xref: /linux/mm/huge_memory.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (!memcmp("always", buf,
181 		    min(sizeof("always")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("madvise", buf,
185 			   min(sizeof("madvise")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else if (!memcmp("never", buf,
189 			   min(sizeof("never")-1, count))) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 	} else
193 		ret = -EINVAL;
194 
195 	if (ret > 0) {
196 		int err = start_stop_khugepaged();
197 		if (err)
198 			ret = err;
199 	}
200 	return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 	__ATTR(enabled, 0644, enabled_show, enabled_store);
204 
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 				struct kobj_attribute *attr, char *buf,
207 				enum transparent_hugepage_flag flag)
208 {
209 	return sprintf(buf, "%d\n",
210 		       !!test_bit(flag, &transparent_hugepage_flags));
211 }
212 
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 				 struct kobj_attribute *attr,
215 				 const char *buf, size_t count,
216 				 enum transparent_hugepage_flag flag)
217 {
218 	unsigned long value;
219 	int ret;
220 
221 	ret = kstrtoul(buf, 10, &value);
222 	if (ret < 0)
223 		return ret;
224 	if (value > 1)
225 		return -EINVAL;
226 
227 	if (value)
228 		set_bit(flag, &transparent_hugepage_flags);
229 	else
230 		clear_bit(flag, &transparent_hugepage_flags);
231 
232 	return count;
233 }
234 
235 static ssize_t defrag_show(struct kobject *kobj,
236 			   struct kobj_attribute *attr, char *buf)
237 {
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248 
249 static ssize_t defrag_store(struct kobject *kobj,
250 			    struct kobj_attribute *attr,
251 			    const char *buf, size_t count)
252 {
253 	if (!memcmp("always", buf,
254 		    min(sizeof("always")-1, count))) {
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 	} else if (!memcmp("defer+madvise", buf,
260 		    min(sizeof("defer+madvise")-1, count))) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 	} else if (!memcmp("defer", buf,
266 		    min(sizeof("defer")-1, count))) {
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 	} else if (!memcmp("madvise", buf,
272 			   min(sizeof("madvise")-1, count))) {
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 	} else if (!memcmp("never", buf,
278 			   min(sizeof("never")-1, count))) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
283 	} else
284 		return -EINVAL;
285 
286 	return count;
287 }
288 static struct kobj_attribute defrag_attr =
289 	__ATTR(defrag, 0644, defrag_show, defrag_store);
290 
291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return single_hugepage_flag_show(kobj, attr, buf,
295 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 }
297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 		struct kobj_attribute *attr, const char *buf, size_t count)
299 {
300 	return single_hugepage_flag_store(kobj, attr, buf, count,
301 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static struct kobj_attribute use_zero_page_attr =
304 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 
306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 		struct kobj_attribute *attr, char *buf)
308 {
309 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310 }
311 static struct kobj_attribute hpage_pmd_size_attr =
312 	__ATTR_RO(hpage_pmd_size);
313 
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t debug_cow_show(struct kobject *kobj,
316 				struct kobj_attribute *attr, char *buf)
317 {
318 	return single_hugepage_flag_show(kobj, attr, buf,
319 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 }
321 static ssize_t debug_cow_store(struct kobject *kobj,
322 			       struct kobj_attribute *attr,
323 			       const char *buf, size_t count)
324 {
325 	return single_hugepage_flag_store(kobj, attr, buf, count,
326 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327 }
328 static struct kobj_attribute debug_cow_attr =
329 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
331 
332 static struct attribute *hugepage_attr[] = {
333 	&enabled_attr.attr,
334 	&defrag_attr.attr,
335 	&use_zero_page_attr.attr,
336 	&hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 	&shmem_enabled_attr.attr,
339 #endif
340 #ifdef CONFIG_DEBUG_VM
341 	&debug_cow_attr.attr,
342 #endif
343 	NULL,
344 };
345 
346 static const struct attribute_group hugepage_attr_group = {
347 	.attrs = hugepage_attr,
348 };
349 
350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 {
352 	int err;
353 
354 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 	if (unlikely(!*hugepage_kobj)) {
356 		pr_err("failed to create transparent hugepage kobject\n");
357 		return -ENOMEM;
358 	}
359 
360 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
361 	if (err) {
362 		pr_err("failed to register transparent hugepage group\n");
363 		goto delete_obj;
364 	}
365 
366 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
367 	if (err) {
368 		pr_err("failed to register transparent hugepage group\n");
369 		goto remove_hp_group;
370 	}
371 
372 	return 0;
373 
374 remove_hp_group:
375 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376 delete_obj:
377 	kobject_put(*hugepage_kobj);
378 	return err;
379 }
380 
381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 {
383 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 	kobject_put(hugepage_kobj);
386 }
387 #else
388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389 {
390 	return 0;
391 }
392 
393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
394 {
395 }
396 #endif /* CONFIG_SYSFS */
397 
398 static int __init hugepage_init(void)
399 {
400 	int err;
401 	struct kobject *hugepage_kobj;
402 
403 	if (!has_transparent_hugepage()) {
404 		transparent_hugepage_flags = 0;
405 		return -EINVAL;
406 	}
407 
408 	/*
409 	 * hugepages can't be allocated by the buddy allocator
410 	 */
411 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 	/*
413 	 * we use page->mapping and page->index in second tail page
414 	 * as list_head: assuming THP order >= 2
415 	 */
416 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417 
418 	err = hugepage_init_sysfs(&hugepage_kobj);
419 	if (err)
420 		goto err_sysfs;
421 
422 	err = khugepaged_init();
423 	if (err)
424 		goto err_slab;
425 
426 	err = register_shrinker(&huge_zero_page_shrinker);
427 	if (err)
428 		goto err_hzp_shrinker;
429 	err = register_shrinker(&deferred_split_shrinker);
430 	if (err)
431 		goto err_split_shrinker;
432 
433 	/*
434 	 * By default disable transparent hugepages on smaller systems,
435 	 * where the extra memory used could hurt more than TLB overhead
436 	 * is likely to save.  The admin can still enable it through /sys.
437 	 */
438 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 		transparent_hugepage_flags = 0;
440 		return 0;
441 	}
442 
443 	err = start_stop_khugepaged();
444 	if (err)
445 		goto err_khugepaged;
446 
447 	return 0;
448 err_khugepaged:
449 	unregister_shrinker(&deferred_split_shrinker);
450 err_split_shrinker:
451 	unregister_shrinker(&huge_zero_page_shrinker);
452 err_hzp_shrinker:
453 	khugepaged_destroy();
454 err_slab:
455 	hugepage_exit_sysfs(hugepage_kobj);
456 err_sysfs:
457 	return err;
458 }
459 subsys_initcall(hugepage_init);
460 
461 static int __init setup_transparent_hugepage(char *str)
462 {
463 	int ret = 0;
464 	if (!str)
465 		goto out;
466 	if (!strcmp(str, "always")) {
467 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 			&transparent_hugepage_flags);
469 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 			  &transparent_hugepage_flags);
471 		ret = 1;
472 	} else if (!strcmp(str, "madvise")) {
473 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 			  &transparent_hugepage_flags);
475 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 			&transparent_hugepage_flags);
477 		ret = 1;
478 	} else if (!strcmp(str, "never")) {
479 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 			  &transparent_hugepage_flags);
481 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 			  &transparent_hugepage_flags);
483 		ret = 1;
484 	}
485 out:
486 	if (!ret)
487 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 	return ret;
489 }
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
491 
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493 {
494 	if (likely(vma->vm_flags & VM_WRITE))
495 		pmd = pmd_mkwrite(pmd);
496 	return pmd;
497 }
498 
499 static inline struct list_head *page_deferred_list(struct page *page)
500 {
501 	/* ->lru in the tail pages is occupied by compound_head. */
502 	return &page[2].deferred_list;
503 }
504 
505 void prep_transhuge_page(struct page *page)
506 {
507 	/*
508 	 * we use page->mapping and page->indexlru in second tail page
509 	 * as list_head: assuming THP order >= 2
510 	 */
511 
512 	INIT_LIST_HEAD(page_deferred_list(page));
513 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
514 }
515 
516 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
517 		loff_t off, unsigned long flags, unsigned long size)
518 {
519 	unsigned long addr;
520 	loff_t off_end = off + len;
521 	loff_t off_align = round_up(off, size);
522 	unsigned long len_pad;
523 
524 	if (off_end <= off_align || (off_end - off_align) < size)
525 		return 0;
526 
527 	len_pad = len + size;
528 	if (len_pad < len || (off + len_pad) < off)
529 		return 0;
530 
531 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
532 					      off >> PAGE_SHIFT, flags);
533 	if (IS_ERR_VALUE(addr))
534 		return 0;
535 
536 	addr += (off - addr) & (size - 1);
537 	return addr;
538 }
539 
540 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
541 		unsigned long len, unsigned long pgoff, unsigned long flags)
542 {
543 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
544 
545 	if (addr)
546 		goto out;
547 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
548 		goto out;
549 
550 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
551 	if (addr)
552 		return addr;
553 
554  out:
555 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
556 }
557 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
558 
559 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
560 			struct page *page, gfp_t gfp)
561 {
562 	struct vm_area_struct *vma = vmf->vma;
563 	struct mem_cgroup *memcg;
564 	pgtable_t pgtable;
565 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
566 	vm_fault_t ret = 0;
567 
568 	VM_BUG_ON_PAGE(!PageCompound(page), page);
569 
570 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
571 		put_page(page);
572 		count_vm_event(THP_FAULT_FALLBACK);
573 		return VM_FAULT_FALLBACK;
574 	}
575 
576 	pgtable = pte_alloc_one(vma->vm_mm);
577 	if (unlikely(!pgtable)) {
578 		ret = VM_FAULT_OOM;
579 		goto release;
580 	}
581 
582 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 	/*
584 	 * The memory barrier inside __SetPageUptodate makes sure that
585 	 * clear_huge_page writes become visible before the set_pmd_at()
586 	 * write.
