xref: /linux/mm/huge_memory.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 
39 #include <asm/tlb.h>
40 #include <asm/pgalloc.h>
41 #include "internal.h"
42 
43 /*
44  * By default, transparent hugepage support is disabled in order to avoid
45  * risking an increased memory footprint for applications that are not
46  * guaranteed to benefit from it. When transparent hugepage support is
47  * enabled, it is for all mappings, and khugepaged scans all mappings.
48  * Defrag is invoked by khugepaged hugepage allocations and by page faults
49  * for all hugepage allocations.
50  */
51 unsigned long transparent_hugepage_flags __read_mostly =
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
53 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 #endif
55 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
56 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
57 #endif
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
60 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
61 
62 static struct shrinker deferred_split_shrinker;
63 
64 static atomic_t huge_zero_refcount;
65 struct page *huge_zero_page __read_mostly;
66 unsigned long huge_zero_pfn __read_mostly = ~0UL;
67 
68 static inline bool file_thp_enabled(struct vm_area_struct *vma)
69 {
70 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
71 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
72 	       (vma->vm_flags & VM_EXEC);
73 }
74 
75 bool transparent_hugepage_active(struct vm_area_struct *vma)
76 {
77 	/* The addr is used to check if the vma size fits */
78 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
79 
80 	if (!transhuge_vma_suitable(vma, addr))
81 		return false;
82 	if (vma_is_anonymous(vma))
83 		return __transparent_hugepage_enabled(vma);
84 	if (vma_is_shmem(vma))
85 		return shmem_huge_enabled(vma);
86 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
87 		return file_thp_enabled(vma);
88 
89 	return false;
90 }
91 
92 static bool get_huge_zero_page(void)
93 {
94 	struct page *zero_page;
95 retry:
96 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
97 		return true;
98 
99 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
100 			HPAGE_PMD_ORDER);
101 	if (!zero_page) {
102 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
103 		return false;
104 	}
105 	count_vm_event(THP_ZERO_PAGE_ALLOC);
106 	preempt_disable();
107 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
108 		preempt_enable();
109 		__free_pages(zero_page, compound_order(zero_page));
110 		goto retry;
111 	}
112 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
113 
114 	/* We take additional reference here. It will be put back by shrinker */
115 	atomic_set(&huge_zero_refcount, 2);
116 	preempt_enable();
117 	return true;
118 }
119 
120 static void put_huge_zero_page(void)
121 {
122 	/*
123 	 * Counter should never go to zero here. Only shrinker can put
124 	 * last reference.
125 	 */
126 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
127 }
128 
129 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
130 {
131 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 		return READ_ONCE(huge_zero_page);
133 
134 	if (!get_huge_zero_page())
135 		return NULL;
136 
137 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
138 		put_huge_zero_page();
139 
140 	return READ_ONCE(huge_zero_page);
141 }
142 
143 void mm_put_huge_zero_page(struct mm_struct *mm)
144 {
145 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
146 		put_huge_zero_page();
147 }
148 
149 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
150 					struct shrink_control *sc)
151 {
152 	/* we can free zero page only if last reference remains */
153 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
154 }
155 
156 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
157 				       struct shrink_control *sc)
158 {
159 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
160 		struct page *zero_page = xchg(&huge_zero_page, NULL);
161 		BUG_ON(zero_page == NULL);
162 		WRITE_ONCE(huge_zero_pfn, ~0UL);
163 		__free_pages(zero_page, compound_order(zero_page));
164 		return HPAGE_PMD_NR;
165 	}
166 
167 	return 0;
168 }
169 
170 static struct shrinker huge_zero_page_shrinker = {
171 	.count_objects = shrink_huge_zero_page_count,
172 	.scan_objects = shrink_huge_zero_page_scan,
173 	.seeks = DEFAULT_SEEKS,
174 };
175 
176 #ifdef CONFIG_SYSFS
177 static ssize_t enabled_show(struct kobject *kobj,
178 			    struct kobj_attribute *attr, char *buf)
179 {
180 	const char *output;
181 
182 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
183 		output = "[always] madvise never";
184 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
185 			  &transparent_hugepage_flags))
186 		output = "always [madvise] never";
187 	else
188 		output = "always madvise [never]";
189 
190 	return sysfs_emit(buf, "%s\n", output);
191 }
192 
193 static ssize_t enabled_store(struct kobject *kobj,
194 			     struct kobj_attribute *attr,
195 			     const char *buf, size_t count)
196 {
197 	ssize_t ret = count;
198 
199 	if (sysfs_streq(buf, "always")) {
200 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
201 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
202 	} else if (sysfs_streq(buf, "madvise")) {
203 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
204 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
205 	} else if (sysfs_streq(buf, "never")) {
206 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
207 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208 	} else
209 		ret = -EINVAL;
210 
211 	if (ret > 0) {
212 		int err = start_stop_khugepaged();
213 		if (err)
214 			ret = err;
215 	}
216 	return ret;
217 }
218 static struct kobj_attribute enabled_attr =
219 	__ATTR(enabled, 0644, enabled_show, enabled_store);
220 
221 ssize_t single_hugepage_flag_show(struct kobject *kobj,
222 				  struct kobj_attribute *attr, char *buf,
223 				  enum transparent_hugepage_flag flag)
224 {
225 	return sysfs_emit(buf, "%d\n",
226 			  !!test_bit(flag, &transparent_hugepage_flags));
227 }
228 
229 ssize_t single_hugepage_flag_store(struct kobject *kobj,
230 				 struct kobj_attribute *attr,
231 				 const char *buf, size_t count,
232 				 enum transparent_hugepage_flag flag)
233 {
234 	unsigned long value;
235 	int ret;
236 
237 	ret = kstrtoul(buf, 10, &value);
238 	if (ret < 0)
239 		return ret;
240 	if (value > 1)
241 		return -EINVAL;
242 
243 	if (value)
244 		set_bit(flag, &transparent_hugepage_flags);
245 	else
246 		clear_bit(flag, &transparent_hugepage_flags);
247 
248 	return count;
249 }
250 
251 static ssize_t defrag_show(struct kobject *kobj,
252 			   struct kobj_attribute *attr, char *buf)
253 {
254 	const char *output;
255 
256 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
257 		     &transparent_hugepage_flags))
258 		output = "[always] defer defer+madvise madvise never";
259 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
260 			  &transparent_hugepage_flags))
261 		output = "always [defer] defer+madvise madvise never";
262 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
263 			  &transparent_hugepage_flags))
264 		output = "always defer [defer+madvise] madvise never";
265 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
266 			  &transparent_hugepage_flags))
267 		output = "always defer defer+madvise [madvise] never";
268 	else
269 		output = "always defer defer+madvise madvise [never]";
270 
271 	return sysfs_emit(buf, "%s\n", output);
272 }
273 
274 static ssize_t defrag_store(struct kobject *kobj,
275 			    struct kobj_attribute *attr,
276 			    const char *buf, size_t count)
277 {
278 	if (sysfs_streq(buf, "always")) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
283 	} else if (sysfs_streq(buf, "defer+madvise")) {
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
287 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 	} else if (sysfs_streq(buf, "defer")) {
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
290 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
292 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
293 	} else if (sysfs_streq(buf, "madvise")) {
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
295 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
297 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
298 	} else if (sysfs_streq(buf, "never")) {
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
300 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
301 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
302 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
303 	} else
304 		return -EINVAL;
305 
306 	return count;
307 }
308 static struct kobj_attribute defrag_attr =
309 	__ATTR(defrag, 0644, defrag_show, defrag_store);
310 
311 static ssize_t use_zero_page_show(struct kobject *kobj,
312 				  struct kobj_attribute *attr, char *buf)
313 {
314 	return single_hugepage_flag_show(kobj, attr, buf,
315 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
316 }
317 static ssize_t use_zero_page_store(struct kobject *kobj,
318 		struct kobj_attribute *attr, const char *buf, size_t count)
319 {
320 	return single_hugepage_flag_store(kobj, attr, buf, count,
321 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
322 }
323 static struct kobj_attribute use_zero_page_attr =
324 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
325 
326 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
327 				   struct kobj_attribute *attr, char *buf)
328 {
329 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
330 }
331 static struct kobj_attribute hpage_pmd_size_attr =
332 	__ATTR_RO(hpage_pmd_size);
333 
334 static struct attribute *hugepage_attr[] = {
335 	&enabled_attr.attr,
336 	&defrag_attr.attr,
337 	&use_zero_page_attr.attr,
338 	&hpage_pmd_size_attr.attr,
339 #ifdef CONFIG_SHMEM
340 	&shmem_enabled_attr.attr,
341 #endif
342 	NULL,
343 };
344 
345 static const struct attribute_group hugepage_attr_group = {
346 	.attrs = hugepage_attr,
347 };
348 
349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 {
351 	int err;
352 
353 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 	if (unlikely(!*hugepage_kobj)) {
355 		pr_err("failed to create transparent hugepage kobject\n");
356 		return -ENOMEM;
357 	}
358 
359 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
360 	if (err) {
361 		pr_err("failed to register transparent hugepage group\n");
362 		goto delete_obj;
363 	}
364 
365 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
366 	if (err) {
367 		pr_err("failed to register transparent hugepage group\n");
368 		goto remove_hp_group;
369 	}
370 
371 	return 0;
372 
373 remove_hp_group:
374 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375 delete_obj:
376 	kobject_put(*hugepage_kobj);
377 	return err;
378 }
379 
380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 {
382 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 	kobject_put(hugepage_kobj);
385 }
386 #else
387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388 {
389 	return 0;
390 }
391 
392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393 {
394 }
395 #endif /* CONFIG_SYSFS */
396 
397 static int __init hugepage_init(void)
398 {
399 	int err;
400 	struct kobject *hugepage_kobj;
401 
402 	if (!has_transparent_hugepage()) {
403 		/*
404 		 * Hardware doesn't support hugepages, hence disable
405 		 * DAX PMD support.
406 		 */
407 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
408 		return -EINVAL;
409 	}
410 
411 	/*
412 	 * hugepages can't be allocated by the buddy allocator
413 	 */
414 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
415 	/*
416 	 * we use page->mapping and page->index in second tail page
417 	 * as list_head: assuming THP order >= 2
418 	 */
419 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
420 
421 	err = hugepage_init_sysfs(&hugepage_kobj);
422 	if (err)
423 		goto err_sysfs;
424 
425 	err = khugepaged_init();
426 	if (err)
427 		goto err_slab;
428 
429 	err = register_shrinker(&huge_zero_page_shrinker);
430 	if (err)
431 		goto err_hzp_shrinker;
432 	err = register_shrinker(&deferred_split_shrinker);
433 	if (err)
434 		goto err_split_shrinker;
435 
436 	/*
437 	 * By default disable transparent hugepages on smaller systems,
438 	 * where the extra memory used could hurt more than TLB overhead
439 	 * is likely to save.  The admin can still enable it through /sys.
