xref: /linux/mm/huge_memory.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27 
28 /*
29  * By default transparent hugepage support is enabled for all mappings
30  * and khugepaged scans all mappings. Defrag is only invoked by
31  * khugepaged hugepage allocations and by page faults inside
32  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
33  * allocations.
34  */
35 unsigned long transparent_hugepage_flags __read_mostly =
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
37 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
38 #endif
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
40 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
41 #endif
42 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
43 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
44 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
45 
46 /* default scan 8*512 pte (or vmas) every 30 second */
47 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
48 static unsigned int khugepaged_pages_collapsed;
49 static unsigned int khugepaged_full_scans;
50 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
51 /* during fragmentation poll the hugepage allocator once every minute */
52 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
53 static struct task_struct *khugepaged_thread __read_mostly;
54 static DEFINE_MUTEX(khugepaged_mutex);
55 static DEFINE_SPINLOCK(khugepaged_mm_lock);
56 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
57 /*
58  * default collapse hugepages if there is at least one pte mapped like
59  * it would have happened if the vma was large enough during page
60  * fault.
61  */
62 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
63 
64 static int khugepaged(void *none);
65 static int mm_slots_hash_init(void);
66 static int khugepaged_slab_init(void);
67 static void khugepaged_slab_free(void);
68 
69 #define MM_SLOTS_HASH_HEADS 1024
70 static struct hlist_head *mm_slots_hash __read_mostly;
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72 
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80 	struct hlist_node hash;
81 	struct list_head mm_node;
82 	struct mm_struct *mm;
83 };
84 
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94 	struct list_head mm_head;
95 	struct mm_slot *mm_slot;
96 	unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101 
102 
103 static int set_recommended_min_free_kbytes(void)
104 {
105 	struct zone *zone;
106 	int nr_zones = 0;
107 	unsigned long recommended_min;
108 	extern int min_free_kbytes;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes)
134 		min_free_kbytes = recommended_min;
135 	setup_per_zone_wmarks();
136 	return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139 
140 static int start_khugepaged(void)
141 {
142 	int err = 0;
143 	if (khugepaged_enabled()) {
144 		if (!khugepaged_thread)
145 			khugepaged_thread = kthread_run(khugepaged, NULL,
146 							"khugepaged");
147 		if (unlikely(IS_ERR(khugepaged_thread))) {
148 			printk(KERN_ERR
149 			       "khugepaged: kthread_run(khugepaged) failed\n");
150 			err = PTR_ERR(khugepaged_thread);
151 			khugepaged_thread = NULL;
152 		}
153 
154 		if (!list_empty(&khugepaged_scan.mm_head))
155 			wake_up_interruptible(&khugepaged_wait);
156 
157 		set_recommended_min_free_kbytes();
158 	} else if (khugepaged_thread) {
159 		kthread_stop(khugepaged_thread);
160 		khugepaged_thread = NULL;
161 	}
162 
163 	return err;
164 }
165 
166 static atomic_t huge_zero_refcount;
167 static unsigned long huge_zero_pfn __read_mostly;
168 
169 static inline bool is_huge_zero_pfn(unsigned long pfn)
170 {
171 	unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
172 	return zero_pfn && pfn == zero_pfn;
173 }
174 
175 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 {
177 	return is_huge_zero_pfn(pmd_pfn(pmd));
178 }
179 
180 static unsigned long get_huge_zero_page(void)
181 {
182 	struct page *zero_page;
183 retry:
184 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
185 		return ACCESS_ONCE(huge_zero_pfn);
186 
187 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
188 			HPAGE_PMD_ORDER);
189 	if (!zero_page) {
190 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
191 		return 0;
192 	}
193 	count_vm_event(THP_ZERO_PAGE_ALLOC);
194 	preempt_disable();
195 	if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
196 		preempt_enable();
197 		__free_page(zero_page);
198 		goto retry;
199 	}
200 
201 	/* We take additional reference here. It will be put back by shrinker */
202 	atomic_set(&huge_zero_refcount, 2);
203 	preempt_enable();
204 	return ACCESS_ONCE(huge_zero_pfn);
205 }
206 
207 static void put_huge_zero_page(void)
208 {
209 	/*
210 	 * Counter should never go to zero here. Only shrinker can put
211 	 * last reference.
212 	 */
213 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
214 }
215 
216 static int shrink_huge_zero_page(struct shrinker *shrink,
217 		struct shrink_control *sc)
218 {
219 	if (!sc->nr_to_scan)
220 		/* we can free zero page only if last reference remains */
221 		return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 
223 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
224 		unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
225 		BUG_ON(zero_pfn == 0);
226 		__free_page(__pfn_to_page(zero_pfn));
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.shrink = shrink_huge_zero_page,
234 	.seeks = DEFAULT_SEEKS,
235 };
236 
237 #ifdef CONFIG_SYSFS
238 
239 static ssize_t double_flag_show(struct kobject *kobj,
240 				struct kobj_attribute *attr, char *buf,
241 				enum transparent_hugepage_flag enabled,
242 				enum transparent_hugepage_flag req_madv)
243 {
244 	if (test_bit(enabled, &transparent_hugepage_flags)) {
245 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
246 		return sprintf(buf, "[always] madvise never\n");
247 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
248 		return sprintf(buf, "always [madvise] never\n");
249 	else
250 		return sprintf(buf, "always madvise [never]\n");
251 }
252 static ssize_t double_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag enabled,
256 				 enum transparent_hugepage_flag req_madv)
257 {
258 	if (!memcmp("always", buf,
259 		    min(sizeof("always")-1, count))) {
260 		set_bit(enabled, &transparent_hugepage_flags);
261 		clear_bit(req_madv, &transparent_hugepage_flags);
262 	} else if (!memcmp("madvise", buf,
263 			   min(sizeof("madvise")-1, count))) {
264 		clear_bit(enabled, &transparent_hugepage_flags);
265 		set_bit(req_madv, &transparent_hugepage_flags);
266 	} else if (!memcmp("never", buf,
267 			   min(sizeof("never")-1, count))) {
268 		clear_bit(enabled, &transparent_hugepage_flags);
269 		clear_bit(req_madv, &transparent_hugepage_flags);
270 	} else
271 		return -EINVAL;
272 
273 	return count;
274 }
275 
276 static ssize_t enabled_show(struct kobject *kobj,
277 			    struct kobj_attribute *attr, char *buf)
278 {
279 	return double_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_FLAG,
281 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
282 }
283 static ssize_t enabled_store(struct kobject *kobj,
284 			     struct kobj_attribute *attr,
285 			     const char *buf, size_t count)
286 {
287 	ssize_t ret;
288 
289 	ret = double_flag_store(kobj, attr, buf, count,
290 				TRANSPARENT_HUGEPAGE_FLAG,
291 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 
293 	if (ret > 0) {
294 		int err;
295 
296 		mutex_lock(&khugepaged_mutex);
297 		err = start_khugepaged();
298 		mutex_unlock(&khugepaged_mutex);
299 
300 		if (err)
301 			ret = err;
302 	}
303 
304 	return ret;
305 }
306 static struct kobj_attribute enabled_attr =
307 	__ATTR(enabled, 0644, enabled_show, enabled_store);
308 
309 static ssize_t single_flag_show(struct kobject *kobj,
310 				struct kobj_attribute *attr, char *buf,
311 				enum transparent_hugepage_flag flag)
312 {
313 	return sprintf(buf, "%d\n",
314 		       !!test_bit(flag, &transparent_hugepage_flags));
315 }
316 
317 static ssize_t single_flag_store(struct kobject *kobj,
318 				 struct kobj_attribute *attr,
319 				 const char *buf, size_t count,
320 				 enum transparent_hugepage_flag flag)
321 {
322 	unsigned long value;
323 	int ret;
324 
325 	ret = kstrtoul(buf, 10, &value);
326 	if (ret < 0)
327 		return ret;
328 	if (value > 1)
329 		return -EINVAL;
330 
331 	if (value)
332 		set_bit(flag, &transparent_hugepage_flags);
333 	else
334 		clear_bit(flag, &transparent_hugepage_flags);
335 
336 	return count;
337 }
338 
339 /*
340  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
341  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
342  * memory just to allocate one more hugepage.
343  */
344 static ssize_t defrag_show(struct kobject *kobj,
345 			   struct kobj_attribute *attr, char *buf)
346 {
347 	return double_flag_show(kobj, attr, buf,
348 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
349 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
350 }
351 static ssize_t defrag_store(struct kobject *kobj,
352 			    struct kobj_attribute *attr,
353 			    const char *buf, size_t count)
354 {
355 	return double_flag_store(kobj, attr, buf, count,
356 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
357 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
358 }
359 static struct kobj_attribute defrag_attr =
360 	__ATTR(defrag, 0644, defrag_show, defrag_store);
361 
362 static ssize_t use_zero_page_show(struct kobject *kobj,
363 		struct kobj_attribute *attr, char *buf)
364 {
365 	return single_flag_show(kobj, attr, buf,
366 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
367 }
368 static ssize_t use_zero_page_store(struct kobject *kobj,
369 		struct kobj_attribute *attr, const char *buf, size_t count)
370 {
371 	return single_flag_store(kobj, attr, buf, count,
372 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static struct kobj_attribute use_zero_page_attr =
375 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
376 #ifdef CONFIG_DEBUG_VM
377 static ssize_t debug_cow_show(struct kobject *kobj,
378 				struct kobj_attribute *attr, char *buf)
379 {
380 	return single_flag_show(kobj, attr, buf,
381 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
382 }
383 static ssize_t debug_cow_store(struct kobject *kobj,
384 			       struct kobj_attribute *attr,
385 			       const char *buf, size_t count)
386 {
387 	return single_flag_store(kobj, attr, buf, count,
388 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 }
390 static struct kobj_attribute debug_cow_attr =
391 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
392 #endif /* CONFIG_DEBUG_VM */
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 #ifdef CONFIG_DEBUG_VM
399 	&debug_cow_attr.attr,
400 #endif
401 	NULL,
402 };
403 
404 static struct attribute_group hugepage_attr_group = {
405 	.attrs = hugepage_attr,
406 };
407 
408 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
409 					 struct kobj_attribute *attr,
410 					 char *buf)
411 {
412 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
413 }
414 
415 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
416 					  struct kobj_attribute *attr,
417 					  const char *buf, size_t count)
418 {
419 	unsigned long msecs;
420 	int err;
421 
422 	err = strict_strtoul(buf, 10, &msecs);
423 	if (err || msecs > UINT_MAX)
424 		return -EINVAL;
425 
426 	khugepaged_scan_sleep_millisecs = msecs;
427 	wake_up_interruptible(&khugepaged_wait);
428 
429 	return count;
430 }
431 static struct kobj_attribute scan_sleep_millisecs_attr =
432 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
433 	       scan_sleep_millisecs_store);
434 
435 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
436 					  struct kobj_attribute *attr,
437 					  char *buf)
438 {
439 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
440 }
441 
442 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
443 					   struct kobj_attribute *attr,
444 					   const char *buf, size_t count)
445 {
446 	unsigned long msecs;
447 	int err;
448 
449 	err = strict_strtoul(buf, 10, &msecs);
450 	if (err || msecs > UINT_MAX)
451 		return -EINVAL;
452 
453 	khugepaged_alloc_sleep_millisecs = msecs;
454 	wake_up_interruptible(&khugepaged_wait);
455 
456 	return count;
457 }
458 static struct kobj_attribute alloc_sleep_millisecs_attr =
459 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
460 	       alloc_sleep_millisecs_store);
461 
462 static ssize_t pages_to_scan_show(struct kobject *kobj,
463 				  struct kobj_attribute *attr,
464 				  char *buf)
465 {
466 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
467 }
468 static ssize_t pages_to_scan_store(struct kobject *kobj,
469 				   struct kobj_attribute *attr,
470 				   const char *buf, size_t count)
471 {
472 	int err;
473 	unsigned long pages;
474 
475 	err = strict_strtoul(buf, 10, &pages);
476 	if (err || !pages || pages > UINT_MAX)
477 		return -EINVAL;
478 
479 	khugepaged_pages_to_scan = pages;
480 
481 	return count;
482 }
483 static struct kobj_attribute pages_to_scan_attr =
484 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
485 	       pages_to_scan_store);
486 
487 static ssize_t pages_collapsed_show(struct kobject *kobj,
488 				    struct kobj_attribute *attr,
489 				    char *buf)
490 {
491 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
492 }
493 static struct kobj_attribute pages_collapsed_attr =
494 	__ATTR_RO(pages_collapsed);
495 
496 static ssize_t full_scans_show(struct kobject *kobj,
497 			       struct kobj_attribute *attr,
498 			       char *buf)
499 {
500 	return sprintf(buf, "%u\n", khugepaged_full_scans);
501 }
502 static struct kobj_attribute full_scans_attr =
503 	__ATTR_RO(full_scans);
504 
505 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
506 				      struct kobj_attribute *attr, char *buf)
507 {
508 	return single_flag_show(kobj, attr, buf,
509 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
510 }
511 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
512 				       struct kobj_attribute *attr,
513 				       const char *buf, size_t count)
514 {
515 	return single_flag_store(kobj, attr, buf, count,
516 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 }
518 static struct kobj_attribute khugepaged_defrag_attr =
519 	__ATTR(defrag, 0644, khugepaged_defrag_show,
520 	       khugepaged_defrag_store);
521 
522 /*
523  * max_ptes_none controls if khugepaged should collapse hugepages over
524  * any unmapped ptes in turn potentially increasing the memory
525  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
526  * reduce the available free memory in the system as it
527  * runs. Increasing max_ptes_none will instead potentially reduce the
528  * free memory in the system during the khugepaged scan.
