1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/dax.h> 22 #include <linux/khugepaged.h> 23 #include <linux/freezer.h> 24 #include <linux/pfn_t.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 #include <linux/sched/sysctl.h> 38 39 #include <asm/tlb.h> 40 #include <asm/pgalloc.h> 41 #include "internal.h" 42 43 /* 44 * By default, transparent hugepage support is disabled in order to avoid 45 * risking an increased memory footprint for applications that are not 46 * guaranteed to benefit from it. When transparent hugepage support is 47 * enabled, it is for all mappings, and khugepaged scans all mappings. 48 * Defrag is invoked by khugepaged hugepage allocations and by page faults 49 * for all hugepage allocations. 50 */ 51 unsigned long transparent_hugepage_flags __read_mostly = 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 53 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 54 #endif 55 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 56 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 57 #endif 58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 59 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 60 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 61 62 static struct shrinker deferred_split_shrinker; 63 64 static atomic_t huge_zero_refcount; 65 struct page *huge_zero_page __read_mostly; 66 unsigned long huge_zero_pfn __read_mostly = ~0UL; 67 68 static inline bool file_thp_enabled(struct vm_area_struct *vma) 69 { 70 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file && 71 !inode_is_open_for_write(vma->vm_file->f_inode) && 72 (vma->vm_flags & VM_EXEC); 73 } 74 75 bool transparent_hugepage_active(struct vm_area_struct *vma) 76 { 77 /* The addr is used to check if the vma size fits */ 78 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 79 80 if (!transhuge_vma_suitable(vma, addr)) 81 return false; 82 if (vma_is_anonymous(vma)) 83 return __transparent_hugepage_enabled(vma); 84 if (vma_is_shmem(vma)) 85 return shmem_huge_enabled(vma); 86 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 87 return file_thp_enabled(vma); 88 89 return false; 90 } 91 92 static bool get_huge_zero_page(void) 93 { 94 struct page *zero_page; 95 retry: 96 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 97 return true; 98 99 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 100 HPAGE_PMD_ORDER); 101 if (!zero_page) { 102 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 103 return false; 104 } 105 count_vm_event(THP_ZERO_PAGE_ALLOC); 106 preempt_disable(); 107 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 108 preempt_enable(); 109 __free_pages(zero_page, compound_order(zero_page)); 110 goto retry; 111 } 112 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 113 114 /* We take additional reference here. It will be put back by shrinker */ 115 atomic_set(&huge_zero_refcount, 2); 116 preempt_enable(); 117 return true; 118 } 119 120 static void put_huge_zero_page(void) 121 { 122 /* 123 * Counter should never go to zero here. Only shrinker can put 124 * last reference. 125 */ 126 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 127 } 128 129 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 130 { 131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 132 return READ_ONCE(huge_zero_page); 133 134 if (!get_huge_zero_page()) 135 return NULL; 136 137 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 138 put_huge_zero_page(); 139 140 return READ_ONCE(huge_zero_page); 141 } 142 143 void mm_put_huge_zero_page(struct mm_struct *mm) 144 { 145 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 146 put_huge_zero_page(); 147 } 148 149 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 150 struct shrink_control *sc) 151 { 152 /* we can free zero page only if last reference remains */ 153 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 154 } 155 156 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 157 struct shrink_control *sc) 158 { 159 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 160 struct page *zero_page = xchg(&huge_zero_page, NULL); 161 BUG_ON(zero_page == NULL); 162 WRITE_ONCE(huge_zero_pfn, ~0UL); 163 __free_pages(zero_page, compound_order(zero_page)); 164 return HPAGE_PMD_NR; 165 } 166 167 return 0; 168 } 169 170 static struct shrinker huge_zero_page_shrinker = { 171 .count_objects = shrink_huge_zero_page_count, 172 .scan_objects = shrink_huge_zero_page_scan, 173 .seeks = DEFAULT_SEEKS, 174 }; 175 176 #ifdef CONFIG_SYSFS 177 static ssize_t enabled_show(struct kobject *kobj, 178 struct kobj_attribute *attr, char *buf) 179 { 180 const char *output; 181 182 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 183 output = "[always] madvise never"; 184 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 185 &transparent_hugepage_flags)) 186 output = "always [madvise] never"; 187 else 188 output = "always madvise [never]"; 189 190 return sysfs_emit(buf, "%s\n", output); 191 } 192 193 static ssize_t enabled_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 ssize_t ret = count; 198 199 if (sysfs_streq(buf, "always")) { 200 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 201 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 202 } else if (sysfs_streq(buf, "madvise")) { 203 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 204 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 205 } else if (sysfs_streq(buf, "never")) { 206 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 207 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 208 } else 209 ret = -EINVAL; 210 211 if (ret > 0) { 212 int err = start_stop_khugepaged(); 213 if (err) 214 ret = err; 215 } 216 return ret; 217 } 218 static struct kobj_attribute enabled_attr = 219 __ATTR(enabled, 0644, enabled_show, enabled_store); 220 221 ssize_t single_hugepage_flag_show(struct kobject *kobj, 222 struct kobj_attribute *attr, char *buf, 223 enum transparent_hugepage_flag flag) 224 { 225 return sysfs_emit(buf, "%d\n", 226 !!test_bit(flag, &transparent_hugepage_flags)); 227 } 228 229 ssize_t single_hugepage_flag_store(struct kobject *kobj, 230 struct kobj_attribute *attr, 231 const char *buf, size_t count, 232 enum transparent_hugepage_flag flag) 233 { 234 unsigned long value; 235 int ret; 236 237 ret = kstrtoul(buf, 10, &value); 238 if (ret < 0) 239 return ret; 240 if (value > 1) 241 return -EINVAL; 242 243 if (value) 244 set_bit(flag, &transparent_hugepage_flags); 245 else 246 clear_bit(flag, &transparent_hugepage_flags); 247 248 return count; 249 } 250 251 static ssize_t defrag_show(struct kobject *kobj, 252 struct kobj_attribute *attr, char *buf) 253 { 254 const char *output; 255 256 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 257 &transparent_hugepage_flags)) 258 output = "[always] defer defer+madvise madvise never"; 259 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 260 &transparent_hugepage_flags)) 261 output = "always [defer] defer+madvise madvise never"; 262 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 263 &transparent_hugepage_flags)) 264 output = "always defer [defer+madvise] madvise never"; 265 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 266 &transparent_hugepage_flags)) 267 output = "always defer defer+madvise [madvise] never"; 268 else 269 output = "always defer defer+madvise madvise [never]"; 270 271 return sysfs_emit(buf, "%s\n", output); 272 } 273 274 static ssize_t defrag_store(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 const char *buf, size_t count) 277 { 278 if (sysfs_streq(buf, "always")) { 279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 282 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 283 } else if (sysfs_streq(buf, "defer+madvise")) { 284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 287 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 288 } else if (sysfs_streq(buf, "defer")) { 289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 292 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 293 } else if (sysfs_streq(buf, "madvise")) { 294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 296 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 297 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 298 } else if (sysfs_streq(buf, "never")) { 299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 302 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 303 } else 304 return -EINVAL; 305 306 return count; 307 } 308 static struct kobj_attribute defrag_attr = 309 __ATTR(defrag, 0644, defrag_show, defrag_store); 310 311 static ssize_t use_zero_page_show(struct kobject *kobj, 312 struct kobj_attribute *attr, char *buf) 313 { 314 return single_hugepage_flag_show(kobj, attr, buf, 315 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 316 } 317 static ssize_t use_zero_page_store(struct kobject *kobj, 318 struct kobj_attribute *attr, const char *buf, size_t count) 319 { 320 return single_hugepage_flag_store(kobj, attr, buf, count, 321 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 322 } 323 static struct kobj_attribute use_zero_page_attr = 324 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 325 326 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 327 struct kobj_attribute *attr, char *buf) 328 { 329 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 330 } 331 static struct kobj_attribute hpage_pmd_size_attr = 332 __ATTR_RO(hpage_pmd_size); 333 334 static struct attribute *hugepage_attr[] = { 335 &enabled_attr.attr, 336 &defrag_attr.attr, 337 &use_zero_page_attr.attr, 338 &hpage_pmd_size_attr.attr, 339 #ifdef CONFIG_SHMEM 340 &shmem_enabled_attr.attr, 341 #endif 342 NULL, 343 }; 344 345 static const struct attribute_group hugepage_attr_group = { 346 .attrs = hugepage_attr, 347 }; 348 349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 350 { 351 int err; 352 353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 354 if (unlikely(!*hugepage_kobj)) { 355 pr_err("failed to create transparent hugepage kobject\n"); 356 return -ENOMEM; 357 } 358 359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 360 if (err) { 361 pr_err("failed to register transparent hugepage group\n"); 362 goto delete_obj; 363 } 364 365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 366 if (err) { 367 pr_err("failed to register transparent hugepage group\n"); 368 goto remove_hp_group; 369 } 370 371 return 0; 372 373 remove_hp_group: 374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 375 delete_obj: 376 kobject_put(*hugepage_kobj); 377 return err; 378 } 379 380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 381 { 382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 384 kobject_put(hugepage_kobj); 385 } 386 #else 387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 388 { 389 return 0; 390 } 391 392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 393 { 394 } 395 #endif /* CONFIG_SYSFS */ 396 397 static int __init hugepage_init(void) 398 { 399 int err; 400 struct kobject *hugepage_kobj; 401 402 if (!has_transparent_hugepage()) { 403 /* 404 * Hardware doesn't support hugepages, hence disable 405 * DAX PMD support. 