xref: /linux/mm/huge_memory.c (revision a9ce09b15761e0f3a413a4a79097d17e19bd3ec1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlb.h>
45 #include "internal.h"
46 #include "swap.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50 
51 /*
52  * By default, transparent hugepage support is disabled in order to avoid
53  * risking an increased memory footprint for applications that are not
54  * guaranteed to benefit from it. When transparent hugepage support is
55  * enabled, it is for all mappings, and khugepaged scans all mappings.
56  * Defrag is invoked by khugepaged hugepage allocations and by page faults
57  * for all hugepage allocations.
58  */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69 
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 					  struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 					 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76 
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84 
85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 	struct inode *inode;
88 
89 	if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 		return false;
91 
92 	if (!vma->vm_file)
93 		return false;
94 
95 	inode = file_inode(vma->vm_file);
96 
97 	return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99 
100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 					 vm_flags_t vm_flags,
102 					 enum tva_type type,
103 					 unsigned long orders)
104 {
105 	const bool smaps = type == TVA_SMAPS;
106 	const bool in_pf = type == TVA_PAGEFAULT;
107 	const bool forced_collapse = type == TVA_FORCED_COLLAPSE;
108 	unsigned long supported_orders;
109 
110 	/* Check the intersection of requested and supported orders. */
111 	if (vma_is_anonymous(vma))
112 		supported_orders = THP_ORDERS_ALL_ANON;
113 	else if (vma_is_special_huge(vma))
114 		supported_orders = THP_ORDERS_ALL_SPECIAL;
115 	else
116 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117 
118 	orders &= supported_orders;
119 	if (!orders)
120 		return 0;
121 
122 	if (!vma->vm_mm)		/* vdso */
123 		return 0;
124 
125 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse))
126 		return 0;
127 
128 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 	if (vma_is_dax(vma))
130 		return in_pf ? orders : 0;
131 
132 	/*
133 	 * khugepaged special VMA and hugetlb VMA.
134 	 * Must be checked after dax since some dax mappings may have
135 	 * VM_MIXEDMAP set.
136 	 */
137 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 		return 0;
139 
140 	/*
141 	 * Check alignment for file vma and size for both file and anon vma by
142 	 * filtering out the unsuitable orders.
143 	 *
144 	 * Skip the check for page fault. Huge fault does the check in fault
145 	 * handlers.
146 	 */
147 	if (!in_pf) {
148 		int order = highest_order(orders);
149 		unsigned long addr;
150 
151 		while (orders) {
152 			addr = vma->vm_end - (PAGE_SIZE << order);
153 			if (thp_vma_suitable_order(vma, addr, order))
154 				break;
155 			order = next_order(&orders, order);
156 		}
157 
158 		if (!orders)
159 			return 0;
160 	}
161 
162 	/*
163 	 * Enabled via shmem mount options or sysfs settings.
164 	 * Must be done before hugepage flags check since shmem has its
165 	 * own flags.
166 	 */
167 	if (!in_pf && shmem_file(vma->vm_file))
168 		return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 						   vma, vma->vm_pgoff, 0,
170 						   forced_collapse);
171 
172 	if (!vma_is_anonymous(vma)) {
173 		/*
174 		 * Enforce THP collapse requirements as necessary. Anonymous vmas
175 		 * were already handled in thp_vma_allowable_orders().
176 		 */
177 		if (!forced_collapse &&
178 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 						    !hugepage_global_always())))
180 			return 0;
181 
182 		/*
183 		 * Trust that ->huge_fault() handlers know what they are doing
184 		 * in fault path.
185 		 */
186 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 			return orders;
188 		/* Only regular file is valid in collapse path */
189 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 			return orders;
191 		return 0;
192 	}
193 
194 	if (vma_is_temporary_stack(vma))
195 		return 0;
196 
197 	/*
198 	 * THPeligible bit of smaps should show 1 for proper VMAs even
199 	 * though anon_vma is not initialized yet.
200 	 *
201 	 * Allow page fault since anon_vma may be not initialized until
202 	 * the first page fault.
203 	 */
204 	if (!vma->anon_vma)
205 		return (smaps || in_pf) ? orders : 0;
206 
207 	return orders;
208 }
209 
210 static bool get_huge_zero_folio(void)
211 {
212 	struct folio *zero_folio;
213 retry:
214 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 		return true;
216 
217 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO | __GFP_ZEROTAGS) &
218 				 ~__GFP_MOVABLE,
219 			HPAGE_PMD_ORDER);
220 	if (!zero_folio) {
221 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 		return false;
223 	}
224 	/* Ensure zero folio won't have large_rmappable flag set. */
225 	folio_clear_large_rmappable(zero_folio);
226 	preempt_disable();
227 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 		preempt_enable();
229 		folio_put(zero_folio);
230 		goto retry;
231 	}
232 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233 
234 	/* We take additional reference here. It will be put back by shrinker */
235 	atomic_set(&huge_zero_refcount, 2);
236 	preempt_enable();
237 	count_vm_event(THP_ZERO_PAGE_ALLOC);
238 	return true;
239 }
240 
241 static void put_huge_zero_folio(void)
242 {
243 	/*
244 	 * Counter should never go to zero here. Only shrinker can put
245 	 * last reference.
