xref: /linux/mm/huge_memory.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/* ->lru in the tail pages is occupied by compound_head. */
487 	return &page[2].deferred_list;
488 }
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 		loff_t off, unsigned long flags, unsigned long size)
503 {
504 	unsigned long addr;
505 	loff_t off_end = off + len;
506 	loff_t off_align = round_up(off, size);
507 	unsigned long len_pad;
508 
509 	if (off_end <= off_align || (off_end - off_align) < size)
510 		return 0;
511 
512 	len_pad = len + size;
513 	if (len_pad < len || (off + len_pad) < off)
514 		return 0;
515 
516 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 					      off >> PAGE_SHIFT, flags);
518 	if (IS_ERR_VALUE(addr))
519 		return 0;
520 
521 	addr += (off - addr) & (size - 1);
522 	return addr;
523 }
524 
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 		unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529 
530 	if (addr)
531 		goto out;
532 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 		goto out;
534 
535 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 	if (addr)
537 		return addr;
538 
539  out:
540 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543 
544 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 			struct page *page, gfp_t gfp)
546 {
547 	struct vm_area_struct *vma = vmf->vma;
548 	struct mem_cgroup *memcg;
549 	pgtable_t pgtable;
550 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 	vm_fault_t ret = 0;
552 
553 	VM_BUG_ON_PAGE(!PageCompound(page), page);
554 
555 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 		put_page(page);
557 		count_vm_event(THP_FAULT_FALLBACK);
558 		return VM_FAULT_FALLBACK;
559 	}
560 
561 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 	if (unlikely(!pgtable)) {
563 		ret = VM_FAULT_OOM;
564 		goto release;
565 	}
566 
567 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 	/*
569 	 * The memory barrier inside __SetPageUptodate makes sure that
570 	 * clear_huge_page writes become visible before the set_pmd_at()
571 	 * write.
572 	 */
573 	__SetPageUptodate(page);
574 
575 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 	if (unlikely(!pmd_none(*vmf->pmd))) {
577 		goto unlock_release;
578 	} else {
579 		pmd_t entry;
580 
581 		ret = check_stable_address_space(vma->vm_mm);
582 		if (ret)
583 			goto unlock_release;
584 
585 		/* Deliver the page fault to userland */
586 		if (userfaultfd_missing(vma)) {
587 			vm_fault_t ret2;
588 
589 			spin_unlock(vmf->ptl);
590 			mem_cgroup_cancel_charge(page, memcg, true);
591 			put_page(page);
592 			pte_free(vma->vm_mm, pgtable);
593 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 			return ret2;
596 		}
597 
598 		entry = mk_huge_pmd(page, vma->vm_page_prot);
599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 		page_add_new_anon_rmap(page, vma, haddr, true);
601 		mem_cgroup_commit_charge(page, memcg, false, true);
602 		lru_cache_add_active_or_unevictable(page, vma);
603 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 		mm_inc_nr_ptes(vma->vm_mm);
607 		spin_unlock(vmf->ptl);
608 		count_vm_event(THP_FAULT_ALLOC);
609 	}
610 
611 	return 0;
612 unlock_release:
613 	spin_unlock(vmf->ptl);
614 release:
615 	if (pgtable)
616 		pte_free(vma->vm_mm, pgtable);
617 	mem_cgroup_cancel_charge(page, memcg, true);
618 	put_page(page);
619 	return ret;
620 
621 }
622 
623 /*
624  * always: directly stall for all thp allocations
625  * defer: wake kswapd and fail if not immediately available
626  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627  *		  fail if not immediately available
628  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629  *	    available
630  * never: never stall for any thp allocation
631  */
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633 {
634 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635 
636 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 							     __GFP_KSWAPD_RECLAIM);
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     0);
646 	return GFP_TRANSHUGE_LIGHT;
647 }
648 
649 /* Caller must hold page table lock. */
650 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652 		struct page *zero_page)
653 {
654 	pmd_t entry;
655 	if (!pmd_none(*pmd))
656 		return false;
657 	entry = mk_pmd(zero_page, vma->vm_page_prot);
658 	entry = pmd_mkhuge(entry);
659 	if (pgtable)
660 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
661 	set_pmd_at(mm, haddr, pmd, entry);
662 	mm_inc_nr_ptes(mm);
663 	return true;
664 }
665 
666 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
667 {
668 	struct vm_area_struct *vma = vmf->vma;
669 	gfp_t gfp;
670 	struct page *page;
671 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
672 
673 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674 		return VM_FAULT_FALLBACK;
675 	if (unlikely(anon_vma_prepare(vma)))
676 		return VM_FAULT_OOM;
677 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678 		return VM_FAULT_OOM;
679 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
680 			!mm_forbids_zeropage(vma->vm_mm) &&
681 			transparent_hugepage_use_zero_page()) {
682 		pgtable_t pgtable;
683 		struct page *zero_page;
684 		bool set;
685 		vm_fault_t ret;
686 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
687 		if (unlikely(!pgtable))
688 			return VM_FAULT_OOM;
689 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
690 		if (unlikely(!zero_page)) {
691 			pte_free(vma->vm_mm, pgtable);
692 			count_vm_event(THP_FAULT_FALLBACK);
693 			return VM_FAULT_FALLBACK;
694 		}
695 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 		ret = 0;
697 		set = false;
698 		if (pmd_none(*vmf->pmd)) {
699 			ret = check_stable_address_space(vma->vm_mm);
700 			if (ret) {
701 				spin_unlock(vmf->ptl);
702 			} else if (userfaultfd_missing(vma)) {
703 				spin_unlock(vmf->ptl);
704 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 			} else {
707 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
708 						   haddr, vmf->pmd, zero_page);
709 				spin_unlock(vmf->ptl);
710 				set = true;
711 			}
712 		} else
713 			spin_unlock(vmf->ptl);
714 		if (!set)
715 			pte_free(vma->vm_mm, pgtable);
716 		return ret;
717 	}
718 	gfp = alloc_hugepage_direct_gfpmask(vma);
719 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 	if (unlikely(!page)) {
721 		count_vm_event(THP_FAULT_FALLBACK);
722 		return VM_FAULT_FALLBACK;
723 	}
724 	prep_transhuge_page(page);
725 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
726 }
727 
728 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 		pgtable_t pgtable)
731 {
732 	struct mm_struct *mm = vma->vm_mm;
733 	pmd_t entry;
734 	spinlock_t *ptl;
735 
736 	ptl = pmd_lock(mm, pmd);
737 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 	if (pfn_t_devmap(pfn))
739 		entry = pmd_mkdevmap(entry);
740 	if (write) {
741 		entry = pmd_mkyoung(pmd_mkdirty(entry));
742 		entry = maybe_pmd_mkwrite(entry, vma);
743 	}
744 
745 	if (pgtable) {
746 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
747 		mm_inc_nr_ptes(mm);
748 	}
749 
750 	set_pmd_at(mm, addr, pmd, entry);
751 	update_mmu_cache_pmd(vma, addr, pmd);
752 	spin_unlock(ptl);
753 }
754 
755 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
756 			pmd_t *pmd, pfn_t pfn, bool write)
757 {
758 	pgprot_t pgprot = vma->vm_page_prot;
759 	pgtable_t pgtable = NULL;
760 	/*
761 	 * If we had pmd_special, we could avoid all these restrictions,
762 	 * but we need to be consistent with PTEs and architectures that
763 	 * can't support a 'special' bit.
764 	 */
765 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
766 			!pfn_t_devmap(pfn));
767 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
768 						(VM_PFNMAP|VM_MIXEDMAP));
769 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
770 
771 	if (addr < vma->vm_start || addr >= vma->vm_end)
772 		return VM_FAULT_SIGBUS;
773 
774 	if (arch_needs_pgtable_deposit()) {
775 		pgtable = pte_alloc_one(vma->vm_mm, addr);
776 		if (!pgtable)
777 			return VM_FAULT_OOM;
778 	}
779 
780 	track_pfn_insert(vma, &pgprot, pfn);
781 
782 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
783 	return VM_FAULT_NOPAGE;
784 }
785 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
786 
787 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
789 {
790 	if (likely(vma->vm_flags & VM_WRITE))
791 		pud = pud_mkwrite(pud);
792 	return pud;
793 }
794 
795 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
797 {
798 	struct mm_struct *mm = vma->vm_mm;
799 	pud_t entry;
800 	spinlock_t *ptl;
801 
802 	ptl = pud_lock(mm, pud);
803 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 	if (pfn_t_devmap(pfn))
805 		entry = pud_mkdevmap(entry);
806 	if (write) {
807 		entry = pud_mkyoung(pud_mkdirty(entry));
808 		entry = maybe_pud_mkwrite(entry, vma);
809 	}
810 	set_pud_at(mm, addr, pud, entry);
811 	update_mmu_cache_pud(vma, addr, pud);
812 	spin_unlock(ptl);
813 }
814 
815 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 			pud_t *pud, pfn_t pfn, bool write)
817 {
818 	pgprot_t pgprot = vma->vm_page_prot;
819 	/*
820 	 * If we had pud_special, we could avoid all these restrictions,
821 	 * but we need to be consistent with PTEs and architectures that
822 	 * can't support a 'special' bit.