529  */
530 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
531 					     struct kobj_attribute *attr,
532 					     char *buf)
533 {
534 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
535 }
536 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
537 					      struct kobj_attribute *attr,
538 					      const char *buf, size_t count)
539 {
540 	int err;
541 	unsigned long max_ptes_none;
542 
543 	err = strict_strtoul(buf, 10, &max_ptes_none);
544 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
545 		return -EINVAL;
546 
547 	khugepaged_max_ptes_none = max_ptes_none;
548 
549 	return count;
550 }
551 static struct kobj_attribute khugepaged_max_ptes_none_attr =
552 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
553 	       khugepaged_max_ptes_none_store);
554 
555 static struct attribute *khugepaged_attr[] = {
556 	&khugepaged_defrag_attr.attr,
557 	&khugepaged_max_ptes_none_attr.attr,
558 	&pages_to_scan_attr.attr,
559 	&pages_collapsed_attr.attr,
560 	&full_scans_attr.attr,
561 	&scan_sleep_millisecs_attr.attr,
562 	&alloc_sleep_millisecs_attr.attr,
563 	NULL,
564 };
565 
566 static struct attribute_group khugepaged_attr_group = {
567 	.attrs = khugepaged_attr,
568 	.name = "khugepaged",
569 };
570 
571 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
572 {
573 	int err;
574 
575 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
576 	if (unlikely(!*hugepage_kobj)) {
577 		printk(KERN_ERR "hugepage: failed kobject create\n");
578 		return -ENOMEM;
579 	}
580 
581 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
582 	if (err) {
583 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
584 		goto delete_obj;
585 	}
586 
587 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
588 	if (err) {
589 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
590 		goto remove_hp_group;
591 	}
592 
593 	return 0;
594 
595 remove_hp_group:
596 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
597 delete_obj:
598 	kobject_put(*hugepage_kobj);
599 	return err;
600 }
601 
602 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
603 {
604 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
605 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
606 	kobject_put(hugepage_kobj);
607 }
608 #else
609 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
610 {
611 	return 0;
612 }
613 
614 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
615 {
616 }
617 #endif /* CONFIG_SYSFS */
618 
619 static int __init hugepage_init(void)
620 {
621 	int err;
622 	struct kobject *hugepage_kobj;
623 
624 	if (!has_transparent_hugepage()) {
625 		transparent_hugepage_flags = 0;
626 		return -EINVAL;
627 	}
628 
629 	err = hugepage_init_sysfs(&hugepage_kobj);
630 	if (err)
631 		return err;
632 
633 	err = khugepaged_slab_init();
634 	if (err)
635 		goto out;
636 
637 	err = mm_slots_hash_init();
638 	if (err) {
639 		khugepaged_slab_free();
640 		goto out;
641 	}
642 
643 	register_shrinker(&huge_zero_page_shrinker);
644 
645 	/*
646 	 * By default disable transparent hugepages on smaller systems,
647 	 * where the extra memory used could hurt more than TLB overhead
648 	 * is likely to save.  The admin can still enable it through /sys.
649 	 */
650 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 		transparent_hugepage_flags = 0;
652 
653 	start_khugepaged();
654 
655 	return 0;
656 out:
657 	hugepage_exit_sysfs(hugepage_kobj);
658 	return err;
659 }
660 module_init(hugepage_init)
661 
662 static int __init setup_transparent_hugepage(char *str)
663 {
664 	int ret = 0;
665 	if (!str)
666 		goto out;
667 	if (!strcmp(str, "always")) {
668 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 			&transparent_hugepage_flags);
670 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 			  &transparent_hugepage_flags);
672 		ret = 1;
673 	} else if (!strcmp(str, "madvise")) {
674 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 			  &transparent_hugepage_flags);
676 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 			&transparent_hugepage_flags);
678 		ret = 1;
679 	} else if (!strcmp(str, "never")) {
680 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 			  &transparent_hugepage_flags);
682 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 			  &transparent_hugepage_flags);
684 		ret = 1;
685 	}
686 out:
687 	if (!ret)
688 		printk(KERN_WARNING
689 		       "transparent_hugepage= cannot parse, ignored\n");
690 	return ret;
691 }
692 __setup("transparent_hugepage=", setup_transparent_hugepage);
693 
694 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
695 {
696 	if (likely(vma->vm_flags & VM_WRITE))
697 		pmd = pmd_mkwrite(pmd);
698 	return pmd;
699 }
700 
701 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
702 {
703 	pmd_t entry;
704 	entry = mk_pmd(page, vma->vm_page_prot);
705 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 	entry = pmd_mkhuge(entry);
707 	return entry;
708 }
709 
710 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
711 					struct vm_area_struct *vma,
712 					unsigned long haddr, pmd_t *pmd,
713 					struct page *page)
714 {
715 	pgtable_t pgtable;
716 
717 	VM_BUG_ON(!PageCompound(page));
718 	pgtable = pte_alloc_one(mm, haddr);
719 	if (unlikely(!pgtable))
720 		return VM_FAULT_OOM;
721 
722 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
723 	__SetPageUptodate(page);
724 
725 	spin_lock(&mm->page_table_lock);
726 	if (unlikely(!pmd_none(*pmd))) {
727 		spin_unlock(&mm->page_table_lock);
728 		mem_cgroup_uncharge_page(page);
729 		put_page(page);
730 		pte_free(mm, pgtable);
731 	} else {
732 		pmd_t entry;
733 		entry = mk_huge_pmd(page, vma);
734 		/*
735 		 * The spinlocking to take the lru_lock inside
736 		 * page_add_new_anon_rmap() acts as a full memory
737 		 * barrier to be sure clear_huge_page writes become
738 		 * visible after the set_pmd_at() write.
739 		 */
740 		page_add_new_anon_rmap(page, vma, haddr);
741 		set_pmd_at(mm, haddr, pmd, entry);
742 		pgtable_trans_huge_deposit(mm, pgtable);
743 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
744 		mm->nr_ptes++;
745 		spin_unlock(&mm->page_table_lock);
746 	}
747 
748 	return 0;
749 }
750 
751 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
752 {
753 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
754 }
755 
756 static inline struct page *alloc_hugepage_vma(int defrag,
757 					      struct vm_area_struct *vma,
758 					      unsigned long haddr, int nd,
759 					      gfp_t extra_gfp)
760 {
761 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
762 			       HPAGE_PMD_ORDER, vma, haddr, nd);
763 }
764 
765 #ifndef CONFIG_NUMA
766 static inline struct page *alloc_hugepage(int defrag)
767 {
768 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
769 			   HPAGE_PMD_ORDER);
770 }
771 #endif
772 
773 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
774 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
775 		unsigned long zero_pfn)
776 {
777 	pmd_t entry;
778 	if (!pmd_none(*pmd))
779 		return false;
780 	entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
781 	entry = pmd_wrprotect(entry);
782 	entry = pmd_mkhuge(entry);
783 	set_pmd_at(mm, haddr, pmd, entry);
784 	pgtable_trans_huge_deposit(mm, pgtable);
785 	mm->nr_ptes++;
786 	return true;
787 }
788 
789 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
790 			       unsigned long address, pmd_t *pmd,
791 			       unsigned int flags)
792 {
793 	struct page *page;
794 	unsigned long haddr = address & HPAGE_PMD_MASK;
795 	pte_t *pte;
796 
797 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
798 		if (unlikely(anon_vma_prepare(vma)))
799 			return VM_FAULT_OOM;
800 		if (unlikely(khugepaged_enter(vma)))
801 			return VM_FAULT_OOM;
802 		if (!(flags & FAULT_FLAG_WRITE) &&
803 				transparent_hugepage_use_zero_page()) {
804 			pgtable_t pgtable;
805 			unsigned long zero_pfn;
806 			bool set;
807 			pgtable = pte_alloc_one(mm, haddr);
808 			if (unlikely(!pgtable))
809 				return VM_FAULT_OOM;
810 			zero_pfn = get_huge_zero_page();
811 			if (unlikely(!zero_pfn)) {
812 				pte_free(mm, pgtable);
813 				count_vm_event(THP_FAULT_FALLBACK);
814 				goto out;
815 			}
816 			spin_lock(&mm->page_table_lock);
817 			set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
818 					zero_pfn);
819 			spin_unlock(&mm->page_table_lock);
820 			if (!set) {
821 				pte_free(mm, pgtable);
822 				put_huge_zero_page();
823 			}
824 			return 0;
825 		}
826 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
827 					  vma, haddr, numa_node_id(), 0);
828 		if (unlikely(!page)) {
829 			count_vm_event(THP_FAULT_FALLBACK);
830 			goto out;
831 		}
832 		count_vm_event(THP_FAULT_ALLOC);
833 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
834 			put_page(page);
835 			goto out;
836 		}
837 		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
838 							  page))) {
839 			mem_cgroup_uncharge_page(page);
840 			put_page(page);
841 			goto out;
842 		}
843 
844 		return 0;
845 	}
846 out:
847 	/*
848 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
849 	 * run pte_offset_map on the pmd, if an huge pmd could
850 	 * materialize from under us from a different thread.
