xref: /linux/mm/huge_memory.c (revision be10afcd2274d263fed8f74c6fc59ef71265e7d5)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes) {
134 		if (user_min_free_kbytes >= 0)
135 			pr_info("raising min_free_kbytes from %d to %lu "
136 				"to help transparent hugepage allocations\n",
137 				min_free_kbytes, recommended_min);
138 
139 		min_free_kbytes = recommended_min;
140 	}
141 	setup_per_zone_wmarks();
142 	return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145 
146 static int start_khugepaged(void)
147 {
148 	int err = 0;
149 	if (khugepaged_enabled()) {
150 		if (!khugepaged_thread)
151 			khugepaged_thread = kthread_run(khugepaged, NULL,
152 							"khugepaged");
153 		if (unlikely(IS_ERR(khugepaged_thread))) {
154 			printk(KERN_ERR
155 			       "khugepaged: kthread_run(khugepaged) failed\n");
156 			err = PTR_ERR(khugepaged_thread);
157 			khugepaged_thread = NULL;
158 		}
159 
160 		if (!list_empty(&khugepaged_scan.mm_head))
161 			wake_up_interruptible(&khugepaged_wait);
162 
163 		set_recommended_min_free_kbytes();
164 	} else if (khugepaged_thread) {
165 		kthread_stop(khugepaged_thread);
166 		khugepaged_thread = NULL;
167 	}
168 
169 	return err;
170 }
171 
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174 
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177 	return ACCESS_ONCE(huge_zero_page) == page;
178 }
179 
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182 	return is_huge_zero_page(pmd_page(pmd));
183 }
184 
185 static struct page *get_huge_zero_page(void)
186 {
187 	struct page *zero_page;
188 retry:
189 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 		return ACCESS_ONCE(huge_zero_page);
191 
192 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 			HPAGE_PMD_ORDER);
194 	if (!zero_page) {
195 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 		return NULL;
197 	}
198 	count_vm_event(THP_ZERO_PAGE_ALLOC);
199 	preempt_disable();
200 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 		preempt_enable();
202 		__free_page(zero_page);
203 		goto retry;
204 	}
205 
206 	/* We take additional reference here. It will be put back by shrinker */
207 	atomic_set(&huge_zero_refcount, 2);
208 	preempt_enable();
209 	return ACCESS_ONCE(huge_zero_page);
210 }
211 
212 static void put_huge_zero_page(void)
213 {
214 	/*
215 	 * Counter should never go to zero here. Only shrinker can put
216 	 * last reference.
217 	 */
218 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220 
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 					struct shrink_control *sc)
223 {
224 	/* we can free zero page only if last reference remains */
225 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227 
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 				       struct shrink_control *sc)
230 {
231 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 		struct page *zero_page = xchg(&huge_zero_page, NULL);
233 		BUG_ON(zero_page == NULL);
234 		__free_page(zero_page);
235 		return HPAGE_PMD_NR;
236 	}
237 
238 	return 0;
239 }
240 
241 static struct shrinker huge_zero_page_shrinker = {
242 	.count_objects = shrink_huge_zero_page_count,
243 	.scan_objects = shrink_huge_zero_page_scan,
244 	.seeks = DEFAULT_SEEKS,
245 };
246 
247 #ifdef CONFIG_SYSFS
248 
249 static ssize_t double_flag_show(struct kobject *kobj,
250 				struct kobj_attribute *attr, char *buf,
251 				enum transparent_hugepage_flag enabled,
252 				enum transparent_hugepage_flag req_madv)
253 {
254 	if (test_bit(enabled, &transparent_hugepage_flags)) {
255 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 		return sprintf(buf, "[always] madvise never\n");
257 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
258 		return sprintf(buf, "always [madvise] never\n");
259 	else
260 		return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263 				 struct kobj_attribute *attr,
264 				 const char *buf, size_t count,
265 				 enum transparent_hugepage_flag enabled,
266 				 enum transparent_hugepage_flag req_madv)
267 {
268 	if (!memcmp("always", buf,
269 		    min(sizeof("always")-1, count))) {
270 		set_bit(enabled, &transparent_hugepage_flags);
271 		clear_bit(req_madv, &transparent_hugepage_flags);
272 	} else if (!memcmp("madvise", buf,
273 			   min(sizeof("madvise")-1, count))) {
274 		clear_bit(enabled, &transparent_hugepage_flags);
275 		set_bit(req_madv, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(enabled, &transparent_hugepage_flags);
279 		clear_bit(req_madv, &transparent_hugepage_flags);
280 	} else
281 		return -EINVAL;
282 
283 	return count;
284 }
285 
286 static ssize_t enabled_show(struct kobject *kobj,
287 			    struct kobj_attribute *attr, char *buf)
288 {
289 	return double_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_FLAG,
291 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294 			     struct kobj_attribute *attr,
295 			     const char *buf, size_t count)
296 {
297 	ssize_t ret;
298 
299 	ret = double_flag_store(kobj, attr, buf, count,
300 				TRANSPARENT_HUGEPAGE_FLAG,
301 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302 
303 	if (ret > 0) {
304 		int err;
305 
306 		mutex_lock(&khugepaged_mutex);
307 		err = start_khugepaged();
308 		mutex_unlock(&khugepaged_mutex);
309 
310 		if (err)
311 			ret = err;
312 	}
313 
314 	return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317 	__ATTR(enabled, 0644, enabled_show, enabled_store);
318 
319 static ssize_t single_flag_show(struct kobject *kobj,
320 				struct kobj_attribute *attr, char *buf,
321 				enum transparent_hugepage_flag flag)
322 {
323 	return sprintf(buf, "%d\n",
324 		       !!test_bit(flag, &transparent_hugepage_flags));
325 }
326 
327 static ssize_t single_flag_store(struct kobject *kobj,
328 				 struct kobj_attribute *attr,
329 				 const char *buf, size_t count,
330 				 enum transparent_hugepage_flag flag)
331 {
332 	unsigned long value;
333 	int ret;
334 
335 	ret = kstrtoul(buf, 10, &value);
336 	if (ret < 0)
337 		return ret;
338 	if (value > 1)
339 		return -EINVAL;
340 
341 	if (value)
342 		set_bit(flag, &transparent_hugepage_flags);
343 	else
344 		clear_bit(flag, &transparent_hugepage_flags);
345 
346 	return count;
347 }
348 
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355 			   struct kobj_attribute *attr, char *buf)
356 {
357 	return double_flag_show(kobj, attr, buf,
358 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362 			    struct kobj_attribute *attr,
363 			    const char *buf, size_t count)
364 {
365 	return double_flag_store(kobj, attr, buf, count,
366 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370 	__ATTR(defrag, 0644, defrag_show, defrag_store);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 		struct kobj_attribute *attr, char *buf)
374 {
375 	return single_flag_show(kobj, attr, buf,
376 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388 				struct kobj_attribute *attr, char *buf)
389 {
390 	return single_flag_show(kobj, attr, buf,
391 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394 			       struct kobj_attribute *attr,
395 			       const char *buf, size_t count)
396 {
397 	return single_flag_store(kobj, attr, buf, count,
398 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403 
404 static struct attribute *hugepage_attr[] = {
405 	&enabled_attr.attr,
406 	&defrag_attr.attr,
407 	&use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409 	&debug_cow_attr.attr,
410 #endif
411 	NULL,
412 };
413 
414 static struct attribute_group hugepage_attr_group = {
415 	.attrs = hugepage_attr,
416 };
417 
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 					 struct kobj_attribute *attr,
420 					 char *buf)
421 {
422 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424 
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 					  struct kobj_attribute *attr,
427 					  const char *buf, size_t count)
428 {
429 	unsigned long msecs;
430 	int err;
431 
432 	err = kstrtoul(buf, 10, &msecs);
433 	if (err || msecs > UINT_MAX)
434 		return -EINVAL;
435 
436 	khugepaged_scan_sleep_millisecs = msecs;
437 	wake_up_interruptible(&khugepaged_wait);
438 
439 	return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 	       scan_sleep_millisecs_store);
444 
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 					  struct kobj_attribute *attr,
447 					  char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451 
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 					   struct kobj_attribute *attr,
454 					   const char *buf, size_t count)
455 {
456 	unsigned long msecs;
457 	int err;
458 
459 	err = kstrtoul(buf, 10, &msecs);
460 	if (err || msecs > UINT_MAX)
461 		return -EINVAL;
462 
463 	khugepaged_alloc_sleep_millisecs = msecs;
464 	wake_up_interruptible(&khugepaged_wait);
465 
466 	return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 	       alloc_sleep_millisecs_store);
471 
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473 				  struct kobj_attribute *attr,
474 				  char *buf)
475 {
476 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479 				   struct kobj_attribute *attr,
480 				   const char *buf, size_t count)
481 {
482 	int err;
483 	unsigned long pages;
484 
485 	err = kstrtoul(buf, 10, &pages);
486 	if (err || !pages || pages > UINT_MAX)
487 		return -EINVAL;
488 
489 	khugepaged_pages_to_scan = pages;
490 
491 	return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 	       pages_to_scan_store);
496 
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498 				    struct kobj_attribute *attr,
499 				    char *buf)
500 {
501 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504 	__ATTR_RO(pages_collapsed);
505 
506 static ssize_t full_scans_show(struct kobject *kobj,
507 			       struct kobj_attribute *attr,
508 			       char *buf)
509 {
510 	return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513 	__ATTR_RO(full_scans);
514 
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 				      struct kobj_attribute *attr, char *buf)
517 {
518 	return single_flag_show(kobj, attr, buf,
519 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 				       struct kobj_attribute *attr,
523 				       const char *buf, size_t count)
524 {
525 	return single_flag_store(kobj, attr, buf, count,
526 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529 	__ATTR(defrag, 0644, khugepaged_defrag_show,
530 	       khugepaged_defrag_store);
531 
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 					     struct kobj_attribute *attr,
542 					     char *buf)
543 {
544 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 					      struct kobj_attribute *attr,
548 					      const char *buf, size_t count)
549 {
550 	int err;
551 	unsigned long max_ptes_none;
552 
553 	err = kstrtoul(buf, 10, &max_ptes_none);
554 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 		return -EINVAL;
556 
557 	khugepaged_max_ptes_none = max_ptes_none;
558 
559 	return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 	       khugepaged_max_ptes_none_store);
564 
565 static struct attribute *khugepaged_attr[] = {
566 	&khugepaged_defrag_attr.attr,
567 	&khugepaged_max_ptes_none_attr.attr,
568 	&pages_to_scan_attr.attr,
569 	&pages_collapsed_attr.attr,
570 	&full_scans_attr.attr,
571 	&scan_sleep_millisecs_attr.attr,
572 	&alloc_sleep_millisecs_attr.attr,
573 	NULL,
574 };
575 
576 static struct attribute_group khugepaged_attr_group = {
577 	.attrs = khugepaged_attr,
578 	.name = "khugepaged",
579 };
580 
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583 	int err;
584 
585 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 	if (unlikely(!*hugepage_kobj)) {
587 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 		return -ENOMEM;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto delete_obj;
595 	}
596 
597 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 	if (err) {
599 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 		goto remove_hp_group;
601 	}
602 
603 	return 0;
604 
605 remove_hp_group:
606 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608 	kobject_put(*hugepage_kobj);
609 	return err;
610 }
611 
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 	kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621 	return 0;
622 }
623 
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628 
629 static int __init hugepage_init(void)
630 {
631 	int err;
632 	struct kobject *hugepage_kobj;
633 
634 	if (!has_transparent_hugepage()) {
635 		transparent_hugepage_flags = 0;
636 		return -EINVAL;
637 	}
638 
639 	err = hugepage_init_sysfs(&hugepage_kobj);
640 	if (err)
641 		return err;
642 
643 	err = khugepaged_slab_init();
644 	if (err)
645 		goto out;
646 
647 	register_shrinker(&huge_zero_page_shrinker);
648 
649 	/*
650 	 * By default disable transparent hugepages on smaller systems,
651 	 * where the extra memory used could hurt more than TLB overhead
652 	 * is likely to save.  The admin can still enable it through /sys.