440 	 */
441 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
442 		transparent_hugepage_flags = 0;
443 		return 0;
444 	}
445 
446 	err = start_stop_khugepaged();
447 	if (err)
448 		goto err_khugepaged;
449 
450 	return 0;
451 err_khugepaged:
452 	unregister_shrinker(&deferred_split_shrinker);
453 err_split_shrinker:
454 	unregister_shrinker(&huge_zero_page_shrinker);
455 err_hzp_shrinker:
456 	khugepaged_destroy();
457 err_slab:
458 	hugepage_exit_sysfs(hugepage_kobj);
459 err_sysfs:
460 	return err;
461 }
462 subsys_initcall(hugepage_init);
463 
464 static int __init setup_transparent_hugepage(char *str)
465 {
466 	int ret = 0;
467 	if (!str)
468 		goto out;
469 	if (!strcmp(str, "always")) {
470 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
471 			&transparent_hugepage_flags);
472 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
473 			  &transparent_hugepage_flags);
474 		ret = 1;
475 	} else if (!strcmp(str, "madvise")) {
476 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
477 			  &transparent_hugepage_flags);
478 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
479 			&transparent_hugepage_flags);
480 		ret = 1;
481 	} else if (!strcmp(str, "never")) {
482 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
483 			  &transparent_hugepage_flags);
484 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
485 			  &transparent_hugepage_flags);
486 		ret = 1;
487 	}
488 out:
489 	if (!ret)
490 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
491 	return ret;
492 }
493 __setup("transparent_hugepage=", setup_transparent_hugepage);
494 
495 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
496 {
497 	if (likely(vma->vm_flags & VM_WRITE))
498 		pmd = pmd_mkwrite(pmd);
499 	return pmd;
500 }
501 
502 #ifdef CONFIG_MEMCG
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
506 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507 
508 	if (memcg)
509 		return &memcg->deferred_split_queue;
510 	else
511 		return &pgdat->deferred_split_queue;
512 }
513 #else
514 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
515 {
516 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
517 
518 	return &pgdat->deferred_split_queue;
519 }
520 #endif
521 
522 void prep_transhuge_page(struct page *page)
523 {
524 	/*
525 	 * we use page->mapping and page->indexlru in second tail page
526 	 * as list_head: assuming THP order >= 2
527 	 */
528 
529 	INIT_LIST_HEAD(page_deferred_list(page));
530 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
531 }
532 
533 bool is_transparent_hugepage(struct page *page)
534 {
535 	if (!PageCompound(page))
536 		return false;
537 
538 	page = compound_head(page);
539 	return is_huge_zero_page(page) ||
540 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
541 }
542 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
543 
544 static unsigned long __thp_get_unmapped_area(struct file *filp,
545 		unsigned long addr, unsigned long len,
546 		loff_t off, unsigned long flags, unsigned long size)
547 {
548 	loff_t off_end = off + len;
549 	loff_t off_align = round_up(off, size);
550 	unsigned long len_pad, ret;
551 
552 	if (off_end <= off_align || (off_end - off_align) < size)
553 		return 0;
554 
555 	len_pad = len + size;
556 	if (len_pad < len || (off + len_pad) < off)
557 		return 0;
558 
559 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
560 					      off >> PAGE_SHIFT, flags);
561 
562 	/*
563 	 * The failure might be due to length padding. The caller will retry
564 	 * without the padding.
565 	 */
566 	if (IS_ERR_VALUE(ret))
567 		return 0;
568 
569 	/*
570 	 * Do not try to align to THP boundary if allocation at the address
571 	 * hint succeeds.
572 	 */
573 	if (ret == addr)
574 		return addr;
575 
576 	ret += (off - ret) & (size - 1);
577 	return ret;
578 }
579 
580 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
581 		unsigned long len, unsigned long pgoff, unsigned long flags)
582 {
583 	unsigned long ret;
584 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
585 
586 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
587 	if (ret)
588 		return ret;
589 
590 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
591 }
592 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
593 
594 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
595 			struct page *page, gfp_t gfp)
596 {
597 	struct vm_area_struct *vma = vmf->vma;
598 	pgtable_t pgtable;
599 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
600 	vm_fault_t ret = 0;
601 
602 	VM_BUG_ON_PAGE(!PageCompound(page), page);
603 
604 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
605 		put_page(page);
606 		count_vm_event(THP_FAULT_FALLBACK);
607 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
608 		return VM_FAULT_FALLBACK;
609 	}
610 	cgroup_throttle_swaprate(page, gfp);
611 
612 	pgtable = pte_alloc_one(vma->vm_mm);
613 	if (unlikely(!pgtable)) {
614 		ret = VM_FAULT_OOM;
615 		goto release;
616 	}
617 
618 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
619 	/*
620 	 * The memory barrier inside __SetPageUptodate makes sure that
621 	 * clear_huge_page writes become visible before the set_pmd_at()
622 	 * write.
623 	 */
624 	__SetPageUptodate(page);
625 
626 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
627 	if (unlikely(!pmd_none(*vmf->pmd))) {
628 		goto unlock_release;
629 	} else {
630 		pmd_t entry;
631 
632 		ret = check_stable_address_space(vma->vm_mm);
633 		if (ret)
634 			goto unlock_release;
635 
636 		/* Deliver the page fault to userland */
637 		if (userfaultfd_missing(vma)) {
638 			spin_unlock(vmf->ptl);
639 			put_page(page);
640 			pte_free(vma->vm_mm, pgtable);
641 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
642 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
643 			return ret;
644 		}
645 
646 		entry = mk_huge_pmd(page, vma->vm_page_prot);
647 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
648 		page_add_new_anon_rmap(page, vma, haddr, true);
649 		lru_cache_add_inactive_or_unevictable(page, vma);
650 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
651 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
652 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
653 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
654 		mm_inc_nr_ptes(vma->vm_mm);
655 		spin_unlock(vmf->ptl);
656 		count_vm_event(THP_FAULT_ALLOC);
657 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
658 	}
659 
660 	return 0;
661 unlock_release:
662 	spin_unlock(vmf->ptl);
663 release:
664 	if (pgtable)
665 		pte_free(vma->vm_mm, pgtable);
666 	put_page(page);
667 	return ret;
668 
669 }
670 
671 /*
672  * always: directly stall for all thp allocations
673  * defer: wake kswapd and fail if not immediately available
674  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
675  *		  fail if not immediately available
676  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
677  *	    available
678  * never: never stall for any thp allocation
679  */
680 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
681 {
682 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
683 
684 	/* Always do synchronous compaction */
685 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
686 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
687 
688 	/* Kick kcompactd and fail quickly */
689 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
690 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
691 
692 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
693 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
694 		return GFP_TRANSHUGE_LIGHT |
695 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
696 					__GFP_KSWAPD_RECLAIM);
697 
698 	/* Only do synchronous compaction if madvised */
699 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
700 		return GFP_TRANSHUGE_LIGHT |
701 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
702 
703 	return GFP_TRANSHUGE_LIGHT;
704 }
705 
706 /* Caller must hold page table lock. */
707 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
708 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
709 		struct page *zero_page)
710 {
711 	pmd_t entry;
712 	if (!pmd_none(*pmd))
713 		return;
714 	entry = mk_pmd(zero_page, vma->vm_page_prot);
715 	entry = pmd_mkhuge(entry);
716 	if (pgtable)
717 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
718 	set_pmd_at(mm, haddr, pmd, entry);
719 	mm_inc_nr_ptes(mm);
720 }
721 
722 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
723 {
724 	struct vm_area_struct *vma = vmf->vma;
725 	gfp_t gfp;
726 	struct page *page;
727 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
728 
729 	if (!transhuge_vma_suitable(vma, haddr))
730 		return VM_FAULT_FALLBACK;
731 	if (unlikely(anon_vma_prepare(vma)))
732 		return VM_FAULT_OOM;
733 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
734 		return VM_FAULT_OOM;
735 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
736 			!mm_forbids_zeropage(vma->vm_mm) &&
737 			transparent_hugepage_use_zero_page()) {
738 		pgtable_t pgtable;
739 		struct page *zero_page;
740 		vm_fault_t ret;
741 		pgtable = pte_alloc_one(vma->vm_mm);
742 		if (unlikely(!pgtable))
743 			return VM_FAULT_OOM;
744 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
745 		if (unlikely(!zero_page)) {
746 			pte_free(vma->vm_mm, pgtable);
747 			count_vm_event(THP_FAULT_FALLBACK);
748 			return VM_FAULT_FALLBACK;
749 		}
750 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
751 		ret = 0;
752 		if (pmd_none(*vmf->pmd)) {
753 			ret = check_stable_address_space(vma->vm_mm);
754 			if (ret) {
755 				spin_unlock(vmf->ptl);
756 				pte_free(vma->vm_mm, pgtable);
757 			} else if (userfaultfd_missing(vma)) {
758 				spin_unlock(vmf->ptl);
759 				pte_free(vma->vm_mm, pgtable);
760 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
761 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
762 			} else {
763 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
764 						   haddr, vmf->pmd, zero_page);
765 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
766 				spin_unlock(vmf->ptl);
767 			}
768 		} else {
769 			spin_unlock(vmf->ptl);
770 			pte_free(vma->vm_mm, pgtable);
771 		}
772 		return ret;
773 	}
774 	gfp = vma_thp_gfp_mask(vma);
775 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
776 	if (unlikely(!page)) {
777 		count_vm_event(THP_FAULT_FALLBACK);
778 		return VM_FAULT_FALLBACK;
779 	}
780 	prep_transhuge_page(page);
781 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
782 }
783 
784 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
785 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
786 		pgtable_t pgtable)
787 {
788 	struct mm_struct *mm = vma->vm_mm;
789 	pmd_t entry;
790 	spinlock_t *ptl;
791 
792 	ptl = pmd_lock(mm, pmd);
793 	if (!pmd_none(*pmd)) {
794 		if (write) {
795 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
796 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
797 				goto out_unlock;
798 			}
799 			entry = pmd_mkyoung(*pmd);
800 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
801 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
802 				update_mmu_cache_pmd(vma, addr, pmd);
803 		}
804 
805 		goto out_unlock;
806 	}
807 
808 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
809 	if (pfn_t_devmap(pfn))
810 		entry = pmd_mkdevmap(entry);
811 	if (write) {
812 		entry = pmd_mkyoung(pmd_mkdirty(entry));
813 		entry = maybe_pmd_mkwrite(entry, vma);
814 	}
815 
816 	if (pgtable) {
817 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
818 		mm_inc_nr_ptes(mm);
819 		pgtable = NULL;
820 	}
821 
822 	set_pmd_at(mm, addr, pmd, entry);
823 	update_mmu_cache_pmd(vma, addr, pmd);
824 
825 out_unlock:
826 	spin_unlock(ptl);
827 	if (pgtable)
828 		pte_free(mm, pgtable);
829 }
830 
831 /**
832  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
833  * @vmf: Structure describing the fault
834  * @pfn: pfn to insert
835  * @pgprot: page protection to use
836  * @write: whether it's a write fault
837  *
838  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
839  * also consult the vmf_insert_mixed_prot() documentation when
840  * @pgprot != @vmf->vma->vm_page_prot.
841  *
842  * Return: vm_fault_t value.
843  */
844 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
845 				   pgprot_t pgprot, bool write)
846 {
847 	unsigned long addr = vmf->address & PMD_MASK;
848 	struct vm_area_struct *vma = vmf->vma;
849 	pgtable_t pgtable = NULL;
850 
851 	/*
852 	 * If we had pmd_special, we could avoid all these restrictions,
853 	 * but we need to be consistent with PTEs and architectures that
854 	 * can't support a 'special' bit.
855 	 */
856 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
857 			!pfn_t_devmap(pfn));
858 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
859 						(VM_PFNMAP|VM_MIXEDMAP));
860 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
861 
862 	if (addr < vma->vm_start || addr >= vma->vm_end)
863 		return VM_FAULT_SIGBUS;
864 
865 	if (arch_needs_pgtable_deposit()) {
866 		pgtable = pte_alloc_one(vma->vm_mm);
867 		if (!pgtable)
868 			return VM_FAULT_OOM;
869 	}
870 
871 	track_pfn_insert(vma, &pgprot, pfn);
872 
873 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
874 	return VM_FAULT_NOPAGE;
875 }
876 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
877 
878 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
879 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
880 {
881 	if (likely(vma->vm_flags & VM_WRITE))
882 		pud = pud_mkwrite(pud);
883 	return pud;
884 }
885 
886 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
887 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
888 {
889 	struct mm_struct *mm = vma->vm_mm;
890 	pud_t entry;
891 	spinlock_t *ptl;
892 
893 	ptl = pud_lock(mm, pud);
894 	if (!pud_none(*pud)) {
895 		if (write) {
896 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
897 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
898 				goto out_unlock;
899 			}
900 			entry = pud_mkyoung(*pud);
901 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
902 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
903 				update_mmu_cache_pud(vma, addr, pud);
904 		}
905 		goto out_unlock;
906 	}
907 
908 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
909 	if (pfn_t_devmap(pfn))
910 		entry = pud_mkdevmap(entry);
911 	if (write) {
912 		entry = pud_mkyoung(pud_mkdirty(entry));
913 		entry = maybe_pud_mkwrite(entry, vma);
914 	}
915 	set_pud_at(mm, addr, pud, entry);
916 	update_mmu_cache_pud(vma, addr, pud);
917 
918 out_unlock:
919 	spin_unlock(ptl);
920 }
921 
922 /**
923  * vmf_insert_pfn_pud_prot - insert a pud size pfn
924  * @vmf: Structure describing the fault
925  * @pfn: pfn to insert
926  * @pgprot: page protection to use
927  * @write: whether it's a write fault
928  *
929  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
930  * also consult the vmf_insert_mixed_prot() documentation when
931  * @pgprot != @vmf->vma->vm_page_prot.