587 	 */
588 	__SetPageUptodate(page);
589 
590 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 	if (unlikely(!pmd_none(*vmf->pmd))) {
592 		goto unlock_release;
593 	} else {
594 		pmd_t entry;
595 
596 		ret = check_stable_address_space(vma->vm_mm);
597 		if (ret)
598 			goto unlock_release;
599 
600 		/* Deliver the page fault to userland */
601 		if (userfaultfd_missing(vma)) {
602 			vm_fault_t ret2;
603 
604 			spin_unlock(vmf->ptl);
605 			mem_cgroup_cancel_charge(page, memcg, true);
606 			put_page(page);
607 			pte_free(vma->vm_mm, pgtable);
608 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
609 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
610 			return ret2;
611 		}
612 
613 		entry = mk_huge_pmd(page, vma->vm_page_prot);
614 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615 		page_add_new_anon_rmap(page, vma, haddr, true);
616 		mem_cgroup_commit_charge(page, memcg, false, true);
617 		lru_cache_add_active_or_unevictable(page, vma);
618 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
620 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621 		mm_inc_nr_ptes(vma->vm_mm);
622 		spin_unlock(vmf->ptl);
623 		count_vm_event(THP_FAULT_ALLOC);
624 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
625 	}
626 
627 	return 0;
628 unlock_release:
629 	spin_unlock(vmf->ptl);
630 release:
631 	if (pgtable)
632 		pte_free(vma->vm_mm, pgtable);
633 	mem_cgroup_cancel_charge(page, memcg, true);
634 	put_page(page);
635 	return ret;
636 
637 }
638 
639 /*
640  * always: directly stall for all thp allocations
641  * defer: wake kswapd and fail if not immediately available
642  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643  *		  fail if not immediately available
644  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
645  *	    available
646  * never: never stall for any thp allocation
647  */
648 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
649 {
650 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
651 	gfp_t this_node = 0;
652 
653 #ifdef CONFIG_NUMA
654 	struct mempolicy *pol;
655 	/*
656 	 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
657 	 * specified, to express a general desire to stay on the current
658 	 * node for optimistic allocation attempts. If the defrag mode
659 	 * and/or madvise hint requires the direct reclaim then we prefer
660 	 * to fallback to other node rather than node reclaim because that
661 	 * can lead to excessive reclaim even though there is free memory
662 	 * on other nodes. We expect that NUMA preferences are specified
663 	 * by memory policies.
664 	 */
665 	pol = get_vma_policy(vma, addr);
666 	if (pol->mode != MPOL_BIND)
667 		this_node = __GFP_THISNODE;
668 	mpol_cond_put(pol);
669 #endif
670 
671 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
672 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
673 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
674 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
675 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
676 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
677 							     __GFP_KSWAPD_RECLAIM | this_node);
678 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
679 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
680 							     this_node);
681 	return GFP_TRANSHUGE_LIGHT | this_node;
682 }
683 
684 /* Caller must hold page table lock. */
685 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
686 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
687 		struct page *zero_page)
688 {
689 	pmd_t entry;
690 	if (!pmd_none(*pmd))
691 		return false;
692 	entry = mk_pmd(zero_page, vma->vm_page_prot);
693 	entry = pmd_mkhuge(entry);
694 	if (pgtable)
695 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
696 	set_pmd_at(mm, haddr, pmd, entry);
697 	mm_inc_nr_ptes(mm);
698 	return true;
699 }
700 
701 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
702 {
703 	struct vm_area_struct *vma = vmf->vma;
704 	gfp_t gfp;
705 	struct page *page;
706 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
707 
708 	if (!transhuge_vma_suitable(vma, haddr))
709 		return VM_FAULT_FALLBACK;
710 	if (unlikely(anon_vma_prepare(vma)))
711 		return VM_FAULT_OOM;
712 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
713 		return VM_FAULT_OOM;
714 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
715 			!mm_forbids_zeropage(vma->vm_mm) &&
716 			transparent_hugepage_use_zero_page()) {
717 		pgtable_t pgtable;
718 		struct page *zero_page;
719 		bool set;
720 		vm_fault_t ret;
721 		pgtable = pte_alloc_one(vma->vm_mm);
722 		if (unlikely(!pgtable))
723 			return VM_FAULT_OOM;
724 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
725 		if (unlikely(!zero_page)) {
726 			pte_free(vma->vm_mm, pgtable);
727 			count_vm_event(THP_FAULT_FALLBACK);
728 			return VM_FAULT_FALLBACK;
729 		}
730 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
731 		ret = 0;
732 		set = false;
733 		if (pmd_none(*vmf->pmd)) {
734 			ret = check_stable_address_space(vma->vm_mm);
735 			if (ret) {
736 				spin_unlock(vmf->ptl);
737 			} else if (userfaultfd_missing(vma)) {
738 				spin_unlock(vmf->ptl);
739 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
740 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
741 			} else {
742 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
743 						   haddr, vmf->pmd, zero_page);
744 				spin_unlock(vmf->ptl);
745 				set = true;
746 			}
747 		} else
748 			spin_unlock(vmf->ptl);
749 		if (!set)
750 			pte_free(vma->vm_mm, pgtable);
751 		return ret;
752 	}
753 	gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
754 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
755 	if (unlikely(!page)) {
756 		count_vm_event(THP_FAULT_FALLBACK);
757 		return VM_FAULT_FALLBACK;
758 	}
759 	prep_transhuge_page(page);
760 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
761 }
762 
763 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
764 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
765 		pgtable_t pgtable)
766 {
767 	struct mm_struct *mm = vma->vm_mm;
768 	pmd_t entry;
769 	spinlock_t *ptl;
770 
771 	ptl = pmd_lock(mm, pmd);
772 	if (!pmd_none(*pmd)) {
773 		if (write) {
774 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
775 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
776 				goto out_unlock;
777 			}
778 			entry = pmd_mkyoung(*pmd);
779 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
780 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
781 				update_mmu_cache_pmd(vma, addr, pmd);
782 		}
783 
784 		goto out_unlock;
785 	}
786 
787 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
788 	if (pfn_t_devmap(pfn))
789 		entry = pmd_mkdevmap(entry);
790 	if (write) {
791 		entry = pmd_mkyoung(pmd_mkdirty(entry));
792 		entry = maybe_pmd_mkwrite(entry, vma);
793 	}
794 
795 	if (pgtable) {
796 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
797 		mm_inc_nr_ptes(mm);
798 		pgtable = NULL;
799 	}
800 
801 	set_pmd_at(mm, addr, pmd, entry);
802 	update_mmu_cache_pmd(vma, addr, pmd);
803 
804 out_unlock:
805 	spin_unlock(ptl);
806 	if (pgtable)
807 		pte_free(mm, pgtable);
808 }
809 
810 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
811 {
812 	unsigned long addr = vmf->address & PMD_MASK;
813 	struct vm_area_struct *vma = vmf->vma;
814 	pgprot_t pgprot = vma->vm_page_prot;
815 	pgtable_t pgtable = NULL;
816 
817 	/*
818 	 * If we had pmd_special, we could avoid all these restrictions,
819 	 * but we need to be consistent with PTEs and architectures that
820 	 * can't support a 'special' bit.
821 	 */
822 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
823 			!pfn_t_devmap(pfn));
824 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
825 						(VM_PFNMAP|VM_MIXEDMAP));
826 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
827 
828 	if (addr < vma->vm_start || addr >= vma->vm_end)
829 		return VM_FAULT_SIGBUS;
830 
831 	if (arch_needs_pgtable_deposit()) {
832 		pgtable = pte_alloc_one(vma->vm_mm);
833 		if (!pgtable)
834 			return VM_FAULT_OOM;
835 	}
836 
837 	track_pfn_insert(vma, &pgprot, pfn);
838 
839 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
840 	return VM_FAULT_NOPAGE;
841 }
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
843 
844 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
845 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
846 {
847 	if (likely(vma->vm_flags & VM_WRITE))
848 		pud = pud_mkwrite(pud);
849 	return pud;
850 }
851 
852 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
853 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
854 {
855 	struct mm_struct *mm = vma->vm_mm;
856 	pud_t entry;
857 	spinlock_t *ptl;
858 
859 	ptl = pud_lock(mm, pud);
860 	if (!pud_none(*pud)) {
861 		if (write) {
862 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
863 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
864 				goto out_unlock;
865 			}
866 			entry = pud_mkyoung(*pud);
867 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
868 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
869 				update_mmu_cache_pud(vma, addr, pud);
870 		}
871 		goto out_unlock;
872 	}
873 
874 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
875 	if (pfn_t_devmap(pfn))
876 		entry = pud_mkdevmap(entry);
877 	if (write) {
878 		entry = pud_mkyoung(pud_mkdirty(entry));
879 		entry = maybe_pud_mkwrite(entry, vma);
880 	}
881 	set_pud_at(mm, addr, pud, entry);
882 	update_mmu_cache_pud(vma, addr, pud);
883 
884 out_unlock:
885 	spin_unlock(ptl);
886 }
887 
888 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
889 {
890 	unsigned long addr = vmf->address & PUD_MASK;
891 	struct vm_area_struct *vma = vmf->vma;
892 	pgprot_t pgprot = vma->vm_page_prot;
893 
894 	/*
895 	 * If we had pud_special, we could avoid all these restrictions,
896 	 * but we need to be consistent with PTEs and architectures that
897 	 * can't support a 'special' bit.
898 	 */
899 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
900 			!pfn_t_devmap(pfn));
901 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
902 						(VM_PFNMAP|VM_MIXEDMAP));
903 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
904 
905 	if (addr < vma->vm_start || addr >= vma->vm_end)
906 		return VM_FAULT_SIGBUS;
907 
908 	track_pfn_insert(vma, &pgprot, pfn);
909 
910 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
911 	return VM_FAULT_NOPAGE;
912 }
913 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
914 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
915 
916 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
917 		pmd_t *pmd, int flags)
918 {
919 	pmd_t _pmd;
920 
921 	_pmd = pmd_mkyoung(*pmd);
922 	if (flags & FOLL_WRITE)
923 		_pmd = pmd_mkdirty(_pmd);
924 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
925 				pmd, _pmd, flags & FOLL_WRITE))
926 		update_mmu_cache_pmd(vma, addr, pmd);
927 }
928 
929 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
930 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
931 {
932 	unsigned long pfn = pmd_pfn(*pmd);
933 	struct mm_struct *mm = vma->vm_mm;
934 	struct page *page;
935 
936 	assert_spin_locked(pmd_lockptr(mm, pmd));
937 
938 	/*
939 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
940 	 * not be in this function with `flags & FOLL_COW` set.
941 	 */
942 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
943 
944 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
945 		return NULL;
946 
947 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
948 		/* pass */;
949 	else
950 		return NULL;
951 
952 	if (flags & FOLL_TOUCH)
953 		touch_pmd(vma, addr, pmd, flags);
954 
955 	/*
956 	 * device mapped pages can only be returned if the
957 	 * caller will manage the page reference count.