653 	 */
654 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 		transparent_hugepage_flags = 0;
656 
657 	start_khugepaged();
658 
659 	return 0;
660 out:
661 	hugepage_exit_sysfs(hugepage_kobj);
662 	return err;
663 }
664 subsys_initcall(hugepage_init);
665 
666 static int __init setup_transparent_hugepage(char *str)
667 {
668 	int ret = 0;
669 	if (!str)
670 		goto out;
671 	if (!strcmp(str, "always")) {
672 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			&transparent_hugepage_flags);
674 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			  &transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "madvise")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			&transparent_hugepage_flags);
682 		ret = 1;
683 	} else if (!strcmp(str, "never")) {
684 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 			  &transparent_hugepage_flags);
686 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 			  &transparent_hugepage_flags);
688 		ret = 1;
689 	}
690 out:
691 	if (!ret)
692 		printk(KERN_WARNING
693 		       "transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
945 		struct vm_area_struct *vma, unsigned long address,
946 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
947 {
948 	spinlock_t *ptl;
949 	pgtable_t pgtable;
950 	pmd_t _pmd;
951 	struct page *page;
952 	int i, ret = 0;
953 	unsigned long mmun_start;	/* For mmu_notifiers */
954 	unsigned long mmun_end;		/* For mmu_notifiers */
955 
956 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
957 	if (!page) {
958 		ret |= VM_FAULT_OOM;
959 		goto out;
960 	}
961 
962 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
963 		put_page(page);
964 		ret |= VM_FAULT_OOM;
965 		goto out;
966 	}
967 
968 	clear_user_highpage(page, address);
969 	__SetPageUptodate(page);
970 
971 	mmun_start = haddr;
972 	mmun_end   = haddr + HPAGE_PMD_SIZE;
973 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
974 
975 	ptl = pmd_lock(mm, pmd);
976 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
977 		goto out_free_page;
978 
979 	pmdp_clear_flush(vma, haddr, pmd);
980 	/* leave pmd empty until pte is filled */
981 
982 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
983 	pmd_populate(mm, &_pmd, pgtable);
984 
985 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
986 		pte_t *pte, entry;
987 		if (haddr == (address & PAGE_MASK)) {
988 			entry = mk_pte(page, vma->vm_page_prot);
989 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
990 			page_add_new_anon_rmap(page, vma, haddr);
991 		} else {
992 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
993 			entry = pte_mkspecial(entry);
994 		}
995 		pte = pte_offset_map(&_pmd, haddr);
996 		VM_BUG_ON(!pte_none(*pte));
997 		set_pte_at(mm, haddr, pte, entry);
998 		pte_unmap(pte);
999 	}
1000 	smp_wmb(); /* make pte visible before pmd */
1001 	pmd_populate(mm, pmd, pgtable);
1002 	spin_unlock(ptl);
1003 	put_huge_zero_page();
1004 	inc_mm_counter(mm, MM_ANONPAGES);
1005 
1006 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 
1008 	ret |= VM_FAULT_WRITE;
1009 out:
1010 	return ret;
1011 out_free_page:
1012 	spin_unlock(ptl);
1013 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1014 	mem_cgroup_uncharge_page(page);
1015 	put_page(page);
1016 	goto out;
1017 }
1018 
1019 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1020 					struct vm_area_struct *vma,
1021 					unsigned long address,
1022 					pmd_t *pmd, pmd_t orig_pmd,
1023 					struct page *page,
1024 					unsigned long haddr)
1025 {
1026 	spinlock_t *ptl;
1027 	pgtable_t pgtable;
1028 	pmd_t _pmd;
1029 	int ret = 0, i;
1030 	struct page **pages;
1031 	unsigned long mmun_start;	/* For mmu_notifiers */
1032 	unsigned long mmun_end;		/* For mmu_notifiers */
1033 
1034 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1035 			GFP_KERNEL);
1036 	if (unlikely(!pages)) {
1037 		ret |= VM_FAULT_OOM;
1038 		goto out;
1039 	}
1040 
1041 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1042 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1043 					       __GFP_OTHER_NODE,
1044 					       vma, address, page_to_nid(page));
1045 		if (unlikely(!pages[i] ||
1046 			     mem_cgroup_newpage_charge(pages[i], mm,
1047 						       GFP_KERNEL))) {
1048 			if (pages[i])
1049 				put_page(pages[i]);
1050 			mem_cgroup_uncharge_start();
1051 			while (--i >= 0) {
1052 				mem_cgroup_uncharge_page(pages[i]);
1053 				put_page(pages[i]);
1054 			}
1055 			mem_cgroup_uncharge_end();
1056 			kfree(pages);
1057 			ret |= VM_FAULT_OOM;
1058 			goto out;
1059 		}
1060 	}
1061 
1062 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1063 		copy_user_highpage(pages[i], page + i,
1064 				   haddr + PAGE_SIZE * i, vma);
1065 		__SetPageUptodate(pages[i]);
1066 		cond_resched();
1067 	}
1068 
1069 	mmun_start = haddr;
1070 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1071 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1072 
1073 	ptl = pmd_lock(mm, pmd);
1074 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1075 		goto out_free_pages;
1076 	VM_BUG_ON_PAGE(!PageHead(page), page);
1077 
1078 	pmdp_clear_flush(vma, haddr, pmd);
1079 	/* leave pmd empty until pte is filled */
1080 
1081 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1082 	pmd_populate(mm, &_pmd, pgtable);
1083 
1084 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1085 		pte_t *pte, entry;
1086 		entry = mk_pte(pages[i], vma->vm_page_prot);
1087 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1088 		page_add_new_anon_rmap(pages[i], vma, haddr);
1089 		pte = pte_offset_map(&_pmd, haddr);
1090 		VM_BUG_ON(!pte_none(*pte));
1091 		set_pte_at(mm, haddr, pte, entry);
1092 		pte_unmap(pte);
1093 	}
1094 	kfree(pages);
1095 
1096 	smp_wmb(); /* make pte visible before pmd */
1097 	pmd_populate(mm, pmd, pgtable);
1098 	page_remove_rmap(page);
1099 	spin_unlock(ptl);
1100 
1101 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1102 
1103 	ret |= VM_FAULT_WRITE;
1104 	put_page(page);
1105 
1106 out:
1107 	return ret;
1108 
1109 out_free_pages:
1110 	spin_unlock(ptl);
1111 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1112 	mem_cgroup_uncharge_start();
1113 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1114 		mem_cgroup_uncharge_page(pages[i]);
1115 		put_page(pages[i]);
1116 	}
1117 	mem_cgroup_uncharge_end();
1118 	kfree(pages);
1119 	goto out;
1120 }
1121 
1122 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1123 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1124 {
1125 	spinlock_t *ptl;
1126 	int ret = 0;
1127 	struct page *page = NULL, *new_page;
1128 	unsigned long haddr;
1129 	unsigned long mmun_start;	/* For mmu_notifiers */
1130 	unsigned long mmun_end;		/* For mmu_notifiers */
1131 
1132 	ptl = pmd_lockptr(mm, pmd);
1133 	VM_BUG_ON(!vma->anon_vma);
1134 	haddr = address & HPAGE_PMD_MASK;
1135 	if (is_huge_zero_pmd(orig_pmd))
1136 		goto alloc;
1137 	spin_lock(ptl);
1138 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1139 		goto out_unlock;
1140 
1141 	page = pmd_page(orig_pmd);
1142 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1143 	if (page_mapcount(page) == 1) {
1144 		pmd_t entry;
1145 		entry = pmd_mkyoung(orig_pmd);
1146 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1147 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1148 			update_mmu_cache_pmd(vma, address, pmd);
1149 		ret |= VM_FAULT_WRITE;
1150 		goto out_unlock;
1151 	}
1152 	get_page(page);
1153 	spin_unlock(ptl);
1154 alloc:
1155 	if (transparent_hugepage_enabled(vma) &&
1156 	    !transparent_hugepage_debug_cow())
1157 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1158 					      vma, haddr, numa_node_id(), 0);
1159 	else
1160 		new_page = NULL;
1161 
1162 	if (unlikely(!new_page)) {
1163 		if (!page) {
1164 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1165 					address, pmd, orig_pmd, haddr);
1166 		} else {
1167 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1168 					pmd, orig_pmd, page, haddr);
1169 			if (ret & VM_FAULT_OOM)
1170 				split_huge_page(page);
1171 			put_page(page);
1172 		}
1173 		count_vm_event(THP_FAULT_FALLBACK);
1174 		goto out;
1175 	}
1176 
1177 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1178 		put_page(new_page);
1179 		if (page) {
1180 			split_huge_page(page);
1181 			put_page(page);
1182 		}
1183 		count_vm_event(THP_FAULT_FALLBACK);
1184 		ret |= VM_FAULT_OOM;
1185 		goto out;
1186 	}
1187 
1188 	count_vm_event(THP_FAULT_ALLOC);