932  *
933  * Return: vm_fault_t value.
934  */
935 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
936 				   pgprot_t pgprot, bool write)
937 {
938 	unsigned long addr = vmf->address & PUD_MASK;
939 	struct vm_area_struct *vma = vmf->vma;
940 
941 	/*
942 	 * If we had pud_special, we could avoid all these restrictions,
943 	 * but we need to be consistent with PTEs and architectures that
944 	 * can't support a 'special' bit.
945 	 */
946 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
947 			!pfn_t_devmap(pfn));
948 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
949 						(VM_PFNMAP|VM_MIXEDMAP));
950 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
951 
952 	if (addr < vma->vm_start || addr >= vma->vm_end)
953 		return VM_FAULT_SIGBUS;
954 
955 	track_pfn_insert(vma, &pgprot, pfn);
956 
957 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
958 	return VM_FAULT_NOPAGE;
959 }
960 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
961 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
962 
963 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
964 		pmd_t *pmd, int flags)
965 {
966 	pmd_t _pmd;
967 
968 	_pmd = pmd_mkyoung(*pmd);
969 	if (flags & FOLL_WRITE)
970 		_pmd = pmd_mkdirty(_pmd);
971 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
972 				pmd, _pmd, flags & FOLL_WRITE))
973 		update_mmu_cache_pmd(vma, addr, pmd);
974 }
975 
976 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
977 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
978 {
979 	unsigned long pfn = pmd_pfn(*pmd);
980 	struct mm_struct *mm = vma->vm_mm;
981 	struct page *page;
982 
983 	assert_spin_locked(pmd_lockptr(mm, pmd));
984 
985 	/*
986 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
987 	 * not be in this function with `flags & FOLL_COW` set.
988 	 */
989 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
990 
991 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
992 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
993 			 (FOLL_PIN | FOLL_GET)))
994 		return NULL;
995 
996 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
997 		return NULL;
998 
999 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1000 		/* pass */;
1001 	else
1002 		return NULL;
1003 
1004 	if (flags & FOLL_TOUCH)
1005 		touch_pmd(vma, addr, pmd, flags);
1006 
1007 	/*
1008 	 * device mapped pages can only be returned if the
1009 	 * caller will manage the page reference count.
1010 	 */
1011 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1012 		return ERR_PTR(-EEXIST);
1013 
1014 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1015 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1016 	if (!*pgmap)
1017 		return ERR_PTR(-EFAULT);
1018 	page = pfn_to_page(pfn);
1019 	if (!try_grab_page(page, flags))
1020 		page = ERR_PTR(-ENOMEM);
1021 
1022 	return page;
1023 }
1024 
1025 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1026 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1027 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1028 {
1029 	spinlock_t *dst_ptl, *src_ptl;
1030 	struct page *src_page;
1031 	pmd_t pmd;
1032 	pgtable_t pgtable = NULL;
1033 	int ret = -ENOMEM;
1034 
1035 	/* Skip if can be re-fill on fault */
1036 	if (!vma_is_anonymous(dst_vma))
1037 		return 0;
1038 
1039 	pgtable = pte_alloc_one(dst_mm);
1040 	if (unlikely(!pgtable))
1041 		goto out;
1042 
1043 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1044 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1045 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1046 
1047 	ret = -EAGAIN;
1048 	pmd = *src_pmd;
1049 
1050 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1051 	if (unlikely(is_swap_pmd(pmd))) {
1052 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1053 
1054 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1055 		if (is_writable_migration_entry(entry)) {
1056 			entry = make_readable_migration_entry(
1057 							swp_offset(entry));
1058 			pmd = swp_entry_to_pmd(entry);
1059 			if (pmd_swp_soft_dirty(*src_pmd))
1060 				pmd = pmd_swp_mksoft_dirty(pmd);
1061 			if (pmd_swp_uffd_wp(*src_pmd))
1062 				pmd = pmd_swp_mkuffd_wp(pmd);
1063 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1064 		}
1065 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1066 		mm_inc_nr_ptes(dst_mm);
1067 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1068 		if (!userfaultfd_wp(dst_vma))
1069 			pmd = pmd_swp_clear_uffd_wp(pmd);
1070 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1071 		ret = 0;
1072 		goto out_unlock;
1073 	}
1074 #endif
1075 
1076 	if (unlikely(!pmd_trans_huge(pmd))) {
1077 		pte_free(dst_mm, pgtable);
1078 		goto out_unlock;
1079 	}
1080 	/*
1081 	 * When page table lock is held, the huge zero pmd should not be
1082 	 * under splitting since we don't split the page itself, only pmd to
1083 	 * a page table.
1084 	 */
1085 	if (is_huge_zero_pmd(pmd)) {
1086 		/*
1087 		 * get_huge_zero_page() will never allocate a new page here,
1088 		 * since we already have a zero page to copy. It just takes a
1089 		 * reference.
1090 		 */
1091 		mm_get_huge_zero_page(dst_mm);
1092 		goto out_zero_page;
1093 	}
1094 
1095 	src_page = pmd_page(pmd);
1096 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1097 
1098 	/*
1099 	 * If this page is a potentially pinned page, split and retry the fault
1100 	 * with smaller page size.  Normally this should not happen because the
1101 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1102 	 * best effort that the pinned pages won't be replaced by another
1103 	 * random page during the coming copy-on-write.
1104 	 */
1105 	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1106 		pte_free(dst_mm, pgtable);
1107 		spin_unlock(src_ptl);
1108 		spin_unlock(dst_ptl);
1109 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1110 		return -EAGAIN;
1111 	}
1112 
1113 	get_page(src_page);
1114 	page_dup_rmap(src_page, true);
1115 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 out_zero_page:
1117 	mm_inc_nr_ptes(dst_mm);
1118 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 	if (!userfaultfd_wp(dst_vma))
1121 		pmd = pmd_clear_uffd_wp(pmd);
1122 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1123 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1124 
1125 	ret = 0;
1126 out_unlock:
1127 	spin_unlock(src_ptl);
1128 	spin_unlock(dst_ptl);
1129 out:
1130 	return ret;
1131 }
1132 
1133 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1134 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1135 		pud_t *pud, int flags)
1136 {
1137 	pud_t _pud;
1138 
1139 	_pud = pud_mkyoung(*pud);
1140 	if (flags & FOLL_WRITE)
1141 		_pud = pud_mkdirty(_pud);
1142 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1143 				pud, _pud, flags & FOLL_WRITE))
1144 		update_mmu_cache_pud(vma, addr, pud);
1145 }
1146 
1147 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1148 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1149 {
1150 	unsigned long pfn = pud_pfn(*pud);
1151 	struct mm_struct *mm = vma->vm_mm;
1152 	struct page *page;
1153 
1154 	assert_spin_locked(pud_lockptr(mm, pud));
1155 
1156 	if (flags & FOLL_WRITE && !pud_write(*pud))
1157 		return NULL;
1158 
1159 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1160 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1161 			 (FOLL_PIN | FOLL_GET)))
1162 		return NULL;
1163 
1164 	if (pud_present(*pud) && pud_devmap(*pud))
1165 		/* pass */;
1166 	else
1167 		return NULL;
1168 
1169 	if (flags & FOLL_TOUCH)
1170 		touch_pud(vma, addr, pud, flags);
1171 
1172 	/*
1173 	 * device mapped pages can only be returned if the
1174 	 * caller will manage the page reference count.
1175 	 *
1176 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1177 	 */
1178 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1179 		return ERR_PTR(-EEXIST);
1180 
1181 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1182 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1183 	if (!*pgmap)
1184 		return ERR_PTR(-EFAULT);
1185 	page = pfn_to_page(pfn);
1186 	if (!try_grab_page(page, flags))
1187 		page = ERR_PTR(-ENOMEM);
1188 
1189 	return page;
1190 }
1191 
1192 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1193 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1194 		  struct vm_area_struct *vma)
1195 {
1196 	spinlock_t *dst_ptl, *src_ptl;
1197 	pud_t pud;
1198 	int ret;
1199 
1200 	dst_ptl = pud_lock(dst_mm, dst_pud);
1201 	src_ptl = pud_lockptr(src_mm, src_pud);
1202 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1203 
1204 	ret = -EAGAIN;
1205 	pud = *src_pud;
1206 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1207 		goto out_unlock;
1208 
1209 	/*
1210 	 * When page table lock is held, the huge zero pud should not be
1211 	 * under splitting since we don't split the page itself, only pud to
1212 	 * a page table.
1213 	 */
1214 	if (is_huge_zero_pud(pud)) {
1215 		/* No huge zero pud yet */
1216 	}
1217 
1218 	/* Please refer to comments in copy_huge_pmd() */
1219 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1220 		spin_unlock(src_ptl);
1221 		spin_unlock(dst_ptl);
1222 		__split_huge_pud(vma, src_pud, addr);
1223 		return -EAGAIN;
1224 	}
1225 
1226 	pudp_set_wrprotect(src_mm, addr, src_pud);
1227 	pud = pud_mkold(pud_wrprotect(pud));
1228 	set_pud_at(dst_mm, addr, dst_pud, pud);
1229 
1230 	ret = 0;
1231 out_unlock:
1232 	spin_unlock(src_ptl);
1233 	spin_unlock(dst_ptl);
1234 	return ret;
1235 }
1236 
1237 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1238 {
1239 	pud_t entry;
1240 	unsigned long haddr;
1241 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1242 
1243 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1244 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1245 		goto unlock;
1246 
1247 	entry = pud_mkyoung(orig_pud);
1248 	if (write)
1249 		entry = pud_mkdirty(entry);
1250 	haddr = vmf->address & HPAGE_PUD_MASK;
1251 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1252 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1253 
1254 unlock:
1255 	spin_unlock(vmf->ptl);
1256 }
1257 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1258 
1259 void huge_pmd_set_accessed(struct vm_fault *vmf)
1260 {
1261 	pmd_t entry;
1262 	unsigned long haddr;
1263 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1264 	pmd_t orig_pmd = vmf->orig_pmd;
1265 
1266 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1267 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1268 		goto unlock;
1269 
1270 	entry = pmd_mkyoung(orig_pmd);
1271 	if (write)
1272 		entry = pmd_mkdirty(entry);
1273 	haddr = vmf->address & HPAGE_PMD_MASK;
1274 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1275 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1276 
1277 unlock:
1278 	spin_unlock(vmf->ptl);
1279 }
1280 
1281 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1282 {
1283 	struct vm_area_struct *vma = vmf->vma;
1284 	struct page *page;
1285 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1286 	pmd_t orig_pmd = vmf->orig_pmd;
1287 
1288 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1289 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290 
1291 	if (is_huge_zero_pmd(orig_pmd))
1292 		goto fallback;
1293 
1294 	spin_lock(vmf->ptl);
1295 
1296 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1297 		spin_unlock(vmf->ptl);
1298 		return 0;
1299 	}
1300 
1301 	page = pmd_page(orig_pmd);
1302 	VM_BUG_ON_PAGE(!PageHead(page), page);
1303 
1304 	/* Lock page for reuse_swap_page() */
1305 	if (!trylock_page(page)) {
1306 		get_page(page);
1307 		spin_unlock(vmf->ptl);
1308 		lock_page(page);
1309 		spin_lock(vmf->ptl);
1310 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1311 			spin_unlock(vmf->ptl);
1312 			unlock_page(page);
1313 			put_page(page);
1314 			return 0;
1315 		}
1316 		put_page(page);
1317 	}
1318 
1319 	/*
1320 	 * We can only reuse the page if nobody else maps the huge page or it's
1321 	 * part.