851 	 */
852 	if (unlikely(pmd_none(*pmd)) &&
853 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
854 		return VM_FAULT_OOM;
855 	/* if an huge pmd materialized from under us just retry later */
856 	if (unlikely(pmd_trans_huge(*pmd)))
857 		return 0;
858 	/*
859 	 * A regular pmd is established and it can't morph into a huge pmd
860 	 * from under us anymore at this point because we hold the mmap_sem
861 	 * read mode and khugepaged takes it in write mode. So now it's
862 	 * safe to run pte_offset_map().
863 	 */
864 	pte = pte_offset_map(pmd, address);
865 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
866 }
867 
868 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
869 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
870 		  struct vm_area_struct *vma)
871 {
872 	struct page *src_page;
873 	pmd_t pmd;
874 	pgtable_t pgtable;
875 	int ret;
876 
877 	ret = -ENOMEM;
878 	pgtable = pte_alloc_one(dst_mm, addr);
879 	if (unlikely(!pgtable))
880 		goto out;
881 
882 	spin_lock(&dst_mm->page_table_lock);
883 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
884 
885 	ret = -EAGAIN;
886 	pmd = *src_pmd;
887 	if (unlikely(!pmd_trans_huge(pmd))) {
888 		pte_free(dst_mm, pgtable);
889 		goto out_unlock;
890 	}
891 	/*
892 	 * mm->page_table_lock is enough to be sure that huge zero pmd is not
893 	 * under splitting since we don't split the page itself, only pmd to
894 	 * a page table.
895 	 */
896 	if (is_huge_zero_pmd(pmd)) {
897 		unsigned long zero_pfn;
898 		bool set;
899 		/*
900 		 * get_huge_zero_page() will never allocate a new page here,
901 		 * since we already have a zero page to copy. It just takes a
902 		 * reference.
903 		 */
904 		zero_pfn = get_huge_zero_page();
905 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
906 				zero_pfn);
907 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
908 		ret = 0;
909 		goto out_unlock;
910 	}
911 	if (unlikely(pmd_trans_splitting(pmd))) {
912 		/* split huge page running from under us */
913 		spin_unlock(&src_mm->page_table_lock);
914 		spin_unlock(&dst_mm->page_table_lock);
915 		pte_free(dst_mm, pgtable);
916 
917 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
918 		goto out;
919 	}
920 	src_page = pmd_page(pmd);
921 	VM_BUG_ON(!PageHead(src_page));
922 	get_page(src_page);
923 	page_dup_rmap(src_page);
924 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
925 
926 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
927 	pmd = pmd_mkold(pmd_wrprotect(pmd));
928 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
929 	pgtable_trans_huge_deposit(dst_mm, pgtable);
930 	dst_mm->nr_ptes++;
931 
932 	ret = 0;
933 out_unlock:
934 	spin_unlock(&src_mm->page_table_lock);
935 	spin_unlock(&dst_mm->page_table_lock);
936 out:
937 	return ret;
938 }
939 
940 void huge_pmd_set_accessed(struct mm_struct *mm,
941 			   struct vm_area_struct *vma,
942 			   unsigned long address,
943 			   pmd_t *pmd, pmd_t orig_pmd,
944 			   int dirty)
945 {
946 	pmd_t entry;
947 	unsigned long haddr;
948 
949 	spin_lock(&mm->page_table_lock);
950 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
951 		goto unlock;
952 
953 	entry = pmd_mkyoung(orig_pmd);
954 	haddr = address & HPAGE_PMD_MASK;
955 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
956 		update_mmu_cache_pmd(vma, address, pmd);
957 
958 unlock:
959 	spin_unlock(&mm->page_table_lock);
960 }
961 
962 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
963 		struct vm_area_struct *vma, unsigned long address,
964 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
965 {
966 	pgtable_t pgtable;
967 	pmd_t _pmd;
968 	struct page *page;
969 	int i, ret = 0;
970 	unsigned long mmun_start;	/* For mmu_notifiers */
971 	unsigned long mmun_end;		/* For mmu_notifiers */
972 
973 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
974 	if (!page) {
975 		ret |= VM_FAULT_OOM;
976 		goto out;
977 	}
978 
979 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
980 		put_page(page);
981 		ret |= VM_FAULT_OOM;
982 		goto out;
983 	}
984 
985 	clear_user_highpage(page, address);
986 	__SetPageUptodate(page);
987 
988 	mmun_start = haddr;
989 	mmun_end   = haddr + HPAGE_PMD_SIZE;
990 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
991 
992 	spin_lock(&mm->page_table_lock);
993 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
994 		goto out_free_page;
995 
996 	pmdp_clear_flush(vma, haddr, pmd);
997 	/* leave pmd empty until pte is filled */
998 
999 	pgtable = pgtable_trans_huge_withdraw(mm);
1000 	pmd_populate(mm, &_pmd, pgtable);
1001 
1002 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1003 		pte_t *pte, entry;
1004 		if (haddr == (address & PAGE_MASK)) {
1005 			entry = mk_pte(page, vma->vm_page_prot);
1006 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1007 			page_add_new_anon_rmap(page, vma, haddr);
1008 		} else {
1009 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1010 			entry = pte_mkspecial(entry);
1011 		}
1012 		pte = pte_offset_map(&_pmd, haddr);
1013 		VM_BUG_ON(!pte_none(*pte));
1014 		set_pte_at(mm, haddr, pte, entry);
1015 		pte_unmap(pte);
1016 	}
1017 	smp_wmb(); /* make pte visible before pmd */
1018 	pmd_populate(mm, pmd, pgtable);
1019 	spin_unlock(&mm->page_table_lock);
1020 	put_huge_zero_page();
1021 	inc_mm_counter(mm, MM_ANONPAGES);
1022 
1023 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1024 
1025 	ret |= VM_FAULT_WRITE;
1026 out:
1027 	return ret;
1028 out_free_page:
1029 	spin_unlock(&mm->page_table_lock);
1030 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1031 	mem_cgroup_uncharge_page(page);
1032 	put_page(page);
1033 	goto out;
1034 }
1035 
1036 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1037 					struct vm_area_struct *vma,
1038 					unsigned long address,
1039 					pmd_t *pmd, pmd_t orig_pmd,
1040 					struct page *page,
1041 					unsigned long haddr)
1042 {
1043 	pgtable_t pgtable;
1044 	pmd_t _pmd;
1045 	int ret = 0, i;
1046 	struct page **pages;
1047 	unsigned long mmun_start;	/* For mmu_notifiers */
1048 	unsigned long mmun_end;		/* For mmu_notifiers */
1049 
1050 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1051 			GFP_KERNEL);
1052 	if (unlikely(!pages)) {
1053 		ret |= VM_FAULT_OOM;
1054 		goto out;
1055 	}
1056 
1057 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1058 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1059 					       __GFP_OTHER_NODE,
1060 					       vma, address, page_to_nid(page));
1061 		if (unlikely(!pages[i] ||
1062 			     mem_cgroup_newpage_charge(pages[i], mm,
1063 						       GFP_KERNEL))) {
1064 			if (pages[i])
1065 				put_page(pages[i]);
1066 			mem_cgroup_uncharge_start();
1067 			while (--i >= 0) {
1068 				mem_cgroup_uncharge_page(pages[i]);
1069 				put_page(pages[i]);
1070 			}
1071 			mem_cgroup_uncharge_end();
1072 			kfree(pages);
1073 			ret |= VM_FAULT_OOM;
1074 			goto out;
1075 		}
1076 	}
1077 
1078 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1079 		copy_user_highpage(pages[i], page + i,
1080 				   haddr + PAGE_SIZE * i, vma);
1081 		__SetPageUptodate(pages[i]);
1082 		cond_resched();
1083 	}
1084 
1085 	mmun_start = haddr;
1086 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1087 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1088 
1089 	spin_lock(&mm->page_table_lock);
1090 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 		goto out_free_pages;
1092 	VM_BUG_ON(!PageHead(page));
1093 
1094 	pmdp_clear_flush(vma, haddr, pmd);
1095 	/* leave pmd empty until pte is filled */
1096 
1097 	pgtable = pgtable_trans_huge_withdraw(mm);
1098 	pmd_populate(mm, &_pmd, pgtable);
1099 
1100 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1101 		pte_t *pte, entry;
1102 		entry = mk_pte(pages[i], vma->vm_page_prot);
1103 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1104 		page_add_new_anon_rmap(pages[i], vma, haddr);
1105 		pte = pte_offset_map(&_pmd, haddr);
1106 		VM_BUG_ON(!pte_none(*pte));
1107 		set_pte_at(mm, haddr, pte, entry);
1108 		pte_unmap(pte);
1109 	}
1110 	kfree(pages);
1111 
1112 	smp_wmb(); /* make pte visible before pmd */
1113 	pmd_populate(mm, pmd, pgtable);
1114 	page_remove_rmap(page);
1115 	spin_unlock(&mm->page_table_lock);
1116 
1117 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1118 
1119 	ret |= VM_FAULT_WRITE;
1120 	put_page(page);
1121 
1122 out:
1123 	return ret;
1124 
1125 out_free_pages:
1126 	spin_unlock(&mm->page_table_lock);
1127 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1128 	mem_cgroup_uncharge_start();
1129 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1130 		mem_cgroup_uncharge_page(pages[i]);
1131 		put_page(pages[i]);
1132 	}
1133 	mem_cgroup_uncharge_end();
1134 	kfree(pages);
1135 	goto out;
1136 }
1137 
1138 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1139 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1140 {
1141 	int ret = 0;
1142 	struct page *page = NULL, *new_page;
1143 	unsigned long haddr;
1144 	unsigned long mmun_start;	/* For mmu_notifiers */
1145 	unsigned long mmun_end;		/* For mmu_notifiers */
1146 
1147 	VM_BUG_ON(!vma->anon_vma);
1148 	haddr = address & HPAGE_PMD_MASK;
1149 	if (is_huge_zero_pmd(orig_pmd))
1150 		goto alloc;
1151 	spin_lock(&mm->page_table_lock);
1152 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1153 		goto out_unlock;
1154 
1155 	page = pmd_page(orig_pmd);
1156 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1157 	if (page_mapcount(page) == 1) {
1158 		pmd_t entry;
1159 		entry = pmd_mkyoung(orig_pmd);
1160 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1161 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1162 			update_mmu_cache_pmd(vma, address, pmd);
1163 		ret |= VM_FAULT_WRITE;
1164 		goto out_unlock;
1165 	}
1166 	get_page(page);
1167 	spin_unlock(&mm->page_table_lock);
1168 alloc:
1169 	if (transparent_hugepage_enabled(vma) &&
1170 	    !transparent_hugepage_debug_cow())
1171 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1172 					      vma, haddr, numa_node_id(), 0);
1173 	else
1174 		new_page = NULL;
1175 
1176 	if (unlikely(!new_page)) {
1177 		count_vm_event(THP_FAULT_FALLBACK);
1178 		if (is_huge_zero_pmd(orig_pmd)) {
1179 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1180 					address, pmd, orig_pmd, haddr);
1181 		} else {
1182 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1183 					pmd, orig_pmd, page, haddr);