1189 
1190 	if (!page)
1191 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1192 	else
1193 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1194 	__SetPageUptodate(new_page);
1195 
1196 	mmun_start = haddr;
1197 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1198 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1199 
1200 	spin_lock(ptl);
1201 	if (page)
1202 		put_page(page);
1203 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1204 		spin_unlock(ptl);
1205 		mem_cgroup_uncharge_page(new_page);
1206 		put_page(new_page);
1207 		goto out_mn;
1208 	} else {
1209 		pmd_t entry;
1210 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1211 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1212 		pmdp_clear_flush(vma, haddr, pmd);
1213 		page_add_new_anon_rmap(new_page, vma, haddr);
1214 		set_pmd_at(mm, haddr, pmd, entry);
1215 		update_mmu_cache_pmd(vma, address, pmd);
1216 		if (!page) {
1217 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1218 			put_huge_zero_page();
1219 		} else {
1220 			VM_BUG_ON_PAGE(!PageHead(page), page);
1221 			page_remove_rmap(page);
1222 			put_page(page);
1223 		}
1224 		ret |= VM_FAULT_WRITE;
1225 	}
1226 	spin_unlock(ptl);
1227 out_mn:
1228 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1229 out:
1230 	return ret;
1231 out_unlock:
1232 	spin_unlock(ptl);
1233 	return ret;
1234 }
1235 
1236 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1237 				   unsigned long addr,
1238 				   pmd_t *pmd,
1239 				   unsigned int flags)
1240 {
1241 	struct mm_struct *mm = vma->vm_mm;
1242 	struct page *page = NULL;
1243 
1244 	assert_spin_locked(pmd_lockptr(mm, pmd));
1245 
1246 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1247 		goto out;
1248 
1249 	/* Avoid dumping huge zero page */
1250 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1251 		return ERR_PTR(-EFAULT);
1252 
1253 	/* Full NUMA hinting faults to serialise migration in fault paths */
1254 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1255 		goto out;
1256 
1257 	page = pmd_page(*pmd);
1258 	VM_BUG_ON_PAGE(!PageHead(page), page);
1259 	if (flags & FOLL_TOUCH) {
1260 		pmd_t _pmd;
1261 		/*
1262 		 * We should set the dirty bit only for FOLL_WRITE but
1263 		 * for now the dirty bit in the pmd is meaningless.
1264 		 * And if the dirty bit will become meaningful and
1265 		 * we'll only set it with FOLL_WRITE, an atomic
1266 		 * set_bit will be required on the pmd to set the
1267 		 * young bit, instead of the current set_pmd_at.
1268 		 */
1269 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1271 					  pmd, _pmd,  1))
1272 			update_mmu_cache_pmd(vma, addr, pmd);
1273 	}
1274 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1275 		if (page->mapping && trylock_page(page)) {
1276 			lru_add_drain();
1277 			if (page->mapping)
1278 				mlock_vma_page(page);
1279 			unlock_page(page);
1280 		}
1281 	}
1282 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1283 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1284 	if (flags & FOLL_GET)
1285 		get_page_foll(page);
1286 
1287 out:
1288 	return page;
1289 }
1290 
1291 /* NUMA hinting page fault entry point for trans huge pmds */
1292 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1293 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1294 {
1295 	spinlock_t *ptl;
1296 	struct anon_vma *anon_vma = NULL;
1297 	struct page *page;
1298 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1299 	int page_nid = -1, this_nid = numa_node_id();
1300 	int target_nid, last_cpupid = -1;
1301 	bool page_locked;
1302 	bool migrated = false;
1303 	int flags = 0;
1304 
1305 	ptl = pmd_lock(mm, pmdp);
1306 	if (unlikely(!pmd_same(pmd, *pmdp)))
1307 		goto out_unlock;
1308 
1309 	/*
1310 	 * If there are potential migrations, wait for completion and retry
1311 	 * without disrupting NUMA hinting information. Do not relock and
1312 	 * check_same as the page may no longer be mapped.
1313 	 */
1314 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1315 		spin_unlock(ptl);
1316 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1317 		goto out;
1318 	}
1319 
1320 	page = pmd_page(pmd);
1321 	BUG_ON(is_huge_zero_page(page));
1322 	page_nid = page_to_nid(page);
1323 	last_cpupid = page_cpupid_last(page);
1324 	count_vm_numa_event(NUMA_HINT_FAULTS);
1325 	if (page_nid == this_nid) {
1326 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1327 		flags |= TNF_FAULT_LOCAL;
1328 	}
1329 
1330 	/*
1331 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1332 	 * in general, RO pages shouldn't hurt as much anyway since
1333 	 * they can be in shared cache state.
1334 	 */
1335 	if (!pmd_write(pmd))
1336 		flags |= TNF_NO_GROUP;
1337 
1338 	/*
1339 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1340 	 * page_table_lock if at all possible
1341 	 */
1342 	page_locked = trylock_page(page);
1343 	target_nid = mpol_misplaced(page, vma, haddr);
1344 	if (target_nid == -1) {
1345 		/* If the page was locked, there are no parallel migrations */
1346 		if (page_locked)
1347 			goto clear_pmdnuma;
1348 	}
1349 
1350 	/* Migration could have started since the pmd_trans_migrating check */
1351 	if (!page_locked) {
1352 		spin_unlock(ptl);
1353 		wait_on_page_locked(page);
1354 		page_nid = -1;
1355 		goto out;
1356 	}
1357 
1358 	/*
1359 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1360 	 * to serialises splits
1361 	 */
1362 	get_page(page);
1363 	spin_unlock(ptl);
1364 	anon_vma = page_lock_anon_vma_read(page);
1365 
1366 	/* Confirm the PMD did not change while page_table_lock was released */
1367 	spin_lock(ptl);
1368 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1369 		unlock_page(page);
1370 		put_page(page);
1371 		page_nid = -1;
1372 		goto out_unlock;
1373 	}
1374 
1375 	/* Bail if we fail to protect against THP splits for any reason */
1376 	if (unlikely(!anon_vma)) {
1377 		put_page(page);
1378 		page_nid = -1;
1379 		goto clear_pmdnuma;
1380 	}
1381 
1382 	/*
1383 	 * Migrate the THP to the requested node, returns with page unlocked
1384 	 * and pmd_numa cleared.
1385 	 */
1386 	spin_unlock(ptl);
1387 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1388 				pmdp, pmd, addr, page, target_nid);
1389 	if (migrated) {
1390 		flags |= TNF_MIGRATED;
1391 		page_nid = target_nid;
1392 	}
1393 
1394 	goto out;
1395 clear_pmdnuma:
1396 	BUG_ON(!PageLocked(page));
1397 	pmd = pmd_mknonnuma(pmd);
1398 	set_pmd_at(mm, haddr, pmdp, pmd);
1399 	VM_BUG_ON(pmd_numa(*pmdp));
1400 	update_mmu_cache_pmd(vma, addr, pmdp);
1401 	unlock_page(page);
1402 out_unlock:
1403 	spin_unlock(ptl);
1404 
1405 out:
1406 	if (anon_vma)
1407 		page_unlock_anon_vma_read(anon_vma);
1408 
1409 	if (page_nid != -1)
1410 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1411 
1412 	return 0;
1413 }
1414 
1415 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1416 		 pmd_t *pmd, unsigned long addr)
1417 {
1418 	spinlock_t *ptl;
1419 	int ret = 0;
1420 
1421 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1422 		struct page *page;
1423 		pgtable_t pgtable;
1424 		pmd_t orig_pmd;
1425 		/*
1426 		 * For architectures like ppc64 we look at deposited pgtable
1427 		 * when calling pmdp_get_and_clear. So do the
1428 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1429 		 * operations.
1430 		 */
1431 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1432 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1433 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1434 		if (is_huge_zero_pmd(orig_pmd)) {
1435 			atomic_long_dec(&tlb->mm->nr_ptes);
1436 			spin_unlock(ptl);
1437 			put_huge_zero_page();
1438 		} else {
1439 			page = pmd_page(orig_pmd);
1440 			page_remove_rmap(page);
1441 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1442 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1443 			VM_BUG_ON_PAGE(!PageHead(page), page);
1444 			atomic_long_dec(&tlb->mm->nr_ptes);
1445 			spin_unlock(ptl);
1446 			tlb_remove_page(tlb, page);
1447 		}
1448 		pte_free(tlb->mm, pgtable);
1449 		ret = 1;
1450 	}
1451 	return ret;
1452 }
1453 
1454 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455 		unsigned long addr, unsigned long end,
1456 		unsigned char *vec)
1457 {
1458 	spinlock_t *ptl;
1459 	int ret = 0;
1460 
1461 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1462 		/*
1463 		 * All logical pages in the range are present
1464 		 * if backed by a huge page.
