xref: /linux/mm/huge_memory.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default transparent hugepage support is disabled in order that avoid
43  * to risk increase the memory footprint of applications without a guaranteed
44  * benefit. When transparent hugepage support is enabled, is for all mappings,
45  * and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/*
487 	 * ->lru in the tail pages is occupied by compound_head.
488 	 * Let's use ->mapping + ->index in the second tail page as list_head.
489 	 */
490 	return (struct list_head *)&page[2].mapping;
491 }
492 
493 void prep_transhuge_page(struct page *page)
494 {
495 	/*
496 	 * we use page->mapping and page->indexlru in second tail page
497 	 * as list_head: assuming THP order >= 2
498 	 */
499 
500 	INIT_LIST_HEAD(page_deferred_list(page));
501 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503 
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 		loff_t off, unsigned long flags, unsigned long size)
506 {
507 	unsigned long addr;
508 	loff_t off_end = off + len;
509 	loff_t off_align = round_up(off, size);
510 	unsigned long len_pad;
511 
512 	if (off_end <= off_align || (off_end - off_align) < size)
513 		return 0;
514 
515 	len_pad = len + size;
516 	if (len_pad < len || (off + len_pad) < off)
517 		return 0;
518 
519 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 					      off >> PAGE_SHIFT, flags);
521 	if (IS_ERR_VALUE(addr))
522 		return 0;
523 
524 	addr += (off - addr) & (size - 1);
525 	return addr;
526 }
527 
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 		unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532 
533 	if (addr)
534 		goto out;
535 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 		goto out;
537 
538 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 	if (addr)
540 		return addr;
541 
542  out:
543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546 
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 		gfp_t gfp)
549 {
550 	struct vm_area_struct *vma = vmf->vma;
551 	struct mem_cgroup *memcg;
552 	pgtable_t pgtable;
553 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 	int ret = 0;
555 
556 	VM_BUG_ON_PAGE(!PageCompound(page), page);
557 
558 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 		put_page(page);
560 		count_vm_event(THP_FAULT_FALLBACK);
561 		return VM_FAULT_FALLBACK;
562 	}
563 
564 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 	if (unlikely(!pgtable)) {
566 		ret = VM_FAULT_OOM;
567 		goto release;
568 	}
569 
570 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
571 	/*
572 	 * The memory barrier inside __SetPageUptodate makes sure that
573 	 * clear_huge_page writes become visible before the set_pmd_at()
574 	 * write.
575 	 */
576 	__SetPageUptodate(page);
577 
578 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 	if (unlikely(!pmd_none(*vmf->pmd))) {
580 		goto unlock_release;
581 	} else {
582 		pmd_t entry;
583 
584 		ret = check_stable_address_space(vma->vm_mm);
585 		if (ret)
586 			goto unlock_release;
587 
588 		/* Deliver the page fault to userland */
589 		if (userfaultfd_missing(vma)) {
590 			int ret;
591 
592 			spin_unlock(vmf->ptl);
593 			mem_cgroup_cancel_charge(page, memcg, true);
594 			put_page(page);
595 			pte_free(vma->vm_mm, pgtable);
596 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 			return ret;
599 		}
600 
601 		entry = mk_huge_pmd(page, vma->vm_page_prot);
602 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 		page_add_new_anon_rmap(page, vma, haddr, true);
604 		mem_cgroup_commit_charge(page, memcg, false, true);
605 		lru_cache_add_active_or_unevictable(page, vma);
606 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 		atomic_long_inc(&vma->vm_mm->nr_ptes);
610 		spin_unlock(vmf->ptl);
611 		count_vm_event(THP_FAULT_ALLOC);
612 	}
613 
614 	return 0;
615 unlock_release:
616 	spin_unlock(vmf->ptl);
617 release:
618 	if (pgtable)
619 		pte_free(vma->vm_mm, pgtable);
620 	mem_cgroup_cancel_charge(page, memcg, true);
621 	put_page(page);
622 	return ret;
623 
624 }
625 
626 /*
627  * always: directly stall for all thp allocations
628  * defer: wake kswapd and fail if not immediately available
629  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630  *		  fail if not immediately available
631  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632  *	    available
633  * never: never stall for any thp allocation
634  */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638 
639 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     __GFP_KSWAPD_RECLAIM);
646 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 							     0);
649 	return GFP_TRANSHUGE_LIGHT;
650 }
651 
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 		struct page *zero_page)
656 {
657 	pmd_t entry;
658 	if (!pmd_none(*pmd))
659 		return false;
660 	entry = mk_pmd(zero_page, vma->vm_page_prot);
661 	entry = pmd_mkhuge(entry);
662 	if (pgtable)
663 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 	set_pmd_at(mm, haddr, pmd, entry);
665 	atomic_long_inc(&mm->nr_ptes);
666 	return true;
667 }
668 
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671 	struct vm_area_struct *vma = vmf->vma;
672 	gfp_t gfp;
673 	struct page *page;
674 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675 
676 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 		return VM_FAULT_FALLBACK;
678 	if (unlikely(anon_vma_prepare(vma)))
679 		return VM_FAULT_OOM;
680 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 		return VM_FAULT_OOM;
682 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 			!mm_forbids_zeropage(vma->vm_mm) &&
684 			transparent_hugepage_use_zero_page()) {
685 		pgtable_t pgtable;
686 		struct page *zero_page;
687 		bool set;
688 		int ret;
689 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 		if (unlikely(!pgtable))
691 			return VM_FAULT_OOM;
692 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 		if (unlikely(!zero_page)) {
694 			pte_free(vma->vm_mm, pgtable);
695 			count_vm_event(THP_FAULT_FALLBACK);
696 			return VM_FAULT_FALLBACK;
697 		}
698 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 		ret = 0;
700 		set = false;
701 		if (pmd_none(*vmf->pmd)) {
702 			ret = check_stable_address_space(vma->vm_mm);
703 			if (ret) {
704 				spin_unlock(vmf->ptl);
705 			} else if (userfaultfd_missing(vma)) {
706 				spin_unlock(vmf->ptl);
707 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 			} else {
710 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 						   haddr, vmf->pmd, zero_page);
712 				spin_unlock(vmf->ptl);
713 				set = true;
714 			}
715 		} else
716 			spin_unlock(vmf->ptl);
717 		if (!set)
718 			pte_free(vma->vm_mm, pgtable);
719 		return ret;
720 	}
721 	gfp = alloc_hugepage_direct_gfpmask(vma);
722 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 	if (unlikely(!page)) {
724 		count_vm_event(THP_FAULT_FALLBACK);
725 		return VM_FAULT_FALLBACK;
726 	}
727 	prep_transhuge_page(page);
728 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730 
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 		pgtable_t pgtable)
734 {
735 	struct mm_struct *mm = vma->vm_mm;
736 	pmd_t entry;
737 	spinlock_t *ptl;
738 
739 	ptl = pmd_lock(mm, pmd);
740 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 	if (pfn_t_devmap(pfn))
742 		entry = pmd_mkdevmap(entry);
743 	if (write) {
744 		entry = pmd_mkyoung(pmd_mkdirty(entry));
745 		entry = maybe_pmd_mkwrite(entry, vma);
746 	}
747 
748 	if (pgtable) {
749 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 		atomic_long_inc(&mm->nr_ptes);
751 	}
752 
753 	set_pmd_at(mm, addr, pmd, entry);
754 	update_mmu_cache_pmd(vma, addr, pmd);
755 	spin_unlock(ptl);
756 }
757 
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 			pmd_t *pmd, pfn_t pfn, bool write)
760 {
761 	pgprot_t pgprot = vma->vm_page_prot;
762 	pgtable_t pgtable = NULL;
763 	/*
764 	 * If we had pmd_special, we could avoid all these restrictions,
765 	 * but we need to be consistent with PTEs and architectures that
766 	 * can't support a 'special' bit.
767 	 */
768 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 						(VM_PFNMAP|VM_MIXEDMAP));
771 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 	BUG_ON(!pfn_t_devmap(pfn));
773 
774 	if (addr < vma->vm_start || addr >= vma->vm_end)
775 		return VM_FAULT_SIGBUS;
776 
777 	if (arch_needs_pgtable_deposit()) {
778 		pgtable = pte_alloc_one(vma->vm_mm, addr);
779 		if (!pgtable)
780 			return VM_FAULT_OOM;
781 	}
782 
783 	track_pfn_insert(vma, &pgprot, pfn);
784 
785 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 	return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789 
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793 	if (likely(vma->vm_flags & VM_WRITE))
794 		pud = pud_mkwrite(pud);
795 	return pud;
796 }
797 
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801 	struct mm_struct *mm = vma->vm_mm;
802 	pud_t entry;
803 	spinlock_t *ptl;
804 
805 	ptl = pud_lock(mm, pud);
806 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 	if (pfn_t_devmap(pfn))
808 		entry = pud_mkdevmap(entry);
809 	if (write) {
810 		entry = pud_mkyoung(pud_mkdirty(entry));
811 		entry = maybe_pud_mkwrite(entry, vma);
812 	}
813 	set_pud_at(mm, addr, pud, entry);
814 	update_mmu_cache_pud(vma, addr, pud);
815 	spin_unlock(ptl);
816 }
817 
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 			pud_t *pud, pfn_t pfn, bool write)
820 {
821 	pgprot_t pgprot = vma->vm_page_prot;
822 	/*
823 	 * If we had pud_special, we could avoid all these restrictions,
824 	 * but we need to be consistent with PTEs and architectures that
825 	 * can't support a 'special' bit.