1184 			if (ret & VM_FAULT_OOM)
1185 				split_huge_page(page);
1186 			put_page(page);
1187 		}
1188 		goto out;
1189 	}
1190 	count_vm_event(THP_FAULT_ALLOC);
1191 
1192 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1193 		put_page(new_page);
1194 		if (page) {
1195 			split_huge_page(page);
1196 			put_page(page);
1197 		}
1198 		ret |= VM_FAULT_OOM;
1199 		goto out;
1200 	}
1201 
1202 	if (is_huge_zero_pmd(orig_pmd))
1203 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1204 	else
1205 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1206 	__SetPageUptodate(new_page);
1207 
1208 	mmun_start = haddr;
1209 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1210 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1211 
1212 	spin_lock(&mm->page_table_lock);
1213 	if (page)
1214 		put_page(page);
1215 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1216 		spin_unlock(&mm->page_table_lock);
1217 		mem_cgroup_uncharge_page(new_page);
1218 		put_page(new_page);
1219 		goto out_mn;
1220 	} else {
1221 		pmd_t entry;
1222 		entry = mk_huge_pmd(new_page, vma);
1223 		pmdp_clear_flush(vma, haddr, pmd);
1224 		page_add_new_anon_rmap(new_page, vma, haddr);
1225 		set_pmd_at(mm, haddr, pmd, entry);
1226 		update_mmu_cache_pmd(vma, address, pmd);
1227 		if (is_huge_zero_pmd(orig_pmd)) {
1228 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1229 			put_huge_zero_page();
1230 		} else {
1231 			VM_BUG_ON(!PageHead(page));
1232 			page_remove_rmap(page);
1233 			put_page(page);
1234 		}
1235 		ret |= VM_FAULT_WRITE;
1236 	}
1237 	spin_unlock(&mm->page_table_lock);
1238 out_mn:
1239 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1240 out:
1241 	return ret;
1242 out_unlock:
1243 	spin_unlock(&mm->page_table_lock);
1244 	return ret;
1245 }
1246 
1247 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1248 				   unsigned long addr,
1249 				   pmd_t *pmd,
1250 				   unsigned int flags)
1251 {
1252 	struct mm_struct *mm = vma->vm_mm;
1253 	struct page *page = NULL;
1254 
1255 	assert_spin_locked(&mm->page_table_lock);
1256 
1257 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1258 		goto out;
1259 
1260 	page = pmd_page(*pmd);
1261 	VM_BUG_ON(!PageHead(page));
1262 	if (flags & FOLL_TOUCH) {
1263 		pmd_t _pmd;
1264 		/*
1265 		 * We should set the dirty bit only for FOLL_WRITE but
1266 		 * for now the dirty bit in the pmd is meaningless.
1267 		 * And if the dirty bit will become meaningful and
1268 		 * we'll only set it with FOLL_WRITE, an atomic
1269 		 * set_bit will be required on the pmd to set the
1270 		 * young bit, instead of the current set_pmd_at.
1271 		 */
1272 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1273 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1274 	}
1275 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1276 		if (page->mapping && trylock_page(page)) {
1277 			lru_add_drain();
1278 			if (page->mapping)
1279 				mlock_vma_page(page);
1280 			unlock_page(page);
1281 		}
1282 	}
1283 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1284 	VM_BUG_ON(!PageCompound(page));
1285 	if (flags & FOLL_GET)
1286 		get_page_foll(page);
1287 
1288 out:
1289 	return page;
1290 }
1291 
1292 /* NUMA hinting page fault entry point for trans huge pmds */
1293 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1294 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1295 {
1296 	struct page *page;
1297 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1298 	int target_nid;
1299 	int current_nid = -1;
1300 	bool migrated;
1301 	bool page_locked = false;
1302 
1303 	spin_lock(&mm->page_table_lock);
1304 	if (unlikely(!pmd_same(pmd, *pmdp)))
1305 		goto out_unlock;
1306 
1307 	page = pmd_page(pmd);
1308 	get_page(page);
1309 	current_nid = page_to_nid(page);
1310 	count_vm_numa_event(NUMA_HINT_FAULTS);
1311 	if (current_nid == numa_node_id())
1312 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1313 
1314 	target_nid = mpol_misplaced(page, vma, haddr);
1315 	if (target_nid == -1) {
1316 		put_page(page);
1317 		goto clear_pmdnuma;
1318 	}
1319 
1320 	/* Acquire the page lock to serialise THP migrations */
1321 	spin_unlock(&mm->page_table_lock);
1322 	lock_page(page);
1323 	page_locked = true;
1324 
1325 	/* Confirm the PTE did not while locked */
1326 	spin_lock(&mm->page_table_lock);
1327 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1328 		unlock_page(page);
1329 		put_page(page);
1330 		goto out_unlock;
1331 	}
1332 	spin_unlock(&mm->page_table_lock);
1333 
1334 	/* Migrate the THP to the requested node */
1335 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1336 				pmdp, pmd, addr,
1337 				page, target_nid);
1338 	if (migrated)
1339 		current_nid = target_nid;
1340 	else {
1341 		spin_lock(&mm->page_table_lock);
1342 		if (unlikely(!pmd_same(pmd, *pmdp))) {
1343 			unlock_page(page);
1344 			goto out_unlock;
1345 		}
1346 		goto clear_pmdnuma;
1347 	}
1348 
1349 	task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1350 	return 0;
1351 
1352 clear_pmdnuma:
1353 	pmd = pmd_mknonnuma(pmd);
1354 	set_pmd_at(mm, haddr, pmdp, pmd);
1355 	VM_BUG_ON(pmd_numa(*pmdp));
1356 	update_mmu_cache_pmd(vma, addr, pmdp);
1357 	if (page_locked)
1358 		unlock_page(page);
1359 
1360 out_unlock:
1361 	spin_unlock(&mm->page_table_lock);
1362 	if (current_nid != -1)
1363 		task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1364 	return 0;
1365 }
1366 
1367 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1368 		 pmd_t *pmd, unsigned long addr)
1369 {
1370 	int ret = 0;
1371 
1372 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1373 		struct page *page;
1374 		pgtable_t pgtable;
1375 		pmd_t orig_pmd;
1376 		pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1377 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1378 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1379 		if (is_huge_zero_pmd(orig_pmd)) {
1380 			tlb->mm->nr_ptes--;
1381 			spin_unlock(&tlb->mm->page_table_lock);
1382 			put_huge_zero_page();
1383 		} else {
1384 			page = pmd_page(orig_pmd);
1385 			page_remove_rmap(page);
1386 			VM_BUG_ON(page_mapcount(page) < 0);
1387 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1388 			VM_BUG_ON(!PageHead(page));
1389 			tlb->mm->nr_ptes--;
1390 			spin_unlock(&tlb->mm->page_table_lock);
1391 			tlb_remove_page(tlb, page);
1392 		}
1393 		pte_free(tlb->mm, pgtable);
1394 		ret = 1;
1395 	}
1396 	return ret;
1397 }
1398 
1399 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1400 		unsigned long addr, unsigned long end,
1401 		unsigned char *vec)
1402 {
1403 	int ret = 0;
1404 
1405 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1406 		/*
1407 		 * All logical pages in the range are present
1408 		 * if backed by a huge page.
1409 		 */
1410 		spin_unlock(&vma->vm_mm->page_table_lock);
1411 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1412 		ret = 1;
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1419 		  unsigned long old_addr,
1420 		  unsigned long new_addr, unsigned long old_end,
1421 		  pmd_t *old_pmd, pmd_t *new_pmd)
1422 {
1423 	int ret = 0;
1424 	pmd_t pmd;
1425 
1426 	struct mm_struct *mm = vma->vm_mm;
1427 
1428 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1429 	    (new_addr & ~HPAGE_PMD_MASK) ||
1430 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1431 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1432 		goto out;
1433 
1434 	/*
1435 	 * The destination pmd shouldn't be established, free_pgtables()
1436 	 * should have release it.
1437 	 */
1438 	if (WARN_ON(!pmd_none(*new_pmd))) {
1439 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1440 		goto out;
1441 	}
1442 
1443 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1444 	if (ret == 1) {
1445 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1446 		VM_BUG_ON(!pmd_none(*new_pmd));
1447 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1448 		spin_unlock(&mm->page_table_lock);
1449 	}
1450 out:
1451 	return ret;
1452 }
1453 
1454 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455 		unsigned long addr, pgprot_t newprot, int prot_numa)
1456 {
1457 	struct mm_struct *mm = vma->vm_mm;
1458 	int ret = 0;
1459 
1460 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1461 		pmd_t entry;
1462 		entry = pmdp_get_and_clear(mm, addr, pmd);
1463 		if (!prot_numa) {
1464 			entry = pmd_modify(entry, newprot);
1465 			BUG_ON(pmd_write(entry));
1466 		} else {
1467 			struct page *page = pmd_page(*pmd);
1468 
1469 			/* only check non-shared pages */
1470 			if (page_mapcount(page) == 1 &&
1471 			    !pmd_numa(*pmd)) {
1472 				entry = pmd_mknuma(entry);
1473 			}
1474 		}
1475 		set_pmd_at(mm, addr, pmd, entry);
1476 		spin_unlock(&vma->vm_mm->page_table_lock);
1477 		ret = 1;
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 /*
1484  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1485  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1486  *
1487  * Note that if it returns 1, this routine returns without unlocking page
1488  * table locks. So callers must unlock them.
1489  */
1490 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1491 {
1492 	spin_lock(&vma->vm_mm->page_table_lock);
1493 	if (likely(pmd_trans_huge(*pmd))) {
1494 		if (unlikely(pmd_trans_splitting(*pmd))) {
1495 			spin_unlock(&vma->vm_mm->page_table_lock);
1496 			wait_split_huge_page(vma->anon_vma, pmd);
1497 			return -1;
1498 		} else {
1499 			/* Thp mapped by 'pmd' is stable, so we can
1500 			 * handle it as it is. */
1501 			return 1;
1502 		}
1503 	}
1504 	spin_unlock(&vma->vm_mm->page_table_lock);
1505 	return 0;
1506 }
1507 
1508 pmd_t *page_check_address_pmd(struct page *page,
1509 			      struct mm_struct *mm,
1510 			      unsigned long address,
1511 			      enum page_check_address_pmd_flag flag)
1512 {
1513 	pmd_t *pmd, *ret = NULL;
1514 
1515 	if (address & ~HPAGE_PMD_MASK)
1516 		goto out;
1517 
1518 	pmd = mm_find_pmd(mm, address);
1519 	if (!pmd)
1520 		goto out;
1521 	if (pmd_none(*pmd))
1522 		goto out;
1523 	if (pmd_page(*pmd) != page)
1524 		goto out;
1525 	/*
1526 	 * split_vma() may create temporary aliased mappings. There is
1527 	 * no risk as long as all huge pmd are found and have their
1528 	 * splitting bit set before __split_huge_page_refcount
1529 	 * runs. Finding the same huge pmd more than once during the
1530 	 * same rmap walk is not a problem.