1465 		 */
1466 		spin_unlock(ptl);
1467 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1468 		ret = 1;
1469 	}
1470 
1471 	return ret;
1472 }
1473 
1474 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1475 		  unsigned long old_addr,
1476 		  unsigned long new_addr, unsigned long old_end,
1477 		  pmd_t *old_pmd, pmd_t *new_pmd)
1478 {
1479 	spinlock_t *old_ptl, *new_ptl;
1480 	int ret = 0;
1481 	pmd_t pmd;
1482 
1483 	struct mm_struct *mm = vma->vm_mm;
1484 
1485 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1486 	    (new_addr & ~HPAGE_PMD_MASK) ||
1487 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1488 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1489 		goto out;
1490 
1491 	/*
1492 	 * The destination pmd shouldn't be established, free_pgtables()
1493 	 * should have release it.
1494 	 */
1495 	if (WARN_ON(!pmd_none(*new_pmd))) {
1496 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1497 		goto out;
1498 	}
1499 
1500 	/*
1501 	 * We don't have to worry about the ordering of src and dst
1502 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1503 	 */
1504 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1505 	if (ret == 1) {
1506 		new_ptl = pmd_lockptr(mm, new_pmd);
1507 		if (new_ptl != old_ptl)
1508 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1509 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1510 		VM_BUG_ON(!pmd_none(*new_pmd));
1511 
1512 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1513 			pgtable_t pgtable;
1514 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1515 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1516 		}
1517 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1518 		if (new_ptl != old_ptl)
1519 			spin_unlock(new_ptl);
1520 		spin_unlock(old_ptl);
1521 	}
1522 out:
1523 	return ret;
1524 }
1525 
1526 /*
1527  * Returns
1528  *  - 0 if PMD could not be locked
1529  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1530  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1531  */
1532 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1533 		unsigned long addr, pgprot_t newprot, int prot_numa)
1534 {
1535 	struct mm_struct *mm = vma->vm_mm;
1536 	spinlock_t *ptl;
1537 	int ret = 0;
1538 
1539 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1540 		pmd_t entry;
1541 		ret = 1;
1542 		if (!prot_numa) {
1543 			entry = pmdp_get_and_clear(mm, addr, pmd);
1544 			if (pmd_numa(entry))
1545 				entry = pmd_mknonnuma(entry);
1546 			entry = pmd_modify(entry, newprot);
1547 			ret = HPAGE_PMD_NR;
1548 			set_pmd_at(mm, addr, pmd, entry);
1549 			BUG_ON(pmd_write(entry));
1550 		} else {
1551 			struct page *page = pmd_page(*pmd);
1552 
1553 			/*
1554 			 * Do not trap faults against the zero page. The
1555 			 * read-only data is likely to be read-cached on the
1556 			 * local CPU cache and it is less useful to know about
1557 			 * local vs remote hits on the zero page.
1558 			 */
1559 			if (!is_huge_zero_page(page) &&
1560 			    !pmd_numa(*pmd)) {
1561 				pmdp_set_numa(mm, addr, pmd);
1562 				ret = HPAGE_PMD_NR;
1563 			}
1564 		}
1565 		spin_unlock(ptl);
1566 	}
1567 
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1573  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1574  *
1575  * Note that if it returns 1, this routine returns without unlocking page
1576  * table locks. So callers must unlock them.
1577  */
1578 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1579 		spinlock_t **ptl)
1580 {
1581 	*ptl = pmd_lock(vma->vm_mm, pmd);
1582 	if (likely(pmd_trans_huge(*pmd))) {
1583 		if (unlikely(pmd_trans_splitting(*pmd))) {
1584 			spin_unlock(*ptl);
1585 			wait_split_huge_page(vma->anon_vma, pmd);
1586 			return -1;
1587 		} else {
1588 			/* Thp mapped by 'pmd' is stable, so we can
1589 			 * handle it as it is. */
1590 			return 1;
1591 		}
1592 	}
1593 	spin_unlock(*ptl);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * This function returns whether a given @page is mapped onto the @address
1599  * in the virtual space of @mm.
1600  *
1601  * When it's true, this function returns *pmd with holding the page table lock
1602  * and passing it back to the caller via @ptl.
1603  * If it's false, returns NULL without holding the page table lock.
1604  */
1605 pmd_t *page_check_address_pmd(struct page *page,
1606 			      struct mm_struct *mm,
1607 			      unsigned long address,
1608 			      enum page_check_address_pmd_flag flag,
1609 			      spinlock_t **ptl)
1610 {
1611 	pmd_t *pmd;
1612 
1613 	if (address & ~HPAGE_PMD_MASK)
1614 		return NULL;
1615 
1616 	pmd = mm_find_pmd(mm, address);
1617 	if (!pmd)
1618 		return NULL;
1619 	*ptl = pmd_lock(mm, pmd);
1620 	if (pmd_none(*pmd))
1621 		goto unlock;
1622 	if (pmd_page(*pmd) != page)
1623 		goto unlock;
1624 	/*
1625 	 * split_vma() may create temporary aliased mappings. There is
1626 	 * no risk as long as all huge pmd are found and have their
1627 	 * splitting bit set before __split_huge_page_refcount
1628 	 * runs. Finding the same huge pmd more than once during the
1629 	 * same rmap walk is not a problem.
1630 	 */
1631 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1632 	    pmd_trans_splitting(*pmd))
1633 		goto unlock;
1634 	if (pmd_trans_huge(*pmd)) {
1635 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1636 			  !pmd_trans_splitting(*pmd));
1637 		return pmd;
1638 	}
1639 unlock:
1640 	spin_unlock(*ptl);
1641 	return NULL;
1642 }
1643 
1644 static int __split_huge_page_splitting(struct page *page,
1645 				       struct vm_area_struct *vma,
1646 				       unsigned long address)
1647 {
1648 	struct mm_struct *mm = vma->vm_mm;
1649 	spinlock_t *ptl;
1650 	pmd_t *pmd;
1651 	int ret = 0;
1652 	/* For mmu_notifiers */
1653 	const unsigned long mmun_start = address;
1654 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1655 
1656 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1657 	pmd = page_check_address_pmd(page, mm, address,
1658 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1659 	if (pmd) {
1660 		/*
1661 		 * We can't temporarily set the pmd to null in order
1662 		 * to split it, the pmd must remain marked huge at all
1663 		 * times or the VM won't take the pmd_trans_huge paths
1664 		 * and it won't wait on the anon_vma->root->rwsem to
1665 		 * serialize against split_huge_page*.
1666 		 */
1667 		pmdp_splitting_flush(vma, address, pmd);
1668 		ret = 1;
1669 		spin_unlock(ptl);
1670 	}
1671 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1672 
1673 	return ret;
1674 }
1675 
1676 static void __split_huge_page_refcount(struct page *page,
1677 				       struct list_head *list)
1678 {
1679 	int i;
1680 	struct zone *zone = page_zone(page);
1681 	struct lruvec *lruvec;
1682 	int tail_count = 0;
1683 
1684 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1685 	spin_lock_irq(&zone->lru_lock);
1686 	lruvec = mem_cgroup_page_lruvec(page, zone);
1687 
1688 	compound_lock(page);
1689 	/* complete memcg works before add pages to LRU */
1690 	mem_cgroup_split_huge_fixup(page);
1691 
1692 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1693 		struct page *page_tail = page + i;
1694 
1695 		/* tail_page->_mapcount cannot change */
1696 		BUG_ON(page_mapcount(page_tail) < 0);
1697 		tail_count += page_mapcount(page_tail);
1698 		/* check for overflow */
1699 		BUG_ON(tail_count < 0);
1700 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1701 		/*
1702 		 * tail_page->_count is zero and not changing from
1703 		 * under us. But get_page_unless_zero() may be running
1704 		 * from under us on the tail_page. If we used
1705 		 * atomic_set() below instead of atomic_add(), we
1706 		 * would then run atomic_set() concurrently with
1707 		 * get_page_unless_zero(), and atomic_set() is
1708 		 * implemented in C not using locked ops. spin_unlock
1709 		 * on x86 sometime uses locked ops because of PPro
1710 		 * errata 66, 92, so unless somebody can guarantee
1711 		 * atomic_set() here would be safe on all archs (and
1712 		 * not only on x86), it's safer to use atomic_add().
1713 		 */
1714 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1715 			   &page_tail->_count);
1716 
1717 		/* after clearing PageTail the gup refcount can be released */
1718 		smp_mb();
1719 
1720 		/*
1721 		 * retain hwpoison flag of the poisoned tail page:
1722 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1723 		 *   by the memory-failure.
1724 		 */
1725 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1726 		page_tail->flags |= (page->flags &
1727 				     ((1L << PG_referenced) |
1728 				      (1L << PG_swapbacked) |
1729 				      (1L << PG_mlocked) |
1730 				      (1L << PG_uptodate) |
1731 				      (1L << PG_active) |
1732 				      (1L << PG_unevictable)));
1733 		page_tail->flags |= (1L << PG_dirty);
1734 
1735 		/* clear PageTail before overwriting first_page */
1736 		smp_wmb();
1737 
1738 		/*
1739 		 * __split_huge_page_splitting() already set the
1740 		 * splitting bit in all pmd that could map this
1741 		 * hugepage, that will ensure no CPU can alter the
1742 		 * mapcount on the head page. The mapcount is only
1743 		 * accounted in the head page and it has to be
1744 		 * transferred to all tail pages in the below code. So
1745 		 * for this code to be safe, the split the mapcount
1746 		 * can't change. But that doesn't mean userland can't
1747 		 * keep changing and reading the page contents while
1748 		 * we transfer the mapcount, so the pmd splitting
1749 		 * status is achieved setting a reserved bit in the
1750 		 * pmd, not by clearing the present bit.
