1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/mm_types.h> 24 #include <linux/khugepaged.h> 25 #include <linux/freezer.h> 26 #include <linux/pfn_t.h> 27 #include <linux/mman.h> 28 #include <linux/memremap.h> 29 #include <linux/pagemap.h> 30 #include <linux/debugfs.h> 31 #include <linux/migrate.h> 32 #include <linux/hashtable.h> 33 #include <linux/userfaultfd_k.h> 34 #include <linux/page_idle.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/oom.h> 37 #include <linux/numa.h> 38 #include <linux/page_owner.h> 39 #include <linux/sched/sysctl.h> 40 #include <linux/memory-tiers.h> 41 #include <linux/compat.h> 42 #include <linux/pgalloc_tag.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 84 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 85 unsigned long vm_flags, 86 unsigned long tva_flags, 87 unsigned long orders) 88 { 89 bool smaps = tva_flags & TVA_SMAPS; 90 bool in_pf = tva_flags & TVA_IN_PF; 91 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 92 unsigned long supported_orders; 93 94 /* Check the intersection of requested and supported orders. */ 95 if (vma_is_anonymous(vma)) 96 supported_orders = THP_ORDERS_ALL_ANON; 97 else if (vma_is_dax(vma)) 98 supported_orders = THP_ORDERS_ALL_FILE_DAX; 99 else 100 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 101 102 orders &= supported_orders; 103 if (!orders) 104 return 0; 105 106 if (!vma->vm_mm) /* vdso */ 107 return 0; 108 109 /* 110 * Explicitly disabled through madvise or prctl, or some 111 * architectures may disable THP for some mappings, for 112 * example, s390 kvm. 113 * */ 114 if ((vm_flags & VM_NOHUGEPAGE) || 115 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 116 return 0; 117 /* 118 * If the hardware/firmware marked hugepage support disabled. 119 */ 120 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 121 return 0; 122 123 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 124 if (vma_is_dax(vma)) 125 return in_pf ? orders : 0; 126 127 /* 128 * khugepaged special VMA and hugetlb VMA. 129 * Must be checked after dax since some dax mappings may have 130 * VM_MIXEDMAP set. 131 */ 132 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 133 return 0; 134 135 /* 136 * Check alignment for file vma and size for both file and anon vma by 137 * filtering out the unsuitable orders. 138 * 139 * Skip the check for page fault. Huge fault does the check in fault 140 * handlers. 141 */ 142 if (!in_pf) { 143 int order = highest_order(orders); 144 unsigned long addr; 145 146 while (orders) { 147 addr = vma->vm_end - (PAGE_SIZE << order); 148 if (thp_vma_suitable_order(vma, addr, order)) 149 break; 150 order = next_order(&orders, order); 151 } 152 153 if (!orders) 154 return 0; 155 } 156 157 /* 158 * Enabled via shmem mount options or sysfs settings. 159 * Must be done before hugepage flags check since shmem has its 160 * own flags. 161 */ 162 if (!in_pf && shmem_file(vma->vm_file)) { 163 bool global_huge = shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 164 !enforce_sysfs, vma->vm_mm, vm_flags); 165 166 if (!vma_is_anon_shmem(vma)) 167 return global_huge ? orders : 0; 168 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 169 vma, vma->vm_pgoff, global_huge); 170 } 171 172 if (!vma_is_anonymous(vma)) { 173 /* 174 * Enforce sysfs THP requirements as necessary. Anonymous vmas 175 * were already handled in thp_vma_allowable_orders(). 176 */ 177 if (enforce_sysfs && 178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 179 !hugepage_global_always()))) 180 return 0; 181 182 /* 183 * Trust that ->huge_fault() handlers know what they are doing 184 * in fault path. 185 */ 186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 187 return orders; 188 /* Only regular file is valid in collapse path */ 189 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 190 return orders; 191 return 0; 192 } 193 194 if (vma_is_temporary_stack(vma)) 195 return 0; 196 197 /* 198 * THPeligible bit of smaps should show 1 for proper VMAs even 199 * though anon_vma is not initialized yet. 200 * 201 * Allow page fault since anon_vma may be not initialized until 202 * the first page fault. 203 */ 204 if (!vma->anon_vma) 205 return (smaps || in_pf) ? orders : 0; 206 207 return orders; 208 } 209 210 static bool get_huge_zero_page(void) 211 { 212 struct folio *zero_folio; 213 retry: 214 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 215 return true; 216 217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 218 HPAGE_PMD_ORDER); 219 if (!zero_folio) { 220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 221 return false; 222 } 223 preempt_disable(); 224 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 225 preempt_enable(); 226 folio_put(zero_folio); 227 goto retry; 228 } 229 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 230 231 /* We take additional reference here. It will be put back by shrinker */ 232 atomic_set(&huge_zero_refcount, 2); 233 preempt_enable(); 234 count_vm_event(THP_ZERO_PAGE_ALLOC); 235 return true; 236 } 237 238 static void put_huge_zero_page(void) 239 { 240 /* 241 * Counter should never go to zero here. Only shrinker can put 242 * last reference. 243 */ 244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 245 } 246 247 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 248 { 249 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 250 return READ_ONCE(huge_zero_folio); 251 252 if (!get_huge_zero_page()) 253 return NULL; 254 255 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 256 put_huge_zero_page(); 257 258 return READ_ONCE(huge_zero_folio); 259 } 260 261 void mm_put_huge_zero_folio(struct mm_struct *mm) 262 { 263 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 264 put_huge_zero_page(); 265 } 266 267 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 268 struct shrink_control *sc) 269 { 270 /* we can free zero page only if last reference remains */ 271 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 272 } 273 274 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 275 struct shrink_control *sc) 276 { 277 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 278 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 279 BUG_ON(zero_folio == NULL); 280 WRITE_ONCE(huge_zero_pfn, ~0UL); 281 folio_put(zero_folio); 282 return HPAGE_PMD_NR; 283 } 284 285 return 0; 286 } 287 288 static struct shrinker *huge_zero_page_shrinker; 289 290 #ifdef CONFIG_SYSFS 291 static ssize_t enabled_show(struct kobject *kobj, 292 struct kobj_attribute *attr, char *buf) 293 { 294 const char *output; 295 296 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 297 output = "[always] madvise never"; 298 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 299 &transparent_hugepage_flags)) 300 output = "always [madvise] never"; 301 else 302 output = "always madvise [never]"; 303 304 return sysfs_emit(buf, "%s\n", output); 305 } 306 307 static ssize_t enabled_store(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 const char *buf, size_t count) 310 { 311 ssize_t ret = count; 312 313 if (sysfs_streq(buf, "always")) { 314 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 315 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 316 } else if (sysfs_streq(buf, "madvise")) { 317 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 318 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 319 } else if (sysfs_streq(buf, "never")) { 320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 321 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 322 } else 323 ret = -EINVAL; 324 325 if (ret > 0) { 326 int err = start_stop_khugepaged(); 327 if (err) 328 ret = err; 329 } 330 return ret; 331 } 332 333 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 334 335 ssize_t single_hugepage_flag_show(struct kobject *kobj, 336 struct kobj_attribute *attr, char *buf, 337 enum transparent_hugepage_flag flag) 338 { 339 return sysfs_emit(buf, "%d\n", 340 !!test_bit(flag, &transparent_hugepage_flags)); 341 } 342 343 ssize_t single_hugepage_flag_store(struct kobject *kobj, 344 struct kobj_attribute *attr, 345 const char *buf, size_t count, 346 enum transparent_hugepage_flag flag) 347 { 348 unsigned long value; 349 int ret; 350 351 ret = kstrtoul(buf, 10, &value); 352 if (ret < 0) 353 return ret; 354 if (value > 1) 355 return -EINVAL; 356 357 if (value) 358 set_bit(flag, &transparent_hugepage_flags); 359 else 360 clear_bit(flag, &transparent_hugepage_flags); 361 362 return count; 363 } 364 365 static ssize_t defrag_show(struct kobject *kobj, 366 struct kobj_attribute *attr, char *buf) 367 { 368 const char *output; 369 370 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 371 &transparent_hugepage_flags)) 372 output = "[always] defer defer+madvise madvise never"; 373 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 374 &transparent_hugepage_flags)) 375 output = "always [defer] defer+madvise madvise never"; 376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 377 &transparent_hugepage_flags)) 378 output = "always defer [defer+madvise] madvise never"; 379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 380 &transparent_hugepage_flags)) 381 output = "always defer defer+madvise [madvise] never"; 382 else 383 output = "always defer defer+madvise madvise [never]"; 384 385 return sysfs_emit(buf, "%s\n", output); 386 } 387 388 static ssize_t defrag_store(struct kobject *kobj, 389 struct kobj_attribute *attr, 390 const char *buf, size_t count) 391 { 392 if (sysfs_streq(buf, "always")) { 393 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 394 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 396 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 397 } else if (sysfs_streq(buf, "defer+madvise")) { 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 399 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 401 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 402 } else if (sysfs_streq(buf, "defer")) { 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 404 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 405 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 406 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 407 } else if (sysfs_streq(buf, "madvise")) { 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 410 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 411 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 412 } else if (sysfs_streq(buf, "never")) { 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 414 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 415 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 417 } else 418 return -EINVAL; 419 420 return count; 421 } 422 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 423 424 static ssize_t use_zero_page_show(struct kobject *kobj, 425 struct kobj_attribute *attr, char *buf) 426 { 427 return single_hugepage_flag_show(kobj, attr, buf, 428 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 429 } 430 static ssize_t use_zero_page_store(struct kobject *kobj, 431 struct kobj_attribute *attr, const char *buf, size_t count) 432 { 433 return single_hugepage_flag_store(kobj, attr, buf, count, 434 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 435 } 436 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 437 438 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 439 struct kobj_attribute *attr, char *buf) 440 { 441 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 442 } 443 static struct kobj_attribute hpage_pmd_size_attr = 444 __ATTR_RO(hpage_pmd_size); 445 446 static struct attribute *hugepage_attr[] = { 447 &enabled_attr.attr, 448 &defrag_attr.attr, 449 &use_zero_page_attr.attr, 450 &hpage_pmd_size_attr.attr, 451 #ifdef CONFIG_SHMEM 452 &shmem_enabled_attr.attr, 453 #endif 454 NULL, 455 }; 456 457 static const struct attribute_group hugepage_attr_group = { 458 .attrs = hugepage_attr, 459 }; 460 461 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 462 static void thpsize_release(struct kobject *kobj); 463 static DEFINE_SPINLOCK(huge_anon_orders_lock); 464 static LIST_HEAD(thpsize_list); 465 466 static ssize_t thpsize_enabled_show(struct kobject *kobj, 467 struct kobj_attribute *attr, char *buf) 468 { 469 int order = to_thpsize(kobj)->order; 470 const char *output; 471 472 if (test_bit(order, &huge_anon_orders_always)) 473 output = "[always] inherit madvise never"; 474 else if (test_bit(order, &huge_anon_orders_inherit)) 475 output = "always [inherit] madvise never"; 476 else if (test_bit(order, &huge_anon_orders_madvise)) 477 output = "always inherit [madvise] never"; 478 else 479 output = "always inherit madvise [never]"; 480 481 return sysfs_emit(buf, "%s\n", output); 482 } 483 484 static ssize_t thpsize_enabled_store(struct kobject *kobj, 485 struct kobj_attribute *attr, 486 const char *buf, size_t count) 487 { 488 int order = to_thpsize(kobj)->order; 489 ssize_t ret = count; 490 491 if (sysfs_streq(buf, "always")) { 492 spin_lock(&huge_anon_orders_lock); 493 clear_bit(order, &huge_anon_orders_inherit); 494 clear_bit(order, &huge_anon_orders_madvise); 495 set_bit(order, &huge_anon_orders_always); 496 spin_unlock(&huge_anon_orders_lock); 497 } else if (sysfs_streq(buf, "inherit")) { 498 spin_lock(&huge_anon_orders_lock); 499 clear_bit(order, &huge_anon_orders_always); 500 clear_bit(order, &huge_anon_orders_madvise); 501 set_bit(order, &huge_anon_orders_inherit); 502 spin_unlock(&huge_anon_orders_lock); 503 } else if (sysfs_streq(buf, "madvise")) { 504 spin_lock(&huge_anon_orders_lock); 505 clear_bit(order, &huge_anon_orders_always); 506 clear_bit(order, &huge_anon_orders_inherit); 507 set_bit(order, &huge_anon_orders_madvise); 508 spin_unlock(&huge_anon_orders_lock); 509 } else if (sysfs_streq(buf, "never")) { 510 spin_lock(&huge_anon_orders_lock); 511 clear_bit(order, &huge_anon_orders_always); 512 clear_bit(order, &huge_anon_orders_inherit); 513 clear_bit(order, &huge_anon_orders_madvise); 514 spin_unlock(&huge_anon_orders_lock); 515 } else 516 ret = -EINVAL; 517 518 if (ret > 0) { 519 int err; 520 521 err = start_stop_khugepaged(); 522 if (err) 523 ret = err; 524 } 525 