)
1929 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1930 		if (new_ptl != old_ptl)
1931 			spin_unlock(new_ptl);
1932 		spin_unlock(old_ptl);
1933 		return true;
1934 	}
1935 	return false;
1936 }
1937 
1938 /*
1939  * Returns
1940  *  - 0 if PMD could not be locked
1941  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1942  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1943  */
1944 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1945 		unsigned long addr, pgprot_t newprot, int prot_numa)
1946 {
1947 	struct mm_struct *mm = vma->vm_mm;
1948 	spinlock_t *ptl;
1949 	pmd_t entry;
1950 	bool preserve_write;
1951 	int ret;
1952 
1953 	ptl = __pmd_trans_huge_lock(pmd, vma);
1954 	if (!ptl)
1955 		return 0;
1956 
1957 	preserve_write = prot_numa && pmd_write(*pmd);
1958 	ret = 1;
1959 
1960 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1961 	if (is_swap_pmd(*pmd)) {
1962 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1963 
1964 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1965 		if (is_write_migration_entry(entry)) {
1966 			pmd_t newpmd;
1967 			/*
1968 			 * A protection check is difficult so
1969 			 * just be safe and disable write
1970 			 */
1971 			make_migration_entry_read(&entry);
1972 			newpmd = swp_entry_to_pmd(entry);
1973 			if (pmd_swp_soft_dirty(*pmd))
1974 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1975 			set_pmd_at(mm, addr, pmd, newpmd);
1976 		}
1977 		goto unlock;
1978 	}
1979 #endif
1980 
1981 	/*
1982 	 * Avoid trapping faults against the zero page. The read-only
1983 	 * data is likely to be read-cached on the local CPU and
1984 	 * local/remote hits to the zero page are not interesting.
1985 	 */
1986 	if (prot_numa && is_huge_zero_pmd(*pmd))
1987 		goto unlock;
1988 
1989 	if (prot_numa && pmd_protnone(*pmd))
1990 		goto unlock;
1991 
1992 	/*
1993 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1994 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1995 	 * which is also under down_read(mmap_sem):
1996 	 *
1997 	 *	CPU0:				CPU1:
1998 	 *				change_huge_pmd(prot_numa=1)
1999 	 *				 pmdp_huge_get_and_clear_notify()
2000 	 * madvise_dontneed()
2001 	 *  zap_pmd_range()
2002 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2003 	 *   // skip the pmd
2004 	 *				 set_pmd_at();
2005 	 *				 // pmd is re-established
2006 	 *
2007 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2008 	 * which may break userspace.
2009 	 *
2010 	 * pmdp_invalidate() is required to make sure we don't miss
2011 	 * dirty/young flags set by hardware.
2012 	 */
2013 	entry = pmdp_invalidate(vma, addr, pmd);
2014 
2015 	entry = pmd_modify(entry, newprot);
2016 	if (preserve_write)
2017 		entry = pmd_mk_savedwrite(entry);
2018 	ret = HPAGE_PMD_NR;
2019 	set_pmd_at(mm, addr, pmd, entry);
2020 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2021 unlock:
2022 	spin_unlock(ptl);
2023 	return ret;
2024 }
2025 
2026 /*
2027  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2028  *
2029  * Note that if it returns page table lock pointer, this routine returns without
2030  * unlocking page table lock. So callers must unlock it.
2031  */
2032 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2033 {
2034 	spinlock_t *ptl;
2035 	ptl = pmd_lock(vma->vm_mm, pmd);
2036 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2037 			pmd_devmap(*pmd)))
2038 		return ptl;
2039 	spin_unlock(ptl);
2040 	return NULL;
2041 }
2042 
2043 /*
2044  * Returns true if a given pud maps a thp, false otherwise.
2045  *
2046  * Note that if it returns true, this routine returns without unlocking page
2047  * table lock. So callers must unlock it.
2048  */
2049 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2050 {
2051 	spinlock_t *ptl;
2052 
2053 	ptl = pud_lock(vma->vm_mm, pud);
2054 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2055 		return ptl;
2056 	spin_unlock(ptl);
2057 	return NULL;
2058 }
2059 
2060 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2061 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2062 		 pud_t *pud, unsigned long addr)
2063 {
2064 	spinlock_t *ptl;
2065 
2066 	ptl = __pud_trans_huge_lock(pud, vma);
2067 	if (!ptl)
2068 		return 0;
2069 	/*
2070 	 * For architectures like ppc64 we look at deposited pgtable
2071 	 * when calling pudp_huge_get_and_clear. So do the
2072 	 * pgtable_trans_huge_withdraw after finishing pudp related
2073 	 * operations.