823 	 */
824 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
825 			!pfn_t_devmap(pfn));
826 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
827 						(VM_PFNMAP|VM_MIXEDMAP));
828 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
829 
830 	if (addr < vma->vm_start || addr >= vma->vm_end)
831 		return VM_FAULT_SIGBUS;
832 
833 	track_pfn_insert(vma, &pgprot, pfn);
834 
835 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 	return VM_FAULT_NOPAGE;
837 }
838 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
840 
841 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
842 		pmd_t *pmd, int flags)
843 {
844 	pmd_t _pmd;
845 
846 	_pmd = pmd_mkyoung(*pmd);
847 	if (flags & FOLL_WRITE)
848 		_pmd = pmd_mkdirty(_pmd);
849 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
850 				pmd, _pmd, flags & FOLL_WRITE))
851 		update_mmu_cache_pmd(vma, addr, pmd);
852 }
853 
854 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
855 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
856 {
857 	unsigned long pfn = pmd_pfn(*pmd);
858 	struct mm_struct *mm = vma->vm_mm;
859 	struct page *page;
860 
861 	assert_spin_locked(pmd_lockptr(mm, pmd));
862 
863 	/*
864 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
865 	 * not be in this function with `flags & FOLL_COW` set.
866 	 */
867 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
868 
869 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
870 		return NULL;
871 
872 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
873 		/* pass */;
874 	else
875 		return NULL;
876 
877 	if (flags & FOLL_TOUCH)
878 		touch_pmd(vma, addr, pmd, flags);
879 
880 	/*
881 	 * device mapped pages can only be returned if the
882 	 * caller will manage the page reference count.
883 	 */
884 	if (!(flags & FOLL_GET))
885 		return ERR_PTR(-EEXIST);
886 
887 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
888 	*pgmap = get_dev_pagemap(pfn, *pgmap);
889 	if (!*pgmap)
890 		return ERR_PTR(-EFAULT);
891 	page = pfn_to_page(pfn);
892 	get_page(page);
893 
894 	return page;
895 }
896 
897 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
898 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
899 		  struct vm_area_struct *vma)
900 {
901 	spinlock_t *dst_ptl, *src_ptl;
902 	struct page *src_page;
903 	pmd_t pmd;
904 	pgtable_t pgtable = NULL;
905 	int ret = -ENOMEM;
906 
907 	/* Skip if can be re-fill on fault */
908 	if (!vma_is_anonymous(vma))
909 		return 0;
910 
911 	pgtable = pte_alloc_one(dst_mm, addr);
912 	if (unlikely(!pgtable))
913 		goto out;
914 
915 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
916 	src_ptl = pmd_lockptr(src_mm, src_pmd);
917 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
918 
919 	ret = -EAGAIN;
920 	pmd = *src_pmd;
921 
922 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
923 	if (unlikely(is_swap_pmd(pmd))) {
924 		swp_entry_t entry = pmd_to_swp_entry(pmd);
925 
926 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
927 		if (is_write_migration_entry(entry)) {
928 			make_migration_entry_read(&entry);
929 			pmd = swp_entry_to_pmd(entry);
930 			if (pmd_swp_soft_dirty(*src_pmd))
931 				pmd = pmd_swp_mksoft_dirty(pmd);
932 			set_pmd_at(src_mm, addr, src_pmd, pmd);
933 		}
934 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
935 		mm_inc_nr_ptes(dst_mm);
936 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
937 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
938 		ret = 0;
939 		goto out_unlock;
940 	}
941 #endif
942 
943 	if (unlikely(!pmd_trans_huge(pmd))) {
944 		pte_free(dst_mm, pgtable);
945 		goto out_unlock;
946 	}
947 	/*
948 	 * When page table lock is held, the huge zero pmd should not be
949 	 * under splitting since we don't split the page itself, only pmd to
950 	 * a page table.
951 	 */
952 	if (is_huge_zero_pmd(pmd)) {
953 		struct page *zero_page;
954 		/*
955 		 * get_huge_zero_page() will never allocate a new page here,
956 		 * since we already have a zero page to copy. It just takes a
957 		 * reference.
958 		 */
959 		zero_page = mm_get_huge_zero_page(dst_mm);
960 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
961 				zero_page);
962 		ret = 0;
963 		goto out_unlock;
964 	}
965 
966 	src_page = pmd_page(pmd);
967 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
968 	get_page(src_page);
969 	page_dup_rmap(src_page, true);
970 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
971 	mm_inc_nr_ptes(dst_mm);
972 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
973 
974 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
975 	pmd = pmd_mkold(pmd_wrprotect(pmd));
976 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
977 
978 	ret = 0;
979 out_unlock:
980 	spin_unlock(src_ptl);
981 	spin_unlock(dst_ptl);
982 out:
983 	return ret;
984 }
985 
986 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
987 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
988 		pud_t *pud, int flags)
989 {
990 	pud_t _pud;
991 
992 	_pud = pud_mkyoung(*pud);
993 	if (flags & FOLL_WRITE)
994 		_pud = pud_mkdirty(_pud);
995 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
996 				pud, _pud, flags & FOLL_WRITE))
997 		update_mmu_cache_pud(vma, addr, pud);
998 }
999 
1000 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1001 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1002 {
1003 	unsigned long pfn = pud_pfn(*pud);
1004 	struct mm_struct *mm = vma->vm_mm;
1005 	struct page *page;
1006 
1007 	assert_spin_locked(pud_lockptr(mm, pud));
1008 
1009 	if (flags & FOLL_WRITE && !pud_write(*pud))
1010 		return NULL;
1011 
1012 	if (pud_present(*pud) && pud_devmap(*pud))
1013 		/* pass */;
1014 	else
1015 		return NULL;
1016 
1017 	if (flags & FOLL_TOUCH)
1018 		touch_pud(vma, addr, pud, flags);
1019 
1020 	/*
1021 	 * device mapped pages can only be returned if the
1022 	 * caller will manage the page reference count.
1023 	 */
1024 	if (!(flags & FOLL_GET))
1025 		return ERR_PTR(-EEXIST);
1026 
1027 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1028 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1029 	if (!*pgmap)
1030 		return ERR_PTR(-EFAULT);
1031 	page = pfn_to_page(pfn);
1032 	get_page(page);
1033 
1034 	return page;
1035 }
1036 
1037 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1039 		  struct vm_area_struct *vma)
1040 {
1041 	spinlock_t *dst_ptl, *src_ptl;
1042 	pud_t pud;
1043 	int ret;
1044 
1045 	dst_ptl = pud_lock(dst_mm, dst_pud);
1046 	src_ptl = pud_lockptr(src_mm, src_pud);
1047 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 
1049 	ret = -EAGAIN;
1050 	pud = *src_pud;
1051 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1052 		goto out_unlock;
1053 
1054 	/*
1055 	 * When page table lock is held, the huge zero pud should not be
1056 	 * under splitting since we don't split the page itself, only pud to
1057 	 * a page table.
1058 	 */
1059 	if (is_huge_zero_pud(pud)) {
1060 		/* No huge zero pud yet */
1061 	}
1062 
1063 	pudp_set_wrprotect(src_mm, addr, src_pud);
1064 	pud = pud_mkold(pud_wrprotect(pud));
1065 	set_pud_at(dst_mm, addr, dst_pud, pud);
1066 
1067 	ret = 0;
1068 out_unlock:
1069 	spin_unlock(src_ptl);
1070 	spin_unlock(dst_ptl);
1071 	return ret;
1072 }
1073 
1074 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1075 {
1076 	pud_t entry;
1077 	unsigned long haddr;
1078 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1079 
1080 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1081 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1082 		goto unlock;
1083 
1084 	entry = pud_mkyoung(orig_pud);
1085 	if (write)
1086 		entry = pud_mkdirty(entry);
1087 	haddr = vmf->address & HPAGE_PUD_MASK;
1088 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1089 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1090 
1091 unlock:
1092 	spin_unlock(vmf->ptl);
1093 }
1094 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1095 
1096 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1097 {
1098 	pmd_t entry;
1099 	unsigned long haddr;
1100 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1101 
1102 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1103 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1104 		goto unlock;
1105 
1106 	entry = pmd_mkyoung(orig_pmd);
1107 	if (write)
1108 		entry = pmd_mkdirty(entry);
1109 	haddr = vmf->address & HPAGE_PMD_MASK;
1110 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1111 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1112 
1113 unlock:
1114 	spin_unlock(vmf->ptl);
1115 }
1116 
1117 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1118 			pmd_t orig_pmd, struct page *page)
1119 {
1120 	struct vm_area_struct *vma = vmf->vma;
1121 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1122 	struct mem_cgroup *memcg;
1123 	pgtable_t pgtable;
1124 	pmd_t _pmd;
1125 	int i;
1126 	vm_fault_t ret = 0;
1127 	struct page **pages;
1128 	unsigned long mmun_start;	/* For mmu_notifiers */
1129 	unsigned long mmun_end;		/* For mmu_notifiers */
1130 
1131 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1132 			      GFP_KERNEL);
1133 	if (unlikely(!pages)) {
1134 		ret |= VM_FAULT_OOM;
1135 		goto out;
1136 	}
1137 
1138 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1139 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1140 					       vmf->address, page_to_nid(page));
1141 		if (unlikely(!pages[i] ||
1142 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1143 				     GFP_KERNEL, &memcg, false))) {
1144 			if (pages[i])
1145 				put_page(pages[i]);
1146 			while (--i >= 0) {
1147 				memcg = (void *)page_private(pages[i]);
1148 				set_page_private(pages[i], 0);
1149 				mem_cgroup_cancel_charge(pages[i], memcg,
1150 						false);
1151 				put_page(pages[i]);
1152 			}
1153 			kfree(pages);
1154 			ret |= VM_FAULT_OOM;
1155 			goto out;
1156 		}
1157 		set_page_private(pages[i], (unsigned long)memcg);
1158 	}
1159 
1160 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1161 		copy_user_highpage(pages[i], page + i,
1162 				   haddr + PAGE_SIZE * i, vma);
1163 		__SetPageUptodate(pages[i]);
1164 		cond_resched();
1165 	}
1166 
1167 	mmun_start = haddr;
1168 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1169 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1170 
1171 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1172 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1173 		goto out_free_pages;
1174 	VM_BUG_ON_PAGE(!PageHead(page), page);
1175 
1176 	/*
1177 	 * Leave pmd empty until pte is filled note we must notify here as
1178 	 * concurrent CPU thread might write to new page before the call to
1179 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1180 	 * device seeing memory write in different order than CPU.