return ret; 526 } 527 528 static struct kobj_attribute thpsize_enabled_attr = 529 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 530 531 static struct attribute *thpsize_attrs[] = { 532 &thpsize_enabled_attr.attr, 533 #ifdef CONFIG_SHMEM 534 &thpsize_shmem_enabled_attr.attr, 535 #endif 536 NULL, 537 }; 538 539 static const struct attribute_group thpsize_attr_group = { 540 .attrs = thpsize_attrs, 541 }; 542 543 static const struct kobj_type thpsize_ktype = { 544 .release = &thpsize_release, 545 .sysfs_ops = &kobj_sysfs_ops, 546 }; 547 548 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 549 550 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 551 { 552 unsigned long sum = 0; 553 int cpu; 554 555 for_each_possible_cpu(cpu) { 556 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 557 558 sum += this->stats[order][item]; 559 } 560 561 return sum; 562 } 563 564 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 565 static ssize_t _name##_show(struct kobject *kobj, \ 566 struct kobj_attribute *attr, char *buf) \ 567 { \ 568 int order = to_thpsize(kobj)->order; \ 569 \ 570 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 571 } \ 572 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 573 574 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 575 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 576 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 577 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 578 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 579 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 580 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 581 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 582 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 583 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 584 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 585 586 static struct attribute *stats_attrs[] = { 587 &anon_fault_alloc_attr.attr, 588 &anon_fault_fallback_attr.attr, 589 &anon_fault_fallback_charge_attr.attr, 590 &swpout_attr.attr, 591 &swpout_fallback_attr.attr, 592 &shmem_alloc_attr.attr, 593 &shmem_fallback_attr.attr, 594 &shmem_fallback_charge_attr.attr, 595 &split_attr.attr, 596 &split_failed_attr.attr, 597 &split_deferred_attr.attr, 598 NULL, 599 }; 600 601 static struct attribute_group stats_attr_group = { 602 .name = "stats", 603 .attrs = stats_attrs, 604 }; 605 606 static struct thpsize *thpsize_create(int order, struct kobject *parent) 607 { 608 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 609 struct thpsize *thpsize; 610 int ret; 611 612 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 613 if (!thpsize) 614 return ERR_PTR(-ENOMEM); 615 616 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 617 "hugepages-%lukB", size); 618 if (ret) { 619 kfree(thpsize); 620 return ERR_PTR(ret); 621 } 622 623 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 624 if (ret) { 625 kobject_put(&thpsize->kobj); 626 return ERR_PTR(ret); 627 } 628 629 ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group); 630 if (ret) { 631 kobject_put(&thpsize->kobj); 632 return ERR_PTR(ret); 633 } 634 635 thpsize->order = order; 636 return thpsize; 637 } 638 639 static void thpsize_release(struct kobject *kobj) 640 { 641 kfree(to_thpsize(kobj)); 642 } 643 644 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 645 { 646 int err; 647 struct thpsize *thpsize; 648 unsigned long orders; 649 int order; 650 651 /* 652 * Default to setting PMD-sized THP to inherit the global setting and 653 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 654 * constant so we have to do this here. 655 */ 656 huge_anon_orders_inherit = BIT(PMD_ORDER); 657 658 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 659 if (unlikely(!*hugepage_kobj)) { 660 pr_err("failed to create transparent hugepage kobject\n"); 661 return -ENOMEM; 662 } 663 664 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 665 if (err) { 666 pr_err("failed to register transparent hugepage group\n"); 667 goto delete_obj; 668 } 669 670 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 671 if (err) { 672 pr_err("failed to register transparent hugepage group\n"); 673 goto remove_hp_group; 674 } 675 676 orders = THP_ORDERS_ALL_ANON; 677 order = highest_order(orders); 678 while (orders) { 679 thpsize = thpsize_create(order, *hugepage_kobj); 680 if (IS_ERR(thpsize)) { 681 pr_err("failed to create thpsize for order %d\n", order); 682 err = PTR_ERR(thpsize); 683 goto remove_all; 684 } 685 list_add(&thpsize->node, &thpsize_list); 686 order = next_order(&orders, order); 687 } 688 689 return 0; 690 691 remove_all: 692 hugepage_exit_sysfs(*hugepage_kobj); 693 return err; 694 remove_hp_group: 695 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 696 delete_obj: 697 kobject_put(*hugepage_kobj); 698 return err; 699 } 700 701 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 702 { 703 struct thpsize *thpsize, *tmp; 704 705 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 706 list_del(&thpsize->node); 707 kobject_put(&thpsize->kobj); 708 } 709 710 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 711 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 712 kobject_put(hugepage_kobj); 713 } 714 #else 715 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 716 { 717 return 0; 718 } 719 720 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 721 { 722 } 723 #endif /* CONFIG_SYSFS */ 724 725 static int __init thp_shrinker_init(void) 726 { 727 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 728 if (!huge_zero_page_shrinker) 729 return -ENOMEM; 730 731 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 732 SHRINKER_MEMCG_AWARE | 733 SHRINKER_NONSLAB, 734 "thp-deferred_split"); 735 if (!deferred_split_shrinker) { 736 shrinker_free(huge_zero_page_shrinker); 737 return -ENOMEM; 738 } 739 740 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 741 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 742 shrinker_register(huge_zero_page_shrinker); 743 744 deferred_split_shrinker->count_objects = deferred_split_count; 745 deferred_split_shrinker->scan_objects = deferred_split_scan; 746 shrinker_register(deferred_split_shrinker); 747 748 return 0; 749 } 750 751 static void __init thp_shrinker_exit(void) 752 { 753 shrinker_free(huge_zero_page_shrinker); 754 shrinker_free(deferred_split_shrinker); 755 } 756 757 static int __init hugepage_init(void) 758 { 759 int err; 760 struct kobject *hugepage_kobj; 761 762 if (!has_transparent_hugepage()) { 763 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 764 return -EINVAL; 765 } 766 767 /* 768 * hugepages can't be allocated by the buddy allocator 769 */ 770 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 771 772 err = hugepage_init_sysfs(&hugepage_kobj); 773 if (err) 774 goto err_sysfs; 775 776 err = khugepaged_init(); 777 if (err) 778 goto err_slab; 779 780 err = thp_shrinker_init(); 781 if (err) 782 goto err_shrinker; 783 784 /* 785 * By default disable transparent hugepages on smaller systems, 786 * where the extra memory used could hurt more than TLB overhead 787 * is likely to save. The admin can still enable it through /sys. 788 */ 789 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 790 transparent_hugepage_flags = 0; 791 return 0; 792 } 793 794 err = start_stop_khugepaged(); 795 if (err) 796 goto err_khugepaged; 797 798 return 0; 799 err_khugepaged: 800 thp_shrinker_exit(); 801 err_shrinker: 802 khugepaged_destroy(); 803 err_slab: 804 hugepage_exit_sysfs(hugepage_kobj); 805 err_sysfs: 806 return err; 807 } 808 subsys_initcall(hugepage_init); 809 810 static int __init setup_transparent_hugepage(char *str) 811 { 812 int ret = 0; 813 if (!str) 814 goto out; 815 if (!strcmp(str, "always")) { 816 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 817 &transparent_hugepage_flags); 818 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 819 &transparent_hugepage_flags); 820 ret = 1; 821 } else if (!strcmp(str, "madvise")) { 822 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 823 &transparent_hugepage_flags); 824 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 825 &transparent_hugepage_flags); 826 ret = 1; 827 } else if (!strcmp(str, "never")) { 828 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 829 &transparent_hugepage_flags); 830 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 831 &transparent_hugepage_flags); 832 ret = 1; 833 } 834 out: 835 if (!ret) 836 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 837 return ret; 838 } 839 __setup("transparent_hugepage=", setup_transparent_hugepage); 840 841 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 842 { 843 if (likely(vma->vm_flags & VM_WRITE)) 844 pmd = pmd_mkwrite(pmd, vma); 845 return pmd; 846 } 847 848 #ifdef CONFIG_MEMCG 849 static inline 850 struct deferred_split *get_deferred_split_queue(struct folio *folio) 851 { 852 struct mem_cgroup *memcg = folio_memcg(folio); 853 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 854 855 if (memcg) 856 return &memcg->deferred_split_queue; 857 else 858 return &pgdat->deferred_split_queue; 859 } 860 #else 861 static inline 862 struct deferred_split *get_deferred_split_queue(struct folio *folio) 863 { 864 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 865 866 return &pgdat->deferred_split_queue; 867 } 868 #endif 869 870 static inline bool is_transparent_hugepage(const struct folio *folio) 871 { 872 if (!folio_test_large(folio)) 873 return false; 874 875 return is_huge_zero_folio(folio) || 876 folio_test_large_rmappable(folio); 877 } 878 879 static unsigned long __thp_get_unmapped_area(struct file *filp, 880 unsigned long addr, unsigned long len, 881 loff_t off, unsigned long flags, unsigned long size, 882 vm_flags_t vm_flags) 883 { 884 loff_t off_end = off + len; 885 loff_t off_align = round_up(off, size); 886 unsigned long len_pad, ret, off_sub; 887 888 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 889 return 0; 890 891 if (off_end <= off_align || (off_end - off_align) < size) 892 return 0; 893 894 len_pad = len + size; 895 if (len_pad < len || (off + len_pad) < off) 896 return 0; 897 898 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 899 off >> PAGE_SHIFT, flags, vm_flags); 900 901 /* 902 * The failure might be due to length padding. The caller will retry 903 * without the padding. 904 */ 905 if (IS_ERR_VALUE(ret)) 906 return 0; 907 908 /* 909 * Do not try to align to THP boundary if allocation at the address 910 * hint succeeds. 911 */ 912 if (ret == addr) 913 return addr; 914 915 off_sub = (off - ret) & (size - 1); 916 917 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 918 return ret + size; 919 920 ret += off_sub; 921 return ret; 922 } 923 924 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 925 unsigned long len, unsigned long pgoff, unsigned long flags, 926 vm_flags_t vm_flags) 927 { 928 unsigned long ret; 929 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 930 931 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 932 if (ret) 933 return ret; 934 935 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 936 vm_flags); 937 } 938 939 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 940 unsigned long len, unsigned long pgoff, unsigned long flags) 941 { 942 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 943 } 944 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 945 946 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 947 struct page *page, gfp_t gfp) 948 { 949 struct vm_area_struct *vma = vmf->vma; 950 struct folio *folio = page_folio(page); 951 pgtable_t pgtable; 952 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 953 vm_fault_t ret = 0; 954 955 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 956 957 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 958 folio_put(folio); 959 count_vm_event(THP_FAULT_FALLBACK); 960 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 961 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 962 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 963 return VM_FAULT_FALLBACK; 964 } 965 folio_throttle_swaprate(folio, gfp); 966 967 pgtable = pte_alloc_one(vma->vm_mm); 968 if (unlikely(!pgtable)) { 969 ret = VM_FAULT_OOM; 970 goto release; 971 } 972 973 folio_zero_user(folio, vmf->address); 974 /* 975 * The memory barrier inside __folio_mark_uptodate makes sure that 976 * folio_zero_user writes become visible before the set_pmd_at() 977 * write. 