958 	 */
959 	if (!(flags & FOLL_GET))
960 		return ERR_PTR(-EEXIST);
961 
962 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
963 	*pgmap = get_dev_pagemap(pfn, *pgmap);
964 	if (!*pgmap)
965 		return ERR_PTR(-EFAULT);
966 	page = pfn_to_page(pfn);
967 	get_page(page);
968 
969 	return page;
970 }
971 
972 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
974 		  struct vm_area_struct *vma)
975 {
976 	spinlock_t *dst_ptl, *src_ptl;
977 	struct page *src_page;
978 	pmd_t pmd;
979 	pgtable_t pgtable = NULL;
980 	int ret = -ENOMEM;
981 
982 	/* Skip if can be re-fill on fault */
983 	if (!vma_is_anonymous(vma))
984 		return 0;
985 
986 	pgtable = pte_alloc_one(dst_mm);
987 	if (unlikely(!pgtable))
988 		goto out;
989 
990 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
991 	src_ptl = pmd_lockptr(src_mm, src_pmd);
992 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
993 
994 	ret = -EAGAIN;
995 	pmd = *src_pmd;
996 
997 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
998 	if (unlikely(is_swap_pmd(pmd))) {
999 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1000 
1001 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1002 		if (is_write_migration_entry(entry)) {
1003 			make_migration_entry_read(&entry);
1004 			pmd = swp_entry_to_pmd(entry);
1005 			if (pmd_swp_soft_dirty(*src_pmd))
1006 				pmd = pmd_swp_mksoft_dirty(pmd);
1007 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1008 		}
1009 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1010 		mm_inc_nr_ptes(dst_mm);
1011 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1012 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1013 		ret = 0;
1014 		goto out_unlock;
1015 	}
1016 #endif
1017 
1018 	if (unlikely(!pmd_trans_huge(pmd))) {
1019 		pte_free(dst_mm, pgtable);
1020 		goto out_unlock;
1021 	}
1022 	/*
1023 	 * When page table lock is held, the huge zero pmd should not be
1024 	 * under splitting since we don't split the page itself, only pmd to
1025 	 * a page table.
1026 	 */
1027 	if (is_huge_zero_pmd(pmd)) {
1028 		struct page *zero_page;
1029 		/*
1030 		 * get_huge_zero_page() will never allocate a new page here,
1031 		 * since we already have a zero page to copy. It just takes a
1032 		 * reference.
1033 		 */
1034 		zero_page = mm_get_huge_zero_page(dst_mm);
1035 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1036 				zero_page);
1037 		ret = 0;
1038 		goto out_unlock;
1039 	}
1040 
1041 	src_page = pmd_page(pmd);
1042 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1043 	get_page(src_page);
1044 	page_dup_rmap(src_page, true);
1045 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1046 	mm_inc_nr_ptes(dst_mm);
1047 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1048 
1049 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1050 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1051 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1052 
1053 	ret = 0;
1054 out_unlock:
1055 	spin_unlock(src_ptl);
1056 	spin_unlock(dst_ptl);
1057 out:
1058 	return ret;
1059 }
1060 
1061 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1062 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1063 		pud_t *pud, int flags)
1064 {
1065 	pud_t _pud;
1066 
1067 	_pud = pud_mkyoung(*pud);
1068 	if (flags & FOLL_WRITE)
1069 		_pud = pud_mkdirty(_pud);
1070 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1071 				pud, _pud, flags & FOLL_WRITE))
1072 		update_mmu_cache_pud(vma, addr, pud);
1073 }
1074 
1075 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1076 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1077 {
1078 	unsigned long pfn = pud_pfn(*pud);
1079 	struct mm_struct *mm = vma->vm_mm;
1080 	struct page *page;
1081 
1082 	assert_spin_locked(pud_lockptr(mm, pud));
1083 
1084 	if (flags & FOLL_WRITE && !pud_write(*pud))
1085 		return NULL;
1086 
1087 	if (pud_present(*pud) && pud_devmap(*pud))
1088 		/* pass */;
1089 	else
1090 		return NULL;
1091 
1092 	if (flags & FOLL_TOUCH)
1093 		touch_pud(vma, addr, pud, flags);
1094 
1095 	/*
1096 	 * device mapped pages can only be returned if the
1097 	 * caller will manage the page reference count.
1098 	 */
1099 	if (!(flags & FOLL_GET))
1100 		return ERR_PTR(-EEXIST);
1101 
1102 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1103 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1104 	if (!*pgmap)
1105 		return ERR_PTR(-EFAULT);
1106 	page = pfn_to_page(pfn);
1107 	get_page(page);
1108 
1109 	return page;
1110 }
1111 
1112 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1113 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1114 		  struct vm_area_struct *vma)
1115 {
1116 	spinlock_t *dst_ptl, *src_ptl;
1117 	pud_t pud;
1118 	int ret;
1119 
1120 	dst_ptl = pud_lock(dst_mm, dst_pud);
1121 	src_ptl = pud_lockptr(src_mm, src_pud);
1122 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1123 
1124 	ret = -EAGAIN;
1125 	pud = *src_pud;
1126 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1127 		goto out_unlock;
1128 
1129 	/*
1130 	 * When page table lock is held, the huge zero pud should not be
1131 	 * under splitting since we don't split the page itself, only pud to
1132 	 * a page table.
1133 	 */
1134 	if (is_huge_zero_pud(pud)) {
1135 		/* No huge zero pud yet */
1136 	}
1137 
1138 	pudp_set_wrprotect(src_mm, addr, src_pud);
1139 	pud = pud_mkold(pud_wrprotect(pud));
1140 	set_pud_at(dst_mm, addr, dst_pud, pud);
1141 
1142 	ret = 0;
1143 out_unlock:
1144 	spin_unlock(src_ptl);
1145 	spin_unlock(dst_ptl);
1146 	return ret;
1147 }
1148 
1149 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1150 {
1151 	pud_t entry;
1152 	unsigned long haddr;
1153 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1154 
1155 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1156 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1157 		goto unlock;
1158 
1159 	entry = pud_mkyoung(orig_pud);
1160 	if (write)
1161 		entry = pud_mkdirty(entry);
1162 	haddr = vmf->address & HPAGE_PUD_MASK;
1163 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1164 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1165 
1166 unlock:
1167 	spin_unlock(vmf->ptl);
1168 }
1169 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1170 
1171 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1172 {
1173 	pmd_t entry;
1174 	unsigned long haddr;
1175 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1176 
1177 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1178 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179 		goto unlock;
1180 
1181 	entry = pmd_mkyoung(orig_pmd);
1182 	if (write)
1183 		entry = pmd_mkdirty(entry);
1184 	haddr = vmf->address & HPAGE_PMD_MASK;
1185 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1186 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1187 
1188 unlock:
1189 	spin_unlock(vmf->ptl);
1190 }
1191 
1192 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1193 			pmd_t orig_pmd, struct page *page)
1194 {
1195 	struct vm_area_struct *vma = vmf->vma;
1196 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1197 	struct mem_cgroup *memcg;
1198 	pgtable_t pgtable;
1199 	pmd_t _pmd;
1200 	int i;
1201 	vm_fault_t ret = 0;
1202 	struct page **pages;
1203 	struct mmu_notifier_range range;
1204 
1205 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1206 			      GFP_KERNEL);
1207 	if (unlikely(!pages)) {
1208 		ret |= VM_FAULT_OOM;
1209 		goto out;
1210 	}
1211 
1212 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1214 					       vmf->address, page_to_nid(page));
1215 		if (unlikely(!pages[i] ||
1216 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1217 				     GFP_KERNEL, &memcg, false))) {
1218 			if (pages[i])
1219 				put_page(pages[i]);
1220 			while (--i >= 0) {
1221 				memcg = (void *)page_private(pages[i]);
1222 				set_page_private(pages[i], 0);
1223 				mem_cgroup_cancel_charge(pages[i], memcg,
1224 						false);
1225 				put_page(pages[i]);
1226 			}
1227 			kfree(pages);
1228 			ret |= VM_FAULT_OOM;
1229 			goto out;
1230 		}
1231 		set_page_private(pages[i], (unsigned long)memcg);
1232 	}
1233 
1234 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1235 		copy_user_highpage(pages[i], page + i,
1236 				   haddr + PAGE_SIZE * i, vma);
1237 		__SetPageUptodate(pages[i]);
1238 		cond_resched();
1239 	}
1240 
1241 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1242 				haddr, haddr + HPAGE_PMD_SIZE);
1243 	mmu_notifier_invalidate_range_start(&range);
1244 
1245 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1246 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247 		goto out_free_pages;
1248 	VM_BUG_ON_PAGE(!PageHead(page), page);
1249 
1250 	/*
1251 	 * Leave pmd empty until pte is filled note we must notify here as
1252 	 * concurrent CPU thread might write to new page before the call to
1253 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1254 	 * device seeing memory write in different order than CPU.
1255 	 *
1256 	 * See Documentation/vm/mmu_notifier.rst
1257 	 */
1258 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1259 
1260 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1261 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1262 
1263 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1264 		pte_t entry;
1265 		entry = mk_pte(pages[i], vma->vm_page_prot);
1266 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1267 		memcg = (void *)page_private(pages[i]);
1268 		set_page_private(pages[i], 0);
1269 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1270 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1271 		lru_cache_add_active_or_unevictable(pages[i], vma);
1272 		vmf->pte = pte_offset_map(&_pmd, haddr);
1273 		VM_BUG_ON(!pte_none(*vmf->pte));
1274 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1275 		pte_unmap(vmf->pte);
1276 	}
1277 	kfree(pages);
1278 
1279 	smp_wmb(); /* make pte visible before pmd */
1280 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1281 	page_remove_rmap(page, true);
1282 	spin_unlock(vmf->ptl);
1283 
1284 	/*
1285 	 * No need to double call mmu_notifier->invalidate_range() callback as
1286 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1287 	 */
1288 	mmu_notifier_invalidate_range_only_end(&range);
1289 
1290 	ret |= VM_FAULT_WRITE;
1291 	put_page(page);
1292 
1293 out:
1294 	return ret;
1295 
1296 out_free_pages:
1297 	spin_unlock(vmf->ptl);
1298 	mmu_notifier_invalidate_range_end(&range);
1299 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1300 		memcg = (void *)page_private(pages[i]);
1301 		set_page_private(pages[i], 0);
1302 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1303 		put_page(pages[i]);
1304 	}
1305 	kfree(pages);
1306 	goto out;
1307 }
1308 
1309 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1310 {
1311 	struct vm_area_struct *vma = vmf->vma;
1312 	struct page *page = NULL, *new_page;
1313 	struct mem_cgroup *memcg;
1314 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1315 	struct mmu_notifier_range range;
1316 	gfp_t huge_gfp;			/* for allocation and charge */
1317 	vm_fault_t ret = 0;
1318 
1319 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1320 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1321 	if (is_huge_zero_pmd(orig_pmd))
1322 		goto alloc;
1323 	spin_lock(vmf->ptl);
1324 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1325 		goto out_unlock;
1326 
1327 	page = pmd_page(orig_pmd);
1328 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1329 	/*
1330 	 * We can only reuse the page if nobody else maps the huge page or it's
1331 	 * part.