246 	 */
247 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249 
250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
253 		return huge_zero_folio;
254 
255 	if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
256 		return READ_ONCE(huge_zero_folio);
257 
258 	if (!get_huge_zero_folio())
259 		return NULL;
260 
261 	if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm))
262 		put_huge_zero_folio();
263 
264 	return READ_ONCE(huge_zero_folio);
265 }
266 
267 void mm_put_huge_zero_folio(struct mm_struct *mm)
268 {
269 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO))
270 		return;
271 
272 	if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm))
273 		put_huge_zero_folio();
274 }
275 
276 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink,
277 						  struct shrink_control *sc)
278 {
279 	/* we can free zero page only if last reference remains */
280 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
281 }
282 
283 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink,
284 						 struct shrink_control *sc)
285 {
286 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
287 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
288 		BUG_ON(zero_folio == NULL);
289 		WRITE_ONCE(huge_zero_pfn, ~0UL);
290 		folio_put(zero_folio);
291 		return HPAGE_PMD_NR;
292 	}
293 
294 	return 0;
295 }
296 
297 static struct shrinker *huge_zero_folio_shrinker;
298 
299 #ifdef CONFIG_SYSFS
300 static ssize_t enabled_show(struct kobject *kobj,
301 			    struct kobj_attribute *attr, char *buf)
302 {
303 	const char *output;
304 
305 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
306 		output = "[always] madvise never";
307 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
308 			  &transparent_hugepage_flags))
309 		output = "always [madvise] never";
310 	else
311 		output = "always madvise [never]";
312 
313 	return sysfs_emit(buf, "%s\n", output);
314 }
315 
316 static ssize_t enabled_store(struct kobject *kobj,
317 			     struct kobj_attribute *attr,
318 			     const char *buf, size_t count)
319 {
320 	ssize_t ret = count;
321 
322 	if (sysfs_streq(buf, "always")) {
323 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
325 	} else if (sysfs_streq(buf, "madvise")) {
326 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
327 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
328 	} else if (sysfs_streq(buf, "never")) {
329 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
330 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
331 	} else
332 		ret = -EINVAL;
333 
334 	if (ret > 0) {
335 		int err = start_stop_khugepaged();
336 		if (err)
337 			ret = err;
338 	}
339 	return ret;
340 }
341 
342 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
343 
344 ssize_t single_hugepage_flag_show(struct kobject *kobj,
345 				  struct kobj_attribute *attr, char *buf,
346 				  enum transparent_hugepage_flag flag)
347 {
348 	return sysfs_emit(buf, "%d\n",
349 			  !!test_bit(flag, &transparent_hugepage_flags));
350 }
351 
352 ssize_t single_hugepage_flag_store(struct kobject *kobj,
353 				 struct kobj_attribute *attr,
354 				 const char *buf, size_t count,
355 				 enum transparent_hugepage_flag flag)
356 {
357 	unsigned long value;
358 	int ret;
359 
360 	ret = kstrtoul(buf, 10, &value);
361 	if (ret < 0)
362 		return ret;
363 	if (value > 1)
364 		return -EINVAL;
365 
366 	if (value)
367 		set_bit(flag, &transparent_hugepage_flags);
368 	else
369 		clear_bit(flag, &transparent_hugepage_flags);
370 
371 	return count;
372 }
373 
374 static ssize_t defrag_show(struct kobject *kobj,
375 			   struct kobj_attribute *attr, char *buf)
376 {
377 	const char *output;
378 
379 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
380 		     &transparent_hugepage_flags))
381 		output = "[always] defer defer+madvise madvise never";
382 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
383 			  &transparent_hugepage_flags))
384 		output = "always [defer] defer+madvise madvise never";
385 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
386 			  &transparent_hugepage_flags))
387 		output = "always defer [defer+madvise] madvise never";
388 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
389 			  &transparent_hugepage_flags))
390 		output = "always defer defer+madvise [madvise] never";
391 	else
392 		output = "always defer defer+madvise madvise [never]";
393 
394 	return sysfs_emit(buf, "%s\n", output);
395 }
396 
397 static ssize_t defrag_store(struct kobject *kobj,
398 			    struct kobj_attribute *attr,
399 			    const char *buf, size_t count)
400 {
401 	if (sysfs_streq(buf, "always")) {
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
405 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 	} else if (sysfs_streq(buf, "defer+madvise")) {
407 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
408 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
411 	} else if (sysfs_streq(buf, "defer")) {
412 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
413 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
416 	} else if (sysfs_streq(buf, "madvise")) {
417 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
418 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
419 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
420 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
421 	} else if (sysfs_streq(buf, "never")) {
422 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
423 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
424 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
425 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
426 	} else
427 		return -EINVAL;
428 
429 	return count;
430 }
431 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
432 
433 static ssize_t use_zero_page_show(struct kobject *kobj,
434 				  struct kobj_attribute *attr, char *buf)
435 {
436 	return single_hugepage_flag_show(kobj, attr, buf,
437 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
439 static ssize_t use_zero_page_store(struct kobject *kobj,
440 		struct kobj_attribute *attr, const char *buf, size_t count)
441 {
442 	return single_hugepage_flag_store(kobj, attr, buf, count,
443 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
444 }
445 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
446 
447 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
448 				   struct kobj_attribute *attr, char *buf)
449 {
450 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
451 }
452 static struct kobj_attribute hpage_pmd_size_attr =
453 	__ATTR_RO(hpage_pmd_size);
454 
455 static ssize_t split_underused_thp_show(struct kobject *kobj,
456 			    struct kobj_attribute *attr, char *buf)
457 {
458 	return sysfs_emit(buf, "%d\n", split_underused_thp);
459 }
460 
461 static ssize_t split_underused_thp_store(struct kobject *kobj,
462 			     struct kobj_attribute *attr,
463 			     const char *buf, size_t count)
464 {
465 	int err = kstrtobool(buf, &split_underused_thp);
466 
467 	if (err < 0)
468 		return err;
469 
470 	return count;
471 }
472 
473 static struct kobj_attribute split_underused_thp_attr = __ATTR(
474 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
475 
476 static struct attribute *hugepage_attr[] = {
477 	&enabled_attr.attr,
478 	&defrag_attr.attr,
479 	&use_zero_page_attr.attr,
480 	&hpage_pmd_size_attr.attr,
481 #ifdef CONFIG_SHMEM
482 	&shmem_enabled_attr.attr,
483 #endif
484 	&split_underused_thp_attr.attr,
485 	NULL,
486 };
487 
488 static const struct attribute_group hugepage_attr_group = {
489 	.attrs = hugepage_attr,
490 };
491 
492 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
493 static void thpsize_release(struct kobject *kobj);
494 static DEFINE_SPINLOCK(huge_anon_orders_lock);
495 static LIST_HEAD(thpsize_list);
496 
497 static ssize_t anon_enabled_show(struct kobject *kobj,
498 				 struct kobj_attribute *attr, char *buf)
499 {
500 	int order = to_thpsize(kobj)->order;
501 	const char *output;
502 
503 	if (test_bit(order, &huge_anon_orders_always))
504 		output = "[always] inherit madvise never";