978 */ 979 __folio_mark_uptodate(folio); 980 981 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 982 if (unlikely(!pmd_none(*vmf->pmd))) { 983 goto unlock_release; 984 } else { 985 pmd_t entry; 986 987 ret = check_stable_address_space(vma->vm_mm); 988 if (ret) 989 goto unlock_release; 990 991 /* Deliver the page fault to userland */ 992 if (userfaultfd_missing(vma)) { 993 spin_unlock(vmf->ptl); 994 folio_put(folio); 995 pte_free(vma->vm_mm, pgtable); 996 ret = handle_userfault(vmf, VM_UFFD_MISSING); 997 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 998 return ret; 999 } 1000 1001 entry = mk_huge_pmd(page, vma->vm_page_prot); 1002 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1003 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1004 folio_add_lru_vma(folio, vma); 1005 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1006 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1007 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1008 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1009 mm_inc_nr_ptes(vma->vm_mm); 1010 spin_unlock(vmf->ptl); 1011 count_vm_event(THP_FAULT_ALLOC); 1012 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1013 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1014 } 1015 1016 return 0; 1017 unlock_release: 1018 spin_unlock(vmf->ptl); 1019 release: 1020 if (pgtable) 1021 pte_free(vma->vm_mm, pgtable); 1022 folio_put(folio); 1023 return ret; 1024 1025 } 1026 1027 /* 1028 * always: directly stall for all thp allocations 1029 * defer: wake kswapd and fail if not immediately available 1030 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1031 * fail if not immediately available 1032 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1033 * available 1034 * never: never stall for any thp allocation 1035 */ 1036 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1037 { 1038 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1039 1040 /* Always do synchronous compaction */ 1041 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1042 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1043 1044 /* Kick kcompactd and fail quickly */ 1045 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1046 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1047 1048 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1049 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1050 return GFP_TRANSHUGE_LIGHT | 1051 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1052 __GFP_KSWAPD_RECLAIM); 1053 1054 /* Only do synchronous compaction if madvised */ 1055 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1056 return GFP_TRANSHUGE_LIGHT | 1057 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1058 1059 return GFP_TRANSHUGE_LIGHT; 1060 } 1061 1062 /* Caller must hold page table lock. */ 1063 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1064 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1065 struct folio *zero_folio) 1066 { 1067 pmd_t entry; 1068 if (!pmd_none(*pmd)) 1069 return; 1070 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1071 entry = pmd_mkhuge(entry); 1072 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1073 set_pmd_at(mm, haddr, pmd, entry); 1074 mm_inc_nr_ptes(mm); 1075 } 1076 1077 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1078 { 1079 struct vm_area_struct *vma = vmf->vma; 1080 gfp_t gfp; 1081 struct folio *folio; 1082 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1083 vm_fault_t ret; 1084 1085 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1086 return VM_FAULT_FALLBACK; 1087 ret = vmf_anon_prepare(vmf); 1088 if (ret) 1089 return ret; 1090 khugepaged_enter_vma(vma, vma->vm_flags); 1091 1092 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1093 !mm_forbids_zeropage(vma->vm_mm) && 1094 transparent_hugepage_use_zero_page()) { 1095 pgtable_t pgtable; 1096 struct folio *zero_folio; 1097 vm_fault_t ret; 1098 1099 pgtable = pte_alloc_one(vma->vm_mm); 1100 if (unlikely(!pgtable)) 1101 return VM_FAULT_OOM; 1102 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1103 if (unlikely(!zero_folio)) { 1104 pte_free(vma->vm_mm, pgtable); 1105 count_vm_event(THP_FAULT_FALLBACK); 1106 return VM_FAULT_FALLBACK; 1107 } 1108 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1109 ret = 0; 1110 if (pmd_none(*vmf->pmd)) { 1111 ret = check_stable_address_space(vma->vm_mm); 1112 if (ret) { 1113 spin_unlock(vmf->ptl); 1114 pte_free(vma->vm_mm, pgtable); 1115 } else if (userfaultfd_missing(vma)) { 1116 spin_unlock(vmf->ptl); 1117 pte_free(vma->vm_mm, pgtable); 1118 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1119 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1120 } else { 1121 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1122 haddr, vmf->pmd, zero_folio); 1123 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1124 spin_unlock(vmf->ptl); 1125 } 1126 } else { 1127 spin_unlock(vmf->ptl); 1128 pte_free(vma->vm_mm, pgtable); 1129 } 1130 return ret; 1131 } 1132 gfp = vma_thp_gfp_mask(vma); 1133 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1134 if (unlikely(!folio)) { 1135 count_vm_event(THP_FAULT_FALLBACK); 1136 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 1137 return VM_FAULT_FALLBACK; 1138 } 1139 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1140 } 1141 1142 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1143 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1144 pgtable_t pgtable) 1145 { 1146 struct mm_struct *mm = vma->vm_mm; 1147 pmd_t entry; 1148 spinlock_t *ptl; 1149 1150 ptl = pmd_lock(mm, pmd); 1151 if (!pmd_none(*pmd)) { 1152 if (write) { 1153 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1154 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1155 goto out_unlock; 1156 } 1157 entry = pmd_mkyoung(*pmd); 1158 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1159 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1160 update_mmu_cache_pmd(vma, addr, pmd); 1161 } 1162 1163 goto out_unlock; 1164 } 1165 1166 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1167 if (pfn_t_devmap(pfn)) 1168 entry = pmd_mkdevmap(entry); 1169 if (write) { 1170 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1171 entry = maybe_pmd_mkwrite(entry, vma); 1172 } 1173 1174 if (pgtable) { 1175 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1176 mm_inc_nr_ptes(mm); 1177 pgtable = NULL; 1178 } 1179 1180 set_pmd_at(mm, addr, pmd, entry); 1181 update_mmu_cache_pmd(vma, addr, pmd); 1182 1183 out_unlock: 1184 spin_unlock(ptl); 1185 if (pgtable) 1186 pte_free(mm, pgtable); 1187 } 1188 1189 /** 1190 * vmf_insert_pfn_pmd - insert a pmd size pfn 1191 * @vmf: Structure describing the fault 1192 * @pfn: pfn to insert 1193 * @write: whether it's a write fault 1194 * 1195 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1196 * 1197 * Return: vm_fault_t value. 1198 */ 1199 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1200 { 1201 unsigned long addr = vmf->address & PMD_MASK; 1202 struct vm_area_struct *vma = vmf->vma; 1203 pgprot_t pgprot = vma->vm_page_prot; 1204 pgtable_t pgtable = NULL; 1205 1206 /* 1207 * If we had pmd_special, we could avoid all these restrictions, 1208 * but we need to be consistent with PTEs and architectures that 1209 * can't support a 'special' bit. 1210 */ 1211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1212 !pfn_t_devmap(pfn)); 1213 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1214 (VM_PFNMAP|VM_MIXEDMAP)); 1215 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1216 1217 if (addr < vma->vm_start || addr >= vma->vm_end) 1218 return VM_FAULT_SIGBUS; 1219 1220 if (arch_needs_pgtable_deposit()) { 1221 pgtable = pte_alloc_one(vma->vm_mm); 1222 if (!pgtable) 1223 return VM_FAULT_OOM; 1224 } 1225 1226 track_pfn_insert(vma, &pgprot, pfn); 1227 1228 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1229 return VM_FAULT_NOPAGE; 1230 } 1231 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1232 1233 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1234 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1235 { 1236 if (likely(vma->vm_flags & VM_WRITE)) 1237 pud = pud_mkwrite(pud); 1238 return pud; 1239 } 1240 1241 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1242 pud_t *pud, pfn_t pfn, bool write) 1243 { 1244 struct mm_struct *mm = vma->vm_mm; 1245 pgprot_t prot = vma->vm_page_prot; 1246 pud_t entry; 1247 spinlock_t *ptl; 1248 1249 ptl = pud_lock(mm, pud); 1250 if (!pud_none(*pud)) { 1251 if (write) { 1252 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1253 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1254 goto out_unlock; 1255 } 1256 entry = pud_mkyoung(*pud); 1257 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1258 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1259 update_mmu_cache_pud(vma, addr, pud); 1260 } 1261 goto out_unlock; 1262 } 1263 1264 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1265 if (pfn_t_devmap(pfn)) 1266 entry = pud_mkdevmap(entry); 1267 if (write) { 1268 entry = pud_mkyoung(pud_mkdirty(entry)); 1269 entry = maybe_pud_mkwrite(entry, vma); 1270 } 1271 set_pud_at(mm, addr, pud, entry); 1272 update_mmu_cache_pud(vma, addr, pud); 1273 1274 out_unlock: 1275 spin_unlock(ptl); 1276 } 1277 1278 /** 1279 * vmf_insert_pfn_pud - insert a pud size pfn 1280 * @vmf: Structure describing the fault 1281 * @pfn: pfn to insert 1282 * @write: whether it's a write fault 1283 * 1284 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1285 * 1286 * Return: vm_fault_t value. 1287 */ 1288 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1289 { 1290 unsigned long addr = vmf->address & PUD_MASK; 1291 struct vm_area_struct *vma = vmf->vma; 1292 pgprot_t pgprot = vma->vm_page_prot; 1293 1294 /* 1295 * If we had pud_special, we could avoid all these restrictions, 1296 * but we need to be consistent with PTEs and architectures that 1297 * can't support a 'special' bit. 1298 */ 1299 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1300 !pfn_t_devmap(pfn)); 1301 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1302 (VM_PFNMAP|VM_MIXEDMAP)); 1303 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1304 1305 if (addr < vma->vm_start || addr >= vma->vm_end) 1306 return VM_FAULT_SIGBUS; 1307 1308 track_pfn_insert(vma, &pgprot, pfn); 1309 1310 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1311 return VM_FAULT_NOPAGE; 1312 } 1313 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1314 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1315 1316 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1317 pmd_t *pmd, bool write) 1318 { 1319 pmd_t _pmd; 1320 1321 _pmd = pmd_mkyoung(*pmd); 1322 if (write) 1323 _pmd = pmd_mkdirty(_pmd); 1324 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1325 pmd, _pmd, write)) 1326 update_mmu_cache_pmd(vma, addr, pmd); 1327 } 1328 1329 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1330 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1331 { 1332 unsigned long pfn = pmd_pfn(*pmd); 1333 struct mm_struct *mm = vma->vm_mm; 1334 struct page *page; 1335 int ret; 1336 1337 assert_spin_locked(pmd_lockptr(mm, pmd)); 1338 1339 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1340 return NULL; 1341 1342 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1343 /* pass */; 1344 else 1345 return NULL; 1346 1347 if (flags & FOLL_TOUCH) 1348 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1349 1350 /* 1351 * device mapped pages can only be returned if the 1352 * caller will manage the page reference count. 1353 */ 1354 if (!(flags & (FOLL_GET | FOLL_PIN))) 1355 return ERR_PTR(-EEXIST); 1356 1357 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1358 *pgmap = get_dev_pagemap(pfn, *pgmap); 1359 if (!*pgmap) 1360 return ERR_PTR(-EFAULT); 1361 page = pfn_to_page(pfn); 1362 ret = try_grab_folio(page_folio(page), 1, flags); 1363 if (ret) 1364 page = ERR_PTR(ret); 1365 1366 return page; 1367 } 1368 1369 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1370 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1371 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1372 { 1373 spinlock_t *dst_ptl, *src_ptl; 1374 struct page *src_page; 1375 struct folio *src_folio; 1376 pmd_t pmd; 1377 pgtable_t pgtable = NULL; 1378 int ret = -ENOMEM; 1379 1380 /* Skip if can be re-fill on fault */ 1381 if (!vma_is_anonymous(dst_vma)) 1382 return 0; 1383 1384 pgtable = pte_alloc_one(dst_mm); 1385 if (unlikely(!pgtable)) 1386 goto out; 1387 1388 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1389 src_ptl = pmd_lockptr(src_mm, src_pmd); 1390 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1391 1392 ret = -EAGAIN; 1393 pmd = *src_pmd; 1394 1395 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1396 if (unlikely(is_swap_pmd(pmd))) { 1397 swp_entry_t entry = pmd_to_swp_entry(pmd); 1398 1399 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1400 if (!is_readable_migration_entry(entry)) { 1401 entry = make_readable_migration_entry( 1402 swp_offset(entry)); 1403 pmd = swp_entry_to_pmd(entry); 1404 if (pmd_swp_soft_dirty(*src_pmd)) 1405 pmd = pmd_swp_mksoft_dirty(pmd); 1406 if (pmd_swp_uffd_wp(*src_pmd)) 1407 pmd = pmd_swp_mkuffd_wp(pmd); 1408 set_pmd_at(src_mm, addr, src_pmd, pmd); 1409 } 1410 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1411 mm_inc_nr_ptes(dst_mm); 1412 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1413 if (!userfaultfd_wp(dst_vma)) 1414 pmd = pmd_swp_clear_uffd_wp(pmd); 1415 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1416 ret = 0; 1417 goto out_unlock; 1418 } 1419 #endif 1420 1421 if (unlikely(!pmd_trans_huge(pmd))) { 1422 pte_free(dst_mm, pgtable); 1423 goto out_unlock; 1424 } 1425 /* 1426 * When page table lock is held, the huge zero pmd should not be 1427 * under splitting since we don't split the page itself, only pmd to 1428 * a page table. 1429 */ 1430 if (is_huge_zero_pmd(pmd)) { 1431 /* 1432 * mm_get_huge_zero_folio() will never allocate a new 1433 * folio here, since we already have a zero page to 1434 * copy. It just takes a reference. 1435 */ 1436 mm_get_huge_zero_folio(dst_mm); 1437 goto out_zero_page; 1438 } 1439 1440 src_page = pmd_page(pmd); 1441 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1442 src_folio = page_folio(src_page); 1443 1444 folio_get(src_folio); 1445 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1446 /* Page maybe pinned: split and retry the fault on PTEs. */ 1447 folio_put(src_folio); 1448 pte_free(dst_mm, pgtable); 1449 spin_unlock(src_ptl); 1450 spin_unlock(dst_ptl); 1451 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1452 return -EAGAIN; 1453 } 1454 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1455 out_zero_page: 1456 mm_inc_nr_ptes(dst_mm); 1457 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1458 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1459 if (!userfaultfd_wp(dst_vma)) 1460 pmd = pmd_clear_uffd_wp(pmd); 1461 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1462 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1463 1464 ret = 0; 1465 out_unlock: 1466 spin_unlock(src_ptl); 1467 spin_unlock(dst_ptl); 1468 out: 1469 return ret; 1470 } 1471 1472 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1473 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1474 pud_t *pud, bool write) 1475 { 1476 pud_t _pud; 1477 1478 _pud = pud_mkyoung(*pud); 1479 if (write) 1480 _pud = pud_mkdirty(_pud); 1481 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1482 pud, _pud, write)) 1483 update_mmu_cache_pud(vma, addr, pud); 1484 } 1485 1486 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1487 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1488 struct vm_area_struct *vma) 1489 { 1490 spinlock_t *dst_ptl, *src_ptl; 1491 pud_t pud; 1492 int ret; 1493 1494 dst_ptl = pud_lock(dst_mm, dst_pud); 1495 src_ptl = pud_lockptr(src_mm, src_pud); 1496 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1497 1498 ret = -EAGAIN; 1499 pud = *src_pud; 1500 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1501 goto out_unlock; 1502 1503 /* 1504 * When page table lock is held, the huge zero pud should not be 1505 * under splitting since we don't split the page itself, only pud to 1506 * a page table. 