1322 	 */
1323 	if (reuse_swap_page(page)) {
1324 		pmd_t entry;
1325 		entry = pmd_mkyoung(orig_pmd);
1326 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1327 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1328 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1329 		unlock_page(page);
1330 		spin_unlock(vmf->ptl);
1331 		return VM_FAULT_WRITE;
1332 	}
1333 
1334 	unlock_page(page);
1335 	spin_unlock(vmf->ptl);
1336 fallback:
1337 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1338 	return VM_FAULT_FALLBACK;
1339 }
1340 
1341 /*
1342  * FOLL_FORCE can write to even unwritable pmd's, but only
1343  * after we've gone through a COW cycle and they are dirty.
1344  */
1345 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1346 {
1347 	return pmd_write(pmd) ||
1348 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1349 }
1350 
1351 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1352 				   unsigned long addr,
1353 				   pmd_t *pmd,
1354 				   unsigned int flags)
1355 {
1356 	struct mm_struct *mm = vma->vm_mm;
1357 	struct page *page = NULL;
1358 
1359 	assert_spin_locked(pmd_lockptr(mm, pmd));
1360 
1361 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1362 		goto out;
1363 
1364 	/* Avoid dumping huge zero page */
1365 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1366 		return ERR_PTR(-EFAULT);
1367 
1368 	/* Full NUMA hinting faults to serialise migration in fault paths */
1369 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1370 		goto out;
1371 
1372 	page = pmd_page(*pmd);
1373 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1374 
1375 	if (!try_grab_page(page, flags))
1376 		return ERR_PTR(-ENOMEM);
1377 
1378 	if (flags & FOLL_TOUCH)
1379 		touch_pmd(vma, addr, pmd, flags);
1380 
1381 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1382 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1383 
1384 out:
1385 	return page;
1386 }
1387 
1388 /* NUMA hinting page fault entry point for trans huge pmds */
1389 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1390 {
1391 	struct vm_area_struct *vma = vmf->vma;
1392 	pmd_t oldpmd = vmf->orig_pmd;
1393 	pmd_t pmd;
1394 	struct page *page;
1395 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1396 	int page_nid = NUMA_NO_NODE;
1397 	int target_nid, last_cpupid = -1;
1398 	bool migrated = false;
1399 	bool was_writable = pmd_savedwrite(oldpmd);
1400 	int flags = 0;
1401 
1402 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1403 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1404 		spin_unlock(vmf->ptl);
1405 		goto out;
1406 	}
1407 
1408 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1409 	page = vm_normal_page_pmd(vma, haddr, pmd);
1410 	if (!page)
1411 		goto out_map;
1412 
1413 	/* See similar comment in do_numa_page for explanation */
1414 	if (!was_writable)
1415 		flags |= TNF_NO_GROUP;
1416 
1417 	page_nid = page_to_nid(page);
1418 	last_cpupid = page_cpupid_last(page);
1419 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1420 				       &flags);
1421 
1422 	if (target_nid == NUMA_NO_NODE) {
1423 		put_page(page);
1424 		goto out_map;
1425 	}
1426 
1427 	spin_unlock(vmf->ptl);
1428 
1429 	migrated = migrate_misplaced_page(page, vma, target_nid);
1430 	if (migrated) {
1431 		flags |= TNF_MIGRATED;
1432 		page_nid = target_nid;
1433 	} else {
1434 		flags |= TNF_MIGRATE_FAIL;
1435 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1436 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1437 			spin_unlock(vmf->ptl);
1438 			goto out;
1439 		}
1440 		goto out_map;
1441 	}
1442 
1443 out:
1444 	if (page_nid != NUMA_NO_NODE)
1445 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1446 				flags);
1447 
1448 	return 0;
1449 
1450 out_map:
1451 	/* Restore the PMD */
1452 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1453 	pmd = pmd_mkyoung(pmd);
1454 	if (was_writable)
1455 		pmd = pmd_mkwrite(pmd);
1456 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1457 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1458 	spin_unlock(vmf->ptl);
1459 	goto out;
1460 }
1461 
1462 /*
1463  * Return true if we do MADV_FREE successfully on entire pmd page.
1464  * Otherwise, return false.
1465  */
1466 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1467 		pmd_t *pmd, unsigned long addr, unsigned long next)
1468 {
1469 	spinlock_t *ptl;
1470 	pmd_t orig_pmd;
1471 	struct page *page;
1472 	struct mm_struct *mm = tlb->mm;
1473 	bool ret = false;
1474 
1475 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1476 
1477 	ptl = pmd_trans_huge_lock(pmd, vma);
1478 	if (!ptl)
1479 		goto out_unlocked;
1480 
1481 	orig_pmd = *pmd;
1482 	if (is_huge_zero_pmd(orig_pmd))
1483 		goto out;
1484 
1485 	if (unlikely(!pmd_present(orig_pmd))) {
1486 		VM_BUG_ON(thp_migration_supported() &&
1487 				  !is_pmd_migration_entry(orig_pmd));
1488 		goto out;
1489 	}
1490 
1491 	page = pmd_page(orig_pmd);
1492 	/*
1493 	 * If other processes are mapping this page, we couldn't discard
1494 	 * the page unless they all do MADV_FREE so let's skip the page.
1495 	 */
1496 	if (total_mapcount(page) != 1)
1497 		goto out;
1498 
1499 	if (!trylock_page(page))
1500 		goto out;
1501 
1502 	/*
1503 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1504 	 * will deactivate only them.
1505 	 */
1506 	if (next - addr != HPAGE_PMD_SIZE) {
1507 		get_page(page);
1508 		spin_unlock(ptl);
1509 		split_huge_page(page);
1510 		unlock_page(page);
1511 		put_page(page);
1512 		goto out_unlocked;
1513 	}
1514 
1515 	if (PageDirty(page))
1516 		ClearPageDirty(page);
1517 	unlock_page(page);
1518 
1519 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1520 		pmdp_invalidate(vma, addr, pmd);
1521 		orig_pmd = pmd_mkold(orig_pmd);
1522 		orig_pmd = pmd_mkclean(orig_pmd);
1523 
1524 		set_pmd_at(mm, addr, pmd, orig_pmd);
1525 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1526 	}
1527 
1528 	mark_page_lazyfree(page);
1529 	ret = true;
1530 out:
1531 	spin_unlock(ptl);
1532 out_unlocked:
1533 	return ret;
1534 }
1535 
1536 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1537 {
1538 	pgtable_t pgtable;
1539 
1540 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1541 	pte_free(mm, pgtable);
1542 	mm_dec_nr_ptes(mm);
1543 }
1544 
1545 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1546 		 pmd_t *pmd, unsigned long addr)
1547 {
1548 	pmd_t orig_pmd;
1549 	spinlock_t *ptl;
1550 
1551 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1552 
1553 	ptl = __pmd_trans_huge_lock(pmd, vma);
1554 	if (!ptl)
1555 		return 0;
1556 	/*
1557 	 * For architectures like ppc64 we look at deposited pgtable
1558 	 * when calling pmdp_huge_get_and_clear. So do the
1559 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1560 	 * operations.
1561 	 */
1562 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1563 						tlb->fullmm);
1564 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1565 	if (vma_is_special_huge(vma)) {
1566 		if (arch_needs_pgtable_deposit())
1567 			zap_deposited_table(tlb->mm, pmd);
1568 		spin_unlock(ptl);
1569 	} else if (is_huge_zero_pmd(orig_pmd)) {
1570 		zap_deposited_table(tlb->mm, pmd);
1571 		spin_unlock(ptl);
1572 	} else {
1573 		struct page *page = NULL;
1574 		int flush_needed = 1;
1575 
1576 		if (pmd_present(orig_pmd)) {
1577 			page = pmd_page(orig_pmd);
1578 			page_remove_rmap(page, vma, true);
1579 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1580 			VM_BUG_ON_PAGE(!PageHead(page), page);
1581 		} else if (thp_migration_supported()) {
1582 			swp_entry_t entry;
1583 
1584 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1585 			entry = pmd_to_swp_entry(orig_pmd);
1586 			page = pfn_swap_entry_to_page(entry);
1587 			flush_needed = 0;
1588 		} else
1589 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1590 
1591 		if (PageAnon(page)) {
1592 			zap_deposited_table(tlb->mm, pmd);
1593 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1594 		} else {
1595 			if (arch_needs_pgtable_deposit())
1596 				zap_deposited_table(tlb->mm, pmd);
1597 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1598 		}
1599 
1600 		spin_unlock(ptl);
1601 		if (flush_needed)
1602 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1603 	}
1604 	return 1;
1605 }
1606 
1607 #ifndef pmd_move_must_withdraw
1608 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1609 					 spinlock_t *old_pmd_ptl,
1610 					 struct vm_area_struct *vma)
1611 {
1612 	/*
1613 	 * With split pmd lock we also need to move preallocated
1614 	 * PTE page table if new_pmd is on different PMD page table.
1615 	 *
1616 	 * We also don't deposit and withdraw tables for file pages.
1617 	 */
1618 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1619 }
1620 #endif
1621 
1622 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1623 {
1624 #ifdef CONFIG_MEM_SOFT_DIRTY
1625 	if (unlikely(is_pmd_migration_entry(pmd)))
1626 		pmd = pmd_swp_mksoft_dirty(pmd);
1627 	else if (pmd_present(pmd))
1628 		pmd = pmd_mksoft_dirty(pmd);
1629 #endif
1630 	return pmd;
1631 }
1632 
1633 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1634 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1635 {
1636 	spinlock_t *old_ptl, *new_ptl;
1637 	pmd_t pmd;
1638 	struct mm_struct *mm = vma->vm_mm;
1639 	bool force_flush = false;
1640 
1641 	/*
1642 	 * The destination pmd shouldn't be established, free_pgtables()
1643 	 * should have release it.
1644 	 */
1645 	if (WARN_ON(!pmd_none(*new_pmd))) {
1646 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1647 		return false;
1648 	}
1649 
1650 	/*
1651 	 * We don't have to worry about the ordering of src and dst
1652 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1653 	 */
1654 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1655 	if (old_ptl) {
1656 		new_ptl = pmd_lockptr(mm, new_pmd);
1657 		if (new_ptl != old_ptl)
1658 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1659 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1660 		if (pmd_present(pmd))
1661 			force_flush = true;
1662 		VM_BUG_ON(!pmd_none(*new_pmd));
1663 
1664 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1665 			pgtable_t pgtable;
1666 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1667 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1668 		}
1669 		pmd = move_soft_dirty_pmd(pmd);
1670 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1671 		if (force_flush)
1672 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1673 		if (new_ptl != old_ptl)
1674 			spin_unlock(new_ptl);
1675 		spin_unlock(old_ptl);
1676 		return true;
1677 	}
1678 	return false;
1679 }
1680 
1681 /*
1682  * Returns
1683  *  - 0 if PMD could not be locked
1684  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1685  *      or if prot_numa but THP migration is not supported
1686  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1687  */
1688 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1689 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1690 {
1691 	struct mm_struct *mm = vma->vm_mm;
1692 	spinlock_t *ptl;
1693 	pmd_t entry;
1694 	bool preserve_write;
1695 	int ret;
1696 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1697 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1698 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1699 
1700 	if (prot_numa && !thp_migration_supported())
1701 		return 1;
1702 
1703 	ptl = __pmd_trans_huge_lock(pmd, vma);
1704 	if (!ptl)
1705 		return 0;
1706 
1707 	preserve_write = prot_numa && pmd_write(*pmd);
1708 	ret = 1;
1709 
1710 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1711 	if (is_swap_pmd(*pmd)) {
1712 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1713 
1714 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1715 		if (is_writable_migration_entry(entry)) {
1716 			pmd_t newpmd;
1717 			/*
1718 			 * A protection check is difficult so
1719 			 * just be safe and disable write
1720 			 */
1721 			entry = make_readable_migration_entry(
1722 							swp_offset(entry));
1723 			newpmd = swp_entry_to_pmd(entry);
1724 			if (pmd_swp_soft_dirty(*pmd))
1725 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1726 			if (pmd_swp_uffd_wp(*pmd))
1727 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1728 			set_pmd_at(mm, addr, pmd, newpmd);
1729 		}
1730 		goto unlock;
1731 	}
1732 #endif
1733 
1734 	if (prot_numa) {
1735 		struct page *page;
1736 		/*
1737 		 * Avoid trapping faults against the zero page. The read-only
1738 		 * data is likely to be read-cached on the local CPU and
1739 		 * local/remote hits to the zero page are not interesting.