406 */ 407 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 408 return -EINVAL; 409 } 410 411 /* 412 * hugepages can't be allocated by the buddy allocator 413 */ 414 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 415 /* 416 * we use page->mapping and page->index in second tail page 417 * as list_head: assuming THP order >= 2 418 */ 419 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 420 421 err = hugepage_init_sysfs(&hugepage_kobj); 422 if (err) 423 goto err_sysfs; 424 425 err = khugepaged_init(); 426 if (err) 427 goto err_slab; 428 429 err = register_shrinker(&huge_zero_page_shrinker); 430 if (err) 431 goto err_hzp_shrinker; 432 err = register_shrinker(&deferred_split_shrinker); 433 if (err) 434 goto err_split_shrinker; 435 436 /* 437 * By default disable transparent hugepages on smaller systems, 438 * where the extra memory used could hurt more than TLB overhead 439 * is likely to save. The admin can still enable it through /sys. 440 */ 441 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 442 transparent_hugepage_flags = 0; 443 return 0; 444 } 445 446 err = start_stop_khugepaged(); 447 if (err) 448 goto err_khugepaged; 449 450 return 0; 451 err_khugepaged: 452 unregister_shrinker(&deferred_split_shrinker); 453 err_split_shrinker: 454 unregister_shrinker(&huge_zero_page_shrinker); 455 err_hzp_shrinker: 456 khugepaged_destroy(); 457 err_slab: 458 hugepage_exit_sysfs(hugepage_kobj); 459 err_sysfs: 460 return err; 461 } 462 subsys_initcall(hugepage_init); 463 464 static int __init setup_transparent_hugepage(char *str) 465 { 466 int ret = 0; 467 if (!str) 468 goto out; 469 if (!strcmp(str, "always")) { 470 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 471 &transparent_hugepage_flags); 472 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 473 &transparent_hugepage_flags); 474 ret = 1; 475 } else if (!strcmp(str, "madvise")) { 476 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 477 &transparent_hugepage_flags); 478 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 479 &transparent_hugepage_flags); 480 ret = 1; 481 } else if (!strcmp(str, "never")) { 482 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 483 &transparent_hugepage_flags); 484 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 485 &transparent_hugepage_flags); 486 ret = 1; 487 } 488 out: 489 if (!ret) 490 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 491 return ret; 492 } 493 __setup("transparent_hugepage=", setup_transparent_hugepage); 494 495 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 496 { 497 if (likely(vma->vm_flags & VM_WRITE)) 498 pmd = pmd_mkwrite(pmd); 499 return pmd; 500 } 501 502 #ifdef CONFIG_MEMCG 503 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 504 { 505 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 506 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 507 508 if (memcg) 509 return &memcg->deferred_split_queue; 510 else 511 return &pgdat->deferred_split_queue; 512 } 513 #else 514 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 515 { 516 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 517 518 return &pgdat->deferred_split_queue; 519 } 520 #endif 521 522 void prep_transhuge_page(struct page *page) 523 { 524 /* 525 * we use page->mapping and page->indexlru in second tail page 526 * as list_head: assuming THP order >= 2 527 */ 528 529 INIT_LIST_HEAD(page_deferred_list(page)); 530 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 531 } 532 533 bool is_transparent_hugepage(struct page *page) 534 { 535 if (!PageCompound(page)) 536 return false; 537 538 page = compound_head(page); 539 return is_huge_zero_page(page) || 540 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 541 } 542 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 543 544 static unsigned long __thp_get_unmapped_area(struct file *filp, 545 unsigned long addr, unsigned long len, 546 loff_t off, unsigned long flags, unsigned long size) 547 { 548 loff_t off_end = off + len; 549 loff_t off_align = round_up(off, size); 550 unsigned long len_pad, ret; 551 552 if (off_end <= off_align || (off_end - off_align) < size) 553 return 0; 554 555 len_pad = len + size; 556 if (len_pad < len || (off + len_pad) < off) 557 return 0; 558 559 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 560 off >> PAGE_SHIFT, flags); 561 562 /* 563 * The failure might be due to length padding. The caller will retry 564 * without the padding. 565 */ 566 if (IS_ERR_VALUE(ret)) 567 return 0; 568 569 /* 570 * Do not try to align to THP boundary if allocation at the address 571 * hint succeeds. 572 */ 573 if (ret == addr) 574 return addr; 575 576 ret += (off - ret) & (size - 1); 577 return ret; 578 } 579 580 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 581 unsigned long len, unsigned long pgoff, unsigned long flags) 582 { 583 unsigned long ret; 584 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 585 586 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 587 if (ret) 588 return ret; 589 590 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 591 } 592 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 593 594 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 595 struct page *page, gfp_t gfp) 596 { 597 struct vm_area_struct *vma = vmf->vma; 598 pgtable_t pgtable; 599 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 600 vm_fault_t ret = 0; 601 602 VM_BUG_ON_PAGE(!PageCompound(page), page); 603 604 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) { 605 put_page(page); 606 count_vm_event(THP_FAULT_FALLBACK); 607 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 608 return VM_FAULT_FALLBACK; 609 } 610 cgroup_throttle_swaprate(page, gfp); 611 612 pgtable = pte_alloc_one(vma->vm_mm); 613 if (unlikely(!pgtable)) { 614 ret = VM_FAULT_OOM; 615 goto release; 616 } 617 618 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 619 /* 620 * The memory barrier inside __SetPageUptodate makes sure that 621 * clear_huge_page writes become visible before the set_pmd_at() 622 * write. 623 */ 624 __SetPageUptodate(page); 625 626 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 627 if (unlikely(!pmd_none(*vmf->pmd))) { 628 goto unlock_release; 629 } else { 630 pmd_t entry; 631 632 ret = check_stable_address_space(vma->vm_mm); 633 if (ret) 634 goto unlock_release; 635 636 /* Deliver the page fault to userland */ 637 if (userfaultfd_missing(vma)) { 638 spin_unlock(vmf->ptl); 639 put_page(page); 640 pte_free(vma->vm_mm, pgtable); 641 ret = handle_userfault(vmf, VM_UFFD_MISSING); 642 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 643 return ret; 644 } 645 646 entry = mk_huge_pmd(page, vma->vm_page_prot); 647 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 648 page_add_new_anon_rmap(page, vma, haddr, true); 649 lru_cache_add_inactive_or_unevictable(page, vma); 650 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 651 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 652 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 653 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 654 mm_inc_nr_ptes(vma->vm_mm); 655 spin_unlock(vmf->ptl); 656 count_vm_event(THP_FAULT_ALLOC); 657 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 658 } 659 660 return 0; 661 unlock_release: 662 spin_unlock(vmf->ptl); 663 release: 664 if (pgtable) 665 pte_free(vma->vm_mm, pgtable); 666 put_page(page); 667 return ret; 668 669 } 670 671 /* 672 * always: directly stall for all thp allocations 673 * defer: wake kswapd and fail if not immediately available 674 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 675 * fail if not immediately available 676 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 677 * available 678 * never: never stall for any thp allocation 679 */ 680 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 681 { 682 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 683 684 /* Always do synchronous compaction */ 685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 686 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 687 688 /* Kick kcompactd and fail quickly */ 689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 690 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 691 692 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 693 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 694 return GFP_TRANSHUGE_LIGHT | 695 (vma_madvised ? __GFP_DIRECT_RECLAIM : 696 __GFP_KSWAPD_RECLAIM); 697 698 /* Only do synchronous compaction if madvised */ 699 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 700 return GFP_TRANSHUGE_LIGHT | 701 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 702 703 return GFP_TRANSHUGE_LIGHT; 704 } 705 706 /* Caller must hold page table lock. */ 707 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 708 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 709 struct page *zero_page) 710 { 711 pmd_t entry; 712 if (!pmd_none(*pmd)) 713 return; 714 entry = mk_pmd(zero_page, vma->vm_page_prot); 715 entry = pmd_mkhuge(entry); 716 if (pgtable) 717 pgtable_trans_huge_deposit(mm, pmd, pgtable); 718 set_pmd_at(mm, haddr, pmd, entry); 719 mm_inc_nr_ptes(mm); 720 } 721 722 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 723 { 724 struct vm_area_struct *vma = vmf->vma; 725 gfp_t gfp; 726 struct page *page; 727 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 728 729 if (!transhuge_vma_suitable(vma, haddr)) 730 return VM_FAULT_FALLBACK; 731 if (unlikely(anon_vma_prepare(vma))) 732 return VM_FAULT_OOM; 733 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 734 return VM_FAULT_OOM; 735 if (!(vmf->flags & FAULT_FLAG_WRITE) && 736 !mm_forbids_zeropage(vma->vm_mm) && 737 transparent_hugepage_use_zero_page()) { 738 pgtable_t pgtable; 739 struct page *zero_page; 740 vm_fault_t ret; 741 pgtable = pte_alloc_one(vma->vm_mm); 742 if (unlikely(!pgtable)) 743 return VM_FAULT_OOM; 744 zero_page = mm_get_huge_zero_page(vma->vm_mm); 745 if (unlikely(!zero_page)) { 746 pte_free(vma->vm_mm, pgtable); 747 count_vm_event(THP_FAULT_FALLBACK); 748 return VM_FAULT_FALLBACK; 749 } 750 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 751 ret = 0; 752 if (pmd_none(*vmf->pmd)) { 753 ret = check_stable_address_space(vma->vm_mm); 754 if (ret) { 755 spin_unlock(vmf->ptl); 756 pte_free(vma->vm_mm, pgtable); 757 } else if (userfaultfd_missing(vma)) { 758 spin_unlock(vmf->ptl); 759 pte_free(vma->vm_mm, pgtable); 760 ret = handle_userfault(vmf, VM_UFFD_MISSING); 761 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 762 } else { 763 set_huge_zero_page(pgtable, vma->vm_mm, vma, 764 haddr, vmf->pmd, zero_page); 765 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 766 spin_unlock(vmf->ptl); 767 } 768 } else { 769 spin_unlock(vmf->ptl); 770 pte_free(vma->vm_mm, pgtable); 771 } 772 return ret; 773 } 774 gfp = vma_thp_gfp_mask(vma); 775 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 776 if (unlikely(!page)) { 777 count_vm_event(THP_FAULT_FALLBACK); 778 return VM_FAULT_FALLBACK; 779 } 780 prep_transhuge_page(page); 781 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 782 } 783 784 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 785 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 786 pgtable_t pgtable) 787 { 788 struct mm_struct *mm = vma->vm_mm; 789 pmd_t entry; 790 spinlock_t *ptl; 791 792 ptl = pmd_lock(mm, pmd); 793 if (!pmd_none(*pmd)) { 794 if (write) { 795 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 796 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 797 goto out_unlock; 798 } 799 entry = pmd_mkyoung(*pmd); 800 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 801 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 802 update_mmu_cache_pmd(vma, addr, pmd); 803 } 804 805 goto out_unlock; 806 } 807 808 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 809 if (pfn_t_devmap(pfn)) 810 entry = pmd_mkdevmap(entry); 811 if (write) { 812 entry = pmd_mkyoung(pmd_mkdirty(entry)); 813 entry = maybe_pmd_mkwrite(entry, vma); 814 } 815 816 if (pgtable) { 817 pgtable_trans_huge_deposit(mm, pmd, pgtable); 818 mm_inc_nr_ptes(mm); 819 pgtable = NULL; 820 } 821 822 set_pmd_at(mm, addr, pmd, entry); 823 update_mmu_cache_pmd(vma, addr, pmd); 824 825 out_unlock: 826 spin_unlock(ptl); 827 if (pgtable) 828 pte_free(mm, pgtable); 829 } 830 831 /** 832 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 833 * @vmf: Structure describing the fault 834 * @pfn: pfn to insert 835 * @pgprot: page protection to use 836 * @write: whether it's a write fault 837 * 838 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 839 * also consult the vmf_insert_mixed_prot() documentation when 840 * @pgprot != @vmf->vma->vm_page_prot. 841 * 842 * Return: vm_fault_t value. 