1751 		*/
1752 		page_tail->_mapcount = page->_mapcount;
1753 
1754 		BUG_ON(page_tail->mapping);
1755 		page_tail->mapping = page->mapping;
1756 
1757 		page_tail->index = page->index + i;
1758 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1759 
1760 		BUG_ON(!PageAnon(page_tail));
1761 		BUG_ON(!PageUptodate(page_tail));
1762 		BUG_ON(!PageDirty(page_tail));
1763 		BUG_ON(!PageSwapBacked(page_tail));
1764 
1765 		lru_add_page_tail(page, page_tail, lruvec, list);
1766 	}
1767 	atomic_sub(tail_count, &page->_count);
1768 	BUG_ON(atomic_read(&page->_count) <= 0);
1769 
1770 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1771 
1772 	ClearPageCompound(page);
1773 	compound_unlock(page);
1774 	spin_unlock_irq(&zone->lru_lock);
1775 
1776 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1777 		struct page *page_tail = page + i;
1778 		BUG_ON(page_count(page_tail) <= 0);
1779 		/*
1780 		 * Tail pages may be freed if there wasn't any mapping
1781 		 * like if add_to_swap() is running on a lru page that
1782 		 * had its mapping zapped. And freeing these pages
1783 		 * requires taking the lru_lock so we do the put_page
1784 		 * of the tail pages after the split is complete.
1785 		 */
1786 		put_page(page_tail);
1787 	}
1788 
1789 	/*
1790 	 * Only the head page (now become a regular page) is required
1791 	 * to be pinned by the caller.
1792 	 */
1793 	BUG_ON(page_count(page) <= 0);
1794 }
1795 
1796 static int __split_huge_page_map(struct page *page,
1797 				 struct vm_area_struct *vma,
1798 				 unsigned long address)
1799 {
1800 	struct mm_struct *mm = vma->vm_mm;
1801 	spinlock_t *ptl;
1802 	pmd_t *pmd, _pmd;
1803 	int ret = 0, i;
1804 	pgtable_t pgtable;
1805 	unsigned long haddr;
1806 
1807 	pmd = page_check_address_pmd(page, mm, address,
1808 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1809 	if (pmd) {
1810 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1811 		pmd_populate(mm, &_pmd, pgtable);
1812 
1813 		haddr = address;
1814 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1815 			pte_t *pte, entry;
1816 			BUG_ON(PageCompound(page+i));
1817 			entry = mk_pte(page + i, vma->vm_page_prot);
1818 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 			if (!pmd_write(*pmd))
1820 				entry = pte_wrprotect(entry);
1821 			else
1822 				BUG_ON(page_mapcount(page) != 1);
1823 			if (!pmd_young(*pmd))
1824 				entry = pte_mkold(entry);
1825 			if (pmd_numa(*pmd))
1826 				entry = pte_mknuma(entry);
1827 			pte = pte_offset_map(&_pmd, haddr);
1828 			BUG_ON(!pte_none(*pte));
1829 			set_pte_at(mm, haddr, pte, entry);
1830 			pte_unmap(pte);
1831 		}
1832 
1833 		smp_wmb(); /* make pte visible before pmd */
1834 		/*
1835 		 * Up to this point the pmd is present and huge and
1836 		 * userland has the whole access to the hugepage
1837 		 * during the split (which happens in place). If we
1838 		 * overwrite the pmd with the not-huge version
1839 		 * pointing to the pte here (which of course we could
1840 		 * if all CPUs were bug free), userland could trigger
1841 		 * a small page size TLB miss on the small sized TLB
1842 		 * while the hugepage TLB entry is still established
1843 		 * in the huge TLB. Some CPU doesn't like that. See
1844 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1845 		 * Erratum 383 on page 93. Intel should be safe but is
1846 		 * also warns that it's only safe if the permission
1847 		 * and cache attributes of the two entries loaded in
1848 		 * the two TLB is identical (which should be the case
1849 		 * here). But it is generally safer to never allow
1850 		 * small and huge TLB entries for the same virtual
1851 		 * address to be loaded simultaneously. So instead of
1852 		 * doing "pmd_populate(); flush_tlb_range();" we first
1853 		 * mark the current pmd notpresent (atomically because
1854 		 * here the pmd_trans_huge and pmd_trans_splitting
1855 		 * must remain set at all times on the pmd until the
1856 		 * split is complete for this pmd), then we flush the
1857 		 * SMP TLB and finally we write the non-huge version
1858 		 * of the pmd entry with pmd_populate.
1859 		 */
1860 		pmdp_invalidate(vma, address, pmd);
1861 		pmd_populate(mm, pmd, pgtable);
1862 		ret = 1;
1863 		spin_unlock(ptl);
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 /* must be called with anon_vma->root->rwsem held */
1870 static void __split_huge_page(struct page *page,
1871 			      struct anon_vma *anon_vma,
1872 			      struct list_head *list)
1873 {
1874 	int mapcount, mapcount2;
1875 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1876 	struct anon_vma_chain *avc;
1877 
1878 	BUG_ON(!PageHead(page));
1879 	BUG_ON(PageTail(page));
1880 
1881 	mapcount = 0;
1882 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1883 		struct vm_area_struct *vma = avc->vma;
1884 		unsigned long addr = vma_address(page, vma);
1885 		BUG_ON(is_vma_temporary_stack(vma));
1886 		mapcount += __split_huge_page_splitting(page, vma, addr);
1887 	}
1888 	/*
1889 	 * It is critical that new vmas are added to the tail of the
1890 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1891 	 * and establishes a child pmd before
1892 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1893 	 * we fail to prevent copy_huge_pmd() from running until the
1894 	 * whole __split_huge_page() is complete), we will still see
1895 	 * the newly established pmd of the child later during the
1896 	 * walk, to be able to set it as pmd_trans_splitting too.
1897 	 */
1898 	if (mapcount != page_mapcount(page))
1899 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1900 		       mapcount, page_mapcount(page));
1901 	BUG_ON(mapcount != page_mapcount(page));
1902 
1903 	__split_huge_page_refcount(page, list);
1904 
1905 	mapcount2 = 0;
1906 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1907 		struct vm_area_struct *vma = avc->vma;
1908 		unsigned long addr = vma_address(page, vma);
1909 		BUG_ON(is_vma_temporary_stack(vma));
1910 		mapcount2 += __split_huge_page_map(page, vma, addr);
1911 	}
1912 	if (mapcount != mapcount2)
1913 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1914 		       mapcount, mapcount2, page_mapcount(page));
1915 	BUG_ON(mapcount != mapcount2);
1916 }
1917 
1918 /*
1919  * Split a hugepage into normal pages. This doesn't change the position of head
1920  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1921  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1922  * from the hugepage.
1923  * Return 0 if the hugepage is split successfully otherwise return 1.
1924  */
1925 int split_huge_page_to_list(struct page *page, struct list_head *list)
1926 {
1927 	struct anon_vma *anon_vma;
1928 	int ret = 1;
1929 
1930 	BUG_ON(is_huge_zero_page(page));
1931 	BUG_ON(!PageAnon(page));
1932 
1933 	/*
1934 	 * The caller does not necessarily hold an mmap_sem that would prevent
1935 	 * the anon_vma disappearing so we first we take a reference to it
1936 	 * and then lock the anon_vma for write. This is similar to
1937 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1938 	 * against parallel split or collapse operations.
1939 	 */
1940 	anon_vma = page_get_anon_vma(page);
1941 	if (!anon_vma)
1942 		goto out;
1943 	anon_vma_lock_write(anon_vma);
1944 
1945 	ret = 0;
1946 	if (!PageCompound(page))
1947 		goto out_unlock;
1948 
1949 	BUG_ON(!PageSwapBacked(page));
1950 	__split_huge_page(page, anon_vma, list);
1951 	count_vm_event(THP_SPLIT);
1952 
1953 	BUG_ON(PageCompound(page));
1954 out_unlock:
1955 	anon_vma_unlock_write(anon_vma);
1956 	put_anon_vma(anon_vma);
1957 out:
1958 	return ret;
1959 }
1960 
1961 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1962 
1963 int hugepage_madvise(struct vm_area_struct *vma,
1964 		     unsigned long *vm_flags, int advice)
1965 {
1966 	struct mm_struct *mm = vma->vm_mm;
1967 
1968 	switch (advice) {
1969 	case MADV_HUGEPAGE:
1970 		/*
1971 		 * Be somewhat over-protective like KSM for now!
1972 		 */
1973 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1974 			return -EINVAL;
1975 		if (mm->def_flags & VM_NOHUGEPAGE)
1976 			return -EINVAL;
1977 		*vm_flags &= ~VM_NOHUGEPAGE;
1978 		*vm_flags |= VM_HUGEPAGE;
1979 		/*
1980 		 * If the vma become good for khugepaged to scan,
1981 		 * register it here without waiting a page fault that
1982 		 * may not happen any time soon.
1983 		 */
1984 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1985 			return -ENOMEM;
1986 		break;
1987 	case MADV_NOHUGEPAGE:
1988 		/*
1989 		 * Be somewhat over-protective like KSM for now!
1990 		 */
1991 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1992 			return -EINVAL;
1993 		*vm_flags &= ~VM_HUGEPAGE;
1994 		*vm_flags |= VM_NOHUGEPAGE;
1995 		/*
1996 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1997 		 * this vma even if we leave the mm registered in khugepaged if
1998 		 * it got registered before VM_NOHUGEPAGE was set.
