1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/backing-dev.h> 21 #include <linux/dax.h> 22 #include <linux/mm_types.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 #include <linux/sched/sysctl.h> 38 #include <linux/memory-tiers.h> 39 #include <linux/compat.h> 40 #include <linux/pgalloc.h> 41 #include <linux/pgalloc_tag.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlb.h> 45 #include "internal.h" 46 #include "swap.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/thp.h> 50 51 /* 52 * By default, transparent hugepage support is disabled in order to avoid 53 * risking an increased memory footprint for applications that are not 54 * guaranteed to benefit from it. When transparent hugepage support is 55 * enabled, it is for all mappings, and khugepaged scans all mappings. 56 * Defrag is invoked by khugepaged hugepage allocations and by page faults 57 * for all hugepage allocations. 58 */ 59 unsigned long transparent_hugepage_flags __read_mostly = 60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 61 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 62 #endif 63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 65 #endif 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 69 70 static struct shrinker *deferred_split_shrinker; 71 static unsigned long deferred_split_count(struct shrinker *shrink, 72 struct shrink_control *sc); 73 static unsigned long deferred_split_scan(struct shrinker *shrink, 74 struct shrink_control *sc); 75 static bool split_underused_thp = true; 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 static bool anon_orders_configured __initdata; 84 85 static inline bool file_thp_enabled(struct vm_area_struct *vma) 86 { 87 struct inode *inode; 88 89 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 90 return false; 91 92 if (!vma->vm_file) 93 return false; 94 95 inode = file_inode(vma->vm_file); 96 97 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); 98 } 99 100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 101 vm_flags_t vm_flags, 102 enum tva_type type, 103 unsigned long orders) 104 { 105 const bool smaps = type == TVA_SMAPS; 106 const bool in_pf = type == TVA_PAGEFAULT; 107 const bool forced_collapse = type == TVA_FORCED_COLLAPSE; 108 unsigned long supported_orders; 109 110 /* Check the intersection of requested and supported orders. */ 111 if (vma_is_anonymous(vma)) 112 supported_orders = THP_ORDERS_ALL_ANON; 113 else if (vma_is_special_huge(vma)) 114 supported_orders = THP_ORDERS_ALL_SPECIAL; 115 else 116 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 117 118 orders &= supported_orders; 119 if (!orders) 120 return 0; 121 122 if (!vma->vm_mm) /* vdso */ 123 return 0; 124 125 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse)) 126 return 0; 127 128 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 129 if (vma_is_dax(vma)) 130 return in_pf ? orders : 0; 131 132 /* 133 * khugepaged special VMA and hugetlb VMA. 134 * Must be checked after dax since some dax mappings may have 135 * VM_MIXEDMAP set. 136 */ 137 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 138 return 0; 139 140 /* 141 * Check alignment for file vma and size for both file and anon vma by 142 * filtering out the unsuitable orders. 143 * 144 * Skip the check for page fault. Huge fault does the check in fault 145 * handlers. 146 */ 147 if (!in_pf) { 148 int order = highest_order(orders); 149 unsigned long addr; 150 151 while (orders) { 152 addr = vma->vm_end - (PAGE_SIZE << order); 153 if (thp_vma_suitable_order(vma, addr, order)) 154 break; 155 order = next_order(&orders, order); 156 } 157 158 if (!orders) 159 return 0; 160 } 161 162 /* 163 * Enabled via shmem mount options or sysfs settings. 164 * Must be done before hugepage flags check since shmem has its 165 * own flags. 166 */ 167 if (!in_pf && shmem_file(vma->vm_file)) 168 return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file), 169 vma, vma->vm_pgoff, 0, 170 forced_collapse); 171 172 if (!vma_is_anonymous(vma)) { 173 /* 174 * Enforce THP collapse requirements as necessary. Anonymous vmas 175 * were already handled in thp_vma_allowable_orders(). 176 */ 177 if (!forced_collapse && 178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 179 !hugepage_global_always()))) 180 return 0; 181 182 /* 183 * Trust that ->huge_fault() handlers know what they are doing 184 * in fault path. 185 */ 186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 187 return orders; 188 /* Only regular file is valid in collapse path */ 189 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 190 return orders; 191 return 0; 192 } 193 194 if (vma_is_temporary_stack(vma)) 195 return 0; 196 197 /* 198 * THPeligible bit of smaps should show 1 for proper VMAs even 199 * though anon_vma is not initialized yet. 200 * 201 * Allow page fault since anon_vma may be not initialized until 202 * the first page fault. 203 */ 204 if (!vma->anon_vma) 205 return (smaps || in_pf) ? orders : 0; 206 207 return orders; 208 } 209 210 static bool get_huge_zero_folio(void) 211 { 212 struct folio *zero_folio; 213 retry: 214 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 215 return true; 216 217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO | __GFP_ZEROTAGS) & 218 ~__GFP_MOVABLE, 219 HPAGE_PMD_ORDER); 220 if (!zero_folio) { 221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 222 return false; 223 } 224 /* Ensure zero folio won't have large_rmappable flag set. */ 225 folio_clear_large_rmappable(zero_folio); 226 preempt_disable(); 227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 228 preempt_enable(); 229 folio_put(zero_folio); 230 goto retry; 231 } 232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 233 234 /* We take additional reference here. It will be put back by shrinker */ 235 atomic_set(&huge_zero_refcount, 2); 236 preempt_enable(); 237 count_vm_event(THP_ZERO_PAGE_ALLOC); 238 return true; 239 } 240 241 static void put_huge_zero_folio(void) 242 { 243 /* 244 * Counter should never go to zero here. Only shrinker can put 245 * last reference. 246 */ 247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 248 } 249 250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 251 { 252 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 253 return huge_zero_folio; 254 255 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm)) 256 return READ_ONCE(huge_zero_folio); 257 258 if (!get_huge_zero_folio()) 259 return NULL; 260 261 if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm)) 262 put_huge_zero_folio(); 263 264 return READ_ONCE(huge_zero_folio); 265 } 266 267 void mm_put_huge_zero_folio(struct mm_struct *mm) 268 { 269 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 270 return; 271 272 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm)) 273 put_huge_zero_folio(); 274 } 275 276 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink, 277 struct shrink_control *sc) 278 { 279 /* we can free zero page only if last reference remains */ 280 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 281 } 282 283 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink, 284 struct shrink_control *sc) 285 { 286 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 287 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 288 BUG_ON(zero_folio == NULL); 289 WRITE_ONCE(huge_zero_pfn, ~0UL); 290 folio_put(zero_folio); 291 return HPAGE_PMD_NR; 292 } 293 294 return 0; 295 } 296 297 static struct shrinker *huge_zero_folio_shrinker; 298 299 #ifdef CONFIG_SYSFS 300 static ssize_t enabled_show(struct kobject *kobj, 301 struct kobj_attribute *attr, char *buf) 302 { 303 const char *output; 304 305 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 306 output = "[always] madvise never"; 307 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 308 &transparent_hugepage_flags)) 309 output = "always [madvise] never"; 310 else 311 output = "always madvise [never]"; 312 313 return sysfs_emit(buf, "%s\n", output); 314 } 315 316 static ssize_t enabled_store(struct kobject *kobj, 317 struct kobj_attribute *attr, 318 const char *buf, size_t count) 319 { 320 ssize_t ret = count; 321 322 if (sysfs_streq(buf, "always")) { 323 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 324 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 325 } else if (sysfs_streq(buf, "madvise")) { 326 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 327 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 328 } else if (sysfs_streq(buf, "never")) { 329 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 330 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 331 } else 332 ret = -EINVAL; 333 334 if (ret > 0) { 335 int err = start_stop_khugepaged(); 336 if (err) 337 ret = err; 338 } 339 return ret; 340 } 341 342 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 343 344 ssize_t single_hugepage_flag_show(struct kobject *kobj, 345 struct kobj_attribute *attr, char *buf, 346 enum transparent_hugepage_flag flag) 347 { 348 return sysfs_emit(buf, "%d\n", 349 !!test_bit(flag, &transparent_hugepage_flags)); 350 } 351 352 ssize_t single_hugepage_flag_store(struct kobject *kobj, 353 struct kobj_attribute *attr, 354 const char *buf, size_t count, 355 enum transparent_hugepage_flag flag) 356 { 357 unsigned long value; 358 int ret; 359 360 ret = kstrtoul(buf, 10, &value); 361 if (ret < 0) 362 return ret; 363 if (value > 1) 364 return -EINVAL; 365 366 if (value) 367 set_bit(flag, &transparent_hugepage_flags); 368 else 369 clear_bit(flag, &transparent_hugepage_flags); 370 371 return count; 372 } 373 374 static ssize_t defrag_show(struct kobject *kobj, 375 struct kobj_attribute *attr, char *buf) 376 { 377 const char *output; 378 379 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 380 &transparent_hugepage_flags)) 381 output = "[always] defer defer+madvise madvise never"; 382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 383 &transparent_hugepage_flags)) 384 output = "always [defer] defer+madvise madvise never"; 385 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 386 &transparent_hugepage_flags)) 387 output = "always defer [defer+madvise] madvise never"; 388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 389 &transparent_hugepage_flags)) 390 output = "always defer defer+madvise [madvise] never"; 391 else 392 output = "always defer defer+madvise madvise [never]"; 393 394 return sysfs_emit(buf, "%s\n", output); 395 } 396 397 static ssize_t defrag_store(struct kobject *kobj, 398 struct kobj_attribute *attr, 399 const char *buf, size_t count) 400 { 401 if (sysfs_streq(buf, "always")) { 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 405 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 406 } else if (sysfs_streq(buf, "defer+madvise")) { 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 410 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 411 } else if (sysfs_streq(buf, "defer")) { 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 414 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 415 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 416 } else if (sysfs_streq(buf, "madvise")) { 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 420 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 421 } else if (sysfs_streq(buf, "never")) { 422 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 423 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 424 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 425 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 426 } else 427 return -EINVAL; 428 429 return count; 430 } 431 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 432 433 static ssize_t use_zero_page_show(struct kobject *kobj, 434 struct kobj_attribute *attr, char *buf) 435 { 436 return single_hugepage_flag_show(kobj, attr, buf, 437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 438 } 439 static ssize_t use_zero_page_store(struct kobject *kobj, 440 struct kobj_attribute *attr, const char *buf, size_t count) 441 { 442 return single_hugepage_flag_store(kobj, attr, buf, count, 443 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 444 } 445 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 446 447 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 448 struct kobj_attribute *attr, char *buf) 449 { 450 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 451 } 452 static struct kobj_attribute hpage_pmd_size_attr = 453 __ATTR_RO(hpage_pmd_size); 454 455 static ssize_t split_underused_thp_show(struct kobject *kobj, 456 struct kobj_attribute *attr, char *buf) 457 { 458 return sysfs_emit(buf, "%d\n", split_underused_thp); 459 } 460 461 static ssize_t split_underused_thp_store(struct kobject *kobj, 462 struct kobj_attribute *attr, 463 const char *buf, size_t count) 464 { 465 int err = kstrtobool(buf, &split_underused_thp); 466 467 if (err < 0) 468 return err; 469 470 return count; 471 } 472 473 static struct kobj_attribute split_underused_thp_attr = __ATTR( 474 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); 475 476 static struct attribute *hugepage_attr[] = { 477 &enabled_attr.attr, 478 &defrag_attr.attr, 479 &use_zero_page_attr.attr, 480 &hpage_pmd_size_attr.attr, 481 #ifdef CONFIG_SHMEM 482 &shmem_enabled_attr.attr, 483 #endif 484 &split_underused_thp_attr.attr, 485 NULL, 486 }; 487 488 static const struct attribute_group hugepage_attr_group = { 489 .attrs = hugepage_attr, 490 }; 491 492 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 493 static void thpsize_release(struct kobject *kobj); 494 static DEFINE_SPINLOCK(huge_anon_orders_lock); 495 static LIST_HEAD(thpsize_list); 496 497 static ssize_t anon_enabled_show(struct kobject *kobj, 498 struct kobj_attribute *attr, char *buf) 499 { 500 int order = to_thpsize(kobj)->order; 501 const char *output; 502 503 if (test_bit(order, &huge_anon_orders_always)) 504 output = "[always] inherit madvise never"; 505 else if (test_bit(order, &huge_anon_orders_inherit)) 506 output = "always [inherit] madvise never"; 507 else if (test_bit(order, &huge_anon_orders_madvise)) 508 output = "always inherit [madvise] never"; 509 else 510 output = "always inherit madvise [never]"; 511 512 return sysfs_emit(buf, "%s\n", output); 513 } 514 515 static ssize_t anon_enabled_store(struct kobject *kobj, 516 struct kobj_attribute *attr, 517 const char *buf, size_t count) 518 { 519 int order = to_thpsize(kobj)->order; 520 ssize_t ret = count; 521 522 if (sysfs_streq(buf, "always")) { 523 spin_lock(&huge_anon_orders_lock); 524 clear_bit(order, &huge_anon_orders_inherit); 525 clear_bit(order, &huge_anon_orders_madvise); 526 set_bit(order, &huge_anon_orders_always); 527 spin_unlock(&huge_anon_orders_lock); 528 } else if (sysfs_streq(buf, "inherit")) { 529 spin_lock(&huge_anon_orders_lock); 530 clear_bit(order, &huge_anon_orders_always); 531 clear_bit(order, &huge_anon_orders_madvise); 532 set_bit(order, &huge_anon_orders_inherit); 533 spin_unlock(&huge_anon_orders_lock); 534 } else if (sysfs_streq(buf, "madvise")) { 535 spin_lock(&huge_anon_orders_lock); 536 clear_bit(order, &huge_anon_orders_always); 537 clear_bit(order, &huge_anon_orders_inherit); 538 set_bit(order, &huge_anon_orders_madvise); 539 spin_unlock(&huge_anon_orders_lock); 540 } else if (sysfs_streq(buf, "never")) { 541 spin_lock(&huge_anon_orders_lock); 542 clear_bit(order, &huge_anon_orders_always); 543 clear_bit(order, &huge_anon_orders_inherit); 544 clear_bit(order, &huge_anon_orders_madvise); 545 spin_unlock(&huge_anon_orders_lock); 546 } else 547 ret = -EINVAL; 548 549 if (ret > 0) { 550 int err; 551 552 err = start_stop_khugepaged(); 553 if (err) 554 ret = err; 555 } 556 return ret; 557 } 558 559 static struct kobj_attribute anon_enabled_attr = 560 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); 561 562 static struct attribute *anon_ctrl_attrs[] = { 563 &anon_enabled_attr.attr, 564 NULL, 565 }; 566 567 static const struct attribute_group anon_ctrl_attr_grp = { 568 .attrs = anon_ctrl_attrs, 569 }; 570 571 static struct attribute *file_ctrl_attrs[] = { 572 #ifdef CONFIG_SHMEM 573 &thpsize_shmem_enabled_attr.attr, 574 #endif 575 NULL, 576 }; 577 578 static const struct attribute_group file_ctrl_attr_grp = { 579 .attrs = file_ctrl_attrs, 580 }; 581 582 static struct attribute *any_ctrl_attrs[] = { 583 NULL, 584 }; 585 586 static const struct attribute_group any_ctrl_attr_grp = { 587 .attrs = any_ctrl_attrs, 588 }; 589 590 static const struct kobj_type thpsize_ktype = { 591 .release = &thpsize_release, 592 .sysfs_ops = &kobj_sysfs_ops, 593 }; 594 595 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 596 597 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 598 { 599 unsigned long sum = 0; 600 int cpu; 601 602 for_each_possible_cpu(cpu) { 603 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 604 605 sum += this->stats[order][item]; 606 } 607 608 return sum; 609 } 610 611 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 612 static ssize_t _name##_show(struct kobject *kobj, \ 613 struct kobj_attribute *attr, char *buf) \ 614 { \ 615 int order = to_thpsize(kobj)->order; \ 616 \ 617 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 618 } \ 619 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 620 621 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 623 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 624 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT); 625 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN); 626 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK); 627 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 628 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 629 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 630 #ifdef CONFIG_SHMEM 631 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 632 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 633 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 634 #endif 635 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 636 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 637 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 638 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); 639 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); 640 641 static struct attribute *anon_stats_attrs[] = { 642 &anon_fault_alloc_attr.attr, 643 &anon_fault_fallback_attr.attr, 644 &anon_fault_fallback_charge_attr.attr, 645 #ifndef CONFIG_SHMEM 646 &zswpout_attr.attr, 647 &swpin_attr.attr, 648 &swpin_fallback_attr.attr, 649 &swpin_fallback_charge_attr.attr, 650 &swpout_attr.attr, 651 &swpout_fallback_attr.attr, 652 #endif 653 &split_deferred_attr.attr, 654 &nr_anon_attr.attr, 655 &nr_anon_partially_mapped_attr.attr, 656 NULL, 657 }; 658 659 static struct attribute_group anon_stats_attr_grp = { 660 .name = "stats", 661 .attrs = anon_stats_attrs, 662 }; 663 664 static struct attribute *file_stats_attrs[] = { 665 #ifdef CONFIG_SHMEM 666 &shmem_alloc_attr.attr, 667 &shmem_fallback_attr.attr, 668 &shmem_fallback_charge_attr.attr, 669 #endif 670 NULL, 671 }; 672 673 static struct attribute_group file_stats_attr_grp = { 674 .name = "stats", 675 .attrs = file_stats_attrs, 676 }; 677 678 static struct attribute *any_stats_attrs[] = { 679 #ifdef CONFIG_SHMEM 680 &zswpout_attr.attr, 681 &swpin_attr.attr, 682 &swpin_fallback_attr.attr, 683 &swpin_fallback_charge_attr.attr, 684 &swpout_attr.attr, 685 &swpout_fallback_attr.attr, 686 #endif 687 &split_attr.attr, 688 &split_failed_attr.attr, 689 NULL, 690 }; 691 692 static struct attribute_group any_stats_attr_grp = { 693 .name = "stats", 694 .attrs = any_stats_attrs, 695 }; 696 697 static int sysfs_add_group(struct kobject *kobj, 698 const struct attribute_group *grp) 699 { 700 int ret = -ENOENT; 701 702 /* 703 * If the group is named, try to merge first, assuming the subdirectory 704 * was already created. This avoids the warning emitted by 705 * sysfs_create_group() if the directory already exists. 