843 */ 844 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 845 pgprot_t pgprot, bool write) 846 { 847 unsigned long addr = vmf->address & PMD_MASK; 848 struct vm_area_struct *vma = vmf->vma; 849 pgtable_t pgtable = NULL; 850 851 /* 852 * If we had pmd_special, we could avoid all these restrictions, 853 * but we need to be consistent with PTEs and architectures that 854 * can't support a 'special' bit. 855 */ 856 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 857 !pfn_t_devmap(pfn)); 858 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 859 (VM_PFNMAP|VM_MIXEDMAP)); 860 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 861 862 if (addr < vma->vm_start || addr >= vma->vm_end) 863 return VM_FAULT_SIGBUS; 864 865 if (arch_needs_pgtable_deposit()) { 866 pgtable = pte_alloc_one(vma->vm_mm); 867 if (!pgtable) 868 return VM_FAULT_OOM; 869 } 870 871 track_pfn_insert(vma, &pgprot, pfn); 872 873 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 874 return VM_FAULT_NOPAGE; 875 } 876 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 877 878 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 879 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 880 { 881 if (likely(vma->vm_flags & VM_WRITE)) 882 pud = pud_mkwrite(pud); 883 return pud; 884 } 885 886 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 887 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 888 { 889 struct mm_struct *mm = vma->vm_mm; 890 pud_t entry; 891 spinlock_t *ptl; 892 893 ptl = pud_lock(mm, pud); 894 if (!pud_none(*pud)) { 895 if (write) { 896 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 897 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 898 goto out_unlock; 899 } 900 entry = pud_mkyoung(*pud); 901 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 902 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 903 update_mmu_cache_pud(vma, addr, pud); 904 } 905 goto out_unlock; 906 } 907 908 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 909 if (pfn_t_devmap(pfn)) 910 entry = pud_mkdevmap(entry); 911 if (write) { 912 entry = pud_mkyoung(pud_mkdirty(entry)); 913 entry = maybe_pud_mkwrite(entry, vma); 914 } 915 set_pud_at(mm, addr, pud, entry); 916 update_mmu_cache_pud(vma, addr, pud); 917 918 out_unlock: 919 spin_unlock(ptl); 920 } 921 922 /** 923 * vmf_insert_pfn_pud_prot - insert a pud size pfn 924 * @vmf: Structure describing the fault 925 * @pfn: pfn to insert 926 * @pgprot: page protection to use 927 * @write: whether it's a write fault 928 * 929 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 930 * also consult the vmf_insert_mixed_prot() documentation when 931 * @pgprot != @vmf->vma->vm_page_prot. 932 * 933 * Return: vm_fault_t value. 934 */ 935 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 936 pgprot_t pgprot, bool write) 937 { 938 unsigned long addr = vmf->address & PUD_MASK; 939 struct vm_area_struct *vma = vmf->vma; 940 941 /* 942 * If we had pud_special, we could avoid all these restrictions, 943 * but we need to be consistent with PTEs and architectures that 944 * can't support a 'special' bit. 945 */ 946 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 947 !pfn_t_devmap(pfn)); 948 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 949 (VM_PFNMAP|VM_MIXEDMAP)); 950 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 951 952 if (addr < vma->vm_start || addr >= vma->vm_end) 953 return VM_FAULT_SIGBUS; 954 955 track_pfn_insert(vma, &pgprot, pfn); 956 957 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 958 return VM_FAULT_NOPAGE; 959 } 960 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 961 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 962 963 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 964 pmd_t *pmd, int flags) 965 { 966 pmd_t _pmd; 967 968 _pmd = pmd_mkyoung(*pmd); 969 if (flags & FOLL_WRITE) 970 _pmd = pmd_mkdirty(_pmd); 971 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 972 pmd, _pmd, flags & FOLL_WRITE)) 973 update_mmu_cache_pmd(vma, addr, pmd); 974 } 975 976 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 977 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 978 { 979 unsigned long pfn = pmd_pfn(*pmd); 980 struct mm_struct *mm = vma->vm_mm; 981 struct page *page; 982 983 assert_spin_locked(pmd_lockptr(mm, pmd)); 984 985 /* 986 * When we COW a devmap PMD entry, we split it into PTEs, so we should 987 * not be in this function with `flags & FOLL_COW` set. 988 */ 989 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 990 991 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 992 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 993 (FOLL_PIN | FOLL_GET))) 994 return NULL; 995 996 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 997 return NULL; 998 999 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1000 /* pass */; 1001 else 1002 return NULL; 1003 1004 if (flags & FOLL_TOUCH) 1005 touch_pmd(vma, addr, pmd, flags); 1006 1007 /* 1008 * device mapped pages can only be returned if the 1009 * caller will manage the page reference count. 1010 */ 1011 if (!(flags & (FOLL_GET | FOLL_PIN))) 1012 return ERR_PTR(-EEXIST); 1013 1014 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1015 *pgmap = get_dev_pagemap(pfn, *pgmap); 1016 if (!*pgmap) 1017 return ERR_PTR(-EFAULT); 1018 page = pfn_to_page(pfn); 1019 if (!try_grab_page(page, flags)) 1020 page = ERR_PTR(-ENOMEM); 1021 1022 return page; 1023 } 1024 1025 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1026 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1027 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1028 { 1029 spinlock_t *dst_ptl, *src_ptl; 1030 struct page *src_page; 1031 pmd_t pmd; 1032 pgtable_t pgtable = NULL; 1033 int ret = -ENOMEM; 1034 1035 /* Skip if can be re-fill on fault */ 1036 if (!vma_is_anonymous(dst_vma)) 1037 return 0; 1038 1039 pgtable = pte_alloc_one(dst_mm); 1040 if (unlikely(!pgtable)) 1041 goto out; 1042 1043 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1044 src_ptl = pmd_lockptr(src_mm, src_pmd); 1045 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1046 1047 ret = -EAGAIN; 1048 pmd = *src_pmd; 1049 1050 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1051 if (unlikely(is_swap_pmd(pmd))) { 1052 swp_entry_t entry = pmd_to_swp_entry(pmd); 1053 1054 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1055 if (is_writable_migration_entry(entry)) { 1056 entry = make_readable_migration_entry( 1057 swp_offset(entry)); 1058 pmd = swp_entry_to_pmd(entry); 1059 if (pmd_swp_soft_dirty(*src_pmd)) 1060 pmd = pmd_swp_mksoft_dirty(pmd); 1061 if (pmd_swp_uffd_wp(*src_pmd)) 1062 pmd = pmd_swp_mkuffd_wp(pmd); 1063 set_pmd_at(src_mm, addr, src_pmd, pmd); 1064 } 1065 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1066 mm_inc_nr_ptes(dst_mm); 1067 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1068 if (!userfaultfd_wp(dst_vma)) 1069 pmd = pmd_swp_clear_uffd_wp(pmd); 1070 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1071 ret = 0; 1072 goto out_unlock; 1073 } 1074 #endif 1075 1076 if (unlikely(!pmd_trans_huge(pmd))) { 1077 pte_free(dst_mm, pgtable); 1078 goto out_unlock; 1079 } 1080 /* 1081 * When page table lock is held, the huge zero pmd should not be 1082 * under splitting since we don't split the page itself, only pmd to 1083 * a page table. 1084 */ 1085 if (is_huge_zero_pmd(pmd)) { 1086 /* 1087 * get_huge_zero_page() will never allocate a new page here, 1088 * since we already have a zero page to copy. It just takes a 1089 * reference. 1090 */ 1091 mm_get_huge_zero_page(dst_mm); 1092 goto out_zero_page; 1093 } 1094 1095 src_page = pmd_page(pmd); 1096 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1097 1098 /* 1099 * If this page is a potentially pinned page, split and retry the fault 1100 * with smaller page size. Normally this should not happen because the 1101 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1102 * best effort that the pinned pages won't be replaced by another 1103 * random page during the coming copy-on-write. 1104 */ 1105 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) { 1106 pte_free(dst_mm, pgtable); 1107 spin_unlock(src_ptl); 1108 spin_unlock(dst_ptl); 1109 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1110 return -EAGAIN; 1111 } 1112 1113 get_page(src_page); 1114 page_dup_rmap(src_page, true); 1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1116 out_zero_page: 1117 mm_inc_nr_ptes(dst_mm); 1118 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1119 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1120 if (!userfaultfd_wp(dst_vma)) 1121 pmd = pmd_clear_uffd_wp(pmd); 1122 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1123 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1124 1125 ret = 0; 1126 out_unlock: 1127 spin_unlock(src_ptl); 1128 spin_unlock(dst_ptl); 1129 out: 1130 return ret; 1131 } 1132 1133 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1134 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1135 pud_t *pud, int flags) 1136 { 1137 pud_t _pud; 1138 1139 _pud = pud_mkyoung(*pud); 1140 if (flags & FOLL_WRITE) 1141 _pud = pud_mkdirty(_pud); 1142 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1143 pud, _pud, flags & FOLL_WRITE)) 1144 update_mmu_cache_pud(vma, addr, pud); 1145 } 1146 1147 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1148 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1149 { 1150 unsigned long pfn = pud_pfn(*pud); 1151 struct mm_struct *mm = vma->vm_mm; 1152 struct page *page; 1153 1154 assert_spin_locked(pud_lockptr(mm, pud)); 1155 1156 if (flags & FOLL_WRITE && !pud_write(*pud)) 1157 return NULL; 1158 1159 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1160 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1161 (FOLL_PIN | FOLL_GET))) 1162 return NULL; 1163 1164 if (pud_present(*pud) && pud_devmap(*pud)) 1165 /* pass */; 1166 else 1167 return NULL; 1168 1169 if (flags & FOLL_TOUCH) 1170 touch_pud(vma, addr, pud, flags); 1171 1172 /* 1173 * device mapped pages can only be returned if the 1174 * caller will manage the page reference count. 1175 * 1176 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1177 */ 1178 if (!(flags & (FOLL_GET | FOLL_PIN))) 1179 return ERR_PTR(-EEXIST); 1180 1181 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1182 *pgmap = get_dev_pagemap(pfn, *pgmap); 1183 if (!*pgmap) 1184 return ERR_PTR(-EFAULT); 1185 page = pfn_to_page(pfn); 1186 if (!try_grab_page(page, flags)) 1187 page = ERR_PTR(-ENOMEM); 1188 1189 return page; 1190 } 1191 1192 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1193 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1194 struct vm_area_struct *vma) 1195 { 1196 spinlock_t *dst_ptl, *src_ptl; 1197 pud_t pud; 1198 int ret; 1199 1200 dst_ptl = pud_lock(dst_mm, dst_pud); 1201 src_ptl = pud_lockptr(src_mm, src_pud); 1202 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1203 1204 ret = -EAGAIN; 1205 pud = *src_pud; 1206 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1207 goto out_unlock; 1208 1209 /* 1210 * When page table lock is held, the huge zero pud should not be 1211 * under splitting since we don't split the page itself, only pud to 1212 * a page table. 