1999 		 */
2000 		break;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int __init khugepaged_slab_init(void)
2007 {
2008 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2009 					  sizeof(struct mm_slot),
2010 					  __alignof__(struct mm_slot), 0, NULL);
2011 	if (!mm_slot_cache)
2012 		return -ENOMEM;
2013 
2014 	return 0;
2015 }
2016 
2017 static inline struct mm_slot *alloc_mm_slot(void)
2018 {
2019 	if (!mm_slot_cache)	/* initialization failed */
2020 		return NULL;
2021 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2022 }
2023 
2024 static inline void free_mm_slot(struct mm_slot *mm_slot)
2025 {
2026 	kmem_cache_free(mm_slot_cache, mm_slot);
2027 }
2028 
2029 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2030 {
2031 	struct mm_slot *mm_slot;
2032 
2033 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2034 		if (mm == mm_slot->mm)
2035 			return mm_slot;
2036 
2037 	return NULL;
2038 }
2039 
2040 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2041 				    struct mm_slot *mm_slot)
2042 {
2043 	mm_slot->mm = mm;
2044 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2045 }
2046 
2047 static inline int khugepaged_test_exit(struct mm_struct *mm)
2048 {
2049 	return atomic_read(&mm->mm_users) == 0;
2050 }
2051 
2052 int __khugepaged_enter(struct mm_struct *mm)
2053 {
2054 	struct mm_slot *mm_slot;
2055 	int wakeup;
2056 
2057 	mm_slot = alloc_mm_slot();
2058 	if (!mm_slot)
2059 		return -ENOMEM;
2060 
2061 	/* __khugepaged_exit() must not run from under us */
2062 	VM_BUG_ON(khugepaged_test_exit(mm));
2063 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2064 		free_mm_slot(mm_slot);
2065 		return 0;
2066 	}
2067 
2068 	spin_lock(&khugepaged_mm_lock);
2069 	insert_to_mm_slots_hash(mm, mm_slot);
2070 	/*
2071 	 * Insert just behind the scanning cursor, to let the area settle
2072 	 * down a little.
2073 	 */
2074 	wakeup = list_empty(&khugepaged_scan.mm_head);
2075 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2076 	spin_unlock(&khugepaged_mm_lock);
2077 
2078 	atomic_inc(&mm->mm_count);
2079 	if (wakeup)
2080 		wake_up_interruptible(&khugepaged_wait);
2081 
2082 	return 0;
2083 }
2084 
2085 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2086 {
2087 	unsigned long hstart, hend;
2088 	if (!vma->anon_vma)
2089 		/*
2090 		 * Not yet faulted in so we will register later in the
2091 		 * page fault if needed.
2092 		 */
2093 		return 0;
2094 	if (vma->vm_ops)
2095 		/* khugepaged not yet working on file or special mappings */
2096 		return 0;
2097 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2098 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2099 	hend = vma->vm_end & HPAGE_PMD_MASK;
2100 	if (hstart < hend)
2101 		return khugepaged_enter(vma);
2102 	return 0;
2103 }
2104 
2105 void __khugepaged_exit(struct mm_struct *mm)
2106 {
2107 	struct mm_slot *mm_slot;
2108 	int free = 0;
2109 
2110 	spin_lock(&khugepaged_mm_lock);
2111 	mm_slot = get_mm_slot(mm);
2112 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2113 		hash_del(&mm_slot->hash);
2114 		list_del(&mm_slot->mm_node);
2115 		free = 1;
2116 	}
2117 	spin_unlock(&khugepaged_mm_lock);
2118 
2119 	if (free) {
2120 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2121 		free_mm_slot(mm_slot);
2122 		mmdrop(mm);
2123 	} else if (mm_slot) {
2124 		/*
2125 		 * This is required to serialize against
2126 		 * khugepaged_test_exit() (which is guaranteed to run
2127 		 * under mmap sem read mode). Stop here (after we
2128 		 * return all pagetables will be destroyed) until
2129 		 * khugepaged has finished working on the pagetables
2130 		 * under the mmap_sem.
2131 		 */
2132 		down_write(&mm->mmap_sem);
2133 		up_write(&mm->mmap_sem);
2134 	}
2135 }
2136 
2137 static void release_pte_page(struct page *page)
2138 {
2139 	/* 0 stands for page_is_file_cache(page) == false */
2140 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 	unlock_page(page);
2142 	putback_lru_page(page);
2143 }
2144 
2145 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2146 {
2147 	while (--_pte >= pte) {
2148 		pte_t pteval = *_pte;
2149 		if (!pte_none(pteval))
2150 			release_pte_page(pte_page(pteval));
2151 	}
2152 }
2153 
2154 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2155 					unsigned long address,
2156 					pte_t *pte)
2157 {
2158 	struct page *page;
2159 	pte_t *_pte;
2160 	int referenced = 0, none = 0;
2161 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2162 	     _pte++, address += PAGE_SIZE) {
2163 		pte_t pteval = *_pte;
2164 		if (pte_none(pteval)) {
2165 			if (++none <= khugepaged_max_ptes_none)
2166 				continue;
2167 			else
2168 				goto out;
2169 		}
2170 		if (!pte_present(pteval) || !pte_write(pteval))
2171 			goto out;
2172 		page = vm_normal_page(vma, address, pteval);
2173 		if (unlikely(!page))
2174 			goto out;
2175 
2176 		VM_BUG_ON_PAGE(PageCompound(page), page);
2177 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2178 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2179 
2180 		/* cannot use mapcount: can't collapse if there's a gup pin */
2181 		if (page_count(page) != 1)
2182 			goto out;
2183 		/*
2184 		 * We can do it before isolate_lru_page because the
2185 		 * page can't be freed from under us. NOTE: PG_lock
2186 		 * is needed to serialize against split_huge_page
2187 		 * when invoked from the VM.
2188 		 */
2189 		if (!trylock_page(page))
2190 			goto out;
2191 		/*
2192 		 * Isolate the page to avoid collapsing an hugepage
2193 		 * currently in use by the VM.
2194 		 */
2195 		if (isolate_lru_page(page)) {
2196 			unlock_page(page);
2197 			goto out;
2198 		}
2199 		/* 0 stands for page_is_file_cache(page) == false */
2200 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2201 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2202 		VM_BUG_ON_PAGE(PageLRU(page), page);
2203 
2204 		/* If there is no mapped pte young don't collapse the page */
2205 		if (pte_young(pteval) || PageReferenced(page) ||
2206 		    mmu_notifier_test_young(vma->vm_mm, address))
2207 			referenced = 1;
2208 	}
2209 	if (likely(referenced))
2210 		return 1;
2211 out:
2212 	release_pte_pages(pte, _pte);
2213 	return 0;
2214 }
2215 
2216 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2217 				      struct vm_area_struct *vma,
2218 				      unsigned long address,
2219 				      spinlock_t *ptl)
2220 {
2221 	pte_t *_pte;
2222 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2223 		pte_t pteval = *_pte;
2224 		struct page *src_page;
2225 
2226 		if (pte_none(pteval)) {
2227 			clear_user_highpage(page, address);
2228 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2229 		} else {
2230 			src_page = pte_page(pteval);
2231 			copy_user_highpage(page, src_page, address, vma);
2232 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2233 			release_pte_page(src_page);
2234 			/*
2235 			 * ptl mostly unnecessary, but preempt has to
2236 			 * be disabled to update the per-cpu stats
2237 			 * inside page_remove_rmap().
2238 			 */
2239 			spin_lock(ptl);
2240 			/*
2241 			 * paravirt calls inside pte_clear here are
2242 			 * superfluous.
2243 			 */
2244 			pte_clear(vma->vm_mm, address, _pte);
2245 			page_remove_rmap(src_page);
2246 			spin_unlock(ptl);
2247 			free_page_and_swap_cache(src_page);
2248 		}
2249 
2250 		address += PAGE_SIZE;
2251 		page++;
2252 	}
2253 }
2254 
2255 static void khugepaged_alloc_sleep(void)
2256 {
2257 	wait_event_freezable_timeout(khugepaged_wait, false,
2258 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2259 }
2260 
2261 static int khugepaged_node_load[MAX_NUMNODES];
2262 
2263 #ifdef CONFIG_NUMA
2264 static int khugepaged_find_target_node(void)
2265 {
2266 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2267 	int nid, target_node = 0, max_value = 0;
2268 
2269 	/* find first node with max normal pages hit */
2270 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2271 		if (khugepaged_node_load[nid] > max_value) {
2272 			max_value = khugepaged_node_load[nid];
2273 			target_node = nid;
2274 		}
2275 
2276 	/* do some balance if several nodes have the same hit record */
2277 	if (target_node <= last_khugepaged_target_node)
2278 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2279 				nid++)
2280 			if (max_value == khugepaged_node_load[nid]) {
2281 				target_node = nid;
2282 				break;
2283 			}
2284 
2285 	last_khugepaged_target_node = target_node;
2286 	return target_node;
2287 }
2288 
2289 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2290 {
2291 	if (IS_ERR(*hpage)) {
2292 		if (!*wait)
2293 			return false;
2294 
2295 		*wait = false;
2296 		*hpage = NULL;
2297 		khugepaged_alloc_sleep();
2298 	} else if (*hpage) {
2299 		put_page(*hpage);
2300 		*hpage = NULL;
2301 	}
2302 
2303 	return true;
2304 }
2305 
2306 static struct page
2307 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2308 		       struct vm_area_struct *vma, unsigned long address,
2309 		       int node)
2310 {
2311 	VM_BUG_ON_PAGE(*hpage, *hpage);
2312 	/*
2313 	 * Allocate the page while the vma is still valid and under
2314 	 * the mmap_sem read mode so there is no memory allocation
2315 	 * later when we take the mmap_sem in write mode. This is more
2316 	 * friendly behavior (OTOH it may actually hide bugs) to
2317 	 * filesystems in userland with daemons allocating memory in
2318 	 * the userland I/O paths.  Allocating memory with the
2319 	 * mmap_sem in read mode is good idea also to allow greater
2320 	 * scalability.
2321 	 */
2322 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2323 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2324 	/*
2325 	 * After allocating the hugepage, release the mmap_sem read lock in
2326 	 * preparation for taking it in write mode.
