1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 42 #include <asm/tlb.h> 43 #include <asm/pgalloc.h> 44 #include "internal.h" 45 #include "swap.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/thp.h> 49 50 /* 51 * By default, transparent hugepage support is disabled in order to avoid 52 * risking an increased memory footprint for applications that are not 53 * guaranteed to benefit from it. When transparent hugepage support is 54 * enabled, it is for all mappings, and khugepaged scans all mappings. 55 * Defrag is invoked by khugepaged hugepage allocations and by page faults 56 * for all hugepage allocations. 57 */ 58 unsigned long transparent_hugepage_flags __read_mostly = 59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 60 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 61 #endif 62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 64 #endif 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 68 69 static struct shrinker *deferred_split_shrinker; 70 static unsigned long deferred_split_count(struct shrinker *shrink, 71 struct shrink_control *sc); 72 static unsigned long deferred_split_scan(struct shrinker *shrink, 73 struct shrink_control *sc); 74 75 static atomic_t huge_zero_refcount; 76 struct page *huge_zero_page __read_mostly; 77 unsigned long huge_zero_pfn __read_mostly = ~0UL; 78 unsigned long huge_anon_orders_always __read_mostly; 79 unsigned long huge_anon_orders_madvise __read_mostly; 80 unsigned long huge_anon_orders_inherit __read_mostly; 81 82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 83 unsigned long vm_flags, bool smaps, 84 bool in_pf, bool enforce_sysfs, 85 unsigned long orders) 86 { 87 /* Check the intersection of requested and supported orders. */ 88 orders &= vma_is_anonymous(vma) ? 89 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 90 if (!orders) 91 return 0; 92 93 if (!vma->vm_mm) /* vdso */ 94 return 0; 95 96 /* 97 * Explicitly disabled through madvise or prctl, or some 98 * architectures may disable THP for some mappings, for 99 * example, s390 kvm. 100 * */ 101 if ((vm_flags & VM_NOHUGEPAGE) || 102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 103 return 0; 104 /* 105 * If the hardware/firmware marked hugepage support disabled. 106 */ 107 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 108 return 0; 109 110 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 111 if (vma_is_dax(vma)) 112 return in_pf ? orders : 0; 113 114 /* 115 * khugepaged special VMA and hugetlb VMA. 116 * Must be checked after dax since some dax mappings may have 117 * VM_MIXEDMAP set. 118 */ 119 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 120 return 0; 121 122 /* 123 * Check alignment for file vma and size for both file and anon vma by 124 * filtering out the unsuitable orders. 125 * 126 * Skip the check for page fault. Huge fault does the check in fault 127 * handlers. 128 */ 129 if (!in_pf) { 130 int order = highest_order(orders); 131 unsigned long addr; 132 133 while (orders) { 134 addr = vma->vm_end - (PAGE_SIZE << order); 135 if (thp_vma_suitable_order(vma, addr, order)) 136 break; 137 order = next_order(&orders, order); 138 } 139 140 if (!orders) 141 return 0; 142 } 143 144 /* 145 * Enabled via shmem mount options or sysfs settings. 146 * Must be done before hugepage flags check since shmem has its 147 * own flags. 148 */ 149 if (!in_pf && shmem_file(vma->vm_file)) 150 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 151 !enforce_sysfs, vma->vm_mm, vm_flags) 152 ? orders : 0; 153 154 if (!vma_is_anonymous(vma)) { 155 /* 156 * Enforce sysfs THP requirements as necessary. Anonymous vmas 157 * were already handled in thp_vma_allowable_orders(). 158 */ 159 if (enforce_sysfs && 160 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 161 !hugepage_global_always()))) 162 return 0; 163 164 /* 165 * Trust that ->huge_fault() handlers know what they are doing 166 * in fault path. 167 */ 168 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 169 return orders; 170 /* Only regular file is valid in collapse path */ 171 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 172 return orders; 173 return 0; 174 } 175 176 if (vma_is_temporary_stack(vma)) 177 return 0; 178 179 /* 180 * THPeligible bit of smaps should show 1 for proper VMAs even 181 * though anon_vma is not initialized yet. 182 * 183 * Allow page fault since anon_vma may be not initialized until 184 * the first page fault. 185 */ 186 if (!vma->anon_vma) 187 return (smaps || in_pf) ? orders : 0; 188 189 return orders; 190 } 191 192 static bool get_huge_zero_page(void) 193 { 194 struct page *zero_page; 195 retry: 196 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 197 return true; 198 199 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 200 HPAGE_PMD_ORDER); 201 if (!zero_page) { 202 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 203 return false; 204 } 205 preempt_disable(); 206 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 207 preempt_enable(); 208 __free_pages(zero_page, compound_order(zero_page)); 209 goto retry; 210 } 211 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 212 213 /* We take additional reference here. It will be put back by shrinker */ 214 atomic_set(&huge_zero_refcount, 2); 215 preempt_enable(); 216 count_vm_event(THP_ZERO_PAGE_ALLOC); 217 return true; 218 } 219 220 static void put_huge_zero_page(void) 221 { 222 /* 223 * Counter should never go to zero here. Only shrinker can put 224 * last reference. 225 */ 226 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 227 } 228 229 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 230 { 231 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 232 return READ_ONCE(huge_zero_page); 233 234 if (!get_huge_zero_page()) 235 return NULL; 236 237 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 238 put_huge_zero_page(); 239 240 return READ_ONCE(huge_zero_page); 241 } 242 243 void mm_put_huge_zero_page(struct mm_struct *mm) 244 { 245 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 246 put_huge_zero_page(); 247 } 248 249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 250 struct shrink_control *sc) 251 { 252 /* we can free zero page only if last reference remains */ 253 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 254 } 255 256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 257 struct shrink_control *sc) 258 { 259 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 260 struct page *zero_page = xchg(&huge_zero_page, NULL); 261 BUG_ON(zero_page == NULL); 262 WRITE_ONCE(huge_zero_pfn, ~0UL); 263 __free_pages(zero_page, compound_order(zero_page)); 264 return HPAGE_PMD_NR; 265 } 266 267 return 0; 268 } 269 270 static struct shrinker *huge_zero_page_shrinker; 271 272 #ifdef CONFIG_SYSFS 273 static ssize_t enabled_show(struct kobject *kobj, 274 struct kobj_attribute *attr, char *buf) 275 { 276 const char *output; 277 278 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 279 output = "[always] madvise never"; 280 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 281 &transparent_hugepage_flags)) 282 output = "always [madvise] never"; 283 else 284 output = "always madvise [never]"; 285 286 return sysfs_emit(buf, "%s\n", output); 287 } 288 289 static ssize_t enabled_store(struct kobject *kobj, 290 struct kobj_attribute *attr, 291 const char *buf, size_t count) 292 { 293 ssize_t ret = count; 294 295 if (sysfs_streq(buf, "always")) { 296 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 297 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 298 } else if (sysfs_streq(buf, "madvise")) { 299 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 300 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 301 } else if (sysfs_streq(buf, "never")) { 302 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 304 } else 305 ret = -EINVAL; 306 307 if (ret > 0) { 308 int err = start_stop_khugepaged(); 309 if (err) 310 ret = err; 311 } 312 return ret; 313 } 314 315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 316 317 ssize_t single_hugepage_flag_show(struct kobject *kobj, 318 struct kobj_attribute *attr, char *buf, 319 enum transparent_hugepage_flag flag) 320 { 321 return sysfs_emit(buf, "%d\n", 322 !!test_bit(flag, &transparent_hugepage_flags)); 323 } 324 325 ssize_t single_hugepage_flag_store(struct kobject *kobj, 326 struct kobj_attribute *attr, 327 const char *buf, size_t count, 328 enum transparent_hugepage_flag flag) 329 { 330 unsigned long value; 331 int ret; 332 333 ret = kstrtoul(buf, 10, &value); 334 if (ret < 0) 335 return ret; 336 if (value > 1) 337 return -EINVAL; 338 339 if (value) 340 set_bit(flag, &transparent_hugepage_flags); 341 else 342 clear_bit(flag, &transparent_hugepage_flags); 343 344 return count; 345 } 346 347 static ssize_t defrag_show(struct kobject *kobj, 348 struct kobj_attribute *attr, char *buf) 349 { 350 const char *output; 351 352 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 353 &transparent_hugepage_flags)) 354 output = "[always] defer defer+madvise madvise never"; 355 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 356 &transparent_hugepage_flags)) 357 output = "always [defer] defer+madvise madvise never"; 358 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 359 &transparent_hugepage_flags)) 360 output = "always defer [defer+madvise] madvise never"; 361 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 362 &transparent_hugepage_flags)) 363 output = "always defer defer+madvise [madvise] never"; 364 else 365 output = "always defer defer+madvise madvise [never]"; 366 367 return sysfs_emit(buf, "%s\n", output); 368 } 369 370 static ssize_t defrag_store(struct kobject *kobj, 371 struct kobj_attribute *attr, 372 const char *buf, size_t count) 373 { 374 if (sysfs_streq(buf, "always")) { 375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 377 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 378 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 379 } else if (sysfs_streq(buf, "defer+madvise")) { 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 384 } else if (sysfs_streq(buf, "defer")) { 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 389 } else if (sysfs_streq(buf, "madvise")) { 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 394 } else if (sysfs_streq(buf, "never")) { 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 } else 400 return -EINVAL; 401 402 return count; 403 } 404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 405 406 static ssize_t use_zero_page_show(struct kobject *kobj, 407 struct kobj_attribute *attr, char *buf) 408 { 409 return single_hugepage_flag_show(kobj, attr, buf, 410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 411 } 412 static ssize_t use_zero_page_store(struct kobject *kobj, 413 struct kobj_attribute *attr, const char *buf, size_t count) 414 { 415 return single_hugepage_flag_store(kobj, attr, buf, count, 416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 417 } 418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 419 420 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 421 struct kobj_attribute *attr, char *buf) 422 { 423 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 424 } 425 static struct kobj_attribute hpage_pmd_size_attr = 426 __ATTR_RO(hpage_pmd_size); 427 428 static struct attribute *hugepage_attr[] = { 429 &enabled_attr.attr, 430 &defrag_attr.attr, 431 &use_zero_page_attr.attr, 432 &hpage_pmd_size_attr.attr, 433 #ifdef CONFIG_SHMEM 434 &shmem_enabled_attr.attr, 435 #endif 436 NULL, 437 }; 438 439 static const struct attribute_group hugepage_attr_group = { 440 .attrs = hugepage_attr, 441 }; 442 443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 444 static void thpsize_release(struct kobject *kobj); 445 static DEFINE_SPINLOCK(huge_anon_orders_lock); 446 static LIST_HEAD(thpsize_list); 447 448 struct thpsize { 449 struct kobject kobj; 450 struct list_head node; 451 int order; 452 }; 453 454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 455 456 static ssize_t thpsize_enabled_show(struct kobject *kobj, 457 struct kobj_attribute *attr, char *buf) 458 { 459 int order = to_thpsize(kobj)->order; 460 const char *output; 461 462 if (test_bit(order, &huge_anon_orders_always)) 463 output = "[always] inherit madvise never"; 464 else if (test_bit(order, &huge_anon_orders_inherit)) 465 output = "always [inherit] madvise never"; 466 else if (test_bit(order, &huge_anon_orders_madvise)) 467 output = "always inherit [madvise] never"; 468 else 469 output = "always inherit madvise [never]"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 474 static ssize_t thpsize_enabled_store(struct kobject *kobj, 475 struct kobj_attribute *attr, 476 const char *buf, size_t count) 477 { 478 int order = to_thpsize(kobj)->order; 479 ssize_t ret = count; 480 481 if (sysfs_streq(buf, "always")) { 482 spin_lock(&huge_anon_orders_lock); 483 clear_bit(order, &huge_anon_orders_inherit); 484 clear_bit(order, &huge_anon_orders_madvise); 485 set_bit(order, &huge_anon_orders_always); 486 spin_unlock(&huge_anon_orders_lock); 487 } else if (sysfs_streq(buf, "inherit")) { 488 spin_lock(&huge_anon_orders_lock); 489 clear_bit(order, &huge_anon_orders_always); 490 clear_bit(order, &huge_anon_orders_madvise); 491 set_bit(order, &huge_anon_orders_inherit); 492 spin_unlock(&huge_anon_orders_lock); 493 } else if (sysfs_streq(buf, "madvise")) { 494 spin_lock(&huge_anon_orders_lock); 495 clear_bit(order, &huge_anon_orders_always); 496 clear_bit(order, &huge_anon_orders_inherit); 497 set_bit(order, &huge_anon_orders_madvise); 498 spin_unlock(&huge_anon_orders_lock); 499 } else if (sysfs_streq(buf, "never")) { 500 spin_lock(&huge_anon_orders_lock); 501 clear_bit(order, &huge_anon_orders_always); 502 clear_bit(order, &huge_anon_orders_inherit); 503 clear_bit(order, &huge_anon_orders_madvise); 504 spin_unlock(&huge_anon_orders_lock); 505 } else 506 ret = -EINVAL; 507 508 return ret; 509 } 510 511 static struct kobj_attribute thpsize_enabled_attr = 512 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 513 514 static struct attribute *thpsize_attrs[] = { 515 &thpsize_enabled_attr.attr, 516 NULL, 517 }; 518 519 static const struct attribute_group thpsize_attr_group = { 520 .attrs = thpsize_attrs, 521 }; 522 523 static const struct kobj_type thpsize_ktype = { 524 .release = &thpsize_release, 525 .sysfs_ops = &kobj_sysfs_ops, 526 }; 527 528 static struct thpsize *thpsize_create(int order, struct kobject *parent) 529 { 530 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 531 struct thpsize *thpsize; 532 int ret; 533 534 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 535 if (!thpsize) 536 return ERR_PTR(-ENOMEM); 537 538 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 539 "hugepages-%lukB", size); 540 if (ret) { 541 kfree(thpsize); 542 return ERR_PTR(ret); 543 } 544 545 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 546 if (ret) { 547 kobject_put(&thpsize->kobj); 548 return ERR_PTR(ret); 549 } 550 551 thpsize->order = order; 552 return thpsize; 553 } 554 555 static void thpsize_release(struct kobject *kobj) 556 { 557 kfree(to_thpsize(kobj)); 558 } 559 560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 561 { 562 int err; 563 struct thpsize *thpsize; 564 unsigned long orders; 565 int order; 566 567 /* 568 * Default to setting PMD-sized THP to inherit the global setting and 569 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 570 * constant so we have to do this here. 571 */ 572 huge_anon_orders_inherit = BIT(PMD_ORDER); 573 574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 575 if (unlikely(!