1213 */ 1214 if (is_huge_zero_pud(pud)) { 1215 /* No huge zero pud yet */ 1216 } 1217 1218 /* Please refer to comments in copy_huge_pmd() */ 1219 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) { 1220 spin_unlock(src_ptl); 1221 spin_unlock(dst_ptl); 1222 __split_huge_pud(vma, src_pud, addr); 1223 return -EAGAIN; 1224 } 1225 1226 pudp_set_wrprotect(src_mm, addr, src_pud); 1227 pud = pud_mkold(pud_wrprotect(pud)); 1228 set_pud_at(dst_mm, addr, dst_pud, pud); 1229 1230 ret = 0; 1231 out_unlock: 1232 spin_unlock(src_ptl); 1233 spin_unlock(dst_ptl); 1234 return ret; 1235 } 1236 1237 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1238 { 1239 pud_t entry; 1240 unsigned long haddr; 1241 bool write = vmf->flags & FAULT_FLAG_WRITE; 1242 1243 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1244 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1245 goto unlock; 1246 1247 entry = pud_mkyoung(orig_pud); 1248 if (write) 1249 entry = pud_mkdirty(entry); 1250 haddr = vmf->address & HPAGE_PUD_MASK; 1251 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1252 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1253 1254 unlock: 1255 spin_unlock(vmf->ptl); 1256 } 1257 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1258 1259 void huge_pmd_set_accessed(struct vm_fault *vmf) 1260 { 1261 pmd_t entry; 1262 unsigned long haddr; 1263 bool write = vmf->flags & FAULT_FLAG_WRITE; 1264 pmd_t orig_pmd = vmf->orig_pmd; 1265 1266 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1267 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1268 goto unlock; 1269 1270 entry = pmd_mkyoung(orig_pmd); 1271 if (write) 1272 entry = pmd_mkdirty(entry); 1273 haddr = vmf->address & HPAGE_PMD_MASK; 1274 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1275 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1276 1277 unlock: 1278 spin_unlock(vmf->ptl); 1279 } 1280 1281 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1282 { 1283 struct vm_area_struct *vma = vmf->vma; 1284 struct page *page; 1285 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1286 pmd_t orig_pmd = vmf->orig_pmd; 1287 1288 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1289 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1290 1291 if (is_huge_zero_pmd(orig_pmd)) 1292 goto fallback; 1293 1294 spin_lock(vmf->ptl); 1295 1296 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1297 spin_unlock(vmf->ptl); 1298 return 0; 1299 } 1300 1301 page = pmd_page(orig_pmd); 1302 VM_BUG_ON_PAGE(!PageHead(page), page); 1303 1304 /* Lock page for reuse_swap_page() */ 1305 if (!trylock_page(page)) { 1306 get_page(page); 1307 spin_unlock(vmf->ptl); 1308 lock_page(page); 1309 spin_lock(vmf->ptl); 1310 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1311 spin_unlock(vmf->ptl); 1312 unlock_page(page); 1313 put_page(page); 1314 return 0; 1315 } 1316 put_page(page); 1317 } 1318 1319 /* 1320 * We can only reuse the page if nobody else maps the huge page or it's 1321 * part. 1322 */ 1323 if (reuse_swap_page(page)) { 1324 pmd_t entry; 1325 entry = pmd_mkyoung(orig_pmd); 1326 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1327 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1328 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1329 unlock_page(page); 1330 spin_unlock(vmf->ptl); 1331 return VM_FAULT_WRITE; 1332 } 1333 1334 unlock_page(page); 1335 spin_unlock(vmf->ptl); 1336 fallback: 1337 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1338 return VM_FAULT_FALLBACK; 1339 } 1340 1341 /* 1342 * FOLL_FORCE can write to even unwritable pmd's, but only 1343 * after we've gone through a COW cycle and they are dirty. 1344 */ 1345 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1346 { 1347 return pmd_write(pmd) || 1348 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1349 } 1350 1351 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1352 unsigned long addr, 1353 pmd_t *pmd, 1354 unsigned int flags) 1355 { 1356 struct mm_struct *mm = vma->vm_mm; 1357 struct page *page = NULL; 1358 1359 assert_spin_locked(pmd_lockptr(mm, pmd)); 1360 1361 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1362 goto out; 1363 1364 /* Avoid dumping huge zero page */ 1365 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1366 return ERR_PTR(-EFAULT); 1367 1368 /* Full NUMA hinting faults to serialise migration in fault paths */ 1369 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1370 goto out; 1371 1372 page = pmd_page(*pmd); 1373 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1374 1375 if (!try_grab_page(page, flags)) 1376 return ERR_PTR(-ENOMEM); 1377 1378 if (flags & FOLL_TOUCH) 1379 touch_pmd(vma, addr, pmd, flags); 1380 1381 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1382 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1383 1384 out: 1385 return page; 1386 } 1387 1388 /* NUMA hinting page fault entry point for trans huge pmds */ 1389 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1390 { 1391 struct vm_area_struct *vma = vmf->vma; 1392 pmd_t oldpmd = vmf->orig_pmd; 1393 pmd_t pmd; 1394 struct page *page; 1395 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1396 int page_nid = NUMA_NO_NODE; 1397 int target_nid, last_cpupid = -1; 1398 bool migrated = false; 1399 bool was_writable = pmd_savedwrite(oldpmd); 1400 int flags = 0; 1401 1402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1403 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1404 spin_unlock(vmf->ptl); 1405 goto out; 1406 } 1407 1408 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1409 page = vm_normal_page_pmd(vma, haddr, pmd); 1410 if (!page) 1411 goto out_map; 1412 1413 /* See similar comment in do_numa_page for explanation */ 1414 if (!was_writable) 1415 flags |= TNF_NO_GROUP; 1416 1417 page_nid = page_to_nid(page); 1418 last_cpupid = page_cpupid_last(page); 1419 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1420 &flags); 1421 1422 if (target_nid == NUMA_NO_NODE) { 1423 put_page(page); 1424 goto out_map; 1425 } 1426 1427 spin_unlock(vmf->ptl); 1428 1429 migrated = migrate_misplaced_page(page, vma, target_nid); 1430 if (migrated) { 1431 flags |= TNF_MIGRATED; 1432 page_nid = target_nid; 1433 } else { 1434 flags |= TNF_MIGRATE_FAIL; 1435 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1436 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1437 spin_unlock(vmf->ptl); 1438 goto out; 1439 } 1440 goto out_map; 1441 } 1442 1443 out: 1444 if (page_nid != NUMA_NO_NODE) 1445 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1446 flags); 1447 1448 return 0; 1449 1450 out_map: 1451 /* Restore the PMD */ 1452 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1453 pmd = pmd_mkyoung(pmd); 1454 if (was_writable) 1455 pmd = pmd_mkwrite(pmd); 1456 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1457 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1458 spin_unlock(vmf->ptl); 1459 goto out; 1460 } 1461 1462 /* 1463 * Return true if we do MADV_FREE successfully on entire pmd page. 1464 * Otherwise, return false. 1465 */ 1466 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1467 pmd_t *pmd, unsigned long addr, unsigned long next) 1468 { 1469 spinlock_t *ptl; 1470 pmd_t orig_pmd; 1471 struct page *page; 1472 struct mm_struct *mm = tlb->mm; 1473 bool ret = false; 1474 1475 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1476 1477 ptl = pmd_trans_huge_lock(pmd, vma); 1478 if (!ptl) 1479 goto out_unlocked; 1480 1481 orig_pmd = *pmd; 1482 if (is_huge_zero_pmd(orig_pmd)) 1483 goto out; 1484 1485 if (unlikely(!pmd_present(orig_pmd))) { 1486 VM_BUG_ON(thp_migration_supported() && 1487 !is_pmd_migration_entry(orig_pmd)); 1488 goto out; 1489 } 1490 1491 page = pmd_page(orig_pmd); 1492 /* 1493 * If other processes are mapping this page, we couldn't discard 1494 * the page unless they all do MADV_FREE so let's skip the page. 1495 */ 1496 if (total_mapcount(page) != 1) 1497 goto out; 1498 1499 if (!trylock_page(page)) 1500 goto out; 1501 1502 /* 1503 * If user want to discard part-pages of THP, split it so MADV_FREE 1504 * will deactivate only them. 1505 */ 1506 if (next - addr != HPAGE_PMD_SIZE) { 1507 get_page(page); 1508 spin_unlock(ptl); 1509 split_huge_page(page); 1510 unlock_page(page); 1511 put_page(page); 1512 goto out_unlocked; 1513 } 1514 1515 if (PageDirty(page)) 1516 ClearPageDirty(page); 1517 unlock_page(page); 1518 1519 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1520 pmdp_invalidate(vma, addr, pmd); 1521 orig_pmd = pmd_mkold(orig_pmd); 1522 orig_pmd = pmd_mkclean(orig_pmd); 1523 1524 set_pmd_at(mm, addr, pmd, orig_pmd); 1525 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1526 } 1527 1528 mark_page_lazyfree(page); 1529 ret = true; 1530 out: 1531 spin_unlock(ptl); 1532 out_unlocked: 1533 return ret; 1534 } 1535 1536 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1537 { 1538 pgtable_t pgtable; 1539 1540 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1541 pte_free(mm, pgtable); 1542 mm_dec_nr_ptes(mm); 1543 } 1544 1545 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1546 pmd_t *pmd, unsigned long addr) 1547 { 1548 pmd_t orig_pmd; 1549 spinlock_t *ptl; 1550 1551 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1552 1553 ptl = __pmd_trans_huge_lock(pmd, vma); 1554 if (!ptl) 1555 return 0; 1556 /* 1557 * For architectures like ppc64 we look at deposited pgtable 1558 * when calling pmdp_huge_get_and_clear. So do the 1559 * pgtable_trans_huge_withdraw after finishing pmdp related 1560 * operations. 1561 */ 1562 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1563 tlb->fullmm); 1564 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1565 if (vma_is_special_huge(vma)) { 1566 if (arch_needs_pgtable_deposit()) 1567 zap_deposited_table(tlb->mm, pmd); 1568 spin_unlock(ptl); 1569 } else if (is_huge_zero_pmd(orig_pmd)) { 1570 zap_deposited_table(tlb->mm, pmd); 1571 spin_unlock(ptl); 1572 } else { 1573 struct page *page = NULL; 1574 int flush_needed = 1; 1575 1576 if (pmd_present(orig_pmd)) { 1577 page = pmd_page(orig_pmd); 1578 page_remove_rmap(page, vma, true); 1579 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1580 VM_BUG_ON_PAGE(!PageHead(page), page); 1581 } else if (thp_migration_supported()) { 1582 swp_entry_t entry; 1583 1584 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1585 entry = pmd_to_swp_entry(orig_pmd); 1586 page = pfn_swap_entry_to_page(entry); 1587 flush_needed = 0; 1588 } else 1589 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1590 1591 if (PageAnon(page)) { 1592 zap_deposited_table(tlb->mm, pmd); 1593 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1594 } else { 1595 if (arch_needs_pgtable_deposit()) 1596 zap_deposited_table(tlb->mm, pmd); 1597 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1598 } 1599 1600 spin_unlock(ptl); 1601 if (flush_needed) 1602 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1603 } 1604 return 1; 1605 } 1606 1607 #ifndef pmd_move_must_withdraw 1608 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1609 spinlock_t *old_pmd_ptl, 1610 struct vm_area_struct *vma) 1611 { 1612 /* 1613 * With split pmd lock we also need to move preallocated 1614 * PTE page table if new_pmd is on different PMD page table. 1615 * 1616 * We also don't deposit and withdraw tables for file pages. 