2074 	 */
2075 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2076 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2077 	if (vma_is_dax(vma)) {
2078 		spin_unlock(ptl);
2079 		/* No zero page support yet */
2080 	} else {
2081 		/* No support for anonymous PUD pages yet */
2082 		BUG();
2083 	}
2084 	return 1;
2085 }
2086 
2087 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2088 		unsigned long haddr)
2089 {
2090 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2091 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2093 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2094 
2095 	count_vm_event(THP_SPLIT_PUD);
2096 
2097 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2098 }
2099 
2100 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2101 		unsigned long address)
2102 {
2103 	spinlock_t *ptl;
2104 	struct mmu_notifier_range range;
2105 
2106 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2107 				address & HPAGE_PUD_MASK,
2108 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2109 	mmu_notifier_invalidate_range_start(&range);
2110 	ptl = pud_lock(vma->vm_mm, pud);
2111 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2112 		goto out;
2113 	__split_huge_pud_locked(vma, pud, range.start);
2114 
2115 out:
2116 	spin_unlock(ptl);
2117 	/*
2118 	 * No need to double call mmu_notifier->invalidate_range() callback as
2119 	 * the above pudp_huge_clear_flush_notify() did already call it.
2120 	 */
2121 	mmu_notifier_invalidate_range_only_end(&range);
2122 }
2123 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2124 
2125 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2126 		unsigned long haddr, pmd_t *pmd)
2127 {
2128 	struct mm_struct *mm = vma->vm_mm;
2129 	pgtable_t pgtable;
2130 	pmd_t _pmd;
2131 	int i;
2132 
2133 	/*
2134 	 * Leave pmd empty until pte is filled note that it is fine to delay
2135 	 * notification until mmu_notifier_invalidate_range_end() as we are
2136 	 * replacing a zero pmd write protected page with a zero pte write
2137 	 * protected page.
2138 	 *
2139 	 * See Documentation/vm/mmu_notifier.rst
2140 	 */
2141 	pmdp_huge_clear_flush(vma, haddr, pmd);
2142 
2143 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2144 	pmd_populate(mm, &_pmd, pgtable);
2145 
2146 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2147 		pte_t *pte, entry;
2148 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2149 		entry = pte_mkspecial(entry);
2150 		pte = pte_offset_map(&_pmd, haddr);
2151 		VM_BUG_ON(!pte_none(*pte));
2152 		set_pte_at(mm, haddr, pte, entry);
2153 		pte_unmap(pte);
2154 	}
2155 	smp_wmb(); /* make pte visible before pmd */
2156 	pmd_populate(mm, pmd, pgtable);
2157 }
2158 
2159 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2160 		unsigned long haddr, bool freeze)
2161 {
2162 	struct mm_struct *mm = vma->vm_mm;
2163 	struct page *page;
2164 	pgtable_t pgtable;
2165 	pmd_t old_pmd, _pmd;
2166 	bool young, write, soft_dirty, pmd_migration = false;
2167 	unsigned long addr;
2168 	int i;
2169 
2170 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2171 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2172 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2173 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2174 				&& !pmd_devmap(*pmd));
2175 
2176 	count_vm_event(THP_SPLIT_PMD);
2177 
2178 	if (!vma_is_anonymous(vma)) {
2179 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2180 		/*
2181 		 * We are going to unmap this huge page. So
2182 		 * just go ahead and zap it
2183 		 */
2184 		if (arch_needs_pgtable_deposit())
2185 			zap_deposited_table(mm, pmd);
2186 		if (vma_is_dax(vma))
2187 			return;
2188 		page = pmd_page(_pmd);
2189 		if (!PageDirty(page) && pmd_dirty(_pmd))
2190 			set_page_dirty(page);
2191 		if (!PageReferenced(page) && pmd_young(_pmd))
2192 			SetPageReferenced(page);
2193 		page_remove_rmap(page, true);
2194 		put_page(page);
2195 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2196 		return;
2197 	} else if (is_huge_zero_pmd(*pmd)) {
2198 		/*
2199 		 * FIXME: Do we want to invalidate secondary mmu by calling
2200 		 * mmu_notifier_invalidate_range() see comments below inside
2201 		 * __split_huge_pmd() ?
2202 		 *
2203 		 * We are going from a zero huge page write protected to zero
2204 		 * small page also write protected so it does not seems useful
2205 		 * to invalidate secondary mmu at this time.
2206 		 */
2207 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2208 	}
2209 
2210 	/*
2211 	 * Up to this point the pmd is present and huge and userland has the
2212 	 * whole access to the hugepage during the split (which happens in
2213 	 * place). If we overwrite the pmd with the not-huge version pointing
2214 	 * to the pte here (which of course we could if all CPUs were bug
2215 	 * free), userland could trigger a small page size TLB miss on the
2216 	 * small sized TLB while the hugepage TLB entry is still established in
2217 	 * the huge TLB. Some CPU doesn't like that.
2218 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2219 	 * 383 on page 93. Intel should be safe but is also warns that it's
2220 	 * only safe if the permission and cache attributes of the two entries
2221 	 * loaded in the two TLB is identical (which should be the case here).