826 	 */
827 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 						(VM_PFNMAP|VM_MIXEDMAP));
830 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 	BUG_ON(!pfn_t_devmap(pfn));
832 
833 	if (addr < vma->vm_start || addr >= vma->vm_end)
834 		return VM_FAULT_SIGBUS;
835 
836 	track_pfn_insert(vma, &pgprot, pfn);
837 
838 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 	return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843 
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 		pmd_t *pmd)
846 {
847 	pmd_t _pmd;
848 
849 	/*
850 	 * We should set the dirty bit only for FOLL_WRITE but for now
851 	 * the dirty bit in the pmd is meaningless.  And if the dirty
852 	 * bit will become meaningful and we'll only set it with
853 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 	 * set the young bit, instead of the current set_pmd_at.
855 	 */
856 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 				pmd, _pmd,  1))
859 		update_mmu_cache_pmd(vma, addr, pmd);
860 }
861 
862 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 		pmd_t *pmd, int flags)
864 {
865 	unsigned long pfn = pmd_pfn(*pmd);
866 	struct mm_struct *mm = vma->vm_mm;
867 	struct dev_pagemap *pgmap;
868 	struct page *page;
869 
870 	assert_spin_locked(pmd_lockptr(mm, pmd));
871 
872 	/*
873 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 	 * not be in this function with `flags & FOLL_COW` set.
875 	 */
876 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877 
878 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 		return NULL;
880 
881 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 		/* pass */;
883 	else
884 		return NULL;
885 
886 	if (flags & FOLL_TOUCH)
887 		touch_pmd(vma, addr, pmd);
888 
889 	/*
890 	 * device mapped pages can only be returned if the
891 	 * caller will manage the page reference count.
892 	 */
893 	if (!(flags & FOLL_GET))
894 		return ERR_PTR(-EEXIST);
895 
896 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 	pgmap = get_dev_pagemap(pfn, NULL);
898 	if (!pgmap)
899 		return ERR_PTR(-EFAULT);
900 	page = pfn_to_page(pfn);
901 	get_page(page);
902 	put_dev_pagemap(pgmap);
903 
904 	return page;
905 }
906 
907 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 		  struct vm_area_struct *vma)
910 {
911 	spinlock_t *dst_ptl, *src_ptl;
912 	struct page *src_page;
913 	pmd_t pmd;
914 	pgtable_t pgtable = NULL;
915 	int ret = -ENOMEM;
916 
917 	/* Skip if can be re-fill on fault */
918 	if (!vma_is_anonymous(vma))
919 		return 0;
920 
921 	pgtable = pte_alloc_one(dst_mm, addr);
922 	if (unlikely(!pgtable))
923 		goto out;
924 
925 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 	src_ptl = pmd_lockptr(src_mm, src_pmd);
927 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
928 
929 	ret = -EAGAIN;
930 	pmd = *src_pmd;
931 
932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 	if (unlikely(is_swap_pmd(pmd))) {
934 		swp_entry_t entry = pmd_to_swp_entry(pmd);
935 
936 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 		if (is_write_migration_entry(entry)) {
938 			make_migration_entry_read(&entry);
939 			pmd = swp_entry_to_pmd(entry);
940 			if (pmd_swp_soft_dirty(*src_pmd))
941 				pmd = pmd_swp_mksoft_dirty(pmd);
942 			set_pmd_at(src_mm, addr, src_pmd, pmd);
943 		}
944 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
945 		atomic_long_inc(&dst_mm->nr_ptes);
946 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
947 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
948 		ret = 0;
949 		goto out_unlock;
950 	}
951 #endif
952 
953 	if (unlikely(!pmd_trans_huge(pmd))) {
954 		pte_free(dst_mm, pgtable);
955 		goto out_unlock;
956 	}
957 	/*
958 	 * When page table lock is held, the huge zero pmd should not be
959 	 * under splitting since we don't split the page itself, only pmd to
960 	 * a page table.
961 	 */
962 	if (is_huge_zero_pmd(pmd)) {
963 		struct page *zero_page;
964 		/*
965 		 * get_huge_zero_page() will never allocate a new page here,
966 		 * since we already have a zero page to copy. It just takes a
967 		 * reference.
968 		 */
969 		zero_page = mm_get_huge_zero_page(dst_mm);
970 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
971 				zero_page);
972 		ret = 0;
973 		goto out_unlock;
974 	}
975 
976 	src_page = pmd_page(pmd);
977 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
978 	get_page(src_page);
979 	page_dup_rmap(src_page, true);
980 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
981 	atomic_long_inc(&dst_mm->nr_ptes);
982 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
983 
984 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
985 	pmd = pmd_mkold(pmd_wrprotect(pmd));
986 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
987 
988 	ret = 0;
989 out_unlock:
990 	spin_unlock(src_ptl);
991 	spin_unlock(dst_ptl);
992 out:
993 	return ret;
994 }
995 
996 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
997 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
998 		pud_t *pud)
999 {
1000 	pud_t _pud;
1001 
1002 	/*
1003 	 * We should set the dirty bit only for FOLL_WRITE but for now
1004 	 * the dirty bit in the pud is meaningless.  And if the dirty
1005 	 * bit will become meaningful and we'll only set it with
1006 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1007 	 * set the young bit, instead of the current set_pud_at.
1008 	 */
1009 	_pud = pud_mkyoung(pud_mkdirty(*pud));
1010 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1011 				pud, _pud,  1))
1012 		update_mmu_cache_pud(vma, addr, pud);
1013 }
1014 
1015 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1016 		pud_t *pud, int flags)
1017 {
1018 	unsigned long pfn = pud_pfn(*pud);
1019 	struct mm_struct *mm = vma->vm_mm;
1020 	struct dev_pagemap *pgmap;
1021 	struct page *page;
1022 
1023 	assert_spin_locked(pud_lockptr(mm, pud));
1024 
1025 	if (flags & FOLL_WRITE && !pud_write(*pud))
1026 		return NULL;
1027 
1028 	if (pud_present(*pud) && pud_devmap(*pud))
1029 		/* pass */;
1030 	else
1031 		return NULL;
1032 
1033 	if (flags & FOLL_TOUCH)
1034 		touch_pud(vma, addr, pud);
1035 
1036 	/*
1037 	 * device mapped pages can only be returned if the
1038 	 * caller will manage the page reference count.
1039 	 */
1040 	if (!(flags & FOLL_GET))
1041 		return ERR_PTR(-EEXIST);
1042 
1043 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1044 	pgmap = get_dev_pagemap(pfn, NULL);
1045 	if (!pgmap)
1046 		return ERR_PTR(-EFAULT);
1047 	page = pfn_to_page(pfn);
1048 	get_page(page);
1049 	put_dev_pagemap(pgmap);
1050 
1051 	return page;
1052 }
1053 
1054 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1056 		  struct vm_area_struct *vma)
1057 {
1058 	spinlock_t *dst_ptl, *src_ptl;
1059 	pud_t pud;
1060 	int ret;
1061 
1062 	dst_ptl = pud_lock(dst_mm, dst_pud);
1063 	src_ptl = pud_lockptr(src_mm, src_pud);
1064 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1065 
1066 	ret = -EAGAIN;
1067 	pud = *src_pud;
1068 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1069 		goto out_unlock;
1070 
1071 	/*
1072 	 * When page table lock is held, the huge zero pud should not be
1073 	 * under splitting since we don't split the page itself, only pud to
1074 	 * a page table.