1507 */ 1508 if (is_huge_zero_pud(pud)) { 1509 /* No huge zero pud yet */ 1510 } 1511 1512 /* 1513 * TODO: once we support anonymous pages, use 1514 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1515 */ 1516 pudp_set_wrprotect(src_mm, addr, src_pud); 1517 pud = pud_mkold(pud_wrprotect(pud)); 1518 set_pud_at(dst_mm, addr, dst_pud, pud); 1519 1520 ret = 0; 1521 out_unlock: 1522 spin_unlock(src_ptl); 1523 spin_unlock(dst_ptl); 1524 return ret; 1525 } 1526 1527 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1528 { 1529 bool write = vmf->flags & FAULT_FLAG_WRITE; 1530 1531 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1532 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1533 goto unlock; 1534 1535 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1536 unlock: 1537 spin_unlock(vmf->ptl); 1538 } 1539 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1540 1541 void huge_pmd_set_accessed(struct vm_fault *vmf) 1542 { 1543 bool write = vmf->flags & FAULT_FLAG_WRITE; 1544 1545 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1546 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1547 goto unlock; 1548 1549 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1550 1551 unlock: 1552 spin_unlock(vmf->ptl); 1553 } 1554 1555 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1556 { 1557 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1558 struct vm_area_struct *vma = vmf->vma; 1559 struct folio *folio; 1560 struct page *page; 1561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1562 pmd_t orig_pmd = vmf->orig_pmd; 1563 1564 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1565 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1566 1567 if (is_huge_zero_pmd(orig_pmd)) 1568 goto fallback; 1569 1570 spin_lock(vmf->ptl); 1571 1572 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1573 spin_unlock(vmf->ptl); 1574 return 0; 1575 } 1576 1577 page = pmd_page(orig_pmd); 1578 folio = page_folio(page); 1579 VM_BUG_ON_PAGE(!PageHead(page), page); 1580 1581 /* Early check when only holding the PT lock. */ 1582 if (PageAnonExclusive(page)) 1583 goto reuse; 1584 1585 if (!folio_trylock(folio)) { 1586 folio_get(folio); 1587 spin_unlock(vmf->ptl); 1588 folio_lock(folio); 1589 spin_lock(vmf->ptl); 1590 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1591 spin_unlock(vmf->ptl); 1592 folio_unlock(folio); 1593 folio_put(folio); 1594 return 0; 1595 } 1596 folio_put(folio); 1597 } 1598 1599 /* Recheck after temporarily dropping the PT lock. */ 1600 if (PageAnonExclusive(page)) { 1601 folio_unlock(folio); 1602 goto reuse; 1603 } 1604 1605 /* 1606 * See do_wp_page(): we can only reuse the folio exclusively if 1607 * there are no additional references. Note that we always drain 1608 * the LRU cache immediately after adding a THP. 1609 */ 1610 if (folio_ref_count(folio) > 1611 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1612 goto unlock_fallback; 1613 if (folio_test_swapcache(folio)) 1614 folio_free_swap(folio); 1615 if (folio_ref_count(folio) == 1) { 1616 pmd_t entry; 1617 1618 folio_move_anon_rmap(folio, vma); 1619 SetPageAnonExclusive(page); 1620 folio_unlock(folio); 1621 reuse: 1622 if (unlikely(unshare)) { 1623 spin_unlock(vmf->ptl); 1624 return 0; 1625 } 1626 entry = pmd_mkyoung(orig_pmd); 1627 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1628 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1629 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1630 spin_unlock(vmf->ptl); 1631 return 0; 1632 } 1633 1634 unlock_fallback: 1635 folio_unlock(folio); 1636 spin_unlock(vmf->ptl); 1637 fallback: 1638 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1639 return VM_FAULT_FALLBACK; 1640 } 1641 1642 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1643 unsigned long addr, pmd_t pmd) 1644 { 1645 struct page *page; 1646 1647 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1648 return false; 1649 1650 /* Don't touch entries that are not even readable (NUMA hinting). */ 1651 if (pmd_protnone(pmd)) 1652 return false; 1653 1654 /* Do we need write faults for softdirty tracking? */ 1655 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1656 return false; 1657 1658 /* Do we need write faults for uffd-wp tracking? */ 1659 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1660 return false; 1661 1662 if (!(vma->vm_flags & VM_SHARED)) { 1663 /* See can_change_pte_writable(). */ 1664 page = vm_normal_page_pmd(vma, addr, pmd); 1665 return page && PageAnon(page) && PageAnonExclusive(page); 1666 } 1667 1668 /* See can_change_pte_writable(). */ 1669 return pmd_dirty(pmd); 1670 } 1671 1672 /* NUMA hinting page fault entry point for trans huge pmds */ 1673 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1674 { 1675 struct vm_area_struct *vma = vmf->vma; 1676 pmd_t oldpmd = vmf->orig_pmd; 1677 pmd_t pmd; 1678 struct folio *folio; 1679 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1680 int nid = NUMA_NO_NODE; 1681 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1682 bool writable = false; 1683 int flags = 0; 1684 1685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1686 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1687 spin_unlock(vmf->ptl); 1688 goto out; 1689 } 1690 1691 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1692 1693 /* 1694 * Detect now whether the PMD could be writable; this information 1695 * is only valid while holding the PT lock. 1696 */ 1697 writable = pmd_write(pmd); 1698 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1699 can_change_pmd_writable(vma, vmf->address, pmd)) 1700 writable = true; 1701 1702 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1703 if (!folio) 1704 goto out_map; 1705 1706 /* See similar comment in do_numa_page for explanation */ 1707 if (!writable) 1708 flags |= TNF_NO_GROUP; 1709 1710 nid = folio_nid(folio); 1711 /* 1712 * For memory tiering mode, cpupid of slow memory page is used 1713 * to record page access time. So use default value. 1714 */ 1715 if (node_is_toptier(nid)) 1716 last_cpupid = folio_last_cpupid(folio); 1717 target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags); 1718 if (target_nid == NUMA_NO_NODE) 1719 goto out_map; 1720 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 1721 flags |= TNF_MIGRATE_FAIL; 1722 goto out_map; 1723 } 1724 /* The folio is isolated and isolation code holds a folio reference. */ 1725 spin_unlock(vmf->ptl); 1726 writable = false; 1727 1728 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 1729 flags |= TNF_MIGRATED; 1730 nid = target_nid; 1731 } else { 1732 flags |= TNF_MIGRATE_FAIL; 1733 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1734 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1735 spin_unlock(vmf->ptl); 1736 goto out; 1737 } 1738 goto out_map; 1739 } 1740 1741 out: 1742 if (nid != NUMA_NO_NODE) 1743 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1744 1745 return 0; 1746 1747 out_map: 1748 /* Restore the PMD */ 1749 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1750 pmd = pmd_mkyoung(pmd); 1751 if (writable) 1752 pmd = pmd_mkwrite(pmd, vma); 1753 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1754 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1755 spin_unlock(vmf->ptl); 1756 goto out; 1757 } 1758 1759 /* 1760 * Return true if we do MADV_FREE successfully on entire pmd page. 1761 * Otherwise, return false. 1762 */ 1763 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1764 pmd_t *pmd, unsigned long addr, unsigned long next) 1765 { 1766 spinlock_t *ptl; 1767 pmd_t orig_pmd; 1768 struct folio *folio; 1769 struct mm_struct *mm = tlb->mm; 1770 bool ret = false; 1771 1772 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1773 1774 ptl = pmd_trans_huge_lock(pmd, vma); 1775 if (!ptl) 1776 goto out_unlocked; 1777 1778 orig_pmd = *pmd; 1779 if (is_huge_zero_pmd(orig_pmd)) 1780 goto out; 1781 1782 if (unlikely(!pmd_present(orig_pmd))) { 1783 VM_BUG_ON(thp_migration_supported() && 1784 !is_pmd_migration_entry(orig_pmd)); 1785 goto out; 1786 } 1787 1788 folio = pmd_folio(orig_pmd); 1789 /* 1790 * If other processes are mapping this folio, we couldn't discard 1791 * the folio unless they all do MADV_FREE so let's skip the folio. 1792 */ 1793 if (folio_likely_mapped_shared(folio)) 1794 goto out; 1795 1796 if (!folio_trylock(folio)) 1797 goto out; 1798 1799 /* 1800 * If user want to discard part-pages of THP, split it so MADV_FREE 1801 * will deactivate only them. 1802 */ 1803 if (next - addr != HPAGE_PMD_SIZE) { 1804 folio_get(folio); 1805 spin_unlock(ptl); 1806 split_folio(folio); 1807 folio_unlock(folio); 1808 folio_put(folio); 1809 goto out_unlocked; 1810 } 1811 1812 if (folio_test_dirty(folio)) 1813 folio_clear_dirty(folio); 1814 folio_unlock(folio); 1815 1816 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1817 pmdp_invalidate(vma, addr, pmd); 1818 orig_pmd = pmd_mkold(orig_pmd); 1819 orig_pmd = pmd_mkclean(orig_pmd); 1820 1821 set_pmd_at(mm, addr, pmd, orig_pmd); 1822 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1823 } 1824 1825 folio_mark_lazyfree(folio); 1826 ret = true; 1827 out: 1828 spin_unlock(ptl); 1829 out_unlocked: 1830 return ret; 1831 } 1832 1833 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1834 { 1835 pgtable_t pgtable; 1836 1837 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1838 pte_free(mm, pgtable); 1839 mm_dec_nr_ptes(mm); 1840 } 1841 1842 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1843 pmd_t *pmd, unsigned long addr) 1844 { 1845 pmd_t orig_pmd; 1846 spinlock_t *ptl; 1847 1848 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1849 1850 ptl = __pmd_trans_huge_lock(pmd, vma); 1851 if (!ptl) 1852 return 0; 1853 /* 1854 * For architectures like ppc64 we look at deposited pgtable 1855 * when calling pmdp_huge_get_and_clear. So do the 1856 * pgtable_trans_huge_withdraw after finishing pmdp related 1857 * operations. 1858 */ 1859 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1860 tlb->fullmm); 1861 arch_check_zapped_pmd(vma, orig_pmd); 1862 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1863 if (vma_is_special_huge(vma)) { 1864 if (arch_needs_pgtable_deposit()) 1865 zap_deposited_table(tlb->mm, pmd); 1866 spin_unlock(ptl); 1867 } else if (is_huge_zero_pmd(orig_pmd)) { 1868 zap_deposited_table(tlb->mm, pmd); 1869 spin_unlock(ptl); 1870 } else { 1871 struct folio *folio = NULL; 1872 int flush_needed = 1; 1873 1874 if (pmd_present(orig_pmd)) { 1875 struct page *page = pmd_page(orig_pmd); 1876 1877 folio = page_folio(page); 1878 folio_remove_rmap_pmd(folio, page, vma); 1879 WARN_ON_ONCE(folio_mapcount(folio) < 0); 1880 VM_BUG_ON_PAGE(!PageHead(page), page); 1881 } else if (thp_migration_supported()) { 1882 swp_entry_t entry; 1883 1884 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1885 entry = pmd_to_swp_entry(orig_pmd); 1886 folio = pfn_swap_entry_folio(entry); 1887 flush_needed = 0; 1888 } else 1889 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1890 1891 if (folio_test_anon(folio)) { 1892 zap_deposited_table(tlb->mm, pmd); 1893 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1894 } else { 1895 if (arch_needs_pgtable_deposit()) 1896 zap_deposited_table(tlb->mm, pmd); 1897 add_mm_counter(tlb->mm, mm_counter_file(folio), 1898 -HPAGE_PMD_NR); 1899 } 1900 1901 spin_unlock(ptl); 1902 if (flush_needed) 1903 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1904 } 1905 return 1; 1906 } 1907 1908 #ifndef pmd_move_must_withdraw 1909 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1910 spinlock_t *old_pmd_ptl, 1911 struct vm_area_struct *vma) 1912 { 1913 /* 1914 * With split pmd lock we also need to move preallocated 1915 * PTE page table if new_pmd is on different PMD page table. 1916 * 1917 * We also don't deposit and withdraw tables for file pages. 1918 */ 1919 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1920 } 1921 #endif 1922 1923 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1924 { 1925 #ifdef CONFIG_MEM_SOFT_DIRTY 1926 if (unlikely(is_pmd_migration_entry(pmd))) 1927 pmd = pmd_swp_mksoft_dirty(pmd); 1928 else if (pmd_present(pmd)) 1929 pmd = pmd_mksoft_dirty(pmd); 1930 #endif 1931 return pmd; 1932 } 1933 1934 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1935 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1936 { 1937 spinlock_t *old_ptl, *new_ptl; 1938 pmd_t pmd; 1939 struct mm_struct *mm = vma->vm_mm; 1940 bool force_flush = false; 1941 1942 /* 1943 * The destination pmd shouldn't be established, free_pgtables() 1944 * should have released it; but move_page_tables() might have already 1945 * inserted a page table, if racing against shmem/file collapse. 1946 */ 1947 if (!pmd_none(*new_pmd)) { 1948 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1949 return false; 1950 } 1951 1952 /* 1953 * We don't have to worry about the ordering of src and dst 1954 * ptlocks because exclusive mmap_lock prevents deadlock. 