2222 	 * But it is generally safer to never allow small and huge TLB entries
2223 	 * for the same virtual address to be loaded simultaneously. So instead
2224 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2225 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2226 	 * must remain set at all times on the pmd until the split is complete
2227 	 * for this pmd), then we flush the SMP TLB and finally we write the
2228 	 * non-huge version of the pmd entry with pmd_populate.
2229 	 */
2230 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2231 
2232 	pmd_migration = is_pmd_migration_entry(old_pmd);
2233 	if (unlikely(pmd_migration)) {
2234 		swp_entry_t entry;
2235 
2236 		entry = pmd_to_swp_entry(old_pmd);
2237 		page = pfn_to_page(swp_offset(entry));
2238 		write = is_write_migration_entry(entry);
2239 		young = false;
2240 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2241 	} else {
2242 		page = pmd_page(old_pmd);
2243 		if (pmd_dirty(old_pmd))
2244 			SetPageDirty(page);
2245 		write = pmd_write(old_pmd);
2246 		young = pmd_young(old_pmd);
2247 		soft_dirty = pmd_soft_dirty(old_pmd);
2248 	}
2249 	VM_BUG_ON_PAGE(!page_count(page), page);
2250 	page_ref_add(page, HPAGE_PMD_NR - 1);
2251 
2252 	/*
2253 	 * Withdraw the table only after we mark the pmd entry invalid.
2254 	 * This's critical for some architectures (Power).
2255 	 */
2256 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2257 	pmd_populate(mm, &_pmd, pgtable);
2258 
2259 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2260 		pte_t entry, *pte;
2261 		/*
2262 		 * Note that NUMA hinting access restrictions are not
2263 		 * transferred to avoid any possibility of altering
2264 		 * permissions across VMAs.
2265 		 */
2266 		if (freeze || pmd_migration) {
2267 			swp_entry_t swp_entry;
2268 			swp_entry = make_migration_entry(page + i, write);
2269 			entry = swp_entry_to_pte(swp_entry);
2270 			if (soft_dirty)
2271 				entry = pte_swp_mksoft_dirty(entry);
2272 		} else {
2273 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2274 			entry = maybe_mkwrite(entry, vma);
2275 			if (!write)
2276 				entry = pte_wrprotect(entry);
2277 			if (!young)
2278 				entry = pte_mkold(entry);
2279 			if (soft_dirty)
2280 				entry = pte_mksoft_dirty(entry);
2281 		}
2282 		pte = pte_offset_map(&_pmd, addr);
2283 		BUG_ON(!pte_none(*pte));
2284 		set_pte_at(mm, addr, pte, entry);
2285 		atomic_inc(&page[i]._mapcount);
2286 		pte_unmap(pte);
2287 	}
2288 
2289 	/*
2290 	 * Set PG_double_map before dropping compound_mapcount to avoid
2291 	 * false-negative page_mapped().
2292 	 */
2293 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2294 		for (i = 0; i < HPAGE_PMD_NR; i++)
2295 			atomic_inc(&page[i]._mapcount);
2296 	}
2297 
2298 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2299 		/* Last compound_mapcount is gone. */
2300 		__dec_node_page_state(page, NR_ANON_THPS);
2301 		if (TestClearPageDoubleMap(page)) {
2302 			/* No need in mapcount reference anymore */
2303 			for (i = 0; i < HPAGE_PMD_NR; i++)
2304 				atomic_dec(&page[i]._mapcount);
2305 		}
2306 	}
2307 
2308 	smp_wmb(); /* make pte visible before pmd */
2309 	pmd_populate(mm, pmd, pgtable);
2310 
2311 	if (freeze) {
2312 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2313 			page_remove_rmap(page + i, false);
2314 			put_page(page + i);
2315 		}
2316 	}
2317 }
2318 
2319 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2320 		unsigned long address, bool freeze, struct page *page)
2321 {
2322 	spinlock_t *ptl;
2323 	struct mmu_notifier_range range;
2324 
2325 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2326 				address & HPAGE_PMD_MASK,
2327 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2328 	mmu_notifier_invalidate_range_start(&range);
2329 	ptl = pmd_lock(vma->vm_mm, pmd);
2330 
2331 	/*
2332 	 * If caller asks to setup a migration entries, we need a page to check
2333 	 * pmd against. Otherwise we can end up replacing wrong page.
2334 	 */
2335 	VM_BUG_ON(freeze && !page);
2336 	if (page && page != pmd_page(*pmd))
2337 	        goto out;
2338 
2339 	if (pmd_trans_huge(*pmd)) {
2340 		page = pmd_page(*pmd);
2341 		if (PageMlocked(page))
2342 			clear_page_mlock(page);
2343 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2344 		goto out;
2345 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2346 out:
2347 	spin_unlock(ptl);
2348 	/*
2349 	 * No need to double call mmu_notifier->invalidate_range() callback.
2350 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2351 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2352 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2353 	 *    fault will trigger a flush_notify before pointing to a new page
2354 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2355 	 *    page in the meantime)
2356 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2357 	 *     to invalidate secondary tlb entry they are all still valid.