2327 	 */
2328 	up_read(&mm->mmap_sem);
2329 	if (unlikely(!*hpage)) {
2330 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2331 		*hpage = ERR_PTR(-ENOMEM);
2332 		return NULL;
2333 	}
2334 
2335 	count_vm_event(THP_COLLAPSE_ALLOC);
2336 	return *hpage;
2337 }
2338 #else
2339 static int khugepaged_find_target_node(void)
2340 {
2341 	return 0;
2342 }
2343 
2344 static inline struct page *alloc_hugepage(int defrag)
2345 {
2346 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2347 			   HPAGE_PMD_ORDER);
2348 }
2349 
2350 static struct page *khugepaged_alloc_hugepage(bool *wait)
2351 {
2352 	struct page *hpage;
2353 
2354 	do {
2355 		hpage = alloc_hugepage(khugepaged_defrag());
2356 		if (!hpage) {
2357 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2358 			if (!*wait)
2359 				return NULL;
2360 
2361 			*wait = false;
2362 			khugepaged_alloc_sleep();
2363 		} else
2364 			count_vm_event(THP_COLLAPSE_ALLOC);
2365 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2366 
2367 	return hpage;
2368 }
2369 
2370 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2371 {
2372 	if (!*hpage)
2373 		*hpage = khugepaged_alloc_hugepage(wait);
2374 
2375 	if (unlikely(!*hpage))
2376 		return false;
2377 
2378 	return true;
2379 }
2380 
2381 static struct page
2382 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2383 		       struct vm_area_struct *vma, unsigned long address,
2384 		       int node)
2385 {
2386 	up_read(&mm->mmap_sem);
2387 	VM_BUG_ON(!*hpage);
2388 	return  *hpage;
2389 }
2390 #endif
2391 
2392 static bool hugepage_vma_check(struct vm_area_struct *vma)
2393 {
2394 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2395 	    (vma->vm_flags & VM_NOHUGEPAGE))
2396 		return false;
2397 
2398 	if (!vma->anon_vma || vma->vm_ops)
2399 		return false;
2400 	if (is_vma_temporary_stack(vma))
2401 		return false;
2402 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2403 	return true;
2404 }
2405 
2406 static void collapse_huge_page(struct mm_struct *mm,
2407 				   unsigned long address,
2408 				   struct page **hpage,
2409 				   struct vm_area_struct *vma,
2410 				   int node)
2411 {
2412 	pmd_t *pmd, _pmd;
2413 	pte_t *pte;
2414 	pgtable_t pgtable;
2415 	struct page *new_page;
2416 	spinlock_t *pmd_ptl, *pte_ptl;
2417 	int isolated;
2418 	unsigned long hstart, hend;
2419 	unsigned long mmun_start;	/* For mmu_notifiers */
2420 	unsigned long mmun_end;		/* For mmu_notifiers */
2421 
2422 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2423 
2424 	/* release the mmap_sem read lock. */
2425 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2426 	if (!new_page)
2427 		return;
2428 
2429 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2430 		return;
2431 
2432 	/*
2433 	 * Prevent all access to pagetables with the exception of
2434 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2435 	 * handled by the anon_vma lock + PG_lock.
2436 	 */
2437 	down_write(&mm->mmap_sem);
2438 	if (unlikely(khugepaged_test_exit(mm)))
2439 		goto out;
2440 
2441 	vma = find_vma(mm, address);
2442 	if (!vma)
2443 		goto out;
2444 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2445 	hend = vma->vm_end & HPAGE_PMD_MASK;
2446 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2447 		goto out;
2448 	if (!hugepage_vma_check(vma))
2449 		goto out;
2450 	pmd = mm_find_pmd(mm, address);
2451 	if (!pmd)
2452 		goto out;
2453 	if (pmd_trans_huge(*pmd))
2454 		goto out;
2455 
2456 	anon_vma_lock_write(vma->anon_vma);
2457 
2458 	pte = pte_offset_map(pmd, address);
2459 	pte_ptl = pte_lockptr(mm, pmd);
2460 
2461 	mmun_start = address;
2462 	mmun_end   = address + HPAGE_PMD_SIZE;
2463 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2464 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2465 	/*
2466 	 * After this gup_fast can't run anymore. This also removes
2467 	 * any huge TLB entry from the CPU so we won't allow
2468 	 * huge and small TLB entries for the same virtual address
2469 	 * to avoid the risk of CPU bugs in that area.
2470 	 */
2471 	_pmd = pmdp_clear_flush(vma, address, pmd);
2472 	spin_unlock(pmd_ptl);
2473 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2474 
2475 	spin_lock(pte_ptl);
2476 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2477 	spin_unlock(pte_ptl);
2478 
2479 	if (unlikely(!isolated)) {
2480 		pte_unmap(pte);
2481 		spin_lock(pmd_ptl);
2482 		BUG_ON(!pmd_none(*pmd));
2483 		/*
2484 		 * We can only use set_pmd_at when establishing
2485 		 * hugepmds and never for establishing regular pmds that
2486 		 * points to regular pagetables. Use pmd_populate for that
2487 		 */
2488 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2489 		spin_unlock(pmd_ptl);
2490 		anon_vma_unlock_write(vma->anon_vma);
2491 		goto out;
2492 	}
2493 
2494 	/*
2495 	 * All pages are isolated and locked so anon_vma rmap
2496 	 * can't run anymore.
2497 	 */
2498 	anon_vma_unlock_write(vma->anon_vma);
2499 
2500 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2501 	pte_unmap(pte);
2502 	__SetPageUptodate(new_page);
2503 	pgtable = pmd_pgtable(_pmd);
2504 
2505 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2506 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2507 
2508 	/*
2509 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2510 	 * this is needed to avoid the copy_huge_page writes to become
2511 	 * visible after the set_pmd_at() write.
2512 	 */
2513 	smp_wmb();
2514 
2515 	spin_lock(pmd_ptl);
2516 	BUG_ON(!pmd_none(*pmd));
2517 	page_add_new_anon_rmap(new_page, vma, address);
2518 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2519 	set_pmd_at(mm, address, pmd, _pmd);
2520 	update_mmu_cache_pmd(vma, address, pmd);
2521 	spin_unlock(pmd_ptl);
2522 
2523 	*hpage = NULL;
2524 
2525 	khugepaged_pages_collapsed++;
2526 out_up_write:
2527 	up_write(&mm->mmap_sem);
2528 	return;
2529 
2530 out:
2531 	mem_cgroup_uncharge_page(new_page);
2532 	goto out_up_write;
2533 }
2534 
2535 static int khugepaged_scan_pmd(struct mm_struct *mm,
2536 			       struct vm_area_struct *vma,
2537 			       unsigned long address,
2538 			       struct page **hpage)
2539 {
2540 	pmd_t *pmd;
2541 	pte_t *pte, *_pte;
2542 	int ret = 0, referenced = 0, none = 0;
2543 	struct page *page;
2544 	unsigned long _address;
2545 	spinlock_t *ptl;
2546 	int node = NUMA_NO_NODE;
2547 
2548 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2549 
2550 	pmd = mm_find_pmd(mm, address);
2551 	if (!pmd)
2552 		goto out;
2553 	if (pmd_trans_huge(*pmd))
2554 		goto out;
2555 
2556 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2557 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2558 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2559 	     _pte++, _address += PAGE_SIZE) {
2560 		pte_t pteval = *_pte;
2561 		if (pte_none(pteval)) {
2562 			if (++none <= khugepaged_max_ptes_none)
2563 				continue;
2564 			else
2565 				goto out_unmap;
2566 		}
2567 		if (!pte_present(pteval) || !pte_write(pteval))
2568 			goto out_unmap;
2569 		page = vm_normal_page(vma, _address, pteval);
2570 		if (unlikely(!page))
2571 			goto out_unmap;
2572 		/*
2573 		 * Record which node the original page is from and save this
2574 		 * information to khugepaged_node_load[].
2575 		 * Khupaged will allocate hugepage from the node has the max
2576 		 * hit record.
2577 		 */
2578 		node = page_to_nid(page);
2579 		khugepaged_node_load[node]++;
2580 		VM_BUG_ON_PAGE(PageCompound(page), page);
2581 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2582 			goto out_unmap;
2583 		/* cannot use mapcount: can't collapse if there's a gup pin */
2584 		if (page_count(page) != 1)
2585 			goto out_unmap;
2586 		if (pte_young(pteval) || PageReferenced(page) ||
2587 		    mmu_notifier_test_young(vma->vm_mm, address))
2588 			referenced = 1;
2589 	}
2590 	if (referenced)
2591 		ret = 1;
2592 out_unmap:
2593 	pte_unmap_unlock(pte, ptl);
2594 	if (ret) {
2595 		node = khugepaged_find_target_node();
2596 		/* collapse_huge_page will return with the mmap_sem released */
2597 		collapse_huge_page(mm, address, hpage, vma, node);
2598 	}
2599 out:
2600 	return ret;
2601 }
2602 
2603 static void collect_mm_slot(struct mm_slot *mm_slot)
2604 {
2605 	struct mm_struct *mm = mm_slot->mm;
2606 
2607 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2608 
2609 	if (khugepaged_test_exit(mm)) {
2610 		/* free mm_slot */
2611 		hash_del(&mm_slot->hash);
2612 		list_del(&mm_slot->mm_node);
2613 
2614 		/*
2615 		 * Not strictly needed because the mm exited already.