1955 */ 1956 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1957 if (old_ptl) { 1958 new_ptl = pmd_lockptr(mm, new_pmd); 1959 if (new_ptl != old_ptl) 1960 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1961 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1962 if (pmd_present(pmd)) 1963 force_flush = true; 1964 VM_BUG_ON(!pmd_none(*new_pmd)); 1965 1966 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1967 pgtable_t pgtable; 1968 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1969 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1970 } 1971 pmd = move_soft_dirty_pmd(pmd); 1972 set_pmd_at(mm, new_addr, new_pmd, pmd); 1973 if (force_flush) 1974 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1975 if (new_ptl != old_ptl) 1976 spin_unlock(new_ptl); 1977 spin_unlock(old_ptl); 1978 return true; 1979 } 1980 return false; 1981 } 1982 1983 /* 1984 * Returns 1985 * - 0 if PMD could not be locked 1986 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1987 * or if prot_numa but THP migration is not supported 1988 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1989 */ 1990 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1991 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1992 unsigned long cp_flags) 1993 { 1994 struct mm_struct *mm = vma->vm_mm; 1995 spinlock_t *ptl; 1996 pmd_t oldpmd, entry; 1997 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1998 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1999 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2000 int ret = 1; 2001 2002 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2003 2004 if (prot_numa && !thp_migration_supported()) 2005 return 1; 2006 2007 ptl = __pmd_trans_huge_lock(pmd, vma); 2008 if (!ptl) 2009 return 0; 2010 2011 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2012 if (is_swap_pmd(*pmd)) { 2013 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2014 struct folio *folio = pfn_swap_entry_folio(entry); 2015 pmd_t newpmd; 2016 2017 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2018 if (is_writable_migration_entry(entry)) { 2019 /* 2020 * A protection check is difficult so 2021 * just be safe and disable write 2022 */ 2023 if (folio_test_anon(folio)) 2024 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2025 else 2026 entry = make_readable_migration_entry(swp_offset(entry)); 2027 newpmd = swp_entry_to_pmd(entry); 2028 if (pmd_swp_soft_dirty(*pmd)) 2029 newpmd = pmd_swp_mksoft_dirty(newpmd); 2030 } else { 2031 newpmd = *pmd; 2032 } 2033 2034 if (uffd_wp) 2035 newpmd = pmd_swp_mkuffd_wp(newpmd); 2036 else if (uffd_wp_resolve) 2037 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2038 if (!pmd_same(*pmd, newpmd)) 2039 set_pmd_at(mm, addr, pmd, newpmd); 2040 goto unlock; 2041 } 2042 #endif 2043 2044 if (prot_numa) { 2045 struct folio *folio; 2046 bool toptier; 2047 /* 2048 * Avoid trapping faults against the zero page. The read-only 2049 * data is likely to be read-cached on the local CPU and 2050 * local/remote hits to the zero page are not interesting. 2051 */ 2052 if (is_huge_zero_pmd(*pmd)) 2053 goto unlock; 2054 2055 if (pmd_protnone(*pmd)) 2056 goto unlock; 2057 2058 folio = pmd_folio(*pmd); 2059 toptier = node_is_toptier(folio_nid(folio)); 2060 /* 2061 * Skip scanning top tier node if normal numa 2062 * balancing is disabled 2063 */ 2064 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2065 toptier) 2066 goto unlock; 2067 2068 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2069 !toptier) 2070 folio_xchg_access_time(folio, 2071 jiffies_to_msecs(jiffies)); 2072 } 2073 /* 2074 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2075 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2076 * which is also under mmap_read_lock(mm): 2077 * 2078 * CPU0: CPU1: 2079 * change_huge_pmd(prot_numa=1) 2080 * pmdp_huge_get_and_clear_notify() 2081 * madvise_dontneed() 2082 * zap_pmd_range() 2083 * pmd_trans_huge(*pmd) == 0 (without ptl) 2084 * // skip the pmd 2085 * set_pmd_at(); 2086 * // pmd is re-established 2087 * 2088 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2089 * which may break userspace. 2090 * 2091 * pmdp_invalidate_ad() is required to make sure we don't miss 2092 * dirty/young flags set by hardware. 2093 */ 2094 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2095 2096 entry = pmd_modify(oldpmd, newprot); 2097 if (uffd_wp) 2098 entry = pmd_mkuffd_wp(entry); 2099 else if (uffd_wp_resolve) 2100 /* 2101 * Leave the write bit to be handled by PF interrupt 2102 * handler, then things like COW could be properly 2103 * handled. 2104 */ 2105 entry = pmd_clear_uffd_wp(entry); 2106 2107 /* See change_pte_range(). */ 2108 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2109 can_change_pmd_writable(vma, addr, entry)) 2110 entry = pmd_mkwrite(entry, vma); 2111 2112 ret = HPAGE_PMD_NR; 2113 set_pmd_at(mm, addr, pmd, entry); 2114 2115 if (huge_pmd_needs_flush(oldpmd, entry)) 2116 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2117 unlock: 2118 spin_unlock(ptl); 2119 return ret; 2120 } 2121 2122 #ifdef CONFIG_USERFAULTFD 2123 /* 2124 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2125 * the caller, but it must return after releasing the page_table_lock. 2126 * Just move the page from src_pmd to dst_pmd if possible. 2127 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2128 * repeated by the caller, or other errors in case of failure. 2129 */ 2130 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2131 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2132 unsigned long dst_addr, unsigned long src_addr) 2133 { 2134 pmd_t _dst_pmd, src_pmdval; 2135 struct page *src_page; 2136 struct folio *src_folio; 2137 struct anon_vma *src_anon_vma; 2138 spinlock_t *src_ptl, *dst_ptl; 2139 pgtable_t src_pgtable; 2140 struct mmu_notifier_range range; 2141 int err = 0; 2142 2143 src_pmdval = *src_pmd; 2144 src_ptl = pmd_lockptr(mm, src_pmd); 2145 2146 lockdep_assert_held(src_ptl); 2147 vma_assert_locked(src_vma); 2148 vma_assert_locked(dst_vma); 2149 2150 /* Sanity checks before the operation */ 2151 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2152 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2153 spin_unlock(src_ptl); 2154 return -EINVAL; 2155 } 2156 2157 if (!pmd_trans_huge(src_pmdval)) { 2158 spin_unlock(src_ptl); 2159 if (is_pmd_migration_entry(src_pmdval)) { 2160 pmd_migration_entry_wait(mm, &src_pmdval); 2161 return -EAGAIN; 2162 } 2163 return -ENOENT; 2164 } 2165 2166 src_page = pmd_page(src_pmdval); 2167 2168 if (!is_huge_zero_pmd(src_pmdval)) { 2169 if (unlikely(!PageAnonExclusive(src_page))) { 2170 spin_unlock(src_ptl); 2171 return -EBUSY; 2172 } 2173 2174 src_folio = page_folio(src_page); 2175 folio_get(src_folio); 2176 } else 2177 src_folio = NULL; 2178 2179 spin_unlock(src_ptl); 2180 2181 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2183 src_addr + HPAGE_PMD_SIZE); 2184 mmu_notifier_invalidate_range_start(&range); 2185 2186 if (src_folio) { 2187 folio_lock(src_folio); 2188 2189 /* 2190 * split_huge_page walks the anon_vma chain without the page 2191 * lock. Serialize against it with the anon_vma lock, the page 2192 * lock is not enough. 2193 */ 2194 src_anon_vma = folio_get_anon_vma(src_folio); 2195 if (!src_anon_vma) { 2196 err = -EAGAIN; 2197 goto unlock_folio; 2198 } 2199 anon_vma_lock_write(src_anon_vma); 2200 } else 2201 src_anon_vma = NULL; 2202 2203 dst_ptl = pmd_lockptr(mm, dst_pmd); 2204 double_pt_lock(src_ptl, dst_ptl); 2205 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2206 !pmd_same(*dst_pmd, dst_pmdval))) { 2207 err = -EAGAIN; 2208 goto unlock_ptls; 2209 } 2210 if (src_folio) { 2211 if (folio_maybe_dma_pinned(src_folio) || 2212 !PageAnonExclusive(&src_folio->page)) { 2213 err = -EBUSY; 2214 goto unlock_ptls; 2215 } 2216 2217 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2218 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2219 err = -EBUSY; 2220 goto unlock_ptls; 2221 } 2222 2223 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2224 /* Folio got pinned from under us. Put it back and fail the move. */ 2225 if (folio_maybe_dma_pinned(src_folio)) { 2226 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2227 err = -EBUSY; 2228 goto unlock_ptls; 2229 } 2230 2231 folio_move_anon_rmap(src_folio, dst_vma); 2232 src_folio->index = linear_page_index(dst_vma, dst_addr); 2233 2234 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2235 /* Follow mremap() behavior and treat the entry dirty after the move */ 2236 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2237 } else { 2238 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2239 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2240 } 2241 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2242 2243 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2244 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2245 unlock_ptls: 2246 double_pt_unlock(src_ptl, dst_ptl); 2247 if (src_anon_vma) { 2248 anon_vma_unlock_write(src_anon_vma); 2249 put_anon_vma(src_anon_vma); 2250 } 2251 unlock_folio: 2252 /* unblock rmap walks */ 2253 if (src_folio) 2254 folio_unlock(src_folio); 2255 mmu_notifier_invalidate_range_end(&range); 2256 if (src_folio) 2257 folio_put(src_folio); 2258 return err; 2259 } 2260 #endif /* CONFIG_USERFAULTFD */ 2261 2262 /* 2263 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2264 * 2265 * Note that if it returns page table lock pointer, this routine returns without 2266 * unlocking page table lock. So callers must unlock it. 2267 */ 2268 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2269 { 2270 spinlock_t *ptl; 2271 ptl = pmd_lock(vma->vm_mm, pmd); 2272 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2273 pmd_devmap(*pmd))) 2274 return ptl; 2275 spin_unlock(ptl); 2276 return NULL; 2277 } 2278 2279 /* 2280 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2281 * 2282 * Note that if it returns page table lock pointer, this routine returns without 2283 * unlocking page table lock. So callers must unlock it. 2284 */ 2285 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2286 { 2287 spinlock_t *ptl; 2288 2289 ptl = pud_lock(vma->vm_mm, pud); 2290 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2291 return ptl; 2292 spin_unlock(ptl); 2293 return NULL; 2294 } 2295 2296 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2297 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2298 pud_t *pud, unsigned long addr) 2299 { 2300 spinlock_t *ptl; 2301 2302 ptl = __pud_trans_huge_lock(pud, vma); 2303 if (!ptl) 2304 return 0; 2305 2306 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2307 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2308 if (vma_is_special_huge(vma)) { 2309 spin_unlock(ptl); 2310 /* No zero page support yet */ 2311 } else { 2312 /* No support for anonymous PUD pages yet */ 2313 BUG(); 2314 } 2315 return 1; 2316 } 2317 2318 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2319 unsigned long haddr) 2320 { 2321 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2322 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2323 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2324 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2325 2326 count_vm_event(THP_SPLIT_PUD); 2327 2328 pudp_huge_clear_flush(vma, haddr, pud); 2329 } 2330 2331 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2332 unsigned long address) 2333 { 2334 spinlock_t *ptl; 2335 struct mmu_notifier_range range; 2336 2337 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2338 address & HPAGE_PUD_MASK, 2339 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2340 mmu_notifier_invalidate_range_start(&range); 2341 ptl = pud_lock(vma->vm_mm, pud); 2342 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2343 goto out; 2344 __split_huge_pud_locked(vma, pud, range.start); 2345 2346 out: 2347 spin_unlock(ptl); 2348 mmu_notifier_invalidate_range_end(&range); 2349 } 2350 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2351 2352 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2353 unsigned long haddr, pmd_t *pmd) 2354 { 2355 struct mm_struct *mm = vma->vm_mm; 2356 pgtable_t pgtable; 2357 pmd_t _pmd, old_pmd; 2358 unsigned long addr; 2359 pte_t *pte; 2360 int i; 2361 2362 /* 2363 * Leave pmd empty until pte is filled note that it is fine to delay 2364 * notification until mmu_notifier_invalidate_range_end() as we are 2365 * replacing a zero pmd write protected page with a zero pte write 2366 * protected page. 2367 * 2368 * See Documentation/mm/mmu_notifier.rst 2369 */ 2370 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2371 2372 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2373 pmd_populate(mm, &_pmd, pgtable); 2374 2375 pte = pte_offset_map(&_pmd, haddr); 2376 VM_BUG_ON(!pte); 2377 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2378 pte_t entry; 2379 2380 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2381 entry = pte_mkspecial(entry); 2382 if (pmd_uffd_wp(old_pmd)) 2383 entry = pte_mkuffd_wp(entry); 2384 VM_BUG_ON(!pte_none(ptep_get(pte))); 2385 set_pte_at(mm, addr, pte, entry); 2386 pte++; 2387 } 2388 pte_unmap(pte - 1); 2389 smp_wmb(); /* make pte visible before pmd */ 2390 pmd_populate(mm, pmd, pgtable); 2391 } 2392 2393 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2394 unsigned long haddr, bool freeze) 2395 { 2396 struct mm_struct *mm = vma->vm_mm; 2397 struct folio *folio; 2398 struct page *page; 2399 pgtable_t pgtable; 2400 pmd_t old_pmd, _pmd; 2401 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2402 bool anon_exclusive = false, dirty = false; 2403 unsigned long addr; 2404 pte_t *pte; 2405 int i; 2406 2407 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2408 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2409 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2410 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2411 && !pmd_devmap(*pmd)); 2412 2413 count_vm_event(THP_SPLIT_PMD); 2414 2415 if (!vma_is_anonymous(vma)) { 2416 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2417 /* 2418 * We are going to unmap this huge page. So 2419 * just go ahead and zap it 2420 */ 2421 if (arch_needs_pgtable_deposit()) 2422 zap_deposited_table(mm, pmd); 2423 if (vma_is_special_huge(vma)) 2424 return; 2425 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2426 swp_entry_t entry; 2427 2428 entry = pmd_to_swp_entry(old_pmd); 2429 folio = pfn_swap_entry_folio(entry); 2430 } else { 2431 page = pmd_page(old_pmd); 2432 folio = page_folio(page); 2433 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2434 folio_mark_dirty(folio); 2435 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2436 folio_set_referenced(folio); 2437 folio_remove_rmap_pmd(folio, page, vma); 2438 folio_put(folio); 2439 } 2440 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2441 return; 2442 } 2443 2444 if (is_huge_zero_pmd(*pmd)) { 2445 /* 2446 * FIXME: Do we want to invalidate secondary mmu by calling 2447 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2448 * inside __split_huge_pmd() ? 