1617 */ 1618 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1619 } 1620 #endif 1621 1622 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1623 { 1624 #ifdef CONFIG_MEM_SOFT_DIRTY 1625 if (unlikely(is_pmd_migration_entry(pmd))) 1626 pmd = pmd_swp_mksoft_dirty(pmd); 1627 else if (pmd_present(pmd)) 1628 pmd = pmd_mksoft_dirty(pmd); 1629 #endif 1630 return pmd; 1631 } 1632 1633 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1634 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1635 { 1636 spinlock_t *old_ptl, *new_ptl; 1637 pmd_t pmd; 1638 struct mm_struct *mm = vma->vm_mm; 1639 bool force_flush = false; 1640 1641 /* 1642 * The destination pmd shouldn't be established, free_pgtables() 1643 * should have release it. 1644 */ 1645 if (WARN_ON(!pmd_none(*new_pmd))) { 1646 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1647 return false; 1648 } 1649 1650 /* 1651 * We don't have to worry about the ordering of src and dst 1652 * ptlocks because exclusive mmap_lock prevents deadlock. 1653 */ 1654 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1655 if (old_ptl) { 1656 new_ptl = pmd_lockptr(mm, new_pmd); 1657 if (new_ptl != old_ptl) 1658 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1659 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1660 if (pmd_present(pmd)) 1661 force_flush = true; 1662 VM_BUG_ON(!pmd_none(*new_pmd)); 1663 1664 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1665 pgtable_t pgtable; 1666 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1667 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1668 } 1669 pmd = move_soft_dirty_pmd(pmd); 1670 set_pmd_at(mm, new_addr, new_pmd, pmd); 1671 if (force_flush) 1672 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1673 if (new_ptl != old_ptl) 1674 spin_unlock(new_ptl); 1675 spin_unlock(old_ptl); 1676 return true; 1677 } 1678 return false; 1679 } 1680 1681 /* 1682 * Returns 1683 * - 0 if PMD could not be locked 1684 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1685 * or if prot_numa but THP migration is not supported 1686 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1687 */ 1688 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1689 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1690 { 1691 struct mm_struct *mm = vma->vm_mm; 1692 spinlock_t *ptl; 1693 pmd_t entry; 1694 bool preserve_write; 1695 int ret; 1696 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1697 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1698 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1699 1700 if (prot_numa && !thp_migration_supported()) 1701 return 1; 1702 1703 ptl = __pmd_trans_huge_lock(pmd, vma); 1704 if (!ptl) 1705 return 0; 1706 1707 preserve_write = prot_numa && pmd_write(*pmd); 1708 ret = 1; 1709 1710 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1711 if (is_swap_pmd(*pmd)) { 1712 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1713 1714 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1715 if (is_writable_migration_entry(entry)) { 1716 pmd_t newpmd; 1717 /* 1718 * A protection check is difficult so 1719 * just be safe and disable write 1720 */ 1721 entry = make_readable_migration_entry( 1722 swp_offset(entry)); 1723 newpmd = swp_entry_to_pmd(entry); 1724 if (pmd_swp_soft_dirty(*pmd)) 1725 newpmd = pmd_swp_mksoft_dirty(newpmd); 1726 if (pmd_swp_uffd_wp(*pmd)) 1727 newpmd = pmd_swp_mkuffd_wp(newpmd); 1728 set_pmd_at(mm, addr, pmd, newpmd); 1729 } 1730 goto unlock; 1731 } 1732 #endif 1733 1734 if (prot_numa) { 1735 struct page *page; 1736 /* 1737 * Avoid trapping faults against the zero page. The read-only 1738 * data is likely to be read-cached on the local CPU and 1739 * local/remote hits to the zero page are not interesting. 1740 */ 1741 if (is_huge_zero_pmd(*pmd)) 1742 goto unlock; 1743 1744 if (pmd_protnone(*pmd)) 1745 goto unlock; 1746 1747 page = pmd_page(*pmd); 1748 /* 1749 * Skip scanning top tier node if normal numa 1750 * balancing is disabled 1751 */ 1752 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1753 node_is_toptier(page_to_nid(page))) 1754 goto unlock; 1755 } 1756 /* 1757 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1758 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1759 * which is also under mmap_read_lock(mm): 1760 * 1761 * CPU0: CPU1: 1762 * change_huge_pmd(prot_numa=1) 1763 * pmdp_huge_get_and_clear_notify() 1764 * madvise_dontneed() 1765 * zap_pmd_range() 1766 * pmd_trans_huge(*pmd) == 0 (without ptl) 1767 * // skip the pmd 1768 * set_pmd_at(); 1769 * // pmd is re-established 1770 * 1771 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1772 * which may break userspace. 1773 * 1774 * pmdp_invalidate() is required to make sure we don't miss 1775 * dirty/young flags set by hardware. 1776 */ 1777 entry = pmdp_invalidate(vma, addr, pmd); 1778 1779 entry = pmd_modify(entry, newprot); 1780 if (preserve_write) 1781 entry = pmd_mk_savedwrite(entry); 1782 if (uffd_wp) { 1783 entry = pmd_wrprotect(entry); 1784 entry = pmd_mkuffd_wp(entry); 1785 } else if (uffd_wp_resolve) { 1786 /* 1787 * Leave the write bit to be handled by PF interrupt 1788 * handler, then things like COW could be properly 1789 * handled. 1790 */ 1791 entry = pmd_clear_uffd_wp(entry); 1792 } 1793 ret = HPAGE_PMD_NR; 1794 set_pmd_at(mm, addr, pmd, entry); 1795 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1796 unlock: 1797 spin_unlock(ptl); 1798 return ret; 1799 } 1800 1801 /* 1802 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1803 * 1804 * Note that if it returns page table lock pointer, this routine returns without 1805 * unlocking page table lock. So callers must unlock it. 1806 */ 1807 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1808 { 1809 spinlock_t *ptl; 1810 ptl = pmd_lock(vma->vm_mm, pmd); 1811 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1812 pmd_devmap(*pmd))) 1813 return ptl; 1814 spin_unlock(ptl); 1815 return NULL; 1816 } 1817 1818 /* 1819 * Returns true if a given pud maps a thp, false otherwise. 1820 * 1821 * Note that if it returns true, this routine returns without unlocking page 1822 * table lock. So callers must unlock it. 1823 */ 1824 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1825 { 1826 spinlock_t *ptl; 1827 1828 ptl = pud_lock(vma->vm_mm, pud); 1829 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1830 return ptl; 1831 spin_unlock(ptl); 1832 return NULL; 1833 } 1834 1835 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1836 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1837 pud_t *pud, unsigned long addr) 1838 { 1839 spinlock_t *ptl; 1840 1841 ptl = __pud_trans_huge_lock(pud, vma); 1842 if (!ptl) 1843 return 0; 1844 /* 1845 * For architectures like ppc64 we look at deposited pgtable 1846 * when calling pudp_huge_get_and_clear. So do the 1847 * pgtable_trans_huge_withdraw after finishing pudp related 1848 * operations. 1849 */ 1850 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1851 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1852 if (vma_is_special_huge(vma)) { 1853 spin_unlock(ptl); 1854 /* No zero page support yet */ 1855 } else { 1856 /* No support for anonymous PUD pages yet */ 1857 BUG(); 1858 } 1859 return 1; 1860 } 1861 1862 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1863 unsigned long haddr) 1864 { 1865 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1866 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1867 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1868 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1869 1870 count_vm_event(THP_SPLIT_PUD); 1871 1872 pudp_huge_clear_flush_notify(vma, haddr, pud); 1873 } 1874 1875 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1876 unsigned long address) 1877 { 1878 spinlock_t *ptl; 1879 struct mmu_notifier_range range; 1880 1881 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1882 address & HPAGE_PUD_MASK, 1883 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1884 mmu_notifier_invalidate_range_start(&range); 1885 ptl = pud_lock(vma->vm_mm, pud); 1886 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1887 goto out; 1888 __split_huge_pud_locked(vma, pud, range.start); 1889 1890 out: 1891 spin_unlock(ptl); 1892 /* 1893 * No need to double call mmu_notifier->invalidate_range() callback as 1894 * the above pudp_huge_clear_flush_notify() did already call it. 1895 */ 1896 mmu_notifier_invalidate_range_only_end(&range); 1897 } 1898 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1899 1900 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1901 unsigned long haddr, pmd_t *pmd) 1902 { 1903 struct mm_struct *mm = vma->vm_mm; 1904 pgtable_t pgtable; 1905 pmd_t _pmd; 1906 int i; 1907 1908 /* 1909 * Leave pmd empty until pte is filled note that it is fine to delay 1910 * notification until mmu_notifier_invalidate_range_end() as we are 1911 * replacing a zero pmd write protected page with a zero pte write 1912 * protected page. 1913 * 1914 * See Documentation/vm/mmu_notifier.rst 1915 */ 1916 pmdp_huge_clear_flush(vma, haddr, pmd); 1917 1918 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1919 pmd_populate(mm, &_pmd, pgtable); 1920 1921 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1922 pte_t *pte, entry; 1923 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1924 entry = pte_mkspecial(entry); 1925 pte = pte_offset_map(&_pmd, haddr); 1926 VM_BUG_ON(!pte_none(*pte)); 1927 set_pte_at(mm, haddr, pte, entry); 1928 pte_unmap(pte); 1929 } 1930 smp_wmb(); /* make pte visible before pmd */ 1931 pmd_populate(mm, pmd, pgtable); 1932 } 1933 1934 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1935 unsigned long haddr, bool freeze) 1936 { 1937 struct mm_struct *mm = vma->vm_mm; 1938 struct page *page; 1939 pgtable_t pgtable; 1940 pmd_t old_pmd, _pmd; 1941 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 1942 unsigned long addr; 1943 int i; 1944 1945 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1946 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1947 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1948 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 1949 && !pmd_devmap(*pmd)); 1950 1951 count_vm_event(THP_SPLIT_PMD); 1952 1953 if (!vma_is_anonymous(vma)) { 1954 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1955 /* 1956 * We are going to unmap this huge page. So 1957 * just go ahead and zap it 1958 */ 1959 if (arch_needs_pgtable_deposit()) 1960 zap_deposited_table(mm, pmd); 1961 if (vma_is_special_huge(vma)) 1962 return; 1963 if (unlikely(is_pmd_migration_entry(old_pmd))) { 1964 swp_entry_t entry; 1965 1966 entry = pmd_to_swp_entry(old_pmd); 1967 page = pfn_swap_entry_to_page(entry); 1968 } else { 1969 page = pmd_page(old_pmd); 1970 if (!PageDirty(page) && pmd_dirty(old_pmd)) 1971 set_page_dirty(page); 1972 if (!PageReferenced(page) && pmd_young(old_pmd)) 1973 SetPageReferenced(page); 1974 page_remove_rmap(page, vma, true); 1975 put_page(page); 1976 } 1977 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 1978 return; 1979 } 1980 1981 if (is_huge_zero_pmd(*pmd)) { 1982 /* 1983 * FIXME: Do we want to invalidate secondary mmu by calling 1984 * mmu_notifier_invalidate_range() see comments below inside 1985 * __split_huge_pmd() ? 1986 * 1987 * We are going from a zero huge page write protected to zero 1988 * small page also write protected so it does not seems useful 1989 * to invalidate secondary mmu at this time. 1990 */ 1991 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1992 } 1993 1994 /* 1995 * Up to this point the pmd is present and huge and userland has the 1996 * whole access to the hugepage during the split (which happens in 1997 * place). If we overwrite the pmd with the not-huge version pointing 1998 * to the pte here (which of course we could if all CPUs were bug 1999 * free), userland could trigger a small page size TLB miss on the 2000 * small sized TLB while the hugepage TLB entry is still established in 2001 * the huge TLB. Some CPU doesn't like that. 2002 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2003 * 383 on page 105. Intel should be safe but is also warns that it's 2004 * only safe if the permission and cache attributes of the two entries 2005 * loaded in the two TLB is identical (which should be the case here). 