1531 	 */
1532 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1533 	    pmd_trans_splitting(*pmd))
1534 		goto out;
1535 	if (pmd_trans_huge(*pmd)) {
1536 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1537 			  !pmd_trans_splitting(*pmd));
1538 		ret = pmd;
1539 	}
1540 out:
1541 	return ret;
1542 }
1543 
1544 static int __split_huge_page_splitting(struct page *page,
1545 				       struct vm_area_struct *vma,
1546 				       unsigned long address)
1547 {
1548 	struct mm_struct *mm = vma->vm_mm;
1549 	pmd_t *pmd;
1550 	int ret = 0;
1551 	/* For mmu_notifiers */
1552 	const unsigned long mmun_start = address;
1553 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1554 
1555 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1556 	spin_lock(&mm->page_table_lock);
1557 	pmd = page_check_address_pmd(page, mm, address,
1558 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1559 	if (pmd) {
1560 		/*
1561 		 * We can't temporarily set the pmd to null in order
1562 		 * to split it, the pmd must remain marked huge at all
1563 		 * times or the VM won't take the pmd_trans_huge paths
1564 		 * and it won't wait on the anon_vma->root->rwsem to
1565 		 * serialize against split_huge_page*.
1566 		 */
1567 		pmdp_splitting_flush(vma, address, pmd);
1568 		ret = 1;
1569 	}
1570 	spin_unlock(&mm->page_table_lock);
1571 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1572 
1573 	return ret;
1574 }
1575 
1576 static void __split_huge_page_refcount(struct page *page)
1577 {
1578 	int i;
1579 	struct zone *zone = page_zone(page);
1580 	struct lruvec *lruvec;
1581 	int tail_count = 0;
1582 
1583 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1584 	spin_lock_irq(&zone->lru_lock);
1585 	lruvec = mem_cgroup_page_lruvec(page, zone);
1586 
1587 	compound_lock(page);
1588 	/* complete memcg works before add pages to LRU */
1589 	mem_cgroup_split_huge_fixup(page);
1590 
1591 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1592 		struct page *page_tail = page + i;
1593 
1594 		/* tail_page->_mapcount cannot change */
1595 		BUG_ON(page_mapcount(page_tail) < 0);
1596 		tail_count += page_mapcount(page_tail);
1597 		/* check for overflow */
1598 		BUG_ON(tail_count < 0);
1599 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1600 		/*
1601 		 * tail_page->_count is zero and not changing from
1602 		 * under us. But get_page_unless_zero() may be running
1603 		 * from under us on the tail_page. If we used
1604 		 * atomic_set() below instead of atomic_add(), we
1605 		 * would then run atomic_set() concurrently with
1606 		 * get_page_unless_zero(), and atomic_set() is
1607 		 * implemented in C not using locked ops. spin_unlock
1608 		 * on x86 sometime uses locked ops because of PPro
1609 		 * errata 66, 92, so unless somebody can guarantee
1610 		 * atomic_set() here would be safe on all archs (and
1611 		 * not only on x86), it's safer to use atomic_add().
1612 		 */
1613 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1614 			   &page_tail->_count);
1615 
1616 		/* after clearing PageTail the gup refcount can be released */
1617 		smp_mb();
1618 
1619 		/*
1620 		 * retain hwpoison flag of the poisoned tail page:
1621 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1622 		 *   by the memory-failure.
1623 		 */
1624 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1625 		page_tail->flags |= (page->flags &
1626 				     ((1L << PG_referenced) |
1627 				      (1L << PG_swapbacked) |
1628 				      (1L << PG_mlocked) |
1629 				      (1L << PG_uptodate)));
1630 		page_tail->flags |= (1L << PG_dirty);
1631 
1632 		/* clear PageTail before overwriting first_page */
1633 		smp_wmb();
1634 
1635 		/*
1636 		 * __split_huge_page_splitting() already set the
1637 		 * splitting bit in all pmd that could map this
1638 		 * hugepage, that will ensure no CPU can alter the
1639 		 * mapcount on the head page. The mapcount is only
1640 		 * accounted in the head page and it has to be
1641 		 * transferred to all tail pages in the below code. So
1642 		 * for this code to be safe, the split the mapcount
1643 		 * can't change. But that doesn't mean userland can't
1644 		 * keep changing and reading the page contents while
1645 		 * we transfer the mapcount, so the pmd splitting
1646 		 * status is achieved setting a reserved bit in the
1647 		 * pmd, not by clearing the present bit.
1648 		*/
1649 		page_tail->_mapcount = page->_mapcount;
1650 
1651 		BUG_ON(page_tail->mapping);
1652 		page_tail->mapping = page->mapping;
1653 
1654 		page_tail->index = page->index + i;
1655 		page_xchg_last_nid(page_tail, page_last_nid(page));
1656 
1657 		BUG_ON(!PageAnon(page_tail));
1658 		BUG_ON(!PageUptodate(page_tail));
1659 		BUG_ON(!PageDirty(page_tail));
1660 		BUG_ON(!PageSwapBacked(page_tail));
1661 
1662 		lru_add_page_tail(page, page_tail, lruvec);
1663 	}
1664 	atomic_sub(tail_count, &page->_count);
1665 	BUG_ON(atomic_read(&page->_count) <= 0);
1666 
1667 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1668 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1669 
1670 	ClearPageCompound(page);
1671 	compound_unlock(page);
1672 	spin_unlock_irq(&zone->lru_lock);
1673 
1674 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1675 		struct page *page_tail = page + i;
1676 		BUG_ON(page_count(page_tail) <= 0);
1677 		/*
1678 		 * Tail pages may be freed if there wasn't any mapping
1679 		 * like if add_to_swap() is running on a lru page that
1680 		 * had its mapping zapped. And freeing these pages
1681 		 * requires taking the lru_lock so we do the put_page
1682 		 * of the tail pages after the split is complete.
1683 		 */
1684 		put_page(page_tail);
1685 	}
1686 
1687 	/*
1688 	 * Only the head page (now become a regular page) is required
1689 	 * to be pinned by the caller.
1690 	 */
1691 	BUG_ON(page_count(page) <= 0);
1692 }
1693 
1694 static int __split_huge_page_map(struct page *page,
1695 				 struct vm_area_struct *vma,
1696 				 unsigned long address)
1697 {
1698 	struct mm_struct *mm = vma->vm_mm;
1699 	pmd_t *pmd, _pmd;
1700 	int ret = 0, i;
1701 	pgtable_t pgtable;
1702 	unsigned long haddr;
1703 
1704 	spin_lock(&mm->page_table_lock);
1705 	pmd = page_check_address_pmd(page, mm, address,
1706 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1707 	if (pmd) {
1708 		pgtable = pgtable_trans_huge_withdraw(mm);
1709 		pmd_populate(mm, &_pmd, pgtable);
1710 
1711 		haddr = address;
1712 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1713 			pte_t *pte, entry;
1714 			BUG_ON(PageCompound(page+i));
1715 			entry = mk_pte(page + i, vma->vm_page_prot);
1716 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1717 			if (!pmd_write(*pmd))
1718 				entry = pte_wrprotect(entry);
1719 			else
1720 				BUG_ON(page_mapcount(page) != 1);
1721 			if (!pmd_young(*pmd))
1722 				entry = pte_mkold(entry);
1723 			if (pmd_numa(*pmd))
1724 				entry = pte_mknuma(entry);
1725 			pte = pte_offset_map(&_pmd, haddr);
1726 			BUG_ON(!pte_none(*pte));
1727 			set_pte_at(mm, haddr, pte, entry);
1728 			pte_unmap(pte);
1729 		}
1730 
1731 		smp_wmb(); /* make pte visible before pmd */
1732 		/*
1733 		 * Up to this point the pmd is present and huge and
1734 		 * userland has the whole access to the hugepage
1735 		 * during the split (which happens in place). If we
1736 		 * overwrite the pmd with the not-huge version
1737 		 * pointing to the pte here (which of course we could
1738 		 * if all CPUs were bug free), userland could trigger
1739 		 * a small page size TLB miss on the small sized TLB
1740 		 * while the hugepage TLB entry is still established
1741 		 * in the huge TLB. Some CPU doesn't like that. See
1742 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1743 		 * Erratum 383 on page 93. Intel should be safe but is
1744 		 * also warns that it's only safe if the permission
1745 		 * and cache attributes of the two entries loaded in
1746 		 * the two TLB is identical (which should be the case
1747 		 * here). But it is generally safer to never allow
1748 		 * small and huge TLB entries for the same virtual
1749 		 * address to be loaded simultaneously. So instead of
1750 		 * doing "pmd_populate(); flush_tlb_range();" we first
1751 		 * mark the current pmd notpresent (atomically because
1752 		 * here the pmd_trans_huge and pmd_trans_splitting
1753 		 * must remain set at all times on the pmd until the
1754 		 * split is complete for this pmd), then we flush the
1755 		 * SMP TLB and finally we write the non-huge version
1756 		 * of the pmd entry with pmd_populate.
1757 		 */
1758 		pmdp_invalidate(vma, address, pmd);
1759 		pmd_populate(mm, pmd, pgtable);
1760 		ret = 1;
1761 	}
1762 	spin_unlock(&mm->page_table_lock);
1763 
1764 	return ret;
1765 }
1766 
1767 /* must be called with anon_vma->root->rwsem held */
1768 static void __split_huge_page(struct page *page,
1769 			      struct anon_vma *anon_vma)
1770 {
1771 	int mapcount, mapcount2;
1772 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1773 	struct anon_vma_chain *avc;
1774 
1775 	BUG_ON(!PageHead(page));
1776 	BUG_ON(PageTail(page));
1777 
1778 	mapcount = 0;
1779 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1780 		struct vm_area_struct *vma = avc->vma;
1781 		unsigned long addr = vma_address(page, vma);
1782 		BUG_ON(is_vma_temporary_stack(vma));
1783 		mapcount += __split_huge_page_splitting(page, vma, addr);
1784 	}
1785 	/*
1786 	 * It is critical that new vmas are added to the tail of the
1787 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1788 	 * and establishes a child pmd before
1789 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1790 	 * we fail to prevent copy_huge_pmd() from running until the
1791 	 * whole __split_huge_page() is complete), we will still see
1792 	 * the newly established pmd of the child later during the
1793 	 * walk, to be able to set it as pmd_trans_splitting too.