505 	else if (test_bit(order, &huge_anon_orders_inherit))
506 		output = "always [inherit] madvise never";
507 	else if (test_bit(order, &huge_anon_orders_madvise))
508 		output = "always inherit [madvise] never";
509 	else
510 		output = "always inherit madvise [never]";
511 
512 	return sysfs_emit(buf, "%s\n", output);
513 }
514 
515 static ssize_t anon_enabled_store(struct kobject *kobj,
516 				  struct kobj_attribute *attr,
517 				  const char *buf, size_t count)
518 {
519 	int order = to_thpsize(kobj)->order;
520 	ssize_t ret = count;
521 
522 	if (sysfs_streq(buf, "always")) {
523 		spin_lock(&huge_anon_orders_lock);
524 		clear_bit(order, &huge_anon_orders_inherit);
525 		clear_bit(order, &huge_anon_orders_madvise);
526 		set_bit(order, &huge_anon_orders_always);
527 		spin_unlock(&huge_anon_orders_lock);
528 	} else if (sysfs_streq(buf, "inherit")) {
529 		spin_lock(&huge_anon_orders_lock);
530 		clear_bit(order, &huge_anon_orders_always);
531 		clear_bit(order, &huge_anon_orders_madvise);
532 		set_bit(order, &huge_anon_orders_inherit);
533 		spin_unlock(&huge_anon_orders_lock);
534 	} else if (sysfs_streq(buf, "madvise")) {
535 		spin_lock(&huge_anon_orders_lock);
536 		clear_bit(order, &huge_anon_orders_always);
537 		clear_bit(order, &huge_anon_orders_inherit);
538 		set_bit(order, &huge_anon_orders_madvise);
539 		spin_unlock(&huge_anon_orders_lock);
540 	} else if (sysfs_streq(buf, "never")) {
541 		spin_lock(&huge_anon_orders_lock);
542 		clear_bit(order, &huge_anon_orders_always);
543 		clear_bit(order, &huge_anon_orders_inherit);
544 		clear_bit(order, &huge_anon_orders_madvise);
545 		spin_unlock(&huge_anon_orders_lock);
546 	} else
547 		ret = -EINVAL;
548 
549 	if (ret > 0) {
550 		int err;
551 
552 		err = start_stop_khugepaged();
553 		if (err)
554 			ret = err;
555 	}
556 	return ret;
557 }
558 
559 static struct kobj_attribute anon_enabled_attr =
560 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
561 
562 static struct attribute *anon_ctrl_attrs[] = {
563 	&anon_enabled_attr.attr,
564 	NULL,
565 };
566 
567 static const struct attribute_group anon_ctrl_attr_grp = {
568 	.attrs = anon_ctrl_attrs,
569 };
570 
571 static struct attribute *file_ctrl_attrs[] = {
572 #ifdef CONFIG_SHMEM
573 	&thpsize_shmem_enabled_attr.attr,
574 #endif
575 	NULL,
576 };
577 
578 static const struct attribute_group file_ctrl_attr_grp = {
579 	.attrs = file_ctrl_attrs,
580 };
581 
582 static struct attribute *any_ctrl_attrs[] = {
583 	NULL,
584 };
585 
586 static const struct attribute_group any_ctrl_attr_grp = {
587 	.attrs = any_ctrl_attrs,
588 };
589 
590 static const struct kobj_type thpsize_ktype = {
591 	.release = &thpsize_release,
592 	.sysfs_ops = &kobj_sysfs_ops,
593 };
594 
595 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
596 
597 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
598 {
599 	unsigned long sum = 0;
600 	int cpu;
601 
602 	for_each_possible_cpu(cpu) {
603 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
604 
605 		sum += this->stats[order][item];
606 	}
607 
608 	return sum;
609 }
610 
611 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
612 static ssize_t _name##_show(struct kobject *kobj,			\
613 			struct kobj_attribute *attr, char *buf)		\
614 {									\
615 	int order = to_thpsize(kobj)->order;				\
616 									\
617 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
618 }									\
619 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
620 
621 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
623 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
624 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
625 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
626 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
628 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
629 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
630 #ifdef CONFIG_SHMEM
631 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
632 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
633 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
634 #endif
635 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
636 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
637 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
638 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
639 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
640 
641 static struct attribute *anon_stats_attrs[] = {
642 	&anon_fault_alloc_attr.attr,
643 	&anon_fault_fallback_attr.attr,
644 	&anon_fault_fallback_charge_attr.attr,
645 #ifndef CONFIG_SHMEM
646 	&zswpout_attr.attr,
647 	&swpin_attr.attr,
648 	&swpin_fallback_attr.attr,
649 	&swpin_fallback_charge_attr.attr,
650 	&swpout_attr.attr,
651 	&swpout_fallback_attr.attr,
652 #endif
653 	&split_deferred_attr.attr,
654 	&nr_anon_attr.attr,
655 	&nr_anon_partially_mapped_attr.attr,
656 	NULL,
657 };
658 
659 static struct attribute_group anon_stats_attr_grp = {
660 	.name = "stats",
661 	.attrs = anon_stats_attrs,
662 };
663 
664 static struct attribute *file_stats_attrs[] = {
665 #ifdef CONFIG_SHMEM
666 	&shmem_alloc_attr.attr,
667 	&shmem_fallback_attr.attr,
668 	&shmem_fallback_charge_attr.attr,
669 #endif
670 	NULL,
671 };
672 
673 static struct attribute_group file_stats_attr_grp = {
674 	.name = "stats",
675 	.attrs = file_stats_attrs,
676 };
677 
678 static struct attribute *any_stats_attrs[] = {
679 #ifdef CONFIG_SHMEM
680 	&zswpout_attr.attr,
681 	&swpin_attr.attr,
682 	&swpin_fallback_attr.attr,
683 	&swpin_fallback_charge_attr.attr,
684 	&swpout_attr.attr,
685 	&swpout_fallback_attr.attr,
686 #endif
687 	&split_attr.attr,
688 	&split_failed_attr.attr,
689 	NULL,
690 };
691 
692 static struct attribute_group any_stats_attr_grp = {
693 	.name = "stats",
694 	.attrs = any_stats_attrs,
695 };
696 
697 static int sysfs_add_group(struct kobject *kobj,
698 			   const struct attribute_group *grp)
699 {
700 	int ret = -ENOENT;
701 
702 	/*
703 	 * If the group is named, try to merge first, assuming the subdirectory
704 	 * was already created. This avoids the warning emitted by
705 	 * sysfs_create_group() if the directory already exists.
706 	 */
707 	if (grp->name)
708 		ret = sysfs_merge_group(kobj, grp);
709 	if (ret)
710 		ret = sysfs_create_group(kobj, grp);
711 
712 	return ret;
713 }
714 
715 static struct thpsize *thpsize_create(int order, struct kobject *parent)
716 {
717 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
718 	struct thpsize *thpsize;
719 	int ret = -ENOMEM;
720 
721 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
722 	if (!thpsize)
723 		goto err;
724 
725 	thpsize->order = order;
726 
727 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
728 				   "hugepages-%lukB", size);
729 	if (ret) {
730 		kfree(thpsize);
731 		goto err;
732 	}
733 
734 
735 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
736 	if (ret)
737 		goto err_put;
738 
739 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
740 	if (ret)
741 		goto err_put;
742 
743 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
744 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
745 		if (ret)
746 			goto err_put;
747 
748 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
749 		if (ret)
750 			goto err_put;
751 	}
752 
753 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
754 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
755 		if (ret)
756 			goto err_put;
757 
758 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
759 		if (ret)
760 			goto err_put;
761 	}
762 
763 	return thpsize;
764 err_put:
765 	kobject_put(&thpsize->kobj);
766 err:
767 	return ERR_PTR(ret);
768 }
769 
770 static void thpsize_release(struct kobject *kobj)
771 {
772 	kfree(to_thpsize(kobj));
773 }
774 
775 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
776 {
777 	int err;
778 	struct thpsize *thpsize;
779 	unsigned long orders;
780 	int order;
781 
782 	/*
783 	 * Default to setting PMD-sized THP to inherit the global setting and
784 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
785 	 * constant so we have to do this here.