*hugepage_kobj)) { 576 pr_err("failed to create transparent hugepage kobject\n"); 577 return -ENOMEM; 578 } 579 580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 581 if (err) { 582 pr_err("failed to register transparent hugepage group\n"); 583 goto delete_obj; 584 } 585 586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 587 if (err) { 588 pr_err("failed to register transparent hugepage group\n"); 589 goto remove_hp_group; 590 } 591 592 orders = THP_ORDERS_ALL_ANON; 593 order = highest_order(orders); 594 while (orders) { 595 thpsize = thpsize_create(order, *hugepage_kobj); 596 if (IS_ERR(thpsize)) { 597 pr_err("failed to create thpsize for order %d\n", order); 598 err = PTR_ERR(thpsize); 599 goto remove_all; 600 } 601 list_add(&thpsize->node, &thpsize_list); 602 order = next_order(&orders, order); 603 } 604 605 return 0; 606 607 remove_all: 608 hugepage_exit_sysfs(*hugepage_kobj); 609 return err; 610 remove_hp_group: 611 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 612 delete_obj: 613 kobject_put(*hugepage_kobj); 614 return err; 615 } 616 617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 618 { 619 struct thpsize *thpsize, *tmp; 620 621 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 622 list_del(&thpsize->node); 623 kobject_put(&thpsize->kobj); 624 } 625 626 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 627 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 628 kobject_put(hugepage_kobj); 629 } 630 #else 631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 632 { 633 return 0; 634 } 635 636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 637 { 638 } 639 #endif /* CONFIG_SYSFS */ 640 641 static int __init thp_shrinker_init(void) 642 { 643 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 644 if (!huge_zero_page_shrinker) 645 return -ENOMEM; 646 647 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 648 SHRINKER_MEMCG_AWARE | 649 SHRINKER_NONSLAB, 650 "thp-deferred_split"); 651 if (!deferred_split_shrinker) { 652 shrinker_free(huge_zero_page_shrinker); 653 return -ENOMEM; 654 } 655 656 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 657 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 658 shrinker_register(huge_zero_page_shrinker); 659 660 deferred_split_shrinker->count_objects = deferred_split_count; 661 deferred_split_shrinker->scan_objects = deferred_split_scan; 662 shrinker_register(deferred_split_shrinker); 663 664 return 0; 665 } 666 667 static void __init thp_shrinker_exit(void) 668 { 669 shrinker_free(huge_zero_page_shrinker); 670 shrinker_free(deferred_split_shrinker); 671 } 672 673 static int __init hugepage_init(void) 674 { 675 int err; 676 struct kobject *hugepage_kobj; 677 678 if (!has_transparent_hugepage()) { 679 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 680 return -EINVAL; 681 } 682 683 /* 684 * hugepages can't be allocated by the buddy allocator 685 */ 686 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 687 /* 688 * we use page->mapping and page->index in second tail page 689 * as list_head: assuming THP order >= 2 690 */ 691 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 692 693 err = hugepage_init_sysfs(&hugepage_kobj); 694 if (err) 695 goto err_sysfs; 696 697 err = khugepaged_init(); 698 if (err) 699 goto err_slab; 700 701 err = thp_shrinker_init(); 702 if (err) 703 goto err_shrinker; 704 705 /* 706 * By default disable transparent hugepages on smaller systems, 707 * where the extra memory used could hurt more than TLB overhead 708 * is likely to save. The admin can still enable it through /sys. 709 */ 710 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 711 transparent_hugepage_flags = 0; 712 return 0; 713 } 714 715 err = start_stop_khugepaged(); 716 if (err) 717 goto err_khugepaged; 718 719 return 0; 720 err_khugepaged: 721 thp_shrinker_exit(); 722 err_shrinker: 723 khugepaged_destroy(); 724 err_slab: 725 hugepage_exit_sysfs(hugepage_kobj); 726 err_sysfs: 727 return err; 728 } 729 subsys_initcall(hugepage_init); 730 731 static int __init setup_transparent_hugepage(char *str) 732 { 733 int ret = 0; 734 if (!str) 735 goto out; 736 if (!strcmp(str, "always")) { 737 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 738 &transparent_hugepage_flags); 739 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 740 &transparent_hugepage_flags); 741 ret = 1; 742 } else if (!strcmp(str, "madvise")) { 743 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 744 &transparent_hugepage_flags); 745 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 746 &transparent_hugepage_flags); 747 ret = 1; 748 } else if (!strcmp(str, "never")) { 749 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 750 &transparent_hugepage_flags); 751 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 752 &transparent_hugepage_flags); 753 ret = 1; 754 } 755 out: 756 if (!ret) 757 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 758 return ret; 759 } 760 __setup("transparent_hugepage=", setup_transparent_hugepage); 761 762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 763 { 764 if (likely(vma->vm_flags & VM_WRITE)) 765 pmd = pmd_mkwrite(pmd, vma); 766 return pmd; 767 } 768 769 #ifdef CONFIG_MEMCG 770 static inline 771 struct deferred_split *get_deferred_split_queue(struct folio *folio) 772 { 773 struct mem_cgroup *memcg = folio_memcg(folio); 774 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 775 776 if (memcg) 777 return &memcg->deferred_split_queue; 778 else 779 return &pgdat->deferred_split_queue; 780 } 781 #else 782 static inline 783 struct deferred_split *get_deferred_split_queue(struct folio *folio) 784 { 785 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 786 787 return &pgdat->deferred_split_queue; 788 } 789 #endif 790 791 void folio_prep_large_rmappable(struct folio *folio) 792 { 793 if (!folio || !folio_test_large(folio)) 794 return; 795 if (folio_order(folio) > 1) 796 INIT_LIST_HEAD(&folio->_deferred_list); 797 folio_set_large_rmappable(folio); 798 } 799 800 static inline bool is_transparent_hugepage(struct folio *folio) 801 { 802 if (!folio_test_large(folio)) 803 return false; 804 805 return is_huge_zero_page(&folio->page) || 806 folio_test_large_rmappable(folio); 807 } 808 809 static unsigned long __thp_get_unmapped_area(struct file *filp, 810 unsigned long addr, unsigned long len, 811 loff_t off, unsigned long flags, unsigned long size) 812 { 813 loff_t off_end = off + len; 814 loff_t off_align = round_up(off, size); 815 unsigned long len_pad, ret, off_sub; 816 817 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall()) 818 return 0; 819 820 if (off_end <= off_align || (off_end - off_align) < size) 821 return 0; 822 823 len_pad = len + size; 824 if (len_pad < len || (off + len_pad) < off) 825 return 0; 826 827 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 828 off >> PAGE_SHIFT, flags); 829 830 /* 831 * The failure might be due to length padding. The caller will retry 832 * without the padding. 833 */ 834 if (IS_ERR_VALUE(ret)) 835 return 0; 836 837 /* 838 * Do not try to align to THP boundary if allocation at the address 839 * hint succeeds. 840 */ 841 if (ret == addr) 842 return addr; 843 844 off_sub = (off - ret) & (size - 1); 845 846 if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown && 847 !off_sub) 848 return ret + size; 849 850 ret += off_sub; 851 return ret; 852 } 853 854 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 855 unsigned long len, unsigned long pgoff, unsigned long flags) 856 { 857 unsigned long ret; 858 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 859 860 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 861 if (ret) 862 return ret; 863 864 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 865 } 866 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 867 868 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 869 struct page *page, gfp_t gfp) 870 { 871 struct vm_area_struct *vma = vmf->vma; 872 struct folio *folio = page_folio(page); 873 pgtable_t pgtable; 874 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 875 vm_fault_t ret = 0; 876 877 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 878 879 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 880 folio_put(folio); 881 count_vm_event(THP_FAULT_FALLBACK); 882 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 883 return VM_FAULT_FALLBACK; 884 } 885 folio_throttle_swaprate(folio, gfp); 886 887 pgtable = pte_alloc_one(vma->vm_mm); 888 if (unlikely(!pgtable)) { 889 ret = VM_FAULT_OOM; 890 goto release; 891 } 892 893 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 894 /* 895 * The memory barrier inside __folio_mark_uptodate makes sure that 896 * clear_huge_page writes become visible before the set_pmd_at() 897 * write. 898 */ 899 __folio_mark_uptodate(folio); 900 901 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 902 if (unlikely(!pmd_none(*vmf->pmd))) { 903 goto unlock_release; 904 } else { 905 pmd_t entry; 906 907 ret = check_stable_address_space(vma->vm_mm); 908 if (ret) 909 goto unlock_release; 910 911 /* Deliver the page fault to userland */ 912 if (userfaultfd_missing(vma)) { 913 spin_unlock(vmf->ptl); 914 folio_put(folio); 915 pte_free(vma->vm_mm, pgtable); 916 ret = handle_userfault(vmf, VM_UFFD_MISSING); 917 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 918 return ret; 919 } 920 921 entry = mk_huge_pmd(page, vma->vm_page_prot); 922 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 923 folio_add_new_anon_rmap(folio, vma, haddr); 924 folio_add_lru_vma(folio, vma); 925 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 926 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 927 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 928 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 929 mm_inc_nr_ptes(vma->vm_mm); 930 spin_unlock(vmf->ptl); 931 count_vm_event(THP_FAULT_ALLOC); 932 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 933 } 934 935 return 0; 936 unlock_release: 937 spin_unlock(vmf->ptl); 938 release: 939 if (pgtable) 940 pte_free(vma->vm_mm, pgtable); 941 folio_put(folio); 942 return ret; 943 944 } 945 946 /* 947 * always: directly stall for all thp allocations 948 * defer: wake kswapd and fail if not immediately available 949 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 950 * fail if not immediately available 951 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 952 * available 953 * never: never stall for any thp allocation 954 */ 955 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 956 { 957 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 958 959 /* Always do synchronous compaction */ 960 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 961 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 962 963 /* Kick kcompactd and fail quickly */ 964 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 965 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 966 967 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 968 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 969 return GFP_TRANSHUGE_LIGHT | 970 (vma_madvised ? __GFP_DIRECT_RECLAIM : 971 __GFP_KSWAPD_RECLAIM); 972 973 /* Only do synchronous compaction if madvised */ 974 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 975 return GFP_TRANSHUGE_LIGHT | 976 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 977 978 return GFP_TRANSHUGE_LIGHT; 979 } 980 981 /* Caller must hold page table lock. */ 982 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 983 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 984 struct page *zero_page) 985 { 986 pmd_t entry; 987 if (!pmd_none(*pmd)) 988 return; 989 entry = mk_pmd(zero_page, vma->vm_page_prot); 990 entry = pmd_mkhuge(entry); 991 pgtable_trans_huge_deposit(mm, pmd, pgtable); 992 set_pmd_at(mm, haddr, pmd, entry); 993 mm_inc_nr_ptes(mm); 994 } 995 996 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 997 { 998 struct vm_area_struct *vma = vmf->vma; 999 gfp_t gfp; 1000 struct folio *folio; 1001 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1002 1003 