2358 	 *     any further changes to individual pte will notify. So no need
2359 	 *     to call mmu_notifier->invalidate_range()
2360 	 */
2361 	mmu_notifier_invalidate_range_only_end(&range);
2362 }
2363 
2364 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2365 		bool freeze, struct page *page)
2366 {
2367 	pgd_t *pgd;
2368 	p4d_t *p4d;
2369 	pud_t *pud;
2370 	pmd_t *pmd;
2371 
2372 	pgd = pgd_offset(vma->vm_mm, address);
2373 	if (!pgd_present(*pgd))
2374 		return;
2375 
2376 	p4d = p4d_offset(pgd, address);
2377 	if (!p4d_present(*p4d))
2378 		return;
2379 
2380 	pud = pud_offset(p4d, address);
2381 	if (!pud_present(*pud))
2382 		return;
2383 
2384 	pmd = pmd_offset(pud, address);
2385 
2386 	__split_huge_pmd(vma, pmd, address, freeze, page);
2387 }
2388 
2389 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2390 			     unsigned long start,
2391 			     unsigned long end,
2392 			     long adjust_next)
2393 {
2394 	/*
2395 	 * If the new start address isn't hpage aligned and it could
2396 	 * previously contain an hugepage: check if we need to split
2397 	 * an huge pmd.
2398 	 */
2399 	if (start & ~HPAGE_PMD_MASK &&
2400 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2401 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2402 		split_huge_pmd_address(vma, start, false, NULL);
2403 
2404 	/*
2405 	 * If the new end address isn't hpage aligned and it could
2406 	 * previously contain an hugepage: check if we need to split
2407 	 * an huge pmd.
2408 	 */
2409 	if (end & ~HPAGE_PMD_MASK &&
2410 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2411 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2412 		split_huge_pmd_address(vma, end, false, NULL);
2413 
2414 	/*
2415 	 * If we're also updating the vma->vm_next->vm_start, if the new
2416 	 * vm_next->vm_start isn't page aligned and it could previously
2417 	 * contain an hugepage: check if we need to split an huge pmd.
2418 	 */
2419 	if (adjust_next > 0) {
2420 		struct vm_area_struct *next = vma->vm_next;
2421 		unsigned long nstart = next->vm_start;
2422 		nstart += adjust_next << PAGE_SHIFT;
2423 		if (nstart & ~HPAGE_PMD_MASK &&
2424 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2425 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2426 			split_huge_pmd_address(next, nstart, false, NULL);
2427 	}
2428 }
2429 
2430 static void unmap_page(struct page *page)
2431 {
2432 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2433 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2434 	bool unmap_success;
2435 
2436 	VM_BUG_ON_PAGE(!PageHead(page), page);
2437 
2438 	if (PageAnon(page))
2439 		ttu_flags |= TTU_SPLIT_FREEZE;
2440 
2441 	unmap_success = try_to_unmap(page, ttu_flags);
2442 	VM_BUG_ON_PAGE(!unmap_success, page);
2443 }
2444 
2445 static void remap_page(struct page *page)
2446 {
2447 	int i;
2448 	if (PageTransHuge(page)) {
2449 		remove_migration_ptes(page, page, true);
2450 	} else {
2451 		for (i = 0; i < HPAGE_PMD_NR; i++)
2452 			remove_migration_ptes(page + i, page + i, true);
2453 	}
2454 }
2455 
2456 static void __split_huge_page_tail(struct page *head, int tail,
2457 		struct lruvec *lruvec, struct list_head *list)
2458 {
2459 	struct page *page_tail = head + tail;
2460 
2461 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2462 
2463 	/*
2464 	 * Clone page flags before unfreezing refcount.
2465 	 *
2466 	 * After successful get_page_unless_zero() might follow flags change,
2467 	 * for exmaple lock_page() which set PG_waiters.
2468 	 */
2469 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2470 	page_tail->flags |= (head->flags &
2471 			((1L << PG_referenced) |
2472 			 (1L << PG_swapbacked) |
2473 			 (1L << PG_swapcache) |
2474 			 (1L << PG_mlocked) |
2475 			 (1L << PG_uptodate) |
2476 			 (1L << PG_active) |
2477 			 (1L << PG_workingset) |
2478 			 (1L << PG_locked) |
2479 			 (1L << PG_unevictable) |
2480 			 (1L << PG_dirty)));
2481 
2482 	/* ->mapping in first tail page is compound_mapcount */
2483 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2484 			page_tail);
2485 	page_tail->mapping = head->mapping;
2486 	page_tail->index = head->index + tail;
2487 
2488 	/* Page flags must be visible before we make the page non-compound. */
2489 	smp_wmb();
2490 
2491 	/*
2492 	 * Clear PageTail before unfreezing page refcount.
2493 	 *
2494 	 * After successful get_page_unless_zero() might follow put_page()
2495 	 * which needs correct compound_head().