706 */ 707 if (grp->name) 708 ret = sysfs_merge_group(kobj, grp); 709 if (ret) 710 ret = sysfs_create_group(kobj, grp); 711 712 return ret; 713 } 714 715 static struct thpsize *thpsize_create(int order, struct kobject *parent) 716 { 717 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 718 struct thpsize *thpsize; 719 int ret = -ENOMEM; 720 721 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 722 if (!thpsize) 723 goto err; 724 725 thpsize->order = order; 726 727 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 728 "hugepages-%lukB", size); 729 if (ret) { 730 kfree(thpsize); 731 goto err; 732 } 733 734 735 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); 736 if (ret) 737 goto err_put; 738 739 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); 740 if (ret) 741 goto err_put; 742 743 if (BIT(order) & THP_ORDERS_ALL_ANON) { 744 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); 745 if (ret) 746 goto err_put; 747 748 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); 749 if (ret) 750 goto err_put; 751 } 752 753 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { 754 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); 755 if (ret) 756 goto err_put; 757 758 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); 759 if (ret) 760 goto err_put; 761 } 762 763 return thpsize; 764 err_put: 765 kobject_put(&thpsize->kobj); 766 err: 767 return ERR_PTR(ret); 768 } 769 770 static void thpsize_release(struct kobject *kobj) 771 { 772 kfree(to_thpsize(kobj)); 773 } 774 775 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 776 { 777 int err; 778 struct thpsize *thpsize; 779 unsigned long orders; 780 int order; 781 782 /* 783 * Default to setting PMD-sized THP to inherit the global setting and 784 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 785 * constant so we have to do this here. 786 */ 787 if (!anon_orders_configured) 788 huge_anon_orders_inherit = BIT(PMD_ORDER); 789 790 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 791 if (unlikely(!*hugepage_kobj)) { 792 pr_err("failed to create transparent hugepage kobject\n"); 793 return -ENOMEM; 794 } 795 796 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 797 if (err) { 798 pr_err("failed to register transparent hugepage group\n"); 799 goto delete_obj; 800 } 801 802 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 803 if (err) { 804 pr_err("failed to register transparent hugepage group\n"); 805 goto remove_hp_group; 806 } 807 808 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; 809 order = highest_order(orders); 810 while (orders) { 811 thpsize = thpsize_create(order, *hugepage_kobj); 812 if (IS_ERR(thpsize)) { 813 pr_err("failed to create thpsize for order %d\n", order); 814 err = PTR_ERR(thpsize); 815 goto remove_all; 816 } 817 list_add(&thpsize->node, &thpsize_list); 818 order = next_order(&orders, order); 819 } 820 821 return 0; 822 823 remove_all: 824 hugepage_exit_sysfs(*hugepage_kobj); 825 return err; 826 remove_hp_group: 827 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 828 delete_obj: 829 kobject_put(*hugepage_kobj); 830 return err; 831 } 832 833 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 834 { 835 struct thpsize *thpsize, *tmp; 836 837 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 838 list_del(&thpsize->node); 839 kobject_put(&thpsize->kobj); 840 } 841 842 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 843 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 844 kobject_put(hugepage_kobj); 845 } 846 #else 847 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 848 { 849 return 0; 850 } 851 852 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 853 { 854 } 855 #endif /* CONFIG_SYSFS */ 856 857 static int __init thp_shrinker_init(void) 858 { 859 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 860 SHRINKER_MEMCG_AWARE | 861 SHRINKER_NONSLAB, 862 "thp-deferred_split"); 863 if (!deferred_split_shrinker) 864 return -ENOMEM; 865 866 deferred_split_shrinker->count_objects = deferred_split_count; 867 deferred_split_shrinker->scan_objects = deferred_split_scan; 868 shrinker_register(deferred_split_shrinker); 869 870 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) { 871 /* 872 * Bump the reference of the huge_zero_folio and do not 873 * initialize the shrinker. 874 * 875 * huge_zero_folio will always be NULL on failure. We assume 876 * that get_huge_zero_folio() will most likely not fail as 877 * thp_shrinker_init() is invoked early on during boot. 878 */ 879 if (!get_huge_zero_folio()) 880 pr_warn("Allocating persistent huge zero folio failed\n"); 881 return 0; 882 } 883 884 huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero"); 885 if (!huge_zero_folio_shrinker) { 886 shrinker_free(deferred_split_shrinker); 887 return -ENOMEM; 888 } 889 890 huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count; 891 huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan; 892 shrinker_register(huge_zero_folio_shrinker); 893 894 return 0; 895 } 896 897 static void __init thp_shrinker_exit(void) 898 { 899 shrinker_free(huge_zero_folio_shrinker); 900 shrinker_free(deferred_split_shrinker); 901 } 902 903 static int __init hugepage_init(void) 904 { 905 int err; 906 struct kobject *hugepage_kobj; 907 908 if (!has_transparent_hugepage()) { 909 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 910 return -EINVAL; 911 } 912 913 /* 914 * hugepages can't be allocated by the buddy allocator 915 */ 916 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 917 918 err = hugepage_init_sysfs(&hugepage_kobj); 919 if (err) 920 goto err_sysfs; 921 922 err = khugepaged_init(); 923 if (err) 924 goto err_slab; 925 926 err = thp_shrinker_init(); 927 if (err) 928 goto err_shrinker; 929 930 /* 931 * By default disable transparent hugepages on smaller systems, 932 * where the extra memory used could hurt more than TLB overhead 933 * is likely to save. The admin can still enable it through /sys. 934 */ 935 if (totalram_pages() < MB_TO_PAGES(512)) { 936 transparent_hugepage_flags = 0; 937 return 0; 938 } 939 940 err = start_stop_khugepaged(); 941 if (err) 942 goto err_khugepaged; 943 944 return 0; 945 err_khugepaged: 946 thp_shrinker_exit(); 947 err_shrinker: 948 khugepaged_destroy(); 949 err_slab: 950 hugepage_exit_sysfs(hugepage_kobj); 951 err_sysfs: 952 return err; 953 } 954 subsys_initcall(hugepage_init); 955 956 static int __init setup_transparent_hugepage(char *str) 957 { 958 int ret = 0; 959 if (!str) 960 goto out; 961 if (!strcmp(str, "always")) { 962 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 963 &transparent_hugepage_flags); 964 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 965 &transparent_hugepage_flags); 966 ret = 1; 967 } else if (!strcmp(str, "madvise")) { 968 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 969 &transparent_hugepage_flags); 970 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 971 &transparent_hugepage_flags); 972 ret = 1; 973 } else if (!strcmp(str, "never")) { 974 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 975 &transparent_hugepage_flags); 976 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 977 &transparent_hugepage_flags); 978 ret = 1; 979 } 980 out: 981 if (!ret) 982 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 983 return ret; 984 } 985 __setup("transparent_hugepage=", setup_transparent_hugepage); 986 987 static char str_dup[PAGE_SIZE] __initdata; 988 static int __init setup_thp_anon(char *str) 989 { 990 char *token, *range, *policy, *subtoken; 991 unsigned long always, inherit, madvise; 992 char *start_size, *end_size; 993 int start, end, nr; 994 char *p; 995 996 if (!str || strlen(str) + 1 > PAGE_SIZE) 997 goto err; 998 strscpy(str_dup, str); 999 1000 always = huge_anon_orders_always; 1001 madvise = huge_anon_orders_madvise; 1002 inherit = huge_anon_orders_inherit; 1003 p = str_dup; 1004 while ((token = strsep(&p, ";")) != NULL) { 1005 range = strsep(&token, ":"); 1006 policy = token; 1007 1008 if (!policy) 1009 goto err; 1010 1011 while ((subtoken = strsep(&range, ",")) != NULL) { 1012 if (strchr(subtoken, '-')) { 1013 start_size = strsep(&subtoken, "-"); 1014 end_size = subtoken; 1015 1016 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON); 1017 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON); 1018 } else { 1019 start_size = end_size = subtoken; 1020 start = end = get_order_from_str(subtoken, 1021 THP_ORDERS_ALL_ANON); 1022 } 1023 1024 if (start == -EINVAL) { 1025 pr_err("invalid size %s in thp_anon boot parameter\n", start_size); 1026 goto err; 1027 } 1028 1029 if (end == -EINVAL) { 1030 pr_err("invalid size %s in thp_anon boot parameter\n", end_size); 1031 goto err; 1032 } 1033 1034 if (start < 0 || end < 0 || start > end) 1035 goto err; 1036 1037 nr = end - start + 1; 1038 if (!strcmp(policy, "always")) { 1039 bitmap_set(&always, start, nr); 1040 bitmap_clear(&inherit, start, nr); 1041 bitmap_clear(&madvise, start, nr); 1042 } else if (!strcmp(policy, "madvise")) { 1043 bitmap_set(&madvise, start, nr); 1044 bitmap_clear(&inherit, start, nr); 1045 bitmap_clear(&always, start, nr); 1046 } else if (!strcmp(policy, "inherit")) { 1047 bitmap_set(&inherit, start, nr); 1048 bitmap_clear(&madvise, start, nr); 1049 bitmap_clear(&always, start, nr); 1050 } else if (!strcmp(policy, "never")) { 1051 bitmap_clear(&inherit, start, nr); 1052 bitmap_clear(&madvise, start, nr); 1053 bitmap_clear(&always, start, nr); 1054 } else { 1055 pr_err("invalid policy %s in thp_anon boot parameter\n", policy); 1056 goto err; 1057 } 1058 } 1059 } 1060 1061 huge_anon_orders_always = always; 1062 huge_anon_orders_madvise = madvise; 1063 huge_anon_orders_inherit = inherit; 1064 anon_orders_configured = true; 1065 return 1; 1066 1067 err: 1068 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); 1069 return 0; 1070 } 1071 __setup("thp_anon=", setup_thp_anon); 1072 1073 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 1074 { 1075 if (likely(vma->vm_flags & VM_WRITE)) 1076 pmd = pmd_mkwrite(pmd, vma); 1077 return pmd; 1078 } 1079 1080 static struct deferred_split *split_queue_node(int nid) 1081 { 1082 struct pglist_data *pgdata = NODE_DATA(nid); 1083 1084 return &pgdata->deferred_split_queue; 1085 } 1086 1087 #ifdef CONFIG_MEMCG 1088 static inline 1089 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio, 1090 struct deferred_split *queue) 1091 { 1092 if (mem_cgroup_disabled()) 1093 return NULL; 1094 if (split_queue_node(folio_nid(folio)) == queue) 1095 return NULL; 1096 return container_of(queue, struct mem_cgroup, deferred_split_queue); 1097 } 1098 1099 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg) 1100 { 1101 return memcg ? &memcg->deferred_split_queue : split_queue_node(nid); 1102 } 1103 #else 1104 static inline 1105 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio, 1106 struct deferred_split *queue) 1107 { 1108 return NULL; 1109 } 1110 1111 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg) 1112 { 1113 return split_queue_node(nid); 1114 } 1115 #endif 1116 1117 static struct deferred_split *split_queue_lock(int nid, struct mem_cgroup *memcg) 1118 { 1119 struct deferred_split *queue; 1120 1121 retry: 1122 queue = memcg_split_queue(nid, memcg); 1123 spin_lock(&queue->split_queue_lock); 1124 /* 1125 * There is a period between setting memcg to dying and reparenting 1126 * deferred split queue, and during this period the THPs in the deferred 1127 * split queue will be hidden from the shrinker side. 1128 */ 1129 if (unlikely(memcg_is_dying(memcg))) { 1130 spin_unlock(&queue->split_queue_lock); 1131 memcg = parent_mem_cgroup(memcg); 1132 goto retry; 1133 } 1134 1135 return queue; 1136 } 1137 1138 static struct deferred_split * 1139 split_queue_lock_irqsave(int nid, struct mem_cgroup *memcg, unsigned long *flags) 1140 { 1141 struct deferred_split *queue; 1142 1143 retry: 1144 queue = memcg_split_queue(nid, memcg); 1145 spin_lock_irqsave(&queue->split_queue_lock, *flags); 1146 if (unlikely(memcg_is_dying(memcg))) { 1147 spin_unlock_irqrestore(&queue->split_queue_lock, *flags); 1148 memcg = parent_mem_cgroup(memcg); 1149 goto retry; 1150 } 1151 1152 return queue; 1153 } 1154 1155 static struct deferred_split *folio_split_queue_lock(struct folio *folio) 1156 { 1157 return split_queue_lock(folio_nid(folio), folio_memcg(folio)); 1158 } 1159 1160 static struct deferred_split * 1161 folio_split_queue_lock_irqsave(struct folio *folio, unsigned long *flags) 1162 { 1163 return split_queue_lock_irqsave(folio_nid(folio), folio_memcg(folio), flags); 1164 } 1165 1166 static inline void split_queue_unlock(struct deferred_split *queue) 1167 { 1168 spin_unlock(&queue->split_queue_lock); 1169 } 1170 1171 static inline void split_queue_unlock_irqrestore(struct deferred_split *queue, 1172 unsigned long flags) 1173 { 1174 spin_unlock_irqrestore(&queue->split_queue_lock, flags); 1175 } 1176 1177 static inline bool is_transparent_hugepage(const struct folio *folio) 1178 { 1179 if (!folio_test_large(folio)) 1180 return false; 1181 1182 return is_huge_zero_folio(folio) || 1183 folio_test_large_rmappable(folio); 1184 } 1185 1186 static unsigned long __thp_get_unmapped_area(struct file *filp, 1187 unsigned long addr, unsigned long len, 1188 loff_t off, unsigned long flags, unsigned long size, 1189 vm_flags_t vm_flags) 1190 { 1191 loff_t off_end = off + len; 1192 loff_t off_align = round_up(off, size); 1193 unsigned long len_pad, ret, off_sub; 1194 1195 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 1196 return 0; 1197 1198 if (off_end <= off_align || (off_end - off_align) < size) 1199 return 0; 1200 1201 len_pad = len + size; 1202 if (len_pad < len || (off + len_pad) < off) 1203 return 0; 1204 1205 ret = mm_get_unmapped_area_vmflags(filp, addr, len_pad, 1206 off >> PAGE_SHIFT, flags, vm_flags); 1207 1208 /* 1209 * The failure might be due to length padding. The caller will retry 1210 * without the padding. 1211 */ 1212 if (IS_ERR_VALUE(ret)) 1213 return 0; 1214 1215 /* 1216 * Do not try to align to THP boundary if allocation at the address 1217 * hint succeeds. 1218 */ 1219 if (ret == addr) 1220 return addr; 1221 1222 off_sub = (off - ret) & (size - 1); 1223 1224 if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub) 1225 return ret + size; 1226 1227 ret += off_sub; 1228 return ret; 1229 } 1230 1231 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 1232 unsigned long len, unsigned long pgoff, unsigned long flags, 1233 vm_flags_t vm_flags) 1234 { 1235 unsigned long ret; 1236 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 1237 1238 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 1239 if (ret) 1240 return ret; 1241 1242 return mm_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 1243 vm_flags); 1244 } 1245 1246 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 1247 unsigned long len, unsigned long pgoff, unsigned long flags) 1248 { 1249 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 1250 } 1251 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 1252 1253 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, 1254 unsigned long addr) 1255 { 1256 gfp_t gfp = vma_thp_gfp_mask(vma); 1257 const int order = HPAGE_PMD_ORDER; 1258 struct folio *folio; 1259 1260 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); 1261 1262 if (unlikely(!folio)) { 1263 count_vm_event(THP_FAULT_FALLBACK); 1264 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1265 return NULL; 1266 } 1267 1268 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1269 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 1270 folio_put(folio); 1271 count_vm_event(THP_FAULT_FALLBACK); 1272 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 1273 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1274 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 1275 return NULL; 1276 } 1277 folio_throttle_swaprate(folio, gfp); 1278 1279 /* 1280 * When a folio is not zeroed during allocation (__GFP_ZERO not used) 1281 * or user folios require special handling, folio_zero_user() is used to 1282 * make sure that the page corresponding to the faulting address will be 1283 * hot in the cache after zeroing. 1284 */ 1285 if (user_alloc_needs_zeroing()) 1286 folio_zero_user(folio, addr); 1287 /* 1288 * The memory barrier inside __folio_mark_uptodate makes sure that 1289 * folio_zero_user writes become visible before the set_pmd_at() 1290 * write. 