1075 	 */
1076 	if (is_huge_zero_pud(pud)) {
1077 		/* No huge zero pud yet */
1078 	}
1079 
1080 	pudp_set_wrprotect(src_mm, addr, src_pud);
1081 	pud = pud_mkold(pud_wrprotect(pud));
1082 	set_pud_at(dst_mm, addr, dst_pud, pud);
1083 
1084 	ret = 0;
1085 out_unlock:
1086 	spin_unlock(src_ptl);
1087 	spin_unlock(dst_ptl);
1088 	return ret;
1089 }
1090 
1091 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1092 {
1093 	pud_t entry;
1094 	unsigned long haddr;
1095 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1096 
1097 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1098 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1099 		goto unlock;
1100 
1101 	entry = pud_mkyoung(orig_pud);
1102 	if (write)
1103 		entry = pud_mkdirty(entry);
1104 	haddr = vmf->address & HPAGE_PUD_MASK;
1105 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1106 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1107 
1108 unlock:
1109 	spin_unlock(vmf->ptl);
1110 }
1111 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1112 
1113 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1114 {
1115 	pmd_t entry;
1116 	unsigned long haddr;
1117 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1118 
1119 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1120 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1121 		goto unlock;
1122 
1123 	entry = pmd_mkyoung(orig_pmd);
1124 	if (write)
1125 		entry = pmd_mkdirty(entry);
1126 	haddr = vmf->address & HPAGE_PMD_MASK;
1127 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1128 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1129 
1130 unlock:
1131 	spin_unlock(vmf->ptl);
1132 }
1133 
1134 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1135 		struct page *page)
1136 {
1137 	struct vm_area_struct *vma = vmf->vma;
1138 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1139 	struct mem_cgroup *memcg;
1140 	pgtable_t pgtable;
1141 	pmd_t _pmd;
1142 	int ret = 0, i;
1143 	struct page **pages;
1144 	unsigned long mmun_start;	/* For mmu_notifiers */
1145 	unsigned long mmun_end;		/* For mmu_notifiers */
1146 
1147 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1148 			GFP_KERNEL);
1149 	if (unlikely(!pages)) {
1150 		ret |= VM_FAULT_OOM;
1151 		goto out;
1152 	}
1153 
1154 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1155 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1156 					       vmf->address, page_to_nid(page));
1157 		if (unlikely(!pages[i] ||
1158 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1159 				     GFP_KERNEL, &memcg, false))) {
1160 			if (pages[i])
1161 				put_page(pages[i]);
1162 			while (--i >= 0) {
1163 				memcg = (void *)page_private(pages[i]);
1164 				set_page_private(pages[i], 0);
1165 				mem_cgroup_cancel_charge(pages[i], memcg,
1166 						false);
1167 				put_page(pages[i]);
1168 			}
1169 			kfree(pages);
1170 			ret |= VM_FAULT_OOM;
1171 			goto out;
1172 		}
1173 		set_page_private(pages[i], (unsigned long)memcg);
1174 	}
1175 
1176 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1177 		copy_user_highpage(pages[i], page + i,
1178 				   haddr + PAGE_SIZE * i, vma);
1179 		__SetPageUptodate(pages[i]);
1180 		cond_resched();
1181 	}
1182 
1183 	mmun_start = haddr;
1184 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1185 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1186 
1187 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1188 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1189 		goto out_free_pages;
1190 	VM_BUG_ON_PAGE(!PageHead(page), page);
1191 
1192 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1193 	/* leave pmd empty until pte is filled */
1194 
1195 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1196 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1197 
1198 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1199 		pte_t entry;
1200 		entry = mk_pte(pages[i], vma->vm_page_prot);
1201 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1202 		memcg = (void *)page_private(pages[i]);
1203 		set_page_private(pages[i], 0);
1204 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1205 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1206 		lru_cache_add_active_or_unevictable(pages[i], vma);
1207 		vmf->pte = pte_offset_map(&_pmd, haddr);
1208 		VM_BUG_ON(!pte_none(*vmf->pte));
1209 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1210 		pte_unmap(vmf->pte);
1211 	}
1212 	kfree(pages);
1213 
1214 	smp_wmb(); /* make pte visible before pmd */
1215 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1216 	page_remove_rmap(page, true);
1217 	spin_unlock(vmf->ptl);
1218 
1219 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1220 
1221 	ret |= VM_FAULT_WRITE;
1222 	put_page(page);
1223 
1224 out:
1225 	return ret;
1226 
1227 out_free_pages:
1228 	spin_unlock(vmf->ptl);
1229 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1230 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1231 		memcg = (void *)page_private(pages[i]);
1232 		set_page_private(pages[i], 0);
1233 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1234 		put_page(pages[i]);
1235 	}
1236 	kfree(pages);
1237 	goto out;
1238 }
1239 
1240 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1241 {
1242 	struct vm_area_struct *vma = vmf->vma;
1243 	struct page *page = NULL, *new_page;
1244 	struct mem_cgroup *memcg;
1245 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1246 	unsigned long mmun_start;	/* For mmu_notifiers */
1247 	unsigned long mmun_end;		/* For mmu_notifiers */
1248 	gfp_t huge_gfp;			/* for allocation and charge */
1249 	int ret = 0;
1250 
1251 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1252 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1253 	if (is_huge_zero_pmd(orig_pmd))
1254 		goto alloc;
1255 	spin_lock(vmf->ptl);
1256 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1257 		goto out_unlock;
1258 
1259 	page = pmd_page(orig_pmd);
1260 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1261 	/*
1262 	 * We can only reuse the page if nobody else maps the huge page or it's
1263 	 * part.
1264 	 */
1265 	if (!trylock_page(page)) {
1266 		get_page(page);
1267 		spin_unlock(vmf->ptl);
1268 		lock_page(page);
1269 		spin_lock(vmf->ptl);
1270 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1271 			unlock_page(page);
1272 			put_page(page);
1273 			goto out_unlock;
1274 		}
1275 		put_page(page);
1276 	}
1277 	if (reuse_swap_page(page, NULL)) {
1278 		pmd_t entry;
1279 		entry = pmd_mkyoung(orig_pmd);
1280 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1281 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1282 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1283 		ret |= VM_FAULT_WRITE;
1284 		unlock_page(page);
1285 		goto out_unlock;
1286 	}
1287 	unlock_page(page);
1288 	get_page(page);
1289 	spin_unlock(vmf->ptl);
1290 alloc:
1291 	if (transparent_hugepage_enabled(vma) &&
1292 	    !transparent_hugepage_debug_cow()) {
1293 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1294 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1295 	} else
1296 		new_page = NULL;
1297 
1298 	if (likely(new_page)) {
1299 		prep_transhuge_page(new_page);
1300 	} else {
1301 		if (!page) {
1302 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1303 			ret |= VM_FAULT_FALLBACK;
1304 		} else {
1305 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1306 			if (ret & VM_FAULT_OOM) {
1307 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1308 				ret |= VM_FAULT_FALLBACK;
1309 			}
1310 			put_page(page);
1311 		}
1312 		count_vm_event(THP_FAULT_FALLBACK);
1313 		goto out;
1314 	}
1315 
1316 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1317 					huge_gfp, &memcg, true))) {
1318 		put_page(new_page);
1319 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1320 		if (page)
1321 			put_page(page);
1322 		ret |= VM_FAULT_FALLBACK;
1323 		count_vm_event(THP_FAULT_FALLBACK);
1324 		goto out;
1325 	}
1326 
1327 	count_vm_event(THP_FAULT_ALLOC);
1328 
1329 	if (!page)
1330 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1331 	else
1332 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1333 	__SetPageUptodate(new_page);
1334 
1335 	mmun_start = haddr;
1336 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1337 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1338 
1339 	spin_lock(vmf->ptl);
1340 	if (page)
1341 		put_page(page);
1342 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 		spin_unlock(vmf->ptl);
1344 		mem_cgroup_cancel_charge(new_page, memcg, true);
1345 		put_page(new_page);
1346 		goto out_mn;
1347 	} else {
1348 		pmd_t entry;
1349 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1350 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1351 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1352 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1353 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1354 		lru_cache_add_active_or_unevictable(new_page, vma);
1355 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1356 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1357 		if (!page) {
1358 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1359 		} else {
1360 			VM_BUG_ON_PAGE(!PageHead(page), page);
1361 			page_remove_rmap(page, true);
1362 			put_page(page);
1363 		}
1364 		ret |= VM_FAULT_WRITE;
1365 	}
1366 	spin_unlock(vmf->ptl);
1367 out_mn:
1368 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1369 out:
1370 	return ret;
1371 out_unlock:
1372 	spin_unlock(vmf->ptl);
1373 	return ret;
1374 }
1375 
1376 /*
1377  * FOLL_FORCE can write to even unwritable pmd's, but only
1378  * after we've gone through a COW cycle and they are dirty.
1379  */
1380 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1381 {
1382 	return pmd_write(pmd) ||
1383 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1384 }
1385 
1386 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1387 				   unsigned long addr,
1388 				   pmd_t *pmd,
1389 				   unsigned int flags)
1390 {
1391 	struct mm_struct *mm = vma->vm_mm;
1392 	struct page *page = NULL;
1393 
1394 	assert_spin_locked(pmd_lockptr(mm, pmd));
1395 
1396 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1397 		goto out;
1398 
1399 	/* Avoid dumping huge zero page */
1400 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1401 		return ERR_PTR(-EFAULT);
1402 
1403 	/* Full NUMA hinting faults to serialise migration in fault paths */
1404 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1405 		goto out;
1406 
1407 	page = pmd_page(*pmd);
1408 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1409 	if (flags & FOLL_TOUCH)
1410 		touch_pmd(vma, addr, pmd);
1411 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1412 		/*
1413 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1414 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1415 		 *
1416 		 * For anon THP:
1417 		 *
1418 		 * In most cases the pmd is the only mapping of the page as we
1419 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1420 		 * writable private mappings in populate_vma_page_range().
1421 		 *
1422 		 * The only scenario when we have the page shared here is if we
1423 		 * mlocking read-only mapping shared over fork(). We skip
1424 		 * mlocking such pages.
1425 		 *
1426 		 * For file THP:
1427 		 *
1428 		 * We can expect PageDoubleMap() to be stable under page lock:
1429 		 * for file pages we set it in page_add_file_rmap(), which
1430 		 * requires page to be locked.
1431 		 */
1432 
1433 		if (PageAnon(page) && compound_mapcount(page) != 1)
1434 			goto skip_mlock;
1435 		if (PageDoubleMap(page) || !page->mapping)
1436 			goto skip_mlock;
1437 		if (!trylock_page(page))
1438 			goto skip_mlock;
1439 		lru_add_drain();
1440 		if (page->mapping && !PageDoubleMap(page))
1441 			mlock_vma_page(page);
1442 		unlock_page(page);
1443 	}
1444 skip_mlock:
1445 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1446 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1447 	if (flags & FOLL_GET)
1448 		get_page(page);
1449 
1450 out:
1451 	return page;
1452 }
1453 
1454 /* NUMA hinting page fault entry point for trans huge pmds */
1455 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1456 {
1457 	struct vm_area_struct *vma = vmf->vma;
1458 	struct anon_vma *anon_vma = NULL;
1459 	struct page *page;
1460 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1461 	int page_nid = -1, this_nid = numa_node_id();
1462 	int target_nid, last_cpupid = -1;
1463 	bool page_locked;
1464 	bool migrated = false;
1465 	bool was_writable;
1466 	int flags = 0;
1467 
1468 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1469 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1470 		goto out_unlock;
1471 
1472 	/*
1473 	 * If there are potential migrations, wait for completion and retry
1474 	 * without disrupting NUMA hinting information. Do not relock and
1475 	 * check_same as the page may no longer be mapped.