2449 * 2450 * We are going from a zero huge page write protected to zero 2451 * small page also write protected so it does not seems useful 2452 * to invalidate secondary mmu at this time. 2453 */ 2454 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2455 } 2456 2457 pmd_migration = is_pmd_migration_entry(*pmd); 2458 if (unlikely(pmd_migration)) { 2459 swp_entry_t entry; 2460 2461 old_pmd = *pmd; 2462 entry = pmd_to_swp_entry(old_pmd); 2463 page = pfn_swap_entry_to_page(entry); 2464 write = is_writable_migration_entry(entry); 2465 if (PageAnon(page)) 2466 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2467 young = is_migration_entry_young(entry); 2468 dirty = is_migration_entry_dirty(entry); 2469 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2470 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2471 } else { 2472 /* 2473 * Up to this point the pmd is present and huge and userland has 2474 * the whole access to the hugepage during the split (which 2475 * happens in place). If we overwrite the pmd with the not-huge 2476 * version pointing to the pte here (which of course we could if 2477 * all CPUs were bug free), userland could trigger a small page 2478 * size TLB miss on the small sized TLB while the hugepage TLB 2479 * entry is still established in the huge TLB. Some CPU doesn't 2480 * like that. See 2481 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2482 * 383 on page 105. Intel should be safe but is also warns that 2483 * it's only safe if the permission and cache attributes of the 2484 * two entries loaded in the two TLB is identical (which should 2485 * be the case here). But it is generally safer to never allow 2486 * small and huge TLB entries for the same virtual address to be 2487 * loaded simultaneously. So instead of doing "pmd_populate(); 2488 * flush_pmd_tlb_range();" we first mark the current pmd 2489 * notpresent (atomically because here the pmd_trans_huge must 2490 * remain set at all times on the pmd until the split is 2491 * complete for this pmd), then we flush the SMP TLB and finally 2492 * we write the non-huge version of the pmd entry with 2493 * pmd_populate. 2494 */ 2495 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2496 page = pmd_page(old_pmd); 2497 folio = page_folio(page); 2498 if (pmd_dirty(old_pmd)) { 2499 dirty = true; 2500 folio_set_dirty(folio); 2501 } 2502 write = pmd_write(old_pmd); 2503 young = pmd_young(old_pmd); 2504 soft_dirty = pmd_soft_dirty(old_pmd); 2505 uffd_wp = pmd_uffd_wp(old_pmd); 2506 2507 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2508 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2509 2510 /* 2511 * Without "freeze", we'll simply split the PMD, propagating the 2512 * PageAnonExclusive() flag for each PTE by setting it for 2513 * each subpage -- no need to (temporarily) clear. 2514 * 2515 * With "freeze" we want to replace mapped pages by 2516 * migration entries right away. This is only possible if we 2517 * managed to clear PageAnonExclusive() -- see 2518 * set_pmd_migration_entry(). 2519 * 2520 * In case we cannot clear PageAnonExclusive(), split the PMD 2521 * only and let try_to_migrate_one() fail later. 2522 * 2523 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2524 */ 2525 anon_exclusive = PageAnonExclusive(page); 2526 if (freeze && anon_exclusive && 2527 folio_try_share_anon_rmap_pmd(folio, page)) 2528 freeze = false; 2529 if (!freeze) { 2530 rmap_t rmap_flags = RMAP_NONE; 2531 2532 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2533 if (anon_exclusive) 2534 rmap_flags |= RMAP_EXCLUSIVE; 2535 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2536 vma, haddr, rmap_flags); 2537 } 2538 } 2539 2540 /* 2541 * Withdraw the table only after we mark the pmd entry invalid. 2542 * This's critical for some architectures (Power). 2543 */ 2544 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2545 pmd_populate(mm, &_pmd, pgtable); 2546 2547 pte = pte_offset_map(&_pmd, haddr); 2548 VM_BUG_ON(!pte); 2549 2550 /* 2551 * Note that NUMA hinting access restrictions are not transferred to 2552 * avoid any possibility of altering permissions across VMAs. 2553 */ 2554 if (freeze || pmd_migration) { 2555 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2556 pte_t entry; 2557 swp_entry_t swp_entry; 2558 2559 if (write) 2560 swp_entry = make_writable_migration_entry( 2561 page_to_pfn(page + i)); 2562 else if (anon_exclusive) 2563 swp_entry = make_readable_exclusive_migration_entry( 2564 page_to_pfn(page + i)); 2565 else 2566 swp_entry = make_readable_migration_entry( 2567 page_to_pfn(page + i)); 2568 if (young) 2569 swp_entry = make_migration_entry_young(swp_entry); 2570 if (dirty) 2571 swp_entry = make_migration_entry_dirty(swp_entry); 2572 entry = swp_entry_to_pte(swp_entry); 2573 if (soft_dirty) 2574 entry = pte_swp_mksoft_dirty(entry); 2575 if (uffd_wp) 2576 entry = pte_swp_mkuffd_wp(entry); 2577 2578 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2579 set_pte_at(mm, addr, pte + i, entry); 2580 } 2581 } else { 2582 pte_t entry; 2583 2584 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2585 if (write) 2586 entry = pte_mkwrite(entry, vma); 2587 if (!young) 2588 entry = pte_mkold(entry); 2589 /* NOTE: this may set soft-dirty too on some archs */ 2590 if (dirty) 2591 entry = pte_mkdirty(entry); 2592 if (soft_dirty) 2593 entry = pte_mksoft_dirty(entry); 2594 if (uffd_wp) 2595 entry = pte_mkuffd_wp(entry); 2596 2597 for (i = 0; i < HPAGE_PMD_NR; i++) 2598 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2599 2600 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2601 } 2602 pte_unmap(pte); 2603 2604 if (!pmd_migration) 2605 folio_remove_rmap_pmd(folio, page, vma); 2606 if (freeze) 2607 put_page(page); 2608 2609 smp_wmb(); /* make pte visible before pmd */ 2610 pmd_populate(mm, pmd, pgtable); 2611 } 2612 2613 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 2614 pmd_t *pmd, bool freeze, struct folio *folio) 2615 { 2616 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio)); 2617 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 2618 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2619 VM_BUG_ON(freeze && !folio); 2620 2621 /* 2622 * When the caller requests to set up a migration entry, we 2623 * require a folio to check the PMD against. Otherwise, there 2624 * is a risk of replacing the wrong folio. 2625 */ 2626 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2627 is_pmd_migration_entry(*pmd)) { 2628 if (folio && folio != pmd_folio(*pmd)) 2629 return; 2630 __split_huge_pmd_locked(vma, pmd, address, freeze); 2631 } 2632 } 2633 2634 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2635 unsigned long address, bool freeze, struct folio *folio) 2636 { 2637 spinlock_t *ptl; 2638 struct mmu_notifier_range range; 2639 2640 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2641 address & HPAGE_PMD_MASK, 2642 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2643 mmu_notifier_invalidate_range_start(&range); 2644 ptl = pmd_lock(vma->vm_mm, pmd); 2645 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio); 2646 spin_unlock(ptl); 2647 mmu_notifier_invalidate_range_end(&range); 2648 } 2649 2650 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2651 bool freeze, struct folio *folio) 2652 { 2653 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2654 2655 if (!pmd) 2656 return; 2657 2658 __split_huge_pmd(vma, pmd, address, freeze, folio); 2659 } 2660 2661 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2662 { 2663 /* 2664 * If the new address isn't hpage aligned and it could previously 2665 * contain an hugepage: check if we need to split an huge pmd. 2666 */ 2667 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2668 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2669 ALIGN(address, HPAGE_PMD_SIZE))) 2670 split_huge_pmd_address(vma, address, false, NULL); 2671 } 2672 2673 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2674 unsigned long start, 2675 unsigned long end, 2676 long adjust_next) 2677 { 2678 /* Check if we need to split start first. */ 2679 split_huge_pmd_if_needed(vma, start); 2680 2681 /* Check if we need to split end next. */ 2682 split_huge_pmd_if_needed(vma, end); 2683 2684 /* 2685 * If we're also updating the next vma vm_start, 2686 * check if we need to split it. 2687 */ 2688 if (adjust_next > 0) { 2689 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2690 unsigned long nstart = next->vm_start; 2691 nstart += adjust_next; 2692 split_huge_pmd_if_needed(next, nstart); 2693 } 2694 } 2695 2696 static void unmap_folio(struct folio *folio) 2697 { 2698 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2699 TTU_BATCH_FLUSH; 2700 2701 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2702 2703 if (folio_test_pmd_mappable(folio)) 2704 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2705 2706 /* 2707 * Anon pages need migration entries to preserve them, but file 2708 * pages can simply be left unmapped, then faulted back on demand. 2709 * If that is ever changed (perhaps for mlock), update remap_page(). 2710 */ 2711 if (folio_test_anon(folio)) 2712 try_to_migrate(folio, ttu_flags); 2713 else 2714 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2715 2716 try_to_unmap_flush(); 2717 } 2718 2719 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 2720 unsigned long addr, pmd_t *pmdp, 2721 struct folio *folio) 2722 { 2723 struct mm_struct *mm = vma->vm_mm; 2724 int ref_count, map_count; 2725 pmd_t orig_pmd = *pmdp; 2726 2727 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd)) 2728 return false; 2729 2730 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 2731 2732 /* 2733 * Syncing against concurrent GUP-fast: 2734 * - clear PMD; barrier; read refcount 2735 * - inc refcount; barrier; read PMD 2736 */ 2737 smp_mb(); 2738 2739 ref_count = folio_ref_count(folio); 2740 map_count = folio_mapcount(folio); 2741 2742 /* 2743 * Order reads for folio refcount and dirty flag 2744 * (see comments in __remove_mapping()). 2745 */ 2746 smp_rmb(); 2747 2748 /* 2749 * If the folio or its PMD is redirtied at this point, or if there 2750 * are unexpected references, we will give up to discard this folio 2751 * and remap it. 2752 * 2753 * The only folio refs must be one from isolation plus the rmap(s). 2754 */ 2755 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) || 2756 ref_count != map_count + 1) { 2757 set_pmd_at(mm, addr, pmdp, orig_pmd); 2758 return false; 2759 } 2760 2761 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 2762 zap_deposited_table(mm, pmdp); 2763 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2764 if (vma->vm_flags & VM_LOCKED) 2765 mlock_drain_local(); 2766 folio_put(folio); 2767 2768 return true; 2769 } 2770 2771 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 2772 pmd_t *pmdp, struct folio *folio) 2773 { 2774 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 2775 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2776 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 2777 2778 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) 2779 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 2780 2781 return false; 2782 } 2783 2784 static void remap_page(struct folio *folio, unsigned long nr) 2785 { 2786 int i = 0; 2787 2788 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2789 if (!folio_test_anon(folio)) 2790 return; 2791 for (;;) { 2792 remove_migration_ptes(folio, folio, true); 2793 i += folio_nr_pages(folio); 2794 if (i >= nr) 2795 break; 2796 folio = folio_next(folio); 2797 } 2798 } 2799 2800 static void lru_add_page_tail(struct page *head, struct page *tail, 2801 struct lruvec *lruvec, struct list_head *list) 2802 { 2803 VM_BUG_ON_PAGE(!PageHead(head), head); 2804 VM_BUG_ON_PAGE(PageLRU(tail), head); 2805 lockdep_assert_held(&lruvec->lru_lock); 2806 2807 if (list) { 2808 /* page reclaim is reclaiming a huge page */ 2809 VM_WARN_ON(PageLRU(head)); 2810 get_page(tail); 2811 list_add_tail(&tail->lru, list); 2812 } else { 2813 /* head is still on lru (and we have it frozen) */ 2814 VM_WARN_ON(!PageLRU(head)); 2815 if (PageUnevictable(tail)) 2816 tail->mlock_count = 0; 2817 else 2818 list_add_tail(&tail->lru, &head->lru); 2819 SetPageLRU(tail); 2820 } 2821 } 2822 2823 static void __split_huge_page_tail(struct folio *folio, int tail, 2824 struct lruvec *lruvec, struct list_head *list, 2825 unsigned int new_order) 2826 { 2827 struct page *head = &folio->page; 2828 struct page *page_tail = head + tail; 2829 /* 2830 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2831 * Don't pass it around before clear_compound_head(). 2832 */ 2833 struct folio *new_folio = (struct folio *)page_tail; 2834 2835 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2836 2837 /* 2838 * Clone page flags before unfreezing refcount. 2839 * 2840 * After successful get_page_unless_zero() might follow flags change, 2841 * for example lock_page() which set PG_waiters. 2842 * 2843 * Note that for mapped sub-pages of an anonymous THP, 2844 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2845 * the migration entry instead from where remap_page() will restore it. 2846 * We can still have PG_anon_exclusive set on effectively unmapped and 2847 * unreferenced sub-pages of an anonymous THP: we can simply drop 2848 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2849 */ 2850 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2851 page_tail->flags |= (head->flags & 2852 ((1L << PG_referenced) | 2853 (1L << PG_swapbacked) | 2854 (1L << PG_swapcache) | 2855 (1L << PG_mlocked) | 2856 (1L << PG_uptodate) | 2857 (1L << PG_active) | 2858 (1L << PG_workingset) | 2859 (1L << PG_locked) | 2860 (1L << PG_unevictable) | 2861 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2862 (1L << PG_arch_2) | 2863 (1L << PG_arch_3) | 2864 #endif 2865 (1L << PG_dirty) | 2866 LRU_GEN_MASK | LRU_REFS_MASK)); 2867 2868 /* ->mapping in first and second tail page is replaced by other uses */ 2869 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2870 page_tail); 2871 page_tail->mapping = head->mapping; 2872 page_tail->index = head->index + tail; 2873 2874 /* 2875 * page->private should not be set in tail pages. Fix up and warn once 2876 * if private is unexpectedly set. 2877 */ 2878 if (unlikely(page_tail->private)) { 2879 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2880 page_tail->private = 0; 2881 } 2882 if (folio_test_swapcache(folio)) 2883 new_folio->swap.val = folio->swap.val + tail; 2884 2885 /* Page flags must be visible before we make the page non-compound. */ 2886 smp_wmb(); 2887 2888 /* 2889 * Clear PageTail before unfreezing page refcount. 