786 	 */
787 	if (!anon_orders_configured)
788 		huge_anon_orders_inherit = BIT(PMD_ORDER);
789 
790 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
791 	if (unlikely(!*hugepage_kobj)) {
792 		pr_err("failed to create transparent hugepage kobject\n");
793 		return -ENOMEM;
794 	}
795 
796 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
797 	if (err) {
798 		pr_err("failed to register transparent hugepage group\n");
799 		goto delete_obj;
800 	}
801 
802 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
803 	if (err) {
804 		pr_err("failed to register transparent hugepage group\n");
805 		goto remove_hp_group;
806 	}
807 
808 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
809 	order = highest_order(orders);
810 	while (orders) {
811 		thpsize = thpsize_create(order, *hugepage_kobj);
812 		if (IS_ERR(thpsize)) {
813 			pr_err("failed to create thpsize for order %d\n", order);
814 			err = PTR_ERR(thpsize);
815 			goto remove_all;
816 		}
817 		list_add(&thpsize->node, &thpsize_list);
818 		order = next_order(&orders, order);
819 	}
820 
821 	return 0;
822 
823 remove_all:
824 	hugepage_exit_sysfs(*hugepage_kobj);
825 	return err;
826 remove_hp_group:
827 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
828 delete_obj:
829 	kobject_put(*hugepage_kobj);
830 	return err;
831 }
832 
833 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
834 {
835 	struct thpsize *thpsize, *tmp;
836 
837 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
838 		list_del(&thpsize->node);
839 		kobject_put(&thpsize->kobj);
840 	}
841 
842 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
843 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
844 	kobject_put(hugepage_kobj);
845 }
846 #else
847 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
848 {
849 	return 0;
850 }
851 
852 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
853 {
854 }
855 #endif /* CONFIG_SYSFS */
856 
857 static int __init thp_shrinker_init(void)
858 {
859 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
860 						 SHRINKER_MEMCG_AWARE |
861 						 SHRINKER_NONSLAB,
862 						 "thp-deferred_split");
863 	if (!deferred_split_shrinker)
864 		return -ENOMEM;
865 
866 	deferred_split_shrinker->count_objects = deferred_split_count;
867 	deferred_split_shrinker->scan_objects = deferred_split_scan;
868 	shrinker_register(deferred_split_shrinker);
869 
870 	if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) {
871 		/*
872 		 * Bump the reference of the huge_zero_folio and do not
873 		 * initialize the shrinker.
874 		 *
875 		 * huge_zero_folio will always be NULL on failure. We assume
876 		 * that get_huge_zero_folio() will most likely not fail as
877 		 * thp_shrinker_init() is invoked early on during boot.
878 		 */
879 		if (!get_huge_zero_folio())
880 			pr_warn("Allocating persistent huge zero folio failed\n");
881 		return 0;
882 	}
883 
884 	huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero");
885 	if (!huge_zero_folio_shrinker) {
886 		shrinker_free(deferred_split_shrinker);
887 		return -ENOMEM;
888 	}
889 
890 	huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count;
891 	huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan;
892 	shrinker_register(huge_zero_folio_shrinker);
893 
894 	return 0;
895 }
896 
897 static void __init thp_shrinker_exit(void)
898 {
899 	shrinker_free(huge_zero_folio_shrinker);
900 	shrinker_free(deferred_split_shrinker);
901 }
902 
903 static int __init hugepage_init(void)
904 {
905 	int err;
906 	struct kobject *hugepage_kobj;
907 
908 	if (!has_transparent_hugepage()) {
909 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
910 		return -EINVAL;
911 	}
912 
913 	/*
914 	 * hugepages can't be allocated by the buddy allocator
915 	 */
916 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
917 
918 	err = hugepage_init_sysfs(&hugepage_kobj);
919 	if (err)
920 		goto err_sysfs;
921 
922 	err = khugepaged_init();
923 	if (err)
924 		goto err_slab;
925 
926 	err = thp_shrinker_init();
927 	if (err)
928 		goto err_shrinker;
929 
930 	/*
931 	 * By default disable transparent hugepages on smaller systems,
932 	 * where the extra memory used could hurt more than TLB overhead
933 	 * is likely to save.  The admin can still enable it through /sys.
934 	 */
935 	if (totalram_pages() < MB_TO_PAGES(512)) {
936 		transparent_hugepage_flags = 0;
937 		return 0;
938 	}
939 
940 	err = start_stop_khugepaged();
941 	if (err)
942 		goto err_khugepaged;
943 
944 	return 0;
945 err_khugepaged:
946 	thp_shrinker_exit();
947 err_shrinker:
948 	khugepaged_destroy();
949 err_slab:
950 	hugepage_exit_sysfs(hugepage_kobj);
951 err_sysfs:
952 	return err;
953 }
954 subsys_initcall(hugepage_init);
955 
956 static int __init setup_transparent_hugepage(char *str)
957 {
958 	int ret = 0;
959 	if (!str)
960 		goto out;
961 	if (!strcmp(str, "always")) {
962 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
963 			&transparent_hugepage_flags);
964 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
965 			  &transparent_hugepage_flags);
966 		ret = 1;
967 	} else if (!strcmp(str, "madvise")) {
968 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
969 			  &transparent_hugepage_flags);
970 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
971 			&transparent_hugepage_flags);
972 		ret = 1;
973 	} else if (!strcmp(str, "never")) {
974 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
975 			  &transparent_hugepage_flags);
976 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
977 			  &transparent_hugepage_flags);
978 		ret = 1;
979 	}
980 out:
981 	if (!ret)
982 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
983 	return ret;
984 }
985 __setup("transparent_hugepage=", setup_transparent_hugepage);
986 
987 static char str_dup[PAGE_SIZE] __initdata;
988 static int __init setup_thp_anon(char *str)
989 {
990 	char *token, *range, *policy, *subtoken;
991 	unsigned long always, inherit, madvise;
992 	char *start_size, *end_size;
993 	int start, end, nr;
994 	char *p;
995 
996 	if (!str || strlen(str) + 1 > PAGE_SIZE)
997 		goto err;
998 	strscpy(str_dup, str);
999 
1000 	always = huge_anon_orders_always;
1001 	madvise = huge_anon_orders_madvise;
1002 	inherit = huge_anon_orders_inherit;
1003 	p = str_dup;
1004 	while ((token = strsep(&p, ";")) != NULL) {
1005 		range = strsep(&token, ":");
1006 		policy = token;
1007 