1476 	 */
1477 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1478 		page = pmd_page(*vmf->pmd);
1479 		if (!get_page_unless_zero(page))
1480 			goto out_unlock;
1481 		spin_unlock(vmf->ptl);
1482 		wait_on_page_locked(page);
1483 		put_page(page);
1484 		goto out;
1485 	}
1486 
1487 	page = pmd_page(pmd);
1488 	BUG_ON(is_huge_zero_page(page));
1489 	page_nid = page_to_nid(page);
1490 	last_cpupid = page_cpupid_last(page);
1491 	count_vm_numa_event(NUMA_HINT_FAULTS);
1492 	if (page_nid == this_nid) {
1493 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1494 		flags |= TNF_FAULT_LOCAL;
1495 	}
1496 
1497 	/* See similar comment in do_numa_page for explanation */
1498 	if (!pmd_savedwrite(pmd))
1499 		flags |= TNF_NO_GROUP;
1500 
1501 	/*
1502 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1503 	 * page_table_lock if at all possible
1504 	 */
1505 	page_locked = trylock_page(page);
1506 	target_nid = mpol_misplaced(page, vma, haddr);
1507 	if (target_nid == -1) {
1508 		/* If the page was locked, there are no parallel migrations */
1509 		if (page_locked)
1510 			goto clear_pmdnuma;
1511 	}
1512 
1513 	/* Migration could have started since the pmd_trans_migrating check */
1514 	if (!page_locked) {
1515 		page_nid = -1;
1516 		if (!get_page_unless_zero(page))
1517 			goto out_unlock;
1518 		spin_unlock(vmf->ptl);
1519 		wait_on_page_locked(page);
1520 		put_page(page);
1521 		goto out;
1522 	}
1523 
1524 	/*
1525 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1526 	 * to serialises splits
1527 	 */
1528 	get_page(page);
1529 	spin_unlock(vmf->ptl);
1530 	anon_vma = page_lock_anon_vma_read(page);
1531 
1532 	/* Confirm the PMD did not change while page_table_lock was released */
1533 	spin_lock(vmf->ptl);
1534 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1535 		unlock_page(page);
1536 		put_page(page);
1537 		page_nid = -1;
1538 		goto out_unlock;
1539 	}
1540 
1541 	/* Bail if we fail to protect against THP splits for any reason */
1542 	if (unlikely(!anon_vma)) {
1543 		put_page(page);
1544 		page_nid = -1;
1545 		goto clear_pmdnuma;
1546 	}
1547 
1548 	/*
1549 	 * Since we took the NUMA fault, we must have observed the !accessible
1550 	 * bit. Make sure all other CPUs agree with that, to avoid them
1551 	 * modifying the page we're about to migrate.
1552 	 *
1553 	 * Must be done under PTL such that we'll observe the relevant
1554 	 * inc_tlb_flush_pending().
1555 	 *
1556 	 * We are not sure a pending tlb flush here is for a huge page
1557 	 * mapping or not. Hence use the tlb range variant
1558 	 */
1559 	if (mm_tlb_flush_pending(vma->vm_mm))
1560 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1561 
1562 	/*
1563 	 * Migrate the THP to the requested node, returns with page unlocked
1564 	 * and access rights restored.
1565 	 */
1566 	spin_unlock(vmf->ptl);
1567 
1568 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1569 				vmf->pmd, pmd, vmf->address, page, target_nid);
1570 	if (migrated) {
1571 		flags |= TNF_MIGRATED;
1572 		page_nid = target_nid;
1573 	} else
1574 		flags |= TNF_MIGRATE_FAIL;
1575 
1576 	goto out;
1577 clear_pmdnuma:
1578 	BUG_ON(!PageLocked(page));
1579 	was_writable = pmd_savedwrite(pmd);
1580 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1581 	pmd = pmd_mkyoung(pmd);
1582 	if (was_writable)
1583 		pmd = pmd_mkwrite(pmd);
1584 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1585 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586 	unlock_page(page);
1587 out_unlock:
1588 	spin_unlock(vmf->ptl);
1589 
1590 out:
1591 	if (anon_vma)
1592 		page_unlock_anon_vma_read(anon_vma);
1593 
1594 	if (page_nid != -1)
1595 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1596 				flags);
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Return true if we do MADV_FREE successfully on entire pmd page.
1603  * Otherwise, return false.
1604  */
1605 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1606 		pmd_t *pmd, unsigned long addr, unsigned long next)
1607 {
1608 	spinlock_t *ptl;
1609 	pmd_t orig_pmd;
1610 	struct page *page;
1611 	struct mm_struct *mm = tlb->mm;
1612 	bool ret = false;
1613 
1614 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1615 
1616 	ptl = pmd_trans_huge_lock(pmd, vma);
1617 	if (!ptl)
1618 		goto out_unlocked;
1619 
1620 	orig_pmd = *pmd;
1621 	if (is_huge_zero_pmd(orig_pmd))
1622 		goto out;
1623 
1624 	if (unlikely(!pmd_present(orig_pmd))) {
1625 		VM_BUG_ON(thp_migration_supported() &&
1626 				  !is_pmd_migration_entry(orig_pmd));
1627 		goto out;
1628 	}
1629 
1630 	page = pmd_page(orig_pmd);
1631 	/*
1632 	 * If other processes are mapping this page, we couldn't discard
1633 	 * the page unless they all do MADV_FREE so let's skip the page.
1634 	 */
1635 	if (page_mapcount(page) != 1)
1636 		goto out;
1637 
1638 	if (!trylock_page(page))
1639 		goto out;
1640 
1641 	/*
1642 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1643 	 * will deactivate only them.
1644 	 */
1645 	if (next - addr != HPAGE_PMD_SIZE) {
1646 		get_page(page);
1647 		spin_unlock(ptl);
1648 		split_huge_page(page);
1649 		unlock_page(page);
1650 		put_page(page);
1651 		goto out_unlocked;
1652 	}
1653 
1654 	if (PageDirty(page))
1655 		ClearPageDirty(page);
1656 	unlock_page(page);
1657 
1658 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1659 		pmdp_invalidate(vma, addr, pmd);
1660 		orig_pmd = pmd_mkold(orig_pmd);
1661 		orig_pmd = pmd_mkclean(orig_pmd);
1662 
1663 		set_pmd_at(mm, addr, pmd, orig_pmd);
1664 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1665 	}
1666 
1667 	mark_page_lazyfree(page);
1668 	ret = true;
1669 out:
1670 	spin_unlock(ptl);
1671 out_unlocked:
1672 	return ret;
1673 }
1674 
1675 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1676 {
1677 	pgtable_t pgtable;
1678 
1679 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1680 	pte_free(mm, pgtable);
1681 	atomic_long_dec(&mm->nr_ptes);
1682 }
1683 
1684 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1685 		 pmd_t *pmd, unsigned long addr)
1686 {
1687 	pmd_t orig_pmd;
1688 	spinlock_t *ptl;
1689 
1690 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1691 
1692 	ptl = __pmd_trans_huge_lock(pmd, vma);
1693 	if (!ptl)
1694 		return 0;
1695 	/*
1696 	 * For architectures like ppc64 we look at deposited pgtable
1697 	 * when calling pmdp_huge_get_and_clear. So do the
1698 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1699 	 * operations.
1700 	 */
1701 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1702 			tlb->fullmm);
1703 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1704 	if (vma_is_dax(vma)) {
1705 		if (arch_needs_pgtable_deposit())
1706 			zap_deposited_table(tlb->mm, pmd);
1707 		spin_unlock(ptl);
1708 		if (is_huge_zero_pmd(orig_pmd))
1709 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1710 	} else if (is_huge_zero_pmd(orig_pmd)) {
1711 		zap_deposited_table(tlb->mm, pmd);
1712 		spin_unlock(ptl);
1713 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1714 	} else {
1715 		struct page *page = NULL;
1716 		int flush_needed = 1;
1717 
1718 		if (pmd_present(orig_pmd)) {
1719 			page = pmd_page(orig_pmd);
1720 			page_remove_rmap(page, true);
1721 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1722 			VM_BUG_ON_PAGE(!PageHead(page), page);
1723 		} else if (thp_migration_supported()) {
1724 			swp_entry_t entry;
1725 
1726 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1727 			entry = pmd_to_swp_entry(orig_pmd);
1728 			page = pfn_to_page(swp_offset(entry));
1729 			flush_needed = 0;
1730 		} else
1731 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1732 
1733 		if (PageAnon(page)) {
1734 			zap_deposited_table(tlb->mm, pmd);
1735 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1736 		} else {
1737 			if (arch_needs_pgtable_deposit())
1738 				zap_deposited_table(tlb->mm, pmd);
1739 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1740 		}
1741 
1742 		spin_unlock(ptl);
1743 		if (flush_needed)
1744 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1745 	}
1746 	return 1;
1747 }
1748 
1749 #ifndef pmd_move_must_withdraw
1750 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1751 					 spinlock_t *old_pmd_ptl,
1752 					 struct vm_area_struct *vma)
1753 {
1754 	/*
1755 	 * With split pmd lock we also need to move preallocated
1756 	 * PTE page table if new_pmd is on different PMD page table.