1291 */ 1292 __folio_mark_uptodate(folio); 1293 return folio; 1294 } 1295 1296 void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd, 1297 struct vm_area_struct *vma, unsigned long haddr) 1298 { 1299 pmd_t entry; 1300 1301 entry = folio_mk_pmd(folio, vma->vm_page_prot); 1302 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1303 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1304 folio_add_lru_vma(folio, vma); 1305 set_pmd_at(vma->vm_mm, haddr, pmd, entry); 1306 update_mmu_cache_pmd(vma, haddr, pmd); 1307 deferred_split_folio(folio, false); 1308 } 1309 1310 static void map_anon_folio_pmd_pf(struct folio *folio, pmd_t *pmd, 1311 struct vm_area_struct *vma, unsigned long haddr) 1312 { 1313 map_anon_folio_pmd_nopf(folio, pmd, vma, haddr); 1314 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1315 count_vm_event(THP_FAULT_ALLOC); 1316 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1317 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1318 } 1319 1320 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1321 { 1322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1323 struct vm_area_struct *vma = vmf->vma; 1324 struct folio *folio; 1325 pgtable_t pgtable; 1326 vm_fault_t ret = 0; 1327 1328 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1329 if (unlikely(!folio)) 1330 return VM_FAULT_FALLBACK; 1331 1332 pgtable = pte_alloc_one(vma->vm_mm); 1333 if (unlikely(!pgtable)) { 1334 ret = VM_FAULT_OOM; 1335 goto release; 1336 } 1337 1338 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1339 if (unlikely(!pmd_none(*vmf->pmd))) { 1340 goto unlock_release; 1341 } else { 1342 ret = check_stable_address_space(vma->vm_mm); 1343 if (ret) 1344 goto unlock_release; 1345 1346 /* Deliver the page fault to userland */ 1347 if (userfaultfd_missing(vma)) { 1348 spin_unlock(vmf->ptl); 1349 folio_put(folio); 1350 pte_free(vma->vm_mm, pgtable); 1351 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1352 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1353 return ret; 1354 } 1355 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1356 map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr); 1357 mm_inc_nr_ptes(vma->vm_mm); 1358 spin_unlock(vmf->ptl); 1359 } 1360 1361 return 0; 1362 unlock_release: 1363 spin_unlock(vmf->ptl); 1364 release: 1365 if (pgtable) 1366 pte_free(vma->vm_mm, pgtable); 1367 folio_put(folio); 1368 return ret; 1369 1370 } 1371 1372 vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf) 1373 { 1374 struct vm_area_struct *vma = vmf->vma; 1375 vm_fault_t ret = 0; 1376 spinlock_t *ptl; 1377 softleaf_t entry; 1378 struct page *page; 1379 struct folio *folio; 1380 1381 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 1382 vma_end_read(vma); 1383 return VM_FAULT_RETRY; 1384 } 1385 1386 ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1387 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) { 1388 spin_unlock(ptl); 1389 return 0; 1390 } 1391 1392 entry = softleaf_from_pmd(vmf->orig_pmd); 1393 page = softleaf_to_page(entry); 1394 folio = page_folio(page); 1395 vmf->page = page; 1396 vmf->pte = NULL; 1397 if (folio_trylock(folio)) { 1398 folio_get(folio); 1399 spin_unlock(ptl); 1400 ret = page_pgmap(page)->ops->migrate_to_ram(vmf); 1401 folio_unlock(folio); 1402 folio_put(folio); 1403 } else { 1404 spin_unlock(ptl); 1405 } 1406 1407 return ret; 1408 } 1409 1410 /* 1411 * always: directly stall for all thp allocations 1412 * defer: wake kswapd and fail if not immediately available 1413 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1414 * fail if not immediately available 1415 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1416 * available 1417 * never: never stall for any thp allocation 1418 */ 1419 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1420 { 1421 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1422 1423 /* Always do synchronous compaction */ 1424 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1425 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1426 1427 /* Kick kcompactd and fail quickly */ 1428 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1429 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1430 1431 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1432 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1433 return GFP_TRANSHUGE_LIGHT | 1434 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1435 __GFP_KSWAPD_RECLAIM); 1436 1437 /* Only do synchronous compaction if madvised */ 1438 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1439 return GFP_TRANSHUGE_LIGHT | 1440 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1441 1442 return GFP_TRANSHUGE_LIGHT; 1443 } 1444 1445 /* Caller must hold page table lock. */ 1446 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1447 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1448 struct folio *zero_folio) 1449 { 1450 pmd_t entry; 1451 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot); 1452 entry = pmd_mkspecial(entry); 1453 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1454 set_pmd_at(mm, haddr, pmd, entry); 1455 mm_inc_nr_ptes(mm); 1456 } 1457 1458 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1459 { 1460 struct vm_area_struct *vma = vmf->vma; 1461 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1462 vm_fault_t ret; 1463 1464 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1465 return VM_FAULT_FALLBACK; 1466 ret = vmf_anon_prepare(vmf); 1467 if (ret) 1468 return ret; 1469 khugepaged_enter_vma(vma, vma->vm_flags); 1470 1471 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1472 !mm_forbids_zeropage(vma->vm_mm) && 1473 transparent_hugepage_use_zero_page()) { 1474 pgtable_t pgtable; 1475 struct folio *zero_folio; 1476 vm_fault_t ret; 1477 1478 pgtable = pte_alloc_one(vma->vm_mm); 1479 if (unlikely(!pgtable)) 1480 return VM_FAULT_OOM; 1481 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1482 if (unlikely(!zero_folio)) { 1483 pte_free(vma->vm_mm, pgtable); 1484 count_vm_event(THP_FAULT_FALLBACK); 1485 return VM_FAULT_FALLBACK; 1486 } 1487 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1488 ret = 0; 1489 if (pmd_none(*vmf->pmd)) { 1490 ret = check_stable_address_space(vma->vm_mm); 1491 if (ret) { 1492 spin_unlock(vmf->ptl); 1493 pte_free(vma->vm_mm, pgtable); 1494 } else if (userfaultfd_missing(vma)) { 1495 spin_unlock(vmf->ptl); 1496 pte_free(vma->vm_mm, pgtable); 1497 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1498 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1499 } else { 1500 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1501 haddr, vmf->pmd, zero_folio); 1502 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1503 spin_unlock(vmf->ptl); 1504 } 1505 } else { 1506 spin_unlock(vmf->ptl); 1507 pte_free(vma->vm_mm, pgtable); 1508 } 1509 return ret; 1510 } 1511 1512 return __do_huge_pmd_anonymous_page(vmf); 1513 } 1514 1515 struct folio_or_pfn { 1516 union { 1517 struct folio *folio; 1518 unsigned long pfn; 1519 }; 1520 bool is_folio; 1521 }; 1522 1523 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr, 1524 pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot, 1525 bool write) 1526 { 1527 struct mm_struct *mm = vma->vm_mm; 1528 pgtable_t pgtable = NULL; 1529 spinlock_t *ptl; 1530 pmd_t entry; 1531 1532 if (addr < vma->vm_start || addr >= vma->vm_end) 1533 return VM_FAULT_SIGBUS; 1534 1535 if (arch_needs_pgtable_deposit()) { 1536 pgtable = pte_alloc_one(vma->vm_mm); 1537 if (!pgtable) 1538 return VM_FAULT_OOM; 1539 } 1540 1541 ptl = pmd_lock(mm, pmd); 1542 if (!pmd_none(*pmd)) { 1543 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) : 1544 fop.pfn; 1545 1546 if (write) { 1547 if (pmd_pfn(*pmd) != pfn) { 1548 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1549 goto out_unlock; 1550 } 1551 entry = pmd_mkyoung(*pmd); 1552 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1553 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1554 update_mmu_cache_pmd(vma, addr, pmd); 1555 } 1556 goto out_unlock; 1557 } 1558 1559 if (fop.is_folio) { 1560 entry = folio_mk_pmd(fop.folio, vma->vm_page_prot); 1561 1562 if (is_huge_zero_folio(fop.folio)) { 1563 entry = pmd_mkspecial(entry); 1564 } else { 1565 folio_get(fop.folio); 1566 folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma); 1567 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR); 1568 } 1569 } else { 1570 entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot)); 1571 entry = pmd_mkspecial(entry); 1572 } 1573 if (write) { 1574 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1575 entry = maybe_pmd_mkwrite(entry, vma); 1576 } 1577 1578 if (pgtable) { 1579 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1580 mm_inc_nr_ptes(mm); 1581 pgtable = NULL; 1582 } 1583 1584 set_pmd_at(mm, addr, pmd, entry); 1585 update_mmu_cache_pmd(vma, addr, pmd); 1586 1587 out_unlock: 1588 spin_unlock(ptl); 1589 if (pgtable) 1590 pte_free(mm, pgtable); 1591 return VM_FAULT_NOPAGE; 1592 } 1593 1594 /** 1595 * vmf_insert_pfn_pmd - insert a pmd size pfn 1596 * @vmf: Structure describing the fault 1597 * @pfn: pfn to insert 1598 * @write: whether it's a write fault 1599 * 1600 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1601 * 1602 * Return: vm_fault_t value. 1603 */ 1604 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn, 1605 bool write) 1606 { 1607 unsigned long addr = vmf->address & PMD_MASK; 1608 struct vm_area_struct *vma = vmf->vma; 1609 pgprot_t pgprot = vma->vm_page_prot; 1610 struct folio_or_pfn fop = { 1611 .pfn = pfn, 1612 }; 1613 1614 /* 1615 * If we had pmd_special, we could avoid all these restrictions, 1616 * but we need to be consistent with PTEs and architectures that 1617 * can't support a 'special' bit. 1618 */ 1619 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1620 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1621 (VM_PFNMAP|VM_MIXEDMAP)); 1622 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1623 1624 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 1625 1626 return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write); 1627 } 1628 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1629 1630 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 1631 bool write) 1632 { 1633 struct vm_area_struct *vma = vmf->vma; 1634 unsigned long addr = vmf->address & PMD_MASK; 1635 struct folio_or_pfn fop = { 1636 .folio = folio, 1637 .is_folio = true, 1638 }; 1639 1640 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER)) 1641 return VM_FAULT_SIGBUS; 1642 1643 return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write); 1644 } 1645 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd); 1646 1647 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1648 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1649 { 1650 if (likely(vma->vm_flags & VM_WRITE)) 1651 pud = pud_mkwrite(pud); 1652 return pud; 1653 } 1654 1655 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr, 1656 pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write) 1657 { 1658 struct mm_struct *mm = vma->vm_mm; 1659 spinlock_t *ptl; 1660 pud_t entry; 1661 1662 if (addr < vma->vm_start || addr >= vma->vm_end) 1663 return VM_FAULT_SIGBUS; 1664 1665 ptl = pud_lock(mm, pud); 1666 if (!pud_none(*pud)) { 1667 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) : 1668 fop.pfn; 1669 1670 if (write) { 1671 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn)) 1672 goto out_unlock; 1673 entry = pud_mkyoung(*pud); 1674 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1675 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1676 update_mmu_cache_pud(vma, addr, pud); 1677 } 1678 goto out_unlock; 1679 } 1680 1681 if (fop.is_folio) { 1682 entry = folio_mk_pud(fop.folio, vma->vm_page_prot); 1683 1684 folio_get(fop.folio); 1685 folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma); 1686 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR); 1687 } else { 1688 entry = pud_mkhuge(pfn_pud(fop.pfn, prot)); 1689 entry = pud_mkspecial(entry); 1690 } 1691 if (write) { 1692 entry = pud_mkyoung(pud_mkdirty(entry)); 1693 entry = maybe_pud_mkwrite(entry, vma); 1694 } 1695 set_pud_at(mm, addr, pud, entry); 1696 update_mmu_cache_pud(vma, addr, pud); 1697 out_unlock: 1698 spin_unlock(ptl); 1699 return VM_FAULT_NOPAGE; 1700 } 1701 1702 /** 1703 * vmf_insert_pfn_pud - insert a pud size pfn 1704 * @vmf: Structure describing the fault 1705 * @pfn: pfn to insert 1706 * @write: whether it's a write fault 1707 * 1708 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1709 * 1710 * Return: vm_fault_t value. 1711 */ 1712 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn, 1713 bool write) 1714 { 1715 unsigned long addr = vmf->address & PUD_MASK; 1716 struct vm_area_struct *vma = vmf->vma; 1717 pgprot_t pgprot = vma->vm_page_prot; 1718 struct folio_or_pfn fop = { 1719 .pfn = pfn, 1720 }; 1721 1722 /* 1723 * If we had pud_special, we could avoid all these restrictions, 1724 * but we need to be consistent with PTEs and architectures that 1725 * can't support a 'special' bit. 1726 */ 1727 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1728 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1729 (VM_PFNMAP|VM_MIXEDMAP)); 1730 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1731 1732 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 1733 1734 return insert_pud(vma, addr, vmf->pud, fop, pgprot, write); 1735 } 1736 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1737 1738 /** 1739 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry 1740 * @vmf: Structure describing the fault 1741 * @folio: folio to insert 1742 * @write: whether it's a write fault 1743 * 1744 * Return: vm_fault_t value. 1745 */ 1746 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 1747 bool write) 1748 { 1749 struct vm_area_struct *vma = vmf->vma; 1750 unsigned long addr = vmf->address & PUD_MASK; 1751 struct folio_or_pfn fop = { 1752 .folio = folio, 1753 .is_folio = true, 1754 }; 1755 1756 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER)) 1757 return VM_FAULT_SIGBUS; 1758 1759 return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write); 1760 } 1761 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud); 1762 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1763 1764 /** 1765 * touch_pmd - Mark page table pmd entry as accessed and dirty (for write) 1766 * @vma: The VMA covering @addr 1767 * @addr: The virtual address 1768 * @pmd: pmd pointer into the page table mapping @addr 1769 * @write: Whether it's a write access 1770 * 1771 * Return: whether the pmd entry is changed 1772 */ 1773 bool touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1774 pmd_t *pmd, bool write) 1775 { 1776 pmd_t entry; 1777 1778 entry = pmd_mkyoung(*pmd); 1779 if (write) 1780 entry = pmd_mkdirty(entry); 1781 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1782 pmd, entry, write)) { 1783 update_mmu_cache_pmd(vma, addr, pmd); 1784 return true; 1785 } 1786 1787 return false; 1788 } 1789 1790 static void copy_huge_non_present_pmd( 1791 struct mm_struct *dst_mm, struct mm_struct *src_mm, 1792 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1793 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1794 pmd_t pmd, pgtable_t pgtable) 1795 { 1796 softleaf_t entry = softleaf_from_pmd(pmd); 1797 struct folio *src_folio; 1798 1799 VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(pmd)); 1800 1801 if (softleaf_is_migration_write(entry) || 1802 softleaf_is_migration_read_exclusive(entry)) { 1803 entry = make_readable_migration_entry(swp_offset(entry)); 1804 pmd = swp_entry_to_pmd(entry); 1805 if (pmd_swp_soft_dirty(*src_pmd)) 1806 pmd = pmd_swp_mksoft_dirty(pmd); 1807 if (pmd_swp_uffd_wp(*src_pmd)) 1808 pmd = pmd_swp_mkuffd_wp(pmd); 1809 set_pmd_at(src_mm, addr, src_pmd, pmd); 1810 } else if (softleaf_is_device_private(entry)) { 1811 /* 1812 * For device private entries, since there are no 1813 * read exclusive entries, writable = !readable 1814 */ 1815 if (softleaf_is_device_private_write(entry)) { 1816 entry = make_readable_device_private_entry(swp_offset(entry)); 1817 pmd = swp_entry_to_pmd(entry); 1818 1819 if (pmd_swp_soft_dirty(*src_pmd)) 1820 pmd = pmd_swp_mksoft_dirty(pmd); 1821 if (pmd_swp_uffd_wp(*src_pmd)) 1822 pmd = pmd_swp_mkuffd_wp(pmd); 1823 set_pmd_at(src_mm, addr, src_pmd, pmd); 1824 } 1825 1826 src_folio = softleaf_to_folio(entry); 1827 VM_WARN_ON(!folio_test_large(src_folio)); 1828 1829 folio_get(src_folio); 1830 /* 1831 * folio_try_dup_anon_rmap_pmd does not fail for 1832 * device private entries. 1833 */ 1834 folio_try_dup_anon_rmap_pmd(src_folio, &src_folio->page, 1835 dst_vma, src_vma); 1836 } 1837 1838 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1839 mm_inc_nr_ptes(dst_mm); 1840 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1841 if (!userfaultfd_wp(dst_vma)) 1842 pmd = pmd_swp_clear_uffd_wp(pmd); 1843 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1844 } 1845 1846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1848 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1849 { 1850 spinlock_t *dst_ptl, *src_ptl; 1851 struct page *src_page; 1852 struct folio *src_folio; 1853 pmd_t pmd; 1854 pgtable_t pgtable = NULL; 1855 int ret = -ENOMEM; 1856 1857 pmd = pmdp_get_lockless(src_pmd); 1858 if (unlikely(pmd_present(pmd) && pmd_special(pmd) && 1859 !is_huge_zero_pmd(pmd))) { 1860 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1861 src_ptl = pmd_lockptr(src_mm, src_pmd); 1862 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1863 /* 1864 * No need to recheck the pmd, it can't change with write 1865 * mmap lock held here. 1866 * 1867 * Meanwhile, making sure it's not a CoW VMA with writable 1868 * mapping, otherwise it means either the anon page wrongly 1869 * applied special bit, or we made the PRIVATE mapping be 1870 * able to wrongly write to the backend MMIO. 1871 */ 1872 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); 1873 goto set_pmd; 1874 } 1875 1876 /* Skip if can be re-fill on fault */ 1877 if (!vma_is_anonymous(dst_vma)) 1878 return 0; 1879 1880 pgtable = pte_alloc_one(dst_mm); 1881 if (unlikely(!pgtable)) 1882 goto out; 1883 1884 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1885 src_ptl = pmd_lockptr(src_mm, src_pmd); 1886 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1887 1888 ret = -EAGAIN; 1889 pmd = *src_pmd; 1890 1891 if (unlikely(thp_migration_supported() && 1892 pmd_is_valid_softleaf(pmd))) { 1893 copy_huge_non_present_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, 1894 dst_vma, src_vma, pmd, pgtable); 1895 ret = 0; 1896 goto out_unlock; 1897 } 1898 1899 if (unlikely(!pmd_trans_huge(pmd))) { 1900 pte_free(dst_mm, pgtable); 1901 goto out_unlock; 1902 } 1903 /* 1904 * When page table lock is held, the huge zero pmd should not be 1905 * under splitting since we don't split the page itself, only pmd to 1906 * a page table. 1907 */ 1908 if (is_huge_zero_pmd(pmd)) { 1909 /* 1910 * mm_get_huge_zero_folio() will never allocate a new 1911 * folio here, since we already have a zero page to 1912 * copy. It just takes a reference. 