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1004 return VM_FAULT_FALLBACK; 1005 if (unlikely(anon_vma_prepare(vma))) 1006 return VM_FAULT_OOM; 1007 khugepaged_enter_vma(vma, vma->vm_flags); 1008 1009 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1010 !mm_forbids_zeropage(vma->vm_mm) && 1011 transparent_hugepage_use_zero_page()) { 1012 pgtable_t pgtable; 1013 struct page *zero_page; 1014 vm_fault_t ret; 1015 pgtable = pte_alloc_one(vma->vm_mm); 1016 if (unlikely(!pgtable)) 1017 return VM_FAULT_OOM; 1018 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1019 if (unlikely(!zero_page)) { 1020 pte_free(vma->vm_mm, pgtable); 1021 count_vm_event(THP_FAULT_FALLBACK); 1022 return VM_FAULT_FALLBACK; 1023 } 1024 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1025 ret = 0; 1026 if (pmd_none(*vmf->pmd)) { 1027 ret = check_stable_address_space(vma->vm_mm); 1028 if (ret) { 1029 spin_unlock(vmf->ptl); 1030 pte_free(vma->vm_mm, pgtable); 1031 } else if (userfaultfd_missing(vma)) { 1032 spin_unlock(vmf->ptl); 1033 pte_free(vma->vm_mm, pgtable); 1034 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1035 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1036 } else { 1037 set_huge_zero_page(pgtable, vma->vm_mm, vma, 1038 haddr, vmf->pmd, zero_page); 1039 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1040 spin_unlock(vmf->ptl); 1041 } 1042 } else { 1043 spin_unlock(vmf->ptl); 1044 pte_free(vma->vm_mm, pgtable); 1045 } 1046 return ret; 1047 } 1048 gfp = vma_thp_gfp_mask(vma); 1049 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1050 if (unlikely(!folio)) { 1051 count_vm_event(THP_FAULT_FALLBACK); 1052 return VM_FAULT_FALLBACK; 1053 } 1054 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1055 } 1056 1057 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1058 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1059 pgtable_t pgtable) 1060 { 1061 struct mm_struct *mm = vma->vm_mm; 1062 pmd_t entry; 1063 spinlock_t *ptl; 1064 1065 ptl = pmd_lock(mm, pmd); 1066 if (!pmd_none(*pmd)) { 1067 if (write) { 1068 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1069 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1070 goto out_unlock; 1071 } 1072 entry = pmd_mkyoung(*pmd); 1073 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1074 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1075 update_mmu_cache_pmd(vma, addr, pmd); 1076 } 1077 1078 goto out_unlock; 1079 } 1080 1081 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1082 if (pfn_t_devmap(pfn)) 1083 entry = pmd_mkdevmap(entry); 1084 if (write) { 1085 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1086 entry = maybe_pmd_mkwrite(entry, vma); 1087 } 1088 1089 if (pgtable) { 1090 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1091 mm_inc_nr_ptes(mm); 1092 pgtable = NULL; 1093 } 1094 1095 set_pmd_at(mm, addr, pmd, entry); 1096 update_mmu_cache_pmd(vma, addr, pmd); 1097 1098 out_unlock: 1099 spin_unlock(ptl); 1100 if (pgtable) 1101 pte_free(mm, pgtable); 1102 } 1103 1104 /** 1105 * vmf_insert_pfn_pmd - insert a pmd size pfn 1106 * @vmf: Structure describing the fault 1107 * @pfn: pfn to insert 1108 * @write: whether it's a write fault 1109 * 1110 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1111 * 1112 * Return: vm_fault_t value. 1113 */ 1114 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1115 { 1116 unsigned long addr = vmf->address & PMD_MASK; 1117 struct vm_area_struct *vma = vmf->vma; 1118 pgprot_t pgprot = vma->vm_page_prot; 1119 pgtable_t pgtable = NULL; 1120 1121 /* 1122 * If we had pmd_special, we could avoid all these restrictions, 1123 * but we need to be consistent with PTEs and architectures that 1124 * can't support a 'special' bit. 1125 */ 1126 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1127 !pfn_t_devmap(pfn)); 1128 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1129 (VM_PFNMAP|VM_MIXEDMAP)); 1130 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1131 1132 if (addr < vma->vm_start || addr >= vma->vm_end) 1133 return VM_FAULT_SIGBUS; 1134 1135 if (arch_needs_pgtable_deposit()) { 1136 pgtable = pte_alloc_one(vma->vm_mm); 1137 if (!pgtable) 1138 return VM_FAULT_OOM; 1139 } 1140 1141 track_pfn_insert(vma, &pgprot, pfn); 1142 1143 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1144 return VM_FAULT_NOPAGE; 1145 } 1146 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1147 1148 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1149 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1150 { 1151 if (likely(vma->vm_flags & VM_WRITE)) 1152 pud = pud_mkwrite(pud); 1153 return pud; 1154 } 1155 1156 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1157 pud_t *pud, pfn_t pfn, bool write) 1158 { 1159 struct mm_struct *mm = vma->vm_mm; 1160 pgprot_t prot = vma->vm_page_prot; 1161 pud_t entry; 1162 spinlock_t *ptl; 1163 1164 ptl = pud_lock(mm, pud); 1165 if (!pud_none(*pud)) { 1166 if (write) { 1167 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1168 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1169 goto out_unlock; 1170 } 1171 entry = pud_mkyoung(*pud); 1172 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1173 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1174 update_mmu_cache_pud(vma, addr, pud); 1175 } 1176 goto out_unlock; 1177 } 1178 1179 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1180 if (pfn_t_devmap(pfn)) 1181 entry = pud_mkdevmap(entry); 1182 if (write) { 1183 entry = pud_mkyoung(pud_mkdirty(entry)); 1184 entry = maybe_pud_mkwrite(entry, vma); 1185 } 1186 set_pud_at(mm, addr, pud, entry); 1187 update_mmu_cache_pud(vma, addr, pud); 1188 1189 out_unlock: 1190 spin_unlock(ptl); 1191 } 1192 1193 /** 1194 * vmf_insert_pfn_pud - insert a pud size pfn 1195 * @vmf: Structure describing the fault 1196 * @pfn: pfn to insert 1197 * @write: whether it's a write fault 1198 * 1199 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1200 * 1201 * Return: vm_fault_t value. 1202 */ 1203 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1204 { 1205 unsigned long addr = vmf->address & PUD_MASK; 1206 struct vm_area_struct *vma = vmf->vma; 1207 pgprot_t pgprot = vma->vm_page_prot; 1208 1209 /* 1210 * If we had pud_special, we could avoid all these restrictions, 1211 * but we need to be consistent with PTEs and architectures that 1212 * can't support a 'special' bit. 1213 */ 1214 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1215 !pfn_t_devmap(pfn)); 1216 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1217 (VM_PFNMAP|VM_MIXEDMAP)); 1218 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1219 1220 if (addr < vma->vm_start || addr >= vma->vm_end) 1221 return VM_FAULT_SIGBUS; 1222 1223 track_pfn_insert(vma, &pgprot, pfn); 1224 1225 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1226 return VM_FAULT_NOPAGE; 1227 } 1228 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1229 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1230 1231 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1232 pmd_t *pmd, bool write) 1233 { 1234 pmd_t _pmd; 1235 1236 _pmd = pmd_mkyoung(*pmd); 1237 if (write) 1238 _pmd = pmd_mkdirty(_pmd); 1239 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1240 pmd, _pmd, write)) 1241 update_mmu_cache_pmd(vma, addr, pmd); 1242 } 1243 1244 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1245 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1246 { 1247 unsigned long pfn = pmd_pfn(*pmd); 1248 struct mm_struct *mm = vma->vm_mm; 1249 struct page *page; 1250 int ret; 1251 1252 assert_spin_locked(pmd_lockptr(mm, pmd)); 1253 1254 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1255 return NULL; 1256 1257 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1258 /* pass */; 1259 else 1260 return NULL; 1261 1262 if (flags & FOLL_TOUCH) 1263 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1264 1265 /* 1266 * device mapped pages can only be returned if the 1267 * caller will manage the page reference count. 1268 */ 1269 if (!(flags & (FOLL_GET | FOLL_PIN))) 1270 return ERR_PTR(-EEXIST); 1271 1272 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1273 *pgmap = get_dev_pagemap(pfn, *pgmap); 1274 if (!*pgmap) 1275 return ERR_PTR(-EFAULT); 1276 page = pfn_to_page(pfn); 1277 ret = try_grab_page(page, flags); 1278 if (ret) 1279 page = ERR_PTR(ret); 1280 1281 return page; 1282 } 1283 1284 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1285 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1286 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1287 { 1288 spinlock_t *dst_ptl, *src_ptl; 1289 struct page *src_page; 1290 struct folio *src_folio; 1291 pmd_t pmd; 1292 pgtable_t pgtable = NULL; 1293 int ret = -ENOMEM; 1294 1295 /* Skip if can be re-fill on fault */ 1296 if (!vma_is_anonymous(dst_vma)) 1297 return 0; 1298 1299 pgtable = pte_alloc_one(dst_mm); 1300 if (unlikely(!pgtable)) 1301 goto out; 1302 1303 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1304 src_ptl = pmd_lockptr(src_mm, src_pmd); 1305 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1306 1307 ret = -EAGAIN; 1308 pmd = *src_pmd; 1309 1310 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1311 if (unlikely(is_swap_pmd(pmd))) { 1312 swp_entry_t entry = pmd_to_swp_entry(pmd); 1313 1314 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1315 if (!is_readable_migration_entry(entry)) { 1316 entry = make_readable_migration_entry( 1317 swp_offset(entry)); 1318 pmd = swp_entry_to_pmd(entry); 1319 if (pmd_swp_soft_dirty(*src_pmd)) 1320 pmd = pmd_swp_mksoft_dirty(pmd); 1321 if (pmd_swp_uffd_wp(*src_pmd)) 1322 pmd = pmd_swp_mkuffd_wp(pmd); 1323 set_pmd_at(src_mm, addr, src_pmd, pmd); 1324 } 1325 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1326 mm_inc_nr_ptes(dst_mm); 1327 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1328 if (!userfaultfd_wp(dst_vma)) 1329 pmd = pmd_swp_clear_uffd_wp(pmd); 1330 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1331 ret = 0; 1332 goto out_unlock; 1333 } 1334 #endif 1335 1336 if (unlikely(!pmd_trans_huge(pmd))) { 1337 pte_free(dst_mm, pgtable); 1338 goto out_unlock; 1339 } 1340 /* 1341 * When page table lock is held, the huge zero pmd should not be 1342 * under splitting since we don't split the page itself, only pmd to 1343 * a page table. 1344 */ 1345 if (is_huge_zero_pmd(pmd)) { 1346 /* 1347 * get_huge_zero_page() will never allocate a new page here, 1348 * since we already have a zero page to copy. It just takes a 1349 * reference. 1350 */ 1351 mm_get_huge_zero_page(dst_mm); 1352 goto out_zero_page; 1353 } 1354 1355 src_page = pmd_page(pmd); 1356 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1357 src_folio = page_folio(src_page); 1358 1359 folio_get(src_folio); 1360 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1361 /* Page maybe pinned: split and retry the fault on PTEs. */ 1362 folio_put(src_folio); 1363 pte_free(dst_mm, pgtable); 1364 spin_unlock(src_ptl); 1365 spin_unlock(dst_ptl); 1366 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1367 return -EAGAIN; 1368 } 1369 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1370 out_zero_page: 1371 mm_inc_nr_ptes(dst_mm); 1372 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1373 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1374 if (!userfaultfd_wp(dst_vma)) 1375 pmd = pmd_clear_uffd_wp(pmd); 1376 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1377 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1378 1379 ret = 0; 1380 out_unlock: 1381 spin_unlock(src_ptl); 1382 spin_unlock(dst_ptl); 1383 out: 1384 return ret; 1385 } 1386 1387 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1388 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1389 pud_t *pud, bool write) 1390 { 1391 pud_t _pud; 1392 1393 _pud = pud_mkyoung(*pud); 1394 if (write) 1395 _pud = pud_mkdirty(_pud); 1396 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1397 pud, _pud, write)) 1398 update_mmu_cache_pud(vma, addr, pud); 1399 } 1400 1401 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1402 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1403 { 1404 unsigned long pfn = pud_pfn(*pud); 1405 struct mm_struct *mm = vma->vm_mm; 1406 struct page *page; 1407 int ret; 1408 1409 assert_spin_locked(pud_lockptr(mm, pud)); 1410 1411 if (flags & FOLL_WRITE && !pud_write(*pud)) 1412 return NULL; 1413 1414 if (pud_present(*pud) && pud_devmap(*pud)) 1415 /* pass */; 1416 else 1417 return NULL; 1418 1419 if (flags & FOLL_TOUCH) 1420 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1421 1422 /* 1423 * device mapped pages can only be returned if the 1424 * caller will manage the page reference count. 1425 * 1426 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1427 */ 1428 if (!(flags & (FOLL_GET | FOLL_PIN))) 1429 return ERR_PTR(-EEXIST); 1430 1431 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1432 *pgmap = get_dev_pagemap(pfn, *pgmap); 1433 if (!*pgmap) 1434 return ERR_PTR(-EFAULT); 1435 page = pfn_to_page(pfn); 1436 1437 ret = try_grab_page(page, flags); 1438 if (ret) 1439 page = ERR_PTR(ret); 1440 1441 return page; 1442 } 1443 1444 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1445 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1446 struct vm_area_struct *vma) 1447 { 1448 spinlock_t *dst_ptl, *src_ptl; 1449 pud_t pud; 1450 int ret; 1451 1452 dst_ptl = pud_lock(dst_mm, dst_pud); 1453 src_ptl = pud_lockptr(src_mm, src_pud); 1454 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1455 1456 ret = -EAGAIN; 1457 pud = *src_pud; 1458 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1459 goto out_unlock; 1460 1461 /* 1462 * When page table lock is held, the huge zero pud should not be 1463 * under splitting since we don't split the page itself, only pud to 1464 * a page table. 