1332 	 */
1333 	if (!trylock_page(page)) {
1334 		get_page(page);
1335 		spin_unlock(vmf->ptl);
1336 		lock_page(page);
1337 		spin_lock(vmf->ptl);
1338 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1339 			unlock_page(page);
1340 			put_page(page);
1341 			goto out_unlock;
1342 		}
1343 		put_page(page);
1344 	}
1345 	if (reuse_swap_page(page, NULL)) {
1346 		pmd_t entry;
1347 		entry = pmd_mkyoung(orig_pmd);
1348 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1349 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1350 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1351 		ret |= VM_FAULT_WRITE;
1352 		unlock_page(page);
1353 		goto out_unlock;
1354 	}
1355 	unlock_page(page);
1356 	get_page(page);
1357 	spin_unlock(vmf->ptl);
1358 alloc:
1359 	if (__transparent_hugepage_enabled(vma) &&
1360 	    !transparent_hugepage_debug_cow()) {
1361 		huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1362 		new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1363 				haddr, numa_node_id());
1364 	} else
1365 		new_page = NULL;
1366 
1367 	if (likely(new_page)) {
1368 		prep_transhuge_page(new_page);
1369 	} else {
1370 		if (!page) {
1371 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1372 			ret |= VM_FAULT_FALLBACK;
1373 		} else {
1374 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1375 			if (ret & VM_FAULT_OOM) {
1376 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1377 				ret |= VM_FAULT_FALLBACK;
1378 			}
1379 			put_page(page);
1380 		}
1381 		count_vm_event(THP_FAULT_FALLBACK);
1382 		goto out;
1383 	}
1384 
1385 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1386 					huge_gfp, &memcg, true))) {
1387 		put_page(new_page);
1388 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1389 		if (page)
1390 			put_page(page);
1391 		ret |= VM_FAULT_FALLBACK;
1392 		count_vm_event(THP_FAULT_FALLBACK);
1393 		goto out;
1394 	}
1395 
1396 	count_vm_event(THP_FAULT_ALLOC);
1397 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1398 
1399 	if (!page)
1400 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1401 	else
1402 		copy_user_huge_page(new_page, page, vmf->address,
1403 				    vma, HPAGE_PMD_NR);
1404 	__SetPageUptodate(new_page);
1405 
1406 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1407 				haddr, haddr + HPAGE_PMD_SIZE);
1408 	mmu_notifier_invalidate_range_start(&range);
1409 
1410 	spin_lock(vmf->ptl);
1411 	if (page)
1412 		put_page(page);
1413 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1414 		spin_unlock(vmf->ptl);
1415 		mem_cgroup_cancel_charge(new_page, memcg, true);
1416 		put_page(new_page);
1417 		goto out_mn;
1418 	} else {
1419 		pmd_t entry;
1420 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1421 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1422 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1423 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1424 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1425 		lru_cache_add_active_or_unevictable(new_page, vma);
1426 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1427 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1428 		if (!page) {
1429 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1430 		} else {
1431 			VM_BUG_ON_PAGE(!PageHead(page), page);
1432 			page_remove_rmap(page, true);
1433 			put_page(page);
1434 		}
1435 		ret |= VM_FAULT_WRITE;
1436 	}
1437 	spin_unlock(vmf->ptl);
1438 out_mn:
1439 	/*
1440 	 * No need to double call mmu_notifier->invalidate_range() callback as
1441 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1442 	 */
1443 	mmu_notifier_invalidate_range_only_end(&range);
1444 out:
1445 	return ret;
1446 out_unlock:
1447 	spin_unlock(vmf->ptl);
1448 	return ret;
1449 }
1450 
1451 /*
1452  * FOLL_FORCE can write to even unwritable pmd's, but only
1453  * after we've gone through a COW cycle and they are dirty.
1454  */
1455 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1456 {
1457 	return pmd_write(pmd) ||
1458 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1459 }
1460 
1461 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1462 				   unsigned long addr,
1463 				   pmd_t *pmd,
1464 				   unsigned int flags)
1465 {
1466 	struct mm_struct *mm = vma->vm_mm;
1467 	struct page *page = NULL;
1468 
1469 	assert_spin_locked(pmd_lockptr(mm, pmd));
1470 
1471 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1472 		goto out;
1473 
1474 	/* Avoid dumping huge zero page */
1475 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476 		return ERR_PTR(-EFAULT);
1477 
1478 	/* Full NUMA hinting faults to serialise migration in fault paths */
1479 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1480 		goto out;
1481 
1482 	page = pmd_page(*pmd);
1483 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1484 	if (flags & FOLL_TOUCH)
1485 		touch_pmd(vma, addr, pmd, flags);
1486 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1487 		/*
1488 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1489 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1490 		 *
1491 		 * For anon THP:
1492 		 *
1493 		 * In most cases the pmd is the only mapping of the page as we
1494 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1495 		 * writable private mappings in populate_vma_page_range().
1496 		 *
1497 		 * The only scenario when we have the page shared here is if we
1498 		 * mlocking read-only mapping shared over fork(). We skip
1499 		 * mlocking such pages.
1500 		 *
1501 		 * For file THP:
1502 		 *
1503 		 * We can expect PageDoubleMap() to be stable under page lock:
1504 		 * for file pages we set it in page_add_file_rmap(), which
1505 		 * requires page to be locked.
1506 		 */
1507 
1508 		if (PageAnon(page) && compound_mapcount(page) != 1)
1509 			goto skip_mlock;
1510 		if (PageDoubleMap(page) || !page->mapping)
1511 			goto skip_mlock;
1512 		if (!trylock_page(page))
1513 			goto skip_mlock;
1514 		lru_add_drain();
1515 		if (page->mapping && !PageDoubleMap(page))
1516 			mlock_vma_page(page);
1517 		unlock_page(page);
1518 	}
1519 skip_mlock:
1520 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1521 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1522 	if (flags & FOLL_GET)
1523 		get_page(page);
1524 
1525 out:
1526 	return page;
1527 }
1528 
1529 /* NUMA hinting page fault entry point for trans huge pmds */
1530 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1531 {
1532 	struct vm_area_struct *vma = vmf->vma;
1533 	struct anon_vma *anon_vma = NULL;
1534 	struct page *page;
1535 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1536 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1537 	int target_nid, last_cpupid = -1;
1538 	bool page_locked;
1539 	bool migrated = false;
1540 	bool was_writable;
1541 	int flags = 0;
1542 
1543 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1544 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1545 		goto out_unlock;
1546 
1547 	/*
1548 	 * If there are potential migrations, wait for completion and retry
1549 	 * without disrupting NUMA hinting information. Do not relock and
1550 	 * check_same as the page may no longer be mapped.
1551 	 */
1552 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1553 		page = pmd_page(*vmf->pmd);
1554 		if (!get_page_unless_zero(page))
1555 			goto out_unlock;
1556 		spin_unlock(vmf->ptl);
1557 		put_and_wait_on_page_locked(page);
1558 		goto out;
1559 	}
1560 
1561 	page = pmd_page(pmd);
1562 	BUG_ON(is_huge_zero_page(page));
1563 	page_nid = page_to_nid(page);
1564 	last_cpupid = page_cpupid_last(page);
1565 	count_vm_numa_event(NUMA_HINT_FAULTS);
1566 	if (page_nid == this_nid) {
1567 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1568 		flags |= TNF_FAULT_LOCAL;
1569 	}
1570 
1571 	/* See similar comment in do_numa_page for explanation */
1572 	if (!pmd_savedwrite(pmd))
1573 		flags |= TNF_NO_GROUP;
1574 
1575 	/*
1576 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1577 	 * page_table_lock if at all possible
1578 	 */
1579 	page_locked = trylock_page(page);
1580 	target_nid = mpol_misplaced(page, vma, haddr);
1581 	if (target_nid == NUMA_NO_NODE) {
1582 		/* If the page was locked, there are no parallel migrations */
1583 		if (page_locked)
1584 			goto clear_pmdnuma;
1585 	}
1586 
1587 	/* Migration could have started since the pmd_trans_migrating check */
1588 	if (!page_locked) {
1589 		page_nid = NUMA_NO_NODE;
1590 		if (!get_page_unless_zero(page))
1591 			goto out_unlock;
1592 		spin_unlock(vmf->ptl);
1593 		put_and_wait_on_page_locked(page);
1594 		goto out;
1595 	}
1596 
1597 	/*
1598 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1599 	 * to serialises splits
1600 	 */
1601 	get_page(page);
1602 	spin_unlock(vmf->ptl);
1603 	anon_vma = page_lock_anon_vma_read(page);
1604 
1605 	/* Confirm the PMD did not change while page_table_lock was released */
1606 	spin_lock(vmf->ptl);
1607 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1608 		unlock_page(page);
1609 		put_page(page);
1610 		page_nid = NUMA_NO_NODE;
1611 		goto out_unlock;
1612 	}
1613 
1614 	/* Bail if we fail to protect against THP splits for any reason */
1615 	if (unlikely(!anon_vma)) {
1616 		put_page(page);
1617 		page_nid = NUMA_NO_NODE;
1618 		goto clear_pmdnuma;
1619 	}
1620 
1621 	/*
1622 	 * Since we took the NUMA fault, we must have observed the !accessible
1623 	 * bit. Make sure all other CPUs agree with that, to avoid them
1624 	 * modifying the page we're about to migrate.
1625 	 *
1626 	 * Must be done under PTL such that we'll observe the relevant
1627 	 * inc_tlb_flush_pending().
1628 	 *
1629 	 * We are not sure a pending tlb flush here is for a huge page
1630 	 * mapping or not. Hence use the tlb range variant
1631 	 */
1632 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1633 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1634 		/*
1635 		 * change_huge_pmd() released the pmd lock before
1636 		 * invalidating the secondary MMUs sharing the primary
1637 		 * MMU pagetables (with ->invalidate_range()). The
1638 		 * mmu_notifier_invalidate_range_end() (which
1639 		 * internally calls ->invalidate_range()) in
1640 		 * change_pmd_range() will run after us, so we can't
1641 		 * rely on it here and we need an explicit invalidate.
1642 		 */
1643 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1644 					      haddr + HPAGE_PMD_SIZE);
1645 	}
1646 
1647 	/*
1648 	 * Migrate the THP to the requested node, returns with page unlocked
1649 	 * and access rights restored.
1650 	 */
1651 	spin_unlock(vmf->ptl);
1652 
1653 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1654 				vmf->pmd, pmd, vmf->address, page, target_nid);
1655 	if (migrated) {
1656 		flags |= TNF_MIGRATED;
1657 		page_nid = target_nid;
1658 	} else
1659 		flags |= TNF_MIGRATE_FAIL;
1660 
1661 	goto out;
1662 clear_pmdnuma:
1663 	BUG_ON(!PageLocked(page));
1664 	was_writable = pmd_savedwrite(pmd);
1665 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1666 	pmd = pmd_mkyoung(pmd);
1667 	if (was_writable)
1668 		pmd = pmd_mkwrite(pmd);
1669 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1670 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1671 	unlock_page(page);
1672 out_unlock:
1673 	spin_unlock(vmf->ptl);
1674 
1675 out:
1676 	if (anon_vma)
1677 		page_unlock_anon_vma_read(anon_vma);
1678 
1679 	if (page_nid != NUMA_NO_NODE)
1680 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1681 				flags);
1682 
1683 	return 0;
1684 }
1685 
1686 /*
1687  * Return true if we do MADV_FREE successfully on entire pmd page.
1688  * Otherwise, return false.