1913 */ 1914 mm_get_huge_zero_folio(dst_mm); 1915 goto out_zero_page; 1916 } 1917 1918 src_page = pmd_page(pmd); 1919 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1920 src_folio = page_folio(src_page); 1921 1922 folio_get(src_folio); 1923 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) { 1924 /* Page maybe pinned: split and retry the fault on PTEs. */ 1925 folio_put(src_folio); 1926 pte_free(dst_mm, pgtable); 1927 spin_unlock(src_ptl); 1928 spin_unlock(dst_ptl); 1929 __split_huge_pmd(src_vma, src_pmd, addr, false); 1930 return -EAGAIN; 1931 } 1932 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1933 out_zero_page: 1934 mm_inc_nr_ptes(dst_mm); 1935 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1936 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1937 if (!userfaultfd_wp(dst_vma)) 1938 pmd = pmd_clear_uffd_wp(pmd); 1939 pmd = pmd_wrprotect(pmd); 1940 set_pmd: 1941 pmd = pmd_mkold(pmd); 1942 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1943 1944 ret = 0; 1945 out_unlock: 1946 spin_unlock(src_ptl); 1947 spin_unlock(dst_ptl); 1948 out: 1949 return ret; 1950 } 1951 1952 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1953 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1954 pud_t *pud, bool write) 1955 { 1956 pud_t _pud; 1957 1958 _pud = pud_mkyoung(*pud); 1959 if (write) 1960 _pud = pud_mkdirty(_pud); 1961 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1962 pud, _pud, write)) 1963 update_mmu_cache_pud(vma, addr, pud); 1964 } 1965 1966 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1967 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1968 struct vm_area_struct *vma) 1969 { 1970 spinlock_t *dst_ptl, *src_ptl; 1971 pud_t pud; 1972 int ret; 1973 1974 dst_ptl = pud_lock(dst_mm, dst_pud); 1975 src_ptl = pud_lockptr(src_mm, src_pud); 1976 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1977 1978 ret = -EAGAIN; 1979 pud = *src_pud; 1980 if (unlikely(!pud_trans_huge(pud))) 1981 goto out_unlock; 1982 1983 /* 1984 * TODO: once we support anonymous pages, use 1985 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1986 */ 1987 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { 1988 pudp_set_wrprotect(src_mm, addr, src_pud); 1989 pud = pud_wrprotect(pud); 1990 } 1991 pud = pud_mkold(pud); 1992 set_pud_at(dst_mm, addr, dst_pud, pud); 1993 1994 ret = 0; 1995 out_unlock: 1996 spin_unlock(src_ptl); 1997 spin_unlock(dst_ptl); 1998 return ret; 1999 } 2000 2001 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 2002 { 2003 bool write = vmf->flags & FAULT_FLAG_WRITE; 2004 2005 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 2006 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 2007 goto unlock; 2008 2009 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 2010 unlock: 2011 spin_unlock(vmf->ptl); 2012 } 2013 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2014 2015 bool huge_pmd_set_accessed(struct vm_fault *vmf) 2016 { 2017 bool write = vmf->flags & FAULT_FLAG_WRITE; 2018 2019 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 2020 return false; 2021 2022 return touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 2023 } 2024 2025 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) 2026 { 2027 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2028 struct vm_area_struct *vma = vmf->vma; 2029 struct mmu_notifier_range range; 2030 struct folio *folio; 2031 vm_fault_t ret = 0; 2032 2033 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 2034 if (unlikely(!folio)) 2035 return VM_FAULT_FALLBACK; 2036 2037 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, 2038 haddr + HPAGE_PMD_SIZE); 2039 mmu_notifier_invalidate_range_start(&range); 2040 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2041 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) 2042 goto release; 2043 ret = check_stable_address_space(vma->vm_mm); 2044 if (ret) 2045 goto release; 2046 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); 2047 map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr); 2048 goto unlock; 2049 release: 2050 folio_put(folio); 2051 unlock: 2052 spin_unlock(vmf->ptl); 2053 mmu_notifier_invalidate_range_end(&range); 2054 return ret; 2055 } 2056 2057 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 2058 { 2059 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 2060 struct vm_area_struct *vma = vmf->vma; 2061 struct folio *folio; 2062 struct page *page; 2063 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2064 pmd_t orig_pmd = vmf->orig_pmd; 2065 2066 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 2067 VM_BUG_ON_VMA(!vma->anon_vma, vma); 2068 2069 if (is_huge_zero_pmd(orig_pmd)) { 2070 vm_fault_t ret = do_huge_zero_wp_pmd(vmf); 2071 2072 if (!(ret & VM_FAULT_FALLBACK)) 2073 return ret; 2074 2075 /* Fallback to splitting PMD if THP cannot be allocated */ 2076 goto fallback; 2077 } 2078 2079 spin_lock(vmf->ptl); 2080 2081 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 2082 spin_unlock(vmf->ptl); 2083 return 0; 2084 } 2085 2086 page = pmd_page(orig_pmd); 2087 folio = page_folio(page); 2088 VM_BUG_ON_PAGE(!PageHead(page), page); 2089 2090 /* Early check when only holding the PT lock. */ 2091 if (PageAnonExclusive(page)) 2092 goto reuse; 2093 2094 if (!folio_trylock(folio)) { 2095 folio_get(folio); 2096 spin_unlock(vmf->ptl); 2097 folio_lock(folio); 2098 spin_lock(vmf->ptl); 2099 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 2100 spin_unlock(vmf->ptl); 2101 folio_unlock(folio); 2102 folio_put(folio); 2103 return 0; 2104 } 2105 folio_put(folio); 2106 } 2107 2108 /* Recheck after temporarily dropping the PT lock. */ 2109 if (PageAnonExclusive(page)) { 2110 folio_unlock(folio); 2111 goto reuse; 2112 } 2113 2114 /* 2115 * See do_wp_page(): we can only reuse the folio exclusively if 2116 * there are no additional references. Note that we always drain 2117 * the LRU cache immediately after adding a THP. 2118 */ 2119 if (folio_ref_count(folio) > 2120 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 2121 goto unlock_fallback; 2122 if (folio_test_swapcache(folio)) 2123 folio_free_swap(folio); 2124 if (folio_ref_count(folio) == 1) { 2125 pmd_t entry; 2126 2127 folio_move_anon_rmap(folio, vma); 2128 SetPageAnonExclusive(page); 2129 folio_unlock(folio); 2130 reuse: 2131 if (unlikely(unshare)) { 2132 spin_unlock(vmf->ptl); 2133 return 0; 2134 } 2135 entry = pmd_mkyoung(orig_pmd); 2136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2137 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 2138 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2139 spin_unlock(vmf->ptl); 2140 return 0; 2141 } 2142 2143 unlock_fallback: 2144 folio_unlock(folio); 2145 spin_unlock(vmf->ptl); 2146 fallback: 2147 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 2148 return VM_FAULT_FALLBACK; 2149 } 2150 2151 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 2152 unsigned long addr, pmd_t pmd) 2153 { 2154 struct page *page; 2155 2156 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 2157 return false; 2158 2159 /* Don't touch entries that are not even readable (NUMA hinting). */ 2160 if (pmd_protnone(pmd)) 2161 return false; 2162 2163 /* Do we need write faults for softdirty tracking? */ 2164 if (pmd_needs_soft_dirty_wp(vma, pmd)) 2165 return false; 2166 2167 /* Do we need write faults for uffd-wp tracking? */ 2168 if (userfaultfd_huge_pmd_wp(vma, pmd)) 2169 return false; 2170 2171 if (!(vma->vm_flags & VM_SHARED)) { 2172 /* See can_change_pte_writable(). */ 2173 page = vm_normal_page_pmd(vma, addr, pmd); 2174 return page && PageAnon(page) && PageAnonExclusive(page); 2175 } 2176 2177 /* See can_change_pte_writable(). */ 2178 return pmd_dirty(pmd); 2179 } 2180 2181 /* NUMA hinting page fault entry point for trans huge pmds */ 2182 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 2183 { 2184 struct vm_area_struct *vma = vmf->vma; 2185 struct folio *folio; 2186 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2187 int nid = NUMA_NO_NODE; 2188 int target_nid, last_cpupid; 2189 pmd_t pmd, old_pmd; 2190 bool writable = false; 2191 int flags = 0; 2192 2193 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2194 old_pmd = pmdp_get(vmf->pmd); 2195 2196 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { 2197 spin_unlock(vmf->ptl); 2198 return 0; 2199 } 2200 2201 pmd = pmd_modify(old_pmd, vma->vm_page_prot); 2202 2203 /* 2204 * Detect now whether the PMD could be writable; this information 2205 * is only valid while holding the PT lock. 2206 */ 2207 writable = pmd_write(pmd); 2208 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 2209 can_change_pmd_writable(vma, vmf->address, pmd)) 2210 writable = true; 2211 2212 folio = vm_normal_folio_pmd(vma, haddr, pmd); 2213 if (!folio) 2214 goto out_map; 2215 2216 nid = folio_nid(folio); 2217 2218 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, 2219 &last_cpupid); 2220 if (target_nid == NUMA_NO_NODE) 2221 goto out_map; 2222 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 2223 flags |= TNF_MIGRATE_FAIL; 2224 goto out_map; 2225 } 2226 /* The folio is isolated and isolation code holds a folio reference. */ 2227 spin_unlock(vmf->ptl); 2228 writable = false; 2229 2230 if (!migrate_misplaced_folio(folio, target_nid)) { 2231 flags |= TNF_MIGRATED; 2232 nid = target_nid; 2233 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2234 return 0; 2235 } 2236 2237 flags |= TNF_MIGRATE_FAIL; 2238 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2239 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { 2240 spin_unlock(vmf->ptl); 2241 return 0; 2242 } 2243 out_map: 2244 /* Restore the PMD */ 2245 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); 2246 pmd = pmd_mkyoung(pmd); 2247 if (writable) 2248 pmd = pmd_mkwrite(pmd, vma); 2249 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 2250 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2251 spin_unlock(vmf->ptl); 2252 2253 if (nid != NUMA_NO_NODE) 2254 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2255 return 0; 2256 } 2257 2258 /* 2259 * Return true if we do MADV_FREE successfully on entire pmd page. 2260 * Otherwise, return false. 2261 */ 2262 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2263 pmd_t *pmd, unsigned long addr, unsigned long next) 2264 { 2265 spinlock_t *ptl; 2266 pmd_t orig_pmd; 2267 struct folio *folio; 2268 struct mm_struct *mm = tlb->mm; 2269 bool ret = false; 2270 2271 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2272 2273 ptl = pmd_trans_huge_lock(pmd, vma); 2274 if (!ptl) 2275 goto out_unlocked; 2276 2277 orig_pmd = *pmd; 2278 if (is_huge_zero_pmd(orig_pmd)) 2279 goto out; 2280 2281 if (unlikely(!pmd_present(orig_pmd))) { 2282 VM_BUG_ON(thp_migration_supported() && 2283 !pmd_is_migration_entry(orig_pmd)); 2284 goto out; 2285 } 2286 2287 folio = pmd_folio(orig_pmd); 2288 /* 2289 * If other processes are mapping this folio, we couldn't discard 2290 * the folio unless they all do MADV_FREE so let's skip the folio. 2291 */ 2292 if (folio_maybe_mapped_shared(folio)) 2293 goto out; 2294 2295 if (!folio_trylock(folio)) 2296 goto out; 2297 2298 /* 2299 * If user want to discard part-pages of THP, split it so MADV_FREE 2300 * will deactivate only them. 2301 */ 2302 if (next - addr != HPAGE_PMD_SIZE) { 2303 folio_get(folio); 2304 spin_unlock(ptl); 2305 split_folio(folio); 2306 folio_unlock(folio); 2307 folio_put(folio); 2308 goto out_unlocked; 2309 } 2310 2311 if (folio_test_dirty(folio)) 2312 folio_clear_dirty(folio); 2313 folio_unlock(folio); 2314 2315 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 2316 pmdp_invalidate(vma, addr, pmd); 2317 orig_pmd = pmd_mkold(orig_pmd); 2318 orig_pmd = pmd_mkclean(orig_pmd); 2319 2320 set_pmd_at(mm, addr, pmd, orig_pmd); 2321 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2322 } 2323 2324 folio_mark_lazyfree(folio); 2325 ret = true; 2326 out: 2327 spin_unlock(ptl); 2328 out_unlocked: 2329 return ret; 2330 } 2331 2332 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 2333 { 2334 pgtable_t pgtable; 2335 2336 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2337 pte_free(mm, pgtable); 2338 mm_dec_nr_ptes(mm); 2339 } 2340 2341 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2342 pmd_t *pmd, unsigned long addr) 2343 { 2344 pmd_t orig_pmd; 2345 spinlock_t *ptl; 2346 2347 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2348 2349 ptl = __pmd_trans_huge_lock(pmd, vma); 2350 if (!ptl) 2351 return 0; 2352 /* 2353 * For architectures like ppc64 we look at deposited pgtable 2354 * when calling pmdp_huge_get_and_clear. So do the 2355 * pgtable_trans_huge_withdraw after finishing pmdp related 2356 * operations. 2357 */ 2358 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 2359 tlb->fullmm); 2360 arch_check_zapped_pmd(vma, orig_pmd); 2361 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2362 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2363 if (arch_needs_pgtable_deposit()) 2364 zap_deposited_table(tlb->mm, pmd); 2365 spin_unlock(ptl); 2366 } else if (is_huge_zero_pmd(orig_pmd)) { 2367 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit()) 2368 zap_deposited_table(tlb->mm, pmd); 2369 spin_unlock(ptl); 2370 } else { 2371 struct folio *folio = NULL; 2372 int flush_needed = 1; 2373 2374 if (pmd_present(orig_pmd)) { 2375 struct page *page = pmd_page(orig_pmd); 2376 2377 folio = page_folio(page); 2378 folio_remove_rmap_pmd(folio, page, vma); 2379 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2380 VM_BUG_ON_PAGE(!PageHead(page), page); 2381 } else if (pmd_is_valid_softleaf(orig_pmd)) { 2382 const softleaf_t entry = softleaf_from_pmd(orig_pmd); 2383 2384 folio = softleaf_to_folio(entry); 2385 flush_needed = 0; 2386 2387 if (!thp_migration_supported()) 2388 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 2389 } 2390 2391 if (folio_test_anon(folio)) { 2392 zap_deposited_table(tlb->mm, pmd); 2393 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2394 } else { 2395 if (arch_needs_pgtable_deposit()) 2396 zap_deposited_table(tlb->mm, pmd); 2397 add_mm_counter(tlb->mm, mm_counter_file(folio), 2398 -HPAGE_PMD_NR); 2399 2400 /* 2401 * Use flush_needed to indicate whether the PMD entry 2402 * is present, instead of checking pmd_present() again. 2403 */ 2404 if (flush_needed && pmd_young(orig_pmd) && 2405 likely(vma_has_recency(vma))) 2406 folio_mark_accessed(folio); 2407 } 2408 2409 if (folio_is_device_private(folio)) { 2410 folio_remove_rmap_pmd(folio, &folio->page, vma); 2411 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2412 folio_put(folio); 2413 } 2414 2415 spin_unlock(ptl); 2416 if (flush_needed) 2417 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 2418 } 2419 return 1; 2420 } 2421 2422 #ifndef pmd_move_must_withdraw 2423 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 2424 spinlock_t *old_pmd_ptl, 2425 struct vm_area_struct *vma) 2426 { 2427 /* 2428 * With split pmd lock we also need to move preallocated 2429 * PTE page table if new_pmd is on different PMD page table. 2430 * 2431 * We also don't deposit and withdraw tables for file pages. 2432 */ 2433 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 2434 } 2435 #endif 2436 2437 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 2438 { 2439 if (pgtable_supports_soft_dirty()) { 2440 if (unlikely(pmd_is_migration_entry(pmd))) 2441 pmd = pmd_swp_mksoft_dirty(pmd); 2442 else if (pmd_present(pmd)) 2443 pmd = pmd_mksoft_dirty(pmd); 2444 } 2445 2446 return pmd; 2447 } 2448 2449 static pmd_t clear_uffd_wp_pmd(pmd_t pmd) 2450 { 2451 if (pmd_none(pmd)) 2452 return pmd; 2453 if (pmd_present(pmd)) 2454 pmd = pmd_clear_uffd_wp(pmd); 2455 else 2456 pmd = pmd_swp_clear_uffd_wp(pmd); 2457 2458 return pmd; 2459 } 2460 2461 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 2462 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 2463 { 2464 spinlock_t *old_ptl, *new_ptl; 2465 pmd_t pmd; 2466 struct mm_struct *mm = vma->vm_mm; 2467 bool force_flush = false; 2468 2469 /* 2470 * The destination pmd shouldn't be established, free_pgtables() 2471 * should have released it; but move_page_tables() might have already 2472 * inserted a page table, if racing against shmem/file collapse. 2473 */ 2474 if (!pmd_none(*new_pmd)) { 2475 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 2476 return false; 2477 } 2478 2479 /* 2480 * We don't have to worry about the ordering of src and dst 2481 * ptlocks because exclusive mmap_lock prevents deadlock. 2482 */ 2483 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 2484 if (old_ptl) { 2485 new_ptl = pmd_lockptr(mm, new_pmd); 2486 if (new_ptl != old_ptl) 2487 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2488 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2489 if (pmd_present(pmd)) 2490 force_flush = true; 2491 VM_BUG_ON(!pmd_none(*new_pmd)); 2492 2493 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2494 pgtable_t pgtable; 2495 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2496 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2497 } 2498 pmd = move_soft_dirty_pmd(pmd); 2499 if (vma_has_uffd_without_event_remap(vma)) 2500 pmd = clear_uffd_wp_pmd(pmd); 2501 set_pmd_at(mm, new_addr, new_pmd, pmd); 2502 if (force_flush) 2503 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2504 if (new_ptl != old_ptl) 2505 spin_unlock(new_ptl); 2506 spin_unlock(old_ptl); 2507 return true; 2508 } 2509 return false; 2510 } 2511 2512 static void change_non_present_huge_pmd(struct mm_struct *mm, 2513 unsigned long addr, pmd_t *pmd, bool uffd_wp, 2514 bool uffd_wp_resolve) 2515 { 2516 softleaf_t entry = softleaf_from_pmd(*pmd); 2517 const struct folio *folio = softleaf_to_folio(entry); 2518 pmd_t newpmd; 2519 2520 VM_WARN_ON(!pmd_is_valid_softleaf(*pmd)); 2521 if (softleaf_is_migration_write(entry)) { 2522 /* 2523 * A protection check is difficult so 2524 * just be safe and disable write 2525 */ 2526 if (folio_test_anon(folio)) 2527 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2528 else 2529 entry = make_readable_migration_entry(swp_offset(entry)); 2530 newpmd = swp_entry_to_pmd(entry); 2531 if (pmd_swp_soft_dirty(*pmd)) 2532 newpmd = pmd_swp_mksoft_dirty(newpmd); 2533 } else if (softleaf_is_device_private_write(entry)) { 2534 entry = make_readable_device_private_entry(swp_offset(entry)); 2535 newpmd = swp_entry_to_pmd(entry); 2536 } else { 2537 newpmd = *pmd; 2538 } 2539 2540 if (uffd_wp) 2541 newpmd = pmd_swp_mkuffd_wp(newpmd); 2542 else if (uffd_wp_resolve) 2543 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2544 if (!pmd_same(*pmd, newpmd)) 2545 set_pmd_at(mm, addr, pmd, newpmd); 2546 } 2547 2548 /* 2549 * Returns 2550 * - 0 if PMD could not be locked 2551 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2552 * or if prot_numa but THP migration is not supported 2553 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2554 */ 2555 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2556 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2557 unsigned long cp_flags) 2558 { 2559 struct mm_struct *mm = vma->vm_mm; 2560 spinlock_t *ptl; 2561 pmd_t oldpmd, entry; 2562 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2563 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2564 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2565 int ret = 1; 2566 2567 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2568 2569 if (prot_numa && !thp_migration_supported()) 2570 return 1; 2571 2572 ptl = __pmd_trans_huge_lock(pmd, vma); 2573 if (!ptl) 2574 return 0; 2575 2576 if (thp_migration_supported() && pmd_is_valid_softleaf(*pmd)) { 2577 change_non_present_huge_pmd(mm, addr, pmd, uffd_wp, 2578 uffd_wp_resolve); 2579 goto unlock; 2580 } 2581 2582 if (prot_numa) { 2583 2584 /* 2585 * Avoid trapping faults against the zero page. The read-only 2586 * data is likely to be read-cached on the local CPU and 2587 * local/remote hits to the zero page are not interesting. 2588 */ 2589 if (is_huge_zero_pmd(*pmd)) 2590 goto unlock; 2591 2592 if (pmd_protnone(*pmd)) 2593 goto unlock; 2594 2595 if (!folio_can_map_prot_numa(pmd_folio(*pmd), vma, 2596 vma_is_single_threaded_private(vma))) 2597 goto unlock; 2598 } 2599 /* 2600 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2601 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2602 * which is also under mmap_read_lock(mm): 2603 * 2604 * CPU0: CPU1: 2605 * change_huge_pmd(prot_numa=1) 2606 * pmdp_huge_get_and_clear_notify() 2607 * madvise_dontneed() 2608 * zap_pmd_range() 2609 * pmd_trans_huge(*pmd) == 0 (without ptl) 2610 * // skip the pmd 2611 * set_pmd_at(); 2612 * // pmd is re-established 2613 * 2614 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2615 * which may break userspace. 