2006 * But it is generally safer to never allow small and huge TLB entries 2007 * for the same virtual address to be loaded simultaneously. So instead 2008 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2009 * current pmd notpresent (atomically because here the pmd_trans_huge 2010 * must remain set at all times on the pmd until the split is complete 2011 * for this pmd), then we flush the SMP TLB and finally we write the 2012 * non-huge version of the pmd entry with pmd_populate. 2013 */ 2014 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2015 2016 pmd_migration = is_pmd_migration_entry(old_pmd); 2017 if (unlikely(pmd_migration)) { 2018 swp_entry_t entry; 2019 2020 entry = pmd_to_swp_entry(old_pmd); 2021 page = pfn_swap_entry_to_page(entry); 2022 write = is_writable_migration_entry(entry); 2023 young = false; 2024 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2025 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2026 } else { 2027 page = pmd_page(old_pmd); 2028 if (pmd_dirty(old_pmd)) 2029 SetPageDirty(page); 2030 write = pmd_write(old_pmd); 2031 young = pmd_young(old_pmd); 2032 soft_dirty = pmd_soft_dirty(old_pmd); 2033 uffd_wp = pmd_uffd_wp(old_pmd); 2034 VM_BUG_ON_PAGE(!page_count(page), page); 2035 page_ref_add(page, HPAGE_PMD_NR - 1); 2036 } 2037 2038 /* 2039 * Withdraw the table only after we mark the pmd entry invalid. 2040 * This's critical for some architectures (Power). 2041 */ 2042 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2043 pmd_populate(mm, &_pmd, pgtable); 2044 2045 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2046 pte_t entry, *pte; 2047 /* 2048 * Note that NUMA hinting access restrictions are not 2049 * transferred to avoid any possibility of altering 2050 * permissions across VMAs. 2051 */ 2052 if (freeze || pmd_migration) { 2053 swp_entry_t swp_entry; 2054 if (write) 2055 swp_entry = make_writable_migration_entry( 2056 page_to_pfn(page + i)); 2057 else 2058 swp_entry = make_readable_migration_entry( 2059 page_to_pfn(page + i)); 2060 entry = swp_entry_to_pte(swp_entry); 2061 if (soft_dirty) 2062 entry = pte_swp_mksoft_dirty(entry); 2063 if (uffd_wp) 2064 entry = pte_swp_mkuffd_wp(entry); 2065 } else { 2066 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2067 entry = maybe_mkwrite(entry, vma); 2068 if (!write) 2069 entry = pte_wrprotect(entry); 2070 if (!young) 2071 entry = pte_mkold(entry); 2072 if (soft_dirty) 2073 entry = pte_mksoft_dirty(entry); 2074 if (uffd_wp) 2075 entry = pte_mkuffd_wp(entry); 2076 } 2077 pte = pte_offset_map(&_pmd, addr); 2078 BUG_ON(!pte_none(*pte)); 2079 set_pte_at(mm, addr, pte, entry); 2080 if (!pmd_migration) 2081 atomic_inc(&page[i]._mapcount); 2082 pte_unmap(pte); 2083 } 2084 2085 if (!pmd_migration) { 2086 /* 2087 * Set PG_double_map before dropping compound_mapcount to avoid 2088 * false-negative page_mapped(). 2089 */ 2090 if (compound_mapcount(page) > 1 && 2091 !TestSetPageDoubleMap(page)) { 2092 for (i = 0; i < HPAGE_PMD_NR; i++) 2093 atomic_inc(&page[i]._mapcount); 2094 } 2095 2096 lock_page_memcg(page); 2097 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2098 /* Last compound_mapcount is gone. */ 2099 __mod_lruvec_page_state(page, NR_ANON_THPS, 2100 -HPAGE_PMD_NR); 2101 if (TestClearPageDoubleMap(page)) { 2102 /* No need in mapcount reference anymore */ 2103 for (i = 0; i < HPAGE_PMD_NR; i++) 2104 atomic_dec(&page[i]._mapcount); 2105 } 2106 } 2107 unlock_page_memcg(page); 2108 2109 /* Above is effectively page_remove_rmap(page, vma, true) */ 2110 munlock_vma_page(page, vma, true); 2111 } 2112 2113 smp_wmb(); /* make pte visible before pmd */ 2114 pmd_populate(mm, pmd, pgtable); 2115 2116 if (freeze) { 2117 for (i = 0; i < HPAGE_PMD_NR; i++) { 2118 page_remove_rmap(page + i, vma, false); 2119 put_page(page + i); 2120 } 2121 } 2122 } 2123 2124 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2125 unsigned long address, bool freeze, struct folio *folio) 2126 { 2127 spinlock_t *ptl; 2128 struct mmu_notifier_range range; 2129 bool do_unlock_folio = false; 2130 pmd_t _pmd; 2131 2132 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2133 address & HPAGE_PMD_MASK, 2134 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2135 mmu_notifier_invalidate_range_start(&range); 2136 ptl = pmd_lock(vma->vm_mm, pmd); 2137 2138 /* 2139 * If caller asks to setup a migration entry, we need a folio to check 2140 * pmd against. Otherwise we can end up replacing wrong folio. 2141 */ 2142 VM_BUG_ON(freeze && !folio); 2143 if (folio) { 2144 VM_WARN_ON_ONCE(!folio_test_locked(folio)); 2145 if (folio != page_folio(pmd_page(*pmd))) 2146 goto out; 2147 } 2148 2149 repeat: 2150 if (pmd_trans_huge(*pmd)) { 2151 if (!folio) { 2152 folio = page_folio(pmd_page(*pmd)); 2153 /* 2154 * An anonymous page must be locked, to ensure that a 2155 * concurrent reuse_swap_page() sees stable mapcount; 2156 * but reuse_swap_page() is not used on shmem or file, 2157 * and page lock must not be taken when zap_pmd_range() 2158 * calls __split_huge_pmd() while i_mmap_lock is held. 2159 */ 2160 if (folio_test_anon(folio)) { 2161 if (unlikely(!folio_trylock(folio))) { 2162 folio_get(folio); 2163 _pmd = *pmd; 2164 spin_unlock(ptl); 2165 folio_lock(folio); 2166 spin_lock(ptl); 2167 if (unlikely(!pmd_same(*pmd, _pmd))) { 2168 folio_unlock(folio); 2169 folio_put(folio); 2170 folio = NULL; 2171 goto repeat; 2172 } 2173 folio_put(folio); 2174 } 2175 do_unlock_folio = true; 2176 } 2177 } 2178 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2179 goto out; 2180 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2181 out: 2182 spin_unlock(ptl); 2183 if (do_unlock_folio) 2184 folio_unlock(folio); 2185 /* 2186 * No need to double call mmu_notifier->invalidate_range() callback. 2187 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2188 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2189 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2190 * fault will trigger a flush_notify before pointing to a new page 2191 * (it is fine if the secondary mmu keeps pointing to the old zero 2192 * page in the meantime) 2193 * 3) Split a huge pmd into pte pointing to the same page. No need 2194 * to invalidate secondary tlb entry they are all still valid. 2195 * any further changes to individual pte will notify. So no need 2196 * to call mmu_notifier->invalidate_range() 2197 */ 2198 mmu_notifier_invalidate_range_only_end(&range); 2199 } 2200 2201 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2202 bool freeze, struct folio *folio) 2203 { 2204 pgd_t *pgd; 2205 p4d_t *p4d; 2206 pud_t *pud; 2207 pmd_t *pmd; 2208 2209 pgd = pgd_offset(vma->vm_mm, address); 2210 if (!pgd_present(*pgd)) 2211 return; 2212 2213 p4d = p4d_offset(pgd, address); 2214 if (!p4d_present(*p4d)) 2215 return; 2216 2217 pud = pud_offset(p4d, address); 2218 if (!pud_present(*pud)) 2219 return; 2220 2221 pmd = pmd_offset(pud, address); 2222 2223 __split_huge_pmd(vma, pmd, address, freeze, folio); 2224 } 2225 2226 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2227 { 2228 /* 2229 * If the new address isn't hpage aligned and it could previously 2230 * contain an hugepage: check if we need to split an huge pmd. 2231 */ 2232 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2233 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2234 ALIGN(address, HPAGE_PMD_SIZE))) 2235 split_huge_pmd_address(vma, address, false, NULL); 2236 } 2237 2238 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2239 unsigned long start, 2240 unsigned long end, 2241 long adjust_next) 2242 { 2243 /* Check if we need to split start first. */ 2244 split_huge_pmd_if_needed(vma, start); 2245 2246 /* Check if we need to split end next. */ 2247 split_huge_pmd_if_needed(vma, end); 2248 2249 /* 2250 * If we're also updating the vma->vm_next->vm_start, 2251 * check if we need to split it. 2252 */ 2253 if (adjust_next > 0) { 2254 struct vm_area_struct *next = vma->vm_next; 2255 unsigned long nstart = next->vm_start; 2256 nstart += adjust_next; 2257 split_huge_pmd_if_needed(next, nstart); 2258 } 2259 } 2260 2261 static void unmap_page(struct page *page) 2262 { 2263 struct folio *folio = page_folio(page); 2264 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2265 TTU_SYNC; 2266 2267 VM_BUG_ON_PAGE(!PageHead(page), page); 2268 2269 /* 2270 * Anon pages need migration entries to preserve them, but file 2271 * pages can simply be left unmapped, then faulted back on demand. 2272 * If that is ever changed (perhaps for mlock), update remap_page(). 2273 */ 2274 if (folio_test_anon(folio)) 2275 try_to_migrate(folio, ttu_flags); 2276 else 2277 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2278 2279 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page); 2280 } 2281 2282 static void remap_page(struct folio *folio, unsigned long nr) 2283 { 2284 int i = 0; 2285 2286 /* If unmap_page() uses try_to_migrate() on file, remove this check */ 2287 if (!folio_test_anon(folio)) 2288 return; 2289 for (;;) { 2290 remove_migration_ptes(folio, folio, true); 2291 i += folio_nr_pages(folio); 2292 if (i >= nr) 2293 break; 2294 folio = folio_next(folio); 2295 } 2296 } 2297 2298 static void lru_add_page_tail(struct page *head, struct page *tail, 2299 struct lruvec *lruvec, struct list_head *list) 2300 { 2301 VM_BUG_ON_PAGE(!PageHead(head), head); 2302 VM_BUG_ON_PAGE(PageCompound(tail), head); 2303 VM_BUG_ON_PAGE(PageLRU(tail), head); 2304 lockdep_assert_held(&lruvec->lru_lock); 2305 2306 if (list) { 2307 /* page reclaim is reclaiming a huge page */ 2308 VM_WARN_ON(PageLRU(head)); 2309 get_page(tail); 2310 list_add_tail(&tail->lru, list); 2311 } else { 2312 /* head is still on lru (and we have it frozen) */ 2313 VM_WARN_ON(!PageLRU(head)); 2314 if (PageUnevictable(tail)) 2315 tail->mlock_count = 0; 2316 else 2317 list_add_tail(&tail->lru, &head->lru); 2318 SetPageLRU(tail); 2319 } 2320 } 2321 2322 static void __split_huge_page_tail(struct page *head, int tail, 2323 struct lruvec *lruvec, struct list_head *list) 2324 { 2325 struct page *page_tail = head + tail; 2326 2327 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2328 2329 /* 2330 * Clone page flags before unfreezing refcount. 2331 * 2332 * After successful get_page_unless_zero() might follow flags change, 2333 * for example lock_page() which set PG_waiters. 2334 */ 2335 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2336 page_tail->flags |= (head->flags & 2337 ((1L << PG_referenced) | 2338 (1L << PG_swapbacked) | 2339 (1L << PG_swapcache) | 2340 (1L << PG_mlocked) | 2341 (1L << PG_uptodate) | 2342 (1L << PG_active) | 2343 (1L << PG_workingset) | 2344 (1L << PG_locked) | 2345 (1L << PG_unevictable) | 2346 #ifdef CONFIG_64BIT 2347 (1L << PG_arch_2) | 2348 #endif 2349 (1L << PG_dirty))); 2350 2351 /* ->mapping in first tail page is compound_mapcount */ 2352 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2353 page_tail); 2354 page_tail->mapping = head->mapping; 2355 page_tail->index = head->index + tail; 2356 2357 /* Page flags must be visible before we make the page non-compound. */ 2358 smp_wmb(); 2359 2360 /* 2361 * Clear PageTail before unfreezing page refcount. 2362 * 2363 * After successful get_page_unless_zero() might follow put_page() 2364 * which needs correct compound_head(). 