1740 		 */
1741 		if (is_huge_zero_pmd(*pmd))
1742 			goto unlock;
1743 
1744 		if (pmd_protnone(*pmd))
1745 			goto unlock;
1746 
1747 		page = pmd_page(*pmd);
1748 		/*
1749 		 * Skip scanning top tier node if normal numa
1750 		 * balancing is disabled
1751 		 */
1752 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1753 		    node_is_toptier(page_to_nid(page)))
1754 			goto unlock;
1755 	}
1756 	/*
1757 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1758 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1759 	 * which is also under mmap_read_lock(mm):
1760 	 *
1761 	 *	CPU0:				CPU1:
1762 	 *				change_huge_pmd(prot_numa=1)
1763 	 *				 pmdp_huge_get_and_clear_notify()
1764 	 * madvise_dontneed()
1765 	 *  zap_pmd_range()
1766 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1767 	 *   // skip the pmd
1768 	 *				 set_pmd_at();
1769 	 *				 // pmd is re-established
1770 	 *
1771 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1772 	 * which may break userspace.
1773 	 *
1774 	 * pmdp_invalidate() is required to make sure we don't miss
1775 	 * dirty/young flags set by hardware.
1776 	 */
1777 	entry = pmdp_invalidate(vma, addr, pmd);
1778 
1779 	entry = pmd_modify(entry, newprot);
1780 	if (preserve_write)
1781 		entry = pmd_mk_savedwrite(entry);
1782 	if (uffd_wp) {
1783 		entry = pmd_wrprotect(entry);
1784 		entry = pmd_mkuffd_wp(entry);
1785 	} else if (uffd_wp_resolve) {
1786 		/*
1787 		 * Leave the write bit to be handled by PF interrupt
1788 		 * handler, then things like COW could be properly
1789 		 * handled.
1790 		 */
1791 		entry = pmd_clear_uffd_wp(entry);
1792 	}
1793 	ret = HPAGE_PMD_NR;
1794 	set_pmd_at(mm, addr, pmd, entry);
1795 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1796 unlock:
1797 	spin_unlock(ptl);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1803  *
1804  * Note that if it returns page table lock pointer, this routine returns without
1805  * unlocking page table lock. So callers must unlock it.
1806  */
1807 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1808 {
1809 	spinlock_t *ptl;
1810 	ptl = pmd_lock(vma->vm_mm, pmd);
1811 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1812 			pmd_devmap(*pmd)))
1813 		return ptl;
1814 	spin_unlock(ptl);
1815 	return NULL;
1816 }
1817 
1818 /*
1819  * Returns true if a given pud maps a thp, false otherwise.
1820  *
1821  * Note that if it returns true, this routine returns without unlocking page
1822  * table lock. So callers must unlock it.
1823  */
1824 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1825 {
1826 	spinlock_t *ptl;
1827 
1828 	ptl = pud_lock(vma->vm_mm, pud);
1829 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1830 		return ptl;
1831 	spin_unlock(ptl);
1832 	return NULL;
1833 }
1834 
1835 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1836 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1837 		 pud_t *pud, unsigned long addr)
1838 {
1839 	spinlock_t *ptl;
1840 
1841 	ptl = __pud_trans_huge_lock(pud, vma);
1842 	if (!ptl)
1843 		return 0;
1844 	/*
1845 	 * For architectures like ppc64 we look at deposited pgtable
1846 	 * when calling pudp_huge_get_and_clear. So do the
1847 	 * pgtable_trans_huge_withdraw after finishing pudp related
1848 	 * operations.
1849 	 */
1850 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1851 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1852 	if (vma_is_special_huge(vma)) {
1853 		spin_unlock(ptl);
1854 		/* No zero page support yet */
1855 	} else {
1856 		/* No support for anonymous PUD pages yet */
1857 		BUG();
1858 	}
1859 	return 1;
1860 }
1861 
1862 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1863 		unsigned long haddr)
1864 {
1865 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1866 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1867 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1868 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1869 
1870 	count_vm_event(THP_SPLIT_PUD);
1871 
1872 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1873 }
1874 
1875 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1876 		unsigned long address)
1877 {
1878 	spinlock_t *ptl;
1879 	struct mmu_notifier_range range;
1880 
1881 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1882 				address & HPAGE_PUD_MASK,
1883 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1884 	mmu_notifier_invalidate_range_start(&range);
1885 	ptl = pud_lock(vma->vm_mm, pud);
1886 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1887 		goto out;
1888 	__split_huge_pud_locked(vma, pud, range.start);
1889 
1890 out:
1891 	spin_unlock(ptl);
1892 	/*
1893 	 * No need to double call mmu_notifier->invalidate_range() callback as
1894 	 * the above pudp_huge_clear_flush_notify() did already call it.
1895 	 */
1896 	mmu_notifier_invalidate_range_only_end(&range);
1897 }
1898 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1899 
1900 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1901 		unsigned long haddr, pmd_t *pmd)
1902 {
1903 	struct mm_struct *mm = vma->vm_mm;
1904 	pgtable_t pgtable;
1905 	pmd_t _pmd;
1906 	int i;
1907 
1908 	/*
1909 	 * Leave pmd empty until pte is filled note that it is fine to delay
1910 	 * notification until mmu_notifier_invalidate_range_end() as we are
1911 	 * replacing a zero pmd write protected page with a zero pte write
1912 	 * protected page.
1913 	 *
1914 	 * See Documentation/vm/mmu_notifier.rst
1915 	 */
1916 	pmdp_huge_clear_flush(vma, haddr, pmd);
1917 
1918 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1919 	pmd_populate(mm, &_pmd, pgtable);
1920 
1921 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1922 		pte_t *pte, entry;
1923 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1924 		entry = pte_mkspecial(entry);
1925 		pte = pte_offset_map(&_pmd, haddr);
1926 		VM_BUG_ON(!pte_none(*pte));
1927 		set_pte_at(mm, haddr, pte, entry);
1928 		pte_unmap(pte);
1929 	}
1930 	smp_wmb(); /* make pte visible before pmd */
1931 	pmd_populate(mm, pmd, pgtable);
1932 }
1933 
1934 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1935 		unsigned long haddr, bool freeze)
1936 {
1937 	struct mm_struct *mm = vma->vm_mm;
1938 	struct page *page;
1939 	pgtable_t pgtable;
1940 	pmd_t old_pmd, _pmd;
1941 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1942 	unsigned long addr;
1943 	int i;
1944 
1945 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1946 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1947 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1948 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1949 				&& !pmd_devmap(*pmd));
1950 
1951 	count_vm_event(THP_SPLIT_PMD);
1952 
1953 	if (!vma_is_anonymous(vma)) {
1954 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1955 		/*
1956 		 * We are going to unmap this huge page. So
1957 		 * just go ahead and zap it
1958 		 */
1959 		if (arch_needs_pgtable_deposit())
1960 			zap_deposited_table(mm, pmd);
1961 		if (vma_is_special_huge(vma))
1962 			return;
1963 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
1964 			swp_entry_t entry;
1965 
1966 			entry = pmd_to_swp_entry(old_pmd);
1967 			page = pfn_swap_entry_to_page(entry);
1968 		} else {
1969 			page = pmd_page(old_pmd);
1970 			if (!PageDirty(page) && pmd_dirty(old_pmd))
1971 				set_page_dirty(page);
1972 			if (!PageReferenced(page) && pmd_young(old_pmd))
1973 				SetPageReferenced(page);
1974 			page_remove_rmap(page, vma, true);
1975 			put_page(page);
1976 		}
1977 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1978 		return;
1979 	}
1980 
1981 	if (is_huge_zero_pmd(*pmd)) {
1982 		/*
1983 		 * FIXME: Do we want to invalidate secondary mmu by calling
1984 		 * mmu_notifier_invalidate_range() see comments below inside
1985 		 * __split_huge_pmd() ?
1986 		 *
1987 		 * We are going from a zero huge page write protected to zero
1988 		 * small page also write protected so it does not seems useful
1989 		 * to invalidate secondary mmu at this time.
1990 		 */
1991 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1992 	}
1993 
1994 	/*
1995 	 * Up to this point the pmd is present and huge and userland has the
1996 	 * whole access to the hugepage during the split (which happens in
1997 	 * place). If we overwrite the pmd with the not-huge version pointing
1998 	 * to the pte here (which of course we could if all CPUs were bug
1999 	 * free), userland could trigger a small page size TLB miss on the
2000 	 * small sized TLB while the hugepage TLB entry is still established in
2001 	 * the huge TLB. Some CPU doesn't like that.
2002 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2003 	 * 383 on page 105. Intel should be safe but is also warns that it's
2004 	 * only safe if the permission and cache attributes of the two entries
2005 	 * loaded in the two TLB is identical (which should be the case here).
2006 	 * But it is generally safer to never allow small and huge TLB entries
2007 	 * for the same virtual address to be loaded simultaneously. So instead
2008 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2009 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2010 	 * must remain set at all times on the pmd until the split is complete
2011 	 * for this pmd), then we flush the SMP TLB and finally we write the
2012 	 * non-huge version of the pmd entry with pmd_populate.
2013 	 */
2014 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2015 
2016 	pmd_migration = is_pmd_migration_entry(old_pmd);
2017 	if (unlikely(pmd_migration)) {
2018 		swp_entry_t entry;
2019 
2020 		entry = pmd_to_swp_entry(old_pmd);
2021 		page = pfn_swap_entry_to_page(entry);
2022 		write = is_writable_migration_entry(entry);
2023 		young = false;
2024 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2025 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2026 	} else {
2027 		page = pmd_page(old_pmd);
2028 		if (pmd_dirty(old_pmd))
2029 			SetPageDirty(page);
2030 		write = pmd_write(old_pmd);
2031 		young = pmd_young(old_pmd);
2032 		soft_dirty = pmd_soft_dirty(old_pmd);
2033 		uffd_wp = pmd_uffd_wp(old_pmd);
2034 		VM_BUG_ON_PAGE(!page_count(page), page);
2035 		page_ref_add(page, HPAGE_PMD_NR - 1);
2036 	}
2037 
2038 	/*
2039 	 * Withdraw the table only after we mark the pmd entry invalid.
2040 	 * This's critical for some architectures (Power).
2041 	 */
2042 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2043 	pmd_populate(mm, &_pmd, pgtable);
2044 
2045 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2046 		pte_t entry, *pte;
2047 		/*
2048 		 * Note that NUMA hinting access restrictions are not
2049 		 * transferred to avoid any possibility of altering
2050 		 * permissions across VMAs.