2616 * 2617 * pmdp_invalidate_ad() is required to make sure we don't miss 2618 * dirty/young flags set by hardware. 2619 */ 2620 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2621 2622 entry = pmd_modify(oldpmd, newprot); 2623 if (uffd_wp) 2624 entry = pmd_mkuffd_wp(entry); 2625 else if (uffd_wp_resolve) 2626 /* 2627 * Leave the write bit to be handled by PF interrupt 2628 * handler, then things like COW could be properly 2629 * handled. 2630 */ 2631 entry = pmd_clear_uffd_wp(entry); 2632 2633 /* See change_pte_range(). */ 2634 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2635 can_change_pmd_writable(vma, addr, entry)) 2636 entry = pmd_mkwrite(entry, vma); 2637 2638 ret = HPAGE_PMD_NR; 2639 set_pmd_at(mm, addr, pmd, entry); 2640 2641 if (huge_pmd_needs_flush(oldpmd, entry)) 2642 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2643 unlock: 2644 spin_unlock(ptl); 2645 return ret; 2646 } 2647 2648 /* 2649 * Returns: 2650 * 2651 * - 0: if pud leaf changed from under us 2652 * - 1: if pud can be skipped 2653 * - HPAGE_PUD_NR: if pud was successfully processed 2654 */ 2655 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2656 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2657 pud_t *pudp, unsigned long addr, pgprot_t newprot, 2658 unsigned long cp_flags) 2659 { 2660 struct mm_struct *mm = vma->vm_mm; 2661 pud_t oldpud, entry; 2662 spinlock_t *ptl; 2663 2664 tlb_change_page_size(tlb, HPAGE_PUD_SIZE); 2665 2666 /* NUMA balancing doesn't apply to dax */ 2667 if (cp_flags & MM_CP_PROT_NUMA) 2668 return 1; 2669 2670 /* 2671 * Huge entries on userfault-wp only works with anonymous, while we 2672 * don't have anonymous PUDs yet. 2673 */ 2674 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) 2675 return 1; 2676 2677 ptl = __pud_trans_huge_lock(pudp, vma); 2678 if (!ptl) 2679 return 0; 2680 2681 /* 2682 * Can't clear PUD or it can race with concurrent zapping. See 2683 * change_huge_pmd(). 2684 */ 2685 oldpud = pudp_invalidate(vma, addr, pudp); 2686 entry = pud_modify(oldpud, newprot); 2687 set_pud_at(mm, addr, pudp, entry); 2688 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); 2689 2690 spin_unlock(ptl); 2691 return HPAGE_PUD_NR; 2692 } 2693 #endif 2694 2695 #ifdef CONFIG_USERFAULTFD 2696 /* 2697 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2698 * the caller, but it must return after releasing the page_table_lock. 2699 * Just move the page from src_pmd to dst_pmd if possible. 2700 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2701 * repeated by the caller, or other errors in case of failure. 2702 */ 2703 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2704 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2705 unsigned long dst_addr, unsigned long src_addr) 2706 { 2707 pmd_t _dst_pmd, src_pmdval; 2708 struct page *src_page; 2709 struct folio *src_folio; 2710 spinlock_t *src_ptl, *dst_ptl; 2711 pgtable_t src_pgtable; 2712 struct mmu_notifier_range range; 2713 int err = 0; 2714 2715 src_pmdval = *src_pmd; 2716 src_ptl = pmd_lockptr(mm, src_pmd); 2717 2718 lockdep_assert_held(src_ptl); 2719 vma_assert_locked(src_vma); 2720 vma_assert_locked(dst_vma); 2721 2722 /* Sanity checks before the operation */ 2723 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2724 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2725 spin_unlock(src_ptl); 2726 return -EINVAL; 2727 } 2728 2729 if (!pmd_trans_huge(src_pmdval)) { 2730 spin_unlock(src_ptl); 2731 if (pmd_is_migration_entry(src_pmdval)) { 2732 pmd_migration_entry_wait(mm, &src_pmdval); 2733 return -EAGAIN; 2734 } 2735 return -ENOENT; 2736 } 2737 2738 src_page = pmd_page(src_pmdval); 2739 2740 if (!is_huge_zero_pmd(src_pmdval)) { 2741 if (unlikely(!PageAnonExclusive(src_page))) { 2742 spin_unlock(src_ptl); 2743 return -EBUSY; 2744 } 2745 2746 src_folio = page_folio(src_page); 2747 folio_get(src_folio); 2748 } else 2749 src_folio = NULL; 2750 2751 spin_unlock(src_ptl); 2752 2753 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2755 src_addr + HPAGE_PMD_SIZE); 2756 mmu_notifier_invalidate_range_start(&range); 2757 2758 if (src_folio) 2759 folio_lock(src_folio); 2760 2761 dst_ptl = pmd_lockptr(mm, dst_pmd); 2762 double_pt_lock(src_ptl, dst_ptl); 2763 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2764 !pmd_same(*dst_pmd, dst_pmdval))) { 2765 err = -EAGAIN; 2766 goto unlock_ptls; 2767 } 2768 if (src_folio) { 2769 if (folio_maybe_dma_pinned(src_folio) || 2770 !PageAnonExclusive(&src_folio->page)) { 2771 err = -EBUSY; 2772 goto unlock_ptls; 2773 } 2774 2775 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2776 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2777 err = -EBUSY; 2778 goto unlock_ptls; 2779 } 2780 2781 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2782 /* Folio got pinned from under us. Put it back and fail the move. */ 2783 if (folio_maybe_dma_pinned(src_folio)) { 2784 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2785 err = -EBUSY; 2786 goto unlock_ptls; 2787 } 2788 2789 folio_move_anon_rmap(src_folio, dst_vma); 2790 src_folio->index = linear_page_index(dst_vma, dst_addr); 2791 2792 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2793 /* Follow mremap() behavior and treat the entry dirty after the move */ 2794 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2795 } else { 2796 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2797 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2798 } 2799 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2800 2801 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2802 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2803 unlock_ptls: 2804 double_pt_unlock(src_ptl, dst_ptl); 2805 /* unblock rmap walks */ 2806 if (src_folio) 2807 folio_unlock(src_folio); 2808 mmu_notifier_invalidate_range_end(&range); 2809 if (src_folio) 2810 folio_put(src_folio); 2811 return err; 2812 } 2813 #endif /* CONFIG_USERFAULTFD */ 2814 2815 /* 2816 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2817 * 2818 * Note that if it returns page table lock pointer, this routine returns without 2819 * unlocking page table lock. So callers must unlock it. 2820 */ 2821 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2822 { 2823 spinlock_t *ptl; 2824 2825 ptl = pmd_lock(vma->vm_mm, pmd); 2826 if (likely(pmd_is_huge(*pmd))) 2827 return ptl; 2828 spin_unlock(ptl); 2829 return NULL; 2830 } 2831 2832 /* 2833 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2834 * 2835 * Note that if it returns page table lock pointer, this routine returns without 2836 * unlocking page table lock. So callers must unlock it. 2837 */ 2838 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2839 { 2840 spinlock_t *ptl; 2841 2842 ptl = pud_lock(vma->vm_mm, pud); 2843 if (likely(pud_trans_huge(*pud))) 2844 return ptl; 2845 spin_unlock(ptl); 2846 return NULL; 2847 } 2848 2849 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2850 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2851 pud_t *pud, unsigned long addr) 2852 { 2853 spinlock_t *ptl; 2854 pud_t orig_pud; 2855 2856 ptl = __pud_trans_huge_lock(pud, vma); 2857 if (!ptl) 2858 return 0; 2859 2860 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2861 arch_check_zapped_pud(vma, orig_pud); 2862 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2863 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2864 spin_unlock(ptl); 2865 /* No zero page support yet */ 2866 } else { 2867 struct page *page = NULL; 2868 struct folio *folio; 2869 2870 /* No support for anonymous PUD pages or migration yet */ 2871 VM_WARN_ON_ONCE(vma_is_anonymous(vma) || 2872 !pud_present(orig_pud)); 2873 2874 page = pud_page(orig_pud); 2875 folio = page_folio(page); 2876 folio_remove_rmap_pud(folio, page, vma); 2877 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR); 2878 2879 spin_unlock(ptl); 2880 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE); 2881 } 2882 return 1; 2883 } 2884 2885 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2886 unsigned long haddr) 2887 { 2888 struct folio *folio; 2889 struct page *page; 2890 pud_t old_pud; 2891 2892 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2893 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2894 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2895 VM_BUG_ON(!pud_trans_huge(*pud)); 2896 2897 count_vm_event(THP_SPLIT_PUD); 2898 2899 old_pud = pudp_huge_clear_flush(vma, haddr, pud); 2900 2901 if (!vma_is_dax(vma)) 2902 return; 2903 2904 page = pud_page(old_pud); 2905 folio = page_folio(page); 2906 2907 if (!folio_test_dirty(folio) && pud_dirty(old_pud)) 2908 folio_mark_dirty(folio); 2909 if (!folio_test_referenced(folio) && pud_young(old_pud)) 2910 folio_set_referenced(folio); 2911 folio_remove_rmap_pud(folio, page, vma); 2912 folio_put(folio); 2913 add_mm_counter(vma->vm_mm, mm_counter_file(folio), 2914 -HPAGE_PUD_NR); 2915 } 2916 2917 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2918 unsigned long address) 2919 { 2920 spinlock_t *ptl; 2921 struct mmu_notifier_range range; 2922 2923 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2924 address & HPAGE_PUD_MASK, 2925 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2926 mmu_notifier_invalidate_range_start(&range); 2927 ptl = pud_lock(vma->vm_mm, pud); 2928 if (unlikely(!pud_trans_huge(*pud))) 2929 goto out; 2930 __split_huge_pud_locked(vma, pud, range.start); 2931 2932 out: 2933 spin_unlock(ptl); 2934 mmu_notifier_invalidate_range_end(&range); 2935 } 2936 #else 2937 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2938 unsigned long address) 2939 { 2940 } 2941 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2942 2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2944 unsigned long haddr, pmd_t *pmd) 2945 { 2946 struct mm_struct *mm = vma->vm_mm; 2947 pgtable_t pgtable; 2948 pmd_t _pmd, old_pmd; 2949 unsigned long addr; 2950 pte_t *pte; 2951 int i; 2952 2953 /* 2954 * Leave pmd empty until pte is filled note that it is fine to delay 2955 * notification until mmu_notifier_invalidate_range_end() as we are 2956 * replacing a zero pmd write protected page with a zero pte write 2957 * protected page. 2958 * 2959 * See Documentation/mm/mmu_notifier.rst 2960 */ 2961 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2962 2963 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2964 pmd_populate(mm, &_pmd, pgtable); 2965 2966 pte = pte_offset_map(&_pmd, haddr); 2967 VM_BUG_ON(!pte); 2968 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2969 pte_t entry; 2970 2971 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2972 entry = pte_mkspecial(entry); 2973 if (pmd_uffd_wp(old_pmd)) 2974 entry = pte_mkuffd_wp(entry); 2975 VM_BUG_ON(!pte_none(ptep_get(pte))); 2976 set_pte_at(mm, addr, pte, entry); 2977 pte++; 2978 } 2979 pte_unmap(pte - 1); 2980 smp_wmb(); /* make pte visible before pmd */ 2981 pmd_populate(mm, pmd, pgtable); 2982 } 2983 2984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2985 unsigned long haddr, bool freeze) 2986 { 2987 struct mm_struct *mm = vma->vm_mm; 2988 struct folio *folio; 2989 struct page *page; 2990 pgtable_t pgtable; 2991 pmd_t old_pmd, _pmd; 2992 bool soft_dirty, uffd_wp = false, young = false, write = false; 2993 bool anon_exclusive = false, dirty = false; 2994 unsigned long addr; 2995 pte_t *pte; 2996 int i; 2997 2998 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 3000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 3001 3002 VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(*pmd) && !pmd_trans_huge(*pmd)); 3003 3004 count_vm_event(THP_SPLIT_PMD); 3005 3006 if (!vma_is_anonymous(vma)) { 3007 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 3008 /* 3009 * We are going to unmap this huge page. So 3010 * just go ahead and zap it 3011 */ 3012 if (arch_needs_pgtable_deposit()) 3013 zap_deposited_table(mm, pmd); 3014 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) 3015 return; 3016 if (unlikely(pmd_is_migration_entry(old_pmd))) { 3017 const softleaf_t old_entry = softleaf_from_pmd(old_pmd); 3018 3019 folio = softleaf_to_folio(old_entry); 3020 } else if (is_huge_zero_pmd(old_pmd)) { 3021 return; 3022 } else { 3023 page = pmd_page(old_pmd); 3024 folio = page_folio(page); 3025 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 3026 folio_mark_dirty(folio); 3027 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 3028 folio_set_referenced(folio); 3029 folio_remove_rmap_pmd(folio, page, vma); 3030 folio_put(folio); 3031 } 3032 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 3033 return; 3034 } 3035 3036 if (is_huge_zero_pmd(*pmd)) { 3037 /* 3038 * FIXME: Do we want to invalidate secondary mmu by calling 3039 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 3040 * inside __split_huge_pmd() ? 3041 * 3042 * We are going from a zero huge page write protected to zero 3043 * small page also write protected so it does not seems useful 3044 * to invalidate secondary mmu at this time. 3045 */ 3046 return __split_huge_zero_page_pmd(vma, haddr, pmd); 3047 } 3048 3049 if (pmd_is_migration_entry(*pmd)) { 3050 softleaf_t entry; 3051 3052 old_pmd = *pmd; 3053 entry = softleaf_from_pmd(old_pmd); 3054 page = softleaf_to_page(entry); 3055 folio = page_folio(page); 3056 3057 soft_dirty = pmd_swp_soft_dirty(old_pmd); 3058 uffd_wp = pmd_swp_uffd_wp(old_pmd); 3059 3060 write = softleaf_is_migration_write(entry); 3061 if (PageAnon(page)) 3062 anon_exclusive = softleaf_is_migration_read_exclusive(entry); 3063 young = softleaf_is_migration_young(entry); 3064 dirty = softleaf_is_migration_dirty(entry); 3065 } else if (pmd_is_device_private_entry(*pmd)) { 3066 softleaf_t entry; 3067 3068 old_pmd = *pmd; 3069 entry = softleaf_from_pmd(old_pmd); 3070 page = softleaf_to_page(entry); 3071 folio = page_folio(page); 3072 3073 soft_dirty = pmd_swp_soft_dirty(old_pmd); 3074 uffd_wp = pmd_swp_uffd_wp(old_pmd); 3075 3076 write = softleaf_is_device_private_write(entry); 3077 anon_exclusive = PageAnonExclusive(page); 3078 3079 /* 3080 * Device private THP should be treated the same as regular 3081 * folios w.r.t anon exclusive handling. See the comments for 3082 * folio handling and anon_exclusive below. 3083 */ 3084 if (freeze && anon_exclusive && 3085 folio_try_share_anon_rmap_pmd(folio, page)) 3086 freeze = false; 3087 if (!freeze) { 3088 rmap_t rmap_flags = RMAP_NONE; 3089 3090 folio_ref_add(folio, HPAGE_PMD_NR - 1); 3091 if (anon_exclusive) 3092 rmap_flags |= RMAP_EXCLUSIVE; 3093 3094 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 3095 vma, haddr, rmap_flags); 3096 } 3097 } else { 3098 /* 3099 * Up to this point the pmd is present and huge and userland has 3100 * the whole access to the hugepage during the split (which 3101 * happens in place). If we overwrite the pmd with the not-huge 3102 * version pointing to the pte here (which of course we could if 3103 * all CPUs were bug free), userland could trigger a small page 3104 * size TLB miss on the small sized TLB while the hugepage TLB 3105 * entry is still established in the huge TLB. Some CPU doesn't 3106 * like that. See 3107 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 3108 * 383 on page 105. Intel should be safe but is also warns that 3109 * it's only safe if the permission and cache attributes of the 3110 * two entries loaded in the two TLB is identical (which should 3111 * be the case here). But it is generally safer to never allow 3112 * small and huge TLB entries for the same virtual address to be 3113 * loaded simultaneously. So instead of doing "pmd_populate(); 3114 * flush_pmd_tlb_range();" we first mark the current pmd 3115 * notpresent (atomically because here the pmd_trans_huge must 3116 * remain set at all times on the pmd until the split is 3117 * complete for this pmd), then we flush the SMP TLB and finally 3118 * we write the non-huge version of the pmd entry with 3119 * pmd_populate. 3120 */ 3121 old_pmd = pmdp_invalidate(vma, haddr, pmd); 3122 page = pmd_page(old_pmd); 3123 folio = page_folio(page); 3124 if (pmd_dirty(old_pmd)) { 3125 dirty = true; 3126 folio_set_dirty(folio); 3127 } 3128 write = pmd_write(old_pmd); 3129 young = pmd_young(old_pmd); 3130 soft_dirty = pmd_soft_dirty(old_pmd); 3131 uffd_wp = pmd_uffd_wp(old_pmd); 3132 3133 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 3134 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 3135 3136 /* 3137 * Without "freeze", we'll simply split the PMD, propagating the 3138 * PageAnonExclusive() flag for each PTE by setting it for 3139 * each subpage -- no need to (temporarily) clear. 3140 * 3141 * With "freeze" we want to replace mapped pages by 3142 * migration entries right away. This is only possible if we 3143 * managed to clear PageAnonExclusive() -- see 3144 * set_pmd_migration_entry(). 3145 * 3146 * In case we cannot clear PageAnonExclusive(), split the PMD 3147 * only and let try_to_migrate_one() fail later. 3148 * 3149 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 3150 */ 3151 anon_exclusive = PageAnonExclusive(page); 3152 if (freeze && anon_exclusive && 3153 folio_try_share_anon_rmap_pmd(folio, page)) 3154 freeze = false; 3155 if (!freeze) { 3156 rmap_t rmap_flags = RMAP_NONE; 3157 3158 folio_ref_add(folio, HPAGE_PMD_NR - 1); 3159 if (anon_exclusive) 3160 rmap_flags |= RMAP_EXCLUSIVE; 3161 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 3162 vma, haddr, rmap_flags); 3163 } 3164 } 3165 3166 /* 3167 * Withdraw the table only after we mark the pmd entry invalid. 3168 * This's critical for some architectures (Power). 3169 */ 3170 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 3171 pmd_populate(mm, &_pmd, pgtable); 3172 3173 pte = pte_offset_map(&_pmd, haddr); 3174 VM_BUG_ON(!pte); 3175 3176 /* 3177 * Note that NUMA hinting access restrictions are not transferred to 3178 * avoid any possibility of altering permissions across VMAs. 3179 */ 3180 if (freeze || pmd_is_migration_entry(old_pmd)) { 3181 pte_t entry; 3182 swp_entry_t swp_entry; 3183 3184 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 3185 if (write) 3186 swp_entry = make_writable_migration_entry( 3187 page_to_pfn(page + i)); 3188 else if (anon_exclusive) 3189 swp_entry = make_readable_exclusive_migration_entry( 3190 page_to_pfn(page + i)); 3191 else 3192 swp_entry = make_readable_migration_entry( 3193 page_to_pfn(page + i)); 3194 if (young) 3195 swp_entry = make_migration_entry_young(swp_entry); 3196 if (dirty) 3197 swp_entry = make_migration_entry_dirty(swp_entry); 3198 entry = swp_entry_to_pte(swp_entry); 3199 if (soft_dirty) 3200 entry = pte_swp_mksoft_dirty(entry); 3201 if (uffd_wp) 3202 entry = pte_swp_mkuffd_wp(entry); 3203 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3204 set_pte_at(mm, addr, pte + i, entry); 3205 } 3206 } else if (pmd_is_device_private_entry(old_pmd)) { 3207 pte_t entry; 3208 swp_entry_t swp_entry; 3209 3210 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 3211 /* 3212 * anon_exclusive was already propagated to the relevant 3213 * pages corresponding to the pte entries when freeze 3214 * is false. 