1757 	 *
1758 	 * We also don't deposit and withdraw tables for file pages.
1759 	 */
1760 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1761 }
1762 #endif
1763 
1764 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1765 {
1766 #ifdef CONFIG_MEM_SOFT_DIRTY
1767 	if (unlikely(is_pmd_migration_entry(pmd)))
1768 		pmd = pmd_swp_mksoft_dirty(pmd);
1769 	else if (pmd_present(pmd))
1770 		pmd = pmd_mksoft_dirty(pmd);
1771 #endif
1772 	return pmd;
1773 }
1774 
1775 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1776 		  unsigned long new_addr, unsigned long old_end,
1777 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1778 {
1779 	spinlock_t *old_ptl, *new_ptl;
1780 	pmd_t pmd;
1781 	struct mm_struct *mm = vma->vm_mm;
1782 	bool force_flush = false;
1783 
1784 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1785 	    (new_addr & ~HPAGE_PMD_MASK) ||
1786 	    old_end - old_addr < HPAGE_PMD_SIZE)
1787 		return false;
1788 
1789 	/*
1790 	 * The destination pmd shouldn't be established, free_pgtables()
1791 	 * should have release it.
1792 	 */
1793 	if (WARN_ON(!pmd_none(*new_pmd))) {
1794 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1795 		return false;
1796 	}
1797 
1798 	/*
1799 	 * We don't have to worry about the ordering of src and dst
1800 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1801 	 */
1802 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1803 	if (old_ptl) {
1804 		new_ptl = pmd_lockptr(mm, new_pmd);
1805 		if (new_ptl != old_ptl)
1806 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1807 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1808 		if (pmd_present(pmd) && pmd_dirty(pmd))
1809 			force_flush = true;
1810 		VM_BUG_ON(!pmd_none(*new_pmd));
1811 
1812 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1813 			pgtable_t pgtable;
1814 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1815 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1816 		}
1817 		pmd = move_soft_dirty_pmd(pmd);
1818 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1819 		if (new_ptl != old_ptl)
1820 			spin_unlock(new_ptl);
1821 		if (force_flush)
1822 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1823 		else
1824 			*need_flush = true;
1825 		spin_unlock(old_ptl);
1826 		return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 /*
1832  * Returns
1833  *  - 0 if PMD could not be locked
1834  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1835  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1836  */
1837 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1838 		unsigned long addr, pgprot_t newprot, int prot_numa)
1839 {
1840 	struct mm_struct *mm = vma->vm_mm;
1841 	spinlock_t *ptl;
1842 	pmd_t entry;
1843 	bool preserve_write;
1844 	int ret;
1845 
1846 	ptl = __pmd_trans_huge_lock(pmd, vma);
1847 	if (!ptl)
1848 		return 0;
1849 
1850 	preserve_write = prot_numa && pmd_write(*pmd);
1851 	ret = 1;
1852 
1853 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1854 	if (is_swap_pmd(*pmd)) {
1855 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1856 
1857 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1858 		if (is_write_migration_entry(entry)) {
1859 			pmd_t newpmd;
1860 			/*
1861 			 * A protection check is difficult so
1862 			 * just be safe and disable write
1863 			 */
1864 			make_migration_entry_read(&entry);
1865 			newpmd = swp_entry_to_pmd(entry);
1866 			if (pmd_swp_soft_dirty(*pmd))
1867 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1868 			set_pmd_at(mm, addr, pmd, newpmd);
1869 		}
1870 		goto unlock;
1871 	}
1872 #endif
1873 
1874 	/*
1875 	 * Avoid trapping faults against the zero page. The read-only
1876 	 * data is likely to be read-cached on the local CPU and
1877 	 * local/remote hits to the zero page are not interesting.
1878 	 */
1879 	if (prot_numa && is_huge_zero_pmd(*pmd))
1880 		goto unlock;
1881 
1882 	if (prot_numa && pmd_protnone(*pmd))
1883 		goto unlock;
1884 
1885 	/*
1886 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1887 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1888 	 * which is also under down_read(mmap_sem):
1889 	 *
1890 	 *	CPU0:				CPU1:
1891 	 *				change_huge_pmd(prot_numa=1)
1892 	 *				 pmdp_huge_get_and_clear_notify()
1893 	 * madvise_dontneed()
1894 	 *  zap_pmd_range()
1895 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1896 	 *   // skip the pmd
1897 	 *				 set_pmd_at();
1898 	 *				 // pmd is re-established
1899 	 *
1900 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1901 	 * which may break userspace.
1902 	 *
1903 	 * pmdp_invalidate() is required to make sure we don't miss
1904 	 * dirty/young flags set by hardware.
1905 	 */
1906 	entry = *pmd;
1907 	pmdp_invalidate(vma, addr, pmd);
1908 
1909 	/*
1910 	 * Recover dirty/young flags.  It relies on pmdp_invalidate to not
1911 	 * corrupt them.
1912 	 */
1913 	if (pmd_dirty(*pmd))
1914 		entry = pmd_mkdirty(entry);
1915 	if (pmd_young(*pmd))
1916 		entry = pmd_mkyoung(entry);
1917 
1918 	entry = pmd_modify(entry, newprot);
1919 	if (preserve_write)
1920 		entry = pmd_mk_savedwrite(entry);
1921 	ret = HPAGE_PMD_NR;
1922 	set_pmd_at(mm, addr, pmd, entry);
1923 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1924 unlock:
1925 	spin_unlock(ptl);
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1931  *
1932  * Note that if it returns page table lock pointer, this routine returns without
1933  * unlocking page table lock. So callers must unlock it.
1934  */
1935 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1936 {
1937 	spinlock_t *ptl;
1938 	ptl = pmd_lock(vma->vm_mm, pmd);
1939 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1940 			pmd_devmap(*pmd)))
1941 		return ptl;
1942 	spin_unlock(ptl);
1943 	return NULL;
1944 }
1945 
1946 /*
1947  * Returns true if a given pud maps a thp, false otherwise.
1948  *
1949  * Note that if it returns true, this routine returns without unlocking page
1950  * table lock. So callers must unlock it.
1951  */
1952 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1953 {
1954 	spinlock_t *ptl;
1955 
1956 	ptl = pud_lock(vma->vm_mm, pud);
1957 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1958 		return ptl;
1959 	spin_unlock(ptl);
1960 	return NULL;
1961 }
1962 
1963 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1964 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1965 		 pud_t *pud, unsigned long addr)
1966 {
1967 	pud_t orig_pud;
1968 	spinlock_t *ptl;
1969 
1970 	ptl = __pud_trans_huge_lock(pud, vma);
1971 	if (!ptl)
1972 		return 0;
1973 	/*
1974 	 * For architectures like ppc64 we look at deposited pgtable
1975 	 * when calling pudp_huge_get_and_clear. So do the
1976 	 * pgtable_trans_huge_withdraw after finishing pudp related
1977 	 * operations.
1978 	 */
1979 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1980 			tlb->fullmm);
1981 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1982 	if (vma_is_dax(vma)) {
1983 		spin_unlock(ptl);
1984 		/* No zero page support yet */
1985 	} else {
1986 		/* No support for anonymous PUD pages yet */
1987 		BUG();
1988 	}
1989 	return 1;
1990 }
1991 
1992 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1993 		unsigned long haddr)
1994 {
1995 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1996 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1998 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1999 
2000 	count_vm_event(THP_SPLIT_PUD);
2001 
2002 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2003 }
2004 
2005 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2006 		unsigned long address)
2007 {
2008 	spinlock_t *ptl;
2009 	struct mm_struct *mm = vma->vm_mm;
2010 	unsigned long haddr = address & HPAGE_PUD_MASK;
2011 
2012 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2013 	ptl = pud_lock(mm, pud);
2014 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2015 		goto out;
2016 	__split_huge_pud_locked(vma, pud, haddr);
2017 
2018 out:
2019 	spin_unlock(ptl);
2020 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2021 }
2022 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2023 
2024 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2025 		unsigned long haddr, pmd_t *pmd)
2026 {
2027 	struct mm_struct *mm = vma->vm_mm;
2028 	pgtable_t pgtable;
2029 	pmd_t _pmd;
2030 	int i;
2031 
2032 	/* leave pmd empty until pte is filled */
2033 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2034 
2035 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2036 	pmd_populate(mm, &_pmd, pgtable);
2037 
2038 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2039 		pte_t *pte, entry;
2040 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2041 		entry = pte_mkspecial(entry);
2042 		pte = pte_offset_map(&_pmd, haddr);
2043 		VM_BUG_ON(!pte_none(*pte));
2044 		set_pte_at(mm, haddr, pte, entry);
2045 		pte_unmap(pte);
2046 	}
2047 	smp_wmb(); /* make pte visible before pmd */
2048 	pmd_populate(mm, pmd, pgtable);
2049 }
2050 
2051 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2052 		unsigned long haddr, bool freeze)
2053 {
2054 	struct mm_struct *mm = vma->vm_mm;
2055 	struct page *page;
2056 	pgtable_t pgtable;
2057 	pmd_t _pmd;
2058 	bool young, write, dirty, soft_dirty, pmd_migration = false;
2059 	unsigned long addr;
2060 	int i;
2061 
2062 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2063 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2064 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2065 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2066 				&& !pmd_devmap(*pmd));
2067 
2068 	count_vm_event(THP_SPLIT_PMD);
2069 
2070 	if (!vma_is_anonymous(vma)) {
2071 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2072 		/*
2073 		 * We are going to unmap this huge page. So
2074 		 * just go ahead and zap it
2075 		 */
2076 		if (arch_needs_pgtable_deposit())
2077 			zap_deposited_table(mm, pmd);
2078 		if (vma_is_dax(vma))
2079 			return;
2080 		page = pmd_page(_pmd);
2081 		if (!PageReferenced(page) && pmd_young(_pmd))
2082 			SetPageReferenced(page);
2083 		page_remove_rmap(page, true);
2084 		put_page(page);
2085 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2086 		return;
2087 	} else if (is_huge_zero_pmd(*pmd)) {
2088 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2089 	}
2090 
2091 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2092 	pmd_migration = is_pmd_migration_entry(*pmd);
2093 	if (pmd_migration) {
2094 		swp_entry_t entry;
2095 
2096 		entry = pmd_to_swp_entry(*pmd);
2097 		page = pfn_to_page(swp_offset(entry));
2098 	} else
2099 #endif
2100 		page = pmd_page(*pmd);
2101 	VM_BUG_ON_PAGE(!page_count(page), page);
2102 	page_ref_add(page, HPAGE_PMD_NR - 1);
2103 	write = pmd_write(*pmd);
2104 	young = pmd_young(*pmd);
2105 	dirty = pmd_dirty(*pmd);
2106 	soft_dirty = pmd_soft_dirty(*pmd);
2107 
2108 	pmdp_huge_split_prepare(vma, haddr, pmd);
2109 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2110 	pmd_populate(mm, &_pmd, pgtable);
2111 
2112 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2113 		pte_t entry, *pte;
2114 		/*
2115 		 * Note that NUMA hinting access restrictions are not
2116 		 * transferred to avoid any possibility of altering
2117 		 * permissions across VMAs.