1008 		if (!policy)
1009 			goto err;
1010 
1011 		while ((subtoken = strsep(&range, ",")) != NULL) {
1012 			if (strchr(subtoken, '-')) {
1013 				start_size = strsep(&subtoken, "-");
1014 				end_size = subtoken;
1015 
1016 				start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
1017 				end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
1018 			} else {
1019 				start_size = end_size = subtoken;
1020 				start = end = get_order_from_str(subtoken,
1021 								 THP_ORDERS_ALL_ANON);
1022 			}
1023 
1024 			if (start == -EINVAL) {
1025 				pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1026 				goto err;
1027 			}
1028 
1029 			if (end == -EINVAL) {
1030 				pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1031 				goto err;
1032 			}
1033 
1034 			if (start < 0 || end < 0 || start > end)
1035 				goto err;
1036 
1037 			nr = end - start + 1;
1038 			if (!strcmp(policy, "always")) {
1039 				bitmap_set(&always, start, nr);
1040 				bitmap_clear(&inherit, start, nr);
1041 				bitmap_clear(&madvise, start, nr);
1042 			} else if (!strcmp(policy, "madvise")) {
1043 				bitmap_set(&madvise, start, nr);
1044 				bitmap_clear(&inherit, start, nr);
1045 				bitmap_clear(&always, start, nr);
1046 			} else if (!strcmp(policy, "inherit")) {
1047 				bitmap_set(&inherit, start, nr);
1048 				bitmap_clear(&madvise, start, nr);
1049 				bitmap_clear(&always, start, nr);
1050 			} else if (!strcmp(policy, "never")) {
1051 				bitmap_clear(&inherit, start, nr);
1052 				bitmap_clear(&madvise, start, nr);
1053 				bitmap_clear(&always, start, nr);
1054 			} else {
1055 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1056 				goto err;
1057 			}
1058 		}
1059 	}
1060 
1061 	huge_anon_orders_always = always;
1062 	huge_anon_orders_madvise = madvise;
1063 	huge_anon_orders_inherit = inherit;
1064 	anon_orders_configured = true;
1065 	return 1;
1066 
1067 err:
1068 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1069 	return 0;
1070 }
1071 __setup("thp_anon=", setup_thp_anon);
1072 
1073 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1074 {
1075 	if (likely(vma->vm_flags & VM_WRITE))
1076 		pmd = pmd_mkwrite(pmd, vma);
1077 	return pmd;
1078 }
1079 
1080 static struct deferred_split *split_queue_node(int nid)
1081 {
1082 	struct pglist_data *pgdata = NODE_DATA(nid);
1083 
1084 	return &pgdata->deferred_split_queue;
1085 }
1086 
1087 #ifdef CONFIG_MEMCG
1088 static inline
1089 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1090 					   struct deferred_split *queue)
1091 {
1092 	if (mem_cgroup_disabled())
1093 		return NULL;
1094 	if (split_queue_node(folio_nid(folio)) == queue)
1095 		return NULL;
1096 	return container_of(queue, struct mem_cgroup, deferred_split_queue);
1097 }
1098 
1099 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1100 {
1101 	return memcg ? &memcg->deferred_split_queue : split_queue_node(nid);
1102 }
1103 #else
1104 static inline
1105 struct mem_cgroup *folio_split_queue_memcg(struct folio *folio,
1106 					   struct deferred_split *queue)
1107 {
1108 	return NULL;
1109 }
1110 
1111 static struct deferred_split *memcg_split_queue(int nid, struct mem_cgroup *memcg)
1112 {
1113 	return split_queue_node(nid);
1114 }
1115 #endif
1116 
1117 static struct deferred_split *split_queue_lock(int nid, struct mem_cgroup *memcg)
1118 {
1119 	struct deferred_split *queue;
1120 
1121 retry:
1122 	queue = memcg_split_queue(nid, memcg);
1123 	spin_lock(&queue->split_queue_lock);
1124 	/*
1125 	 * There is a period between setting memcg to dying and reparenting
1126 	 * deferred split queue, and during this period the THPs in the deferred
1127 	 * split queue will be hidden from the shrinker side.
1128 	 */
1129 	if (unlikely(memcg_is_dying(memcg))) {
1130 		spin_unlock(&queue->split_queue_lock);
1131 		memcg = parent_mem_cgroup(memcg);
1132 		goto retry;
1133 	}
1134 
1135 	return queue;
1136 }
1137 
1138 static struct deferred_split *
1139 split_queue_lock_irqsave(int nid, struct mem_cgroup *memcg, unsigned long *flags)
1140 {
1141 	struct deferred_split *queue;
1142 
1143 retry:
1144 	queue = memcg_split_queue(nid, memcg);
1145 	spin_lock_irqsave(&queue->split_queue_lock, *flags);
1146 	if (unlikely(memcg_is_dying(memcg))) {
1147 		spin_unlock_irqrestore(&queue->split_queue_lock, *flags);
1148 		memcg = parent_mem_cgroup(memcg);
1149 		goto retry;
1150 	}
1151 
1152 	return queue;
1153 }
1154 
1155 static struct deferred_split *folio_split_queue_lock(struct folio *folio)
1156 {
1157 	return split_queue_lock(folio_nid(folio), folio_memcg(folio));
1158 }
1159 
1160 static struct deferred_split *
1161 folio_split_queue_lock_irqsave(struct folio *folio, unsigned long *flags)
1162 {
1163 	return split_queue_lock_irqsave(folio_nid(folio), folio_memcg(folio), flags);
1164 }
1165 
1166 static inline void split_queue_unlock(struct deferred_split *queue)
1167 {
1168 	spin_unlock(&queue->split_queue_lock);
1169 }
1170 
1171 static inline void split_queue_unlock_irqrestore(struct deferred_split *queue,
1172 						 unsigned long flags)
1173 {
1174 	spin_unlock_irqrestore(&queue->split_queue_lock, flags);
1175 }
1176 
1177 static inline bool is_transparent_hugepage(const struct folio *folio)
1178 {
1179 	if (!folio_test_large(folio))
1180 		return false;
1181 
1182 	return is_huge_zero_folio(folio) ||
1183 		folio_test_large_rmappable(folio);
1184 }
1185 
1186 static unsigned long __thp_get_unmapped_area(struct file *filp,
1187 		unsigned long addr, unsigned long len,
1188 		loff_t off, unsigned long flags, unsigned long size,
1189 		vm_flags_t vm_flags)
1190 {
1191 	loff_t off_end = off + len;
1192 	loff_t off_align = round_up(off, size);
1193 	unsigned long len_pad, ret, off_sub;
1194 
1195 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1196 		return 0;
1197 
1198 	if (off_end <= off_align || (off_end - off_align) < size)
1199 		return 0;
1200 
1201 	len_pad = len + size;
1202 	if (len_pad < len || (off + len_pad) < off)
1203 		return 0;
1204 
1205 	ret = mm_get_unmapped_area_vmflags(filp, addr, len_pad,
1206 					   off >> PAGE_SHIFT, flags, vm_flags);
1207 
1208 	/*
1209 	 * The failure might be due to length padding. The caller will retry
1210 	 * without the padding.
1211 	 */
1212 	if (IS_ERR_VALUE(ret))
1213 		return 0;
1214 
1215 	/*
1216 	 * Do not try to align to THP boundary if allocation at the address
1217 	 * hint succeeds.