1465 */ 1466 if (is_huge_zero_pud(pud)) { 1467 /* No huge zero pud yet */ 1468 } 1469 1470 /* 1471 * TODO: once we support anonymous pages, use 1472 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1473 */ 1474 pudp_set_wrprotect(src_mm, addr, src_pud); 1475 pud = pud_mkold(pud_wrprotect(pud)); 1476 set_pud_at(dst_mm, addr, dst_pud, pud); 1477 1478 ret = 0; 1479 out_unlock: 1480 spin_unlock(src_ptl); 1481 spin_unlock(dst_ptl); 1482 return ret; 1483 } 1484 1485 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1486 { 1487 bool write = vmf->flags & FAULT_FLAG_WRITE; 1488 1489 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1490 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1491 goto unlock; 1492 1493 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1494 unlock: 1495 spin_unlock(vmf->ptl); 1496 } 1497 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1498 1499 void huge_pmd_set_accessed(struct vm_fault *vmf) 1500 { 1501 bool write = vmf->flags & FAULT_FLAG_WRITE; 1502 1503 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1504 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1505 goto unlock; 1506 1507 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1508 1509 unlock: 1510 spin_unlock(vmf->ptl); 1511 } 1512 1513 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1514 { 1515 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1516 struct vm_area_struct *vma = vmf->vma; 1517 struct folio *folio; 1518 struct page *page; 1519 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1520 pmd_t orig_pmd = vmf->orig_pmd; 1521 1522 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1523 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1524 1525 if (is_huge_zero_pmd(orig_pmd)) 1526 goto fallback; 1527 1528 spin_lock(vmf->ptl); 1529 1530 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1531 spin_unlock(vmf->ptl); 1532 return 0; 1533 } 1534 1535 page = pmd_page(orig_pmd); 1536 folio = page_folio(page); 1537 VM_BUG_ON_PAGE(!PageHead(page), page); 1538 1539 /* Early check when only holding the PT lock. */ 1540 if (PageAnonExclusive(page)) 1541 goto reuse; 1542 1543 if (!folio_trylock(folio)) { 1544 folio_get(folio); 1545 spin_unlock(vmf->ptl); 1546 folio_lock(folio); 1547 spin_lock(vmf->ptl); 1548 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1549 spin_unlock(vmf->ptl); 1550 folio_unlock(folio); 1551 folio_put(folio); 1552 return 0; 1553 } 1554 folio_put(folio); 1555 } 1556 1557 /* Recheck after temporarily dropping the PT lock. */ 1558 if (PageAnonExclusive(page)) { 1559 folio_unlock(folio); 1560 goto reuse; 1561 } 1562 1563 /* 1564 * See do_wp_page(): we can only reuse the folio exclusively if 1565 * there are no additional references. Note that we always drain 1566 * the LRU cache immediately after adding a THP. 1567 */ 1568 if (folio_ref_count(folio) > 1569 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1570 goto unlock_fallback; 1571 if (folio_test_swapcache(folio)) 1572 folio_free_swap(folio); 1573 if (folio_ref_count(folio) == 1) { 1574 pmd_t entry; 1575 1576 folio_move_anon_rmap(folio, vma); 1577 SetPageAnonExclusive(page); 1578 folio_unlock(folio); 1579 reuse: 1580 if (unlikely(unshare)) { 1581 spin_unlock(vmf->ptl); 1582 return 0; 1583 } 1584 entry = pmd_mkyoung(orig_pmd); 1585 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1586 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1587 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1588 spin_unlock(vmf->ptl); 1589 return 0; 1590 } 1591 1592 unlock_fallback: 1593 folio_unlock(folio); 1594 spin_unlock(vmf->ptl); 1595 fallback: 1596 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1597 return VM_FAULT_FALLBACK; 1598 } 1599 1600 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1601 unsigned long addr, pmd_t pmd) 1602 { 1603 struct page *page; 1604 1605 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1606 return false; 1607 1608 /* Don't touch entries that are not even readable (NUMA hinting). */ 1609 if (pmd_protnone(pmd)) 1610 return false; 1611 1612 /* Do we need write faults for softdirty tracking? */ 1613 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1614 return false; 1615 1616 /* Do we need write faults for uffd-wp tracking? */ 1617 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1618 return false; 1619 1620 if (!(vma->vm_flags & VM_SHARED)) { 1621 /* See can_change_pte_writable(). */ 1622 page = vm_normal_page_pmd(vma, addr, pmd); 1623 return page && PageAnon(page) && PageAnonExclusive(page); 1624 } 1625 1626 /* See can_change_pte_writable(). */ 1627 return pmd_dirty(pmd); 1628 } 1629 1630 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1631 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1632 struct vm_area_struct *vma, 1633 unsigned int flags) 1634 { 1635 /* If the pmd is writable, we can write to the page. */ 1636 if (pmd_write(pmd)) 1637 return true; 1638 1639 /* Maybe FOLL_FORCE is set to override it? */ 1640 if (!(flags & FOLL_FORCE)) 1641 return false; 1642 1643 /* But FOLL_FORCE has no effect on shared mappings */ 1644 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1645 return false; 1646 1647 /* ... or read-only private ones */ 1648 if (!(vma->vm_flags & VM_MAYWRITE)) 1649 return false; 1650 1651 /* ... or already writable ones that just need to take a write fault */ 1652 if (vma->vm_flags & VM_WRITE) 1653 return false; 1654 1655 /* 1656 * See can_change_pte_writable(): we broke COW and could map the page 1657 * writable if we have an exclusive anonymous page ... 1658 */ 1659 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1660 return false; 1661 1662 /* ... and a write-fault isn't required for other reasons. */ 1663 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1664 return false; 1665 return !userfaultfd_huge_pmd_wp(vma, pmd); 1666 } 1667 1668 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1669 unsigned long addr, 1670 pmd_t *pmd, 1671 unsigned int flags) 1672 { 1673 struct mm_struct *mm = vma->vm_mm; 1674 struct page *page; 1675 int ret; 1676 1677 assert_spin_locked(pmd_lockptr(mm, pmd)); 1678 1679 page = pmd_page(*pmd); 1680 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1681 1682 if ((flags & FOLL_WRITE) && 1683 !can_follow_write_pmd(*pmd, page, vma, flags)) 1684 return NULL; 1685 1686 /* Avoid dumping huge zero page */ 1687 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1688 return ERR_PTR(-EFAULT); 1689 1690 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1691 return NULL; 1692 1693 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1694 return ERR_PTR(-EMLINK); 1695 1696 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1697 !PageAnonExclusive(page), page); 1698 1699 ret = try_grab_page(page, flags); 1700 if (ret) 1701 return ERR_PTR(ret); 1702 1703 if (flags & FOLL_TOUCH) 1704 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1705 1706 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1707 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1708 1709 return page; 1710 } 1711 1712 /* NUMA hinting page fault entry point for trans huge pmds */ 1713 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1714 { 1715 struct vm_area_struct *vma = vmf->vma; 1716 pmd_t oldpmd = vmf->orig_pmd; 1717 pmd_t pmd; 1718 struct folio *folio; 1719 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1720 int nid = NUMA_NO_NODE; 1721 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1722 bool migrated = false, writable = false; 1723 int flags = 0; 1724 1725 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1726 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1727 spin_unlock(vmf->ptl); 1728 goto out; 1729 } 1730 1731 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1732 1733 /* 1734 * Detect now whether the PMD could be writable; this information 1735 * is only valid while holding the PT lock. 1736 */ 1737 writable = pmd_write(pmd); 1738 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1739 can_change_pmd_writable(vma, vmf->address, pmd)) 1740 writable = true; 1741 1742 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1743 if (!folio) 1744 goto out_map; 1745 1746 /* See similar comment in do_numa_page for explanation */ 1747 if (!writable) 1748 flags |= TNF_NO_GROUP; 1749 1750 nid = folio_nid(folio); 1751 /* 1752 * For memory tiering mode, cpupid of slow memory page is used 1753 * to record page access time. So use default value. 1754 */ 1755 if (node_is_toptier(nid)) 1756 last_cpupid = folio_last_cpupid(folio); 1757 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags); 1758 if (target_nid == NUMA_NO_NODE) { 1759 folio_put(folio); 1760 goto out_map; 1761 } 1762 1763 spin_unlock(vmf->ptl); 1764 writable = false; 1765 1766 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1767 if (migrated) { 1768 flags |= TNF_MIGRATED; 1769 nid = target_nid; 1770 } else { 1771 flags |= TNF_MIGRATE_FAIL; 1772 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1773 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1774 spin_unlock(vmf->ptl); 1775 goto out; 1776 } 1777 goto out_map; 1778 } 1779 1780 out: 1781 if (nid != NUMA_NO_NODE) 1782 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1783 1784 return 0; 1785 1786 out_map: 1787 /* Restore the PMD */ 1788 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1789 pmd = pmd_mkyoung(pmd); 1790 if (writable) 1791 pmd = pmd_mkwrite(pmd, vma); 1792 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1793 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1794 spin_unlock(vmf->ptl); 1795 goto out; 1796 } 1797 1798 /* 1799 * Return true if we do MADV_FREE successfully on entire pmd page. 1800 * Otherwise, return false. 1801 */ 1802 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1803 pmd_t *pmd, unsigned long addr, unsigned long next) 1804 { 1805 spinlock_t *ptl; 1806 pmd_t orig_pmd; 1807 struct folio *folio; 1808 struct mm_struct *mm = tlb->mm; 1809 bool ret = false; 1810 1811 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1812 1813 ptl = pmd_trans_huge_lock(pmd, vma); 1814 if (!ptl) 1815 goto out_unlocked; 1816 1817 orig_pmd = *pmd; 1818 if (is_huge_zero_pmd(orig_pmd)) 1819 goto out; 1820 1821 if (unlikely(!pmd_present(orig_pmd))) { 1822 VM_BUG_ON(thp_migration_supported() && 1823 !is_pmd_migration_entry(orig_pmd)); 1824 goto out; 1825 } 1826 1827 folio = pfn_folio(pmd_pfn(orig_pmd)); 1828 /* 1829 * If other processes are mapping this folio, we couldn't discard 1830 * the folio unless they all do MADV_FREE so let's skip the folio. 1831 */ 1832 if (folio_estimated_sharers(folio) != 1) 1833 goto out; 1834 1835 if (!folio_trylock(folio)) 1836 goto out; 1837 1838 /* 1839 * If user want to discard part-pages of THP, split it so MADV_FREE 1840 * will deactivate only them. 1841 */ 1842 if (next - addr != HPAGE_PMD_SIZE) { 1843 folio_get(folio); 1844 spin_unlock(ptl); 1845 split_folio(folio); 1846 folio_unlock(folio); 1847 folio_put(folio); 1848 goto out_unlocked; 1849 } 1850 1851 if (folio_test_dirty(folio)) 1852 folio_clear_dirty(folio); 1853 folio_unlock(folio); 1854 1855 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1856 pmdp_invalidate(vma, addr, pmd); 1857 orig_pmd = pmd_mkold(orig_pmd); 1858 orig_pmd = pmd_mkclean(orig_pmd); 1859 1860 set_pmd_at(mm, addr, pmd, orig_pmd); 1861 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1862 } 1863 1864 folio_mark_lazyfree(folio); 1865 ret = true; 1866 out: 1867 spin_unlock(ptl); 1868 out_unlocked: 1869 return ret; 1870 } 1871 1872 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1873 { 1874 pgtable_t pgtable; 1875 1876 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1877 pte_free(mm, pgtable); 1878 mm_dec_nr_ptes(mm); 1879 } 1880 1881 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1882 pmd_t *pmd, unsigned long addr) 1883 { 1884 pmd_t orig_pmd; 1885 spinlock_t *ptl; 1886 1887 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1888 1889 ptl = __pmd_trans_huge_lock(pmd, vma); 1890 if (!ptl) 1891 return 0; 1892 /* 1893 * For architectures like ppc64 we look at deposited pgtable 1894 * when calling pmdp_huge_get_and_clear. So do the 1895 * pgtable_trans_huge_withdraw after finishing pmdp related 1896 * operations. 1897 */ 1898 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1899 tlb->fullmm); 1900 arch_check_zapped_pmd(vma, orig_pmd); 1901 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1902 if (vma_is_special_huge(vma)) { 1903 if (arch_needs_pgtable_deposit()) 1904 zap_deposited_table(tlb->mm, pmd); 1905 spin_unlock(ptl); 1906 } else if (is_huge_zero_pmd(orig_pmd)) { 1907 zap_deposited_table(tlb->mm, pmd); 1908 spin_unlock(ptl); 1909 } else { 1910 struct folio *folio = NULL; 1911 int flush_needed = 1; 1912 1913 if (pmd_present(orig_pmd)) { 1914 struct page *page = pmd_page(orig_pmd); 1915 1916 folio = page_folio(page); 1917 folio_remove_rmap_pmd(folio, page, vma); 1918 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1919 VM_BUG_ON_PAGE(!PageHead(page), page); 1920 } else if (thp_migration_supported()) { 1921 swp_entry_t entry; 1922 1923 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1924 entry = pmd_to_swp_entry(orig_pmd); 1925 folio = pfn_swap_entry_folio(entry); 1926 flush_needed = 0; 1927 } else 1928 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1929 1930 if (folio_test_anon(folio)) { 1931 zap_deposited_table(tlb->mm, pmd); 1932 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1933 } else { 1934 if (arch_needs_pgtable_deposit()) 1935 zap_deposited_table(tlb->mm, pmd); 1936 add_mm_counter(tlb->mm, mm_counter_file(folio), 1937 -HPAGE_PMD_NR); 1938 } 1939 1940 spin_unlock(ptl); 1941 if (flush_needed) 1942 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1943 } 1944 return 1; 1945 } 1946 1947 #ifndef pmd_move_must_withdraw 1948 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1949 spinlock_t *old_pmd_ptl, 1950 struct vm_area_struct *vma) 1951 { 1952 /* 1953 * With split pmd lock we also need to move preallocated 1954 * PTE page table if new_pmd is on different PMD page table. 