2118 		 */
2119 		if (freeze || pmd_migration) {
2120 			swp_entry_t swp_entry;
2121 			swp_entry = make_migration_entry(page + i, write);
2122 			entry = swp_entry_to_pte(swp_entry);
2123 			if (soft_dirty)
2124 				entry = pte_swp_mksoft_dirty(entry);
2125 		} else {
2126 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2127 			entry = maybe_mkwrite(entry, vma);
2128 			if (!write)
2129 				entry = pte_wrprotect(entry);
2130 			if (!young)
2131 				entry = pte_mkold(entry);
2132 			if (soft_dirty)
2133 				entry = pte_mksoft_dirty(entry);
2134 		}
2135 		if (dirty)
2136 			SetPageDirty(page + i);
2137 		pte = pte_offset_map(&_pmd, addr);
2138 		BUG_ON(!pte_none(*pte));
2139 		set_pte_at(mm, addr, pte, entry);
2140 		atomic_inc(&page[i]._mapcount);
2141 		pte_unmap(pte);
2142 	}
2143 
2144 	/*
2145 	 * Set PG_double_map before dropping compound_mapcount to avoid
2146 	 * false-negative page_mapped().
2147 	 */
2148 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2149 		for (i = 0; i < HPAGE_PMD_NR; i++)
2150 			atomic_inc(&page[i]._mapcount);
2151 	}
2152 
2153 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2154 		/* Last compound_mapcount is gone. */
2155 		__dec_node_page_state(page, NR_ANON_THPS);
2156 		if (TestClearPageDoubleMap(page)) {
2157 			/* No need in mapcount reference anymore */
2158 			for (i = 0; i < HPAGE_PMD_NR; i++)
2159 				atomic_dec(&page[i]._mapcount);
2160 		}
2161 	}
2162 
2163 	smp_wmb(); /* make pte visible before pmd */
2164 	/*
2165 	 * Up to this point the pmd is present and huge and userland has the
2166 	 * whole access to the hugepage during the split (which happens in
2167 	 * place). If we overwrite the pmd with the not-huge version pointing
2168 	 * to the pte here (which of course we could if all CPUs were bug
2169 	 * free), userland could trigger a small page size TLB miss on the
2170 	 * small sized TLB while the hugepage TLB entry is still established in
2171 	 * the huge TLB. Some CPU doesn't like that.
2172 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2173 	 * 383 on page 93. Intel should be safe but is also warns that it's
2174 	 * only safe if the permission and cache attributes of the two entries
2175 	 * loaded in the two TLB is identical (which should be the case here).
2176 	 * But it is generally safer to never allow small and huge TLB entries
2177 	 * for the same virtual address to be loaded simultaneously. So instead
2178 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2179 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2180 	 * and pmd_trans_splitting must remain set at all times on the pmd
2181 	 * until the split is complete for this pmd), then we flush the SMP TLB
2182 	 * and finally we write the non-huge version of the pmd entry with
2183 	 * pmd_populate.
2184 	 */
2185 	pmdp_invalidate(vma, haddr, pmd);
2186 	pmd_populate(mm, pmd, pgtable);
2187 
2188 	if (freeze) {
2189 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2190 			page_remove_rmap(page + i, false);
2191 			put_page(page + i);
2192 		}
2193 	}
2194 }
2195 
2196 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2197 		unsigned long address, bool freeze, struct page *page)
2198 {
2199 	spinlock_t *ptl;
2200 	struct mm_struct *mm = vma->vm_mm;
2201 	unsigned long haddr = address & HPAGE_PMD_MASK;
2202 
2203 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2204 	ptl = pmd_lock(mm, pmd);
2205 
2206 	/*
2207 	 * If caller asks to setup a migration entries, we need a page to check
2208 	 * pmd against. Otherwise we can end up replacing wrong page.
2209 	 */
2210 	VM_BUG_ON(freeze && !page);
2211 	if (page && page != pmd_page(*pmd))
2212 	        goto out;
2213 
2214 	if (pmd_trans_huge(*pmd)) {
2215 		page = pmd_page(*pmd);
2216 		if (PageMlocked(page))
2217 			clear_page_mlock(page);
2218 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2219 		goto out;
2220 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2221 out:
2222 	spin_unlock(ptl);
2223 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224 }
2225 
2226 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2227 		bool freeze, struct page *page)
2228 {
2229 	pgd_t *pgd;
2230 	p4d_t *p4d;
2231 	pud_t *pud;
2232 	pmd_t *pmd;
2233 
2234 	pgd = pgd_offset(vma->vm_mm, address);
2235 	if (!pgd_present(*pgd))
2236 		return;
2237 
2238 	p4d = p4d_offset(pgd, address);
2239 	if (!p4d_present(*p4d))
2240 		return;
2241 
2242 	pud = pud_offset(p4d, address);
2243 	if (!pud_present(*pud))
2244 		return;
2245 
2246 	pmd = pmd_offset(pud, address);
2247 
2248 	__split_huge_pmd(vma, pmd, address, freeze, page);
2249 }
2250 
2251 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2252 			     unsigned long start,
2253 			     unsigned long end,
2254 			     long adjust_next)
2255 {
2256 	/*
2257 	 * If the new start address isn't hpage aligned and it could
2258 	 * previously contain an hugepage: check if we need to split
2259 	 * an huge pmd.
2260 	 */
2261 	if (start & ~HPAGE_PMD_MASK &&
2262 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2263 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2264 		split_huge_pmd_address(vma, start, false, NULL);
2265 
2266 	/*
2267 	 * If the new end address isn't hpage aligned and it could
2268 	 * previously contain an hugepage: check if we need to split
2269 	 * an huge pmd.
2270 	 */
2271 	if (end & ~HPAGE_PMD_MASK &&
2272 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2273 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2274 		split_huge_pmd_address(vma, end, false, NULL);
2275 
2276 	/*
2277 	 * If we're also updating the vma->vm_next->vm_start, if the new
2278 	 * vm_next->vm_start isn't page aligned and it could previously
2279 	 * contain an hugepage: check if we need to split an huge pmd.
2280 	 */
2281 	if (adjust_next > 0) {
2282 		struct vm_area_struct *next = vma->vm_next;
2283 		unsigned long nstart = next->vm_start;
2284 		nstart += adjust_next << PAGE_SHIFT;
2285 		if (nstart & ~HPAGE_PMD_MASK &&
2286 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2287 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2288 			split_huge_pmd_address(next, nstart, false, NULL);
2289 	}
2290 }
2291 
2292 static void freeze_page(struct page *page)
2293 {
2294 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2295 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2296 	bool unmap_success;
2297 
2298 	VM_BUG_ON_PAGE(!PageHead(page), page);
2299 
2300 	if (PageAnon(page))
2301 		ttu_flags |= TTU_SPLIT_FREEZE;
2302 
2303 	unmap_success = try_to_unmap(page, ttu_flags);
2304 	VM_BUG_ON_PAGE(!unmap_success, page);
2305 }
2306 
2307 static void unfreeze_page(struct page *page)
2308 {
2309 	int i;
2310 	if (PageTransHuge(page)) {
2311 		remove_migration_ptes(page, page, true);
2312 	} else {
2313 		for (i = 0; i < HPAGE_PMD_NR; i++)
2314 			remove_migration_ptes(page + i, page + i, true);
2315 	}
2316 }
2317 
2318 static void __split_huge_page_tail(struct page *head, int tail,
2319 		struct lruvec *lruvec, struct list_head *list)
2320 {
2321 	struct page *page_tail = head + tail;
2322 
2323 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2324 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2325 
2326 	/*
2327 	 * tail_page->_refcount is zero and not changing from under us. But
2328 	 * get_page_unless_zero() may be running from under us on the
2329 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2330 	 * atomic_add(), we would then run atomic_set() concurrently with
2331 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2332 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2333 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2334 	 * atomic_set() here would be safe on all archs (and not only on x86),
2335 	 * it's safer to use atomic_inc()/atomic_add().