2496 	 */
2497 	clear_compound_head(page_tail);
2498 
2499 	/* Finally unfreeze refcount. Additional reference from page cache. */
2500 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2501 					  PageSwapCache(head)));
2502 
2503 	if (page_is_young(head))
2504 		set_page_young(page_tail);
2505 	if (page_is_idle(head))
2506 		set_page_idle(page_tail);
2507 
2508 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2509 
2510 	/*
2511 	 * always add to the tail because some iterators expect new
2512 	 * pages to show after the currently processed elements - e.g.
2513 	 * migrate_pages
2514 	 */
2515 	lru_add_page_tail(head, page_tail, lruvec, list);
2516 }
2517 
2518 static void __split_huge_page(struct page *page, struct list_head *list,
2519 		pgoff_t end, unsigned long flags)
2520 {
2521 	struct page *head = compound_head(page);
2522 	pg_data_t *pgdat = page_pgdat(head);
2523 	struct lruvec *lruvec;
2524 	struct address_space *swap_cache = NULL;
2525 	unsigned long offset = 0;
2526 	int i;
2527 
2528 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2529 
2530 	/* complete memcg works before add pages to LRU */
2531 	mem_cgroup_split_huge_fixup(head);
2532 
2533 	if (PageAnon(head) && PageSwapCache(head)) {
2534 		swp_entry_t entry = { .val = page_private(head) };
2535 
2536 		offset = swp_offset(entry);
2537 		swap_cache = swap_address_space(entry);
2538 		xa_lock(&swap_cache->i_pages);
2539 	}
2540 
2541 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2542 		__split_huge_page_tail(head, i, lruvec, list);
2543 		/* Some pages can be beyond i_size: drop them from page cache */
2544 		if (head[i].index >= end) {
2545 			ClearPageDirty(head + i);
2546 			__delete_from_page_cache(head + i, NULL);
2547 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2548 				shmem_uncharge(head->mapping->host, 1);
2549 			put_page(head + i);
2550 		} else if (!PageAnon(page)) {
2551 			__xa_store(&head->mapping->i_pages, head[i].index,
2552 					head + i, 0);
2553 		} else if (swap_cache) {
2554 			__xa_store(&swap_cache->i_pages, offset + i,
2555 					head + i, 0);
2556 		}
2557 	}
2558 
2559 	ClearPageCompound(head);
2560 
2561 	split_page_owner(head, HPAGE_PMD_ORDER);
2562 
2563 	/* See comment in __split_huge_page_tail() */
2564 	if (PageAnon(head)) {
2565 		/* Additional pin to swap cache */
2566 		if (PageSwapCache(head)) {
2567 			page_ref_add(head, 2);
2568 			xa_unlock(&swap_cache->i_pages);
2569 		} else {
2570 			page_ref_inc(head);
2571 		}
2572 	} else {
2573 		/* Additional pin to page cache */
2574 		page_ref_add(head, 2);
2575 		xa_unlock(&head->mapping->i_pages);
2576 	}
2577 
2578 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2579 
2580 	remap_page(head);
2581 
2582 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2583 		struct page *subpage = head + i;
2584 		if (subpage == page)
2585 			continue;
2586 		unlock_page(subpage);
2587 
2588 		/*
2589 		 * Subpages may be freed if there wasn't any mapping
2590 		 * like if add_to_swap() is running on a lru page that
2591 		 * had its mapping zapped. And freeing these pages
2592 		 * requires taking the lru_lock so we do the put_page
2593 		 * of the tail pages after the split is complete.
2594 		 */
2595 		put_page(subpage);
2596 	}
2597 }
2598 
2599 int total_mapcount(struct page *page)
2600 {
2601 	int i, compound, ret;
2602 
2603 	VM_BUG_ON_PAGE(PageTail(page), page);
2604 
2605 	if (likely(!PageCompound(page)))
2606 		return atomic_read(&page->_mapcount) + 1;
2607 
2608 	compound = compound_mapcount(page);
2609 	if (PageHuge(page))
2610 		return compound;
2611 	ret = compound;
2612 	for (i = 0; i < HPAGE_PMD_NR; i++)
2613 		ret += atomic_read(&page[i]._mapcount) + 1;
2614 	/* File pages has compound_mapcount included in _mapcount */
2615 	if (!PageAnon(page))
2616 		return ret - compound * HPAGE_PMD_NR;
2617 	if (PageDoubleMap(page))
2618 		ret -= HPAGE_PMD_NR;
2619 	return ret;
2620 }
2621 
2622 /*
2623  * This calculates accurately how many mappings a transparent hugepage
2624  * has (unlike page_mapcount() which isn't fully accurate). This full
2625  * accuracy is primarily needed to know if copy-on-write faults can
2626  * reuse the page and change the mapping to read-write instead of
2627  * copying them. At the same time this returns the total_mapcount too.
2628  *
2629  * The function returns the highest mapcount any one of the subpages
2630  * has. If the return value is one, even if different processes are
2631  * mapping different subpages of the transparent hugepage, they can
2632  * all reuse it, because each process is reusing a different subpage.