1181 	 *
1182 	 * See Documentation/vm/mmu_notifier.rst
1183 	 */
1184 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1185 
1186 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1187 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1188 
1189 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1190 		pte_t entry;
1191 		entry = mk_pte(pages[i], vma->vm_page_prot);
1192 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1193 		memcg = (void *)page_private(pages[i]);
1194 		set_page_private(pages[i], 0);
1195 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1196 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1197 		lru_cache_add_active_or_unevictable(pages[i], vma);
1198 		vmf->pte = pte_offset_map(&_pmd, haddr);
1199 		VM_BUG_ON(!pte_none(*vmf->pte));
1200 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1201 		pte_unmap(vmf->pte);
1202 	}
1203 	kfree(pages);
1204 
1205 	smp_wmb(); /* make pte visible before pmd */
1206 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1207 	page_remove_rmap(page, true);
1208 	spin_unlock(vmf->ptl);
1209 
1210 	/*
1211 	 * No need to double call mmu_notifier->invalidate_range() callback as
1212 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1213 	 */
1214 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1215 						mmun_end);
1216 
1217 	ret |= VM_FAULT_WRITE;
1218 	put_page(page);
1219 
1220 out:
1221 	return ret;
1222 
1223 out_free_pages:
1224 	spin_unlock(vmf->ptl);
1225 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1226 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1227 		memcg = (void *)page_private(pages[i]);
1228 		set_page_private(pages[i], 0);
1229 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1230 		put_page(pages[i]);
1231 	}
1232 	kfree(pages);
1233 	goto out;
1234 }
1235 
1236 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1237 {
1238 	struct vm_area_struct *vma = vmf->vma;
1239 	struct page *page = NULL, *new_page;
1240 	struct mem_cgroup *memcg;
1241 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1242 	unsigned long mmun_start;	/* For mmu_notifiers */
1243 	unsigned long mmun_end;		/* For mmu_notifiers */
1244 	gfp_t huge_gfp;			/* for allocation and charge */
1245 	vm_fault_t ret = 0;
1246 
1247 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1248 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1249 	if (is_huge_zero_pmd(orig_pmd))
1250 		goto alloc;
1251 	spin_lock(vmf->ptl);
1252 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1253 		goto out_unlock;
1254 
1255 	page = pmd_page(orig_pmd);
1256 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1257 	/*
1258 	 * We can only reuse the page if nobody else maps the huge page or it's
1259 	 * part.
1260 	 */
1261 	if (!trylock_page(page)) {
1262 		get_page(page);
1263 		spin_unlock(vmf->ptl);
1264 		lock_page(page);
1265 		spin_lock(vmf->ptl);
1266 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1267 			unlock_page(page);
1268 			put_page(page);
1269 			goto out_unlock;
1270 		}
1271 		put_page(page);
1272 	}
1273 	if (reuse_swap_page(page, NULL)) {
1274 		pmd_t entry;
1275 		entry = pmd_mkyoung(orig_pmd);
1276 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1277 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1278 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1279 		ret |= VM_FAULT_WRITE;
1280 		unlock_page(page);
1281 		goto out_unlock;
1282 	}
1283 	unlock_page(page);
1284 	get_page(page);
1285 	spin_unlock(vmf->ptl);
1286 alloc:
1287 	if (transparent_hugepage_enabled(vma) &&
1288 	    !transparent_hugepage_debug_cow()) {
1289 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1290 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1291 	} else
1292 		new_page = NULL;
1293 
1294 	if (likely(new_page)) {
1295 		prep_transhuge_page(new_page);
1296 	} else {
1297 		if (!page) {
1298 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1299 			ret |= VM_FAULT_FALLBACK;
1300 		} else {
1301 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1302 			if (ret & VM_FAULT_OOM) {
1303 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1304 				ret |= VM_FAULT_FALLBACK;
1305 			}
1306 			put_page(page);
1307 		}
1308 		count_vm_event(THP_FAULT_FALLBACK);
1309 		goto out;
1310 	}
1311 
1312 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1313 					huge_gfp, &memcg, true))) {
1314 		put_page(new_page);
1315 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1316 		if (page)
1317 			put_page(page);
1318 		ret |= VM_FAULT_FALLBACK;
1319 		count_vm_event(THP_FAULT_FALLBACK);
1320 		goto out;
1321 	}
1322 
1323 	count_vm_event(THP_FAULT_ALLOC);
1324 
1325 	if (!page)
1326 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1327 	else
1328 		copy_user_huge_page(new_page, page, vmf->address,
1329 				    vma, HPAGE_PMD_NR);
1330 	__SetPageUptodate(new_page);
1331 
1332 	mmun_start = haddr;
1333 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1334 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1335 
1336 	spin_lock(vmf->ptl);
1337 	if (page)
1338 		put_page(page);
1339 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 		spin_unlock(vmf->ptl);
1341 		mem_cgroup_cancel_charge(new_page, memcg, true);
1342 		put_page(new_page);
1343 		goto out_mn;
1344 	} else {
1345 		pmd_t entry;
1346 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1347 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1348 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1349 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1350 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1351 		lru_cache_add_active_or_unevictable(new_page, vma);
1352 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1353 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1354 		if (!page) {
1355 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1356 		} else {
1357 			VM_BUG_ON_PAGE(!PageHead(page), page);
1358 			page_remove_rmap(page, true);
1359 			put_page(page);
1360 		}
1361 		ret |= VM_FAULT_WRITE;
1362 	}
1363 	spin_unlock(vmf->ptl);
1364 out_mn:
1365 	/*
1366 	 * No need to double call mmu_notifier->invalidate_range() callback as
1367 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1368 	 */
1369 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1370 					       mmun_end);
1371 out:
1372 	return ret;
1373 out_unlock:
1374 	spin_unlock(vmf->ptl);
1375 	return ret;
1376 }
1377 
1378 /*
1379  * FOLL_FORCE can write to even unwritable pmd's, but only
1380  * after we've gone through a COW cycle and they are dirty.
1381  */
1382 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1383 {
1384 	return pmd_write(pmd) ||
1385 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1386 }
1387 
1388 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1389 				   unsigned long addr,
1390 				   pmd_t *pmd,
1391 				   unsigned int flags)
1392 {
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	struct page *page = NULL;
1395 
1396 	assert_spin_locked(pmd_lockptr(mm, pmd));
1397 
1398 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1399 		goto out;
1400 
1401 	/* Avoid dumping huge zero page */
1402 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1403 		return ERR_PTR(-EFAULT);
1404 
1405 	/* Full NUMA hinting faults to serialise migration in fault paths */
1406 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1407 		goto out;
1408 
1409 	page = pmd_page(*pmd);
1410 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1411 	if (flags & FOLL_TOUCH)
1412 		touch_pmd(vma, addr, pmd, flags);
1413 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1414 		/*
1415 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1416 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1417 		 *
1418 		 * For anon THP:
1419 		 *
1420 		 * In most cases the pmd is the only mapping of the page as we
1421 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1422 		 * writable private mappings in populate_vma_page_range().
1423 		 *
1424 		 * The only scenario when we have the page shared here is if we
1425 		 * mlocking read-only mapping shared over fork(). We skip
1426 		 * mlocking such pages.
1427 		 *
1428 		 * For file THP:
1429 		 *
1430 		 * We can expect PageDoubleMap() to be stable under page lock:
1431 		 * for file pages we set it in page_add_file_rmap(), which
1432 		 * requires page to be locked.
1433 		 */
1434 
1435 		if (PageAnon(page) && compound_mapcount(page) != 1)
1436 			goto skip_mlock;
1437 		if (PageDoubleMap(page) || !page->mapping)
1438 			goto skip_mlock;
1439 		if (!trylock_page(page))
1440 			goto skip_mlock;
1441 		lru_add_drain();
1442 		if (page->mapping && !PageDoubleMap(page))
1443 			mlock_vma_page(page);
1444 		unlock_page(page);
1445 	}
1446 skip_mlock:
1447 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1448 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1449 	if (flags & FOLL_GET)
1450 		get_page(page);
1451 
1452 out:
1453 	return page;
1454 }
1455 
1456 /* NUMA hinting page fault entry point for trans huge pmds */
1457 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1458 {
1459 	struct vm_area_struct *vma = vmf->vma;
1460 	struct anon_vma *anon_vma = NULL;
1461 	struct page *page;
1462 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1463 	int page_nid = -1, this_nid = numa_node_id();
1464 	int target_nid, last_cpupid = -1;
1465 	bool page_locked;
1466 	bool migrated = false;
1467 	bool was_writable;
1468 	int flags = 0;
1469 
1470 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1472 		goto out_unlock;
1473 
1474 	/*
1475 	 * If there are potential migrations, wait for completion and retry
1476 	 * without disrupting NUMA hinting information. Do not relock and
1477 	 * check_same as the page may no longer be mapped.