2051 		 */
2052 		if (freeze || pmd_migration) {
2053 			swp_entry_t swp_entry;
2054 			if (write)
2055 				swp_entry = make_writable_migration_entry(
2056 							page_to_pfn(page + i));
2057 			else
2058 				swp_entry = make_readable_migration_entry(
2059 							page_to_pfn(page + i));
2060 			entry = swp_entry_to_pte(swp_entry);
2061 			if (soft_dirty)
2062 				entry = pte_swp_mksoft_dirty(entry);
2063 			if (uffd_wp)
2064 				entry = pte_swp_mkuffd_wp(entry);
2065 		} else {
2066 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2067 			entry = maybe_mkwrite(entry, vma);
2068 			if (!write)
2069 				entry = pte_wrprotect(entry);
2070 			if (!young)
2071 				entry = pte_mkold(entry);
2072 			if (soft_dirty)
2073 				entry = pte_mksoft_dirty(entry);
2074 			if (uffd_wp)
2075 				entry = pte_mkuffd_wp(entry);
2076 		}
2077 		pte = pte_offset_map(&_pmd, addr);
2078 		BUG_ON(!pte_none(*pte));
2079 		set_pte_at(mm, addr, pte, entry);
2080 		if (!pmd_migration)
2081 			atomic_inc(&page[i]._mapcount);
2082 		pte_unmap(pte);
2083 	}
2084 
2085 	if (!pmd_migration) {
2086 		/*
2087 		 * Set PG_double_map before dropping compound_mapcount to avoid
2088 		 * false-negative page_mapped().
2089 		 */
2090 		if (compound_mapcount(page) > 1 &&
2091 		    !TestSetPageDoubleMap(page)) {
2092 			for (i = 0; i < HPAGE_PMD_NR; i++)
2093 				atomic_inc(&page[i]._mapcount);
2094 		}
2095 
2096 		lock_page_memcg(page);
2097 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2098 			/* Last compound_mapcount is gone. */
2099 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2100 						-HPAGE_PMD_NR);
2101 			if (TestClearPageDoubleMap(page)) {
2102 				/* No need in mapcount reference anymore */
2103 				for (i = 0; i < HPAGE_PMD_NR; i++)
2104 					atomic_dec(&page[i]._mapcount);
2105 			}
2106 		}
2107 		unlock_page_memcg(page);
2108 
2109 		/* Above is effectively page_remove_rmap(page, vma, true) */
2110 		munlock_vma_page(page, vma, true);
2111 	}
2112 
2113 	smp_wmb(); /* make pte visible before pmd */
2114 	pmd_populate(mm, pmd, pgtable);
2115 
2116 	if (freeze) {
2117 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2118 			page_remove_rmap(page + i, vma, false);
2119 			put_page(page + i);
2120 		}
2121 	}
2122 }
2123 
2124 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2125 		unsigned long address, bool freeze, struct folio *folio)
2126 {
2127 	spinlock_t *ptl;
2128 	struct mmu_notifier_range range;
2129 	bool do_unlock_folio = false;
2130 	pmd_t _pmd;
2131 
2132 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2133 				address & HPAGE_PMD_MASK,
2134 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2135 	mmu_notifier_invalidate_range_start(&range);
2136 	ptl = pmd_lock(vma->vm_mm, pmd);
2137 
2138 	/*
2139 	 * If caller asks to setup a migration entry, we need a folio to check
2140 	 * pmd against. Otherwise we can end up replacing wrong folio.
2141 	 */
2142 	VM_BUG_ON(freeze && !folio);
2143 	if (folio) {
2144 		VM_WARN_ON_ONCE(!folio_test_locked(folio));
2145 		if (folio != page_folio(pmd_page(*pmd)))
2146 			goto out;
2147 	}
2148 
2149 repeat:
2150 	if (pmd_trans_huge(*pmd)) {
2151 		if (!folio) {
2152 			folio = page_folio(pmd_page(*pmd));
2153 			/*
2154 			 * An anonymous page must be locked, to ensure that a
2155 			 * concurrent reuse_swap_page() sees stable mapcount;
2156 			 * but reuse_swap_page() is not used on shmem or file,
2157 			 * and page lock must not be taken when zap_pmd_range()
2158 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2159 			 */
2160 			if (folio_test_anon(folio)) {
2161 				if (unlikely(!folio_trylock(folio))) {
2162 					folio_get(folio);
2163 					_pmd = *pmd;
2164 					spin_unlock(ptl);
2165 					folio_lock(folio);
2166 					spin_lock(ptl);
2167 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2168 						folio_unlock(folio);
2169 						folio_put(folio);
2170 						folio = NULL;
2171 						goto repeat;
2172 					}
2173 					folio_put(folio);
2174 				}
2175 				do_unlock_folio = true;
2176 			}
2177 		}
2178 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2179 		goto out;
2180 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2181 out:
2182 	spin_unlock(ptl);
2183 	if (do_unlock_folio)
2184 		folio_unlock(folio);
2185 	/*
2186 	 * No need to double call mmu_notifier->invalidate_range() callback.
2187 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2188 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2189 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2190 	 *    fault will trigger a flush_notify before pointing to a new page
2191 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2192 	 *    page in the meantime)
2193 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2194 	 *     to invalidate secondary tlb entry they are all still valid.
2195 	 *     any further changes to individual pte will notify. So no need
2196 	 *     to call mmu_notifier->invalidate_range()
2197 	 */
2198 	mmu_notifier_invalidate_range_only_end(&range);
2199 }
2200 
2201 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2202 		bool freeze, struct folio *folio)
2203 {
2204 	pgd_t *pgd;
2205 	p4d_t *p4d;
2206 	pud_t *pud;
2207 	pmd_t *pmd;
2208 
2209 	pgd = pgd_offset(vma->vm_mm, address);
2210 	if (!pgd_present(*pgd))
2211 		return;
2212 
2213 	p4d = p4d_offset(pgd, address);
2214 	if (!p4d_present(*p4d))
2215 		return;
2216 
2217 	pud = pud_offset(p4d, address);
2218 	if (!pud_present(*pud))
2219 		return;
2220 
2221 	pmd = pmd_offset(pud, address);
2222 
2223 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2224 }
2225 
2226 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2227 {
2228 	/*
2229 	 * If the new address isn't hpage aligned and it could previously
2230 	 * contain an hugepage: check if we need to split an huge pmd.
2231 	 */
2232 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2233 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2234 			 ALIGN(address, HPAGE_PMD_SIZE)))
2235 		split_huge_pmd_address(vma, address, false, NULL);
2236 }
2237 
2238 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2239 			     unsigned long start,
2240 			     unsigned long end,
2241 			     long adjust_next)
2242 {
2243 	/* Check if we need to split start first. */
2244 	split_huge_pmd_if_needed(vma, start);
2245 
2246 	/* Check if we need to split end next. */
2247 	split_huge_pmd_if_needed(vma, end);
2248 
2249 	/*
2250 	 * If we're also updating the vma->vm_next->vm_start,
2251 	 * check if we need to split it.
2252 	 */
2253 	if (adjust_next > 0) {
2254 		struct vm_area_struct *next = vma->vm_next;
2255 		unsigned long nstart = next->vm_start;
2256 		nstart += adjust_next;
2257 		split_huge_pmd_if_needed(next, nstart);
2258 	}
2259 }
2260 
2261 static void unmap_page(struct page *page)
2262 {
2263 	struct folio *folio = page_folio(page);
2264 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2265 		TTU_SYNC;
2266 
2267 	VM_BUG_ON_PAGE(!PageHead(page), page);
2268 
2269 	/*
2270 	 * Anon pages need migration entries to preserve them, but file
2271 	 * pages can simply be left unmapped, then faulted back on demand.
2272 	 * If that is ever changed (perhaps for mlock), update remap_page().
2273 	 */
2274 	if (folio_test_anon(folio))
2275 		try_to_migrate(folio, ttu_flags);
2276 	else
2277 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2278 
2279 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2280 }
2281 
2282 static void remap_page(struct folio *folio, unsigned long nr)
2283 {
2284 	int i = 0;
2285 
2286 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2287 	if (!folio_test_anon(folio))
2288 		return;
2289 	for (;;) {
2290 		remove_migration_ptes(folio, folio, true);
2291 		i += folio_nr_pages(folio);
2292 		if (i >= nr)
2293 			break;
2294 		folio = folio_next(folio);
2295 	}
2296 }
2297 
2298 static void lru_add_page_tail(struct page *head, struct page *tail,
2299 		struct lruvec *lruvec, struct list_head *list)
2300 {
2301 	VM_BUG_ON_PAGE(!PageHead(head), head);
2302 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2303 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2304 	lockdep_assert_held(&lruvec->lru_lock);
2305 
2306 	if (list) {
2307 		/* page reclaim is reclaiming a huge page */
2308 		VM_WARN_ON(PageLRU(head));
2309 		get_page(tail);
2310 		list_add_tail(&tail->lru, list);
2311 	} else {
2312 		/* head is still on lru (and we have it frozen) */
2313 		VM_WARN_ON(!PageLRU(head));
2314 		if (PageUnevictable(tail))
2315 			tail->mlock_count = 0;
2316 		else
2317 			list_add_tail(&tail->lru, &head->lru);
2318 		SetPageLRU(tail);
2319 	}
2320 }
2321 
2322 static void __split_huge_page_tail(struct page *head, int tail,
2323 		struct lruvec *lruvec, struct list_head *list)
2324 {
2325 	struct page *page_tail = head + tail;
2326 
2327 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2328 
2329 	/*
2330 	 * Clone page flags before unfreezing refcount.
2331 	 *
2332 	 * After successful get_page_unless_zero() might follow flags change,
2333 	 * for example lock_page() which set PG_waiters.
2334 	 */
2335 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2336 	page_tail->flags |= (head->flags &
2337 			((1L << PG_referenced) |
2338 			 (1L << PG_swapbacked) |
2339 			 (1L << PG_swapcache) |
2340 			 (1L << PG_mlocked) |
2341 			 (1L << PG_uptodate) |
2342 			 (1L << PG_active) |
2343 			 (1L << PG_workingset) |
2344 			 (1L << PG_locked) |
2345 			 (1L << PG_unevictable) |
2346 #ifdef CONFIG_64BIT
2347 			 (1L << PG_arch_2) |
2348 #endif
2349 			 (1L << PG_dirty)));
2350 
2351 	/* ->mapping in first tail page is compound_mapcount */
2352 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2353 			page_tail);
2354 	page_tail->mapping = head->mapping;
2355 	page_tail->index = head->index + tail;
2356 
2357 	/* Page flags must be visible before we make the page non-compound. */
2358 	smp_wmb();
2359 
2360 	/*
2361 	 * Clear PageTail before unfreezing page refcount.
2362 	 *
2363 	 * After successful get_page_unless_zero() might follow put_page()
2364 	 * which needs correct compound_head().
2365 	 */
2366 	clear_compound_head(page_tail);
2367 
2368 	/* Finally unfreeze refcount. Additional reference from page cache. */
2369 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2370 					  PageSwapCache(head)));
2371 
2372 	if (page_is_young(head))
2373 		set_page_young(page_tail);
2374 	if (page_is_idle(head))
2375 		set_page_idle(page_tail);
2376 
2377 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2378 
2379 	/*
2380 	 * always add to the tail because some iterators expect new
2381 	 * pages to show after the currently processed elements - e.g.