1955 * 1956 * We also don't deposit and withdraw tables for file pages. 1957 */ 1958 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1959 } 1960 #endif 1961 1962 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1963 { 1964 #ifdef CONFIG_MEM_SOFT_DIRTY 1965 if (unlikely(is_pmd_migration_entry(pmd))) 1966 pmd = pmd_swp_mksoft_dirty(pmd); 1967 else if (pmd_present(pmd)) 1968 pmd = pmd_mksoft_dirty(pmd); 1969 #endif 1970 return pmd; 1971 } 1972 1973 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1974 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1975 { 1976 spinlock_t *old_ptl, *new_ptl; 1977 pmd_t pmd; 1978 struct mm_struct *mm = vma->vm_mm; 1979 bool force_flush = false; 1980 1981 /* 1982 * The destination pmd shouldn't be established, free_pgtables() 1983 * should have released it; but move_page_tables() might have already 1984 * inserted a page table, if racing against shmem/file collapse. 1985 */ 1986 if (!pmd_none(*new_pmd)) { 1987 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1988 return false; 1989 } 1990 1991 /* 1992 * We don't have to worry about the ordering of src and dst 1993 * ptlocks because exclusive mmap_lock prevents deadlock. 1994 */ 1995 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1996 if (old_ptl) { 1997 new_ptl = pmd_lockptr(mm, new_pmd); 1998 if (new_ptl != old_ptl) 1999 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2000 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2001 if (pmd_present(pmd)) 2002 force_flush = true; 2003 VM_BUG_ON(!pmd_none(*new_pmd)); 2004 2005 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2006 pgtable_t pgtable; 2007 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2008 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2009 } 2010 pmd = move_soft_dirty_pmd(pmd); 2011 set_pmd_at(mm, new_addr, new_pmd, pmd); 2012 if (force_flush) 2013 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2014 if (new_ptl != old_ptl) 2015 spin_unlock(new_ptl); 2016 spin_unlock(old_ptl); 2017 return true; 2018 } 2019 return false; 2020 } 2021 2022 /* 2023 * Returns 2024 * - 0 if PMD could not be locked 2025 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2026 * or if prot_numa but THP migration is not supported 2027 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2028 */ 2029 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2030 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2031 unsigned long cp_flags) 2032 { 2033 struct mm_struct *mm = vma->vm_mm; 2034 spinlock_t *ptl; 2035 pmd_t oldpmd, entry; 2036 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2037 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2038 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2039 int ret = 1; 2040 2041 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2042 2043 if (prot_numa && !thp_migration_supported()) 2044 return 1; 2045 2046 ptl = __pmd_trans_huge_lock(pmd, vma); 2047 if (!ptl) 2048 return 0; 2049 2050 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2051 if (is_swap_pmd(*pmd)) { 2052 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2053 struct folio *folio = pfn_swap_entry_folio(entry); 2054 pmd_t newpmd; 2055 2056 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2057 if (is_writable_migration_entry(entry)) { 2058 /* 2059 * A protection check is difficult so 2060 * just be safe and disable write 2061 */ 2062 if (folio_test_anon(folio)) 2063 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2064 else 2065 entry = make_readable_migration_entry(swp_offset(entry)); 2066 newpmd = swp_entry_to_pmd(entry); 2067 if (pmd_swp_soft_dirty(*pmd)) 2068 newpmd = pmd_swp_mksoft_dirty(newpmd); 2069 } else { 2070 newpmd = *pmd; 2071 } 2072 2073 if (uffd_wp) 2074 newpmd = pmd_swp_mkuffd_wp(newpmd); 2075 else if (uffd_wp_resolve) 2076 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2077 if (!pmd_same(*pmd, newpmd)) 2078 set_pmd_at(mm, addr, pmd, newpmd); 2079 goto unlock; 2080 } 2081 #endif 2082 2083 if (prot_numa) { 2084 struct folio *folio; 2085 bool toptier; 2086 /* 2087 * Avoid trapping faults against the zero page. The read-only 2088 * data is likely to be read-cached on the local CPU and 2089 * local/remote hits to the zero page are not interesting. 2090 */ 2091 if (is_huge_zero_pmd(*pmd)) 2092 goto unlock; 2093 2094 if (pmd_protnone(*pmd)) 2095 goto unlock; 2096 2097 folio = page_folio(pmd_page(*pmd)); 2098 toptier = node_is_toptier(folio_nid(folio)); 2099 /* 2100 * Skip scanning top tier node if normal numa 2101 * balancing is disabled 2102 */ 2103 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2104 toptier) 2105 goto unlock; 2106 2107 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2108 !toptier) 2109 folio_xchg_access_time(folio, 2110 jiffies_to_msecs(jiffies)); 2111 } 2112 /* 2113 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2114 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2115 * which is also under mmap_read_lock(mm): 2116 * 2117 * CPU0: CPU1: 2118 * change_huge_pmd(prot_numa=1) 2119 * pmdp_huge_get_and_clear_notify() 2120 * madvise_dontneed() 2121 * zap_pmd_range() 2122 * pmd_trans_huge(*pmd) == 0 (without ptl) 2123 * // skip the pmd 2124 * set_pmd_at(); 2125 * // pmd is re-established 2126 * 2127 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2128 * which may break userspace. 2129 * 2130 * pmdp_invalidate_ad() is required to make sure we don't miss 2131 * dirty/young flags set by hardware. 2132 */ 2133 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2134 2135 entry = pmd_modify(oldpmd, newprot); 2136 if (uffd_wp) 2137 entry = pmd_mkuffd_wp(entry); 2138 else if (uffd_wp_resolve) 2139 /* 2140 * Leave the write bit to be handled by PF interrupt 2141 * handler, then things like COW could be properly 2142 * handled. 2143 */ 2144 entry = pmd_clear_uffd_wp(entry); 2145 2146 /* See change_pte_range(). */ 2147 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2148 can_change_pmd_writable(vma, addr, entry)) 2149 entry = pmd_mkwrite(entry, vma); 2150 2151 ret = HPAGE_PMD_NR; 2152 set_pmd_at(mm, addr, pmd, entry); 2153 2154 if (huge_pmd_needs_flush(oldpmd, entry)) 2155 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2156 unlock: 2157 spin_unlock(ptl); 2158 return ret; 2159 } 2160 2161 #ifdef CONFIG_USERFAULTFD 2162 /* 2163 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2164 * the caller, but it must return after releasing the page_table_lock. 2165 * Just move the page from src_pmd to dst_pmd if possible. 2166 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2167 * repeated by the caller, or other errors in case of failure. 2168 */ 2169 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2170 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2171 unsigned long dst_addr, unsigned long src_addr) 2172 { 2173 pmd_t _dst_pmd, src_pmdval; 2174 struct page *src_page; 2175 struct folio *src_folio; 2176 struct anon_vma *src_anon_vma; 2177 spinlock_t *src_ptl, *dst_ptl; 2178 pgtable_t src_pgtable; 2179 struct mmu_notifier_range range; 2180 int err = 0; 2181 2182 src_pmdval = *src_pmd; 2183 src_ptl = pmd_lockptr(mm, src_pmd); 2184 2185 lockdep_assert_held(src_ptl); 2186 vma_assert_locked(src_vma); 2187 vma_assert_locked(dst_vma); 2188 2189 /* Sanity checks before the operation */ 2190 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2191 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2192 spin_unlock(src_ptl); 2193 return -EINVAL; 2194 } 2195 2196 if (!pmd_trans_huge(src_pmdval)) { 2197 spin_unlock(src_ptl); 2198 if (is_pmd_migration_entry(src_pmdval)) { 2199 pmd_migration_entry_wait(mm, &src_pmdval); 2200 return -EAGAIN; 2201 } 2202 return -ENOENT; 2203 } 2204 2205 src_page = pmd_page(src_pmdval); 2206 2207 if (!is_huge_zero_pmd(src_pmdval)) { 2208 if (unlikely(!PageAnonExclusive(src_page))) { 2209 spin_unlock(src_ptl); 2210 return -EBUSY; 2211 } 2212 2213 src_folio = page_folio(src_page); 2214 folio_get(src_folio); 2215 } else 2216 src_folio = NULL; 2217 2218 spin_unlock(src_ptl); 2219 2220 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2221 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2222 src_addr + HPAGE_PMD_SIZE); 2223 mmu_notifier_invalidate_range_start(&range); 2224 2225 if (src_folio) { 2226 folio_lock(src_folio); 2227 2228 /* 2229 * split_huge_page walks the anon_vma chain without the page 2230 * lock. Serialize against it with the anon_vma lock, the page 2231 * lock is not enough. 2232 */ 2233 src_anon_vma = folio_get_anon_vma(src_folio); 2234 if (!src_anon_vma) { 2235 err = -EAGAIN; 2236 goto unlock_folio; 2237 } 2238 anon_vma_lock_write(src_anon_vma); 2239 } else 2240 src_anon_vma = NULL; 2241 2242 dst_ptl = pmd_lockptr(mm, dst_pmd); 2243 double_pt_lock(src_ptl, dst_ptl); 2244 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2245 !pmd_same(*dst_pmd, dst_pmdval))) { 2246 err = -EAGAIN; 2247 goto unlock_ptls; 2248 } 2249 if (src_folio) { 2250 if (folio_maybe_dma_pinned(src_folio) || 2251 !PageAnonExclusive(&src_folio->page)) { 2252 err = -EBUSY; 2253 goto unlock_ptls; 2254 } 2255 2256 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2257 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2258 err = -EBUSY; 2259 goto unlock_ptls; 2260 } 2261 2262 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2263 /* Folio got pinned from under us. Put it back and fail the move. */ 2264 if (folio_maybe_dma_pinned(src_folio)) { 2265 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2266 err = -EBUSY; 2267 goto unlock_ptls; 2268 } 2269 2270 folio_move_anon_rmap(src_folio, dst_vma); 2271 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr)); 2272 2273 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2274 /* Follow mremap() behavior and treat the entry dirty after the move */ 2275 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2276 } else { 2277 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2278 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2279 } 2280 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2281 2282 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2283 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2284 unlock_ptls: 2285 double_pt_unlock(src_ptl, dst_ptl); 2286 if (src_anon_vma) { 2287 anon_vma_unlock_write(src_anon_vma); 2288 put_anon_vma(src_anon_vma); 2289 } 2290 unlock_folio: 2291 /* unblock rmap walks */ 2292 if (src_folio) 2293 folio_unlock(src_folio); 2294 mmu_notifier_invalidate_range_end(&range); 2295 if (src_folio) 2296 folio_put(src_folio); 2297 return err; 2298 } 2299 #endif /* CONFIG_USERFAULTFD */ 2300 2301 /* 2302 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2303 * 2304 * Note that if it returns page table lock pointer, this routine returns without 2305 * unlocking page table lock. So callers must unlock it. 2306 */ 2307 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2308 { 2309 spinlock_t *ptl; 2310 ptl = pmd_lock(vma->vm_mm, pmd); 2311 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2312 pmd_devmap(*pmd))) 2313 return ptl; 2314 spin_unlock(ptl); 2315 return NULL; 2316 } 2317 2318 /* 2319 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2320 * 2321 * Note that if it returns page table lock pointer, this routine returns without 2322 * unlocking page table lock. So callers must unlock it. 2323 */ 2324 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2325 { 2326 spinlock_t *ptl; 2327 2328 ptl = pud_lock(vma->vm_mm, pud); 2329 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2330 return ptl; 2331 spin_unlock(ptl); 2332 return NULL; 2333 } 2334 2335 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2336 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2337 pud_t *pud, unsigned long addr) 2338 { 2339 spinlock_t *ptl; 2340 2341 ptl = __pud_trans_huge_lock(pud, vma); 2342 if (!ptl) 2343 return 0; 2344 2345 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2346 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2347 if (vma_is_special_huge(vma)) { 2348 spin_unlock(ptl); 2349 /* No zero page support yet */ 2350 } else { 2351 /* No support for anonymous PUD pages yet */ 2352 BUG(); 2353 } 2354 return 1; 2355 } 2356 2357 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2358 unsigned long haddr) 2359 { 2360 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2361 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2362 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2363 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2364 2365 count_vm_event(THP_SPLIT_PUD); 2366 2367 pudp_huge_clear_flush(vma, haddr, pud); 2368 } 2369 2370 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2371 unsigned long address) 2372 { 2373 spinlock_t *ptl; 2374 struct mmu_notifier_range range; 2375 2376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2377 address & HPAGE_PUD_MASK, 2378 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2379 mmu_notifier_invalidate_range_start(&range); 2380 ptl = pud_lock(vma->vm_mm, pud); 2381 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2382 goto out; 2383 __split_huge_pud_locked(vma, pud, range.start); 2384 2385 out: 2386 spin_unlock(ptl); 2387 mmu_notifier_invalidate_range_end(&range); 2388 } 2389 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2390 2391 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2392 unsigned long haddr, pmd_t *pmd) 2393 { 2394 struct mm_struct *mm = vma->vm_mm; 2395 pgtable_t pgtable; 2396 pmd_t _pmd, old_pmd; 2397 unsigned long addr; 2398 pte_t *pte; 2399 int i; 2400 2401 /* 2402 * Leave pmd empty until pte is filled note that it is fine to delay 2403 * notification until mmu_notifier_invalidate_range_end() as we are 2404 * replacing a zero pmd write protected page with a zero pte