1478 	 */
1479 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1480 		page = pmd_page(*vmf->pmd);
1481 		if (!get_page_unless_zero(page))
1482 			goto out_unlock;
1483 		spin_unlock(vmf->ptl);
1484 		wait_on_page_locked(page);
1485 		put_page(page);
1486 		goto out;
1487 	}
1488 
1489 	page = pmd_page(pmd);
1490 	BUG_ON(is_huge_zero_page(page));
1491 	page_nid = page_to_nid(page);
1492 	last_cpupid = page_cpupid_last(page);
1493 	count_vm_numa_event(NUMA_HINT_FAULTS);
1494 	if (page_nid == this_nid) {
1495 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1496 		flags |= TNF_FAULT_LOCAL;
1497 	}
1498 
1499 	/* See similar comment in do_numa_page for explanation */
1500 	if (!pmd_savedwrite(pmd))
1501 		flags |= TNF_NO_GROUP;
1502 
1503 	/*
1504 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 	 * page_table_lock if at all possible
1506 	 */
1507 	page_locked = trylock_page(page);
1508 	target_nid = mpol_misplaced(page, vma, haddr);
1509 	if (target_nid == -1) {
1510 		/* If the page was locked, there are no parallel migrations */
1511 		if (page_locked)
1512 			goto clear_pmdnuma;
1513 	}
1514 
1515 	/* Migration could have started since the pmd_trans_migrating check */
1516 	if (!page_locked) {
1517 		page_nid = -1;
1518 		if (!get_page_unless_zero(page))
1519 			goto out_unlock;
1520 		spin_unlock(vmf->ptl);
1521 		wait_on_page_locked(page);
1522 		put_page(page);
1523 		goto out;
1524 	}
1525 
1526 	/*
1527 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1528 	 * to serialises splits
1529 	 */
1530 	get_page(page);
1531 	spin_unlock(vmf->ptl);
1532 	anon_vma = page_lock_anon_vma_read(page);
1533 
1534 	/* Confirm the PMD did not change while page_table_lock was released */
1535 	spin_lock(vmf->ptl);
1536 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1537 		unlock_page(page);
1538 		put_page(page);
1539 		page_nid = -1;
1540 		goto out_unlock;
1541 	}
1542 
1543 	/* Bail if we fail to protect against THP splits for any reason */
1544 	if (unlikely(!anon_vma)) {
1545 		put_page(page);
1546 		page_nid = -1;
1547 		goto clear_pmdnuma;
1548 	}
1549 
1550 	/*
1551 	 * Since we took the NUMA fault, we must have observed the !accessible
1552 	 * bit. Make sure all other CPUs agree with that, to avoid them
1553 	 * modifying the page we're about to migrate.
1554 	 *
1555 	 * Must be done under PTL such that we'll observe the relevant
1556 	 * inc_tlb_flush_pending().
1557 	 *
1558 	 * We are not sure a pending tlb flush here is for a huge page
1559 	 * mapping or not. Hence use the tlb range variant
1560 	 */
1561 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1562 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1563 		/*
1564 		 * change_huge_pmd() released the pmd lock before
1565 		 * invalidating the secondary MMUs sharing the primary
1566 		 * MMU pagetables (with ->invalidate_range()). The
1567 		 * mmu_notifier_invalidate_range_end() (which
1568 		 * internally calls ->invalidate_range()) in
1569 		 * change_pmd_range() will run after us, so we can't
1570 		 * rely on it here and we need an explicit invalidate.
1571 		 */
1572 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1573 					      haddr + HPAGE_PMD_SIZE);
1574 	}
1575 
1576 	/*
1577 	 * Migrate the THP to the requested node, returns with page unlocked
1578 	 * and access rights restored.
1579 	 */
1580 	spin_unlock(vmf->ptl);
1581 
1582 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1583 				vmf->pmd, pmd, vmf->address, page, target_nid);
1584 	if (migrated) {
1585 		flags |= TNF_MIGRATED;
1586 		page_nid = target_nid;
1587 	} else
1588 		flags |= TNF_MIGRATE_FAIL;
1589 
1590 	goto out;
1591 clear_pmdnuma:
1592 	BUG_ON(!PageLocked(page));
1593 	was_writable = pmd_savedwrite(pmd);
1594 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1595 	pmd = pmd_mkyoung(pmd);
1596 	if (was_writable)
1597 		pmd = pmd_mkwrite(pmd);
1598 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1599 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1600 	unlock_page(page);
1601 out_unlock:
1602 	spin_unlock(vmf->ptl);
1603 
1604 out:
1605 	if (anon_vma)
1606 		page_unlock_anon_vma_read(anon_vma);
1607 
1608 	if (page_nid != -1)
1609 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1610 				flags);
1611 
1612 	return 0;
1613 }
1614 
1615 /*
1616  * Return true if we do MADV_FREE successfully on entire pmd page.
1617  * Otherwise, return false.
1618  */
1619 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1620 		pmd_t *pmd, unsigned long addr, unsigned long next)
1621 {
1622 	spinlock_t *ptl;
1623 	pmd_t orig_pmd;
1624 	struct page *page;
1625 	struct mm_struct *mm = tlb->mm;
1626 	bool ret = false;
1627 
1628 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1629 
1630 	ptl = pmd_trans_huge_lock(pmd, vma);
1631 	if (!ptl)
1632 		goto out_unlocked;
1633 
1634 	orig_pmd = *pmd;
1635 	if (is_huge_zero_pmd(orig_pmd))
1636 		goto out;
1637 
1638 	if (unlikely(!pmd_present(orig_pmd))) {
1639 		VM_BUG_ON(thp_migration_supported() &&
1640 				  !is_pmd_migration_entry(orig_pmd));
1641 		goto out;
1642 	}
1643 
1644 	page = pmd_page(orig_pmd);
1645 	/*
1646 	 * If other processes are mapping this page, we couldn't discard
1647 	 * the page unless they all do MADV_FREE so let's skip the page.
1648 	 */
1649 	if (page_mapcount(page) != 1)
1650 		goto out;
1651 
1652 	if (!trylock_page(page))
1653 		goto out;
1654 
1655 	/*
1656 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1657 	 * will deactivate only them.
1658 	 */
1659 	if (next - addr != HPAGE_PMD_SIZE) {
1660 		get_page(page);
1661 		spin_unlock(ptl);
1662 		split_huge_page(page);
1663 		unlock_page(page);
1664 		put_page(page);
1665 		goto out_unlocked;
1666 	}
1667 
1668 	if (PageDirty(page))
1669 		ClearPageDirty(page);
1670 	unlock_page(page);
1671 
1672 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1673 		pmdp_invalidate(vma, addr, pmd);
1674 		orig_pmd = pmd_mkold(orig_pmd);
1675 		orig_pmd = pmd_mkclean(orig_pmd);
1676 
1677 		set_pmd_at(mm, addr, pmd, orig_pmd);
1678 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 	}
1680 
1681 	mark_page_lazyfree(page);
1682 	ret = true;
1683 out:
1684 	spin_unlock(ptl);
1685 out_unlocked:
1686 	return ret;
1687 }
1688 
1689 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1690 {
1691 	pgtable_t pgtable;
1692 
1693 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1694 	pte_free(mm, pgtable);
1695 	mm_dec_nr_ptes(mm);
1696 }
1697 
1698 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1699 		 pmd_t *pmd, unsigned long addr)
1700 {
1701 	pmd_t orig_pmd;
1702 	spinlock_t *ptl;
1703 
1704 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1705 
1706 	ptl = __pmd_trans_huge_lock(pmd, vma);
1707 	if (!ptl)
1708 		return 0;
1709 	/*
1710 	 * For architectures like ppc64 we look at deposited pgtable
1711 	 * when calling pmdp_huge_get_and_clear. So do the
1712 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1713 	 * operations.
1714 	 */
1715 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1716 			tlb->fullmm);
1717 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1718 	if (vma_is_dax(vma)) {
1719 		if (arch_needs_pgtable_deposit())
1720 			zap_deposited_table(tlb->mm, pmd);
1721 		spin_unlock(ptl);
1722 		if (is_huge_zero_pmd(orig_pmd))
1723 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1724 	} else if (is_huge_zero_pmd(orig_pmd)) {
1725 		zap_deposited_table(tlb->mm, pmd);
1726 		spin_unlock(ptl);
1727 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1728 	} else {
1729 		struct page *page = NULL;
1730 		int flush_needed = 1;
1731 
1732 		if (pmd_present(orig_pmd)) {
1733 			page = pmd_page(orig_pmd);
1734 			page_remove_rmap(page, true);
1735 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1736 			VM_BUG_ON_PAGE(!PageHead(page), page);
1737 		} else if (thp_migration_supported()) {
1738 			swp_entry_t entry;
1739 
1740 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1741 			entry = pmd_to_swp_entry(orig_pmd);
1742 			page = pfn_to_page(swp_offset(entry));
1743 			flush_needed = 0;
1744 		} else
1745 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1746 
1747 		if (PageAnon(page)) {
1748 			zap_deposited_table(tlb->mm, pmd);
1749 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1750 		} else {
1751 			if (arch_needs_pgtable_deposit())
1752 				zap_deposited_table(tlb->mm, pmd);
1753 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1754 		}
1755 
1756 		spin_unlock(ptl);
1757 		if (flush_needed)
1758 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1759 	}
1760 	return 1;
1761 }
1762 
1763 #ifndef pmd_move_must_withdraw
1764 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1765 					 spinlock_t *old_pmd_ptl,
1766 					 struct vm_area_struct *vma)
1767 {
1768 	/*
1769 	 * With split pmd lock we also need to move preallocated
1770 	 * PTE page table if new_pmd is on different PMD page table.
1771 	 *
1772 	 * We also don't deposit and withdraw tables for file pages.