1218 	 */
1219 	if (ret == addr)
1220 		return addr;
1221 
1222 	off_sub = (off - ret) & (size - 1);
1223 
1224 	if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub)
1225 		return ret + size;
1226 
1227 	ret += off_sub;
1228 	return ret;
1229 }
1230 
1231 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1232 		unsigned long len, unsigned long pgoff, unsigned long flags,
1233 		vm_flags_t vm_flags)
1234 {
1235 	unsigned long ret;
1236 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1237 
1238 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1239 	if (ret)
1240 		return ret;
1241 
1242 	return mm_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags,
1243 					    vm_flags);
1244 }
1245 
1246 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1247 		unsigned long len, unsigned long pgoff, unsigned long flags)
1248 {
1249 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1250 }
1251 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1252 
1253 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1254 		unsigned long addr)
1255 {
1256 	gfp_t gfp = vma_thp_gfp_mask(vma);
1257 	const int order = HPAGE_PMD_ORDER;
1258 	struct folio *folio;
1259 
1260 	folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1261 
1262 	if (unlikely(!folio)) {
1263 		count_vm_event(THP_FAULT_FALLBACK);
1264 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1265 		return NULL;
1266 	}
1267 
1268 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1269 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1270 		folio_put(folio);
1271 		count_vm_event(THP_FAULT_FALLBACK);
1272 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1273 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1274 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1275 		return NULL;
1276 	}
1277 	folio_throttle_swaprate(folio, gfp);
1278 
1279        /*
1280 	* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1281 	* or user folios require special handling, folio_zero_user() is used to
1282 	* make sure that the page corresponding to the faulting address will be
1283 	* hot in the cache after zeroing.
1284 	*/
1285 	if (user_alloc_needs_zeroing())
1286 		folio_zero_user(folio, addr);
1287 	/*
1288 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1289 	 * folio_zero_user writes become visible before the set_pmd_at()
1290 	 * write.
1291 	 */
1292 	__folio_mark_uptodate(folio);
1293 	return folio;
1294 }
1295 
1296 void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd,
1297 		struct vm_area_struct *vma, unsigned long haddr)
1298 {
1299 	pmd_t entry;
1300 
1301 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
1302 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303 	folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1304 	folio_add_lru_vma(folio, vma);
1305 	set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1306 	update_mmu_cache_pmd(vma, haddr, pmd);
1307 	deferred_split_folio(folio, false);
1308 }
1309 
1310 static void map_anon_folio_pmd_pf(struct folio *folio, pmd_t *pmd,
1311 		struct vm_area_struct *vma, unsigned long haddr)
1312 {
1313 	map_anon_folio_pmd_nopf(folio, pmd, vma, haddr);
1314 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1315 	count_vm_event(THP_FAULT_ALLOC);
1316 	count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1317 	count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1318 }
1319 
1320 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1321 {
1322 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 	struct vm_area_struct *vma = vmf->vma;
1324 	struct folio *folio;
1325 	pgtable_t pgtable;
1326 	vm_fault_t ret = 0;
1327 
1328 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1329 	if (unlikely(!folio))
1330 		return VM_FAULT_FALLBACK;
1331 
1332 	pgtable = pte_alloc_one(vma->vm_mm);
1333 	if (unlikely(!pgtable)) {
1334 		ret = VM_FAULT_OOM;
1335 		goto release;
1336 	}
1337 
1338 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1339 	if (unlikely(!pmd_none(*vmf->pmd))) {
1340 		goto unlock_release;
1341 	} else {
1342 		ret = check_stable_address_space(vma->vm_mm);
1343 		if (ret)
1344 			goto unlock_release;
1345 
1346 		/* Deliver the page fault to userland */
1347 		if (userfaultfd_missing(vma)) {
1348 			spin_unlock(vmf->ptl);
1349 			folio_put(folio);
1350 			pte_free(vma->vm_mm, pgtable);
1351 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1352 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1353 			return ret;
1354 		}
1355 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1356 		map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
1357 		mm_inc_nr_ptes(vma->vm_mm);
1358 		spin_unlock(vmf->ptl);
1359 	}
1360 
1361 	return 0;
1362 unlock_release:
1363 	spin_unlock(vmf->ptl);
1364 release:
1365 	if (pgtable)
1366 		pte_free(vma->vm_mm, pgtable);
1367 	folio_put(folio);
1368 	return ret;
1369 
1370 }
1371 
1372 vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf)
1373 {
1374 	struct vm_area_struct *vma = vmf->vma;
1375 	vm_fault_t ret = 0;
1376 	spinlock_t *ptl;
1377 	softleaf_t entry;
1378 	struct page *page;
1379 	struct folio *folio;
1380 
1381 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
1382 		vma_end_read(vma);
1383 		return VM_FAULT_RETRY;
1384 	}
1385 
1386 	ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1387 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) {
1388 		spin_unlock(ptl);
1389 		return 0;
1390 	}
1391 
1392 	entry = softleaf_from_pmd(vmf->orig_pmd);
1393 	page = softleaf_to_page(entry);
1394 	folio = page_folio(page);
1395 	vmf->page = page;
1396 	vmf->pte = NULL;
1397 	if (folio_trylock(folio)) {
1398 		folio_get(folio);
1399 		spin_unlock(ptl);
1400 		ret = page_pgmap(page)->ops->migrate_to_ram(vmf);
1401 		folio_unlock(folio);
1402 		folio_put(folio);
1403 	} else {
1404 		spin_unlock(ptl);
1405 	}
1406 
1407 	return ret;
1408 }
1409 
1410 /*
1411  * always: directly stall for all thp allocations
1412  * defer: wake kswapd and fail if not immediately available
1413  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1414  *		  fail if not immediately available
1415  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1416  *	    available
1417  * never: never stall for any thp allocation
1418  */
1419 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1420 {
1421 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1422 
1423 	/* Always do synchronous compaction */
1424 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1425 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1426 
1427 	/* Kick kcompactd and fail quickly */
1428 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1429 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1430 
1431 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1432 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1433 		return GFP_TRANSHUGE_LIGHT |
1434 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1435 					__GFP_KSWAPD_RECLAIM);
1436 
1437 	/* Only do synchronous compaction if madvised */
1438 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1439 		return GFP_TRANSHUGE_LIGHT |
1440 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1441 
1442 	return GFP_TRANSHUGE_LIGHT;
1443 }
1444 
1445 /* Caller must hold page table lock. */
1446 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1447 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1448 		struct folio *zero_folio)
1449 {
1450 	pmd_t entry;
1451 	entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1452 	entry = pmd_mkspecial(entry);
1453 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1454 	set_pmd_at(mm, haddr, pmd, entry);
1455 	mm_inc_nr_ptes(mm);
1456 }
1457 
1458 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1459 {