3215 */ 3216 if (write) 3217 swp_entry = make_writable_device_private_entry( 3218 page_to_pfn(page + i)); 3219 else 3220 swp_entry = make_readable_device_private_entry( 3221 page_to_pfn(page + i)); 3222 /* 3223 * Young and dirty bits are not progated via swp_entry 3224 */ 3225 entry = swp_entry_to_pte(swp_entry); 3226 if (soft_dirty) 3227 entry = pte_swp_mksoft_dirty(entry); 3228 if (uffd_wp) 3229 entry = pte_swp_mkuffd_wp(entry); 3230 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3231 set_pte_at(mm, addr, pte + i, entry); 3232 } 3233 } else { 3234 pte_t entry; 3235 3236 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 3237 if (write) 3238 entry = pte_mkwrite(entry, vma); 3239 if (!young) 3240 entry = pte_mkold(entry); 3241 /* NOTE: this may set soft-dirty too on some archs */ 3242 if (dirty) 3243 entry = pte_mkdirty(entry); 3244 if (soft_dirty) 3245 entry = pte_mksoft_dirty(entry); 3246 if (uffd_wp) 3247 entry = pte_mkuffd_wp(entry); 3248 3249 for (i = 0; i < HPAGE_PMD_NR; i++) 3250 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3251 3252 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 3253 } 3254 pte_unmap(pte); 3255 3256 if (!pmd_is_migration_entry(*pmd)) 3257 folio_remove_rmap_pmd(folio, page, vma); 3258 if (freeze) 3259 put_page(page); 3260 3261 smp_wmb(); /* make pte visible before pmd */ 3262 pmd_populate(mm, pmd, pgtable); 3263 } 3264 3265 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 3266 pmd_t *pmd, bool freeze) 3267 { 3268 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 3269 if (pmd_trans_huge(*pmd) || pmd_is_valid_softleaf(*pmd)) 3270 __split_huge_pmd_locked(vma, pmd, address, freeze); 3271 } 3272 3273 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 3274 unsigned long address, bool freeze) 3275 { 3276 spinlock_t *ptl; 3277 struct mmu_notifier_range range; 3278 3279 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 3280 address & HPAGE_PMD_MASK, 3281 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 3282 mmu_notifier_invalidate_range_start(&range); 3283 ptl = pmd_lock(vma->vm_mm, pmd); 3284 split_huge_pmd_locked(vma, range.start, pmd, freeze); 3285 spin_unlock(ptl); 3286 mmu_notifier_invalidate_range_end(&range); 3287 } 3288 3289 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 3290 bool freeze) 3291 { 3292 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 3293 3294 if (!pmd) 3295 return; 3296 3297 __split_huge_pmd(vma, pmd, address, freeze); 3298 } 3299 3300 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 3301 { 3302 /* 3303 * If the new address isn't hpage aligned and it could previously 3304 * contain an hugepage: check if we need to split an huge pmd. 3305 */ 3306 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 3307 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 3308 ALIGN(address, HPAGE_PMD_SIZE))) 3309 split_huge_pmd_address(vma, address, false); 3310 } 3311 3312 void vma_adjust_trans_huge(struct vm_area_struct *vma, 3313 unsigned long start, 3314 unsigned long end, 3315 struct vm_area_struct *next) 3316 { 3317 /* Check if we need to split start first. */ 3318 split_huge_pmd_if_needed(vma, start); 3319 3320 /* Check if we need to split end next. */ 3321 split_huge_pmd_if_needed(vma, end); 3322 3323 /* If we're incrementing next->vm_start, we might need to split it. */ 3324 if (next) 3325 split_huge_pmd_if_needed(next, end); 3326 } 3327 3328 static void unmap_folio(struct folio *folio) 3329 { 3330 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 3331 TTU_BATCH_FLUSH; 3332 3333 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3334 3335 if (folio_test_pmd_mappable(folio)) 3336 ttu_flags |= TTU_SPLIT_HUGE_PMD; 3337 3338 /* 3339 * Anon pages need migration entries to preserve them, but file 3340 * pages can simply be left unmapped, then faulted back on demand. 3341 * If that is ever changed (perhaps for mlock), update remap_page(). 3342 */ 3343 if (folio_test_anon(folio)) 3344 try_to_migrate(folio, ttu_flags); 3345 else 3346 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 3347 3348 try_to_unmap_flush(); 3349 } 3350 3351 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 3352 unsigned long addr, pmd_t *pmdp, 3353 struct folio *folio) 3354 { 3355 struct mm_struct *mm = vma->vm_mm; 3356 int ref_count, map_count; 3357 pmd_t orig_pmd = *pmdp; 3358 3359 if (pmd_dirty(orig_pmd)) 3360 folio_set_dirty(folio); 3361 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3362 folio_set_swapbacked(folio); 3363 return false; 3364 } 3365 3366 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 3367 3368 /* 3369 * Syncing against concurrent GUP-fast: 3370 * - clear PMD; barrier; read refcount 3371 * - inc refcount; barrier; read PMD 3372 */ 3373 smp_mb(); 3374 3375 ref_count = folio_ref_count(folio); 3376 map_count = folio_mapcount(folio); 3377 3378 /* 3379 * Order reads for folio refcount and dirty flag 3380 * (see comments in __remove_mapping()). 3381 */ 3382 smp_rmb(); 3383 3384 /* 3385 * If the folio or its PMD is redirtied at this point, or if there 3386 * are unexpected references, we will give up to discard this folio 3387 * and remap it. 3388 * 3389 * The only folio refs must be one from isolation plus the rmap(s). 3390 */ 3391 if (pmd_dirty(orig_pmd)) 3392 folio_set_dirty(folio); 3393 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3394 folio_set_swapbacked(folio); 3395 set_pmd_at(mm, addr, pmdp, orig_pmd); 3396 return false; 3397 } 3398 3399 if (ref_count != map_count + 1) { 3400 set_pmd_at(mm, addr, pmdp, orig_pmd); 3401 return false; 3402 } 3403 3404 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 3405 zap_deposited_table(mm, pmdp); 3406 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 3407 if (vma->vm_flags & VM_LOCKED) 3408 mlock_drain_local(); 3409 folio_put(folio); 3410 3411 return true; 3412 } 3413 3414 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 3415 pmd_t *pmdp, struct folio *folio) 3416 { 3417 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 3418 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3419 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 3420 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio); 3421 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 3422 3423 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 3424 } 3425 3426 static void remap_page(struct folio *folio, unsigned long nr, int flags) 3427 { 3428 int i = 0; 3429 3430 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 3431 if (!folio_test_anon(folio)) 3432 return; 3433 for (;;) { 3434 remove_migration_ptes(folio, folio, RMP_LOCKED | flags); 3435 i += folio_nr_pages(folio); 3436 if (i >= nr) 3437 break; 3438 folio = folio_next(folio); 3439 } 3440 } 3441 3442 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio, 3443 struct lruvec *lruvec, struct list_head *list) 3444 { 3445 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio); 3446 lockdep_assert_held(&lruvec->lru_lock); 3447 3448 if (folio_is_device_private(folio)) 3449 return; 3450 3451 if (list) { 3452 /* page reclaim is reclaiming a huge page */ 3453 VM_WARN_ON(folio_test_lru(folio)); 3454 folio_get(new_folio); 3455 list_add_tail(&new_folio->lru, list); 3456 } else { 3457 /* head is still on lru (and we have it frozen) */ 3458 VM_WARN_ON(!folio_test_lru(folio)); 3459 if (folio_test_unevictable(folio)) 3460 new_folio->mlock_count = 0; 3461 else 3462 list_add_tail(&new_folio->lru, &folio->lru); 3463 folio_set_lru(new_folio); 3464 } 3465 } 3466 3467 static bool page_range_has_hwpoisoned(struct page *page, long nr_pages) 3468 { 3469 for (; nr_pages; page++, nr_pages--) 3470 if (PageHWPoison(page)) 3471 return true; 3472 return false; 3473 } 3474 3475 /* 3476 * It splits @folio into @new_order folios and copies the @folio metadata to 3477 * all the resulting folios. 3478 */ 3479 static void __split_folio_to_order(struct folio *folio, int old_order, 3480 int new_order) 3481 { 3482 /* Scan poisoned pages when split a poisoned folio to large folios */ 3483 const bool handle_hwpoison = folio_test_has_hwpoisoned(folio) && new_order; 3484 long new_nr_pages = 1 << new_order; 3485 long nr_pages = 1 << old_order; 3486 long i; 3487 3488 folio_clear_has_hwpoisoned(folio); 3489 3490 /* Check first new_nr_pages since the loop below skips them */ 3491 if (handle_hwpoison && 3492 page_range_has_hwpoisoned(folio_page(folio, 0), new_nr_pages)) 3493 folio_set_has_hwpoisoned(folio); 3494 /* 3495 * Skip the first new_nr_pages, since the new folio from them have all 3496 * the flags from the original folio. 3497 */ 3498 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) { 3499 struct page *new_head = &folio->page + i; 3500 /* 3501 * Careful: new_folio is not a "real" folio before we cleared PageTail. 3502 * Don't pass it around before clear_compound_head(). 3503 */ 3504 struct folio *new_folio = (struct folio *)new_head; 3505 3506 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head); 3507 3508 /* 3509 * Clone page flags before unfreezing refcount. 3510 * 3511 * After successful get_page_unless_zero() might follow flags change, 3512 * for example lock_page() which set PG_waiters. 3513 * 3514 * Note that for mapped sub-pages of an anonymous THP, 3515 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 3516 * the migration entry instead from where remap_page() will restore it. 3517 * We can still have PG_anon_exclusive set on effectively unmapped and 3518 * unreferenced sub-pages of an anonymous THP: we can simply drop 3519 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 3520 */ 3521 new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 3522 new_folio->flags.f |= (folio->flags.f & 3523 ((1L << PG_referenced) | 3524 (1L << PG_swapbacked) | 3525 (1L << PG_swapcache) | 3526 (1L << PG_mlocked) | 3527 (1L << PG_uptodate) | 3528 (1L << PG_active) | 3529 (1L << PG_workingset) | 3530 (1L << PG_locked) | 3531 (1L << PG_unevictable) | 3532 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 3533 (1L << PG_arch_2) | 3534 #endif 3535 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 3536 (1L << PG_arch_3) | 3537 #endif 3538 (1L << PG_dirty) | 3539 LRU_GEN_MASK | LRU_REFS_MASK)); 3540 3541 if (handle_hwpoison && 3542 page_range_has_hwpoisoned(new_head, new_nr_pages)) 3543 folio_set_has_hwpoisoned(new_folio); 3544 3545 new_folio->mapping = folio->mapping; 3546 new_folio->index = folio->index + i; 3547 3548 if (folio_test_swapcache(folio)) 3549 new_folio->swap.val = folio->swap.val + i; 3550 3551 /* Page flags must be visible before we make the page non-compound. */ 3552 smp_wmb(); 3553 3554 /* 3555 * Clear PageTail before unfreezing page refcount. 3556 * 3557 * After successful get_page_unless_zero() might follow put_page() 3558 * which needs correct compound_head(). 3559 */ 3560 clear_compound_head(new_head); 3561 if (new_order) { 3562 prep_compound_page(new_head, new_order); 3563 folio_set_large_rmappable(new_folio); 3564 } 3565 3566 if (folio_test_young(folio)) 3567 folio_set_young(new_folio); 3568 if (folio_test_idle(folio)) 3569 folio_set_idle(new_folio); 3570 #ifdef CONFIG_MEMCG 3571 new_folio->memcg_data = folio->memcg_data; 3572 #endif 3573 3574 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 3575 } 3576 3577 if (new_order) 3578 folio_set_order(folio, new_order); 3579 else 3580 ClearPageCompound(&folio->page); 3581 } 3582 3583 /** 3584 * __split_unmapped_folio() - splits an unmapped @folio to lower order folios in 3585 * two ways: uniform split or non-uniform split. 3586 * @folio: the to-be-split folio 3587 * @new_order: the smallest order of the after split folios (since buddy 3588 * allocator like split generates folios with orders from @folio's 3589 * order - 1 to new_order). 3590 * @split_at: in buddy allocator like split, the folio containing @split_at 3591 * will be split until its order becomes @new_order. 3592 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller 3593 * @mapping: @folio->mapping 3594 * @split_type: if the split is uniform or not (buddy allocator like split) 3595 * 3596 * 3597 * 1. uniform split: the given @folio into multiple @new_order small folios, 3598 * where all small folios have the same order. This is done when 3599 * split_type is SPLIT_TYPE_UNIFORM. 3600 * 2. buddy allocator like (non-uniform) split: the given @folio is split into 3601 * half and one of the half (containing the given page) is split into half 3602 * until the given @folio's order becomes @new_order. This is done when 3603 * split_type is SPLIT_TYPE_NON_UNIFORM. 3604 * 3605 * The high level flow for these two methods are: 3606 * 3607 * 1. uniform split: @xas is split with no expectation of failure and a single 3608 * __split_folio_to_order() is called to split the @folio into @new_order 3609 * along with stats update. 3610 * 2. non-uniform split: folio_order - @new_order calls to 3611 * __split_folio_to_order() are expected to be made in a for loop to split 3612 * the @folio to one lower order at a time. The folio containing @split_at 3613 * is split in each iteration. @xas is split into half in each iteration and 3614 * can fail. A failed @xas split leaves split folios as is without merging 3615 * them back. 3616 * 3617 * After splitting, the caller's folio reference will be transferred to the 3618 * folio containing @split_at. The caller needs to unlock and/or free 3619 * after-split folios if necessary. 3620 * 3621 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be 3622 * split but not to @new_order, the caller needs to check) 3623 */ 3624 static int __split_unmapped_folio(struct folio *folio, int new_order, 3625 struct page *split_at, struct xa_state *xas, 3626 struct address_space *mapping, enum split_type split_type) 3627 { 3628 const bool is_anon = folio_test_anon(folio); 3629 int old_order = folio_order(folio); 3630 int start_order = split_type == SPLIT_TYPE_UNIFORM ? new_order : old_order - 1; 3631 int split_order; 3632 3633 /* 3634 * split to new_order one order at a time. For uniform split, 3635 * folio is split to new_order directly. 3636 */ 3637 for (split_order = start_order; 3638 split_order >= new_order; 3639 split_order--) { 3640 int nr_new_folios = 1UL << (old_order - split_order); 3641 3642 /* order-1 anonymous folio is not supported */ 3643 if (is_anon && split_order == 1) 3644 continue; 3645 3646 if (mapping) { 3647 /* 3648 * uniform split has xas_split_alloc() called before 3649 * irq is disabled to allocate enough memory, whereas 3650 * non-uniform split can handle ENOMEM. 3651 */ 3652 if (split_type == SPLIT_TYPE_UNIFORM) 3653 xas_split(xas, folio, old_order); 3654 else { 3655 xas_set_order(xas, folio->index, split_order); 3656 xas_try_split(xas, folio, old_order); 3657 if (xas_error(xas)) 3658 return xas_error(xas); 3659 } 3660 } 3661 3662 folio_split_memcg_refs(folio, old_order, split_order); 3663 split_page_owner(&folio->page, old_order, split_order); 3664 pgalloc_tag_split(folio, old_order, split_order); 3665 __split_folio_to_order(folio, old_order, split_order); 3666 3667 if (is_anon) { 3668 mod_mthp_stat(old_order, MTHP_STAT_NR_ANON, -1); 3669 mod_mthp_stat(split_order, MTHP_STAT_NR_ANON, nr_new_folios); 3670 } 3671 /* 3672 * If uniform split, the process is complete. 3673 * If non-uniform, continue splitting the folio at @split_at 3674 * as long as the next @split_order is >= @new_order. 3675 */ 3676 folio = page_folio(split_at); 3677 old_order = split_order; 3678 } 3679 3680 return 0; 3681 } 3682 3683 /** 3684 * folio_check_splittable() - check if a folio can be split to a given order 3685 * @folio: folio to be split 3686 * @new_order: the smallest order of the after split folios (since buddy 3687 * allocator like split generates folios with orders from @folio's 3688 * order - 1 to new_order). 3689 * @split_type: uniform or non-uniform split 3690 * 3691 * folio_check_splittable() checks if @folio can be split to @new_order using 3692 * @split_type method. The truncated folio check must come first. 3693 * 3694 * Context: folio must be locked. 3695 * 3696 * Return: 0 - @folio can be split to @new_order, otherwise an error number is 3697 * returned. 3698 */ 3699 int folio_check_splittable(struct folio *folio, unsigned int new_order, 3700 enum split_type split_type) 3701 { 3702 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3703 /* 3704 * Folios that just got truncated cannot get split. Signal to the 3705 * caller that there was a race. 3706 * 3707 * TODO: this will also currently refuse folios without a mapping in the 3708 * swapcache (shmem or to-be-anon folios). 3709 */ 3710 if (!folio->mapping && !folio_test_anon(folio)) 3711 return -EBUSY; 3712 3713 if (folio_test_anon(folio)) { 3714 /* order-1 is not supported for anonymous THP. */ 3715 if (new_order == 1) 3716 return -EINVAL; 3717 } else if (split_type == SPLIT_TYPE_NON_UNIFORM || new_order) { 3718 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3719 !mapping_large_folio_support(folio->mapping)) { 3720 /* 3721 * We can always split a folio down to a single page 3722 * (new_order == 0) uniformly. 3723 * 3724 * For any other scenario 3725 * a) uniform split targeting a large folio 3726 * (new_order > 0) 3727 * b) any non-uniform split 3728 * we must confirm that the file system supports large 3729 * folios. 3730 * 3731 * Note that we might still have THPs in such 3732 * mappings, which is created from khugepaged when 3733 * CONFIG_READ_ONLY_THP_FOR_FS is enabled. But in that 3734 * case, the mapping does not actually support large 3735 * folios properly. 