2382 	 * migrate_pages
2383 	 */
2384 	lru_add_page_tail(head, page_tail, lruvec, list);
2385 }
2386 
2387 static void __split_huge_page(struct page *page, struct list_head *list,
2388 		pgoff_t end)
2389 {
2390 	struct folio *folio = page_folio(page);
2391 	struct page *head = &folio->page;
2392 	struct lruvec *lruvec;
2393 	struct address_space *swap_cache = NULL;
2394 	unsigned long offset = 0;
2395 	unsigned int nr = thp_nr_pages(head);
2396 	int i;
2397 
2398 	/* complete memcg works before add pages to LRU */
2399 	split_page_memcg(head, nr);
2400 
2401 	if (PageAnon(head) && PageSwapCache(head)) {
2402 		swp_entry_t entry = { .val = page_private(head) };
2403 
2404 		offset = swp_offset(entry);
2405 		swap_cache = swap_address_space(entry);
2406 		xa_lock(&swap_cache->i_pages);
2407 	}
2408 
2409 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2410 	lruvec = folio_lruvec_lock(folio);
2411 
2412 	ClearPageHasHWPoisoned(head);
2413 
2414 	for (i = nr - 1; i >= 1; i--) {
2415 		__split_huge_page_tail(head, i, lruvec, list);
2416 		/* Some pages can be beyond EOF: drop them from page cache */
2417 		if (head[i].index >= end) {
2418 			ClearPageDirty(head + i);
2419 			__delete_from_page_cache(head + i, NULL);
2420 			if (shmem_mapping(head->mapping))
2421 				shmem_uncharge(head->mapping->host, 1);
2422 			put_page(head + i);
2423 		} else if (!PageAnon(page)) {
2424 			__xa_store(&head->mapping->i_pages, head[i].index,
2425 					head + i, 0);
2426 		} else if (swap_cache) {
2427 			__xa_store(&swap_cache->i_pages, offset + i,
2428 					head + i, 0);
2429 		}
2430 	}
2431 
2432 	ClearPageCompound(head);
2433 	unlock_page_lruvec(lruvec);
2434 	/* Caller disabled irqs, so they are still disabled here */
2435 
2436 	split_page_owner(head, nr);
2437 
2438 	/* See comment in __split_huge_page_tail() */
2439 	if (PageAnon(head)) {
2440 		/* Additional pin to swap cache */
2441 		if (PageSwapCache(head)) {
2442 			page_ref_add(head, 2);
2443 			xa_unlock(&swap_cache->i_pages);
2444 		} else {
2445 			page_ref_inc(head);
2446 		}
2447 	} else {
2448 		/* Additional pin to page cache */
2449 		page_ref_add(head, 2);
2450 		xa_unlock(&head->mapping->i_pages);
2451 	}
2452 	local_irq_enable();
2453 
2454 	remap_page(folio, nr);
2455 
2456 	if (PageSwapCache(head)) {
2457 		swp_entry_t entry = { .val = page_private(head) };
2458 
2459 		split_swap_cluster(entry);
2460 	}
2461 
2462 	for (i = 0; i < nr; i++) {
2463 		struct page *subpage = head + i;
2464 		if (subpage == page)
2465 			continue;
2466 		unlock_page(subpage);
2467 
2468 		/*
2469 		 * Subpages may be freed if there wasn't any mapping
2470 		 * like if add_to_swap() is running on a lru page that
2471 		 * had its mapping zapped. And freeing these pages
2472 		 * requires taking the lru_lock so we do the put_page
2473 		 * of the tail pages after the split is complete.
2474 		 */
2475 		put_page(subpage);
2476 	}
2477 }
2478 
2479 /*
2480  * This calculates accurately how many mappings a transparent hugepage
2481  * has (unlike page_mapcount() which isn't fully accurate). This full
2482  * accuracy is primarily needed to know if copy-on-write faults can
2483  * reuse the page and change the mapping to read-write instead of
2484  * copying them. At the same time this returns the total_mapcount too.
2485  *
2486  * The function returns the highest mapcount any one of the subpages
2487  * has. If the return value is one, even if different processes are
2488  * mapping different subpages of the transparent hugepage, they can
2489  * all reuse it, because each process is reusing a different subpage.
2490  *
2491  * The total_mapcount is instead counting all virtual mappings of the
2492  * subpages. If the total_mapcount is equal to "one", it tells the
2493  * caller all mappings belong to the same "mm" and in turn the
2494  * anon_vma of the transparent hugepage can become the vma->anon_vma
2495  * local one as no other process may be mapping any of the subpages.
2496  *
2497  * It would be more accurate to replace page_mapcount() with
2498  * page_trans_huge_mapcount(), however we only use
2499  * page_trans_huge_mapcount() in the copy-on-write faults where we
2500  * need full accuracy to avoid breaking page pinning, because
2501  * page_trans_huge_mapcount() is slower than page_mapcount().
2502  */
2503 int page_trans_huge_mapcount(struct page *page)
2504 {
2505 	int i, ret;
2506 
2507 	/* hugetlbfs shouldn't call it */
2508 	VM_BUG_ON_PAGE(PageHuge(page), page);
2509 
2510 	if (likely(!PageTransCompound(page)))
2511 		return atomic_read(&page->_mapcount) + 1;
2512 
2513 	page = compound_head(page);
2514 
2515 	ret = 0;
2516 	for (i = 0; i < thp_nr_pages(page); i++) {
2517 		int mapcount = atomic_read(&page[i]._mapcount) + 1;
2518 		ret = max(ret, mapcount);
2519 	}
2520 
2521 	if (PageDoubleMap(page))
2522 		ret -= 1;
2523 
2524 	return ret + compound_mapcount(page);
2525 }
2526 
2527 /* Racy check whether the huge page can be split */
2528 bool can_split_folio(struct folio *folio, int *pextra_pins)
2529 {
2530 	int extra_pins;
2531 
2532 	/* Additional pins from page cache */
2533 	if (folio_test_anon(folio))
2534 		extra_pins = folio_test_swapcache(folio) ?
2535 				folio_nr_pages(folio) : 0;
2536 	else
2537 		extra_pins = folio_nr_pages(folio);
2538 	if (pextra_pins)
2539 		*pextra_pins = extra_pins;
2540 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2541 }
2542 
2543 /*
2544  * This function splits huge page into normal pages. @page can point to any
2545  * subpage of huge page to split. Split doesn't change the position of @page.
2546  *
2547  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2548  * The huge page must be locked.
2549  *
2550  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2551  *
2552  * Both head page and tail pages will inherit mapping, flags, and so on from
2553  * the hugepage.
2554  *
2555  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2556  * they are not mapped.
2557  *
2558  * Returns 0 if the hugepage is split successfully.
2559  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2560  * us.
2561  */
2562 int split_huge_page_to_list(struct page *page, struct list_head *list)
2563 {
2564 	struct folio *folio = page_folio(page);
2565 	struct page *head = &folio->page;
2566 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2567 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2568 	struct anon_vma *anon_vma = NULL;
2569 	struct address_space *mapping = NULL;
2570 	int extra_pins, ret;
2571 	pgoff_t end;
2572 
2573 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2574 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2575 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2576 
2577 	if (PageWriteback(head))
2578 		return -EBUSY;
2579 
2580 	if (PageAnon(head)) {
2581 		/*
2582 		 * The caller does not necessarily hold an mmap_lock that would
2583 		 * prevent the anon_vma disappearing so we first we take a
2584 		 * reference to it and then lock the anon_vma for write. This
2585 		 * is similar to folio_lock_anon_vma_read except the write lock
2586 		 * is taken to serialise against parallel split or collapse
2587 		 * operations.
2588 		 */
2589 		anon_vma = page_get_anon_vma(head);
2590 		if (!anon_vma) {
2591 			ret = -EBUSY;
2592 			goto out;
2593 		}
2594 		end = -1;
2595 		mapping = NULL;
2596 		anon_vma_lock_write(anon_vma);
2597 	} else {
2598 		mapping = head->mapping;
2599 
2600 		/* Truncated ? */
2601 		if (!mapping) {
2602 			ret = -EBUSY;
2603 			goto out;
2604 		}
2605 
2606 		xas_split_alloc(&xas, head, compound_order(head),
2607 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2608 		if (xas_error(&xas)) {
2609 			ret = xas_error(&xas);
2610 			goto out;
2611 		}
2612 
2613 		anon_vma = NULL;
2614 		i_mmap_lock_read(mapping);
2615 
2616 		/*
2617 		 *__split_huge_page() may need to trim off pages beyond EOF:
2618 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2619 		 * which cannot be nested inside the page tree lock. So note
2620 		 * end now: i_size itself may be changed at any moment, but
2621 		 * head page lock is good enough to serialize the trimming.
2622 		 */
2623 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2624 		if (shmem_mapping(mapping))
2625 			end = shmem_fallocend(mapping->host, end);
2626 	}
2627 
2628 	/*
2629 	 * Racy check if we can split the page, before unmap_page() will
2630 	 * split PMDs
2631 	 */
2632 	if (!can_split_folio(folio, &extra_pins)) {
2633 		ret = -EBUSY;
2634 		goto out_unlock;
2635 	}
2636 
2637 	unmap_page(head);
2638 
2639 	/* block interrupt reentry in xa_lock and spinlock */
2640 	local_irq_disable();
2641 	if (mapping) {
2642 		/*
2643 		 * Check if the head page is present in page cache.
2644 		 * We assume all tail are present too, if head is there.
2645 		 */
2646 		xas_lock(&xas);
2647 		xas_reset(&xas);
2648 		if (xas_load(&xas) != head)
2649 			goto fail;
2650 	}
2651 
2652 	/* Prevent deferred_split_scan() touching ->_refcount */
2653 	spin_lock(&ds_queue->split_queue_lock);
2654 	if (page_ref_freeze(head, 1 + extra_pins)) {
2655 		if (!list_empty(page_deferred_list(head))) {
2656 			ds_queue->split_queue_len--;
2657 			list_del(page_deferred_list(head));
2658 		}
2659 		spin_unlock(&ds_queue->split_queue_lock);
2660 		if (mapping) {
2661 			int nr = thp_nr_pages(head);
2662 
2663 			xas_split(&xas, head, thp_order(head));
2664 			if (PageSwapBacked(head)) {
2665 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2666 							-nr);
2667 			} else {
2668 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2669 							-nr);
2670 				filemap_nr_thps_dec(mapping);
2671 			}
2672 		}
2673 
2674 		__split_huge_page(page, list, end);
2675 		ret = 0;
2676 	} else {
2677 		spin_unlock(&ds_queue->split_queue_lock);
2678 fail:
2679 		if (mapping)
2680 			xas_unlock(&xas);
2681 		local_irq_enable();
2682 		remap_page(folio, folio_nr_pages(folio));
2683 		ret = -EBUSY;
2684 	}
2685 
2686 out_unlock:
2687 	if (anon_vma) {
2688 		anon_vma_unlock_write(anon_vma);
2689 		put_anon_vma(anon_vma);
2690 	}
2691 	if (mapping)
2692 		i_mmap_unlock_read(mapping);
2693 out:
2694 	/* Free any memory we didn't use */
2695 	xas_nomem(&xas, 0);
2696 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2697 	return ret;
2698 }
2699 
2700 void free_transhuge_page(struct page *page)
2701 {
2702 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2703 	unsigned long flags;
2704 
2705 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2706 	if (!list_empty(page_deferred_list(page))) {
2707 		ds_queue->split_queue_len--;
2708 		list_del(page_deferred_list(page));
2709 	}
2710 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2711 	free_compound_page(page);
2712 }
2713 
2714 void deferred_split_huge_page(struct page *page)
2715 {
2716 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2717 #ifdef CONFIG_MEMCG
2718 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2719 #endif
2720 	unsigned long flags;
2721 
2722 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2723 
2724 	/*
2725 	 * The try_to_unmap() in page reclaim path might reach here too,
2726 	 * this may cause a race condition to corrupt deferred split queue.
2727 	 * And, if page reclaim is already handling the same page, it is
2728 	 * unnecessary to handle it again in shrinker.
2729 	 *
2730 	 * Check PageSwapCache to determine if the page is being
2731 	 * handled by page reclaim since THP swap would add the page into
2732 	 * swap cache before calling try_to_unmap().