2365 */ 2366 clear_compound_head(page_tail); 2367 2368 /* Finally unfreeze refcount. Additional reference from page cache. */ 2369 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2370 PageSwapCache(head))); 2371 2372 if (page_is_young(head)) 2373 set_page_young(page_tail); 2374 if (page_is_idle(head)) 2375 set_page_idle(page_tail); 2376 2377 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2378 2379 /* 2380 * always add to the tail because some iterators expect new 2381 * pages to show after the currently processed elements - e.g. 2382 * migrate_pages 2383 */ 2384 lru_add_page_tail(head, page_tail, lruvec, list); 2385 } 2386 2387 static void __split_huge_page(struct page *page, struct list_head *list, 2388 pgoff_t end) 2389 { 2390 struct folio *folio = page_folio(page); 2391 struct page *head = &folio->page; 2392 struct lruvec *lruvec; 2393 struct address_space *swap_cache = NULL; 2394 unsigned long offset = 0; 2395 unsigned int nr = thp_nr_pages(head); 2396 int i; 2397 2398 /* complete memcg works before add pages to LRU */ 2399 split_page_memcg(head, nr); 2400 2401 if (PageAnon(head) && PageSwapCache(head)) { 2402 swp_entry_t entry = { .val = page_private(head) }; 2403 2404 offset = swp_offset(entry); 2405 swap_cache = swap_address_space(entry); 2406 xa_lock(&swap_cache->i_pages); 2407 } 2408 2409 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2410 lruvec = folio_lruvec_lock(folio); 2411 2412 ClearPageHasHWPoisoned(head); 2413 2414 for (i = nr - 1; i >= 1; i--) { 2415 __split_huge_page_tail(head, i, lruvec, list); 2416 /* Some pages can be beyond EOF: drop them from page cache */ 2417 if (head[i].index >= end) { 2418 ClearPageDirty(head + i); 2419 __delete_from_page_cache(head + i, NULL); 2420 if (shmem_mapping(head->mapping)) 2421 shmem_uncharge(head->mapping->host, 1); 2422 put_page(head + i); 2423 } else if (!PageAnon(page)) { 2424 __xa_store(&head->mapping->i_pages, head[i].index, 2425 head + i, 0); 2426 } else if (swap_cache) { 2427 __xa_store(&swap_cache->i_pages, offset + i, 2428 head + i, 0); 2429 } 2430 } 2431 2432 ClearPageCompound(head); 2433 unlock_page_lruvec(lruvec); 2434 /* Caller disabled irqs, so they are still disabled here */ 2435 2436 split_page_owner(head, nr); 2437 2438 /* See comment in __split_huge_page_tail() */ 2439 if (PageAnon(head)) { 2440 /* Additional pin to swap cache */ 2441 if (PageSwapCache(head)) { 2442 page_ref_add(head, 2); 2443 xa_unlock(&swap_cache->i_pages); 2444 } else { 2445 page_ref_inc(head); 2446 } 2447 } else { 2448 /* Additional pin to page cache */ 2449 page_ref_add(head, 2); 2450 xa_unlock(&head->mapping->i_pages); 2451 } 2452 local_irq_enable(); 2453 2454 remap_page(folio, nr); 2455 2456 if (PageSwapCache(head)) { 2457 swp_entry_t entry = { .val = page_private(head) }; 2458 2459 split_swap_cluster(entry); 2460 } 2461 2462 for (i = 0; i < nr; i++) { 2463 struct page *subpage = head + i; 2464 if (subpage == page) 2465 continue; 2466 unlock_page(subpage); 2467 2468 /* 2469 * Subpages may be freed if there wasn't any mapping 2470 * like if add_to_swap() is running on a lru page that 2471 * had its mapping zapped. And freeing these pages 2472 * requires taking the lru_lock so we do the put_page 2473 * of the tail pages after the split is complete. 2474 */ 2475 put_page(subpage); 2476 } 2477 } 2478 2479 /* 2480 * This calculates accurately how many mappings a transparent hugepage 2481 * has (unlike page_mapcount() which isn't fully accurate). This full 2482 * accuracy is primarily needed to know if copy-on-write faults can 2483 * reuse the page and change the mapping to read-write instead of 2484 * copying them. At the same time this returns the total_mapcount too. 2485 * 2486 * The function returns the highest mapcount any one of the subpages 2487 * has. If the return value is one, even if different processes are 2488 * mapping different subpages of the transparent hugepage, they can 2489 * all reuse it, because each process is reusing a different subpage. 2490 * 2491 * The total_mapcount is instead counting all virtual mappings of the 2492 * subpages. If the total_mapcount is equal to "one", it tells the 2493 * caller all mappings belong to the same "mm" and in turn the 2494 * anon_vma of the transparent hugepage can become the vma->anon_vma 2495 * local one as no other process may be mapping any of the subpages. 2496 * 2497 * It would be more accurate to replace page_mapcount() with 2498 * page_trans_huge_mapcount(), however we only use 2499 * page_trans_huge_mapcount() in the copy-on-write faults where we 2500 * need full accuracy to avoid breaking page pinning, because 2501 * page_trans_huge_mapcount() is slower than page_mapcount(). 2502 */ 2503 int page_trans_huge_mapcount(struct page *page) 2504 { 2505 int i, ret; 2506 2507 /* hugetlbfs shouldn't call it */ 2508 VM_BUG_ON_PAGE(PageHuge(page), page); 2509 2510 if (likely(!PageTransCompound(page))) 2511 return atomic_read(&page->_mapcount) + 1; 2512 2513 page = compound_head(page); 2514 2515 ret = 0; 2516 for (i = 0; i < thp_nr_pages(page); i++) { 2517 int mapcount = atomic_read(&page[i]._mapcount) + 1; 2518 ret = max(ret, mapcount); 2519 } 2520 2521 if (PageDoubleMap(page)) 2522 ret -= 1; 2523 2524 return ret + compound_mapcount(page); 2525 } 2526 2527 /* Racy check whether the huge page can be split */ 2528 bool can_split_folio(struct folio *folio, int *pextra_pins) 2529 { 2530 int extra_pins; 2531 2532 /* Additional pins from page cache */ 2533 if (folio_test_anon(folio)) 2534 extra_pins = folio_test_swapcache(folio) ? 2535 folio_nr_pages(folio) : 0; 2536 else 2537 extra_pins = folio_nr_pages(folio); 2538 if (pextra_pins) 2539 *pextra_pins = extra_pins; 2540 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2541 } 2542 2543 /* 2544 * This function splits huge page into normal pages. @page can point to any 2545 * subpage of huge page to split. Split doesn't change the position of @page. 2546 * 2547 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2548 * The huge page must be locked. 2549 * 2550 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2551 * 2552 * Both head page and tail pages will inherit mapping, flags, and so on from 2553 * the hugepage. 2554 * 2555 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2556 * they are not mapped. 2557 * 2558 * Returns 0 if the hugepage is split successfully. 2559 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2560 * us. 2561 */ 2562 int split_huge_page_to_list(struct page *page, struct list_head *list) 2563 { 2564 struct folio *folio = page_folio(page); 2565 struct page *head = &folio->page; 2566 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2567 XA_STATE(xas, &head->mapping->i_pages, head->index); 2568 struct anon_vma *anon_vma = NULL; 2569 struct address_space *mapping = NULL; 2570 int extra_pins, ret; 2571 pgoff_t end; 2572 2573 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2574 VM_BUG_ON_PAGE(!PageLocked(head), head); 2575 VM_BUG_ON_PAGE(!PageCompound(head), head); 2576 2577 if (PageWriteback(head)) 2578 return -EBUSY; 2579 2580 if (PageAnon(head)) { 2581 /* 2582 * The caller does not necessarily hold an mmap_lock that would 2583 * prevent the anon_vma disappearing so we first we take a 2584 * reference to it and then lock the anon_vma for write. This 2585 * is similar to folio_lock_anon_vma_read except the write lock 2586 * is taken to serialise against parallel split or collapse 2587 * operations. 2588 */ 2589 anon_vma = page_get_anon_vma(head); 2590 if (!anon_vma) { 2591 ret = -EBUSY; 2592 goto out; 2593 } 2594 end = -1; 2595 mapping = NULL; 2596 anon_vma_lock_write(anon_vma); 2597 } else { 2598 mapping = head->mapping; 2599 2600 /* Truncated ? */ 2601 if (!mapping) { 2602 ret = -EBUSY; 2603 goto out; 2604 } 2605 2606 xas_split_alloc(&xas, head, compound_order(head), 2607 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK); 2608 if (xas_error(&xas)) { 2609 ret = xas_error(&xas); 2610 goto out; 2611 } 2612 2613 anon_vma = NULL; 2614 i_mmap_lock_read(mapping); 2615 2616 /* 2617 *__split_huge_page() may need to trim off pages beyond EOF: 2618 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2619 * which cannot be nested inside the page tree lock. So note 2620 * end now: i_size itself may be changed at any moment, but 2621 * head page lock is good enough to serialize the trimming. 2622 */ 2623 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2624 if (shmem_mapping(mapping)) 2625 end = shmem_fallocend(mapping->host, end); 2626 } 2627 2628 /* 2629 * Racy check if we can split the page, before unmap_page() will 2630 * split PMDs 2631 */ 2632 if (!can_split_folio(folio, &extra_pins)) { 2633 ret = -EBUSY; 2634 goto out_unlock; 2635 } 2636 2637 unmap_page(head); 2638 2639 /* block interrupt reentry in xa_lock and spinlock */ 2640 local_irq_disable(); 2641 if (mapping) { 2642 /* 2643 * Check if the head page is present in page cache. 2644 * We assume all tail are present too, if head is there. 2645 */ 2646 xas_lock(&xas); 2647 xas_reset(&xas); 2648 if (xas_load(&xas) != head) 2649 goto fail; 2650 } 2651 2652 /* Prevent deferred_split_scan() touching ->_refcount */ 2653 spin_lock(&ds_queue->split_queue_lock); 2654 if (page_ref_freeze(head, 1 + extra_pins)) { 2655 if (!list_empty(page_deferred_list(head))) { 2656 ds_queue->split_queue_len--; 2657 list_del(page_deferred_list(head)); 2658 } 2659 spin_unlock(&ds_queue->split_queue_lock); 2660 if (mapping) { 2661 int nr = thp_nr_pages(head); 2662 2663 xas_split(&xas, head, thp_order(head)); 2664 if (PageSwapBacked(head)) { 2665 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2666 -nr); 2667 } else { 2668 __mod_lruvec_page_state(head, NR_FILE_THPS, 2669 -nr); 2670 filemap_nr_thps_dec(mapping); 2671 } 2672 } 2673 2674 __split_huge_page(page, list, end); 2675 ret = 0; 2676 } else { 2677 spin_unlock(&ds_queue->split_queue_lock); 2678 fail: 2679 if (mapping) 2680 xas_unlock(&xas); 2681 local_irq_enable(); 2682 remap_page(folio, folio_nr_pages(folio)); 2683 ret = -EBUSY; 2684 } 2685 2686 out_unlock: 2687 if (anon_vma) { 2688 anon_vma_unlock_write(anon_vma); 2689 put_anon_vma(anon_vma); 2690 } 2691 if (mapping) 2692 i_mmap_unlock_read(mapping); 2693 out: 2694 /* Free any memory we didn't use */ 2695 xas_nomem(&xas, 0); 2696 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2697 return ret; 2698 } 2699 2700 void free_transhuge_page(struct page *page) 2701 { 2702 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2703 unsigned long flags; 2704 2705 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2706 if (!list_empty(page_deferred_list(page))) { 2707 ds_queue->split_queue_len--; 2708 list_del(page_deferred_list(page)); 2709 } 2710 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2711 free_compound_page(page); 2712 } 2713 2714 void deferred_split_huge_page(struct page *page) 2715 { 2716 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2717 #ifdef CONFIG_MEMCG 2718 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2719 #endif 2720 unsigned long flags; 2721 2722 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2723 2724 /* 2725 * The try_to_unmap() in page reclaim path might reach here too, 2726 * this may cause a race condition to corrupt deferred split queue. 2727 * And, if page reclaim is already handling the same page, it is 2728 * unnecessary to handle it again in shrinker. 2729 * 2730 * Check PageSwapCache to determine if the page is being 2731 * handled by page reclaim since THP swap would add the page into 2732 * swap cache before calling try_to_unmap(). 