1773 	 */
1774 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1775 }
1776 #endif
1777 
1778 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1779 {
1780 #ifdef CONFIG_MEM_SOFT_DIRTY
1781 	if (unlikely(is_pmd_migration_entry(pmd)))
1782 		pmd = pmd_swp_mksoft_dirty(pmd);
1783 	else if (pmd_present(pmd))
1784 		pmd = pmd_mksoft_dirty(pmd);
1785 #endif
1786 	return pmd;
1787 }
1788 
1789 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1790 		  unsigned long new_addr, unsigned long old_end,
1791 		  pmd_t *old_pmd, pmd_t *new_pmd)
1792 {
1793 	spinlock_t *old_ptl, *new_ptl;
1794 	pmd_t pmd;
1795 	struct mm_struct *mm = vma->vm_mm;
1796 	bool force_flush = false;
1797 
1798 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1799 	    (new_addr & ~HPAGE_PMD_MASK) ||
1800 	    old_end - old_addr < HPAGE_PMD_SIZE)
1801 		return false;
1802 
1803 	/*
1804 	 * The destination pmd shouldn't be established, free_pgtables()
1805 	 * should have release it.
1806 	 */
1807 	if (WARN_ON(!pmd_none(*new_pmd))) {
1808 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1809 		return false;
1810 	}
1811 
1812 	/*
1813 	 * We don't have to worry about the ordering of src and dst
1814 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1815 	 */
1816 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1817 	if (old_ptl) {
1818 		new_ptl = pmd_lockptr(mm, new_pmd);
1819 		if (new_ptl != old_ptl)
1820 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1821 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1822 		if (pmd_present(pmd))
1823 			force_flush = true;
1824 		VM_BUG_ON(!pmd_none(*new_pmd));
1825 
1826 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1827 			pgtable_t pgtable;
1828 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1829 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1830 		}
1831 		pmd = move_soft_dirty_pmd(pmd);
1832 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1833 		if (force_flush)
1834 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1835 		if (new_ptl != old_ptl)
1836 			spin_unlock(new_ptl);
1837 		spin_unlock(old_ptl);
1838 		return true;
1839 	}
1840 	return false;
1841 }
1842 
1843 /*
1844  * Returns
1845  *  - 0 if PMD could not be locked
1846  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1847  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1848  */
1849 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1850 		unsigned long addr, pgprot_t newprot, int prot_numa)
1851 {
1852 	struct mm_struct *mm = vma->vm_mm;
1853 	spinlock_t *ptl;
1854 	pmd_t entry;
1855 	bool preserve_write;
1856 	int ret;
1857 
1858 	ptl = __pmd_trans_huge_lock(pmd, vma);
1859 	if (!ptl)
1860 		return 0;
1861 
1862 	preserve_write = prot_numa && pmd_write(*pmd);
1863 	ret = 1;
1864 
1865 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1866 	if (is_swap_pmd(*pmd)) {
1867 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1868 
1869 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1870 		if (is_write_migration_entry(entry)) {
1871 			pmd_t newpmd;
1872 			/*
1873 			 * A protection check is difficult so
1874 			 * just be safe and disable write
1875 			 */
1876 			make_migration_entry_read(&entry);
1877 			newpmd = swp_entry_to_pmd(entry);
1878 			if (pmd_swp_soft_dirty(*pmd))
1879 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1880 			set_pmd_at(mm, addr, pmd, newpmd);
1881 		}
1882 		goto unlock;
1883 	}
1884 #endif
1885 
1886 	/*
1887 	 * Avoid trapping faults against the zero page. The read-only
1888 	 * data is likely to be read-cached on the local CPU and
1889 	 * local/remote hits to the zero page are not interesting.
1890 	 */
1891 	if (prot_numa && is_huge_zero_pmd(*pmd))
1892 		goto unlock;
1893 
1894 	if (prot_numa && pmd_protnone(*pmd))
1895 		goto unlock;
1896 
1897 	/*
1898 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1899 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1900 	 * which is also under down_read(mmap_sem):
1901 	 *
1902 	 *	CPU0:				CPU1:
1903 	 *				change_huge_pmd(prot_numa=1)
1904 	 *				 pmdp_huge_get_and_clear_notify()
1905 	 * madvise_dontneed()
1906 	 *  zap_pmd_range()
1907 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1908 	 *   // skip the pmd
1909 	 *				 set_pmd_at();
1910 	 *				 // pmd is re-established
1911 	 *
1912 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1913 	 * which may break userspace.
1914 	 *
1915 	 * pmdp_invalidate() is required to make sure we don't miss
1916 	 * dirty/young flags set by hardware.
1917 	 */
1918 	entry = pmdp_invalidate(vma, addr, pmd);
1919 
1920 	entry = pmd_modify(entry, newprot);
1921 	if (preserve_write)
1922 		entry = pmd_mk_savedwrite(entry);
1923 	ret = HPAGE_PMD_NR;
1924 	set_pmd_at(mm, addr, pmd, entry);
1925 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1926 unlock:
1927 	spin_unlock(ptl);
1928 	return ret;
1929 }
1930 
1931 /*
1932  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1933  *
1934  * Note that if it returns page table lock pointer, this routine returns without
1935  * unlocking page table lock. So callers must unlock it.
1936  */
1937 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1938 {
1939 	spinlock_t *ptl;
1940 	ptl = pmd_lock(vma->vm_mm, pmd);
1941 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1942 			pmd_devmap(*pmd)))
1943 		return ptl;
1944 	spin_unlock(ptl);
1945 	return NULL;
1946 }
1947 
1948 /*
1949  * Returns true if a given pud maps a thp, false otherwise.
1950  *
1951  * Note that if it returns true, this routine returns without unlocking page
1952  * table lock. So callers must unlock it.
1953  */
1954 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1955 {
1956 	spinlock_t *ptl;
1957 
1958 	ptl = pud_lock(vma->vm_mm, pud);
1959 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1960 		return ptl;
1961 	spin_unlock(ptl);
1962 	return NULL;
1963 }
1964 
1965 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1966 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1967 		 pud_t *pud, unsigned long addr)
1968 {
1969 	pud_t orig_pud;
1970 	spinlock_t *ptl;
1971 
1972 	ptl = __pud_trans_huge_lock(pud, vma);
1973 	if (!ptl)
1974 		return 0;
1975 	/*
1976 	 * For architectures like ppc64 we look at deposited pgtable
1977 	 * when calling pudp_huge_get_and_clear. So do the
1978 	 * pgtable_trans_huge_withdraw after finishing pudp related
1979 	 * operations.
1980 	 */
1981 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1982 			tlb->fullmm);
1983 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1984 	if (vma_is_dax(vma)) {
1985 		spin_unlock(ptl);
1986 		/* No zero page support yet */
1987 	} else {
1988 		/* No support for anonymous PUD pages yet */
1989 		BUG();
1990 	}
1991 	return 1;
1992 }
1993 
1994 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1995 		unsigned long haddr)
1996 {
1997 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1998 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1999 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2000 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2001 
2002 	count_vm_event(THP_SPLIT_PUD);
2003 
2004 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2005 }
2006 
2007 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2008 		unsigned long address)
2009 {
2010 	spinlock_t *ptl;
2011 	struct mm_struct *mm = vma->vm_mm;
2012 	unsigned long haddr = address & HPAGE_PUD_MASK;
2013 
2014 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2015 	ptl = pud_lock(mm, pud);
2016 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2017 		goto out;
2018 	__split_huge_pud_locked(vma, pud, haddr);
2019 
2020 out:
2021 	spin_unlock(ptl);
2022 	/*
2023 	 * No need to double call mmu_notifier->invalidate_range() callback as
2024 	 * the above pudp_huge_clear_flush_notify() did already call it.
2025 	 */
2026 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2027 					       HPAGE_PUD_SIZE);
2028 }
2029 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2030 
2031 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2032 		unsigned long haddr, pmd_t *pmd)
2033 {
2034 	struct mm_struct *mm = vma->vm_mm;
2035 	pgtable_t pgtable;
2036 	pmd_t _pmd;
2037 	int i;
2038 
2039 	/*
2040 	 * Leave pmd empty until pte is filled note that it is fine to delay
2041 	 * notification until mmu_notifier_invalidate_range_end() as we are
2042 	 * replacing a zero pmd write protected page with a zero pte write
2043 	 * protected page.
2044 	 *
2045 	 * See Documentation/vm/mmu_notifier.rst
2046 	 */
2047 	pmdp_huge_clear_flush(vma, haddr, pmd);
2048 
2049 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 	pmd_populate(mm, &_pmd, pgtable);
2051 
2052 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2053 		pte_t *pte, entry;
2054 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2055 		entry = pte_mkspecial(entry);
2056 		pte = pte_offset_map(&_pmd, haddr);
2057 		VM_BUG_ON(!pte_none(*pte));
2058 		set_pte_at(mm, haddr, pte, entry);
2059 		pte_unmap(pte);
2060 	}
2061 	smp_wmb(); /* make pte visible before pmd */
2062 	pmd_populate(mm, pmd, pgtable);
2063 }
2064 
2065 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2066 		unsigned long haddr, bool freeze)
2067 {
2068 	struct mm_struct *mm = vma->vm_mm;
2069 	struct page *page;
2070 	pgtable_t pgtable;
2071 	pmd_t old_pmd, _pmd;
2072 	bool young, write, soft_dirty, pmd_migration = false;
2073 	unsigned long addr;
2074 	int i;
2075 
2076 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2077 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2078 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2079 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2080 				&& !pmd_devmap(*pmd));
2081 
2082 	count_vm_event(THP_SPLIT_PMD);
2083 
2084 	if (!vma_is_anonymous(vma)) {
2085 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2086 		/*
2087 		 * We are going to unmap this huge page. So
2088 		 * just go ahead and zap it
2089 		 */
2090 		if (arch_needs_pgtable_deposit())
2091 			zap_deposited_table(mm, pmd);
2092 		if (vma_is_dax(vma))
2093 			return;
2094 		page = pmd_page(_pmd);
2095 		if (!PageDirty(page) && pmd_dirty(_pmd))
2096 			set_page_dirty(page);
2097 		if (!PageReferenced(page) && pmd_young(_pmd))
2098 			SetPageReferenced(page);
2099 		page_remove_rmap(page, true);
2100 		put_page(page);
2101 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2102 		return;
2103 	} else if (is_huge_zero_pmd(*pmd)) {
2104 		/*
2105 		 * FIXME: Do we want to invalidate secondary mmu by calling
2106 		 * mmu_notifier_invalidate_range() see comments below inside
2107 		 * __split_huge_pmd() ?