1689  */
1690 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691 		pmd_t *pmd, unsigned long addr, unsigned long next)
1692 {
1693 	spinlock_t *ptl;
1694 	pmd_t orig_pmd;
1695 	struct page *page;
1696 	struct mm_struct *mm = tlb->mm;
1697 	bool ret = false;
1698 
1699 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1700 
1701 	ptl = pmd_trans_huge_lock(pmd, vma);
1702 	if (!ptl)
1703 		goto out_unlocked;
1704 
1705 	orig_pmd = *pmd;
1706 	if (is_huge_zero_pmd(orig_pmd))
1707 		goto out;
1708 
1709 	if (unlikely(!pmd_present(orig_pmd))) {
1710 		VM_BUG_ON(thp_migration_supported() &&
1711 				  !is_pmd_migration_entry(orig_pmd));
1712 		goto out;
1713 	}
1714 
1715 	page = pmd_page(orig_pmd);
1716 	/*
1717 	 * If other processes are mapping this page, we couldn't discard
1718 	 * the page unless they all do MADV_FREE so let's skip the page.
1719 	 */
1720 	if (page_mapcount(page) != 1)
1721 		goto out;
1722 
1723 	if (!trylock_page(page))
1724 		goto out;
1725 
1726 	/*
1727 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1728 	 * will deactivate only them.
1729 	 */
1730 	if (next - addr != HPAGE_PMD_SIZE) {
1731 		get_page(page);
1732 		spin_unlock(ptl);
1733 		split_huge_page(page);
1734 		unlock_page(page);
1735 		put_page(page);
1736 		goto out_unlocked;
1737 	}
1738 
1739 	if (PageDirty(page))
1740 		ClearPageDirty(page);
1741 	unlock_page(page);
1742 
1743 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1744 		pmdp_invalidate(vma, addr, pmd);
1745 		orig_pmd = pmd_mkold(orig_pmd);
1746 		orig_pmd = pmd_mkclean(orig_pmd);
1747 
1748 		set_pmd_at(mm, addr, pmd, orig_pmd);
1749 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1750 	}
1751 
1752 	mark_page_lazyfree(page);
1753 	ret = true;
1754 out:
1755 	spin_unlock(ptl);
1756 out_unlocked:
1757 	return ret;
1758 }
1759 
1760 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1761 {
1762 	pgtable_t pgtable;
1763 
1764 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1765 	pte_free(mm, pgtable);
1766 	mm_dec_nr_ptes(mm);
1767 }
1768 
1769 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1770 		 pmd_t *pmd, unsigned long addr)
1771 {
1772 	pmd_t orig_pmd;
1773 	spinlock_t *ptl;
1774 
1775 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1776 
1777 	ptl = __pmd_trans_huge_lock(pmd, vma);
1778 	if (!ptl)
1779 		return 0;
1780 	/*
1781 	 * For architectures like ppc64 we look at deposited pgtable
1782 	 * when calling pmdp_huge_get_and_clear. So do the
1783 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1784 	 * operations.
1785 	 */
1786 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1787 			tlb->fullmm);
1788 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1789 	if (vma_is_dax(vma)) {
1790 		if (arch_needs_pgtable_deposit())
1791 			zap_deposited_table(tlb->mm, pmd);
1792 		spin_unlock(ptl);
1793 		if (is_huge_zero_pmd(orig_pmd))
1794 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1795 	} else if (is_huge_zero_pmd(orig_pmd)) {
1796 		zap_deposited_table(tlb->mm, pmd);
1797 		spin_unlock(ptl);
1798 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1799 	} else {
1800 		struct page *page = NULL;
1801 		int flush_needed = 1;
1802 
1803 		if (pmd_present(orig_pmd)) {
1804 			page = pmd_page(orig_pmd);
1805 			page_remove_rmap(page, true);
1806 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1807 			VM_BUG_ON_PAGE(!PageHead(page), page);
1808 		} else if (thp_migration_supported()) {
1809 			swp_entry_t entry;
1810 
1811 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1812 			entry = pmd_to_swp_entry(orig_pmd);
1813 			page = pfn_to_page(swp_offset(entry));
1814 			flush_needed = 0;
1815 		} else
1816 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1817 
1818 		if (PageAnon(page)) {
1819 			zap_deposited_table(tlb->mm, pmd);
1820 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1821 		} else {
1822 			if (arch_needs_pgtable_deposit())
1823 				zap_deposited_table(tlb->mm, pmd);
1824 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1825 		}
1826 
1827 		spin_unlock(ptl);
1828 		if (flush_needed)
1829 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1830 	}
1831 	return 1;
1832 }
1833 
1834 #ifndef pmd_move_must_withdraw
1835 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1836 					 spinlock_t *old_pmd_ptl,
1837 					 struct vm_area_struct *vma)
1838 {
1839 	/*
1840 	 * With split pmd lock we also need to move preallocated
1841 	 * PTE page table if new_pmd is on different PMD page table.
1842 	 *
1843 	 * We also don't deposit and withdraw tables for file pages.
1844 	 */
1845 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1846 }
1847 #endif
1848 
1849 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1850 {
1851 #ifdef CONFIG_MEM_SOFT_DIRTY
1852 	if (unlikely(is_pmd_migration_entry(pmd)))
1853 		pmd = pmd_swp_mksoft_dirty(pmd);
1854 	else if (pmd_present(pmd))
1855 		pmd = pmd_mksoft_dirty(pmd);
1856 #endif
1857 	return pmd;
1858 }
1859 
1860 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1861 		  unsigned long new_addr, unsigned long old_end,
1862 		  pmd_t *old_pmd, pmd_t *new_pmd)
1863 {
1864 	spinlock_t *old_ptl, *new_ptl;
1865 	pmd_t pmd;
1866 	struct mm_struct *mm = vma->vm_mm;
1867 	bool force_flush = false;
1868 
1869 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1870 	    (new_addr & ~HPAGE_PMD_MASK) ||
1871 	    old_end - old_addr < HPAGE_PMD_SIZE)
1872 		return false;
1873 
1874 	/*
1875 	 * The destination pmd shouldn't be established, free_pgtables()
1876 	 * should have release it.
1877 	 */
1878 	if (WARN_ON(!pmd_none(*new_pmd))) {
1879 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1880 		return false;
1881 	}
1882 
1883 	/*
1884 	 * We don't have to worry about the ordering of src and dst
1885 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1886 	 */
1887 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1888 	if (old_ptl) {
1889 		new_ptl = pmd_lockptr(mm, new_pmd);
1890 		if (new_ptl != old_ptl)
1891 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1892 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1893 		if (pmd_present(pmd))
1894 			force_flush = true;
1895 		VM_BUG_ON(!pmd_none(*new_pmd));
1896 
1897 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1898 			pgtable_t pgtable;
1899 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1900 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1901 		}
1902 		pmd = move_soft_dirty_pmd(pmd);
1903 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1904 		if (force_flush)
1905 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1906 		if (new_ptl != old_ptl)
1907 			spin_unlock(new_ptl);
1908 		spin_unlock(old_ptl);
1909 		return true;
1910 	}
1911 	return false;
1912 }
1913 
1914 /*
1915  * Returns
1916  *  - 0 if PMD could not be locked
1917  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1918  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1919  */
1920 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1921 		unsigned long addr, pgprot_t newprot, int prot_numa)
1922 {
1923 	struct mm_struct *mm = vma->vm_mm;
1924 	spinlock_t *ptl;
1925 	pmd_t entry;
1926 	bool preserve_write;
1927 	int ret;
1928 
1929 	ptl = __pmd_trans_huge_lock(pmd, vma);
1930 	if (!ptl)
1931 		return 0;
1932 
1933 	preserve_write = prot_numa && pmd_write(*pmd);
1934 	ret = 1;
1935 
1936 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1937 	if (is_swap_pmd(*pmd)) {
1938 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1939 
1940 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1941 		if (is_write_migration_entry(entry)) {
1942 			pmd_t newpmd;
1943 			/*
1944 			 * A protection check is difficult so
1945 			 * just be safe and disable write
1946 			 */
1947 			make_migration_entry_read(&entry);
1948 			newpmd = swp_entry_to_pmd(entry);
1949 			if (pmd_swp_soft_dirty(*pmd))
1950 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1951 			set_pmd_at(mm, addr, pmd, newpmd);
1952 		}
1953 		goto unlock;
1954 	}
1955 #endif
1956 
1957 	/*
1958 	 * Avoid trapping faults against the zero page. The read-only
1959 	 * data is likely to be read-cached on the local CPU and
1960 	 * local/remote hits to the zero page are not interesting.
1961 	 */
1962 	if (prot_numa && is_huge_zero_pmd(*pmd))
1963 		goto unlock;
1964 
1965 	if (prot_numa && pmd_protnone(*pmd))
1966 		goto unlock;
1967 
1968 	/*
1969 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1970 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1971 	 * which is also under down_read(mmap_sem):
1972 	 *
1973 	 *	CPU0:				CPU1:
1974 	 *				change_huge_pmd(prot_numa=1)
1975 	 *				 pmdp_huge_get_and_clear_notify()
1976 	 * madvise_dontneed()
1977 	 *  zap_pmd_range()
1978 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1979 	 *   // skip the pmd
1980 	 *				 set_pmd_at();
1981 	 *				 // pmd is re-established
1982 	 *
1983 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1984 	 * which may break userspace.
1985 	 *
1986 	 * pmdp_invalidate() is required to make sure we don't miss
1987 	 * dirty/young flags set by hardware.
1988 	 */
1989 	entry = pmdp_invalidate(vma, addr, pmd);
1990 
1991 	entry = pmd_modify(entry, newprot);
1992 	if (preserve_write)
1993 		entry = pmd_mk_savedwrite(entry);
1994 	ret = HPAGE_PMD_NR;
1995 	set_pmd_at(mm, addr, pmd, entry);
1996 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1997 unlock:
1998 	spin_unlock(ptl);
1999 	return ret;
2000 }
2001 
2002 /*
2003  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2004  *
2005  * Note that if it returns page table lock pointer, this routine returns without
2006  * unlocking page table lock. So callers must unlock it.
2007  */
2008 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2009 {
2010 	spinlock_t *ptl;
2011 	ptl = pmd_lock(vma->vm_mm, pmd);
2012 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2013 			pmd_devmap(*pmd)))
2014 		return ptl;
2015 	spin_unlock(ptl);
2016 	return NULL;
2017 }
2018 
2019 /*
2020  * Returns true if a given pud maps a thp, false otherwise.
2021  *
2022  * Note that if it returns true, this routine returns without unlocking page
2023  * table lock. So callers must unlock it.