2633  *
2634  * The total_mapcount is instead counting all virtual mappings of the
2635  * subpages. If the total_mapcount is equal to "one", it tells the
2636  * caller all mappings belong to the same "mm" and in turn the
2637  * anon_vma of the transparent hugepage can become the vma->anon_vma
2638  * local one as no other process may be mapping any of the subpages.
2639  *
2640  * It would be more accurate to replace page_mapcount() with
2641  * page_trans_huge_mapcount(), however we only use
2642  * page_trans_huge_mapcount() in the copy-on-write faults where we
2643  * need full accuracy to avoid breaking page pinning, because
2644  * page_trans_huge_mapcount() is slower than page_mapcount().
2645  */
2646 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2647 {
2648 	int i, ret, _total_mapcount, mapcount;
2649 
2650 	/* hugetlbfs shouldn't call it */
2651 	VM_BUG_ON_PAGE(PageHuge(page), page);
2652 
2653 	if (likely(!PageTransCompound(page))) {
2654 		mapcount = atomic_read(&page->_mapcount) + 1;
2655 		if (total_mapcount)
2656 			*total_mapcount = mapcount;
2657 		return mapcount;
2658 	}
2659 
2660 	page = compound_head(page);
2661 
2662 	_total_mapcount = ret = 0;
2663 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2664 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2665 		ret = max(ret, mapcount);
2666 		_total_mapcount += mapcount;
2667 	}
2668 	if (PageDoubleMap(page)) {
2669 		ret -= 1;
2670 		_total_mapcount -= HPAGE_PMD_NR;
2671 	}
2672 	mapcount = compound_mapcount(page);
2673 	ret += mapcount;
2674 	_total_mapcount += mapcount;
2675 	if (total_mapcount)
2676 		*total_mapcount = _total_mapcount;
2677 	return ret;
2678 }
2679 
2680 /* Racy check whether the huge page can be split */
2681 bool can_split_huge_page(struct page *page, int *pextra_pins)
2682 {
2683 	int extra_pins;
2684 
2685 	/* Additional pins from page cache */
2686 	if (PageAnon(page))
2687 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2688 	else
2689 		extra_pins = HPAGE_PMD_NR;
2690 	if (pextra_pins)
2691 		*pextra_pins = extra_pins;
2692 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2693 }
2694 
2695 /*
2696  * This function splits huge page into normal pages. @page can point to any
2697  * subpage of huge page to split. Split doesn't change the position of @page.
2698  *
2699  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2700  * The huge page must be locked.
2701  *
2702  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2703  *
2704  * Both head page and tail pages will inherit mapping, flags, and so on from
2705  * the hugepage.
2706  *
2707  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2708  * they are not mapped.
2709  *
2710  * Returns 0 if the hugepage is split successfully.
2711  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2712  * us.
2713  */
2714 int split_huge_page_to_list(struct page *page, struct list_head *list)
2715 {
2716 	struct page *head = compound_head(page);
2717 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2718 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2719 	struct anon_vma *anon_vma = NULL;
2720 	struct address_space *mapping = NULL;
2721 	int count, mapcount, extra_pins, ret;
2722 	bool mlocked;
2723 	unsigned long flags;
2724 	pgoff_t end;
2725 
2726 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2727 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2728 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2729 
2730 	if (PageWriteback(page))
2731 		return -EBUSY;
2732 
2733 	if (PageAnon(head)) {
2734 		/*
2735 		 * The caller does not necessarily hold an mmap_sem that would
2736 		 * prevent the anon_vma disappearing so we first we take a
2737 		 * reference to it and then lock the anon_vma for write. This
2738 		 * is similar to page_lock_anon_vma_read except the write lock
2739 		 * is taken to serialise against parallel split or collapse
2740 		 * operations.
2741 		 */
2742 		anon_vma = page_get_anon_vma(head);
2743 		if (!anon_vma) {
2744 			ret = -EBUSY;
2745 			goto out;
2746 		}
2747 		end = -1;
2748 		mapping = NULL;
2749 		anon_vma_lock_write(anon_vma);
2750 	} else {
2751 		mapping = head->mapping;
2752 
2753 		/* Truncated ? */
2754 		if (!mapping) {
2755 			ret = -EBUSY;
2756 			goto out;
2757 		}
2758 
2759 		anon_vma = NULL;
2760 		i_mmap_lock_read(mapping);
2761 
2762 		/*
2763 		 *__split_huge_page() may need to trim off pages beyond EOF:
2764 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2765 		 * which cannot be nested inside the page tree lock. So note
2766 		 * end now: i_size itself may be changed at any moment, but
2767 		 * head page lock is good enough to serialize the trimming.