3736 */ 3737 return -EINVAL; 3738 } 3739 } 3740 3741 /* 3742 * swapcache folio could only be split to order 0 3743 * 3744 * non-uniform split creates after-split folios with orders from 3745 * folio_order(folio) - 1 to new_order, making it not suitable for any 3746 * swapcache folio split. Only uniform split to order-0 can be used 3747 * here. 3748 */ 3749 if ((split_type == SPLIT_TYPE_NON_UNIFORM || new_order) && folio_test_swapcache(folio)) { 3750 return -EINVAL; 3751 } 3752 3753 if (is_huge_zero_folio(folio)) 3754 return -EINVAL; 3755 3756 if (folio_test_writeback(folio)) 3757 return -EBUSY; 3758 3759 return 0; 3760 } 3761 3762 /* Number of folio references from the pagecache or the swapcache. */ 3763 static unsigned int folio_cache_ref_count(const struct folio *folio) 3764 { 3765 if (folio_test_anon(folio) && !folio_test_swapcache(folio)) 3766 return 0; 3767 return folio_nr_pages(folio); 3768 } 3769 3770 static int __folio_freeze_and_split_unmapped(struct folio *folio, unsigned int new_order, 3771 struct page *split_at, struct xa_state *xas, 3772 struct address_space *mapping, bool do_lru, 3773 struct list_head *list, enum split_type split_type, 3774 pgoff_t end, int *nr_shmem_dropped) 3775 { 3776 struct folio *end_folio = folio_next(folio); 3777 struct folio *new_folio, *next; 3778 int old_order = folio_order(folio); 3779 int ret = 0; 3780 struct deferred_split *ds_queue; 3781 3782 VM_WARN_ON_ONCE(!mapping && end); 3783 /* Prevent deferred_split_scan() touching ->_refcount */ 3784 ds_queue = folio_split_queue_lock(folio); 3785 if (folio_ref_freeze(folio, folio_cache_ref_count(folio) + 1)) { 3786 struct swap_cluster_info *ci = NULL; 3787 struct lruvec *lruvec; 3788 3789 if (old_order > 1) { 3790 if (!list_empty(&folio->_deferred_list)) { 3791 ds_queue->split_queue_len--; 3792 /* 3793 * Reinitialize page_deferred_list after removing the 3794 * page from the split_queue, otherwise a subsequent 3795 * split will see list corruption when checking the 3796 * page_deferred_list. 3797 */ 3798 list_del_init(&folio->_deferred_list); 3799 } 3800 if (folio_test_partially_mapped(folio)) { 3801 folio_clear_partially_mapped(folio); 3802 mod_mthp_stat(old_order, 3803 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3804 } 3805 } 3806 split_queue_unlock(ds_queue); 3807 if (mapping) { 3808 int nr = folio_nr_pages(folio); 3809 3810 if (folio_test_pmd_mappable(folio) && 3811 new_order < HPAGE_PMD_ORDER) { 3812 if (folio_test_swapbacked(folio)) { 3813 lruvec_stat_mod_folio(folio, 3814 NR_SHMEM_THPS, -nr); 3815 } else { 3816 lruvec_stat_mod_folio(folio, 3817 NR_FILE_THPS, -nr); 3818 filemap_nr_thps_dec(mapping); 3819 } 3820 } 3821 } 3822 3823 if (folio_test_swapcache(folio)) { 3824 if (mapping) { 3825 VM_WARN_ON_ONCE_FOLIO(mapping, folio); 3826 return -EINVAL; 3827 } 3828 3829 ci = swap_cluster_get_and_lock(folio); 3830 } 3831 3832 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 3833 if (do_lru) 3834 lruvec = folio_lruvec_lock(folio); 3835 3836 ret = __split_unmapped_folio(folio, new_order, split_at, xas, 3837 mapping, split_type); 3838 3839 /* 3840 * Unfreeze after-split folios and put them back to the right 3841 * list. @folio should be kept frozon until page cache 3842 * entries are updated with all the other after-split folios 3843 * to prevent others seeing stale page cache entries. 3844 * As a result, new_folio starts from the next folio of 3845 * @folio. 3846 */ 3847 for (new_folio = folio_next(folio); new_folio != end_folio; 3848 new_folio = next) { 3849 unsigned long nr_pages = folio_nr_pages(new_folio); 3850 3851 next = folio_next(new_folio); 3852 3853 zone_device_private_split_cb(folio, new_folio); 3854 3855 folio_ref_unfreeze(new_folio, 3856 folio_cache_ref_count(new_folio) + 1); 3857 3858 if (do_lru) 3859 lru_add_split_folio(folio, new_folio, lruvec, list); 3860 3861 /* 3862 * Anonymous folio with swap cache. 3863 * NOTE: shmem in swap cache is not supported yet. 3864 */ 3865 if (ci) { 3866 __swap_cache_replace_folio(ci, folio, new_folio); 3867 continue; 3868 } 3869 3870 /* Anonymous folio without swap cache */ 3871 if (!mapping) 3872 continue; 3873 3874 /* Add the new folio to the page cache. */ 3875 if (new_folio->index < end) { 3876 __xa_store(&mapping->i_pages, new_folio->index, 3877 new_folio, 0); 3878 continue; 3879 } 3880 3881 VM_WARN_ON_ONCE(!nr_shmem_dropped); 3882 /* Drop folio beyond EOF: ->index >= end */ 3883 if (shmem_mapping(mapping) && nr_shmem_dropped) 3884 *nr_shmem_dropped += nr_pages; 3885 else if (folio_test_clear_dirty(new_folio)) 3886 folio_account_cleaned( 3887 new_folio, inode_to_wb(mapping->host)); 3888 __filemap_remove_folio(new_folio, NULL); 3889 folio_put_refs(new_folio, nr_pages); 3890 } 3891 3892 zone_device_private_split_cb(folio, NULL); 3893 /* 3894 * Unfreeze @folio only after all page cache entries, which 3895 * used to point to it, have been updated with new folios. 3896 * Otherwise, a parallel folio_try_get() can grab @folio 3897 * and its caller can see stale page cache entries. 3898 */ 3899 folio_ref_unfreeze(folio, folio_cache_ref_count(folio) + 1); 3900 3901 if (do_lru) 3902 unlock_page_lruvec(lruvec); 3903 3904 if (ci) 3905 swap_cluster_unlock(ci); 3906 } else { 3907 split_queue_unlock(ds_queue); 3908 return -EAGAIN; 3909 } 3910 3911 return ret; 3912 } 3913 3914 /** 3915 * __folio_split() - split a folio at @split_at to a @new_order folio 3916 * @folio: folio to split 3917 * @new_order: the order of the new folio 3918 * @split_at: a page within the new folio 3919 * @lock_at: a page within @folio to be left locked to caller 3920 * @list: after-split folios will be put on it if non NULL 3921 * @split_type: perform uniform split or not (non-uniform split) 3922 * 3923 * It calls __split_unmapped_folio() to perform uniform and non-uniform split. 3924 * It is in charge of checking whether the split is supported or not and 3925 * preparing @folio for __split_unmapped_folio(). 3926 * 3927 * After splitting, the after-split folio containing @lock_at remains locked 3928 * and others are unlocked: 3929 * 1. for uniform split, @lock_at points to one of @folio's subpages; 3930 * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio. 3931 * 3932 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be 3933 * split but not to @new_order, the caller needs to check) 3934 */ 3935 static int __folio_split(struct folio *folio, unsigned int new_order, 3936 struct page *split_at, struct page *lock_at, 3937 struct list_head *list, enum split_type split_type) 3938 { 3939 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 3940 struct folio *end_folio = folio_next(folio); 3941 bool is_anon = folio_test_anon(folio); 3942 struct address_space *mapping = NULL; 3943 struct anon_vma *anon_vma = NULL; 3944 int old_order = folio_order(folio); 3945 struct folio *new_folio, *next; 3946 int nr_shmem_dropped = 0; 3947 int remap_flags = 0; 3948 int ret; 3949 pgoff_t end = 0; 3950 3951 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 3952 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio); 3953 3954 if (folio != page_folio(split_at) || folio != page_folio(lock_at)) { 3955 ret = -EINVAL; 3956 goto out; 3957 } 3958 3959 if (new_order >= old_order) { 3960 ret = -EINVAL; 3961 goto out; 3962 } 3963 3964 ret = folio_check_splittable(folio, new_order, split_type); 3965 if (ret) { 3966 VM_WARN_ONCE(ret == -EINVAL, "Tried to split an unsplittable folio"); 3967 goto out; 3968 } 3969 3970 if (is_anon) { 3971 /* 3972 * The caller does not necessarily hold an mmap_lock that would 3973 * prevent the anon_vma disappearing so we first we take a 3974 * reference to it and then lock the anon_vma for write. This 3975 * is similar to folio_lock_anon_vma_read except the write lock 3976 * is taken to serialise against parallel split or collapse 3977 * operations. 3978 */ 3979 anon_vma = folio_get_anon_vma(folio); 3980 if (!anon_vma) { 3981 ret = -EBUSY; 3982 goto out; 3983 } 3984 anon_vma_lock_write(anon_vma); 3985 mapping = NULL; 3986 } else { 3987 unsigned int min_order; 3988 gfp_t gfp; 3989 3990 mapping = folio->mapping; 3991 min_order = mapping_min_folio_order(folio->mapping); 3992 if (new_order < min_order) { 3993 ret = -EINVAL; 3994 goto out; 3995 } 3996 3997 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3998 GFP_RECLAIM_MASK); 3999 4000 if (!filemap_release_folio(folio, gfp)) { 4001 ret = -EBUSY; 4002 goto out; 4003 } 4004 4005 if (split_type == SPLIT_TYPE_UNIFORM) { 4006 xas_set_order(&xas, folio->index, new_order); 4007 xas_split_alloc(&xas, folio, old_order, gfp); 4008 if (xas_error(&xas)) { 4009 ret = xas_error(&xas); 4010 goto out; 4011 } 4012 } 4013 4014 anon_vma = NULL; 4015 i_mmap_lock_read(mapping); 4016 4017 /* 4018 *__split_unmapped_folio() may need to trim off pages beyond 4019 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe 4020 * seqlock, which cannot be nested inside the page tree lock. 4021 * So note end now: i_size itself may be changed at any moment, 4022 * but folio lock is good enough to serialize the trimming. 4023 */ 4024 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 4025 if (shmem_mapping(mapping)) 4026 end = shmem_fallocend(mapping->host, end); 4027 } 4028 4029 /* 4030 * Racy check if we can split the page, before unmap_folio() will 4031 * split PMDs 4032 */ 4033 if (folio_expected_ref_count(folio) != folio_ref_count(folio) - 1) { 4034 ret = -EAGAIN; 4035 goto out_unlock; 4036 } 4037 4038 unmap_folio(folio); 4039 4040 /* block interrupt reentry in xa_lock and spinlock */ 4041 local_irq_disable(); 4042 if (mapping) { 4043 /* 4044 * Check if the folio is present in page cache. 4045 * We assume all tail are present too, if folio is there. 4046 */ 4047 xas_lock(&xas); 4048 xas_reset(&xas); 4049 if (xas_load(&xas) != folio) { 4050 ret = -EAGAIN; 4051 goto fail; 4052 } 4053 } 4054 4055 ret = __folio_freeze_and_split_unmapped(folio, new_order, split_at, &xas, mapping, 4056 true, list, split_type, end, &nr_shmem_dropped); 4057 fail: 4058 if (mapping) 4059 xas_unlock(&xas); 4060 4061 local_irq_enable(); 4062 4063 if (nr_shmem_dropped) 4064 shmem_uncharge(mapping->host, nr_shmem_dropped); 4065 4066 if (!ret && is_anon && !folio_is_device_private(folio)) 4067 remap_flags = RMP_USE_SHARED_ZEROPAGE; 4068 4069 remap_page(folio, 1 << old_order, remap_flags); 4070 4071 /* 4072 * Unlock all after-split folios except the one containing 4073 * @lock_at page. If @folio is not split, it will be kept locked. 4074 */ 4075 for (new_folio = folio; new_folio != end_folio; new_folio = next) { 4076 next = folio_next(new_folio); 4077 if (new_folio == page_folio(lock_at)) 4078 continue; 4079 4080 folio_unlock(new_folio); 4081 /* 4082 * Subpages may be freed if there wasn't any mapping 4083 * like if add_to_swap() is running on a lru page that 4084 * had its mapping zapped. And freeing these pages 4085 * requires taking the lru_lock so we do the put_page 4086 * of the tail pages after the split is complete. 4087 */ 4088 free_folio_and_swap_cache(new_folio); 4089 } 4090 4091 out_unlock: 4092 if (anon_vma) { 4093 anon_vma_unlock_write(anon_vma); 4094 put_anon_vma(anon_vma); 4095 } 4096 if (mapping) 4097 i_mmap_unlock_read(mapping); 4098 out: 4099 xas_destroy(&xas); 4100 if (old_order == HPAGE_PMD_ORDER) 4101 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 4102 count_mthp_stat(old_order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 4103 return ret; 4104 } 4105 4106 /** 4107 * folio_split_unmapped() - split a large anon folio that is already unmapped 4108 * @folio: folio to split 4109 * @new_order: the order of folios after split 4110 * 4111 * This function is a helper for splitting folios that have already been 4112 * unmapped. The use case is that the device or the CPU can refuse to migrate 4113 * THP pages in the middle of migration, due to allocation issues on either 4114 * side. 4115 * 4116 * anon_vma_lock is not required to be held, mmap_read_lock() or 4117 * mmap_write_lock() should be held. @folio is expected to be locked by the 4118 * caller. device-private and non device-private folios are supported along 4119 * with folios that are in the swapcache. @folio should also be unmapped and 4120 * isolated from LRU (if applicable) 4121 * 4122 * Upon return, the folio is not remapped, split folios are not added to LRU, 4123 * free_folio_and_swap_cache() is not called, and new folios remain locked. 4124 * 4125 * Return: 0 on success, -EAGAIN if the folio cannot be split (e.g., due to 4126 * insufficient reference count or extra pins). 4127 */ 4128 int folio_split_unmapped(struct folio *folio, unsigned int new_order) 4129 { 4130 int ret = 0; 4131 4132 VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio); 4133 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 4134 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio); 4135 VM_WARN_ON_ONCE_FOLIO(!folio_test_anon(folio), folio); 4136 4137 if (folio_expected_ref_count(folio) != folio_ref_count(folio) - 1) 4138 return -EAGAIN; 4139 4140 local_irq_disable(); 4141 ret = __folio_freeze_and_split_unmapped(folio, new_order, &folio->page, NULL, 4142 NULL, false, NULL, SPLIT_TYPE_UNIFORM, 4143 0, NULL); 4144 local_irq_enable(); 4145 return ret; 4146 } 4147 4148 /* 4149 * This function splits a large folio into smaller folios of order @new_order. 4150 * @page can point to any page of the large folio to split. The split operation 4151 * does not change the position of @page. 4152 * 4153 * Prerequisites: 4154 * 4155 * 1) The caller must hold a reference on the @page's owning folio, also known 4156 * as the large folio. 4157 * 4158 * 2) The large folio must be locked. 4159 * 4160 * 3) The folio must not be pinned. Any unexpected folio references, including 4161 * GUP pins, will result in the folio not getting split; instead, the caller 4162 * will receive an -EAGAIN. 4163 * 4164 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 4165 * supported for non-file-backed folios, because folio->_deferred_list, which 4166 * is used by partially mapped folios, is stored in subpage 2, but an order-1 4167 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 4168 * since they do not use _deferred_list. 4169 * 4170 * After splitting, the caller's folio reference will be transferred to @page, 4171 * resulting in a raised refcount of @page after this call. The other pages may 4172 * be freed if they are not mapped. 4173 * 4174 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 4175 * 4176 * Pages in @new_order will inherit the mapping, flags, and so on from the 4177 * huge page. 4178 * 4179 * Returns 0 if the huge page was split successfully. 4180 * 4181 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 4182 * the folio was concurrently removed from the page cache. 4183 * 4184 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 4185 * under writeback, if fs-specific folio metadata cannot currently be 4186 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 4187 * truncation). 4188 * 4189 * Callers should ensure that the order respects the address space mapping 4190 * min-order if one is set for non-anonymous folios. 4191 * 4192 * Returns -EINVAL when trying to split to an order that is incompatible 4193 * with the folio. Splitting to order 0 is compatible with all folios. 4194 */ 4195 int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 4196 unsigned int new_order) 4197 { 4198 struct folio *folio = page_folio(page); 4199 4200 return __folio_split(folio, new_order, &folio->page, page, list, 4201 SPLIT_TYPE_UNIFORM); 4202 } 4203 4204 /** 4205 * folio_split() - split a folio at @split_at to a @new_order folio 4206 * @folio: folio to split 4207 * @new_order: the order of the new folio 4208 * @split_at: a page within the new folio 4209 * @list: after-split folios are added to @list if not null, otherwise to LRU 4210 * list 4211 * 4212 * It has the same prerequisites and returns as 4213 * split_huge_page_to_list_to_order(). 4214 * 4215 * Split a folio at @split_at to a new_order folio, leave the 4216 * remaining subpages of the original folio as large as possible. For example, 4217 * in the case of splitting an order-9 folio at its third order-3 subpages to 4218 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio. 4219 * After the split, there will be a group of folios with different orders and 4220 * the new folio containing @split_at is marked in bracket: 4221 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8]. 4222 * 4223 * After split, folio is left locked for caller. 4224 * 4225 * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be 4226 * split but not to @new_order, the caller needs to check) 4227 */ 4228 int folio_split(struct folio *folio, unsigned int new_order, 4229 struct page *split_at, struct list_head *list) 4230 { 4231 return __folio_split(folio, new_order, split_at, &folio->page, list, 4232 SPLIT_TYPE_NON_UNIFORM); 4233 } 4234 4235 /** 4236 * min_order_for_split() - get the minimum order @folio can be split to 4237 * @folio: folio to split 4238 * 4239 * min_order_for_split() tells the minimum order @folio can be split to. 4240 * If a file-backed folio is truncated, 0 will be returned. Any subsequent 4241 * split attempt should get -EBUSY from split checking code. 4242 * 4243 * Return: @folio's minimum order for split 4244 */ 4245 unsigned int min_order_for_split(struct folio *folio) 4246 { 4247 if (folio_test_anon(folio)) 4248 return 0; 4249 4250 /* 4251 * If the folio got truncated, we don't know the previous mapping and 4252 * consequently the old min order. But it doesn't matter, as any split 4253 * attempt will immediately fail with -EBUSY as the folio cannot get 4254 * split until freed. 4255 */ 4256 if (!folio->mapping) 4257 return 0; 4258 4259 return mapping_min_folio_order(folio->mapping); 4260 } 4261 4262 int split_folio_to_list(struct folio *folio, struct list_head *list) 4263 { 4264 return split_huge_page_to_list_to_order(&folio->page, list, 0); 4265 } 4266 4267 /* 4268 * __folio_unqueue_deferred_split() is not to be called directly: 4269 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h 4270 * limits its calls to those folios which may have a _deferred_list for 4271 * queueing THP splits, and that list is (racily observed to be) non-empty. 4272 * 4273 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is 4274 * zero: because even when split_queue_lock is held, a non-empty _deferred_list 4275 * might be in use on deferred_split_scan()'s unlocked on-stack list. 4276 * 4277 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is 4278 * therefore important to unqueue deferred split before changing folio memcg. 4279 */ 4280 bool __folio_unqueue_deferred_split(struct folio *folio) 4281 { 4282 struct deferred_split *ds_queue; 4283 unsigned long flags; 4284 bool unqueued = false; 4285 4286 WARN_ON_ONCE(folio_ref_count(folio)); 4287 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg_charged(folio)); 4288 4289 ds_queue = folio_split_queue_lock_irqsave(folio, &flags); 4290 if (!list_empty(&folio->_deferred_list)) { 4291 ds_queue->split_queue_len--; 4292 if (folio_test_partially_mapped(folio)) { 4293 folio_clear_partially_mapped(folio); 4294 mod_mthp_stat(folio_order(folio), 4295 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4296 } 4297 list_del_init(&folio->_deferred_list); 4298 unqueued = true; 4299 } 4300 split_queue_unlock_irqrestore(ds_queue, flags); 4301 4302 return unqueued; /* useful for debug warnings */ 4303 } 4304 4305 /* partially_mapped=false won't clear PG_partially_mapped folio flag */ 4306 void deferred_split_folio(struct folio *folio, bool partially_mapped) 4307 { 4308 struct deferred_split *ds_queue; 4309 unsigned long flags; 4310 4311 /* 4312 * Order 1 folios have no space for a deferred list, but we also 4313 * won't waste much memory by not adding them to the deferred list. 4314 */ 4315 if (folio_order(folio) <= 1) 4316 return; 4317 4318 if (!partially_mapped && !split_underused_thp) 4319 return; 4320 4321 /* 4322 * Exclude swapcache: originally to avoid a corrupt deferred split 4323 * queue. Nowadays that is fully prevented by memcg1_swapout(); 4324 * but if page reclaim is already handling the same folio, it is 4325 * unnecessary to handle it again in the shrinker, so excluding 4326 * swapcache here may still be a useful optimization. 