2336 	 */
2337 	if (PageAnon(head) && !PageSwapCache(head)) {
2338 		page_ref_inc(page_tail);
2339 	} else {
2340 		/* Additional pin to radix tree */
2341 		page_ref_add(page_tail, 2);
2342 	}
2343 
2344 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2345 	page_tail->flags |= (head->flags &
2346 			((1L << PG_referenced) |
2347 			 (1L << PG_swapbacked) |
2348 			 (1L << PG_swapcache) |
2349 			 (1L << PG_mlocked) |
2350 			 (1L << PG_uptodate) |
2351 			 (1L << PG_active) |
2352 			 (1L << PG_locked) |
2353 			 (1L << PG_unevictable) |
2354 			 (1L << PG_dirty)));
2355 
2356 	/*
2357 	 * After clearing PageTail the gup refcount can be released.
2358 	 * Page flags also must be visible before we make the page non-compound.
2359 	 */
2360 	smp_wmb();
2361 
2362 	clear_compound_head(page_tail);
2363 
2364 	if (page_is_young(head))
2365 		set_page_young(page_tail);
2366 	if (page_is_idle(head))
2367 		set_page_idle(page_tail);
2368 
2369 	/* ->mapping in first tail page is compound_mapcount */
2370 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2371 			page_tail);
2372 	page_tail->mapping = head->mapping;
2373 
2374 	page_tail->index = head->index + tail;
2375 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2376 	lru_add_page_tail(head, page_tail, lruvec, list);
2377 }
2378 
2379 static void __split_huge_page(struct page *page, struct list_head *list,
2380 		unsigned long flags)
2381 {
2382 	struct page *head = compound_head(page);
2383 	struct zone *zone = page_zone(head);
2384 	struct lruvec *lruvec;
2385 	pgoff_t end = -1;
2386 	int i;
2387 
2388 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2389 
2390 	/* complete memcg works before add pages to LRU */
2391 	mem_cgroup_split_huge_fixup(head);
2392 
2393 	if (!PageAnon(page))
2394 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2395 
2396 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2397 		__split_huge_page_tail(head, i, lruvec, list);
2398 		/* Some pages can be beyond i_size: drop them from page cache */
2399 		if (head[i].index >= end) {
2400 			__ClearPageDirty(head + i);
2401 			__delete_from_page_cache(head + i, NULL);
2402 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2403 				shmem_uncharge(head->mapping->host, 1);
2404 			put_page(head + i);
2405 		}
2406 	}
2407 
2408 	ClearPageCompound(head);
2409 	/* See comment in __split_huge_page_tail() */
2410 	if (PageAnon(head)) {
2411 		/* Additional pin to radix tree of swap cache */
2412 		if (PageSwapCache(head))
2413 			page_ref_add(head, 2);
2414 		else
2415 			page_ref_inc(head);
2416 	} else {
2417 		/* Additional pin to radix tree */
2418 		page_ref_add(head, 2);
2419 		spin_unlock(&head->mapping->tree_lock);
2420 	}
2421 
2422 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2423 
2424 	unfreeze_page(head);
2425 
2426 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2427 		struct page *subpage = head + i;
2428 		if (subpage == page)
2429 			continue;
2430 		unlock_page(subpage);
2431 
2432 		/*
2433 		 * Subpages may be freed if there wasn't any mapping
2434 		 * like if add_to_swap() is running on a lru page that
2435 		 * had its mapping zapped. And freeing these pages
2436 		 * requires taking the lru_lock so we do the put_page
2437 		 * of the tail pages after the split is complete.
2438 		 */
2439 		put_page(subpage);
2440 	}
2441 }
2442 
2443 int total_mapcount(struct page *page)
2444 {
2445 	int i, compound, ret;
2446 
2447 	VM_BUG_ON_PAGE(PageTail(page), page);
2448 
2449 	if (likely(!PageCompound(page)))
2450 		return atomic_read(&page->_mapcount) + 1;
2451 
2452 	compound = compound_mapcount(page);
2453 	if (PageHuge(page))
2454 		return compound;
2455 	ret = compound;
2456 	for (i = 0; i < HPAGE_PMD_NR; i++)
2457 		ret += atomic_read(&page[i]._mapcount) + 1;
2458 	/* File pages has compound_mapcount included in _mapcount */
2459 	if (!PageAnon(page))
2460 		return ret - compound * HPAGE_PMD_NR;
2461 	if (PageDoubleMap(page))
2462 		ret -= HPAGE_PMD_NR;
2463 	return ret;
2464 }
2465 
2466 /*
2467  * This calculates accurately how many mappings a transparent hugepage
2468  * has (unlike page_mapcount() which isn't fully accurate). This full
2469  * accuracy is primarily needed to know if copy-on-write faults can
2470  * reuse the page and change the mapping to read-write instead of
2471  * copying them. At the same time this returns the total_mapcount too.
2472  *
2473  * The function returns the highest mapcount any one of the subpages
2474  * has. If the return value is one, even if different processes are
2475  * mapping different subpages of the transparent hugepage, they can
2476  * all reuse it, because each process is reusing a different subpage.
2477  *
2478  * The total_mapcount is instead counting all virtual mappings of the
2479  * subpages. If the total_mapcount is equal to "one", it tells the
2480  * caller all mappings belong to the same "mm" and in turn the
2481  * anon_vma of the transparent hugepage can become the vma->anon_vma
2482  * local one as no other process may be mapping any of the subpages.
2483  *
2484  * It would be more accurate to replace page_mapcount() with
2485  * page_trans_huge_mapcount(), however we only use
2486  * page_trans_huge_mapcount() in the copy-on-write faults where we
2487  * need full accuracy to avoid breaking page pinning, because
2488  * page_trans_huge_mapcount() is slower than page_mapcount().
2489  */
2490 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2491 {
2492 	int i, ret, _total_mapcount, mapcount;
2493 
2494 	/* hugetlbfs shouldn't call it */
2495 	VM_BUG_ON_PAGE(PageHuge(page), page);
2496 
2497 	if (likely(!PageTransCompound(page))) {
2498 		mapcount = atomic_read(&page->_mapcount) + 1;
2499 		if (total_mapcount)
2500 			*total_mapcount = mapcount;
2501 		return mapcount;
2502 	}
2503 
2504 	page = compound_head(page);
2505 
2506 	_total_mapcount = ret = 0;
2507 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2508 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2509 		ret = max(ret, mapcount);
2510 		_total_mapcount += mapcount;
2511 	}
2512 	if (PageDoubleMap(page)) {
2513 		ret -= 1;
2514 		_total_mapcount -= HPAGE_PMD_NR;
2515 	}
2516 	mapcount = compound_mapcount(page);
2517 	ret += mapcount;
2518 	_total_mapcount += mapcount;
2519 	if (total_mapcount)
2520 		*total_mapcount = _total_mapcount;
2521 	return ret;
2522 }
2523 
2524 /* Racy check whether the huge page can be split */
2525 bool can_split_huge_page(struct page *page, int *pextra_pins)
2526 {
2527 	int extra_pins;
2528 
2529 	/* Additional pins from radix tree */
2530 	if (PageAnon(page))
2531 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2532 	else
2533 		extra_pins = HPAGE_PMD_NR;
2534 	if (pextra_pins)
2535 		*pextra_pins = extra_pins;
2536 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2537 }
2538 
2539 /*
2540  * This function splits huge page into normal pages. @page can point to any
2541  * subpage of huge page to split. Split doesn't change the position of @page.
2542  *
2543  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2544  * The huge page must be locked.
2545  *
2546  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2547  *
2548  * Both head page and tail pages will inherit mapping, flags, and so on from
2549  * the hugepage.
2550  *
2551  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2552  * they are not mapped.
2553  *
2554  * Returns 0 if the hugepage is split successfully.
2555  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2556  * us.
2557  */
2558 int split_huge_page_to_list(struct page *page, struct list_head *list)
2559 {
2560 	struct page *head = compound_head(page);
2561 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2562 	struct anon_vma *anon_vma = NULL;
2563 	struct address_space *mapping = NULL;
2564 	int count, mapcount, extra_pins, ret;
2565 	bool mlocked;
2566 	unsigned long flags;
2567 
2568 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2569 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2570 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2571 
2572 	if (PageWriteback(page))
2573 		return -EBUSY;
2574 
2575 	if (PageAnon(head)) {
2576 		/*
2577 		 * The caller does not necessarily hold an mmap_sem that would
2578 		 * prevent the anon_vma disappearing so we first we take a
2579 		 * reference to it and then lock the anon_vma for write. This
2580 		 * is similar to page_lock_anon_vma_read except the write lock
2581 		 * is taken to serialise against parallel split or collapse
2582 		 * operations.