2108 		 *
2109 		 * We are going from a zero huge page write protected to zero
2110 		 * small page also write protected so it does not seems useful
2111 		 * to invalidate secondary mmu at this time.
2112 		 */
2113 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2114 	}
2115 
2116 	/*
2117 	 * Up to this point the pmd is present and huge and userland has the
2118 	 * whole access to the hugepage during the split (which happens in
2119 	 * place). If we overwrite the pmd with the not-huge version pointing
2120 	 * to the pte here (which of course we could if all CPUs were bug
2121 	 * free), userland could trigger a small page size TLB miss on the
2122 	 * small sized TLB while the hugepage TLB entry is still established in
2123 	 * the huge TLB. Some CPU doesn't like that.
2124 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2125 	 * 383 on page 93. Intel should be safe but is also warns that it's
2126 	 * only safe if the permission and cache attributes of the two entries
2127 	 * loaded in the two TLB is identical (which should be the case here).
2128 	 * But it is generally safer to never allow small and huge TLB entries
2129 	 * for the same virtual address to be loaded simultaneously. So instead
2130 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2131 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2132 	 * must remain set at all times on the pmd until the split is complete
2133 	 * for this pmd), then we flush the SMP TLB and finally we write the
2134 	 * non-huge version of the pmd entry with pmd_populate.
2135 	 */
2136 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2137 
2138 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2139 	pmd_migration = is_pmd_migration_entry(old_pmd);
2140 	if (pmd_migration) {
2141 		swp_entry_t entry;
2142 
2143 		entry = pmd_to_swp_entry(old_pmd);
2144 		page = pfn_to_page(swp_offset(entry));
2145 	} else
2146 #endif
2147 		page = pmd_page(old_pmd);
2148 	VM_BUG_ON_PAGE(!page_count(page), page);
2149 	page_ref_add(page, HPAGE_PMD_NR - 1);
2150 	if (pmd_dirty(old_pmd))
2151 		SetPageDirty(page);
2152 	write = pmd_write(old_pmd);
2153 	young = pmd_young(old_pmd);
2154 	soft_dirty = pmd_soft_dirty(old_pmd);
2155 
2156 	/*
2157 	 * Withdraw the table only after we mark the pmd entry invalid.
2158 	 * This's critical for some architectures (Power).
2159 	 */
2160 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2161 	pmd_populate(mm, &_pmd, pgtable);
2162 
2163 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2164 		pte_t entry, *pte;
2165 		/*
2166 		 * Note that NUMA hinting access restrictions are not
2167 		 * transferred to avoid any possibility of altering
2168 		 * permissions across VMAs.
2169 		 */
2170 		if (freeze || pmd_migration) {
2171 			swp_entry_t swp_entry;
2172 			swp_entry = make_migration_entry(page + i, write);
2173 			entry = swp_entry_to_pte(swp_entry);
2174 			if (soft_dirty)
2175 				entry = pte_swp_mksoft_dirty(entry);
2176 		} else {
2177 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2178 			entry = maybe_mkwrite(entry, vma);
2179 			if (!write)
2180 				entry = pte_wrprotect(entry);
2181 			if (!young)
2182 				entry = pte_mkold(entry);
2183 			if (soft_dirty)
2184 				entry = pte_mksoft_dirty(entry);
2185 		}
2186 		pte = pte_offset_map(&_pmd, addr);
2187 		BUG_ON(!pte_none(*pte));
2188 		set_pte_at(mm, addr, pte, entry);
2189 		atomic_inc(&page[i]._mapcount);
2190 		pte_unmap(pte);
2191 	}
2192 
2193 	/*
2194 	 * Set PG_double_map before dropping compound_mapcount to avoid
2195 	 * false-negative page_mapped().
2196 	 */
2197 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2198 		for (i = 0; i < HPAGE_PMD_NR; i++)
2199 			atomic_inc(&page[i]._mapcount);
2200 	}
2201 
2202 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2203 		/* Last compound_mapcount is gone. */
2204 		__dec_node_page_state(page, NR_ANON_THPS);
2205 		if (TestClearPageDoubleMap(page)) {
2206 			/* No need in mapcount reference anymore */
2207 			for (i = 0; i < HPAGE_PMD_NR; i++)
2208 				atomic_dec(&page[i]._mapcount);
2209 		}
2210 	}
2211 
2212 	smp_wmb(); /* make pte visible before pmd */
2213 	pmd_populate(mm, pmd, pgtable);
2214 
2215 	if (freeze) {
2216 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2217 			page_remove_rmap(page + i, false);
2218 			put_page(page + i);
2219 		}
2220 	}
2221 }
2222 
2223 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2224 		unsigned long address, bool freeze, struct page *page)
2225 {
2226 	spinlock_t *ptl;
2227 	struct mm_struct *mm = vma->vm_mm;
2228 	unsigned long haddr = address & HPAGE_PMD_MASK;
2229 
2230 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2231 	ptl = pmd_lock(mm, pmd);
2232 
2233 	/*
2234 	 * If caller asks to setup a migration entries, we need a page to check
2235 	 * pmd against. Otherwise we can end up replacing wrong page.
2236 	 */
2237 	VM_BUG_ON(freeze && !page);
2238 	if (page && page != pmd_page(*pmd))
2239 	        goto out;
2240 
2241 	if (pmd_trans_huge(*pmd)) {
2242 		page = pmd_page(*pmd);
2243 		if (PageMlocked(page))
2244 			clear_page_mlock(page);
2245 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2246 		goto out;
2247 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2248 out:
2249 	spin_unlock(ptl);
2250 	/*
2251 	 * No need to double call mmu_notifier->invalidate_range() callback.
2252 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2255 	 *    fault will trigger a flush_notify before pointing to a new page
2256 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2257 	 *    page in the meantime)
2258 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2259 	 *     to invalidate secondary tlb entry they are all still valid.
2260 	 *     any further changes to individual pte will notify. So no need
2261 	 *     to call mmu_notifier->invalidate_range()
2262 	 */
2263 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2264 					       HPAGE_PMD_SIZE);
2265 }
2266 
2267 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2268 		bool freeze, struct page *page)
2269 {
2270 	pgd_t *pgd;
2271 	p4d_t *p4d;
2272 	pud_t *pud;
2273 	pmd_t *pmd;
2274 
2275 	pgd = pgd_offset(vma->vm_mm, address);
2276 	if (!pgd_present(*pgd))
2277 		return;
2278 
2279 	p4d = p4d_offset(pgd, address);
2280 	if (!p4d_present(*p4d))
2281 		return;
2282 
2283 	pud = pud_offset(p4d, address);
2284 	if (!pud_present(*pud))
2285 		return;
2286 
2287 	pmd = pmd_offset(pud, address);
2288 
2289 	__split_huge_pmd(vma, pmd, address, freeze, page);
2290 }
2291 
2292 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2293 			     unsigned long start,
2294 			     unsigned long end,
2295 			     long adjust_next)
2296 {
2297 	/*
2298 	 * If the new start address isn't hpage aligned and it could
2299 	 * previously contain an hugepage: check if we need to split
2300 	 * an huge pmd.
2301 	 */
2302 	if (start & ~HPAGE_PMD_MASK &&
2303 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2304 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305 		split_huge_pmd_address(vma, start, false, NULL);
2306 
2307 	/*
2308 	 * If the new end address isn't hpage aligned and it could
2309 	 * previously contain an hugepage: check if we need to split
2310 	 * an huge pmd.
2311 	 */
2312 	if (end & ~HPAGE_PMD_MASK &&
2313 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2314 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2315 		split_huge_pmd_address(vma, end, false, NULL);
2316 
2317 	/*
2318 	 * If we're also updating the vma->vm_next->vm_start, if the new
2319 	 * vm_next->vm_start isn't page aligned and it could previously
2320 	 * contain an hugepage: check if we need to split an huge pmd.
2321 	 */
2322 	if (adjust_next > 0) {
2323 		struct vm_area_struct *next = vma->vm_next;
2324 		unsigned long nstart = next->vm_start;
2325 		nstart += adjust_next << PAGE_SHIFT;
2326 		if (nstart & ~HPAGE_PMD_MASK &&
2327 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2328 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2329 			split_huge_pmd_address(next, nstart, false, NULL);
2330 	}
2331 }
2332 
2333 static void freeze_page(struct page *page)
2334 {
2335 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2336 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2337 	bool unmap_success;
2338 
2339 	VM_BUG_ON_PAGE(!PageHead(page), page);
2340 
2341 	if (PageAnon(page))
2342 		ttu_flags |= TTU_SPLIT_FREEZE;
2343 
2344 	unmap_success = try_to_unmap(page, ttu_flags);
2345 	VM_BUG_ON_PAGE(!unmap_success, page);
2346 }
2347 
2348 static void unfreeze_page(struct page *page)
2349 {
2350 	int i;
2351 	if (PageTransHuge(page)) {
2352 		remove_migration_ptes(page, page, true);
2353 	} else {
2354 		for (i = 0; i < HPAGE_PMD_NR; i++)
2355 			remove_migration_ptes(page + i, page + i, true);
2356 	}
2357 }
2358 
2359 static void __split_huge_page_tail(struct page *head, int tail,
2360 		struct lruvec *lruvec, struct list_head *list)
2361 {
2362 	struct page *page_tail = head + tail;
2363 
2364 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2365 
2366 	/*
2367 	 * Clone page flags before unfreezing refcount.