2733 	 */
2734 	if (PageSwapCache(page))
2735 		return;
2736 
2737 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2738 	if (list_empty(page_deferred_list(page))) {
2739 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2740 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2741 		ds_queue->split_queue_len++;
2742 #ifdef CONFIG_MEMCG
2743 		if (memcg)
2744 			set_shrinker_bit(memcg, page_to_nid(page),
2745 					 deferred_split_shrinker.id);
2746 #endif
2747 	}
2748 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2749 }
2750 
2751 static unsigned long deferred_split_count(struct shrinker *shrink,
2752 		struct shrink_control *sc)
2753 {
2754 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2756 
2757 #ifdef CONFIG_MEMCG
2758 	if (sc->memcg)
2759 		ds_queue = &sc->memcg->deferred_split_queue;
2760 #endif
2761 	return READ_ONCE(ds_queue->split_queue_len);
2762 }
2763 
2764 static unsigned long deferred_split_scan(struct shrinker *shrink,
2765 		struct shrink_control *sc)
2766 {
2767 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2768 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2769 	unsigned long flags;
2770 	LIST_HEAD(list), *pos, *next;
2771 	struct page *page;
2772 	int split = 0;
2773 
2774 #ifdef CONFIG_MEMCG
2775 	if (sc->memcg)
2776 		ds_queue = &sc->memcg->deferred_split_queue;
2777 #endif
2778 
2779 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2780 	/* Take pin on all head pages to avoid freeing them under us */
2781 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2782 		page = list_entry((void *)pos, struct page, deferred_list);
2783 		page = compound_head(page);
2784 		if (get_page_unless_zero(page)) {
2785 			list_move(page_deferred_list(page), &list);
2786 		} else {
2787 			/* We lost race with put_compound_page() */
2788 			list_del_init(page_deferred_list(page));
2789 			ds_queue->split_queue_len--;
2790 		}
2791 		if (!--sc->nr_to_scan)
2792 			break;
2793 	}
2794 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2795 
2796 	list_for_each_safe(pos, next, &list) {
2797 		page = list_entry((void *)pos, struct page, deferred_list);
2798 		if (!trylock_page(page))
2799 			goto next;
2800 		/* split_huge_page() removes page from list on success */
2801 		if (!split_huge_page(page))
2802 			split++;
2803 		unlock_page(page);
2804 next:
2805 		put_page(page);
2806 	}
2807 
2808 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809 	list_splice_tail(&list, &ds_queue->split_queue);
2810 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2811 
2812 	/*
2813 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2814 	 * This can happen if pages were freed under us.
2815 	 */
2816 	if (!split && list_empty(&ds_queue->split_queue))
2817 		return SHRINK_STOP;
2818 	return split;
2819 }
2820 
2821 static struct shrinker deferred_split_shrinker = {
2822 	.count_objects = deferred_split_count,
2823 	.scan_objects = deferred_split_scan,
2824 	.seeks = DEFAULT_SEEKS,
2825 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2826 		 SHRINKER_NONSLAB,
2827 };
2828 
2829 #ifdef CONFIG_DEBUG_FS
2830 static void split_huge_pages_all(void)
2831 {
2832 	struct zone *zone;
2833 	struct page *page;
2834 	unsigned long pfn, max_zone_pfn;
2835 	unsigned long total = 0, split = 0;
2836 
2837 	pr_debug("Split all THPs\n");
2838 	for_each_populated_zone(zone) {
2839 		max_zone_pfn = zone_end_pfn(zone);
2840 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2841 			if (!pfn_valid(pfn))
2842 				continue;
2843 
2844 			page = pfn_to_page(pfn);
2845 			if (!get_page_unless_zero(page))
2846 				continue;
2847 
2848 			if (zone != page_zone(page))
2849 				goto next;
2850 
2851 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2852 				goto next;
2853 
2854 			total++;
2855 			lock_page(page);
2856 			if (!split_huge_page(page))
2857 				split++;
2858 			unlock_page(page);
2859 next:
2860 			put_page(page);
2861 			cond_resched();
2862 		}
2863 	}
2864 
2865 	pr_debug("%lu of %lu THP split\n", split, total);
2866 }
2867 
2868 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2869 {
2870 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2871 		    is_vm_hugetlb_page(vma);
2872 }
2873 
2874 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2875 				unsigned long vaddr_end)
2876 {
2877 	int ret = 0;
2878 	struct task_struct *task;
2879 	struct mm_struct *mm;
2880 	unsigned long total = 0, split = 0;
2881 	unsigned long addr;
2882 
2883 	vaddr_start &= PAGE_MASK;
2884 	vaddr_end &= PAGE_MASK;
2885 
2886 	/* Find the task_struct from pid */
2887 	rcu_read_lock();
2888 	task = find_task_by_vpid(pid);
2889 	if (!task) {
2890 		rcu_read_unlock();
2891 		ret = -ESRCH;
2892 		goto out;
2893 	}
2894 	get_task_struct(task);
2895 	rcu_read_unlock();
2896 
2897 	/* Find the mm_struct */
2898 	mm = get_task_mm(task);
2899 	put_task_struct(task);
2900 
2901 	if (!mm) {
2902 		ret = -EINVAL;
2903 		goto out;
2904 	}
2905 
2906 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2907 		 pid, vaddr_start, vaddr_end);
2908 
2909 	mmap_read_lock(mm);
2910 	/*
2911 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2912 	 * table filled with PTE-mapped THPs, each of which is distinct.
2913 	 */
2914 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2915 		struct vm_area_struct *vma = find_vma(mm, addr);
2916 		struct page *page;
2917 
2918 		if (!vma || addr < vma->vm_start)
2919 			break;
2920 
2921 		/* skip special VMA and hugetlb VMA */
2922 		if (vma_not_suitable_for_thp_split(vma)) {
2923 			addr = vma->vm_end;
2924 			continue;
2925 		}
2926 
2927 		/* FOLL_DUMP to ignore special (like zero) pages */
2928 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2929 
2930 		if (IS_ERR(page))
2931 			continue;
2932 		if (!page)
2933 			continue;
2934 
2935 		if (!is_transparent_hugepage(page))
2936 			goto next;
2937 
2938 		total++;
2939 		if (!can_split_folio(page_folio(page), NULL))
2940 			goto next;
2941 
2942 		if (!trylock_page(page))
2943 			goto next;
2944 
2945 		if (!split_huge_page(page))
2946 			split++;
2947 
2948 		unlock_page(page);
2949 next:
2950 		put_page(page);
2951 		cond_resched();
2952 	}
2953 	mmap_read_unlock(mm);
2954 	mmput(mm);
2955 
2956 	pr_debug("%lu of %lu THP split\n", split, total);
2957 
2958 out:
2959 	return ret;
2960 }
2961 
2962 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2963 				pgoff_t off_end)
2964 {
2965 	struct filename *file;
2966 	struct file *candidate;
2967 	struct address_space *mapping;
2968 	int ret = -EINVAL;
2969 	pgoff_t index;
2970 	int nr_pages = 1;
2971 	unsigned long total = 0, split = 0;
2972 
2973 	file = getname_kernel(file_path);
2974 	if (IS_ERR(file))
2975 		return ret;
2976 
2977 	candidate = file_open_name(file, O_RDONLY, 0);
2978 	if (IS_ERR(candidate))
2979 		goto out;
2980 
2981 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2982 		 file_path, off_start, off_end);
2983 
2984 	mapping = candidate->f_mapping;
2985 
2986 	for (index = off_start; index < off_end; index += nr_pages) {
2987 		struct page *fpage = pagecache_get_page(mapping, index,
2988 						FGP_ENTRY | FGP_HEAD, 0);
2989 
2990 		nr_pages = 1;
2991 		if (xa_is_value(fpage) || !fpage)
2992 			continue;
2993 
2994 		if (!is_transparent_hugepage(fpage))
2995 			goto next;
2996 
2997 		total++;
2998 		nr_pages = thp_nr_pages(fpage);
2999 
3000 		if (!trylock_page(fpage))
3001 			goto next;
3002 
3003 		if (!split_huge_page(fpage))
3004 			split++;
3005 
3006 		unlock_page(fpage);
3007 next:
3008 		put_page(fpage);
3009 		cond_resched();
3010 	}
3011 
3012 	filp_close(candidate, NULL);
3013 	ret = 0;
3014 
3015 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3016 out:
3017 	putname(file);
3018 	return ret;
3019 }
3020 
3021 #define MAX_INPUT_BUF_SZ 255
3022 
3023 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3024 				size_t count, loff_t *ppops)
3025 {
3026 	static DEFINE_MUTEX(split_debug_mutex);
3027 	ssize_t ret;
3028 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3029 	char input_buf[MAX_INPUT_BUF_SZ];
3030 	int pid;
3031 	unsigned long vaddr_start, vaddr_end;
3032 
3033 	ret = mutex_lock_interruptible(&split_debug_mutex);
3034 	if (ret)
3035 		return ret;
3036 
3037 	ret = -EFAULT;
3038 
3039 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3040 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3041 		goto out;
3042 
3043 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3044 
3045 	if (input_buf[0] == '/') {
3046 		char *tok;
3047 		char *buf = input_buf;
3048 		char file_path[MAX_INPUT_BUF_SZ];
3049 		pgoff_t off_start = 0, off_end = 0;
3050 		size_t input_len = strlen(input_buf);
3051 
3052 		tok = strsep(&buf, ",");
3053 		if (tok) {
3054 			strcpy(file_path, tok);
3055 		} else {
3056 			ret = -EINVAL;
3057 			goto out;
3058 		}
3059 
3060 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3061 		if (ret != 2) {
3062 			ret = -EINVAL;
3063 			goto out;
3064 		}
3065 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3066 		if (!ret)
3067 			ret = input_len;
3068 
3069 		goto out;
3070 	}
3071 
3072 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3073 	if (ret == 1 && pid == 1) {
3074 		split_huge_pages_all();
3075 		ret = strlen(input_buf);
3076 		goto out;
3077 	} else if (ret != 3) {
3078 		ret = -EINVAL;
3079 		goto out;
3080 	}
3081 
3082 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3083 	if (!ret)
3084 		ret = strlen(input_buf);
3085 out:
3086 	mutex_unlock(&split_debug_mutex);
3087 	return ret;
3088 
3089 }
3090 
3091 static const struct file_operations split_huge_pages_fops = {
3092 	.owner	 = THIS_MODULE,
3093 	.write	 = split_huge_pages_write,
3094 	.llseek  = no_llseek,
3095 };
3096 
3097 static int __init split_huge_pages_debugfs(void)
3098 {
3099 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3100 			    &split_huge_pages_fops);
3101 	return 0;
3102 }
3103 late_initcall(split_huge_pages_debugfs);
3104 #endif
3105 
3106 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3107 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3108 		struct page *page)
3109 {
3110 	struct vm_area_struct *vma = pvmw->vma;
3111 	struct mm_struct *mm = vma->vm_mm;
3112 	unsigned long address = pvmw->address;
3113 	pmd_t pmdval;
3114 	swp_entry_t entry;
3115 	pmd_t pmdswp;
3116 
3117 	if (!(pvmw->pmd && !pvmw->pte))
3118 		return;
3119 
3120 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3121 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3122 	if (pmd_dirty(pmdval))
3123 		set_page_dirty(page);
3124 	if (pmd_write(pmdval))
3125 		entry = make_writable_migration_entry(page_to_pfn(page));
3126 	else
3127 		entry = make_readable_migration_entry(page_to_pfn(page));
3128 	pmdswp = swp_entry_to_pmd(entry);
3129 	if (pmd_soft_dirty(pmdval))
3130 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3131 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3132 	page_remove_rmap(page, vma, true);
3133 	put_page(page);
3134 }
3135 
3136 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3137 {
3138 	struct vm_area_struct *vma = pvmw->vma;
3139 	struct mm_struct *mm = vma->vm_mm;
3140 	unsigned long address = pvmw->address;
3141 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3142 	pmd_t pmde;
3143 	swp_entry_t entry;
3144 
3145 	if (!(pvmw->pmd && !pvmw->pte))
3146 		return;
3147 
3148 	entry = pmd_to_swp_entry(*pvmw->pmd);
3149 	get_page(new);
3150 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3151 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3152 		pmde = pmd_mksoft_dirty(pmde);
3153 	if (is_writable_migration_entry(entry))
3154 		pmde = maybe_pmd_mkwrite(pmde, vma);
3155 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3156 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3157 
3158 	if (PageAnon(new))
3159 		page_add_anon_rmap(new, vma, mmun_start, true);
3160 	else
3161 		page_add_file_rmap(new, vma, true);
3162 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3163 
3164 	/* No need to invalidate - it was non-present before */
3165 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3166 }
3167 #endif
3168