write 2405 * protected page. 2406 * 2407 * See Documentation/mm/mmu_notifier.rst 2408 */ 2409 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2410 2411 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2412 pmd_populate(mm, &_pmd, pgtable); 2413 2414 pte = pte_offset_map(&_pmd, haddr); 2415 VM_BUG_ON(!pte); 2416 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2417 pte_t entry; 2418 2419 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2420 entry = pte_mkspecial(entry); 2421 if (pmd_uffd_wp(old_pmd)) 2422 entry = pte_mkuffd_wp(entry); 2423 VM_BUG_ON(!pte_none(ptep_get(pte))); 2424 set_pte_at(mm, addr, pte, entry); 2425 pte++; 2426 } 2427 pte_unmap(pte - 1); 2428 smp_wmb(); /* make pte visible before pmd */ 2429 pmd_populate(mm, pmd, pgtable); 2430 } 2431 2432 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2433 unsigned long haddr, bool freeze) 2434 { 2435 struct mm_struct *mm = vma->vm_mm; 2436 struct folio *folio; 2437 struct page *page; 2438 pgtable_t pgtable; 2439 pmd_t old_pmd, _pmd; 2440 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2441 bool anon_exclusive = false, dirty = false; 2442 unsigned long addr; 2443 pte_t *pte; 2444 int i; 2445 2446 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2447 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2448 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2449 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2450 && !pmd_devmap(*pmd)); 2451 2452 count_vm_event(THP_SPLIT_PMD); 2453 2454 if (!vma_is_anonymous(vma)) { 2455 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2456 /* 2457 * We are going to unmap this huge page. So 2458 * just go ahead and zap it 2459 */ 2460 if (arch_needs_pgtable_deposit()) 2461 zap_deposited_table(mm, pmd); 2462 if (vma_is_special_huge(vma)) 2463 return; 2464 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2465 swp_entry_t entry; 2466 2467 entry = pmd_to_swp_entry(old_pmd); 2468 folio = pfn_swap_entry_folio(entry); 2469 } else { 2470 page = pmd_page(old_pmd); 2471 folio = page_folio(page); 2472 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2473 folio_mark_dirty(folio); 2474 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2475 folio_set_referenced(folio); 2476 folio_remove_rmap_pmd(folio, page, vma); 2477 folio_put(folio); 2478 } 2479 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2480 return; 2481 } 2482 2483 if (is_huge_zero_pmd(*pmd)) { 2484 /* 2485 * FIXME: Do we want to invalidate secondary mmu by calling 2486 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2487 * inside __split_huge_pmd() ? 2488 * 2489 * We are going from a zero huge page write protected to zero 2490 * small page also write protected so it does not seems useful 2491 * to invalidate secondary mmu at this time. 2492 */ 2493 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2494 } 2495 2496 /* 2497 * Up to this point the pmd is present and huge and userland has the 2498 * whole access to the hugepage during the split (which happens in 2499 * place). If we overwrite the pmd with the not-huge version pointing 2500 * to the pte here (which of course we could if all CPUs were bug 2501 * free), userland could trigger a small page size TLB miss on the 2502 * small sized TLB while the hugepage TLB entry is still established in 2503 * the huge TLB. Some CPU doesn't like that. 2504 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2505 * 383 on page 105. Intel should be safe but is also warns that it's 2506 * only safe if the permission and cache attributes of the two entries 2507 * loaded in the two TLB is identical (which should be the case here). 2508 * But it is generally safer to never allow small and huge TLB entries 2509 * for the same virtual address to be loaded simultaneously. So instead 2510 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2511 * current pmd notpresent (atomically because here the pmd_trans_huge 2512 * must remain set at all times on the pmd until the split is complete 2513 * for this pmd), then we flush the SMP TLB and finally we write the 2514 * non-huge version of the pmd entry with pmd_populate. 2515 */ 2516 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2517 2518 pmd_migration = is_pmd_migration_entry(old_pmd); 2519 if (unlikely(pmd_migration)) { 2520 swp_entry_t entry; 2521 2522 entry = pmd_to_swp_entry(old_pmd); 2523 page = pfn_swap_entry_to_page(entry); 2524 write = is_writable_migration_entry(entry); 2525 if (PageAnon(page)) 2526 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2527 young = is_migration_entry_young(entry); 2528 dirty = is_migration_entry_dirty(entry); 2529 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2530 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2531 } else { 2532 page = pmd_page(old_pmd); 2533 folio = page_folio(page); 2534 if (pmd_dirty(old_pmd)) { 2535 dirty = true; 2536 folio_set_dirty(folio); 2537 } 2538 write = pmd_write(old_pmd); 2539 young = pmd_young(old_pmd); 2540 soft_dirty = pmd_soft_dirty(old_pmd); 2541 uffd_wp = pmd_uffd_wp(old_pmd); 2542 2543 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2544 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2545 2546 /* 2547 * Without "freeze", we'll simply split the PMD, propagating the 2548 * PageAnonExclusive() flag for each PTE by setting it for 2549 * each subpage -- no need to (temporarily) clear. 2550 * 2551 * With "freeze" we want to replace mapped pages by 2552 * migration entries right away. This is only possible if we 2553 * managed to clear PageAnonExclusive() -- see 2554 * set_pmd_migration_entry(). 2555 * 2556 * In case we cannot clear PageAnonExclusive(), split the PMD 2557 * only and let try_to_migrate_one() fail later. 2558 * 2559 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2560 */ 2561 anon_exclusive = PageAnonExclusive(page); 2562 if (freeze && anon_exclusive && 2563 folio_try_share_anon_rmap_pmd(folio, page)) 2564 freeze = false; 2565 if (!freeze) { 2566 rmap_t rmap_flags = RMAP_NONE; 2567 2568 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2569 if (anon_exclusive) 2570 rmap_flags |= RMAP_EXCLUSIVE; 2571 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2572 vma, haddr, rmap_flags); 2573 } 2574 } 2575 2576 /* 2577 * Withdraw the table only after we mark the pmd entry invalid. 2578 * This's critical for some architectures (Power). 2579 */ 2580 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2581 pmd_populate(mm, &_pmd, pgtable); 2582 2583 pte = pte_offset_map(&_pmd, haddr); 2584 VM_BUG_ON(!pte); 2585 2586 /* 2587 * Note that NUMA hinting access restrictions are not transferred to 2588 * avoid any possibility of altering permissions across VMAs. 2589 */ 2590 if (freeze || pmd_migration) { 2591 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2592 pte_t entry; 2593 swp_entry_t swp_entry; 2594 2595 if (write) 2596 swp_entry = make_writable_migration_entry( 2597 page_to_pfn(page + i)); 2598 else if (anon_exclusive) 2599 swp_entry = make_readable_exclusive_migration_entry( 2600 page_to_pfn(page + i)); 2601 else 2602 swp_entry = make_readable_migration_entry( 2603 page_to_pfn(page + i)); 2604 if (young) 2605 swp_entry = make_migration_entry_young(swp_entry); 2606 if (dirty) 2607 swp_entry = make_migration_entry_dirty(swp_entry); 2608 entry = swp_entry_to_pte(swp_entry); 2609 if (soft_dirty) 2610 entry = pte_swp_mksoft_dirty(entry); 2611 if (uffd_wp) 2612 entry = pte_swp_mkuffd_wp(entry); 2613 2614 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2615 set_pte_at(mm, addr, pte + i, entry); 2616 } 2617 } else { 2618 pte_t entry; 2619 2620 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2621 if (write) 2622 entry = pte_mkwrite(entry, vma); 2623 if (!young) 2624 entry = pte_mkold(entry); 2625 /* NOTE: this may set soft-dirty too on some archs */ 2626 if (dirty) 2627 entry = pte_mkdirty(entry); 2628 if (soft_dirty) 2629 entry = pte_mksoft_dirty(entry); 2630 if (uffd_wp) 2631 entry = pte_mkuffd_wp(entry); 2632 2633 for (i = 0; i < HPAGE_PMD_NR; i++) 2634 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2635 2636 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2637 } 2638 pte_unmap(pte); 2639 2640 if (!pmd_migration) 2641 folio_remove_rmap_pmd(folio, page, vma); 2642 if (freeze) 2643 put_page(page); 2644 2645 smp_wmb(); /* make pte visible before pmd */ 2646 pmd_populate(mm, pmd, pgtable); 2647 } 2648 2649 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2650 unsigned long address, bool freeze, struct folio *folio) 2651 { 2652 spinlock_t *ptl; 2653 struct mmu_notifier_range range; 2654 2655 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2656 address & HPAGE_PMD_MASK, 2657 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2658 mmu_notifier_invalidate_range_start(&range); 2659 ptl = pmd_lock(vma->vm_mm, pmd); 2660 2661 /* 2662 * If caller asks to setup a migration entry, we need a folio to check 2663 * pmd against. Otherwise we can end up replacing wrong folio. 2664 */ 2665 VM_BUG_ON(freeze && !folio); 2666 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2667 2668 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2669 is_pmd_migration_entry(*pmd)) { 2670 /* 2671 * It's safe to call pmd_page when folio is set because it's 2672 * guaranteed that pmd is present. 2673 */ 2674 if (folio && folio != page_folio(pmd_page(*pmd))) 2675 goto out; 2676 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2677 } 2678 2679 out: 2680 spin_unlock(ptl); 2681 mmu_notifier_invalidate_range_end(&range); 2682 } 2683 2684 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2685 bool freeze, struct folio *folio) 2686 { 2687 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2688 2689 if (!pmd) 2690 return; 2691 2692 __split_huge_pmd(vma, pmd, address, freeze, folio); 2693 } 2694 2695 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2696 { 2697 /* 2698 * If the new address isn't hpage aligned and it could previously 2699 * contain an hugepage: check if we need to split an huge pmd. 2700 */ 2701 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2702 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2703 ALIGN(address, HPAGE_PMD_SIZE))) 2704 split_huge_pmd_address(vma, address, false, NULL); 2705 } 2706 2707 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2708 unsigned long start, 2709 unsigned long end, 2710 long adjust_next) 2711 { 2712 /* Check if we need to split start first. */ 2713 split_huge_pmd_if_needed(vma, start); 2714 2715 /* Check if we need to split end next. */ 2716 split_huge_pmd_if_needed(vma, end); 2717 2718 /* 2719 * If we're also updating the next vma vm_start, 2720 * check if we need to split it. 2721 */ 2722 if (adjust_next > 0) { 2723 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2724 unsigned long nstart = next->vm_start; 2725 nstart += adjust_next; 2726 split_huge_pmd_if_needed(next, nstart); 2727 } 2728 } 2729 2730 static void unmap_folio(struct folio *folio) 2731 { 2732 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2733 TTU_BATCH_FLUSH; 2734 2735 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2736 2737 if (folio_test_pmd_mappable(folio)) 2738 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2739 2740 /* 2741 * Anon pages need migration entries to preserve them, but file 2742 * pages can simply be left unmapped, then faulted back on demand. 2743 * If that is ever changed (perhaps for mlock), update remap_page(). 2744 */ 2745 if (folio_test_anon(folio)) 2746 try_to_migrate(folio, ttu_flags); 2747 else 2748 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2749 2750 try_to_unmap_flush(); 2751 } 2752 2753 static void remap_page(struct folio *folio, unsigned long nr) 2754 { 2755 int i = 0; 2756 2757 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2758 if (!folio_test_anon(folio)) 2759 return; 2760 for (;;) { 2761 remove_migration_ptes(folio, folio, true); 2762 i += folio_nr_pages(folio); 2763 if (i >= nr) 2764 break; 2765 folio = folio_next(folio); 2766 } 2767 } 2768 2769 static void lru_add_page_tail(struct page *head, struct page *tail, 2770 struct lruvec *lruvec, struct list_head *list) 2771 { 2772 VM_BUG_ON_PAGE(!PageHead(head), head); 2773 VM_BUG_ON_PAGE(PageLRU(tail), head); 2774 lockdep_assert_held(&lruvec->lru_lock); 2775 2776 if (list) { 2777 /* page reclaim is reclaiming a huge page */ 2778 VM_WARN_ON(PageLRU(head)); 2779 get_page(tail); 2780 list_add_tail(&tail->lru, list); 2781 } else { 2782 /* head is still on lru (and we have it frozen) */ 2783 VM_WARN_ON(!PageLRU(head)); 2784 if (PageUnevictable(tail)) 2785 tail->mlock_count = 0; 2786 else 2787 list_add_tail(&tail->lru, &head->lru); 2788 SetPageLRU(tail); 2789 } 2790 } 2791 2792 static void __split_huge_page_tail(struct folio *folio, int tail, 2793 struct lruvec *lruvec, struct list_head *list, 2794 unsigned int new_order) 2795 { 2796 struct page *head = &folio->page; 2797 struct page *page_tail = head + tail; 2798 /* 2799 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2800 * Don't pass it around before clear_compound_head(). 2801 */ 2802 struct folio *new_folio = (struct folio *)page_tail; 2803 2804 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2805 2806 /* 2807 * Clone page flags before unfreezing refcount. 2808 * 2809 * After successful get_page_unless_zero() might follow flags change, 2810 * for example lock_page() which set PG_waiters. 