2368 	 *
2369 	 * After successful get_page_unless_zero() might follow flags change,
2370 	 * for exmaple lock_page() which set PG_waiters.
2371 	 */
2372 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2373 	page_tail->flags |= (head->flags &
2374 			((1L << PG_referenced) |
2375 			 (1L << PG_swapbacked) |
2376 			 (1L << PG_swapcache) |
2377 			 (1L << PG_mlocked) |
2378 			 (1L << PG_uptodate) |
2379 			 (1L << PG_active) |
2380 			 (1L << PG_workingset) |
2381 			 (1L << PG_locked) |
2382 			 (1L << PG_unevictable) |
2383 			 (1L << PG_dirty)));
2384 
2385 	/* Page flags must be visible before we make the page non-compound. */
2386 	smp_wmb();
2387 
2388 	/*
2389 	 * Clear PageTail before unfreezing page refcount.
2390 	 *
2391 	 * After successful get_page_unless_zero() might follow put_page()
2392 	 * which needs correct compound_head().
2393 	 */
2394 	clear_compound_head(page_tail);
2395 
2396 	/* Finally unfreeze refcount. Additional reference from page cache. */
2397 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2398 					  PageSwapCache(head)));
2399 
2400 	if (page_is_young(head))
2401 		set_page_young(page_tail);
2402 	if (page_is_idle(head))
2403 		set_page_idle(page_tail);
2404 
2405 	/* ->mapping in first tail page is compound_mapcount */
2406 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2407 			page_tail);
2408 	page_tail->mapping = head->mapping;
2409 
2410 	page_tail->index = head->index + tail;
2411 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2412 
2413 	/*
2414 	 * always add to the tail because some iterators expect new
2415 	 * pages to show after the currently processed elements - e.g.
2416 	 * migrate_pages
2417 	 */
2418 	lru_add_page_tail(head, page_tail, lruvec, list);
2419 }
2420 
2421 static void __split_huge_page(struct page *page, struct list_head *list,
2422 		unsigned long flags)
2423 {
2424 	struct page *head = compound_head(page);
2425 	struct zone *zone = page_zone(head);
2426 	struct lruvec *lruvec;
2427 	pgoff_t end = -1;
2428 	int i;
2429 
2430 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2431 
2432 	/* complete memcg works before add pages to LRU */
2433 	mem_cgroup_split_huge_fixup(head);
2434 
2435 	if (!PageAnon(page))
2436 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2437 
2438 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2439 		__split_huge_page_tail(head, i, lruvec, list);
2440 		/* Some pages can be beyond i_size: drop them from page cache */
2441 		if (head[i].index >= end) {
2442 			ClearPageDirty(head + i);
2443 			__delete_from_page_cache(head + i, NULL);
2444 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2445 				shmem_uncharge(head->mapping->host, 1);
2446 			put_page(head + i);
2447 		}
2448 	}
2449 
2450 	ClearPageCompound(head);
2451 	/* See comment in __split_huge_page_tail() */
2452 	if (PageAnon(head)) {
2453 		/* Additional pin to swap cache */
2454 		if (PageSwapCache(head))
2455 			page_ref_add(head, 2);
2456 		else
2457 			page_ref_inc(head);
2458 	} else {
2459 		/* Additional pin to page cache */
2460 		page_ref_add(head, 2);
2461 		xa_unlock(&head->mapping->i_pages);
2462 	}
2463 
2464 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2465 
2466 	unfreeze_page(head);
2467 
2468 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2469 		struct page *subpage = head + i;
2470 		if (subpage == page)
2471 			continue;
2472 		unlock_page(subpage);
2473 
2474 		/*
2475 		 * Subpages may be freed if there wasn't any mapping
2476 		 * like if add_to_swap() is running on a lru page that
2477 		 * had its mapping zapped. And freeing these pages
2478 		 * requires taking the lru_lock so we do the put_page
2479 		 * of the tail pages after the split is complete.
2480 		 */
2481 		put_page(subpage);
2482 	}
2483 }
2484 
2485 int total_mapcount(struct page *page)
2486 {
2487 	int i, compound, ret;
2488 
2489 	VM_BUG_ON_PAGE(PageTail(page), page);
2490 
2491 	if (likely(!PageCompound(page)))
2492 		return atomic_read(&page->_mapcount) + 1;
2493 
2494 	compound = compound_mapcount(page);
2495 	if (PageHuge(page))
2496 		return compound;
2497 	ret = compound;
2498 	for (i = 0; i < HPAGE_PMD_NR; i++)
2499 		ret += atomic_read(&page[i]._mapcount) + 1;
2500 	/* File pages has compound_mapcount included in _mapcount */
2501 	if (!PageAnon(page))
2502 		return ret - compound * HPAGE_PMD_NR;
2503 	if (PageDoubleMap(page))
2504 		ret -= HPAGE_PMD_NR;
2505 	return ret;
2506 }
2507 
2508 /*
2509  * This calculates accurately how many mappings a transparent hugepage
2510  * has (unlike page_mapcount() which isn't fully accurate). This full
2511  * accuracy is primarily needed to know if copy-on-write faults can
2512  * reuse the page and change the mapping to read-write instead of
2513  * copying them. At the same time this returns the total_mapcount too.
2514  *
2515  * The function returns the highest mapcount any one of the subpages
2516  * has. If the return value is one, even if different processes are
2517  * mapping different subpages of the transparent hugepage, they can
2518  * all reuse it, because each process is reusing a different subpage.
2519  *
2520  * The total_mapcount is instead counting all virtual mappings of the
2521  * subpages. If the total_mapcount is equal to "one", it tells the
2522  * caller all mappings belong to the same "mm" and in turn the
2523  * anon_vma of the transparent hugepage can become the vma->anon_vma
2524  * local one as no other process may be mapping any of the subpages.
2525  *
2526  * It would be more accurate to replace page_mapcount() with
2527  * page_trans_huge_mapcount(), however we only use
2528  * page_trans_huge_mapcount() in the copy-on-write faults where we
2529  * need full accuracy to avoid breaking page pinning, because
2530  * page_trans_huge_mapcount() is slower than page_mapcount().
2531  */
2532 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2533 {
2534 	int i, ret, _total_mapcount, mapcount;
2535 
2536 	/* hugetlbfs shouldn't call it */
2537 	VM_BUG_ON_PAGE(PageHuge(page), page);
2538 
2539 	if (likely(!PageTransCompound(page))) {
2540 		mapcount = atomic_read(&page->_mapcount) + 1;
2541 		if (total_mapcount)
2542 			*total_mapcount = mapcount;
2543 		return mapcount;
2544 	}
2545 
2546 	page = compound_head(page);
2547 
2548 	_total_mapcount = ret = 0;
2549 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2550 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2551 		ret = max(ret, mapcount);
2552 		_total_mapcount += mapcount;
2553 	}
2554 	if (PageDoubleMap(page)) {
2555 		ret -= 1;
2556 		_total_mapcount -= HPAGE_PMD_NR;
2557 	}
2558 	mapcount = compound_mapcount(page);
2559 	ret += mapcount;
2560 	_total_mapcount += mapcount;
2561 	if (total_mapcount)
2562 		*total_mapcount = _total_mapcount;
2563 	return ret;
2564 }
2565 
2566 /* Racy check whether the huge page can be split */
2567 bool can_split_huge_page(struct page *page, int *pextra_pins)
2568 {
2569 	int extra_pins;
2570 
2571 	/* Additional pins from page cache */
2572 	if (PageAnon(page))
2573 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2574 	else
2575 		extra_pins = HPAGE_PMD_NR;
2576 	if (pextra_pins)
2577 		*pextra_pins = extra_pins;
2578 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2579 }
2580 
2581 /*
2582  * This function splits huge page into normal pages. @page can point to any
2583  * subpage of huge page to split. Split doesn't change the position of @page.
2584  *
2585  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2586  * The huge page must be locked.
2587  *
2588  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2589  *
2590  * Both head page and tail pages will inherit mapping, flags, and so on from
2591  * the hugepage.
2592  *
2593  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2594  * they are not mapped.
2595  *
2596  * Returns 0 if the hugepage is split successfully.
2597  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2598  * us.
2599  */
2600 int split_huge_page_to_list(struct page *page, struct list_head *list)
2601 {
2602 	struct page *head = compound_head(page);
2603 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2604 	struct anon_vma *anon_vma = NULL;
2605 	struct address_space *mapping = NULL;
2606 	int count, mapcount, extra_pins, ret;
2607 	bool mlocked;
2608 	unsigned long flags;
2609 
2610 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2611 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2612 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2613 
2614 	if (PageWriteback(page))
2615 		return -EBUSY;
2616 
2617 	if (PageAnon(head)) {
2618 		/*
2619 		 * The caller does not necessarily hold an mmap_sem that would
2620 		 * prevent the anon_vma disappearing so we first we take a
2621 		 * reference to it and then lock the anon_vma for write. This
2622 		 * is similar to page_lock_anon_vma_read except the write lock
2623 		 * is taken to serialise against parallel split or collapse
2624 		 * operations.