1794 	 */
1795 	if (mapcount != page_mapcount(page))
1796 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1797 		       mapcount, page_mapcount(page));
1798 	BUG_ON(mapcount != page_mapcount(page));
1799 
1800 	__split_huge_page_refcount(page);
1801 
1802 	mapcount2 = 0;
1803 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1804 		struct vm_area_struct *vma = avc->vma;
1805 		unsigned long addr = vma_address(page, vma);
1806 		BUG_ON(is_vma_temporary_stack(vma));
1807 		mapcount2 += __split_huge_page_map(page, vma, addr);
1808 	}
1809 	if (mapcount != mapcount2)
1810 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1811 		       mapcount, mapcount2, page_mapcount(page));
1812 	BUG_ON(mapcount != mapcount2);
1813 }
1814 
1815 int split_huge_page(struct page *page)
1816 {
1817 	struct anon_vma *anon_vma;
1818 	int ret = 1;
1819 
1820 	BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1821 	BUG_ON(!PageAnon(page));
1822 	anon_vma = page_lock_anon_vma_read(page);
1823 	if (!anon_vma)
1824 		goto out;
1825 	ret = 0;
1826 	if (!PageCompound(page))
1827 		goto out_unlock;
1828 
1829 	BUG_ON(!PageSwapBacked(page));
1830 	__split_huge_page(page, anon_vma);
1831 	count_vm_event(THP_SPLIT);
1832 
1833 	BUG_ON(PageCompound(page));
1834 out_unlock:
1835 	page_unlock_anon_vma_read(anon_vma);
1836 out:
1837 	return ret;
1838 }
1839 
1840 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1841 
1842 int hugepage_madvise(struct vm_area_struct *vma,
1843 		     unsigned long *vm_flags, int advice)
1844 {
1845 	struct mm_struct *mm = vma->vm_mm;
1846 
1847 	switch (advice) {
1848 	case MADV_HUGEPAGE:
1849 		/*
1850 		 * Be somewhat over-protective like KSM for now!
1851 		 */
1852 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1853 			return -EINVAL;
1854 		if (mm->def_flags & VM_NOHUGEPAGE)
1855 			return -EINVAL;
1856 		*vm_flags &= ~VM_NOHUGEPAGE;
1857 		*vm_flags |= VM_HUGEPAGE;
1858 		/*
1859 		 * If the vma become good for khugepaged to scan,
1860 		 * register it here without waiting a page fault that
1861 		 * may not happen any time soon.
1862 		 */
1863 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1864 			return -ENOMEM;
1865 		break;
1866 	case MADV_NOHUGEPAGE:
1867 		/*
1868 		 * Be somewhat over-protective like KSM for now!
1869 		 */
1870 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1871 			return -EINVAL;
1872 		*vm_flags &= ~VM_HUGEPAGE;
1873 		*vm_flags |= VM_NOHUGEPAGE;
1874 		/*
1875 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1876 		 * this vma even if we leave the mm registered in khugepaged if
1877 		 * it got registered before VM_NOHUGEPAGE was set.
1878 		 */
1879 		break;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 static int __init khugepaged_slab_init(void)
1886 {
1887 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1888 					  sizeof(struct mm_slot),
1889 					  __alignof__(struct mm_slot), 0, NULL);
1890 	if (!mm_slot_cache)
1891 		return -ENOMEM;
1892 
1893 	return 0;
1894 }
1895 
1896 static void __init khugepaged_slab_free(void)
1897 {
1898 	kmem_cache_destroy(mm_slot_cache);
1899 	mm_slot_cache = NULL;
1900 }
1901 
1902 static inline struct mm_slot *alloc_mm_slot(void)
1903 {
1904 	if (!mm_slot_cache)	/* initialization failed */
1905 		return NULL;
1906 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1907 }
1908 
1909 static inline void free_mm_slot(struct mm_slot *mm_slot)
1910 {
1911 	kmem_cache_free(mm_slot_cache, mm_slot);
1912 }
1913 
1914 static int __init mm_slots_hash_init(void)
1915 {
1916 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1917 				GFP_KERNEL);
1918 	if (!mm_slots_hash)
1919 		return -ENOMEM;
1920 	return 0;
1921 }
1922 
1923 #if 0
1924 static void __init mm_slots_hash_free(void)
1925 {
1926 	kfree(mm_slots_hash);
1927 	mm_slots_hash = NULL;
1928 }
1929 #endif
1930 
1931 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1932 {
1933 	struct mm_slot *mm_slot;
1934 	struct hlist_head *bucket;
1935 	struct hlist_node *node;
1936 
1937 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1938 				% MM_SLOTS_HASH_HEADS];
1939 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1940 		if (mm == mm_slot->mm)
1941 			return mm_slot;
1942 	}
1943 	return NULL;
1944 }
1945 
1946 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1947 				    struct mm_slot *mm_slot)
1948 {
1949 	struct hlist_head *bucket;
1950 
1951 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1952 				% MM_SLOTS_HASH_HEADS];
1953 	mm_slot->mm = mm;
1954 	hlist_add_head(&mm_slot->hash, bucket);
1955 }
1956 
1957 static inline int khugepaged_test_exit(struct mm_struct *mm)
1958 {
1959 	return atomic_read(&mm->mm_users) == 0;
1960 }
1961 
1962 int __khugepaged_enter(struct mm_struct *mm)
1963 {
1964 	struct mm_slot *mm_slot;
1965 	int wakeup;
1966 
1967 	mm_slot = alloc_mm_slot();
1968 	if (!mm_slot)
1969 		return -ENOMEM;
1970 
1971 	/* __khugepaged_exit() must not run from under us */
1972 	VM_BUG_ON(khugepaged_test_exit(mm));
1973 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1974 		free_mm_slot(mm_slot);
1975 		return 0;
1976 	}
1977 
1978 	spin_lock(&khugepaged_mm_lock);
1979 	insert_to_mm_slots_hash(mm, mm_slot);
1980 	/*
1981 	 * Insert just behind the scanning cursor, to let the area settle
1982 	 * down a little.
1983 	 */
1984 	wakeup = list_empty(&khugepaged_scan.mm_head);
1985 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1986 	spin_unlock(&khugepaged_mm_lock);
1987 
1988 	atomic_inc(&mm->mm_count);
1989 	if (wakeup)
1990 		wake_up_interruptible(&khugepaged_wait);
1991 
1992 	return 0;
1993 }
1994 
1995 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1996 {
1997 	unsigned long hstart, hend;
1998 	if (!vma->anon_vma)
1999 		/*
2000 		 * Not yet faulted in so we will register later in the
2001 		 * page fault if needed.
2002 		 */
2003 		return 0;
2004 	if (vma->vm_ops)
2005 		/* khugepaged not yet working on file or special mappings */
2006 		return 0;
2007 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2008 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2009 	hend = vma->vm_end & HPAGE_PMD_MASK;
2010 	if (hstart < hend)
2011 		return khugepaged_enter(vma);
2012 	return 0;
2013 }
2014 
2015 void __khugepaged_exit(struct mm_struct *mm)
2016 {
2017 	struct mm_slot *mm_slot;
2018 	int free = 0;
2019 
2020 	spin_lock(&khugepaged_mm_lock);
2021 	mm_slot = get_mm_slot(mm);
2022 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2023 		hlist_del(&mm_slot->hash);
2024 		list_del(&mm_slot->mm_node);
2025 		free = 1;
2026 	}
2027 	spin_unlock(&khugepaged_mm_lock);
2028 
2029 	if (free) {
2030 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2031 		free_mm_slot(mm_slot);
2032 		mmdrop(mm);
2033 	} else if (mm_slot) {
2034 		/*
2035 		 * This is required to serialize against
2036 		 * khugepaged_test_exit() (which is guaranteed to run
2037 		 * under mmap sem read mode). Stop here (after we
2038 		 * return all pagetables will be destroyed) until
2039 		 * khugepaged has finished working on the pagetables
2040 		 * under the mmap_sem.
2041 		 */
2042 		down_write(&mm->mmap_sem);
2043 		up_write(&mm->mmap_sem);
2044 	}
2045 }
2046 
2047 static void release_pte_page(struct page *page)
2048 {
2049 	/* 0 stands for page_is_file_cache(page) == false */
2050 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2051 	unlock_page(page);
2052 	putback_lru_page(page);
2053 }
2054 
2055 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2056 {
2057 	while (--_pte >= pte) {
2058 		pte_t pteval = *_pte;
2059 		if (!pte_none(pteval))
2060 			release_pte_page(pte_page(pteval));
2061 	}
2062 }
2063 
2064 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2065 					unsigned long address,
2066 					pte_t *pte)
2067 {
2068 	struct page *page;
2069 	pte_t *_pte;
2070 	int referenced = 0, none = 0;
2071 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2072 	     _pte++, address += PAGE_SIZE) {
2073 		pte_t pteval = *_pte;
2074 		if (pte_none(pteval)) {
2075 			if (++none <= khugepaged_max_ptes_none)
2076 				continue;
2077 			else
2078 				goto out;
2079 		}
2080 		if (!pte_present(pteval) || !pte_write(pteval))
2081 			goto out;
2082 		page = vm_normal_page(vma, address, pteval);
2083 		if (unlikely(!page))
2084 			goto out;
2085 
2086 		VM_BUG_ON(PageCompound(page));
2087 		BUG_ON(!PageAnon(page));
2088 		VM_BUG_ON(!PageSwapBacked(page));
2089 
2090 		/* cannot use mapcount: can't collapse if there's a gup pin */
2091 		if (page_count(page) != 1)
2092 			goto out;
2093 		/*
2094 		 * We can do it before isolate_lru_page because the
2095 		 * page can't be freed from under us. NOTE: PG_lock
2096 		 * is needed to serialize against split_huge_page
2097 		 * when invoked from the VM.
2098 		 */
2099 		if (!trylock_page(page))
2100 			goto out;
2101 		/*
2102 		 * Isolate the page to avoid collapsing an hugepage
2103 		 * currently in use by the VM.
2104 		 */
2105 		if (isolate_lru_page(page)) {
2106 			unlock_page(page);
2107 			goto out;
2108 		}
2109 		/* 0 stands for page_is_file_cache(page) == false */
2110 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2111 		VM_BUG_ON(!PageLocked(page));
2112 		VM_BUG_ON(PageLRU(page));
2113 
2114 		/* If there is no mapped pte young don't collapse the page */
2115 		if (pte_young(pteval) || PageReferenced(page) ||
2116 		    mmu_notifier_test_young(vma->vm_mm, address))
2117 			referenced = 1;
2118 	}
2119 	if (likely(referenced))
2120 		return 1;
2121 out:
2122 	release_pte_pages(pte, _pte);
2123 	return 0;
2124 }
2125 
2126 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127 				      struct vm_area_struct *vma,
2128 				      unsigned long address,
2129 				      spinlock_t *ptl)
2130 {
2131 	pte_t *_pte;
2132 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133 		pte_t pteval = *_pte;
2134 		struct page *src_page;
2135 
2136 		if (pte_none(pteval)) {
2137 			clear_user_highpage(page, address);
2138 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139 		} else {
2140 			src_page = pte_page(pteval);
2141 			copy_user_highpage(page, src_page, address, vma);
2142 			VM_BUG_ON(page_mapcount(src_page) != 1);
2143 			release_pte_page(src_page);
2144 			/*
2145 			 * ptl mostly unnecessary, but preempt has to
2146 			 * be disabled to update the per-cpu stats
2147 			 * inside page_remove_rmap().