1460 	struct vm_area_struct *vma = vmf->vma;
1461 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1462 	vm_fault_t ret;
1463 
1464 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1465 		return VM_FAULT_FALLBACK;
1466 	ret = vmf_anon_prepare(vmf);
1467 	if (ret)
1468 		return ret;
1469 	khugepaged_enter_vma(vma, vma->vm_flags);
1470 
1471 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1472 			!mm_forbids_zeropage(vma->vm_mm) &&
1473 			transparent_hugepage_use_zero_page()) {
1474 		pgtable_t pgtable;
1475 		struct folio *zero_folio;
1476 		vm_fault_t ret;
1477 
1478 		pgtable = pte_alloc_one(vma->vm_mm);
1479 		if (unlikely(!pgtable))
1480 			return VM_FAULT_OOM;
1481 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1482 		if (unlikely(!zero_folio)) {
1483 			pte_free(vma->vm_mm, pgtable);
1484 			count_vm_event(THP_FAULT_FALLBACK);
1485 			return VM_FAULT_FALLBACK;
1486 		}
1487 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488 		ret = 0;
1489 		if (pmd_none(*vmf->pmd)) {
1490 			ret = check_stable_address_space(vma->vm_mm);
1491 			if (ret) {
1492 				spin_unlock(vmf->ptl);
1493 				pte_free(vma->vm_mm, pgtable);
1494 			} else if (userfaultfd_missing(vma)) {
1495 				spin_unlock(vmf->ptl);
1496 				pte_free(vma->vm_mm, pgtable);
1497 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1498 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1499 			} else {
1500 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1501 						   haddr, vmf->pmd, zero_folio);
1502 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1503 				spin_unlock(vmf->ptl);
1504 			}
1505 		} else {
1506 			spin_unlock(vmf->ptl);
1507 			pte_free(vma->vm_mm, pgtable);
1508 		}
1509 		return ret;
1510 	}
1511 
1512 	return __do_huge_pmd_anonymous_page(vmf);
1513 }
1514 
1515 struct folio_or_pfn {
1516 	union {
1517 		struct folio *folio;
1518 		unsigned long pfn;
1519 	};
1520 	bool is_folio;
1521 };
1522 
1523 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1524 		pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1525 		bool write)
1526 {
1527 	struct mm_struct *mm = vma->vm_mm;
1528 	pgtable_t pgtable = NULL;
1529 	spinlock_t *ptl;
1530 	pmd_t entry;
1531 
1532 	if (addr < vma->vm_start || addr >= vma->vm_end)
1533 		return VM_FAULT_SIGBUS;
1534 
1535 	if (arch_needs_pgtable_deposit()) {
1536 		pgtable = pte_alloc_one(vma->vm_mm);
1537 		if (!pgtable)
1538 			return VM_FAULT_OOM;
1539 	}
1540 
1541 	ptl = pmd_lock(mm, pmd);
1542 	if (!pmd_none(*pmd)) {
1543 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1544 					  fop.pfn;
1545 
1546 		if (write) {
1547 			if (pmd_pfn(*pmd) != pfn) {
1548 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1549 				goto out_unlock;
1550 			}
1551 			entry = pmd_mkyoung(*pmd);
1552 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1553 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1554 				update_mmu_cache_pmd(vma, addr, pmd);
1555 		}
1556 		goto out_unlock;
1557 	}
1558 
1559 	if (fop.is_folio) {
1560 		entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1561 
1562 		if (is_huge_zero_folio(fop.folio)) {
1563 			entry = pmd_mkspecial(entry);
1564 		} else {
1565 			folio_get(fop.folio);
1566 			folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1567 			add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1568 		}
1569 	} else {
1570 		entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1571 		entry = pmd_mkspecial(entry);
1572 	}
1573 	if (write) {
1574 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1575 		entry = maybe_pmd_mkwrite(entry, vma);
1576 	}
1577 
1578 	if (pgtable) {
1579 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1580 		mm_inc_nr_ptes(mm);
1581 		pgtable = NULL;
1582 	}
1583 
1584 	set_pmd_at(mm, addr, pmd, entry);
1585 	update_mmu_cache_pmd(vma, addr, pmd);
1586 
1587 out_unlock:
1588 	spin_unlock(ptl);
1589 	if (pgtable)
1590 		pte_free(mm, pgtable);
1591 	return VM_FAULT_NOPAGE;
1592 }
1593 
1594 /**
1595  * vmf_insert_pfn_pmd - insert a pmd size pfn
1596  * @vmf: Structure describing the fault
1597  * @pfn: pfn to insert
1598  * @write: whether it's a write fault
1599  *
1600  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1601  *
1602  * Return: vm_fault_t value.
1603  */
1604 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1605 			      bool write)
1606 {
1607 	unsigned long addr = vmf->address & PMD_MASK;
1608 	struct vm_area_struct *vma = vmf->vma;
1609 	pgprot_t pgprot = vma->vm_page_prot;
1610 	struct folio_or_pfn fop = {
1611 		.pfn = pfn,
1612 	};
1613 
1614 	/*
1615 	 * If we had pmd_special, we could avoid all these restrictions,
1616 	 * but we need to be consistent with PTEs and architectures that
1617 	 * can't support a 'special' bit.
1618 	 */
1619 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1620 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1621 						(VM_PFNMAP|VM_MIXEDMAP));
1622 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1623 
1624 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1625 
1626 	return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write);
1627 }
1628 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1629 
1630 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1631 				bool write)
1632 {
1633 	struct vm_area_struct *vma = vmf->vma;
1634 	unsigned long addr = vmf->address & PMD_MASK;
1635 	struct folio_or_pfn fop = {
1636 		.folio = folio,
1637 		.is_folio = true,
1638 	};
1639 
1640 	if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1641 		return VM_FAULT_SIGBUS;
1642 
1643 	return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write);
1644 }
1645 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1646 
1647 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1648 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1649 {
1650 	if (likely(vma->vm_flags & VM_WRITE))
1651 		pud = pud_mkwrite(pud);
1652 	return pud;
1653 }
1654 
1655 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr,
1656 		pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1657 {
1658 	struct mm_struct *mm = vma->vm_mm;
1659 	spinlock_t *ptl;
1660 	pud_t entry;
1661 
1662 	if (addr < vma->vm_start || addr >= vma->vm_end)
1663 		return VM_FAULT_SIGBUS;
1664 
1665 	ptl = pud_lock(mm, pud);
1666 	if (!pud_none(*pud)) {
1667 		const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1668 					  fop.pfn;
1669 
1670 		if (write) {
1671 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1672 				goto out_unlock;
1673 			entry = pud_mkyoung(*pud);
1674 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1675 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1676 				update_mmu_cache_pud(vma, addr, pud);
1677 		}
1678 		goto out_unlock;
1679 	}
1680 
1681 	if (fop.is_folio) {
1682 		entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1683 
1684 		folio_get(fop.folio);
1685 		folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1686 		add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1687 	} else {
1688 		entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1689 		entry = pud_mkspecial(entry);
1690 	}
1691 	if (write) {
1692 		entry = pud_mkyoung(pud_mkdirty(entry));
1693 		entry = maybe_pud_mkwrite(entry, vma);
1694 	}
1695 	set_pud_at(mm, addr, pud, entry);
1696 	update_mmu_cache_pud(vma, addr, pud);
1697 out_unlock:
1698 	spin_unlock(ptl);
1699 	return VM_FAULT_NOPAGE;
1700 }
1701 
1702 /**
1703  * vmf_insert_pfn_pud - insert a pud size pfn
1704  * @vmf: Structure describing the fault
1705  * @pfn: pfn to insert
1706  * @write: whether it's a write fault
1707  *
1708  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1709  *
1710  * Return: vm_fault_t value.