2024  */
2025 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2026 {
2027 	spinlock_t *ptl;
2028 
2029 	ptl = pud_lock(vma->vm_mm, pud);
2030 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2031 		return ptl;
2032 	spin_unlock(ptl);
2033 	return NULL;
2034 }
2035 
2036 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2037 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2038 		 pud_t *pud, unsigned long addr)
2039 {
2040 	spinlock_t *ptl;
2041 
2042 	ptl = __pud_trans_huge_lock(pud, vma);
2043 	if (!ptl)
2044 		return 0;
2045 	/*
2046 	 * For architectures like ppc64 we look at deposited pgtable
2047 	 * when calling pudp_huge_get_and_clear. So do the
2048 	 * pgtable_trans_huge_withdraw after finishing pudp related
2049 	 * operations.
2050 	 */
2051 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2052 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2053 	if (vma_is_dax(vma)) {
2054 		spin_unlock(ptl);
2055 		/* No zero page support yet */
2056 	} else {
2057 		/* No support for anonymous PUD pages yet */
2058 		BUG();
2059 	}
2060 	return 1;
2061 }
2062 
2063 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2064 		unsigned long haddr)
2065 {
2066 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2067 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2068 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2069 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2070 
2071 	count_vm_event(THP_SPLIT_PUD);
2072 
2073 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2074 }
2075 
2076 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2077 		unsigned long address)
2078 {
2079 	spinlock_t *ptl;
2080 	struct mmu_notifier_range range;
2081 
2082 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2083 				address & HPAGE_PUD_MASK,
2084 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2085 	mmu_notifier_invalidate_range_start(&range);
2086 	ptl = pud_lock(vma->vm_mm, pud);
2087 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2088 		goto out;
2089 	__split_huge_pud_locked(vma, pud, range.start);
2090 
2091 out:
2092 	spin_unlock(ptl);
2093 	/*
2094 	 * No need to double call mmu_notifier->invalidate_range() callback as
2095 	 * the above pudp_huge_clear_flush_notify() did already call it.
2096 	 */
2097 	mmu_notifier_invalidate_range_only_end(&range);
2098 }
2099 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2100 
2101 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2102 		unsigned long haddr, pmd_t *pmd)
2103 {
2104 	struct mm_struct *mm = vma->vm_mm;
2105 	pgtable_t pgtable;
2106 	pmd_t _pmd;
2107 	int i;
2108 
2109 	/*
2110 	 * Leave pmd empty until pte is filled note that it is fine to delay
2111 	 * notification until mmu_notifier_invalidate_range_end() as we are
2112 	 * replacing a zero pmd write protected page with a zero pte write
2113 	 * protected page.
2114 	 *
2115 	 * See Documentation/vm/mmu_notifier.rst
2116 	 */
2117 	pmdp_huge_clear_flush(vma, haddr, pmd);
2118 
2119 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2120 	pmd_populate(mm, &_pmd, pgtable);
2121 
2122 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2123 		pte_t *pte, entry;
2124 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2125 		entry = pte_mkspecial(entry);
2126 		pte = pte_offset_map(&_pmd, haddr);
2127 		VM_BUG_ON(!pte_none(*pte));
2128 		set_pte_at(mm, haddr, pte, entry);
2129 		pte_unmap(pte);
2130 	}
2131 	smp_wmb(); /* make pte visible before pmd */
2132 	pmd_populate(mm, pmd, pgtable);
2133 }
2134 
2135 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2136 		unsigned long haddr, bool freeze)
2137 {
2138 	struct mm_struct *mm = vma->vm_mm;
2139 	struct page *page;
2140 	pgtable_t pgtable;
2141 	pmd_t old_pmd, _pmd;
2142 	bool young, write, soft_dirty, pmd_migration = false;
2143 	unsigned long addr;
2144 	int i;
2145 
2146 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2147 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2148 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2149 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2150 				&& !pmd_devmap(*pmd));
2151 
2152 	count_vm_event(THP_SPLIT_PMD);
2153 
2154 	if (!vma_is_anonymous(vma)) {
2155 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2156 		/*
2157 		 * We are going to unmap this huge page. So
2158 		 * just go ahead and zap it
2159 		 */
2160 		if (arch_needs_pgtable_deposit())
2161 			zap_deposited_table(mm, pmd);
2162 		if (vma_is_dax(vma))
2163 			return;
2164 		page = pmd_page(_pmd);
2165 		if (!PageDirty(page) && pmd_dirty(_pmd))
2166 			set_page_dirty(page);
2167 		if (!PageReferenced(page) && pmd_young(_pmd))
2168 			SetPageReferenced(page);
2169 		page_remove_rmap(page, true);
2170 		put_page(page);
2171 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2172 		return;
2173 	} else if (is_huge_zero_pmd(*pmd)) {
2174 		/*
2175 		 * FIXME: Do we want to invalidate secondary mmu by calling
2176 		 * mmu_notifier_invalidate_range() see comments below inside
2177 		 * __split_huge_pmd() ?
2178 		 *
2179 		 * We are going from a zero huge page write protected to zero
2180 		 * small page also write protected so it does not seems useful
2181 		 * to invalidate secondary mmu at this time.
2182 		 */
2183 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2184 	}
2185 
2186 	/*
2187 	 * Up to this point the pmd is present and huge and userland has the
2188 	 * whole access to the hugepage during the split (which happens in
2189 	 * place). If we overwrite the pmd with the not-huge version pointing
2190 	 * to the pte here (which of course we could if all CPUs were bug
2191 	 * free), userland could trigger a small page size TLB miss on the
2192 	 * small sized TLB while the hugepage TLB entry is still established in
2193 	 * the huge TLB. Some CPU doesn't like that.
2194 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2195 	 * 383 on page 93. Intel should be safe but is also warns that it's
2196 	 * only safe if the permission and cache attributes of the two entries
2197 	 * loaded in the two TLB is identical (which should be the case here).
2198 	 * But it is generally safer to never allow small and huge TLB entries
2199 	 * for the same virtual address to be loaded simultaneously. So instead
2200 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2201 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2202 	 * must remain set at all times on the pmd until the split is complete
2203 	 * for this pmd), then we flush the SMP TLB and finally we write the
2204 	 * non-huge version of the pmd entry with pmd_populate.
2205 	 */
2206 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2207 
2208 	pmd_migration = is_pmd_migration_entry(old_pmd);
2209 	if (unlikely(pmd_migration)) {
2210 		swp_entry_t entry;
2211 
2212 		entry = pmd_to_swp_entry(old_pmd);
2213 		page = pfn_to_page(swp_offset(entry));
2214 		write = is_write_migration_entry(entry);
2215 		young = false;
2216 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2217 	} else {
2218 		page = pmd_page(old_pmd);
2219 		if (pmd_dirty(old_pmd))
2220 			SetPageDirty(page);
2221 		write = pmd_write(old_pmd);
2222 		young = pmd_young(old_pmd);
2223 		soft_dirty = pmd_soft_dirty(old_pmd);
2224 	}
2225 	VM_BUG_ON_PAGE(!page_count(page), page);
2226 	page_ref_add(page, HPAGE_PMD_NR - 1);
2227 
2228 	/*
2229 	 * Withdraw the table only after we mark the pmd entry invalid.
2230 	 * This's critical for some architectures (Power).
2231 	 */
2232 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2233 	pmd_populate(mm, &_pmd, pgtable);
2234 
2235 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2236 		pte_t entry, *pte;
2237 		/*
2238 		 * Note that NUMA hinting access restrictions are not
2239 		 * transferred to avoid any possibility of altering
2240 		 * permissions across VMAs.
2241 		 */
2242 		if (freeze || pmd_migration) {
2243 			swp_entry_t swp_entry;
2244 			swp_entry = make_migration_entry(page + i, write);
2245 			entry = swp_entry_to_pte(swp_entry);
2246 			if (soft_dirty)
2247 				entry = pte_swp_mksoft_dirty(entry);
2248 		} else {
2249 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2250 			entry = maybe_mkwrite(entry, vma);
2251 			if (!write)
2252 				entry = pte_wrprotect(entry);
2253 			if (!young)
2254 				entry = pte_mkold(entry);
2255 			if (soft_dirty)
2256 				entry = pte_mksoft_dirty(entry);
2257 		}
2258 		pte = pte_offset_map(&_pmd, addr);
2259 		BUG_ON(!pte_none(*pte));
2260 		set_pte_at(mm, addr, pte, entry);
2261 		atomic_inc(&page[i]._mapcount);
2262 		pte_unmap(pte);
2263 	}
2264 
2265 	/*
2266 	 * Set PG_double_map before dropping compound_mapcount to avoid
2267 	 * false-negative page_mapped().
2268 	 */
2269 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2270 		for (i = 0; i < HPAGE_PMD_NR; i++)
2271 			atomic_inc(&page[i]._mapcount);
2272 	}
2273 
2274 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2275 		/* Last compound_mapcount is gone. */
2276 		__dec_node_page_state(page, NR_ANON_THPS);
2277 		if (TestClearPageDoubleMap(page)) {
2278 			/* No need in mapcount reference anymore */
2279 			for (i = 0; i < HPAGE_PMD_NR; i++)
2280 				atomic_dec(&page[i]._mapcount);
2281 		}
2282 	}
2283 
2284 	smp_wmb(); /* make pte visible before pmd */
2285 	pmd_populate(mm, pmd, pgtable);
2286 
2287 	if (freeze) {
2288 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2289 			page_remove_rmap(page + i, false);
2290 			put_page(page + i);
2291 		}
2292 	}
2293 }
2294 
2295 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2296 		unsigned long address, bool freeze, struct page *page)
2297 {
2298 	spinlock_t *ptl;
2299 	struct mmu_notifier_range range;
2300 
2301 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2302 				address & HPAGE_PMD_MASK,
2303 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2304 	mmu_notifier_invalidate_range_start(&range);
2305 	ptl = pmd_lock(vma->vm_mm, pmd);
2306 
2307 	/*
2308 	 * If caller asks to setup a migration entries, we need a page to check
2309 	 * pmd against. Otherwise we can end up replacing wrong page.
2310 	 */
2311 	VM_BUG_ON(freeze && !page);
2312 	if (page && page != pmd_page(*pmd))
2313 	        goto out;
2314 
2315 	if (pmd_trans_huge(*pmd)) {
2316 		page = pmd_page(*pmd);
2317 		if (PageMlocked(page))
2318 			clear_page_mlock(page);
2319 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2320 		goto out;
2321 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2322 out:
2323 	spin_unlock(ptl);
2324 	/*
2325 	 * No need to double call mmu_notifier->invalidate_range() callback.
2326 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2327 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2328 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2329 	 *    fault will trigger a flush_notify before pointing to a new page
2330 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2331 	 *    page in the meantime)
2332 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2333 	 *     to invalidate secondary tlb entry they are all still valid.