2616 		 *
2617 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2618 		 */
2619 
2620 		/* khugepaged_mm_lock actually not necessary for the below */
2621 		free_mm_slot(mm_slot);
2622 		mmdrop(mm);
2623 	}
2624 }
2625 
2626 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2627 					    struct page **hpage)
2628 	__releases(&khugepaged_mm_lock)
2629 	__acquires(&khugepaged_mm_lock)
2630 {
2631 	struct mm_slot *mm_slot;
2632 	struct mm_struct *mm;
2633 	struct vm_area_struct *vma;
2634 	int progress = 0;
2635 
2636 	VM_BUG_ON(!pages);
2637 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2638 
2639 	if (khugepaged_scan.mm_slot)
2640 		mm_slot = khugepaged_scan.mm_slot;
2641 	else {
2642 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2643 				     struct mm_slot, mm_node);
2644 		khugepaged_scan.address = 0;
2645 		khugepaged_scan.mm_slot = mm_slot;
2646 	}
2647 	spin_unlock(&khugepaged_mm_lock);
2648 
2649 	mm = mm_slot->mm;
2650 	down_read(&mm->mmap_sem);
2651 	if (unlikely(khugepaged_test_exit(mm)))
2652 		vma = NULL;
2653 	else
2654 		vma = find_vma(mm, khugepaged_scan.address);
2655 
2656 	progress++;
2657 	for (; vma; vma = vma->vm_next) {
2658 		unsigned long hstart, hend;
2659 
2660 		cond_resched();
2661 		if (unlikely(khugepaged_test_exit(mm))) {
2662 			progress++;
2663 			break;
2664 		}
2665 		if (!hugepage_vma_check(vma)) {
2666 skip:
2667 			progress++;
2668 			continue;
2669 		}
2670 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2671 		hend = vma->vm_end & HPAGE_PMD_MASK;
2672 		if (hstart >= hend)
2673 			goto skip;
2674 		if (khugepaged_scan.address > hend)
2675 			goto skip;
2676 		if (khugepaged_scan.address < hstart)
2677 			khugepaged_scan.address = hstart;
2678 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2679 
2680 		while (khugepaged_scan.address < hend) {
2681 			int ret;
2682 			cond_resched();
2683 			if (unlikely(khugepaged_test_exit(mm)))
2684 				goto breakouterloop;
2685 
2686 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2687 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2688 				  hend);
2689 			ret = khugepaged_scan_pmd(mm, vma,
2690 						  khugepaged_scan.address,
2691 						  hpage);
2692 			/* move to next address */
2693 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2694 			progress += HPAGE_PMD_NR;
2695 			if (ret)
2696 				/* we released mmap_sem so break loop */
2697 				goto breakouterloop_mmap_sem;
2698 			if (progress >= pages)
2699 				goto breakouterloop;
2700 		}
2701 	}
2702 breakouterloop:
2703 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2704 breakouterloop_mmap_sem:
2705 
2706 	spin_lock(&khugepaged_mm_lock);
2707 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2708 	/*
2709 	 * Release the current mm_slot if this mm is about to die, or
2710 	 * if we scanned all vmas of this mm.
2711 	 */
2712 	if (khugepaged_test_exit(mm) || !vma) {
2713 		/*
2714 		 * Make sure that if mm_users is reaching zero while
2715 		 * khugepaged runs here, khugepaged_exit will find
2716 		 * mm_slot not pointing to the exiting mm.
2717 		 */
2718 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2719 			khugepaged_scan.mm_slot = list_entry(
2720 				mm_slot->mm_node.next,
2721 				struct mm_slot, mm_node);
2722 			khugepaged_scan.address = 0;
2723 		} else {
2724 			khugepaged_scan.mm_slot = NULL;
2725 			khugepaged_full_scans++;
2726 		}
2727 
2728 		collect_mm_slot(mm_slot);
2729 	}
2730 
2731 	return progress;
2732 }
2733 
2734 static int khugepaged_has_work(void)
2735 {
2736 	return !list_empty(&khugepaged_scan.mm_head) &&
2737 		khugepaged_enabled();
2738 }
2739 
2740 static int khugepaged_wait_event(void)
2741 {
2742 	return !list_empty(&khugepaged_scan.mm_head) ||
2743 		kthread_should_stop();
2744 }
2745 
2746 static void khugepaged_do_scan(void)
2747 {
2748 	struct page *hpage = NULL;
2749 	unsigned int progress = 0, pass_through_head = 0;
2750 	unsigned int pages = khugepaged_pages_to_scan;
2751 	bool wait = true;
2752 
2753 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2754 
2755 	while (progress < pages) {
2756 		if (!khugepaged_prealloc_page(&hpage, &wait))
2757 			break;
2758 
2759 		cond_resched();
2760 
2761 		if (unlikely(kthread_should_stop() || freezing(current)))
2762 			break;
2763 
2764 		spin_lock(&khugepaged_mm_lock);
2765 		if (!khugepaged_scan.mm_slot)
2766 			pass_through_head++;
2767 		if (khugepaged_has_work() &&
2768 		    pass_through_head < 2)
2769 			progress += khugepaged_scan_mm_slot(pages - progress,
2770 							    &hpage);
2771 		else
2772 			progress = pages;
2773 		spin_unlock(&khugepaged_mm_lock);
2774 	}
2775 
2776 	if (!IS_ERR_OR_NULL(hpage))
2777 		put_page(hpage);
2778 }
2779 
2780 static void khugepaged_wait_work(void)
2781 {
2782 	try_to_freeze();
2783 
2784 	if (khugepaged_has_work()) {
2785 		if (!khugepaged_scan_sleep_millisecs)
2786 			return;
2787 
2788 		wait_event_freezable_timeout(khugepaged_wait,
2789 					     kthread_should_stop(),
2790 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2791 		return;
2792 	}
2793 
2794 	if (khugepaged_enabled())
2795 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2796 }
2797 
2798 static int khugepaged(void *none)
2799 {
2800 	struct mm_slot *mm_slot;
2801 
2802 	set_freezable();
2803 	set_user_nice(current, 19);
2804 
2805 	while (!kthread_should_stop()) {
2806 		khugepaged_do_scan();
2807 		khugepaged_wait_work();
2808 	}
2809 
2810 	spin_lock(&khugepaged_mm_lock);
2811 	mm_slot = khugepaged_scan.mm_slot;
2812 	khugepaged_scan.mm_slot = NULL;
2813 	if (mm_slot)
2814 		collect_mm_slot(mm_slot);
2815 	spin_unlock(&khugepaged_mm_lock);
2816 	return 0;
2817 }
2818 
2819 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2820 		unsigned long haddr, pmd_t *pmd)
2821 {
2822 	struct mm_struct *mm = vma->vm_mm;
2823 	pgtable_t pgtable;
2824 	pmd_t _pmd;
2825 	int i;
2826 
2827 	pmdp_clear_flush(vma, haddr, pmd);
2828 	/* leave pmd empty until pte is filled */
2829 
2830 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2831 	pmd_populate(mm, &_pmd, pgtable);
2832 
2833 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2834 		pte_t *pte, entry;
2835 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2836 		entry = pte_mkspecial(entry);
2837 		pte = pte_offset_map(&_pmd, haddr);
2838 		VM_BUG_ON(!pte_none(*pte));
2839 		set_pte_at(mm, haddr, pte, entry);
2840 		pte_unmap(pte);
2841 	}
2842 	smp_wmb(); /* make pte visible before pmd */
2843 	pmd_populate(mm, pmd, pgtable);
2844 	put_huge_zero_page();
2845 }
2846 
2847 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2848 		pmd_t *pmd)
2849 {
2850 	spinlock_t *ptl;
2851 	struct page *page;
2852 	struct mm_struct *mm = vma->vm_mm;
2853 	unsigned long haddr = address & HPAGE_PMD_MASK;
2854 	unsigned long mmun_start;	/* For mmu_notifiers */
2855 	unsigned long mmun_end;		/* For mmu_notifiers */
2856 
2857 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2858 
2859 	mmun_start = haddr;
2860 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2861 again:
2862 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2863 	ptl = pmd_lock(mm, pmd);
2864 	if (unlikely(!pmd_trans_huge(*pmd))) {
2865 		spin_unlock(ptl);
2866 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2867 		return;
2868 	}
2869 	if (is_huge_zero_pmd(*pmd)) {
2870 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2871 		spin_unlock(ptl);
2872 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873 		return;
2874 	}
2875 	page = pmd_page(*pmd);
2876 	VM_BUG_ON_PAGE(!page_count(page), page);
2877 	get_page(page);
2878 	spin_unlock(ptl);
2879 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2880 
2881 	split_huge_page(page);
2882 
2883 	put_page(page);
2884 
2885 	/*
2886 	 * We don't always have down_write of mmap_sem here: a racing
2887 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2888 	 * huge page before our split_huge_page() got the anon_vma lock.
2889 	 */
2890 	if (unlikely(pmd_trans_huge(*pmd)))
2891 		goto again;
2892 }
2893 
2894 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2895 		pmd_t *pmd)
2896 {
2897 	struct vm_area_struct *vma;
2898 
2899 	vma = find_vma(mm, address);
2900 	BUG_ON(vma == NULL);
2901 	split_huge_page_pmd(vma, address, pmd);
2902 }
2903 
2904 static void split_huge_page_address(struct mm_struct *mm,
2905 				    unsigned long address)
2906 {
2907 	pmd_t *pmd;
2908 
2909 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2910 
2911 	pmd = mm_find_pmd(mm, address);
2912 	if (!pmd)
2913 		return;
2914 	/*
2915 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2916 	 * materialize from under us.
2917 	 */
2918 	split_huge_page_pmd_mm(mm, address, pmd);
2919 }
2920 
2921 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2922 			     unsigned long start,
2923 			     unsigned long end,
2924 			     long adjust_next)
2925 {
2926 	/*
2927 	 * If the new start address isn't hpage aligned and it could
2928 	 * previously contain an hugepage: check if we need to split
2929 	 * an huge pmd.
2930 	 */
2931 	if (start & ~HPAGE_PMD_MASK &&
2932 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2933 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2934 		split_huge_page_address(vma->vm_mm, start);
2935 
2936 	/*
2937 	 * If the new end address isn't hpage aligned and it could
2938 	 * previously contain an hugepage: check if we need to split
2939 	 * an huge pmd.
2940 	 */
2941 	if (end & ~HPAGE_PMD_MASK &&
2942 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2943 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2944 		split_huge_page_address(vma->vm_mm, end);
2945 
2946 	/*
2947 	 * If we're also updating the vma->vm_next->vm_start, if the new
2948 	 * vm_next->vm_start isn't page aligned and it could previously
2949 	 * contain an hugepage: check if we need to split an huge pmd.
2950 	 */
2951 	if (adjust_next > 0) {
2952 		struct vm_area_struct *next = vma->vm_next;
2953 		unsigned long nstart = next->vm_start;
2954 		nstart += adjust_next << PAGE_SHIFT;
2955 		if (nstart & ~HPAGE_PMD_MASK &&
2956 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2957 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2958 			split_huge_page_address(next->vm_mm, nstart);
2959 	}
2960 }
2961