2768 		 */
2769 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2770 	}
2771 
2772 	/*
2773 	 * Racy check if we can split the page, before unmap_page() will
2774 	 * split PMDs
2775 	 */
2776 	if (!can_split_huge_page(head, &extra_pins)) {
2777 		ret = -EBUSY;
2778 		goto out_unlock;
2779 	}
2780 
2781 	mlocked = PageMlocked(page);
2782 	unmap_page(head);
2783 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2784 
2785 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2786 	if (mlocked)
2787 		lru_add_drain();
2788 
2789 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2790 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2791 
2792 	if (mapping) {
2793 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2794 
2795 		/*
2796 		 * Check if the head page is present in page cache.
2797 		 * We assume all tail are present too, if head is there.
2798 		 */
2799 		xa_lock(&mapping->i_pages);
2800 		if (xas_load(&xas) != head)
2801 			goto fail;
2802 	}
2803 
2804 	/* Prevent deferred_split_scan() touching ->_refcount */
2805 	spin_lock(&ds_queue->split_queue_lock);
2806 	count = page_count(head);
2807 	mapcount = total_mapcount(head);
2808 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2809 		if (!list_empty(page_deferred_list(head))) {
2810 			ds_queue->split_queue_len--;
2811 			list_del(page_deferred_list(head));
2812 		}
2813 		if (mapping) {
2814 			if (PageSwapBacked(page))
2815 				__dec_node_page_state(page, NR_SHMEM_THPS);
2816 			else
2817 				__dec_node_page_state(page, NR_FILE_THPS);
2818 		}
2819 
2820 		spin_unlock(&ds_queue->split_queue_lock);
2821 		__split_huge_page(page, list, end, flags);
2822 		if (PageSwapCache(head)) {
2823 			swp_entry_t entry = { .val = page_private(head) };
2824 
2825 			ret = split_swap_cluster(entry);
2826 		} else
2827 			ret = 0;
2828 	} else {
2829 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2830 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2831 					mapcount, count);
2832 			if (PageTail(page))
2833 				dump_page(head, NULL);
2834 			dump_page(page, "total_mapcount(head) > 0");
2835 			BUG();
2836 		}
2837 		spin_unlock(&ds_queue->split_queue_lock);
2838 fail:		if (mapping)
2839 			xa_unlock(&mapping->i_pages);
2840 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2841 		remap_page(head);
2842 		ret = -EBUSY;
2843 	}
2844 
2845 out_unlock:
2846 	if (anon_vma) {
2847 		anon_vma_unlock_write(anon_vma);
2848 		put_anon_vma(anon_vma);
2849 	}
2850 	if (mapping)
2851 		i_mmap_unlock_read(mapping);
2852 out:
2853 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2854 	return ret;
2855 }
2856 
2857 void free_transhuge_page(struct page *page)
2858 {
2859 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2860 	unsigned long flags;
2861 
2862 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2863 	if (!list_empty(page_deferred_list(page))) {
2864 		ds_queue->split_queue_len--;
2865 		list_del(page_deferred_list(page));
2866 	}
2867 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2868 	free_compound_page(page);
2869 }
2870 
2871 void deferred_split_huge_page(struct page *page)
2872 {
2873 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2874 #ifdef CONFIG_MEMCG
2875 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2876 #endif
2877 	unsigned long flags;
2878 
2879 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2880 
2881 	/*
2882 	 * The try_to_unmap() in page reclaim path might reach here too,
2883 	 * this may cause a race condition to corrupt deferred split queue.
2884 	 * And, if page reclaim is already handling the same page, it is
2885 	 * unnecessary to handle it again in shrinker.
2886 	 *
2887 	 * Check PageSwapCache to determine if the page is being
2888 	 * handled by page reclaim since THP swap would add the page into
2889 	 * swap cache before calling try_to_unmap().
2890 	 */
2891 	if (PageSwapCache(page))
2892 		return;
2893 
2894 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2895 	if (list_empty(page_deferred_list(page))) {
2896 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2897 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2898 		ds_queue->split_queue_len++;
2899 #ifdef CONFIG_MEMCG
2900 		if (memcg)
2901 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2902 					       deferred_split_shrinker.id);
2903 #endif
2904 	}
2905 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2906 }
2907 
2908 static unsigned long deferred_split_count(struct shrinker *shrink,
2909 		struct shrink_control *sc)
2910 {
2911 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2912 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2913 
2914 #ifdef CONFIG_MEMCG
2915 	if (sc->memcg)
2916 		ds_queue = &sc->memcg->deferred_split_queue;
2917 #endif
2918 	return READ_ONCE(ds_queue->split_queue_len);
2919 }
2920 
2921 static unsigned long deferred_split_scan(struct shrinker *shrink,
2922 		struct shrink_control *sc)
2923 {
2924 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2925 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2926 	unsigned long flags;
2927 	LIST_HEAD(list), *pos, *next;
2928 	struct page *page;
2929 	int split = 0;
2930 
2931 #ifdef CONFIG_MEMCG
2932 	if (sc->memcg)
2933 		ds_queue = &sc->memcg->deferred_split_queue;
2934 #endif
2935 
2936 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2937 	/* Take pin on all head pages to avoid freeing them under us */
2938 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2939 		page = list_entry((void *)pos, struct page, mapping);
2940 		page = compound_head(page);
2941 		if (get_page_unless_zero(page)) {
2942 			list_move(page_deferred_list(page), &list);
2943 		} else {
2944 			/* We lost race with put_compound_page() */
2945 			list_del_init(page_deferred_list(page));
2946 			ds_queue->split_queue_len--;
2947 		}
2948 		if (!--sc->nr_to_scan)
2949 			break;
2950 	}
2951 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2952 
2953 	list_for_each_safe(pos, next, &list) {
2954 		page = list_entry((void *)pos, struct page, mapping);
2955 		if (!trylock_page(page))
2956 			goto next;
2957 		/* split_huge_page() removes page from list on success */
2958 		if (!split_huge_page(page))
2959 			split++;
2960 		unlock_page(page);
2961 next:
2962 		put_page(page);
2963 	}
2964 
2965 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2966 	list_splice_tail(&list, &ds_queue->split_queue);
2967 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2968 
2969 	/*
2970 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2971 	 * This can happen if pages were freed under us.