2811 * 2812 * Note that for mapped sub-pages of an anonymous THP, 2813 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2814 * the migration entry instead from where remap_page() will restore it. 2815 * We can still have PG_anon_exclusive set on effectively unmapped and 2816 * unreferenced sub-pages of an anonymous THP: we can simply drop 2817 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2818 */ 2819 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2820 page_tail->flags |= (head->flags & 2821 ((1L << PG_referenced) | 2822 (1L << PG_swapbacked) | 2823 (1L << PG_swapcache) | 2824 (1L << PG_mlocked) | 2825 (1L << PG_uptodate) | 2826 (1L << PG_active) | 2827 (1L << PG_workingset) | 2828 (1L << PG_locked) | 2829 (1L << PG_unevictable) | 2830 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2831 (1L << PG_arch_2) | 2832 (1L << PG_arch_3) | 2833 #endif 2834 (1L << PG_dirty) | 2835 LRU_GEN_MASK | LRU_REFS_MASK)); 2836 2837 /* ->mapping in first and second tail page is replaced by other uses */ 2838 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2839 page_tail); 2840 page_tail->mapping = head->mapping; 2841 page_tail->index = head->index + tail; 2842 2843 /* 2844 * page->private should not be set in tail pages. Fix up and warn once 2845 * if private is unexpectedly set. 2846 */ 2847 if (unlikely(page_tail->private)) { 2848 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2849 page_tail->private = 0; 2850 } 2851 if (folio_test_swapcache(folio)) 2852 new_folio->swap.val = folio->swap.val + tail; 2853 2854 /* Page flags must be visible before we make the page non-compound. */ 2855 smp_wmb(); 2856 2857 /* 2858 * Clear PageTail before unfreezing page refcount. 2859 * 2860 * After successful get_page_unless_zero() might follow put_page() 2861 * which needs correct compound_head(). 2862 */ 2863 clear_compound_head(page_tail); 2864 if (new_order) { 2865 prep_compound_page(page_tail, new_order); 2866 folio_prep_large_rmappable(new_folio); 2867 } 2868 2869 /* Finally unfreeze refcount. Additional reference from page cache. */ 2870 page_ref_unfreeze(page_tail, 2871 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2872 folio_nr_pages(new_folio) : 0)); 2873 2874 if (folio_test_young(folio)) 2875 folio_set_young(new_folio); 2876 if (folio_test_idle(folio)) 2877 folio_set_idle(new_folio); 2878 2879 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2880 2881 /* 2882 * always add to the tail because some iterators expect new 2883 * pages to show after the currently processed elements - e.g. 2884 * migrate_pages 2885 */ 2886 lru_add_page_tail(head, page_tail, lruvec, list); 2887 } 2888 2889 static void __split_huge_page(struct page *page, struct list_head *list, 2890 pgoff_t end, unsigned int new_order) 2891 { 2892 struct folio *folio = page_folio(page); 2893 struct page *head = &folio->page; 2894 struct lruvec *lruvec; 2895 struct address_space *swap_cache = NULL; 2896 unsigned long offset = 0; 2897 int i, nr_dropped = 0; 2898 unsigned int new_nr = 1 << new_order; 2899 int order = folio_order(folio); 2900 unsigned int nr = 1 << order; 2901 2902 /* complete memcg works before add pages to LRU */ 2903 split_page_memcg(head, order, new_order); 2904 2905 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2906 offset = swp_offset(folio->swap); 2907 swap_cache = swap_address_space(folio->swap); 2908 xa_lock(&swap_cache->i_pages); 2909 } 2910 2911 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2912 lruvec = folio_lruvec_lock(folio); 2913 2914 ClearPageHasHWPoisoned(head); 2915 2916 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2917 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2918 /* Some pages can be beyond EOF: drop them from page cache */ 2919 if (head[i].index >= end) { 2920 struct folio *tail = page_folio(head + i); 2921 2922 if (shmem_mapping(folio->mapping)) 2923 nr_dropped++; 2924 else if (folio_test_clear_dirty(tail)) 2925 folio_account_cleaned(tail, 2926 inode_to_wb(folio->mapping->host)); 2927 __filemap_remove_folio(tail, NULL); 2928 folio_put(tail); 2929 } else if (!PageAnon(page)) { 2930 __xa_store(&folio->mapping->i_pages, head[i].index, 2931 head + i, 0); 2932 } else if (swap_cache) { 2933 __xa_store(&swap_cache->i_pages, offset + i, 2934 head + i, 0); 2935 } 2936 } 2937 2938 if (!new_order) 2939 ClearPageCompound(head); 2940 else { 2941 struct folio *new_folio = (struct folio *)head; 2942 2943 folio_set_order(new_folio, new_order); 2944 } 2945 unlock_page_lruvec(lruvec); 2946 /* Caller disabled irqs, so they are still disabled here */ 2947 2948 split_page_owner(head, order, new_order); 2949 2950 /* See comment in __split_huge_page_tail() */ 2951 if (folio_test_anon(folio)) { 2952 /* Additional pin to swap cache */ 2953 if (folio_test_swapcache(folio)) { 2954 folio_ref_add(folio, 1 + new_nr); 2955 xa_unlock(&swap_cache->i_pages); 2956 } else { 2957 folio_ref_inc(folio); 2958 } 2959 } else { 2960 /* Additional pin to page cache */ 2961 folio_ref_add(folio, 1 + new_nr); 2962 xa_unlock(&folio->mapping->i_pages); 2963 } 2964 local_irq_enable(); 2965 2966 if (nr_dropped) 2967 shmem_uncharge(folio->mapping->host, nr_dropped); 2968 remap_page(folio, nr); 2969 2970 if (folio_test_swapcache(folio)) 2971 split_swap_cluster(folio->swap); 2972 2973 /* 2974 * set page to its compound_head when split to non order-0 pages, so 2975 * we can skip unlocking it below, since PG_locked is transferred to 2976 * the compound_head of the page and the caller will unlock it. 2977 */ 2978 if (new_order) 2979 page = compound_head(page); 2980 2981 for (i = 0; i < nr; i += new_nr) { 2982 struct page *subpage = head + i; 2983 struct folio *new_folio = page_folio(subpage); 2984 if (subpage == page) 2985 continue; 2986 folio_unlock(new_folio); 2987 2988 /* 2989 * Subpages may be freed if there wasn't any mapping 2990 * like if add_to_swap() is running on a lru page that 2991 * had its mapping zapped. And freeing these pages 2992 * requires taking the lru_lock so we do the put_page 2993 * of the tail pages after the split is complete. 2994 */ 2995 free_page_and_swap_cache(subpage); 2996 } 2997 } 2998 2999 /* Racy check whether the huge page can be split */ 3000 bool can_split_folio(struct folio *folio, int *pextra_pins) 3001 { 3002 int extra_pins; 3003 3004 /* Additional pins from page cache */ 3005 if (folio_test_anon(folio)) 3006 extra_pins = folio_test_swapcache(folio) ? 3007 folio_nr_pages(folio) : 0; 3008 else 3009 extra_pins = folio_nr_pages(folio); 3010 if (pextra_pins) 3011 *pextra_pins = extra_pins; 3012 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 3013 } 3014 3015 /* 3016 * This function splits huge page into pages in @new_order. @page can point to 3017 * any subpage of huge page to split. Split doesn't change the position of 3018 * @page. 3019 * 3020 * NOTE: order-1 anonymous folio is not supported because _deferred_list, 3021 * which is used by partially mapped folios, is stored in subpage 2 and an 3022 * order-1 folio only has subpage 0 and 1. File-backed order-1 folios are OK, 3023 * since they do not use _deferred_list. 3024 * 3025 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 3026 * The huge page must be locked. 3027 * 3028 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3029 * 3030 * Pages in new_order will inherit mapping, flags, and so on from the hugepage. 3031 * 3032 * GUP pin and PG_locked transferred to @page or the compound page @page belongs 3033 * to. Rest subpages can be freed if they are not mapped. 3034 * 3035 * Returns 0 if the hugepage is split successfully. 3036 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 3037 * us. 3038 */ 3039 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3040 unsigned int new_order) 3041 { 3042 struct folio *folio = page_folio(page); 3043 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3044 /* reset xarray order to new order after split */ 3045 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3046 struct anon_vma *anon_vma = NULL; 3047 struct address_space *mapping = NULL; 3048 int extra_pins, ret; 3049 pgoff_t end; 3050 bool is_hzp; 3051 3052 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3053 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3054 3055 if (new_order >= folio_order(folio)) 3056 return -EINVAL; 3057 3058 /* Cannot split anonymous THP to order-1 */ 3059 if (new_order == 1 && folio_test_anon(folio)) { 3060 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3061 return -EINVAL; 3062 } 3063 3064 if (new_order) { 3065 /* Only swapping a whole PMD-mapped folio is supported */ 3066 if (folio_test_swapcache(folio)) 3067 return -EINVAL; 3068 /* Split shmem folio to non-zero order not supported */ 3069 if (shmem_mapping(folio->mapping)) { 3070 VM_WARN_ONCE(1, 3071 "Cannot split shmem folio to non-0 order"); 3072 return -EINVAL; 3073 } 3074 /* No split if the file system does not support large folio */ 3075 if (!mapping_large_folio_support(folio->mapping)) { 3076 VM_WARN_ONCE(1, 3077 "Cannot split file folio to non-0 order"); 3078 return -EINVAL; 3079 } 3080 } 3081 3082 3083 is_hzp = is_huge_zero_page(&folio->page); 3084 if (is_hzp) { 3085 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3086 return -EBUSY; 3087 } 3088 3089 if (folio_test_writeback(folio)) 3090 return -EBUSY; 3091 3092 if (folio_test_anon(folio)) { 3093 /* 3094 * The caller does not necessarily hold an mmap_lock that would 3095 * prevent the anon_vma disappearing so we first we take a 3096 * reference to it and then lock the anon_vma for write. This 3097 * is similar to folio_lock_anon_vma_read except the write lock 3098 * is taken to serialise against parallel split or collapse 3099 * operations. 3100 */ 3101 anon_vma = folio_get_anon_vma(folio); 3102 if (!anon_vma) { 3103 ret = -EBUSY; 3104 goto out; 3105 } 3106 end = -1; 3107 mapping = NULL; 3108 anon_vma_lock_write(anon_vma); 3109 } else { 3110 gfp_t gfp; 3111 3112 mapping = folio->mapping; 3113 3114 /* Truncated ? */ 3115 if (!mapping) { 3116 ret = -EBUSY; 3117 goto out; 3118 } 3119 3120 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3121 GFP_RECLAIM_MASK); 3122 3123 if (!filemap_release_folio(folio, gfp)) { 3124 ret = -EBUSY; 3125 goto out; 3126 } 3127 3128 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3129 if (xas_error(&xas)) { 3130 ret = xas_error(&xas); 3131 goto out; 3132 } 3133 3134 anon_vma = NULL; 3135 i_mmap_lock_read(mapping); 3136 3137 /* 3138 *__split_huge_page() may need to trim off pages beyond EOF: 3139 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3140 * which cannot be nested inside the page tree lock. So note 3141 * end now: i_size itself may be changed at any moment, but 3142 * folio lock is good enough to serialize the trimming. 3143 */ 3144 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3145 if (shmem_mapping(mapping)) 3146 end = shmem_fallocend(mapping->host, end); 3147 } 3148 3149 /* 3150 * Racy check if we can split the page, before unmap_folio() will 3151 * split PMDs 3152 */ 3153 if (!can_split_folio(folio, &extra_pins)) { 3154 ret = -EAGAIN; 3155 goto out_unlock; 3156 } 3157 3158 unmap_folio(folio); 3159 3160 /* block interrupt reentry in xa_lock and spinlock */ 3161 local_irq_disable(); 3162 if (mapping) { 3163 /* 3164 * Check if the folio is present in page cache. 3165 * We assume all tail are present too, if folio is there. 3166 */ 3167 xas_lock(&xas); 3168 xas_reset(&xas); 3169 if (xas_load(&xas) != folio) 3170 goto fail; 3171 } 3172 3173 /* Prevent deferred_split_scan() touching ->_refcount */ 3174 spin_lock(&ds_queue->split_queue_lock); 3175 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3176 if (folio_order(folio) > 1 && 3177 !list_empty(&folio->_deferred_list)) { 3178 ds_queue->split_queue_len--; 3179 /* 3180 * Reinitialize page_deferred_list after removing the 3181 * page from the split_queue, otherwise a subsequent 3182 * split will see list corruption when checking the 3183 * page_deferred_list. 3184 */ 3185 list_del_init(&folio->_deferred_list); 3186 } 3187 spin_unlock(&ds_queue->split_queue_lock); 3188 if (mapping) { 3189 int nr = folio_nr_pages(folio); 3190 3191 xas_split(&xas, folio, folio_order(folio)); 3192 if (folio_test_pmd_mappable(folio) && 3193 new_order < HPAGE_PMD_ORDER) { 3194 if (folio_test_swapbacked(folio)) { 3195 __lruvec_stat_mod_folio(folio, 3196 NR_SHMEM_THPS, -nr); 3197 } else { 3198 __lruvec_stat_mod_folio(folio, 3199 NR_FILE_THPS, -nr); 3200 filemap_nr_thps_dec(mapping); 3201 } 3202 } 3203 } 3204 3205 __split_huge_page(page, list, end, new_order); 3206 ret = 0; 3207 } else { 3208 spin_unlock(&ds_queue->split_queue_lock); 3209 fail: 3210 if (mapping) 3211 xas_unlock(&xas); 3212 local_irq_enable(); 3213 remap_page(folio, folio_nr_pages(folio)); 3214 ret = -EAGAIN; 3215 } 3216 3217 out_unlock: 3218 if (anon_vma) { 3219 anon_vma_unlock_write(anon_vma); 3220 put_anon_vma(anon_vma); 3221 } 3222 if (mapping) 3223 i_mmap_unlock_read(mapping); 3224 out: 3225 xas_destroy(&xas); 3226 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3227 return ret; 3228 } 3229 3230 void folio_undo_large_rmappable(struct folio *folio) 3231 { 3232 struct deferred_split *ds_queue; 3233 unsigned long flags; 3234 3235 if (folio_order(folio) <= 1) 3236 return; 3237 3238 /* 3239 * At this point, there is no one trying to add the folio to 3240 * deferred_list. If folio is not in deferred_list, it's safe 3241 * to check without acquiring the split_queue_lock. 3242 */ 3243 if (data_race(list_empty(&folio->_deferred_list))) 3244 return; 3245 3246 ds_queue = get_deferred_split_queue(folio); 3247 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3248 if (!list_empty(&folio->_deferred_list)) { 3249 ds_queue->split_queue_len--; 3250 list_del_init(&folio->_deferred_list); 3251 } 3252 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3253 } 3254 3255 void deferred_split_folio(struct folio *folio) 3256 { 3257 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3258 #ifdef CONFIG_MEMCG 3259 struct mem_cgroup *memcg = folio_memcg(folio); 3260 #endif 3261 unsigned long flags; 3262 3263 /* 3264 * Order 1 folios have no space for a deferred list, but we also 3265 * won't waste much memory by not adding them to the deferred list. 3266 */ 3267 if (folio_order(folio) <= 1) 3268 return; 3269 3270 /* 3271 * The try_to_unmap() in page reclaim path might reach here too, 3272 * this may cause a race condition to corrupt deferred split queue. 