2148 			 */
2149 			spin_lock(ptl);
2150 			/*
2151 			 * paravirt calls inside pte_clear here are
2152 			 * superfluous.
2153 			 */
2154 			pte_clear(vma->vm_mm, address, _pte);
2155 			page_remove_rmap(src_page);
2156 			spin_unlock(ptl);
2157 			free_page_and_swap_cache(src_page);
2158 		}
2159 
2160 		address += PAGE_SIZE;
2161 		page++;
2162 	}
2163 }
2164 
2165 static void khugepaged_alloc_sleep(void)
2166 {
2167 	wait_event_freezable_timeout(khugepaged_wait, false,
2168 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2169 }
2170 
2171 #ifdef CONFIG_NUMA
2172 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2173 {
2174 	if (IS_ERR(*hpage)) {
2175 		if (!*wait)
2176 			return false;
2177 
2178 		*wait = false;
2179 		*hpage = NULL;
2180 		khugepaged_alloc_sleep();
2181 	} else if (*hpage) {
2182 		put_page(*hpage);
2183 		*hpage = NULL;
2184 	}
2185 
2186 	return true;
2187 }
2188 
2189 static struct page
2190 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2191 		       struct vm_area_struct *vma, unsigned long address,
2192 		       int node)
2193 {
2194 	VM_BUG_ON(*hpage);
2195 	/*
2196 	 * Allocate the page while the vma is still valid and under
2197 	 * the mmap_sem read mode so there is no memory allocation
2198 	 * later when we take the mmap_sem in write mode. This is more
2199 	 * friendly behavior (OTOH it may actually hide bugs) to
2200 	 * filesystems in userland with daemons allocating memory in
2201 	 * the userland I/O paths.  Allocating memory with the
2202 	 * mmap_sem in read mode is good idea also to allow greater
2203 	 * scalability.
2204 	 */
2205 	*hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2206 				      node, __GFP_OTHER_NODE);
2207 
2208 	/*
2209 	 * After allocating the hugepage, release the mmap_sem read lock in
2210 	 * preparation for taking it in write mode.
2211 	 */
2212 	up_read(&mm->mmap_sem);
2213 	if (unlikely(!*hpage)) {
2214 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2215 		*hpage = ERR_PTR(-ENOMEM);
2216 		return NULL;
2217 	}
2218 
2219 	count_vm_event(THP_COLLAPSE_ALLOC);
2220 	return *hpage;
2221 }
2222 #else
2223 static struct page *khugepaged_alloc_hugepage(bool *wait)
2224 {
2225 	struct page *hpage;
2226 
2227 	do {
2228 		hpage = alloc_hugepage(khugepaged_defrag());
2229 		if (!hpage) {
2230 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2231 			if (!*wait)
2232 				return NULL;
2233 
2234 			*wait = false;
2235 			khugepaged_alloc_sleep();
2236 		} else
2237 			count_vm_event(THP_COLLAPSE_ALLOC);
2238 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2239 
2240 	return hpage;
2241 }
2242 
2243 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2244 {
2245 	if (!*hpage)
2246 		*hpage = khugepaged_alloc_hugepage(wait);
2247 
2248 	if (unlikely(!*hpage))
2249 		return false;
2250 
2251 	return true;
2252 }
2253 
2254 static struct page
2255 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2256 		       struct vm_area_struct *vma, unsigned long address,
2257 		       int node)
2258 {
2259 	up_read(&mm->mmap_sem);
2260 	VM_BUG_ON(!*hpage);
2261 	return  *hpage;
2262 }
2263 #endif
2264 
2265 static bool hugepage_vma_check(struct vm_area_struct *vma)
2266 {
2267 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2268 	    (vma->vm_flags & VM_NOHUGEPAGE))
2269 		return false;
2270 
2271 	if (!vma->anon_vma || vma->vm_ops)
2272 		return false;
2273 	if (is_vma_temporary_stack(vma))
2274 		return false;
2275 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2276 	return true;
2277 }
2278 
2279 static void collapse_huge_page(struct mm_struct *mm,
2280 				   unsigned long address,
2281 				   struct page **hpage,
2282 				   struct vm_area_struct *vma,
2283 				   int node)
2284 {
2285 	pmd_t *pmd, _pmd;
2286 	pte_t *pte;
2287 	pgtable_t pgtable;
2288 	struct page *new_page;
2289 	spinlock_t *ptl;
2290 	int isolated;
2291 	unsigned long hstart, hend;
2292 	unsigned long mmun_start;	/* For mmu_notifiers */
2293 	unsigned long mmun_end;		/* For mmu_notifiers */
2294 
2295 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2296 
2297 	/* release the mmap_sem read lock. */
2298 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2299 	if (!new_page)
2300 		return;
2301 
2302 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2303 		return;
2304 
2305 	/*
2306 	 * Prevent all access to pagetables with the exception of
2307 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2308 	 * handled by the anon_vma lock + PG_lock.
2309 	 */
2310 	down_write(&mm->mmap_sem);
2311 	if (unlikely(khugepaged_test_exit(mm)))
2312 		goto out;
2313 
2314 	vma = find_vma(mm, address);
2315 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2316 	hend = vma->vm_end & HPAGE_PMD_MASK;
2317 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2318 		goto out;
2319 	if (!hugepage_vma_check(vma))
2320 		goto out;
2321 	pmd = mm_find_pmd(mm, address);
2322 	if (!pmd)
2323 		goto out;
2324 	if (pmd_trans_huge(*pmd))
2325 		goto out;
2326 
2327 	anon_vma_lock_write(vma->anon_vma);
2328 
2329 	pte = pte_offset_map(pmd, address);
2330 	ptl = pte_lockptr(mm, pmd);
2331 
2332 	mmun_start = address;
2333 	mmun_end   = address + HPAGE_PMD_SIZE;
2334 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2335 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
2336 	/*
2337 	 * After this gup_fast can't run anymore. This also removes
2338 	 * any huge TLB entry from the CPU so we won't allow
2339 	 * huge and small TLB entries for the same virtual address
2340 	 * to avoid the risk of CPU bugs in that area.
2341 	 */
2342 	_pmd = pmdp_clear_flush(vma, address, pmd);
2343 	spin_unlock(&mm->page_table_lock);
2344 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2345 
2346 	spin_lock(ptl);
2347 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2348 	spin_unlock(ptl);
2349 
2350 	if (unlikely(!isolated)) {
2351 		pte_unmap(pte);
2352 		spin_lock(&mm->page_table_lock);
2353 		BUG_ON(!pmd_none(*pmd));
2354 		set_pmd_at(mm, address, pmd, _pmd);
2355 		spin_unlock(&mm->page_table_lock);
2356 		anon_vma_unlock(vma->anon_vma);
2357 		goto out;
2358 	}
2359 
2360 	/*
2361 	 * All pages are isolated and locked so anon_vma rmap
2362 	 * can't run anymore.
2363 	 */
2364 	anon_vma_unlock(vma->anon_vma);
2365 
2366 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2367 	pte_unmap(pte);
2368 	__SetPageUptodate(new_page);
2369 	pgtable = pmd_pgtable(_pmd);
2370 
2371 	_pmd = mk_huge_pmd(new_page, vma);
2372 
2373 	/*
2374 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2375 	 * this is needed to avoid the copy_huge_page writes to become
2376 	 * visible after the set_pmd_at() write.
2377 	 */
2378 	smp_wmb();
2379 
2380 	spin_lock(&mm->page_table_lock);
2381 	BUG_ON(!pmd_none(*pmd));
2382 	page_add_new_anon_rmap(new_page, vma, address);
2383 	set_pmd_at(mm, address, pmd, _pmd);
2384 	update_mmu_cache_pmd(vma, address, pmd);
2385 	pgtable_trans_huge_deposit(mm, pgtable);
2386 	spin_unlock(&mm->page_table_lock);
2387 
2388 	*hpage = NULL;
2389 
2390 	khugepaged_pages_collapsed++;
2391 out_up_write:
2392 	up_write(&mm->mmap_sem);
2393 	return;
2394 
2395 out:
2396 	mem_cgroup_uncharge_page(new_page);
2397 	goto out_up_write;
2398 }
2399 
2400 static int khugepaged_scan_pmd(struct mm_struct *mm,
2401 			       struct vm_area_struct *vma,
2402 			       unsigned long address,
2403 			       struct page **hpage)
2404 {
2405 	pmd_t *pmd;
2406 	pte_t *pte, *_pte;
2407 	int ret = 0, referenced = 0, none = 0;
2408 	struct page *page;
2409 	unsigned long _address;
2410 	spinlock_t *ptl;
2411 	int node = -1;
2412 
2413 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2414 
2415 	pmd = mm_find_pmd(mm, address);
2416 	if (!pmd)
2417 		goto out;
2418 	if (pmd_trans_huge(*pmd))
2419 		goto out;
2420 
2421 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2422 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2423 	     _pte++, _address += PAGE_SIZE) {
2424 		pte_t pteval = *_pte;
2425 		if (pte_none(pteval)) {
2426 			if (++none <= khugepaged_max_ptes_none)
2427 				continue;
2428 			else
2429 				goto out_unmap;
2430 		}
2431 		if (!pte_present(pteval) || !pte_write(pteval))
2432 			goto out_unmap;
2433 		page = vm_normal_page(vma, _address, pteval);
2434 		if (unlikely(!page))
2435 			goto out_unmap;
2436 		/*
2437 		 * Chose the node of the first page. This could
2438 		 * be more sophisticated and look at more pages,
2439 		 * but isn't for now.
2440 		 */
2441 		if (node == -1)
2442 			node = page_to_nid(page);
2443 		VM_BUG_ON(PageCompound(page));
2444 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2445 			goto out_unmap;
2446 		/* cannot use mapcount: can't collapse if there's a gup pin */
2447 		if (page_count(page) != 1)
2448 			goto out_unmap;
2449 		if (pte_young(pteval) || PageReferenced(page) ||
2450 		    mmu_notifier_test_young(vma->vm_mm, address))
2451 			referenced = 1;
2452 	}
2453 	if (referenced)
2454 		ret = 1;
2455 out_unmap:
2456 	pte_unmap_unlock(pte, ptl);
2457 	if (ret)
2458 		/* collapse_huge_page will return with the mmap_sem released */
2459 		collapse_huge_page(mm, address, hpage, vma, node);
2460 out:
2461 	return ret;
2462 }
2463 
2464 static void collect_mm_slot(struct mm_slot *mm_slot)
2465 {
2466 	struct mm_struct *mm = mm_slot->mm;
2467 
2468 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2469 
2470 	if (khugepaged_test_exit(mm)) {
2471 		/* free mm_slot */
2472 		hlist_del(&mm_slot->hash);
2473 		list_del(&mm_slot->mm_node);
2474 
2475 		/*
2476 		 * Not strictly needed because the mm exited already.