2625 		 */
2626 		anon_vma = page_get_anon_vma(head);
2627 		if (!anon_vma) {
2628 			ret = -EBUSY;
2629 			goto out;
2630 		}
2631 		mapping = NULL;
2632 		anon_vma_lock_write(anon_vma);
2633 	} else {
2634 		mapping = head->mapping;
2635 
2636 		/* Truncated ? */
2637 		if (!mapping) {
2638 			ret = -EBUSY;
2639 			goto out;
2640 		}
2641 
2642 		anon_vma = NULL;
2643 		i_mmap_lock_read(mapping);
2644 	}
2645 
2646 	/*
2647 	 * Racy check if we can split the page, before freeze_page() will
2648 	 * split PMDs
2649 	 */
2650 	if (!can_split_huge_page(head, &extra_pins)) {
2651 		ret = -EBUSY;
2652 		goto out_unlock;
2653 	}
2654 
2655 	mlocked = PageMlocked(page);
2656 	freeze_page(head);
2657 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2658 
2659 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2660 	if (mlocked)
2661 		lru_add_drain();
2662 
2663 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2664 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2665 
2666 	if (mapping) {
2667 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2668 
2669 		/*
2670 		 * Check if the head page is present in page cache.
2671 		 * We assume all tail are present too, if head is there.
2672 		 */
2673 		xa_lock(&mapping->i_pages);
2674 		if (xas_load(&xas) != head)
2675 			goto fail;
2676 	}
2677 
2678 	/* Prevent deferred_split_scan() touching ->_refcount */
2679 	spin_lock(&pgdata->split_queue_lock);
2680 	count = page_count(head);
2681 	mapcount = total_mapcount(head);
2682 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2683 		if (!list_empty(page_deferred_list(head))) {
2684 			pgdata->split_queue_len--;
2685 			list_del(page_deferred_list(head));
2686 		}
2687 		if (mapping)
2688 			__dec_node_page_state(page, NR_SHMEM_THPS);
2689 		spin_unlock(&pgdata->split_queue_lock);
2690 		__split_huge_page(page, list, flags);
2691 		if (PageSwapCache(head)) {
2692 			swp_entry_t entry = { .val = page_private(head) };
2693 
2694 			ret = split_swap_cluster(entry);
2695 		} else
2696 			ret = 0;
2697 	} else {
2698 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2699 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2700 					mapcount, count);
2701 			if (PageTail(page))
2702 				dump_page(head, NULL);
2703 			dump_page(page, "total_mapcount(head) > 0");
2704 			BUG();
2705 		}
2706 		spin_unlock(&pgdata->split_queue_lock);
2707 fail:		if (mapping)
2708 			xa_unlock(&mapping->i_pages);
2709 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2710 		unfreeze_page(head);
2711 		ret = -EBUSY;
2712 	}
2713 
2714 out_unlock:
2715 	if (anon_vma) {
2716 		anon_vma_unlock_write(anon_vma);
2717 		put_anon_vma(anon_vma);
2718 	}
2719 	if (mapping)
2720 		i_mmap_unlock_read(mapping);
2721 out:
2722 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2723 	return ret;
2724 }
2725 
2726 void free_transhuge_page(struct page *page)
2727 {
2728 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2729 	unsigned long flags;
2730 
2731 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2732 	if (!list_empty(page_deferred_list(page))) {
2733 		pgdata->split_queue_len--;
2734 		list_del(page_deferred_list(page));
2735 	}
2736 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2737 	free_compound_page(page);
2738 }
2739 
2740 void deferred_split_huge_page(struct page *page)
2741 {
2742 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2743 	unsigned long flags;
2744 
2745 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2746 
2747 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2748 	if (list_empty(page_deferred_list(page))) {
2749 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2750 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2751 		pgdata->split_queue_len++;
2752 	}
2753 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2754 }
2755 
2756 static unsigned long deferred_split_count(struct shrinker *shrink,
2757 		struct shrink_control *sc)
2758 {
2759 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2760 	return READ_ONCE(pgdata->split_queue_len);
2761 }
2762 
2763 static unsigned long deferred_split_scan(struct shrinker *shrink,
2764 		struct shrink_control *sc)
2765 {
2766 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2767 	unsigned long flags;
2768 	LIST_HEAD(list), *pos, *next;
2769 	struct page *page;
2770 	int split = 0;
2771 
2772 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2773 	/* Take pin on all head pages to avoid freeing them under us */
2774 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2775 		page = list_entry((void *)pos, struct page, mapping);
2776 		page = compound_head(page);
2777 		if (get_page_unless_zero(page)) {
2778 			list_move(page_deferred_list(page), &list);
2779 		} else {
2780 			/* We lost race with put_compound_page() */
2781 			list_del_init(page_deferred_list(page));
2782 			pgdata->split_queue_len--;
2783 		}
2784 		if (!--sc->nr_to_scan)
2785 			break;
2786 	}
2787 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2788 
2789 	list_for_each_safe(pos, next, &list) {
2790 		page = list_entry((void *)pos, struct page, mapping);
2791 		if (!trylock_page(page))
2792 			goto next;
2793 		/* split_huge_page() removes page from list on success */
2794 		if (!split_huge_page(page))
2795 			split++;
2796 		unlock_page(page);
2797 next:
2798 		put_page(page);
2799 	}
2800 
2801 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2802 	list_splice_tail(&list, &pgdata->split_queue);
2803 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2804 
2805 	/*
2806 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2807 	 * This can happen if pages were freed under us.
2808 	 */
2809 	if (!split && list_empty(&pgdata->split_queue))
2810 		return SHRINK_STOP;
2811 	return split;
2812 }
2813 
2814 static struct shrinker deferred_split_shrinker = {
2815 	.count_objects = deferred_split_count,
2816 	.scan_objects = deferred_split_scan,
2817 	.seeks = DEFAULT_SEEKS,
2818 	.flags = SHRINKER_NUMA_AWARE,
2819 };
2820 
2821 #ifdef CONFIG_DEBUG_FS
2822 static int split_huge_pages_set(void *data, u64 val)
2823 {
2824 	struct zone *zone;
2825 	struct page *page;
2826 	unsigned long pfn, max_zone_pfn;
2827 	unsigned long total = 0, split = 0;
2828 
2829 	if (val != 1)
2830 		return -EINVAL;
2831 
2832 	for_each_populated_zone(zone) {
2833 		max_zone_pfn = zone_end_pfn(zone);
2834 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2835 			if (!pfn_valid(pfn))
2836 				continue;
2837 
2838 			page = pfn_to_page(pfn);
2839 			if (!get_page_unless_zero(page))
2840 				continue;
2841 
2842 			if (zone != page_zone(page))
2843 				goto next;
2844 
2845 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2846 				goto next;
2847 
2848 			total++;
2849 			lock_page(page);
2850 			if (!split_huge_page(page))
2851 				split++;
2852 			unlock_page(page);
2853 next:
2854 			put_page(page);
2855 		}
2856 	}
2857 
2858 	pr_info("%lu of %lu THP split\n", split, total);
2859 
2860 	return 0;
2861 }
2862 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2863 		"%llu\n");
2864 
2865 static int __init split_huge_pages_debugfs(void)
2866 {
2867 	void *ret;
2868 
2869 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2870 			&split_huge_pages_fops);
2871 	if (!ret)
2872 		pr_warn("Failed to create split_huge_pages in debugfs");
2873 	return 0;
2874 }
2875 late_initcall(split_huge_pages_debugfs);
2876 #endif
2877 
2878 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2879 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2880 		struct page *page)
2881 {
2882 	struct vm_area_struct *vma = pvmw->vma;
2883 	struct mm_struct *mm = vma->vm_mm;
2884 	unsigned long address = pvmw->address;
2885 	pmd_t pmdval;
2886 	swp_entry_t entry;
2887 	pmd_t pmdswp;
2888 
2889 	if (!(pvmw->pmd && !pvmw->pte))
2890 		return;
2891 
2892 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2893 	pmdval = *pvmw->pmd;
2894 	pmdp_invalidate(vma, address, pvmw->pmd);
2895 	if (pmd_dirty(pmdval))
2896 		set_page_dirty(page);
2897 	entry = make_migration_entry(page, pmd_write(pmdval));
2898 	pmdswp = swp_entry_to_pmd(entry);
2899 	if (pmd_soft_dirty(pmdval))
2900 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2901 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2902 	page_remove_rmap(page, true);
2903 	put_page(page);
2904 }
2905 
2906 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2907 {
2908 	struct vm_area_struct *vma = pvmw->vma;
2909 	struct mm_struct *mm = vma->vm_mm;
2910 	unsigned long address = pvmw->address;
2911 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2912 	pmd_t pmde;
2913 	swp_entry_t entry;
2914 
2915 	if (!(pvmw->pmd && !pvmw->pte))
2916 		return;
2917 
2918 	entry = pmd_to_swp_entry(*pvmw->pmd);
2919 	get_page(new);
2920 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2921 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2922 		pmde = pmd_mksoft_dirty(pmde);
2923 	if (is_write_migration_entry(entry))
2924 		pmde = maybe_pmd_mkwrite(pmde, vma);
2925 
2926 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2927 	if (PageAnon(new))
2928 		page_add_anon_rmap(new, vma, mmun_start, true);
2929 	else
2930 		page_add_file_rmap(new, true);
2931 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2932 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2933 		mlock_vma_page(new);
2934 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2935 }
2936 #endif
2937