2583 		 */
2584 		anon_vma = page_get_anon_vma(head);
2585 		if (!anon_vma) {
2586 			ret = -EBUSY;
2587 			goto out;
2588 		}
2589 		mapping = NULL;
2590 		anon_vma_lock_write(anon_vma);
2591 	} else {
2592 		mapping = head->mapping;
2593 
2594 		/* Truncated ? */
2595 		if (!mapping) {
2596 			ret = -EBUSY;
2597 			goto out;
2598 		}
2599 
2600 		anon_vma = NULL;
2601 		i_mmap_lock_read(mapping);
2602 	}
2603 
2604 	/*
2605 	 * Racy check if we can split the page, before freeze_page() will
2606 	 * split PMDs
2607 	 */
2608 	if (!can_split_huge_page(head, &extra_pins)) {
2609 		ret = -EBUSY;
2610 		goto out_unlock;
2611 	}
2612 
2613 	mlocked = PageMlocked(page);
2614 	freeze_page(head);
2615 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2616 
2617 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2618 	if (mlocked)
2619 		lru_add_drain();
2620 
2621 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2622 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2623 
2624 	if (mapping) {
2625 		void **pslot;
2626 
2627 		spin_lock(&mapping->tree_lock);
2628 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2629 				page_index(head));
2630 		/*
2631 		 * Check if the head page is present in radix tree.
2632 		 * We assume all tail are present too, if head is there.
2633 		 */
2634 		if (radix_tree_deref_slot_protected(pslot,
2635 					&mapping->tree_lock) != head)
2636 			goto fail;
2637 	}
2638 
2639 	/* Prevent deferred_split_scan() touching ->_refcount */
2640 	spin_lock(&pgdata->split_queue_lock);
2641 	count = page_count(head);
2642 	mapcount = total_mapcount(head);
2643 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2644 		if (!list_empty(page_deferred_list(head))) {
2645 			pgdata->split_queue_len--;
2646 			list_del(page_deferred_list(head));
2647 		}
2648 		if (mapping)
2649 			__dec_node_page_state(page, NR_SHMEM_THPS);
2650 		spin_unlock(&pgdata->split_queue_lock);
2651 		__split_huge_page(page, list, flags);
2652 		if (PageSwapCache(head)) {
2653 			swp_entry_t entry = { .val = page_private(head) };
2654 
2655 			ret = split_swap_cluster(entry);
2656 		} else
2657 			ret = 0;
2658 	} else {
2659 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2660 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2661 					mapcount, count);
2662 			if (PageTail(page))
2663 				dump_page(head, NULL);
2664 			dump_page(page, "total_mapcount(head) > 0");
2665 			BUG();
2666 		}
2667 		spin_unlock(&pgdata->split_queue_lock);
2668 fail:		if (mapping)
2669 			spin_unlock(&mapping->tree_lock);
2670 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2671 		unfreeze_page(head);
2672 		ret = -EBUSY;
2673 	}
2674 
2675 out_unlock:
2676 	if (anon_vma) {
2677 		anon_vma_unlock_write(anon_vma);
2678 		put_anon_vma(anon_vma);
2679 	}
2680 	if (mapping)
2681 		i_mmap_unlock_read(mapping);
2682 out:
2683 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2684 	return ret;
2685 }
2686 
2687 void free_transhuge_page(struct page *page)
2688 {
2689 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2690 	unsigned long flags;
2691 
2692 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2693 	if (!list_empty(page_deferred_list(page))) {
2694 		pgdata->split_queue_len--;
2695 		list_del(page_deferred_list(page));
2696 	}
2697 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2698 	free_compound_page(page);
2699 }
2700 
2701 void deferred_split_huge_page(struct page *page)
2702 {
2703 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2704 	unsigned long flags;
2705 
2706 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2707 
2708 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2709 	if (list_empty(page_deferred_list(page))) {
2710 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2711 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2712 		pgdata->split_queue_len++;
2713 	}
2714 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2715 }
2716 
2717 static unsigned long deferred_split_count(struct shrinker *shrink,
2718 		struct shrink_control *sc)
2719 {
2720 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2721 	return ACCESS_ONCE(pgdata->split_queue_len);
2722 }
2723 
2724 static unsigned long deferred_split_scan(struct shrinker *shrink,
2725 		struct shrink_control *sc)
2726 {
2727 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2728 	unsigned long flags;
2729 	LIST_HEAD(list), *pos, *next;
2730 	struct page *page;
2731 	int split = 0;
2732 
2733 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2734 	/* Take pin on all head pages to avoid freeing them under us */
2735 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2736 		page = list_entry((void *)pos, struct page, mapping);
2737 		page = compound_head(page);
2738 		if (get_page_unless_zero(page)) {
2739 			list_move(page_deferred_list(page), &list);
2740 		} else {
2741 			/* We lost race with put_compound_page() */
2742 			list_del_init(page_deferred_list(page));
2743 			pgdata->split_queue_len--;
2744 		}
2745 		if (!--sc->nr_to_scan)
2746 			break;
2747 	}
2748 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749 
2750 	list_for_each_safe(pos, next, &list) {
2751 		page = list_entry((void *)pos, struct page, mapping);
2752 		lock_page(page);
2753 		/* split_huge_page() removes page from list on success */
2754 		if (!split_huge_page(page))
2755 			split++;
2756 		unlock_page(page);
2757 		put_page(page);
2758 	}
2759 
2760 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2761 	list_splice_tail(&list, &pgdata->split_queue);
2762 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2763 
2764 	/*
2765 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2766 	 * This can happen if pages were freed under us.
2767 	 */
2768 	if (!split && list_empty(&pgdata->split_queue))
2769 		return SHRINK_STOP;
2770 	return split;
2771 }
2772 
2773 static struct shrinker deferred_split_shrinker = {
2774 	.count_objects = deferred_split_count,
2775 	.scan_objects = deferred_split_scan,
2776 	.seeks = DEFAULT_SEEKS,
2777 	.flags = SHRINKER_NUMA_AWARE,
2778 };
2779 
2780 #ifdef CONFIG_DEBUG_FS
2781 static int split_huge_pages_set(void *data, u64 val)
2782 {
2783 	struct zone *zone;
2784 	struct page *page;
2785 	unsigned long pfn, max_zone_pfn;
2786 	unsigned long total = 0, split = 0;
2787 
2788 	if (val != 1)
2789 		return -EINVAL;
2790 
2791 	for_each_populated_zone(zone) {
2792 		max_zone_pfn = zone_end_pfn(zone);
2793 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2794 			if (!pfn_valid(pfn))
2795 				continue;
2796 
2797 			page = pfn_to_page(pfn);
2798 			if (!get_page_unless_zero(page))
2799 				continue;
2800 
2801 			if (zone != page_zone(page))
2802 				goto next;
2803 
2804 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2805 				goto next;
2806 
2807 			total++;
2808 			lock_page(page);
2809 			if (!split_huge_page(page))
2810 				split++;
2811 			unlock_page(page);
2812 next:
2813 			put_page(page);
2814 		}
2815 	}
2816 
2817 	pr_info("%lu of %lu THP split\n", split, total);
2818 
2819 	return 0;
2820 }
2821 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2822 		"%llu\n");
2823 
2824 static int __init split_huge_pages_debugfs(void)
2825 {
2826 	void *ret;
2827 
2828 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2829 			&split_huge_pages_fops);
2830 	if (!ret)
2831 		pr_warn("Failed to create split_huge_pages in debugfs");
2832 	return 0;
2833 }
2834 late_initcall(split_huge_pages_debugfs);
2835 #endif
2836 
2837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2838 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2839 		struct page *page)
2840 {
2841 	struct vm_area_struct *vma = pvmw->vma;
2842 	struct mm_struct *mm = vma->vm_mm;
2843 	unsigned long address = pvmw->address;
2844 	pmd_t pmdval;
2845 	swp_entry_t entry;
2846 	pmd_t pmdswp;
2847 
2848 	if (!(pvmw->pmd && !pvmw->pte))
2849 		return;
2850 
2851 	mmu_notifier_invalidate_range_start(mm, address,
2852 			address + HPAGE_PMD_SIZE);
2853 
2854 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2855 	pmdval = *pvmw->pmd;
2856 	pmdp_invalidate(vma, address, pvmw->pmd);
2857 	if (pmd_dirty(pmdval))
2858 		set_page_dirty(page);
2859 	entry = make_migration_entry(page, pmd_write(pmdval));
2860 	pmdswp = swp_entry_to_pmd(entry);
2861 	if (pmd_soft_dirty(pmdval))
2862 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2863 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2864 	page_remove_rmap(page, true);
2865 	put_page(page);
2866 
2867 	mmu_notifier_invalidate_range_end(mm, address,
2868 			address + HPAGE_PMD_SIZE);
2869 }
2870 
2871 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2872 {
2873 	struct vm_area_struct *vma = pvmw->vma;
2874 	struct mm_struct *mm = vma->vm_mm;
2875 	unsigned long address = pvmw->address;
2876 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2877 	pmd_t pmde;
2878 	swp_entry_t entry;
2879 
2880 	if (!(pvmw->pmd && !pvmw->pte))
2881 		return;
2882 
2883 	entry = pmd_to_swp_entry(*pvmw->pmd);
2884 	get_page(new);
2885 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2886 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2887 		pmde = pmd_mksoft_dirty(pmde);
2888 	if (is_write_migration_entry(entry))
2889 		pmde = maybe_pmd_mkwrite(pmde, vma);
2890 
2891 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2892 	page_add_anon_rmap(new, vma, mmun_start, true);
2893 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2894 	if (vma->vm_flags & VM_LOCKED)
2895 		mlock_vma_page(new);
2896 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2897 }
2898 #endif
2899