2477 		 *
2478 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2479 		 */
2480 
2481 		/* khugepaged_mm_lock actually not necessary for the below */
2482 		free_mm_slot(mm_slot);
2483 		mmdrop(mm);
2484 	}
2485 }
2486 
2487 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2488 					    struct page **hpage)
2489 	__releases(&khugepaged_mm_lock)
2490 	__acquires(&khugepaged_mm_lock)
2491 {
2492 	struct mm_slot *mm_slot;
2493 	struct mm_struct *mm;
2494 	struct vm_area_struct *vma;
2495 	int progress = 0;
2496 
2497 	VM_BUG_ON(!pages);
2498 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2499 
2500 	if (khugepaged_scan.mm_slot)
2501 		mm_slot = khugepaged_scan.mm_slot;
2502 	else {
2503 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2504 				     struct mm_slot, mm_node);
2505 		khugepaged_scan.address = 0;
2506 		khugepaged_scan.mm_slot = mm_slot;
2507 	}
2508 	spin_unlock(&khugepaged_mm_lock);
2509 
2510 	mm = mm_slot->mm;
2511 	down_read(&mm->mmap_sem);
2512 	if (unlikely(khugepaged_test_exit(mm)))
2513 		vma = NULL;
2514 	else
2515 		vma = find_vma(mm, khugepaged_scan.address);
2516 
2517 	progress++;
2518 	for (; vma; vma = vma->vm_next) {
2519 		unsigned long hstart, hend;
2520 
2521 		cond_resched();
2522 		if (unlikely(khugepaged_test_exit(mm))) {
2523 			progress++;
2524 			break;
2525 		}
2526 		if (!hugepage_vma_check(vma)) {
2527 skip:
2528 			progress++;
2529 			continue;
2530 		}
2531 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2532 		hend = vma->vm_end & HPAGE_PMD_MASK;
2533 		if (hstart >= hend)
2534 			goto skip;
2535 		if (khugepaged_scan.address > hend)
2536 			goto skip;
2537 		if (khugepaged_scan.address < hstart)
2538 			khugepaged_scan.address = hstart;
2539 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2540 
2541 		while (khugepaged_scan.address < hend) {
2542 			int ret;
2543 			cond_resched();
2544 			if (unlikely(khugepaged_test_exit(mm)))
2545 				goto breakouterloop;
2546 
2547 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2548 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2549 				  hend);
2550 			ret = khugepaged_scan_pmd(mm, vma,
2551 						  khugepaged_scan.address,
2552 						  hpage);
2553 			/* move to next address */
2554 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2555 			progress += HPAGE_PMD_NR;
2556 			if (ret)
2557 				/* we released mmap_sem so break loop */
2558 				goto breakouterloop_mmap_sem;
2559 			if (progress >= pages)
2560 				goto breakouterloop;
2561 		}
2562 	}
2563 breakouterloop:
2564 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2565 breakouterloop_mmap_sem:
2566 
2567 	spin_lock(&khugepaged_mm_lock);
2568 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2569 	/*
2570 	 * Release the current mm_slot if this mm is about to die, or
2571 	 * if we scanned all vmas of this mm.
2572 	 */
2573 	if (khugepaged_test_exit(mm) || !vma) {
2574 		/*
2575 		 * Make sure that if mm_users is reaching zero while
2576 		 * khugepaged runs here, khugepaged_exit will find
2577 		 * mm_slot not pointing to the exiting mm.
2578 		 */
2579 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2580 			khugepaged_scan.mm_slot = list_entry(
2581 				mm_slot->mm_node.next,
2582 				struct mm_slot, mm_node);
2583 			khugepaged_scan.address = 0;
2584 		} else {
2585 			khugepaged_scan.mm_slot = NULL;
2586 			khugepaged_full_scans++;
2587 		}
2588 
2589 		collect_mm_slot(mm_slot);
2590 	}
2591 
2592 	return progress;
2593 }
2594 
2595 static int khugepaged_has_work(void)
2596 {
2597 	return !list_empty(&khugepaged_scan.mm_head) &&
2598 		khugepaged_enabled();
2599 }
2600 
2601 static int khugepaged_wait_event(void)
2602 {
2603 	return !list_empty(&khugepaged_scan.mm_head) ||
2604 		kthread_should_stop();
2605 }
2606 
2607 static void khugepaged_do_scan(void)
2608 {
2609 	struct page *hpage = NULL;
2610 	unsigned int progress = 0, pass_through_head = 0;
2611 	unsigned int pages = khugepaged_pages_to_scan;
2612 	bool wait = true;
2613 
2614 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2615 
2616 	while (progress < pages) {
2617 		if (!khugepaged_prealloc_page(&hpage, &wait))
2618 			break;
2619 
2620 		cond_resched();
2621 
2622 		if (unlikely(kthread_should_stop() || freezing(current)))
2623 			break;
2624 
2625 		spin_lock(&khugepaged_mm_lock);
2626 		if (!khugepaged_scan.mm_slot)
2627 			pass_through_head++;
2628 		if (khugepaged_has_work() &&
2629 		    pass_through_head < 2)
2630 			progress += khugepaged_scan_mm_slot(pages - progress,
2631 							    &hpage);
2632 		else
2633 			progress = pages;
2634 		spin_unlock(&khugepaged_mm_lock);
2635 	}
2636 
2637 	if (!IS_ERR_OR_NULL(hpage))
2638 		put_page(hpage);
2639 }
2640 
2641 static void khugepaged_wait_work(void)
2642 {
2643 	try_to_freeze();
2644 
2645 	if (khugepaged_has_work()) {
2646 		if (!khugepaged_scan_sleep_millisecs)
2647 			return;
2648 
2649 		wait_event_freezable_timeout(khugepaged_wait,
2650 					     kthread_should_stop(),
2651 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2652 		return;
2653 	}
2654 
2655 	if (khugepaged_enabled())
2656 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2657 }
2658 
2659 static int khugepaged(void *none)
2660 {
2661 	struct mm_slot *mm_slot;
2662 
2663 	set_freezable();
2664 	set_user_nice(current, 19);
2665 
2666 	while (!kthread_should_stop()) {
2667 		khugepaged_do_scan();
2668 		khugepaged_wait_work();
2669 	}
2670 
2671 	spin_lock(&khugepaged_mm_lock);
2672 	mm_slot = khugepaged_scan.mm_slot;
2673 	khugepaged_scan.mm_slot = NULL;
2674 	if (mm_slot)
2675 		collect_mm_slot(mm_slot);
2676 	spin_unlock(&khugepaged_mm_lock);
2677 	return 0;
2678 }
2679 
2680 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2681 		unsigned long haddr, pmd_t *pmd)
2682 {
2683 	struct mm_struct *mm = vma->vm_mm;
2684 	pgtable_t pgtable;
2685 	pmd_t _pmd;
2686 	int i;
2687 
2688 	pmdp_clear_flush(vma, haddr, pmd);
2689 	/* leave pmd empty until pte is filled */
2690 
2691 	pgtable = pgtable_trans_huge_withdraw(mm);
2692 	pmd_populate(mm, &_pmd, pgtable);
2693 
2694 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2695 		pte_t *pte, entry;
2696 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2697 		entry = pte_mkspecial(entry);
2698 		pte = pte_offset_map(&_pmd, haddr);
2699 		VM_BUG_ON(!pte_none(*pte));
2700 		set_pte_at(mm, haddr, pte, entry);
2701 		pte_unmap(pte);
2702 	}
2703 	smp_wmb(); /* make pte visible before pmd */
2704 	pmd_populate(mm, pmd, pgtable);
2705 	put_huge_zero_page();
2706 }
2707 
2708 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2709 		pmd_t *pmd)
2710 {
2711 	struct page *page;
2712 	struct mm_struct *mm = vma->vm_mm;
2713 	unsigned long haddr = address & HPAGE_PMD_MASK;
2714 	unsigned long mmun_start;	/* For mmu_notifiers */
2715 	unsigned long mmun_end;		/* For mmu_notifiers */
2716 
2717 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2718 
2719 	mmun_start = haddr;
2720 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2721 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2722 	spin_lock(&mm->page_table_lock);
2723 	if (unlikely(!pmd_trans_huge(*pmd))) {
2724 		spin_unlock(&mm->page_table_lock);
2725 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2726 		return;
2727 	}
2728 	if (is_huge_zero_pmd(*pmd)) {
2729 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2730 		spin_unlock(&mm->page_table_lock);
2731 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2732 		return;
2733 	}
2734 	page = pmd_page(*pmd);
2735 	VM_BUG_ON(!page_count(page));
2736 	get_page(page);
2737 	spin_unlock(&mm->page_table_lock);
2738 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2739 
2740 	split_huge_page(page);
2741 
2742 	put_page(page);
2743 	BUG_ON(pmd_trans_huge(*pmd));
2744 }
2745 
2746 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2747 		pmd_t *pmd)
2748 {
2749 	struct vm_area_struct *vma;
2750 
2751 	vma = find_vma(mm, address);
2752 	BUG_ON(vma == NULL);
2753 	split_huge_page_pmd(vma, address, pmd);
2754 }
2755 
2756 static void split_huge_page_address(struct mm_struct *mm,
2757 				    unsigned long address)
2758 {
2759 	pmd_t *pmd;
2760 
2761 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2762 
2763 	pmd = mm_find_pmd(mm, address);
2764 	if (!pmd)
2765 		return;
2766 	/*
2767 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2768 	 * materialize from under us.
2769 	 */
2770 	split_huge_page_pmd_mm(mm, address, pmd);
2771 }
2772 
2773 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2774 			     unsigned long start,
2775 			     unsigned long end,
2776 			     long adjust_next)
2777 {
2778 	/*
2779 	 * If the new start address isn't hpage aligned and it could
2780 	 * previously contain an hugepage: check if we need to split
2781 	 * an huge pmd.
2782 	 */
2783 	if (start & ~HPAGE_PMD_MASK &&
2784 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2785 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2786 		split_huge_page_address(vma->vm_mm, start);
2787 
2788 	/*
2789 	 * If the new end address isn't hpage aligned and it could
2790 	 * previously contain an hugepage: check if we need to split
2791 	 * an huge pmd.
2792 	 */
2793 	if (end & ~HPAGE_PMD_MASK &&
2794 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2795 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2796 		split_huge_page_address(vma->vm_mm, end);
2797 
2798 	/*
2799 	 * If we're also updating the vma->vm_next->vm_start, if the new
2800 	 * vm_next->vm_start isn't page aligned and it could previously
2801 	 * contain an hugepage: check if we need to split an huge pmd.
2802 	 */
2803 	if (adjust_next > 0) {
2804 		struct vm_area_struct *next = vma->vm_next;
2805 		unsigned long nstart = next->vm_start;
2806 		nstart += adjust_next << PAGE_SHIFT;
2807 		if (nstart & ~HPAGE_PMD_MASK &&
2808 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2809 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2810 			split_huge_page_address(next->vm_mm, nstart);
2811 	}
2812 }
2813