4327 */ 4328 if (folio_test_swapcache(folio)) 4329 return; 4330 4331 ds_queue = folio_split_queue_lock_irqsave(folio, &flags); 4332 if (partially_mapped) { 4333 if (!folio_test_partially_mapped(folio)) { 4334 folio_set_partially_mapped(folio); 4335 if (folio_test_pmd_mappable(folio)) 4336 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 4337 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 4338 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); 4339 4340 } 4341 } else { 4342 /* partially mapped folios cannot become non-partially mapped */ 4343 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); 4344 } 4345 if (list_empty(&folio->_deferred_list)) { 4346 struct mem_cgroup *memcg; 4347 4348 memcg = folio_split_queue_memcg(folio, ds_queue); 4349 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 4350 ds_queue->split_queue_len++; 4351 if (memcg) 4352 set_shrinker_bit(memcg, folio_nid(folio), 4353 shrinker_id(deferred_split_shrinker)); 4354 } 4355 split_queue_unlock_irqrestore(ds_queue, flags); 4356 } 4357 4358 static unsigned long deferred_split_count(struct shrinker *shrink, 4359 struct shrink_control *sc) 4360 { 4361 struct pglist_data *pgdata = NODE_DATA(sc->nid); 4362 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 4363 4364 #ifdef CONFIG_MEMCG 4365 if (sc->memcg) 4366 ds_queue = &sc->memcg->deferred_split_queue; 4367 #endif 4368 return READ_ONCE(ds_queue->split_queue_len); 4369 } 4370 4371 static bool thp_underused(struct folio *folio) 4372 { 4373 int num_zero_pages = 0, num_filled_pages = 0; 4374 int i; 4375 4376 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) 4377 return false; 4378 4379 if (folio_contain_hwpoisoned_page(folio)) 4380 return false; 4381 4382 for (i = 0; i < folio_nr_pages(folio); i++) { 4383 if (pages_identical(folio_page(folio, i), ZERO_PAGE(0))) { 4384 if (++num_zero_pages > khugepaged_max_ptes_none) 4385 return true; 4386 } else { 4387 /* 4388 * Another path for early exit once the number 4389 * of non-zero filled pages exceeds threshold. 4390 */ 4391 if (++num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) 4392 return false; 4393 } 4394 } 4395 return false; 4396 } 4397 4398 static unsigned long deferred_split_scan(struct shrinker *shrink, 4399 struct shrink_control *sc) 4400 { 4401 struct deferred_split *ds_queue; 4402 unsigned long flags; 4403 struct folio *folio, *next; 4404 int split = 0, i; 4405 struct folio_batch fbatch; 4406 4407 folio_batch_init(&fbatch); 4408 4409 retry: 4410 ds_queue = split_queue_lock_irqsave(sc->nid, sc->memcg, &flags); 4411 /* Take pin on all head pages to avoid freeing them under us */ 4412 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 4413 _deferred_list) { 4414 if (folio_try_get(folio)) { 4415 folio_batch_add(&fbatch, folio); 4416 } else if (folio_test_partially_mapped(folio)) { 4417 /* We lost race with folio_put() */ 4418 folio_clear_partially_mapped(folio); 4419 mod_mthp_stat(folio_order(folio), 4420 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4421 } 4422 list_del_init(&folio->_deferred_list); 4423 ds_queue->split_queue_len--; 4424 if (!--sc->nr_to_scan) 4425 break; 4426 if (!folio_batch_space(&fbatch)) 4427 break; 4428 } 4429 split_queue_unlock_irqrestore(ds_queue, flags); 4430 4431 for (i = 0; i < folio_batch_count(&fbatch); i++) { 4432 bool did_split = false; 4433 bool underused = false; 4434 struct deferred_split *fqueue; 4435 4436 folio = fbatch.folios[i]; 4437 if (!folio_test_partially_mapped(folio)) { 4438 /* 4439 * See try_to_map_unused_to_zeropage(): we cannot 4440 * optimize zero-filled pages after splitting an 4441 * mlocked folio. 4442 */ 4443 if (folio_test_mlocked(folio)) 4444 goto next; 4445 underused = thp_underused(folio); 4446 if (!underused) 4447 goto next; 4448 } 4449 if (!folio_trylock(folio)) 4450 goto next; 4451 if (!split_folio(folio)) { 4452 did_split = true; 4453 if (underused) 4454 count_vm_event(THP_UNDERUSED_SPLIT_PAGE); 4455 split++; 4456 } 4457 folio_unlock(folio); 4458 next: 4459 if (did_split || !folio_test_partially_mapped(folio)) 4460 continue; 4461 /* 4462 * Only add back to the queue if folio is partially mapped. 4463 * If thp_underused returns false, or if split_folio fails 4464 * in the case it was underused, then consider it used and 4465 * don't add it back to split_queue. 4466 */ 4467 fqueue = folio_split_queue_lock_irqsave(folio, &flags); 4468 if (list_empty(&folio->_deferred_list)) { 4469 list_add_tail(&folio->_deferred_list, &fqueue->split_queue); 4470 fqueue->split_queue_len++; 4471 } 4472 split_queue_unlock_irqrestore(fqueue, flags); 4473 } 4474 folios_put(&fbatch); 4475 4476 if (sc->nr_to_scan && !list_empty(&ds_queue->split_queue)) { 4477 cond_resched(); 4478 goto retry; 4479 } 4480 4481 /* 4482 * Stop shrinker if we didn't split any page, but the queue is empty. 4483 * This can happen if pages were freed under us. 4484 */ 4485 if (!split && list_empty(&ds_queue->split_queue)) 4486 return SHRINK_STOP; 4487 return split; 4488 } 4489 4490 #ifdef CONFIG_MEMCG 4491 void reparent_deferred_split_queue(struct mem_cgroup *memcg) 4492 { 4493 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4494 struct deferred_split *ds_queue = &memcg->deferred_split_queue; 4495 struct deferred_split *parent_ds_queue = &parent->deferred_split_queue; 4496 int nid; 4497 4498 spin_lock_irq(&ds_queue->split_queue_lock); 4499 spin_lock_nested(&parent_ds_queue->split_queue_lock, SINGLE_DEPTH_NESTING); 4500 4501 if (!ds_queue->split_queue_len) 4502 goto unlock; 4503 4504 list_splice_tail_init(&ds_queue->split_queue, &parent_ds_queue->split_queue); 4505 parent_ds_queue->split_queue_len += ds_queue->split_queue_len; 4506 ds_queue->split_queue_len = 0; 4507 4508 for_each_node(nid) 4509 set_shrinker_bit(parent, nid, shrinker_id(deferred_split_shrinker)); 4510 4511 unlock: 4512 spin_unlock(&parent_ds_queue->split_queue_lock); 4513 spin_unlock_irq(&ds_queue->split_queue_lock); 4514 } 4515 #endif 4516 4517 #ifdef CONFIG_DEBUG_FS 4518 static void split_huge_pages_all(void) 4519 { 4520 struct zone *zone; 4521 struct page *page; 4522 struct folio *folio; 4523 unsigned long pfn, max_zone_pfn; 4524 unsigned long total = 0, split = 0; 4525 4526 pr_debug("Split all THPs\n"); 4527 for_each_zone(zone) { 4528 if (!managed_zone(zone)) 4529 continue; 4530 max_zone_pfn = zone_end_pfn(zone); 4531 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 4532 int nr_pages; 4533 4534 page = pfn_to_online_page(pfn); 4535 if (!page || PageTail(page)) 4536 continue; 4537 folio = page_folio(page); 4538 if (!folio_try_get(folio)) 4539 continue; 4540 4541 if (unlikely(page_folio(page) != folio)) 4542 goto next; 4543 4544 if (zone != folio_zone(folio)) 4545 goto next; 4546 4547 if (!folio_test_large(folio) 4548 || folio_test_hugetlb(folio) 4549 || !folio_test_lru(folio)) 4550 goto next; 4551 4552 total++; 4553 folio_lock(folio); 4554 nr_pages = folio_nr_pages(folio); 4555 if (!split_folio(folio)) 4556 split++; 4557 pfn += nr_pages - 1; 4558 folio_unlock(folio); 4559 next: 4560 folio_put(folio); 4561 cond_resched(); 4562 } 4563 } 4564 4565 pr_debug("%lu of %lu THP split\n", split, total); 4566 } 4567 4568 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 4569 { 4570 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 4571 is_vm_hugetlb_page(vma); 4572 } 4573 4574 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 4575 unsigned long vaddr_end, unsigned int new_order, 4576 long in_folio_offset) 4577 { 4578 int ret = 0; 4579 struct task_struct *task; 4580 struct mm_struct *mm; 4581 unsigned long total = 0, split = 0; 4582 unsigned long addr; 4583 4584 vaddr_start &= PAGE_MASK; 4585 vaddr_end &= PAGE_MASK; 4586 4587 task = find_get_task_by_vpid(pid); 4588 if (!task) { 4589 ret = -ESRCH; 4590 goto out; 4591 } 4592 4593 /* Find the mm_struct */ 4594 mm = get_task_mm(task); 4595 put_task_struct(task); 4596 4597 if (!mm) { 4598 ret = -EINVAL; 4599 goto out; 4600 } 4601 4602 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n", 4603 pid, vaddr_start, vaddr_end, new_order, in_folio_offset); 4604 4605 mmap_read_lock(mm); 4606 /* 4607 * always increase addr by PAGE_SIZE, since we could have a PTE page 4608 * table filled with PTE-mapped THPs, each of which is distinct. 4609 */ 4610 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 4611 struct vm_area_struct *vma = vma_lookup(mm, addr); 4612 struct folio_walk fw; 4613 struct folio *folio; 4614 struct address_space *mapping; 4615 unsigned int target_order = new_order; 4616 4617 if (!vma) 4618 break; 4619 4620 /* skip special VMA and hugetlb VMA */ 4621 if (vma_not_suitable_for_thp_split(vma)) { 4622 addr = vma->vm_end; 4623 continue; 4624 } 4625 4626 folio = folio_walk_start(&fw, vma, addr, 0); 4627 if (!folio) 4628 continue; 4629 4630 if (!is_transparent_hugepage(folio)) 4631 goto next; 4632 4633 if (!folio_test_anon(folio)) { 4634 mapping = folio->mapping; 4635 target_order = max(new_order, 4636 mapping_min_folio_order(mapping)); 4637 } 4638 4639 if (target_order >= folio_order(folio)) 4640 goto next; 4641 4642 total++; 4643 /* 4644 * For folios with private, split_huge_page_to_list_to_order() 4645 * will try to drop it before split and then check if the folio 4646 * can be split or not. So skip the check here. 4647 */ 4648 if (!folio_test_private(folio) && 4649 folio_expected_ref_count(folio) != folio_ref_count(folio)) 4650 goto next; 4651 4652 if (!folio_trylock(folio)) 4653 goto next; 4654 folio_get(folio); 4655 folio_walk_end(&fw, vma); 4656 4657 if (!folio_test_anon(folio) && folio->mapping != mapping) 4658 goto unlock; 4659 4660 if (in_folio_offset < 0 || 4661 in_folio_offset >= folio_nr_pages(folio)) { 4662 if (!split_folio_to_order(folio, target_order)) 4663 split++; 4664 } else { 4665 struct page *split_at = folio_page(folio, 4666 in_folio_offset); 4667 if (!folio_split(folio, target_order, split_at, NULL)) 4668 split++; 4669 } 4670 4671 unlock: 4672 4673 folio_unlock(folio); 4674 folio_put(folio); 4675 4676 cond_resched(); 4677 continue; 4678 next: 4679 folio_walk_end(&fw, vma); 4680 cond_resched(); 4681 } 4682 mmap_read_unlock(mm); 4683 mmput(mm); 4684 4685 pr_debug("%lu of %lu THP split\n", split, total); 4686 4687 out: 4688 return ret; 4689 } 4690 4691 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 4692 pgoff_t off_end, unsigned int new_order, 4693 long in_folio_offset) 4694 { 4695 struct filename *file; 4696 struct file *candidate; 4697 struct address_space *mapping; 4698 int ret = -EINVAL; 4699 pgoff_t index; 4700 int nr_pages = 1; 4701 unsigned long total = 0, split = 0; 4702 unsigned int min_order; 4703 unsigned int target_order; 4704 4705 file = getname_kernel(file_path); 4706 if (IS_ERR(file)) 4707 return ret; 4708 4709 candidate = file_open_name(file, O_RDONLY, 0); 4710 if (IS_ERR(candidate)) 4711 goto out; 4712 4713 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n", 4714 file_path, off_start, off_end, new_order, in_folio_offset); 4715 4716 mapping = candidate->f_mapping; 4717 min_order = mapping_min_folio_order(mapping); 4718 target_order = max(new_order, min_order); 4719 4720 for (index = off_start; index < off_end; index += nr_pages) { 4721 struct folio *folio = filemap_get_folio(mapping, index); 4722 4723 nr_pages = 1; 4724 if (IS_ERR(folio)) 4725 continue; 4726 4727 if (!folio_test_large(folio)) 4728 goto next; 4729 4730 total++; 4731 nr_pages = folio_nr_pages(folio); 4732 4733 if (target_order >= folio_order(folio)) 4734 goto next; 4735 4736 if (!folio_trylock(folio)) 4737 goto next; 4738 4739 if (folio->mapping != mapping) 4740 goto unlock; 4741 4742 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) { 4743 if (!split_folio_to_order(folio, target_order)) 4744 split++; 4745 } else { 4746 struct page *split_at = folio_page(folio, 4747 in_folio_offset); 4748 if (!folio_split(folio, target_order, split_at, NULL)) 4749 split++; 4750 } 4751 4752 unlock: 4753 folio_unlock(folio); 4754 next: 4755 folio_put(folio); 4756 cond_resched(); 4757 } 4758 4759 filp_close(candidate, NULL); 4760 ret = 0; 4761 4762 pr_debug("%lu of %lu file-backed THP split\n", split, total); 4763 out: 4764 putname(file); 4765 return ret; 4766 } 4767 4768 #define MAX_INPUT_BUF_SZ 255 4769 4770 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 4771 size_t count, loff_t *ppops) 4772 { 4773 static DEFINE_MUTEX(split_debug_mutex); 4774 ssize_t ret; 4775 /* 4776 * hold pid, start_vaddr, end_vaddr, new_order or 4777 * file_path, off_start, off_end, new_order 4778 */ 4779 char input_buf[MAX_INPUT_BUF_SZ]; 4780 int pid; 4781 unsigned long vaddr_start, vaddr_end; 4782 unsigned int new_order = 0; 4783 long in_folio_offset = -1; 4784 4785 ret = mutex_lock_interruptible(&split_debug_mutex); 4786 if (ret) 4787 return ret; 4788 4789 ret = -EFAULT; 4790 4791 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 4792 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 4793 goto out; 4794 4795 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 4796 4797 if (input_buf[0] == '/') { 4798 char *tok; 4799 char *tok_buf = input_buf; 4800 char file_path[MAX_INPUT_BUF_SZ]; 4801 pgoff_t off_start = 0, off_end = 0; 4802 size_t input_len = strlen(input_buf); 4803 4804 tok = strsep(&tok_buf, ","); 4805 if (tok && tok_buf) { 4806 strscpy(file_path, tok); 4807 } else { 4808 ret = -EINVAL; 4809 goto out; 4810 } 4811 4812 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end, 4813 &new_order, &in_folio_offset); 4814 if (ret != 2 && ret != 3 && ret != 4) { 4815 ret = -EINVAL; 4816 goto out; 4817 } 4818 ret = split_huge_pages_in_file(file_path, off_start, off_end, 4819 new_order, in_folio_offset); 4820 if (!ret) 4821 ret = input_len; 4822 4823 goto out; 4824 } 4825 4826 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start, 4827 &vaddr_end, &new_order, &in_folio_offset); 4828 if (ret == 1 && pid == 1) { 4829 split_huge_pages_all(); 4830 ret = strlen(input_buf); 4831 goto out; 4832 } else if (ret != 3 && ret != 4 && ret != 5) { 4833 ret = -EINVAL; 4834 goto out; 4835 } 4836 4837 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order, 4838 in_folio_offset); 4839 if (!ret) 4840 ret = strlen(input_buf); 4841 out: 4842 mutex_unlock(&split_debug_mutex); 4843 return ret; 4844 4845 } 4846 4847 static const struct file_operations split_huge_pages_fops = { 4848 .owner = THIS_MODULE, 4849 .write = split_huge_pages_write, 4850 }; 4851 4852 static int __init split_huge_pages_debugfs(void) 4853 { 4854 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 4855 &split_huge_pages_fops); 4856 return 0; 4857 } 4858 late_initcall(split_huge_pages_debugfs); 4859 #endif 4860 4861 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 4862 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 4863 struct page *page) 4864 { 4865 struct folio *folio = page_folio(page); 4866 struct vm_area_struct *vma = pvmw->vma; 4867 struct mm_struct *mm = vma->vm_mm; 4868 unsigned long address = pvmw->address; 4869 bool anon_exclusive; 4870 pmd_t pmdval; 4871 swp_entry_t entry; 4872 pmd_t pmdswp; 4873 4874 if (!(pvmw->pmd && !pvmw->pte)) 4875 return 0; 4876 4877 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 4878 if (unlikely(!pmd_present(*pvmw->pmd))) 4879 pmdval = pmdp_huge_get_and_clear(vma->vm_mm, address, pvmw->pmd); 4880 else 4881 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 4882 4883 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 4884 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 4885 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 4886 set_pmd_at(mm, address, pvmw->pmd, pmdval); 4887 return -EBUSY; 4888 } 4889 4890 if (pmd_dirty(pmdval)) 4891 folio_mark_dirty(folio); 4892 if (pmd_write(pmdval)) 4893 entry = make_writable_migration_entry(page_to_pfn(page)); 4894 else if (anon_exclusive) 4895 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 4896 else 4897 entry = make_readable_migration_entry(page_to_pfn(page)); 4898 if (pmd_young(pmdval)) 4899 entry = make_migration_entry_young(entry); 4900 if (pmd_dirty(pmdval)) 4901 entry = make_migration_entry_dirty(entry); 4902 pmdswp = swp_entry_to_pmd(entry); 4903 if (pmd_soft_dirty(pmdval)) 4904 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 4905 if (pmd_uffd_wp(pmdval)) 4906 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 4907 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 4908 folio_remove_rmap_pmd(folio, page, vma); 4909 folio_put(folio); 4910 trace_set_migration_pmd(address, pmd_val(pmdswp)); 4911 4912 return 0; 4913 } 4914 4915 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 4916 { 4917 struct folio *folio = page_folio(new); 4918 struct vm_area_struct *vma = pvmw->vma; 4919 struct mm_struct *mm = vma->vm_mm; 4920 unsigned long address = pvmw->address; 4921 unsigned long haddr = address & HPAGE_PMD_MASK; 4922 pmd_t pmde; 4923 softleaf_t entry; 4924 4925 if (!(pvmw->pmd && !pvmw->pte)) 4926 return; 4927 4928 entry = softleaf_from_pmd(*pvmw->pmd); 4929 folio_get(folio); 4930 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot)); 4931 4932 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4933 pmde = pmd_mksoft_dirty(pmde); 4934 if (softleaf_is_migration_write(entry)) 4935 pmde = pmd_mkwrite(pmde, vma); 4936 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4937 pmde = pmd_mkuffd_wp(pmde); 4938 if (!softleaf_is_migration_young(entry)) 4939 pmde = pmd_mkold(pmde); 4940 /* NOTE: this may contain setting soft-dirty on some archs */ 4941 if (folio_test_dirty(folio) && softleaf_is_migration_dirty(entry)) 4942 pmde = pmd_mkdirty(pmde); 4943 4944 if (folio_is_device_private(folio)) { 4945 swp_entry_t entry; 4946 4947 if (pmd_write(pmde)) 4948 entry = make_writable_device_private_entry( 4949 page_to_pfn(new)); 4950 else 4951 entry = make_readable_device_private_entry( 4952 page_to_pfn(new)); 4953 pmde = swp_entry_to_pmd(entry); 4954 4955 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4956 pmde = pmd_swp_mksoft_dirty(pmde); 4957 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4958 pmde = pmd_swp_mkuffd_wp(pmde); 4959 } 4960 4961 if (folio_test_anon(folio)) { 4962 rmap_t rmap_flags = RMAP_NONE; 4963 4964 if (!softleaf_is_migration_read(entry)) 4965 rmap_flags |= RMAP_EXCLUSIVE; 4966 4967 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 4968 } else { 4969 folio_add_file_rmap_pmd(folio, new, vma); 4970 } 4971 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 4972 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 4973 4974 /* No need to invalidate - it was non-present before */ 4975 update_mmu_cache_pmd(vma, address, pvmw->pmd); 4976 trace_remove_migration_pmd(address, pmd_val(pmde)); 4977 } 4978 #endif 4979