2733 */ 2734 if (PageSwapCache(page)) 2735 return; 2736 2737 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2738 if (list_empty(page_deferred_list(page))) { 2739 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2740 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2741 ds_queue->split_queue_len++; 2742 #ifdef CONFIG_MEMCG 2743 if (memcg) 2744 set_shrinker_bit(memcg, page_to_nid(page), 2745 deferred_split_shrinker.id); 2746 #endif 2747 } 2748 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2749 } 2750 2751 static unsigned long deferred_split_count(struct shrinker *shrink, 2752 struct shrink_control *sc) 2753 { 2754 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2755 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2756 2757 #ifdef CONFIG_MEMCG 2758 if (sc->memcg) 2759 ds_queue = &sc->memcg->deferred_split_queue; 2760 #endif 2761 return READ_ONCE(ds_queue->split_queue_len); 2762 } 2763 2764 static unsigned long deferred_split_scan(struct shrinker *shrink, 2765 struct shrink_control *sc) 2766 { 2767 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2768 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2769 unsigned long flags; 2770 LIST_HEAD(list), *pos, *next; 2771 struct page *page; 2772 int split = 0; 2773 2774 #ifdef CONFIG_MEMCG 2775 if (sc->memcg) 2776 ds_queue = &sc->memcg->deferred_split_queue; 2777 #endif 2778 2779 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2780 /* Take pin on all head pages to avoid freeing them under us */ 2781 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2782 page = list_entry((void *)pos, struct page, deferred_list); 2783 page = compound_head(page); 2784 if (get_page_unless_zero(page)) { 2785 list_move(page_deferred_list(page), &list); 2786 } else { 2787 /* We lost race with put_compound_page() */ 2788 list_del_init(page_deferred_list(page)); 2789 ds_queue->split_queue_len--; 2790 } 2791 if (!--sc->nr_to_scan) 2792 break; 2793 } 2794 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2795 2796 list_for_each_safe(pos, next, &list) { 2797 page = list_entry((void *)pos, struct page, deferred_list); 2798 if (!trylock_page(page)) 2799 goto next; 2800 /* split_huge_page() removes page from list on success */ 2801 if (!split_huge_page(page)) 2802 split++; 2803 unlock_page(page); 2804 next: 2805 put_page(page); 2806 } 2807 2808 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2809 list_splice_tail(&list, &ds_queue->split_queue); 2810 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2811 2812 /* 2813 * Stop shrinker if we didn't split any page, but the queue is empty. 2814 * This can happen if pages were freed under us. 2815 */ 2816 if (!split && list_empty(&ds_queue->split_queue)) 2817 return SHRINK_STOP; 2818 return split; 2819 } 2820 2821 static struct shrinker deferred_split_shrinker = { 2822 .count_objects = deferred_split_count, 2823 .scan_objects = deferred_split_scan, 2824 .seeks = DEFAULT_SEEKS, 2825 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2826 SHRINKER_NONSLAB, 2827 }; 2828 2829 #ifdef CONFIG_DEBUG_FS 2830 static void split_huge_pages_all(void) 2831 { 2832 struct zone *zone; 2833 struct page *page; 2834 unsigned long pfn, max_zone_pfn; 2835 unsigned long total = 0, split = 0; 2836 2837 pr_debug("Split all THPs\n"); 2838 for_each_populated_zone(zone) { 2839 max_zone_pfn = zone_end_pfn(zone); 2840 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2841 if (!pfn_valid(pfn)) 2842 continue; 2843 2844 page = pfn_to_page(pfn); 2845 if (!get_page_unless_zero(page)) 2846 continue; 2847 2848 if (zone != page_zone(page)) 2849 goto next; 2850 2851 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2852 goto next; 2853 2854 total++; 2855 lock_page(page); 2856 if (!split_huge_page(page)) 2857 split++; 2858 unlock_page(page); 2859 next: 2860 put_page(page); 2861 cond_resched(); 2862 } 2863 } 2864 2865 pr_debug("%lu of %lu THP split\n", split, total); 2866 } 2867 2868 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2869 { 2870 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2871 is_vm_hugetlb_page(vma); 2872 } 2873 2874 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2875 unsigned long vaddr_end) 2876 { 2877 int ret = 0; 2878 struct task_struct *task; 2879 struct mm_struct *mm; 2880 unsigned long total = 0, split = 0; 2881 unsigned long addr; 2882 2883 vaddr_start &= PAGE_MASK; 2884 vaddr_end &= PAGE_MASK; 2885 2886 /* Find the task_struct from pid */ 2887 rcu_read_lock(); 2888 task = find_task_by_vpid(pid); 2889 if (!task) { 2890 rcu_read_unlock(); 2891 ret = -ESRCH; 2892 goto out; 2893 } 2894 get_task_struct(task); 2895 rcu_read_unlock(); 2896 2897 /* Find the mm_struct */ 2898 mm = get_task_mm(task); 2899 put_task_struct(task); 2900 2901 if (!mm) { 2902 ret = -EINVAL; 2903 goto out; 2904 } 2905 2906 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2907 pid, vaddr_start, vaddr_end); 2908 2909 mmap_read_lock(mm); 2910 /* 2911 * always increase addr by PAGE_SIZE, since we could have a PTE page 2912 * table filled with PTE-mapped THPs, each of which is distinct. 2913 */ 2914 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 2915 struct vm_area_struct *vma = find_vma(mm, addr); 2916 struct page *page; 2917 2918 if (!vma || addr < vma->vm_start) 2919 break; 2920 2921 /* skip special VMA and hugetlb VMA */ 2922 if (vma_not_suitable_for_thp_split(vma)) { 2923 addr = vma->vm_end; 2924 continue; 2925 } 2926 2927 /* FOLL_DUMP to ignore special (like zero) pages */ 2928 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2929 2930 if (IS_ERR(page)) 2931 continue; 2932 if (!page) 2933 continue; 2934 2935 if (!is_transparent_hugepage(page)) 2936 goto next; 2937 2938 total++; 2939 if (!can_split_folio(page_folio(page), NULL)) 2940 goto next; 2941 2942 if (!trylock_page(page)) 2943 goto next; 2944 2945 if (!split_huge_page(page)) 2946 split++; 2947 2948 unlock_page(page); 2949 next: 2950 put_page(page); 2951 cond_resched(); 2952 } 2953 mmap_read_unlock(mm); 2954 mmput(mm); 2955 2956 pr_debug("%lu of %lu THP split\n", split, total); 2957 2958 out: 2959 return ret; 2960 } 2961 2962 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 2963 pgoff_t off_end) 2964 { 2965 struct filename *file; 2966 struct file *candidate; 2967 struct address_space *mapping; 2968 int ret = -EINVAL; 2969 pgoff_t index; 2970 int nr_pages = 1; 2971 unsigned long total = 0, split = 0; 2972 2973 file = getname_kernel(file_path); 2974 if (IS_ERR(file)) 2975 return ret; 2976 2977 candidate = file_open_name(file, O_RDONLY, 0); 2978 if (IS_ERR(candidate)) 2979 goto out; 2980 2981 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 2982 file_path, off_start, off_end); 2983 2984 mapping = candidate->f_mapping; 2985 2986 for (index = off_start; index < off_end; index += nr_pages) { 2987 struct page *fpage = pagecache_get_page(mapping, index, 2988 FGP_ENTRY | FGP_HEAD, 0); 2989 2990 nr_pages = 1; 2991 if (xa_is_value(fpage) || !fpage) 2992 continue; 2993 2994 if (!is_transparent_hugepage(fpage)) 2995 goto next; 2996 2997 total++; 2998 nr_pages = thp_nr_pages(fpage); 2999 3000 if (!trylock_page(fpage)) 3001 goto next; 3002 3003 if (!split_huge_page(fpage)) 3004 split++; 3005 3006 unlock_page(fpage); 3007 next: 3008 put_page(fpage); 3009 cond_resched(); 3010 } 3011 3012 filp_close(candidate, NULL); 3013 ret = 0; 3014 3015 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3016 out: 3017 putname(file); 3018 return ret; 3019 } 3020 3021 #define MAX_INPUT_BUF_SZ 255 3022 3023 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3024 size_t count, loff_t *ppops) 3025 { 3026 static DEFINE_MUTEX(split_debug_mutex); 3027 ssize_t ret; 3028 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3029 char input_buf[MAX_INPUT_BUF_SZ]; 3030 int pid; 3031 unsigned long vaddr_start, vaddr_end; 3032 3033 ret = mutex_lock_interruptible(&split_debug_mutex); 3034 if (ret) 3035 return ret; 3036 3037 ret = -EFAULT; 3038 3039 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3040 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3041 goto out; 3042 3043 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3044 3045 if (input_buf[0] == '/') { 3046 char *tok; 3047 char *buf = input_buf; 3048 char file_path[MAX_INPUT_BUF_SZ]; 3049 pgoff_t off_start = 0, off_end = 0; 3050 size_t input_len = strlen(input_buf); 3051 3052 tok = strsep(&buf, ","); 3053 if (tok) { 3054 strcpy(file_path, tok); 3055 } else { 3056 ret = -EINVAL; 3057 goto out; 3058 } 3059 3060 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3061 if (ret != 2) { 3062 ret = -EINVAL; 3063 goto out; 3064 } 3065 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3066 if (!ret) 3067 ret = input_len; 3068 3069 goto out; 3070 } 3071 3072 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3073 if (ret == 1 && pid == 1) { 3074 split_huge_pages_all(); 3075 ret = strlen(input_buf); 3076 goto out; 3077 } else if (ret != 3) { 3078 ret = -EINVAL; 3079 goto out; 3080 } 3081 3082 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3083 if (!ret) 3084 ret = strlen(input_buf); 3085 out: 3086 mutex_unlock(&split_debug_mutex); 3087 return ret; 3088 3089 } 3090 3091 static const struct file_operations split_huge_pages_fops = { 3092 .owner = THIS_MODULE, 3093 .write = split_huge_pages_write, 3094 .llseek = no_llseek, 3095 }; 3096 3097 static int __init split_huge_pages_debugfs(void) 3098 { 3099 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3100 &split_huge_pages_fops); 3101 return 0; 3102 } 3103 late_initcall(split_huge_pages_debugfs); 3104 #endif 3105 3106 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3107 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3108 struct page *page) 3109 { 3110 struct vm_area_struct *vma = pvmw->vma; 3111 struct mm_struct *mm = vma->vm_mm; 3112 unsigned long address = pvmw->address; 3113 pmd_t pmdval; 3114 swp_entry_t entry; 3115 pmd_t pmdswp; 3116 3117 if (!(pvmw->pmd && !pvmw->pte)) 3118 return; 3119 3120 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3121 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3122 if (pmd_dirty(pmdval)) 3123 set_page_dirty(page); 3124 if (pmd_write(pmdval)) 3125 entry = make_writable_migration_entry(page_to_pfn(page)); 3126 else 3127 entry = make_readable_migration_entry(page_to_pfn(page)); 3128 pmdswp = swp_entry_to_pmd(entry); 3129 if (pmd_soft_dirty(pmdval)) 3130 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3131 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3132 page_remove_rmap(page, vma, true); 3133 put_page(page); 3134 } 3135 3136 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3137 { 3138 struct vm_area_struct *vma = pvmw->vma; 3139 struct mm_struct *mm = vma->vm_mm; 3140 unsigned long address = pvmw->address; 3141 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3142 pmd_t pmde; 3143 swp_entry_t entry; 3144 3145 if (!(pvmw->pmd && !pvmw->pte)) 3146 return; 3147 3148 entry = pmd_to_swp_entry(*pvmw->pmd); 3149 get_page(new); 3150 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3151 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3152 pmde = pmd_mksoft_dirty(pmde); 3153 if (is_writable_migration_entry(entry)) 3154 pmde = maybe_pmd_mkwrite(pmde, vma); 3155 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3156 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde)); 3157 3158 if (PageAnon(new)) 3159 page_add_anon_rmap(new, vma, mmun_start, true); 3160 else 3161 page_add_file_rmap(new, vma, true); 3162 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3163 3164 /* No need to invalidate - it was non-present before */ 3165 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3166 } 3167 #endif 3168