2972 	 */
2973 	if (!split && list_empty(&ds_queue->split_queue))
2974 		return SHRINK_STOP;
2975 	return split;
2976 }
2977 
2978 static struct shrinker deferred_split_shrinker = {
2979 	.count_objects = deferred_split_count,
2980 	.scan_objects = deferred_split_scan,
2981 	.seeks = DEFAULT_SEEKS,
2982 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2983 		 SHRINKER_NONSLAB,
2984 };
2985 
2986 #ifdef CONFIG_DEBUG_FS
2987 static int split_huge_pages_set(void *data, u64 val)
2988 {
2989 	struct zone *zone;
2990 	struct page *page;
2991 	unsigned long pfn, max_zone_pfn;
2992 	unsigned long total = 0, split = 0;
2993 
2994 	if (val != 1)
2995 		return -EINVAL;
2996 
2997 	for_each_populated_zone(zone) {
2998 		max_zone_pfn = zone_end_pfn(zone);
2999 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3000 			if (!pfn_valid(pfn))
3001 				continue;
3002 
3003 			page = pfn_to_page(pfn);
3004 			if (!get_page_unless_zero(page))
3005 				continue;
3006 
3007 			if (zone != page_zone(page))
3008 				goto next;
3009 
3010 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3011 				goto next;
3012 
3013 			total++;
3014 			lock_page(page);
3015 			if (!split_huge_page(page))
3016 				split++;
3017 			unlock_page(page);
3018 next:
3019 			put_page(page);
3020 		}
3021 	}
3022 
3023 	pr_info("%lu of %lu THP split\n", split, total);
3024 
3025 	return 0;
3026 }
3027 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3028 		"%llu\n");
3029 
3030 static int __init split_huge_pages_debugfs(void)
3031 {
3032 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3033 			    &split_huge_pages_fops);
3034 	return 0;
3035 }
3036 late_initcall(split_huge_pages_debugfs);
3037 #endif
3038 
3039 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3040 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3041 		struct page *page)
3042 {
3043 	struct vm_area_struct *vma = pvmw->vma;
3044 	struct mm_struct *mm = vma->vm_mm;
3045 	unsigned long address = pvmw->address;
3046 	pmd_t pmdval;
3047 	swp_entry_t entry;
3048 	pmd_t pmdswp;
3049 
3050 	if (!(pvmw->pmd && !pvmw->pte))
3051 		return;
3052 
3053 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3054 	pmdval = *pvmw->pmd;
3055 	pmdp_invalidate(vma, address, pvmw->pmd);
3056 	if (pmd_dirty(pmdval))
3057 		set_page_dirty(page);
3058 	entry = make_migration_entry(page, pmd_write(pmdval));
3059 	pmdswp = swp_entry_to_pmd(entry);
3060 	if (pmd_soft_dirty(pmdval))
3061 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3062 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3063 	page_remove_rmap(page, true);
3064 	put_page(page);
3065 }
3066 
3067 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3068 {
3069 	struct vm_area_struct *vma = pvmw->vma;
3070 	struct mm_struct *mm = vma->vm_mm;
3071 	unsigned long address = pvmw->address;
3072 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3073 	pmd_t pmde;
3074 	swp_entry_t entry;
3075 
3076 	if (!(pvmw->pmd && !pvmw->pte))
3077 		return;
3078 
3079 	entry = pmd_to_swp_entry(*pvmw->pmd);
3080 	get_page(new);
3081 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3082 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3083 		pmde = pmd_mksoft_dirty(pmde);
3084 	if (is_write_migration_entry(entry))
3085 		pmde = maybe_pmd_mkwrite(pmde, vma);
3086 
3087 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3088 	if (PageAnon(new))
3089 		page_add_anon_rmap(new, vma, mmun_start, true);
3090 	else
3091 		page_add_file_rmap(new, true);
3092 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3093 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3094 		mlock_vma_page(new);
3095 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3096 }
3097 #endif
3098