2334 	 *     any further changes to individual pte will notify. So no need
2335 	 *     to call mmu_notifier->invalidate_range()
2336 	 */
2337 	mmu_notifier_invalidate_range_only_end(&range);
2338 }
2339 
2340 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2341 		bool freeze, struct page *page)
2342 {
2343 	pgd_t *pgd;
2344 	p4d_t *p4d;
2345 	pud_t *pud;
2346 	pmd_t *pmd;
2347 
2348 	pgd = pgd_offset(vma->vm_mm, address);
2349 	if (!pgd_present(*pgd))
2350 		return;
2351 
2352 	p4d = p4d_offset(pgd, address);
2353 	if (!p4d_present(*p4d))
2354 		return;
2355 
2356 	pud = pud_offset(p4d, address);
2357 	if (!pud_present(*pud))
2358 		return;
2359 
2360 	pmd = pmd_offset(pud, address);
2361 
2362 	__split_huge_pmd(vma, pmd, address, freeze, page);
2363 }
2364 
2365 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2366 			     unsigned long start,
2367 			     unsigned long end,
2368 			     long adjust_next)
2369 {
2370 	/*
2371 	 * If the new start address isn't hpage aligned and it could
2372 	 * previously contain an hugepage: check if we need to split
2373 	 * an huge pmd.
2374 	 */
2375 	if (start & ~HPAGE_PMD_MASK &&
2376 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378 		split_huge_pmd_address(vma, start, false, NULL);
2379 
2380 	/*
2381 	 * If the new end address isn't hpage aligned and it could
2382 	 * previously contain an hugepage: check if we need to split
2383 	 * an huge pmd.
2384 	 */
2385 	if (end & ~HPAGE_PMD_MASK &&
2386 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2387 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2388 		split_huge_pmd_address(vma, end, false, NULL);
2389 
2390 	/*
2391 	 * If we're also updating the vma->vm_next->vm_start, if the new
2392 	 * vm_next->vm_start isn't page aligned and it could previously
2393 	 * contain an hugepage: check if we need to split an huge pmd.
2394 	 */
2395 	if (adjust_next > 0) {
2396 		struct vm_area_struct *next = vma->vm_next;
2397 		unsigned long nstart = next->vm_start;
2398 		nstart += adjust_next << PAGE_SHIFT;
2399 		if (nstart & ~HPAGE_PMD_MASK &&
2400 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2401 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2402 			split_huge_pmd_address(next, nstart, false, NULL);
2403 	}
2404 }
2405 
2406 static void unmap_page(struct page *page)
2407 {
2408 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2409 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2410 	bool unmap_success;
2411 
2412 	VM_BUG_ON_PAGE(!PageHead(page), page);
2413 
2414 	if (PageAnon(page))
2415 		ttu_flags |= TTU_SPLIT_FREEZE;
2416 
2417 	unmap_success = try_to_unmap(page, ttu_flags);
2418 	VM_BUG_ON_PAGE(!unmap_success, page);
2419 }
2420 
2421 static void remap_page(struct page *page)
2422 {
2423 	int i;
2424 	if (PageTransHuge(page)) {
2425 		remove_migration_ptes(page, page, true);
2426 	} else {
2427 		for (i = 0; i < HPAGE_PMD_NR; i++)
2428 			remove_migration_ptes(page + i, page + i, true);
2429 	}
2430 }
2431 
2432 static void __split_huge_page_tail(struct page *head, int tail,
2433 		struct lruvec *lruvec, struct list_head *list)
2434 {
2435 	struct page *page_tail = head + tail;
2436 
2437 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2438 
2439 	/*
2440 	 * Clone page flags before unfreezing refcount.
2441 	 *
2442 	 * After successful get_page_unless_zero() might follow flags change,
2443 	 * for exmaple lock_page() which set PG_waiters.
2444 	 */
2445 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2446 	page_tail->flags |= (head->flags &
2447 			((1L << PG_referenced) |
2448 			 (1L << PG_swapbacked) |
2449 			 (1L << PG_swapcache) |
2450 			 (1L << PG_mlocked) |
2451 			 (1L << PG_uptodate) |
2452 			 (1L << PG_active) |
2453 			 (1L << PG_workingset) |
2454 			 (1L << PG_locked) |
2455 			 (1L << PG_unevictable) |
2456 			 (1L << PG_dirty)));
2457 
2458 	/* ->mapping in first tail page is compound_mapcount */
2459 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2460 			page_tail);
2461 	page_tail->mapping = head->mapping;
2462 	page_tail->index = head->index + tail;
2463 
2464 	/* Page flags must be visible before we make the page non-compound. */
2465 	smp_wmb();
2466 
2467 	/*
2468 	 * Clear PageTail before unfreezing page refcount.
2469 	 *
2470 	 * After successful get_page_unless_zero() might follow put_page()
2471 	 * which needs correct compound_head().
2472 	 */
2473 	clear_compound_head(page_tail);
2474 
2475 	/* Finally unfreeze refcount. Additional reference from page cache. */
2476 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2477 					  PageSwapCache(head)));
2478 
2479 	if (page_is_young(head))
2480 		set_page_young(page_tail);
2481 	if (page_is_idle(head))
2482 		set_page_idle(page_tail);
2483 
2484 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2485 
2486 	/*
2487 	 * always add to the tail because some iterators expect new
2488 	 * pages to show after the currently processed elements - e.g.
2489 	 * migrate_pages
2490 	 */
2491 	lru_add_page_tail(head, page_tail, lruvec, list);
2492 }
2493 
2494 static void __split_huge_page(struct page *page, struct list_head *list,
2495 		pgoff_t end, unsigned long flags)
2496 {
2497 	struct page *head = compound_head(page);
2498 	pg_data_t *pgdat = page_pgdat(head);
2499 	struct lruvec *lruvec;
2500 	int i;
2501 
2502 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2503 
2504 	/* complete memcg works before add pages to LRU */
2505 	mem_cgroup_split_huge_fixup(head);
2506 
2507 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2508 		__split_huge_page_tail(head, i, lruvec, list);
2509 		/* Some pages can be beyond i_size: drop them from page cache */
2510 		if (head[i].index >= end) {
2511 			ClearPageDirty(head + i);
2512 			__delete_from_page_cache(head + i, NULL);
2513 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2514 				shmem_uncharge(head->mapping->host, 1);
2515 			put_page(head + i);
2516 		}
2517 	}
2518 
2519 	ClearPageCompound(head);
2520 
2521 	split_page_owner(head, HPAGE_PMD_ORDER);
2522 
2523 	/* See comment in __split_huge_page_tail() */
2524 	if (PageAnon(head)) {
2525 		/* Additional pin to swap cache */
2526 		if (PageSwapCache(head))
2527 			page_ref_add(head, 2);
2528 		else
2529 			page_ref_inc(head);
2530 	} else {
2531 		/* Additional pin to page cache */
2532 		page_ref_add(head, 2);
2533 		xa_unlock(&head->mapping->i_pages);
2534 	}
2535 
2536 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2537 
2538 	remap_page(head);
2539 
2540 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2541 		struct page *subpage = head + i;
2542 		if (subpage == page)
2543 			continue;
2544 		unlock_page(subpage);
2545 
2546 		/*
2547 		 * Subpages may be freed if there wasn't any mapping
2548 		 * like if add_to_swap() is running on a lru page that
2549 		 * had its mapping zapped. And freeing these pages
2550 		 * requires taking the lru_lock so we do the put_page
2551 		 * of the tail pages after the split is complete.
2552 		 */
2553 		put_page(subpage);
2554 	}
2555 }
2556 
2557 int total_mapcount(struct page *page)
2558 {
2559 	int i, compound, ret;
2560 
2561 	VM_BUG_ON_PAGE(PageTail(page), page);
2562 
2563 	if (likely(!PageCompound(page)))
2564 		return atomic_read(&page->_mapcount) + 1;
2565 
2566 	compound = compound_mapcount(page);
2567 	if (PageHuge(page))
2568 		return compound;
2569 	ret = compound;
2570 	for (i = 0; i < HPAGE_PMD_NR; i++)
2571 		ret += atomic_read(&page[i]._mapcount) + 1;
2572 	/* File pages has compound_mapcount included in _mapcount */
2573 	if (!PageAnon(page))
2574 		return ret - compound * HPAGE_PMD_NR;
2575 	if (PageDoubleMap(page))
2576 		ret -= HPAGE_PMD_NR;
2577 	return ret;
2578 }
2579 
2580 /*
2581  * This calculates accurately how many mappings a transparent hugepage
2582  * has (unlike page_mapcount() which isn't fully accurate). This full
2583  * accuracy is primarily needed to know if copy-on-write faults can
2584  * reuse the page and change the mapping to read-write instead of
2585  * copying them. At the same time this returns the total_mapcount too.
2586  *
2587  * The function returns the highest mapcount any one of the subpages
2588  * has. If the return value is one, even if different processes are
2589  * mapping different subpages of the transparent hugepage, they can
2590  * all reuse it, because each process is reusing a different subpage.
2591  *
2592  * The total_mapcount is instead counting all virtual mappings of the
2593  * subpages. If the total_mapcount is equal to "one", it tells the
2594  * caller all mappings belong to the same "mm" and in turn the
2595  * anon_vma of the transparent hugepage can become the vma->anon_vma
2596  * local one as no other process may be mapping any of the subpages.
2597  *
2598  * It would be more accurate to replace page_mapcount() with
2599  * page_trans_huge_mapcount(), however we only use
2600  * page_trans_huge_mapcount() in the copy-on-write faults where we
2601  * need full accuracy to avoid breaking page pinning, because
2602  * page_trans_huge_mapcount() is slower than page_mapcount().
2603  */
2604 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2605 {
2606 	int i, ret, _total_mapcount, mapcount;
2607 
2608 	/* hugetlbfs shouldn't call it */
2609 	VM_BUG_ON_PAGE(PageHuge(page), page);
2610 
2611 	if (likely(!PageTransCompound(page))) {
2612 		mapcount = atomic_read(&page->_mapcount) + 1;
2613 		if (total_mapcount)
2614 			*total_mapcount = mapcount;
2615 		return mapcount;
2616 	}
2617 
2618 	page = compound_head(page);
2619 
2620 	_total_mapcount = ret = 0;
2621 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2622 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2623 		ret = max(ret, mapcount);
2624 		_total_mapcount += mapcount;
2625 	}
2626 	if (PageDoubleMap(page)) {
2627 		ret -= 1;
2628 		_total_mapcount -= HPAGE_PMD_NR;
2629 	}
2630 	mapcount = compound_mapcount(page);
2631 	ret += mapcount;
2632 	_total_mapcount += mapcount;
2633 	if (total_mapcount)
2634 		*total_mapcount = _total_mapcount;
2635 	return ret;
2636 }
2637 
2638 /* Racy check whether the huge page can be split */
2639 bool can_split_huge_page(struct page *page, int *pextra_pins)
2640 {
2641 	int extra_pins;
2642 
2643 	/* Additional pins from page cache */
2644 	if (PageAnon(page))
2645 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2646 	else
2647 		extra_pins = HPAGE_PMD_NR;
2648 	if (pextra_pins)
2649 		*pextra_pins = extra_pins;
2650 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2651 }
2652 
2653 /*
2654  * This function splits huge page into normal pages. @page can point to any
2655  * subpage of huge page to split. Split doesn't change the position of @page.