2890 * 2891 * After successful get_page_unless_zero() might follow put_page() 2892 * which needs correct compound_head(). 2893 */ 2894 clear_compound_head(page_tail); 2895 if (new_order) { 2896 prep_compound_page(page_tail, new_order); 2897 folio_set_large_rmappable(new_folio); 2898 } 2899 2900 /* Finally unfreeze refcount. Additional reference from page cache. */ 2901 page_ref_unfreeze(page_tail, 2902 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2903 folio_nr_pages(new_folio) : 0)); 2904 2905 if (folio_test_young(folio)) 2906 folio_set_young(new_folio); 2907 if (folio_test_idle(folio)) 2908 folio_set_idle(new_folio); 2909 2910 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2911 2912 /* 2913 * always add to the tail because some iterators expect new 2914 * pages to show after the currently processed elements - e.g. 2915 * migrate_pages 2916 */ 2917 lru_add_page_tail(head, page_tail, lruvec, list); 2918 } 2919 2920 static void __split_huge_page(struct page *page, struct list_head *list, 2921 pgoff_t end, unsigned int new_order) 2922 { 2923 struct folio *folio = page_folio(page); 2924 struct page *head = &folio->page; 2925 struct lruvec *lruvec; 2926 struct address_space *swap_cache = NULL; 2927 unsigned long offset = 0; 2928 int i, nr_dropped = 0; 2929 unsigned int new_nr = 1 << new_order; 2930 int order = folio_order(folio); 2931 unsigned int nr = 1 << order; 2932 2933 /* complete memcg works before add pages to LRU */ 2934 split_page_memcg(head, order, new_order); 2935 2936 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2937 offset = swap_cache_index(folio->swap); 2938 swap_cache = swap_address_space(folio->swap); 2939 xa_lock(&swap_cache->i_pages); 2940 } 2941 2942 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2943 lruvec = folio_lruvec_lock(folio); 2944 2945 ClearPageHasHWPoisoned(head); 2946 2947 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2948 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2949 /* Some pages can be beyond EOF: drop them from page cache */ 2950 if (head[i].index >= end) { 2951 struct folio *tail = page_folio(head + i); 2952 2953 if (shmem_mapping(folio->mapping)) 2954 nr_dropped++; 2955 else if (folio_test_clear_dirty(tail)) 2956 folio_account_cleaned(tail, 2957 inode_to_wb(folio->mapping->host)); 2958 __filemap_remove_folio(tail, NULL); 2959 folio_put(tail); 2960 } else if (!PageAnon(page)) { 2961 __xa_store(&folio->mapping->i_pages, head[i].index, 2962 head + i, 0); 2963 } else if (swap_cache) { 2964 __xa_store(&swap_cache->i_pages, offset + i, 2965 head + i, 0); 2966 } 2967 } 2968 2969 if (!new_order) 2970 ClearPageCompound(head); 2971 else { 2972 struct folio *new_folio = (struct folio *)head; 2973 2974 folio_set_order(new_folio, new_order); 2975 } 2976 unlock_page_lruvec(lruvec); 2977 /* Caller disabled irqs, so they are still disabled here */ 2978 2979 split_page_owner(head, order, new_order); 2980 pgalloc_tag_split(head, 1 << order); 2981 2982 /* See comment in __split_huge_page_tail() */ 2983 if (folio_test_anon(folio)) { 2984 /* Additional pin to swap cache */ 2985 if (folio_test_swapcache(folio)) { 2986 folio_ref_add(folio, 1 + new_nr); 2987 xa_unlock(&swap_cache->i_pages); 2988 } else { 2989 folio_ref_inc(folio); 2990 } 2991 } else { 2992 /* Additional pin to page cache */ 2993 folio_ref_add(folio, 1 + new_nr); 2994 xa_unlock(&folio->mapping->i_pages); 2995 } 2996 local_irq_enable(); 2997 2998 if (nr_dropped) 2999 shmem_uncharge(folio->mapping->host, nr_dropped); 3000 remap_page(folio, nr); 3001 3002 /* 3003 * set page to its compound_head when split to non order-0 pages, so 3004 * we can skip unlocking it below, since PG_locked is transferred to 3005 * the compound_head of the page and the caller will unlock it. 3006 */ 3007 if (new_order) 3008 page = compound_head(page); 3009 3010 for (i = 0; i < nr; i += new_nr) { 3011 struct page *subpage = head + i; 3012 struct folio *new_folio = page_folio(subpage); 3013 if (subpage == page) 3014 continue; 3015 folio_unlock(new_folio); 3016 3017 /* 3018 * Subpages may be freed if there wasn't any mapping 3019 * like if add_to_swap() is running on a lru page that 3020 * had its mapping zapped. And freeing these pages 3021 * requires taking the lru_lock so we do the put_page 3022 * of the tail pages after the split is complete. 3023 */ 3024 free_page_and_swap_cache(subpage); 3025 } 3026 } 3027 3028 /* Racy check whether the huge page can be split */ 3029 bool can_split_folio(struct folio *folio, int *pextra_pins) 3030 { 3031 int extra_pins; 3032 3033 /* Additional pins from page cache */ 3034 if (folio_test_anon(folio)) 3035 extra_pins = folio_test_swapcache(folio) ? 3036 folio_nr_pages(folio) : 0; 3037 else 3038 extra_pins = folio_nr_pages(folio); 3039 if (pextra_pins) 3040 *pextra_pins = extra_pins; 3041 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 3042 } 3043 3044 /* 3045 * This function splits a large folio into smaller folios of order @new_order. 3046 * @page can point to any page of the large folio to split. The split operation 3047 * does not change the position of @page. 3048 * 3049 * Prerequisites: 3050 * 3051 * 1) The caller must hold a reference on the @page's owning folio, also known 3052 * as the large folio. 3053 * 3054 * 2) The large folio must be locked. 3055 * 3056 * 3) The folio must not be pinned. Any unexpected folio references, including 3057 * GUP pins, will result in the folio not getting split; instead, the caller 3058 * will receive an -EAGAIN. 3059 * 3060 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3061 * supported for non-file-backed folios, because folio->_deferred_list, which 3062 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3063 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3064 * since they do not use _deferred_list. 3065 * 3066 * After splitting, the caller's folio reference will be transferred to @page, 3067 * resulting in a raised refcount of @page after this call. The other pages may 3068 * be freed if they are not mapped. 3069 * 3070 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3071 * 3072 * Pages in @new_order will inherit the mapping, flags, and so on from the 3073 * huge page. 3074 * 3075 * Returns 0 if the huge page was split successfully. 3076 * 3077 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3078 * the folio was concurrently removed from the page cache. 3079 * 3080 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3081 * under writeback, if fs-specific folio metadata cannot currently be 3082 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3083 * truncation). 3084 * 3085 * Returns -EINVAL when trying to split to an order that is incompatible 3086 * with the folio. Splitting to order 0 is compatible with all folios. 3087 */ 3088 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3089 unsigned int new_order) 3090 { 3091 struct folio *folio = page_folio(page); 3092 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3093 /* reset xarray order to new order after split */ 3094 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3095 struct anon_vma *anon_vma = NULL; 3096 struct address_space *mapping = NULL; 3097 int order = folio_order(folio); 3098 int extra_pins, ret; 3099 pgoff_t end; 3100 bool is_hzp; 3101 3102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3104 3105 if (new_order >= folio_order(folio)) 3106 return -EINVAL; 3107 3108 if (folio_test_anon(folio)) { 3109 /* order-1 is not supported for anonymous THP. */ 3110 if (new_order == 1) { 3111 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3112 return -EINVAL; 3113 } 3114 } else if (new_order) { 3115 /* Split shmem folio to non-zero order not supported */ 3116 if (shmem_mapping(folio->mapping)) { 3117 VM_WARN_ONCE(1, 3118 "Cannot split shmem folio to non-0 order"); 3119 return -EINVAL; 3120 } 3121 /* 3122 * No split if the file system does not support large folio. 3123 * Note that we might still have THPs in such mappings due to 3124 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3125 * does not actually support large folios properly. 3126 */ 3127 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3128 !mapping_large_folio_support(folio->mapping)) { 3129 VM_WARN_ONCE(1, 3130 "Cannot split file folio to non-0 order"); 3131 return -EINVAL; 3132 } 3133 } 3134 3135 /* Only swapping a whole PMD-mapped folio is supported */ 3136 if (folio_test_swapcache(folio) && new_order) 3137 return -EINVAL; 3138 3139 is_hzp = is_huge_zero_folio(folio); 3140 if (is_hzp) { 3141 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3142 return -EBUSY; 3143 } 3144 3145 if (folio_test_writeback(folio)) 3146 return -EBUSY; 3147 3148 if (folio_test_anon(folio)) { 3149 /* 3150 * The caller does not necessarily hold an mmap_lock that would 3151 * prevent the anon_vma disappearing so we first we take a 3152 * reference to it and then lock the anon_vma for write. This 3153 * is similar to folio_lock_anon_vma_read except the write lock 3154 * is taken to serialise against parallel split or collapse 3155 * operations. 3156 */ 3157 anon_vma = folio_get_anon_vma(folio); 3158 if (!anon_vma) { 3159 ret = -EBUSY; 3160 goto out; 3161 } 3162 end = -1; 3163 mapping = NULL; 3164 anon_vma_lock_write(anon_vma); 3165 } else { 3166 gfp_t gfp; 3167 3168 mapping = folio->mapping; 3169 3170 /* Truncated ? */ 3171 if (!mapping) { 3172 ret = -EBUSY; 3173 goto out; 3174 } 3175 3176 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3177 GFP_RECLAIM_MASK); 3178 3179 if (!filemap_release_folio(folio, gfp)) { 3180 ret = -EBUSY; 3181 goto out; 3182 } 3183 3184 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3185 if (xas_error(&xas)) { 3186 ret = xas_error(&xas); 3187 goto out; 3188 } 3189 3190 anon_vma = NULL; 3191 i_mmap_lock_read(mapping); 3192 3193 /* 3194 *__split_huge_page() may need to trim off pages beyond EOF: 3195 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3196 * which cannot be nested inside the page tree lock. So note 3197 * end now: i_size itself may be changed at any moment, but 3198 * folio lock is good enough to serialize the trimming. 3199 */ 3200 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3201 if (shmem_mapping(mapping)) 3202 end = shmem_fallocend(mapping->host, end); 3203 } 3204 3205 /* 3206 * Racy check if we can split the page, before unmap_folio() will 3207 * split PMDs 3208 */ 3209 if (!can_split_folio(folio, &extra_pins)) { 3210 ret = -EAGAIN; 3211 goto out_unlock; 3212 } 3213 3214 unmap_folio(folio); 3215 3216 /* block interrupt reentry in xa_lock and spinlock */ 3217 local_irq_disable(); 3218 if (mapping) { 3219 /* 3220 * Check if the folio is present in page cache. 3221 * We assume all tail are present too, if folio is there. 3222 */ 3223 xas_lock(&xas); 3224 xas_reset(&xas); 3225 if (xas_load(&xas) != folio) 3226 goto fail; 3227 } 3228 3229 /* Prevent deferred_split_scan() touching ->_refcount */ 3230 spin_lock(&ds_queue->split_queue_lock); 3231 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3232 if (folio_order(folio) > 1 && 3233 !list_empty(&folio->_deferred_list)) { 3234 ds_queue->split_queue_len--; 3235 /* 3236 * Reinitialize page_deferred_list after removing the 3237 * page from the split_queue, otherwise a subsequent 3238 * split will see list corruption when checking the 3239 * page_deferred_list. 3240 */ 3241 list_del_init(&folio->_deferred_list); 3242 } 3243 spin_unlock(&ds_queue->split_queue_lock); 3244 if (mapping) { 3245 int nr = folio_nr_pages(folio); 3246 3247 xas_split(&xas, folio, folio_order(folio)); 3248 if (folio_test_pmd_mappable(folio) && 3249 new_order < HPAGE_PMD_ORDER) { 3250 if (folio_test_swapbacked(folio)) { 3251 __lruvec_stat_mod_folio(folio, 3252 NR_SHMEM_THPS, -nr); 3253 } else { 3254 __lruvec_stat_mod_folio(folio, 3255 NR_FILE_THPS, -nr); 3256 filemap_nr_thps_dec(mapping); 3257 } 3258 } 3259 } 3260 3261 __split_huge_page(page, list, end, new_order); 3262 ret = 0; 3263 } else { 3264 spin_unlock(&ds_queue->split_queue_lock); 3265 fail: 3266 if (mapping) 3267 xas_unlock(&xas); 3268 local_irq_enable(); 3269 remap_page(folio, folio_nr_pages(folio)); 3270 ret = -EAGAIN; 3271 } 3272 3273 out_unlock: 3274 if (anon_vma) { 3275 anon_vma_unlock_write(anon_vma); 3276 put_anon_vma(anon_vma); 3277 } 3278 if (mapping) 3279 i_mmap_unlock_read(mapping); 3280 out: 3281 xas_destroy(&xas); 3282 if (order == HPAGE_PMD_ORDER) 3283 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3284 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3285 return ret; 3286 } 3287 3288 void __folio_undo_large_rmappable(struct folio *folio) 3289 { 3290 struct deferred_split *ds_queue; 3291 unsigned long flags; 3292 3293 ds_queue = get_deferred_split_queue(folio); 3294 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3295 if (!list_empty(&folio->_deferred_list)) { 3296 ds_queue->split_queue_len--; 3297 list_del_init(&folio->_deferred_list); 3298 } 3299 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3300 } 3301 3302 void deferred_split_folio(struct folio *folio) 3303 { 3304 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3305 #ifdef CONFIG_MEMCG 3306 struct mem_cgroup *memcg = folio_memcg(folio); 3307 #endif 3308 unsigned long flags; 3309 3310 /* 3311 * Order 1 folios have no space for a deferred list, but we also 3312 * won't waste much memory by not adding them to the deferred list. 3313 */ 3314 if (folio_order(folio) <= 1) 3315 return; 3316 3317 /* 3318 * The try_to_unmap() in page reclaim path might reach here too, 3319 * this may cause a race condition to corrupt deferred split queue. 