3273 * And, if page reclaim is already handling the same folio, it is 3274 * unnecessary to handle it again in shrinker. 3275 * 3276 * Check the swapcache flag to determine if the folio is being 3277 * handled by page reclaim since THP swap would add the folio into 3278 * swap cache before calling try_to_unmap(). 3279 */ 3280 if (folio_test_swapcache(folio)) 3281 return; 3282 3283 if (!list_empty(&folio->_deferred_list)) 3284 return; 3285 3286 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3287 if (list_empty(&folio->_deferred_list)) { 3288 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3289 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3290 ds_queue->split_queue_len++; 3291 #ifdef CONFIG_MEMCG 3292 if (memcg) 3293 set_shrinker_bit(memcg, folio_nid(folio), 3294 deferred_split_shrinker->id); 3295 #endif 3296 } 3297 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3298 } 3299 3300 static unsigned long deferred_split_count(struct shrinker *shrink, 3301 struct shrink_control *sc) 3302 { 3303 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3304 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3305 3306 #ifdef CONFIG_MEMCG 3307 if (sc->memcg) 3308 ds_queue = &sc->memcg->deferred_split_queue; 3309 #endif 3310 return READ_ONCE(ds_queue->split_queue_len); 3311 } 3312 3313 static unsigned long deferred_split_scan(struct shrinker *shrink, 3314 struct shrink_control *sc) 3315 { 3316 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3317 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3318 unsigned long flags; 3319 LIST_HEAD(list); 3320 struct folio *folio, *next; 3321 int split = 0; 3322 3323 #ifdef CONFIG_MEMCG 3324 if (sc->memcg) 3325 ds_queue = &sc->memcg->deferred_split_queue; 3326 #endif 3327 3328 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3329 /* Take pin on all head pages to avoid freeing them under us */ 3330 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3331 _deferred_list) { 3332 if (folio_try_get(folio)) { 3333 list_move(&folio->_deferred_list, &list); 3334 } else { 3335 /* We lost race with folio_put() */ 3336 list_del_init(&folio->_deferred_list); 3337 ds_queue->split_queue_len--; 3338 } 3339 if (!--sc->nr_to_scan) 3340 break; 3341 } 3342 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3343 3344 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3345 if (!folio_trylock(folio)) 3346 goto next; 3347 /* split_huge_page() removes page from list on success */ 3348 if (!split_folio(folio)) 3349 split++; 3350 folio_unlock(folio); 3351 next: 3352 folio_put(folio); 3353 } 3354 3355 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3356 list_splice_tail(&list, &ds_queue->split_queue); 3357 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3358 3359 /* 3360 * Stop shrinker if we didn't split any page, but the queue is empty. 3361 * This can happen if pages were freed under us. 3362 */ 3363 if (!split && list_empty(&ds_queue->split_queue)) 3364 return SHRINK_STOP; 3365 return split; 3366 } 3367 3368 #ifdef CONFIG_DEBUG_FS 3369 static void split_huge_pages_all(void) 3370 { 3371 struct zone *zone; 3372 struct page *page; 3373 struct folio *folio; 3374 unsigned long pfn, max_zone_pfn; 3375 unsigned long total = 0, split = 0; 3376 3377 pr_debug("Split all THPs\n"); 3378 for_each_zone(zone) { 3379 if (!managed_zone(zone)) 3380 continue; 3381 max_zone_pfn = zone_end_pfn(zone); 3382 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3383 int nr_pages; 3384 3385 page = pfn_to_online_page(pfn); 3386 if (!page || PageTail(page)) 3387 continue; 3388 folio = page_folio(page); 3389 if (!folio_try_get(folio)) 3390 continue; 3391 3392 if (unlikely(page_folio(page) != folio)) 3393 goto next; 3394 3395 if (zone != folio_zone(folio)) 3396 goto next; 3397 3398 if (!folio_test_large(folio) 3399 || folio_test_hugetlb(folio) 3400 || !folio_test_lru(folio)) 3401 goto next; 3402 3403 total++; 3404 folio_lock(folio); 3405 nr_pages = folio_nr_pages(folio); 3406 if (!split_folio(folio)) 3407 split++; 3408 pfn += nr_pages - 1; 3409 folio_unlock(folio); 3410 next: 3411 folio_put(folio); 3412 cond_resched(); 3413 } 3414 } 3415 3416 pr_debug("%lu of %lu THP split\n", split, total); 3417 } 3418 3419 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3420 { 3421 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3422 is_vm_hugetlb_page(vma); 3423 } 3424 3425 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3426 unsigned long vaddr_end, unsigned int new_order) 3427 { 3428 int ret = 0; 3429 struct task_struct *task; 3430 struct mm_struct *mm; 3431 unsigned long total = 0, split = 0; 3432 unsigned long addr; 3433 3434 vaddr_start &= PAGE_MASK; 3435 vaddr_end &= PAGE_MASK; 3436 3437 /* Find the task_struct from pid */ 3438 rcu_read_lock(); 3439 task = find_task_by_vpid(pid); 3440 if (!task) { 3441 rcu_read_unlock(); 3442 ret = -ESRCH; 3443 goto out; 3444 } 3445 get_task_struct(task); 3446 rcu_read_unlock(); 3447 3448 /* Find the mm_struct */ 3449 mm = get_task_mm(task); 3450 put_task_struct(task); 3451 3452 if (!mm) { 3453 ret = -EINVAL; 3454 goto out; 3455 } 3456 3457 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3458 pid, vaddr_start, vaddr_end); 3459 3460 mmap_read_lock(mm); 3461 /* 3462 * always increase addr by PAGE_SIZE, since we could have a PTE page 3463 * table filled with PTE-mapped THPs, each of which is distinct. 3464 */ 3465 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3466 struct vm_area_struct *vma = vma_lookup(mm, addr); 3467 struct page *page; 3468 struct folio *folio; 3469 3470 if (!vma) 3471 break; 3472 3473 /* skip special VMA and hugetlb VMA */ 3474 if (vma_not_suitable_for_thp_split(vma)) { 3475 addr = vma->vm_end; 3476 continue; 3477 } 3478 3479 /* FOLL_DUMP to ignore special (like zero) pages */ 3480 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3481 3482 if (IS_ERR_OR_NULL(page)) 3483 continue; 3484 3485 folio = page_folio(page); 3486 if (!is_transparent_hugepage(folio)) 3487 goto next; 3488 3489 if (new_order >= folio_order(folio)) 3490 goto next; 3491 3492 total++; 3493 /* 3494 * For folios with private, split_huge_page_to_list_to_order() 3495 * will try to drop it before split and then check if the folio 3496 * can be split or not. So skip the check here. 3497 */ 3498 if (!folio_test_private(folio) && 3499 !can_split_folio(folio, NULL)) 3500 goto next; 3501 3502 if (!folio_trylock(folio)) 3503 goto next; 3504 3505 if (!split_folio_to_order(folio, new_order)) 3506 split++; 3507 3508 folio_unlock(folio); 3509 next: 3510 folio_put(folio); 3511 cond_resched(); 3512 } 3513 mmap_read_unlock(mm); 3514 mmput(mm); 3515 3516 pr_debug("%lu of %lu THP split\n", split, total); 3517 3518 out: 3519 return ret; 3520 } 3521 3522 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3523 pgoff_t off_end, unsigned int new_order) 3524 { 3525 struct filename *file; 3526 struct file *candidate; 3527 struct address_space *mapping; 3528 int ret = -EINVAL; 3529 pgoff_t index; 3530 int nr_pages = 1; 3531 unsigned long total = 0, split = 0; 3532 3533 file = getname_kernel(file_path); 3534 if (IS_ERR(file)) 3535 return ret; 3536 3537 candidate = file_open_name(file, O_RDONLY, 0); 3538 if (IS_ERR(candidate)) 3539 goto out; 3540 3541 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3542 file_path, off_start, off_end); 3543 3544 mapping = candidate->f_mapping; 3545 3546 for (index = off_start; index < off_end; index += nr_pages) { 3547 struct folio *folio = filemap_get_folio(mapping, index); 3548 3549 nr_pages = 1; 3550 if (IS_ERR(folio)) 3551 continue; 3552 3553 if (!folio_test_large(folio)) 3554 goto next; 3555 3556 total++; 3557 nr_pages = folio_nr_pages(folio); 3558 3559 if (new_order >= folio_order(folio)) 3560 goto next; 3561 3562 if (!folio_trylock(folio)) 3563 goto next; 3564 3565 if (!split_folio_to_order(folio, new_order)) 3566 split++; 3567 3568 folio_unlock(folio); 3569 next: 3570 folio_put(folio); 3571 cond_resched(); 3572 } 3573 3574 filp_close(candidate, NULL); 3575 ret = 0; 3576 3577 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3578 out: 3579 putname(file); 3580 return ret; 3581 } 3582 3583 #define MAX_INPUT_BUF_SZ 255 3584 3585 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3586 size_t count, loff_t *ppops) 3587 { 3588 static DEFINE_MUTEX(split_debug_mutex); 3589 ssize_t ret; 3590 /* 3591 * hold pid, start_vaddr, end_vaddr, new_order or 3592 * file_path, off_start, off_end, new_order 3593 */ 3594 char input_buf[MAX_INPUT_BUF_SZ]; 3595 int pid; 3596 unsigned long vaddr_start, vaddr_end; 3597 unsigned int new_order = 0; 3598 3599 ret = mutex_lock_interruptible(&split_debug_mutex); 3600 if (ret) 3601 return ret; 3602 3603 ret = -EFAULT; 3604 3605 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3606 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3607 goto out; 3608 3609 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3610 3611 if (input_buf[0] == '/') { 3612 char *tok; 3613 char *buf = input_buf; 3614 char file_path[MAX_INPUT_BUF_SZ]; 3615 pgoff_t off_start = 0, off_end = 0; 3616 size_t input_len = strlen(input_buf); 3617 3618 tok = strsep(&buf, ","); 3619 if (tok) { 3620 strcpy(file_path, tok); 3621 } else { 3622 ret = -EINVAL; 3623 goto out; 3624 } 3625 3626 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3627 if (ret != 2 && ret != 3) { 3628 ret = -EINVAL; 3629 goto out; 3630 } 3631 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3632 if (!ret) 3633 ret = input_len; 3634 3635 goto out; 3636 } 3637 3638 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3639 if (ret == 1 && pid == 1) { 3640 split_huge_pages_all(); 3641 ret = strlen(input_buf); 3642 goto out; 3643 } else if (ret != 3 && ret != 4) { 3644 ret = -EINVAL; 3645 goto out; 3646 } 3647 3648 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3649 if (!ret) 3650 ret = strlen(input_buf); 3651 out: 3652 mutex_unlock(&split_debug_mutex); 3653 return ret; 3654 3655 } 3656 3657 static const struct file_operations split_huge_pages_fops = { 3658 .owner = THIS_MODULE, 3659 .write = split_huge_pages_write, 3660 .llseek = no_llseek, 3661 }; 3662 3663 static int __init split_huge_pages_debugfs(void) 3664 { 3665 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3666 &split_huge_pages_fops); 3667 return 0; 3668 } 3669 late_initcall(split_huge_pages_debugfs); 3670 #endif 3671 3672 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3673 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3674 struct page *page) 3675 { 3676 struct folio *folio = page_folio(page); 3677 struct vm_area_struct *vma = pvmw->vma; 3678 struct mm_struct *mm = vma->vm_mm; 3679 unsigned long address = pvmw->address; 3680 bool anon_exclusive; 3681 pmd_t pmdval; 3682 swp_entry_t entry; 3683 pmd_t pmdswp; 3684 3685 if (!(pvmw->pmd && !pvmw->pte)) 3686 return 0; 3687 3688 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3689 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3690 3691 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3692 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3693 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3694 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3695 return -EBUSY; 3696 } 3697 3698 if (pmd_dirty(pmdval)) 3699 folio_mark_dirty(folio); 3700 if (pmd_write(pmdval)) 3701 entry = make_writable_migration_entry(page_to_pfn(page)); 3702 else if (anon_exclusive) 3703 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3704 else 3705 entry = make_readable_migration_entry(page_to_pfn(page)); 3706 if (pmd_young(pmdval)) 3707 entry = make_migration_entry_young(entry); 3708 if (pmd_dirty(pmdval)) 3709 entry = make_migration_entry_dirty(entry); 3710 pmdswp = swp_entry_to_pmd(entry); 3711 if (pmd_soft_dirty(pmdval)) 3712 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3713 if (pmd_uffd_wp(pmdval)) 3714 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3715 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3716 folio_remove_rmap_pmd(folio, page, vma); 3717 folio_put(folio); 3718 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3719 3720 return 0; 3721 } 3722 3723 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3724 { 3725 struct folio *folio = page_folio(new); 3726 struct vm_area_struct *vma = pvmw->vma; 3727 struct mm_struct *mm = vma->vm_mm; 3728 unsigned long address = pvmw->address; 3729 unsigned long haddr = address & HPAGE_PMD_MASK; 3730 pmd_t pmde; 3731 swp_entry_t entry; 3732 3733 if (!(pvmw->pmd && !pvmw->pte)) 3734 return; 3735 3736 entry = pmd_to_swp_entry(*pvmw->pmd); 3737 folio_get(folio); 3738 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3739 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3740 pmde = pmd_mksoft_dirty(pmde); 3741 if (is_writable_migration_entry(entry)) 3742 pmde = pmd_mkwrite(pmde, vma); 3743 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3744 pmde = pmd_mkuffd_wp(pmde); 3745 if (!is_migration_entry_young(entry)) 3746 pmde = pmd_mkold(pmde); 3747 /* NOTE: this may contain setting soft-dirty on some archs */ 3748 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3749 pmde = pmd_mkdirty(pmde); 3750 3751 if (folio_test_anon(folio)) { 3752 rmap_t rmap_flags = RMAP_NONE; 3753 3754 if (!is_readable_migration_entry(entry)) 3755 rmap_flags |= RMAP_EXCLUSIVE; 3756 3757 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3758 } else { 3759 folio_add_file_rmap_pmd(folio, new, vma); 3760 } 3761 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3762 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3763 3764 /* No need to invalidate - it was non-present before */ 3765 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3766 trace_remove_migration_pmd(address, pmd_val(pmde)); 3767 } 3768 #endif 3769