2656  *
2657  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2658  * The huge page must be locked.
2659  *
2660  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2661  *
2662  * Both head page and tail pages will inherit mapping, flags, and so on from
2663  * the hugepage.
2664  *
2665  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2666  * they are not mapped.
2667  *
2668  * Returns 0 if the hugepage is split successfully.
2669  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2670  * us.
2671  */
2672 int split_huge_page_to_list(struct page *page, struct list_head *list)
2673 {
2674 	struct page *head = compound_head(page);
2675 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2676 	struct anon_vma *anon_vma = NULL;
2677 	struct address_space *mapping = NULL;
2678 	int count, mapcount, extra_pins, ret;
2679 	bool mlocked;
2680 	unsigned long flags;
2681 	pgoff_t end;
2682 
2683 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2684 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2685 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2686 
2687 	if (PageWriteback(page))
2688 		return -EBUSY;
2689 
2690 	if (PageAnon(head)) {
2691 		/*
2692 		 * The caller does not necessarily hold an mmap_sem that would
2693 		 * prevent the anon_vma disappearing so we first we take a
2694 		 * reference to it and then lock the anon_vma for write. This
2695 		 * is similar to page_lock_anon_vma_read except the write lock
2696 		 * is taken to serialise against parallel split or collapse
2697 		 * operations.
2698 		 */
2699 		anon_vma = page_get_anon_vma(head);
2700 		if (!anon_vma) {
2701 			ret = -EBUSY;
2702 			goto out;
2703 		}
2704 		end = -1;
2705 		mapping = NULL;
2706 		anon_vma_lock_write(anon_vma);
2707 	} else {
2708 		mapping = head->mapping;
2709 
2710 		/* Truncated ? */
2711 		if (!mapping) {
2712 			ret = -EBUSY;
2713 			goto out;
2714 		}
2715 
2716 		anon_vma = NULL;
2717 		i_mmap_lock_read(mapping);
2718 
2719 		/*
2720 		 *__split_huge_page() may need to trim off pages beyond EOF:
2721 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2722 		 * which cannot be nested inside the page tree lock. So note
2723 		 * end now: i_size itself may be changed at any moment, but
2724 		 * head page lock is good enough to serialize the trimming.
2725 		 */
2726 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2727 	}
2728 
2729 	/*
2730 	 * Racy check if we can split the page, before unmap_page() will
2731 	 * split PMDs
2732 	 */
2733 	if (!can_split_huge_page(head, &extra_pins)) {
2734 		ret = -EBUSY;
2735 		goto out_unlock;
2736 	}
2737 
2738 	mlocked = PageMlocked(page);
2739 	unmap_page(head);
2740 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2741 
2742 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2743 	if (mlocked)
2744 		lru_add_drain();
2745 
2746 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2747 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2748 
2749 	if (mapping) {
2750 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2751 
2752 		/*
2753 		 * Check if the head page is present in page cache.
2754 		 * We assume all tail are present too, if head is there.
2755 		 */
2756 		xa_lock(&mapping->i_pages);
2757 		if (xas_load(&xas) != head)
2758 			goto fail;
2759 	}
2760 
2761 	/* Prevent deferred_split_scan() touching ->_refcount */
2762 	spin_lock(&pgdata->split_queue_lock);
2763 	count = page_count(head);
2764 	mapcount = total_mapcount(head);
2765 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2766 		if (!list_empty(page_deferred_list(head))) {
2767 			pgdata->split_queue_len--;
2768 			list_del(page_deferred_list(head));
2769 		}
2770 		if (mapping)
2771 			__dec_node_page_state(page, NR_SHMEM_THPS);
2772 		spin_unlock(&pgdata->split_queue_lock);
2773 		__split_huge_page(page, list, end, flags);
2774 		if (PageSwapCache(head)) {
2775 			swp_entry_t entry = { .val = page_private(head) };
2776 
2777 			ret = split_swap_cluster(entry);
2778 		} else
2779 			ret = 0;
2780 	} else {
2781 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2782 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2783 					mapcount, count);
2784 			if (PageTail(page))
2785 				dump_page(head, NULL);
2786 			dump_page(page, "total_mapcount(head) > 0");
2787 			BUG();
2788 		}
2789 		spin_unlock(&pgdata->split_queue_lock);
2790 fail:		if (mapping)
2791 			xa_unlock(&mapping->i_pages);
2792 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2793 		remap_page(head);
2794 		ret = -EBUSY;
2795 	}
2796 
2797 out_unlock:
2798 	if (anon_vma) {
2799 		anon_vma_unlock_write(anon_vma);
2800 		put_anon_vma(anon_vma);
2801 	}
2802 	if (mapping)
2803 		i_mmap_unlock_read(mapping);
2804 out:
2805 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2806 	return ret;
2807 }
2808 
2809 void free_transhuge_page(struct page *page)
2810 {
2811 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2812 	unsigned long flags;
2813 
2814 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2815 	if (!list_empty(page_deferred_list(page))) {
2816 		pgdata->split_queue_len--;
2817 		list_del(page_deferred_list(page));
2818 	}
2819 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820 	free_compound_page(page);
2821 }
2822 
2823 void deferred_split_huge_page(struct page *page)
2824 {
2825 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2826 	unsigned long flags;
2827 
2828 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2829 
2830 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2831 	if (list_empty(page_deferred_list(page))) {
2832 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2833 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2834 		pgdata->split_queue_len++;
2835 	}
2836 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2837 }
2838 
2839 static unsigned long deferred_split_count(struct shrinker *shrink,
2840 		struct shrink_control *sc)
2841 {
2842 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843 	return READ_ONCE(pgdata->split_queue_len);
2844 }
2845 
2846 static unsigned long deferred_split_scan(struct shrinker *shrink,
2847 		struct shrink_control *sc)
2848 {
2849 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850 	unsigned long flags;
2851 	LIST_HEAD(list), *pos, *next;
2852 	struct page *page;
2853 	int split = 0;
2854 
2855 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2856 	/* Take pin on all head pages to avoid freeing them under us */
2857 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2858 		page = list_entry((void *)pos, struct page, mapping);
2859 		page = compound_head(page);
2860 		if (get_page_unless_zero(page)) {
2861 			list_move(page_deferred_list(page), &list);
2862 		} else {
2863 			/* We lost race with put_compound_page() */
2864 			list_del_init(page_deferred_list(page));
2865 			pgdata->split_queue_len--;
2866 		}
2867 		if (!--sc->nr_to_scan)
2868 			break;
2869 	}
2870 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2871 
2872 	list_for_each_safe(pos, next, &list) {
2873 		page = list_entry((void *)pos, struct page, mapping);
2874 		if (!trylock_page(page))
2875 			goto next;
2876 		/* split_huge_page() removes page from list on success */
2877 		if (!split_huge_page(page))
2878 			split++;
2879 		unlock_page(page);
2880 next:
2881 		put_page(page);
2882 	}
2883 
2884 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2885 	list_splice_tail(&list, &pgdata->split_queue);
2886 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2887 
2888 	/*
2889 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2890 	 * This can happen if pages were freed under us.
2891 	 */
2892 	if (!split && list_empty(&pgdata->split_queue))
2893 		return SHRINK_STOP;
2894 	return split;
2895 }
2896 
2897 static struct shrinker deferred_split_shrinker = {
2898 	.count_objects = deferred_split_count,
2899 	.scan_objects = deferred_split_scan,
2900 	.seeks = DEFAULT_SEEKS,
2901 	.flags = SHRINKER_NUMA_AWARE,
2902 };
2903 
2904 #ifdef CONFIG_DEBUG_FS
2905 static int split_huge_pages_set(void *data, u64 val)
2906 {
2907 	struct zone *zone;
2908 	struct page *page;
2909 	unsigned long pfn, max_zone_pfn;
2910 	unsigned long total = 0, split = 0;
2911 
2912 	if (val != 1)
2913 		return -EINVAL;
2914 
2915 	for_each_populated_zone(zone) {
2916 		max_zone_pfn = zone_end_pfn(zone);
2917 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2918 			if (!pfn_valid(pfn))
2919 				continue;
2920 
2921 			page = pfn_to_page(pfn);
2922 			if (!get_page_unless_zero(page))
2923 				continue;
2924 
2925 			if (zone != page_zone(page))
2926 				goto next;
2927 
2928 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2929 				goto next;
2930 
2931 			total++;
2932 			lock_page(page);
2933 			if (!split_huge_page(page))
2934 				split++;
2935 			unlock_page(page);
2936 next:
2937 			put_page(page);
2938 		}
2939 	}
2940 
2941 	pr_info("%lu of %lu THP split\n", split, total);
2942 
2943 	return 0;
2944 }
2945 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2946 		"%llu\n");
2947 
2948 static int __init split_huge_pages_debugfs(void)
2949 {
2950 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2951 			    &split_huge_pages_fops);
2952 	return 0;
2953 }
2954 late_initcall(split_huge_pages_debugfs);
2955 #endif
2956 
2957 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2958 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2959 		struct page *page)
2960 {
2961 	struct vm_area_struct *vma = pvmw->vma;
2962 	struct mm_struct *mm = vma->vm_mm;
2963 	unsigned long address = pvmw->address;
2964 	pmd_t pmdval;
2965 	swp_entry_t entry;
2966 	pmd_t pmdswp;
2967 
2968 	if (!(pvmw->pmd && !pvmw->pte))
2969 		return;
2970 
2971 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2972 	pmdval = *pvmw->pmd;
2973 	pmdp_invalidate(vma, address, pvmw->pmd);
2974 	if (pmd_dirty(pmdval))
2975 		set_page_dirty(page);
2976 	entry = make_migration_entry(page, pmd_write(pmdval));
2977 	pmdswp = swp_entry_to_pmd(entry);
2978 	if (pmd_soft_dirty(pmdval))
2979 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2980 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2981 	page_remove_rmap(page, true);
2982 	put_page(page);
2983 }
2984 
2985 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2986 {
2987 	struct vm_area_struct *vma = pvmw->vma;
2988 	struct mm_struct *mm = vma->vm_mm;
2989 	unsigned long address = pvmw->address;
2990 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2991 	pmd_t pmde;
2992 	swp_entry_t entry;
2993 
2994 	if (!(pvmw->pmd && !pvmw->pte))
2995 		return;
2996 
2997 	entry = pmd_to_swp_entry(*pvmw->pmd);
2998 	get_page(new);
2999 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3000 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3001 		pmde = pmd_mksoft_dirty(pmde);
3002 	if (is_write_migration_entry(entry))
3003 		pmde = maybe_pmd_mkwrite(pmde, vma);
3004 
3005 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3006 	if (PageAnon(new))
3007 		page_add_anon_rmap(new, vma, mmun_start, true);
3008 	else
3009 		page_add_file_rmap(new, true);
3010 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3011 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3012 		mlock_vma_page(new);
3013 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3014 }
3015 #endif
3016