3320 * And, if page reclaim is already handling the same folio, it is 3321 * unnecessary to handle it again in shrinker. 3322 * 3323 * Check the swapcache flag to determine if the folio is being 3324 * handled by page reclaim since THP swap would add the folio into 3325 * swap cache before calling try_to_unmap(). 3326 */ 3327 if (folio_test_swapcache(folio)) 3328 return; 3329 3330 if (!list_empty(&folio->_deferred_list)) 3331 return; 3332 3333 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3334 if (list_empty(&folio->_deferred_list)) { 3335 if (folio_test_pmd_mappable(folio)) 3336 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3337 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 3338 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3339 ds_queue->split_queue_len++; 3340 #ifdef CONFIG_MEMCG 3341 if (memcg) 3342 set_shrinker_bit(memcg, folio_nid(folio), 3343 deferred_split_shrinker->id); 3344 #endif 3345 } 3346 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3347 } 3348 3349 static unsigned long deferred_split_count(struct shrinker *shrink, 3350 struct shrink_control *sc) 3351 { 3352 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3353 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3354 3355 #ifdef CONFIG_MEMCG 3356 if (sc->memcg) 3357 ds_queue = &sc->memcg->deferred_split_queue; 3358 #endif 3359 return READ_ONCE(ds_queue->split_queue_len); 3360 } 3361 3362 static unsigned long deferred_split_scan(struct shrinker *shrink, 3363 struct shrink_control *sc) 3364 { 3365 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3366 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3367 unsigned long flags; 3368 LIST_HEAD(list); 3369 struct folio *folio, *next; 3370 int split = 0; 3371 3372 #ifdef CONFIG_MEMCG 3373 if (sc->memcg) 3374 ds_queue = &sc->memcg->deferred_split_queue; 3375 #endif 3376 3377 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3378 /* Take pin on all head pages to avoid freeing them under us */ 3379 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3380 _deferred_list) { 3381 if (folio_try_get(folio)) { 3382 list_move(&folio->_deferred_list, &list); 3383 } else { 3384 /* We lost race with folio_put() */ 3385 list_del_init(&folio->_deferred_list); 3386 ds_queue->split_queue_len--; 3387 } 3388 if (!--sc->nr_to_scan) 3389 break; 3390 } 3391 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3392 3393 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3394 if (!folio_trylock(folio)) 3395 goto next; 3396 /* split_huge_page() removes page from list on success */ 3397 if (!split_folio(folio)) 3398 split++; 3399 folio_unlock(folio); 3400 next: 3401 folio_put(folio); 3402 } 3403 3404 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3405 list_splice_tail(&list, &ds_queue->split_queue); 3406 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3407 3408 /* 3409 * Stop shrinker if we didn't split any page, but the queue is empty. 3410 * This can happen if pages were freed under us. 3411 */ 3412 if (!split && list_empty(&ds_queue->split_queue)) 3413 return SHRINK_STOP; 3414 return split; 3415 } 3416 3417 #ifdef CONFIG_DEBUG_FS 3418 static void split_huge_pages_all(void) 3419 { 3420 struct zone *zone; 3421 struct page *page; 3422 struct folio *folio; 3423 unsigned long pfn, max_zone_pfn; 3424 unsigned long total = 0, split = 0; 3425 3426 pr_debug("Split all THPs\n"); 3427 for_each_zone(zone) { 3428 if (!managed_zone(zone)) 3429 continue; 3430 max_zone_pfn = zone_end_pfn(zone); 3431 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3432 int nr_pages; 3433 3434 page = pfn_to_online_page(pfn); 3435 if (!page || PageTail(page)) 3436 continue; 3437 folio = page_folio(page); 3438 if (!folio_try_get(folio)) 3439 continue; 3440 3441 if (unlikely(page_folio(page) != folio)) 3442 goto next; 3443 3444 if (zone != folio_zone(folio)) 3445 goto next; 3446 3447 if (!folio_test_large(folio) 3448 || folio_test_hugetlb(folio) 3449 || !folio_test_lru(folio)) 3450 goto next; 3451 3452 total++; 3453 folio_lock(folio); 3454 nr_pages = folio_nr_pages(folio); 3455 if (!split_folio(folio)) 3456 split++; 3457 pfn += nr_pages - 1; 3458 folio_unlock(folio); 3459 next: 3460 folio_put(folio); 3461 cond_resched(); 3462 } 3463 } 3464 3465 pr_debug("%lu of %lu THP split\n", split, total); 3466 } 3467 3468 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3469 { 3470 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3471 is_vm_hugetlb_page(vma); 3472 } 3473 3474 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3475 unsigned long vaddr_end, unsigned int new_order) 3476 { 3477 int ret = 0; 3478 struct task_struct *task; 3479 struct mm_struct *mm; 3480 unsigned long total = 0, split = 0; 3481 unsigned long addr; 3482 3483 vaddr_start &= PAGE_MASK; 3484 vaddr_end &= PAGE_MASK; 3485 3486 /* Find the task_struct from pid */ 3487 rcu_read_lock(); 3488 task = find_task_by_vpid(pid); 3489 if (!task) { 3490 rcu_read_unlock(); 3491 ret = -ESRCH; 3492 goto out; 3493 } 3494 get_task_struct(task); 3495 rcu_read_unlock(); 3496 3497 /* Find the mm_struct */ 3498 mm = get_task_mm(task); 3499 put_task_struct(task); 3500 3501 if (!mm) { 3502 ret = -EINVAL; 3503 goto out; 3504 } 3505 3506 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3507 pid, vaddr_start, vaddr_end); 3508 3509 mmap_read_lock(mm); 3510 /* 3511 * always increase addr by PAGE_SIZE, since we could have a PTE page 3512 * table filled with PTE-mapped THPs, each of which is distinct. 3513 */ 3514 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3515 struct vm_area_struct *vma = vma_lookup(mm, addr); 3516 struct page *page; 3517 struct folio *folio; 3518 3519 if (!vma) 3520 break; 3521 3522 /* skip special VMA and hugetlb VMA */ 3523 if (vma_not_suitable_for_thp_split(vma)) { 3524 addr = vma->vm_end; 3525 continue; 3526 } 3527 3528 /* FOLL_DUMP to ignore special (like zero) pages */ 3529 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3530 3531 if (IS_ERR_OR_NULL(page)) 3532 continue; 3533 3534 folio = page_folio(page); 3535 if (!is_transparent_hugepage(folio)) 3536 goto next; 3537 3538 if (new_order >= folio_order(folio)) 3539 goto next; 3540 3541 total++; 3542 /* 3543 * For folios with private, split_huge_page_to_list_to_order() 3544 * will try to drop it before split and then check if the folio 3545 * can be split or not. So skip the check here. 3546 */ 3547 if (!folio_test_private(folio) && 3548 !can_split_folio(folio, NULL)) 3549 goto next; 3550 3551 if (!folio_trylock(folio)) 3552 goto next; 3553 3554 if (!split_folio_to_order(folio, new_order)) 3555 split++; 3556 3557 folio_unlock(folio); 3558 next: 3559 folio_put(folio); 3560 cond_resched(); 3561 } 3562 mmap_read_unlock(mm); 3563 mmput(mm); 3564 3565 pr_debug("%lu of %lu THP split\n", split, total); 3566 3567 out: 3568 return ret; 3569 } 3570 3571 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3572 pgoff_t off_end, unsigned int new_order) 3573 { 3574 struct filename *file; 3575 struct file *candidate; 3576 struct address_space *mapping; 3577 int ret = -EINVAL; 3578 pgoff_t index; 3579 int nr_pages = 1; 3580 unsigned long total = 0, split = 0; 3581 3582 file = getname_kernel(file_path); 3583 if (IS_ERR(file)) 3584 return ret; 3585 3586 candidate = file_open_name(file, O_RDONLY, 0); 3587 if (IS_ERR(candidate)) 3588 goto out; 3589 3590 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3591 file_path, off_start, off_end); 3592 3593 mapping = candidate->f_mapping; 3594 3595 for (index = off_start; index < off_end; index += nr_pages) { 3596 struct folio *folio = filemap_get_folio(mapping, index); 3597 3598 nr_pages = 1; 3599 if (IS_ERR(folio)) 3600 continue; 3601 3602 if (!folio_test_large(folio)) 3603 goto next; 3604 3605 total++; 3606 nr_pages = folio_nr_pages(folio); 3607 3608 if (new_order >= folio_order(folio)) 3609 goto next; 3610 3611 if (!folio_trylock(folio)) 3612 goto next; 3613 3614 if (!split_folio_to_order(folio, new_order)) 3615 split++; 3616 3617 folio_unlock(folio); 3618 next: 3619 folio_put(folio); 3620 cond_resched(); 3621 } 3622 3623 filp_close(candidate, NULL); 3624 ret = 0; 3625 3626 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3627 out: 3628 putname(file); 3629 return ret; 3630 } 3631 3632 #define MAX_INPUT_BUF_SZ 255 3633 3634 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3635 size_t count, loff_t *ppops) 3636 { 3637 static DEFINE_MUTEX(split_debug_mutex); 3638 ssize_t ret; 3639 /* 3640 * hold pid, start_vaddr, end_vaddr, new_order or 3641 * file_path, off_start, off_end, new_order 3642 */ 3643 char input_buf[MAX_INPUT_BUF_SZ]; 3644 int pid; 3645 unsigned long vaddr_start, vaddr_end; 3646 unsigned int new_order = 0; 3647 3648 ret = mutex_lock_interruptible(&split_debug_mutex); 3649 if (ret) 3650 return ret; 3651 3652 ret = -EFAULT; 3653 3654 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3655 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3656 goto out; 3657 3658 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3659 3660 if (input_buf[0] == '/') { 3661 char *tok; 3662 char *buf = input_buf; 3663 char file_path[MAX_INPUT_BUF_SZ]; 3664 pgoff_t off_start = 0, off_end = 0; 3665 size_t input_len = strlen(input_buf); 3666 3667 tok = strsep(&buf, ","); 3668 if (tok) { 3669 strcpy(file_path, tok); 3670 } else { 3671 ret = -EINVAL; 3672 goto out; 3673 } 3674 3675 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3676 if (ret != 2 && ret != 3) { 3677 ret = -EINVAL; 3678 goto out; 3679 } 3680 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3681 if (!ret) 3682 ret = input_len; 3683 3684 goto out; 3685 } 3686 3687 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3688 if (ret == 1 && pid == 1) { 3689 split_huge_pages_all(); 3690 ret = strlen(input_buf); 3691 goto out; 3692 } else if (ret != 3 && ret != 4) { 3693 ret = -EINVAL; 3694 goto out; 3695 } 3696 3697 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3698 if (!ret) 3699 ret = strlen(input_buf); 3700 out: 3701 mutex_unlock(&split_debug_mutex); 3702 return ret; 3703 3704 } 3705 3706 static const struct file_operations split_huge_pages_fops = { 3707 .owner = THIS_MODULE, 3708 .write = split_huge_pages_write, 3709 .llseek = no_llseek, 3710 }; 3711 3712 static int __init split_huge_pages_debugfs(void) 3713 { 3714 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3715 &split_huge_pages_fops); 3716 return 0; 3717 } 3718 late_initcall(split_huge_pages_debugfs); 3719 #endif 3720 3721 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3722 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3723 struct page *page) 3724 { 3725 struct folio *folio = page_folio(page); 3726 struct vm_area_struct *vma = pvmw->vma; 3727 struct mm_struct *mm = vma->vm_mm; 3728 unsigned long address = pvmw->address; 3729 bool anon_exclusive; 3730 pmd_t pmdval; 3731 swp_entry_t entry; 3732 pmd_t pmdswp; 3733 3734 if (!(pvmw->pmd && !pvmw->pte)) 3735 return 0; 3736 3737 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3738 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3739 3740 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3741 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3742 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3743 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3744 return -EBUSY; 3745 } 3746 3747 if (pmd_dirty(pmdval)) 3748 folio_mark_dirty(folio); 3749 if (pmd_write(pmdval)) 3750 entry = make_writable_migration_entry(page_to_pfn(page)); 3751 else if (anon_exclusive) 3752 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3753 else 3754 entry = make_readable_migration_entry(page_to_pfn(page)); 3755 if (pmd_young(pmdval)) 3756 entry = make_migration_entry_young(entry); 3757 if (pmd_dirty(pmdval)) 3758 entry = make_migration_entry_dirty(entry); 3759 pmdswp = swp_entry_to_pmd(entry); 3760 if (pmd_soft_dirty(pmdval)) 3761 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3762 if (pmd_uffd_wp(pmdval)) 3763 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3764 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3765 folio_remove_rmap_pmd(folio, page, vma); 3766 folio_put(folio); 3767 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3768 3769 return 0; 3770 } 3771 3772 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3773 { 3774 struct folio *folio = page_folio(new); 3775 struct vm_area_struct *vma = pvmw->vma; 3776 struct mm_struct *mm = vma->vm_mm; 3777 unsigned long address = pvmw->address; 3778 unsigned long haddr = address & HPAGE_PMD_MASK; 3779 pmd_t pmde; 3780 swp_entry_t entry; 3781 3782 if (!(pvmw->pmd && !pvmw->pte)) 3783 return; 3784 3785 entry = pmd_to_swp_entry(*pvmw->pmd); 3786 folio_get(folio); 3787 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3788 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3789 pmde = pmd_mksoft_dirty(pmde); 3790 if (is_writable_migration_entry(entry)) 3791 pmde = pmd_mkwrite(pmde, vma); 3792 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3793 pmde = pmd_mkuffd_wp(pmde); 3794 if (!is_migration_entry_young(entry)) 3795 pmde = pmd_mkold(pmde); 3796 /* NOTE: this may contain setting soft-dirty on some archs */ 3797 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3798 pmde = pmd_mkdirty(pmde); 3799 3800 if (folio_test_anon(folio)) { 3801 rmap_t rmap_flags = RMAP_NONE; 3802 3803 if (!is_readable_migration_entry(entry)) 3804 rmap_flags |= RMAP_EXCLUSIVE; 3805 3806 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3807 } else { 3808 folio_add_file_rmap_pmd(folio, new, vma); 3809 } 3810 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3811 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3812 3813 /* No need to invalidate - it was non-present before */ 3814 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3815 trace_remove_migration_pmd(address, pmd_val(pmde)); 3816 } 3817 #endif 3818