1711  */
1712 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1713 			      bool write)
1714 {
1715 	unsigned long addr = vmf->address & PUD_MASK;
1716 	struct vm_area_struct *vma = vmf->vma;
1717 	pgprot_t pgprot = vma->vm_page_prot;
1718 	struct folio_or_pfn fop = {
1719 		.pfn = pfn,
1720 	};
1721 
1722 	/*
1723 	 * If we had pud_special, we could avoid all these restrictions,
1724 	 * but we need to be consistent with PTEs and architectures that
1725 	 * can't support a 'special' bit.
1726 	 */
1727 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1728 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1729 						(VM_PFNMAP|VM_MIXEDMAP));
1730 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1731 
1732 	pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1733 
1734 	return insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1735 }
1736 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1737 
1738 /**
1739  * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1740  * @vmf: Structure describing the fault
1741  * @folio: folio to insert
1742  * @write: whether it's a write fault
1743  *
1744  * Return: vm_fault_t value.
1745  */
1746 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1747 				bool write)
1748 {
1749 	struct vm_area_struct *vma = vmf->vma;
1750 	unsigned long addr = vmf->address & PUD_MASK;
1751 	struct folio_or_pfn fop = {
1752 		.folio = folio,
1753 		.is_folio = true,
1754 	};
1755 
1756 	if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1757 		return VM_FAULT_SIGBUS;
1758 
1759 	return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1760 }
1761 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1762 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1763 
1764 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1765 	       pmd_t *pmd, bool write)
1766 {
1767 	pmd_t _pmd;
1768 
1769 	_pmd = pmd_mkyoung(*pmd);
1770 	if (write)
1771 		_pmd = pmd_mkdirty(_pmd);
1772 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1773 				  pmd, _pmd, write))
1774 		update_mmu_cache_pmd(vma, addr, pmd);
1775 }
1776 
1777 static void copy_huge_non_present_pmd(
1778 		struct mm_struct *dst_mm, struct mm_struct *src_mm,
1779 		pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1780 		struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1781 		pmd_t pmd, pgtable_t pgtable)
1782 {
1783 	softleaf_t entry = softleaf_from_pmd(pmd);
1784 	struct folio *src_folio;
1785 
1786 	VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(pmd));
1787 
1788 	if (softleaf_is_migration_write(entry) ||
1789 	    softleaf_is_migration_read_exclusive(entry)) {
1790 		entry = make_readable_migration_entry(swp_offset(entry));
1791 		pmd = swp_entry_to_pmd(entry);
1792 		if (pmd_swp_soft_dirty(*src_pmd))
1793 			pmd = pmd_swp_mksoft_dirty(pmd);
1794 		if (pmd_swp_uffd_wp(*src_pmd))
1795 			pmd = pmd_swp_mkuffd_wp(pmd);
1796 		set_pmd_at(src_mm, addr, src_pmd, pmd);
1797 	} else if (softleaf_is_device_private(entry)) {
1798 		/*
1799 		 * For device private entries, since there are no
1800 		 * read exclusive entries, writable = !readable
1801 		 */
1802 		if (softleaf_is_device_private_write(entry)) {
1803 			entry = make_readable_device_private_entry(swp_offset(entry));
1804 			pmd = swp_entry_to_pmd(entry);
1805 
1806 			if (pmd_swp_soft_dirty(*src_pmd))
1807 				pmd = pmd_swp_mksoft_dirty(pmd);
1808 			if (pmd_swp_uffd_wp(*src_pmd))
1809 				pmd = pmd_swp_mkuffd_wp(pmd);
1810 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1811 		}
1812 
1813 		src_folio = softleaf_to_folio(entry);
1814 		VM_WARN_ON(!folio_test_large(src_folio));
1815 
1816 		folio_get(src_folio);
1817 		/*
1818 		 * folio_try_dup_anon_rmap_pmd does not fail for
1819 		 * device private entries.
1820 		 */
1821 		folio_try_dup_anon_rmap_pmd(src_folio, &src_folio->page,
1822 					    dst_vma, src_vma);
1823 	}
1824 
1825 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1826 	mm_inc_nr_ptes(dst_mm);
1827 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1828 	if (!userfaultfd_wp(dst_vma))
1829 		pmd = pmd_swp_clear_uffd_wp(pmd);
1830 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1831 }
1832 
1833 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1834 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1835 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1836 {
1837 	spinlock_t *dst_ptl, *src_ptl;
1838 	struct page *src_page;
1839 	struct folio *src_folio;
1840 	pmd_t pmd;
1841 	pgtable_t pgtable = NULL;
1842 	int ret = -ENOMEM;
1843 
1844 	pmd = pmdp_get_lockless(src_pmd);
1845 	if (unlikely(pmd_present(pmd) && pmd_special(pmd) &&
1846 		     !is_huge_zero_pmd(pmd))) {
1847 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1848 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1849 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1850 		/*
1851 		 * No need to recheck the pmd, it can't change with write
1852 		 * mmap lock held here.
1853 		 *
1854 		 * Meanwhile, making sure it's not a CoW VMA with writable
1855 		 * mapping, otherwise it means either the anon page wrongly
1856 		 * applied special bit, or we made the PRIVATE mapping be
1857 		 * able to wrongly write to the backend MMIO.
1858 		 */
1859 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1860 		goto set_pmd;
1861 	}
1862 
1863 	/* Skip if can be re-fill on fault */
1864 	if (!vma_is_anonymous(dst_vma))
1865 		return 0;
1866 
1867 	pgtable = pte_alloc_one(dst_mm);
1868 	if (unlikely(!pgtable))
1869 		goto out;
1870 
1871 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1872 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1873 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1874 
1875 	ret = -EAGAIN;
1876 	pmd = *src_pmd;
1877 
1878 	if (unlikely(thp_migration_supported() &&
1879 		     pmd_is_valid_softleaf(pmd))) {
1880 		copy_huge_non_present_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr,
1881 					  dst_vma, src_vma, pmd, pgtable);
1882 		ret = 0;
1883 		goto out_unlock;
1884 	}
1885 
1886 	if (unlikely(!pmd_trans_huge(pmd))) {
1887 		pte_free(dst_mm, pgtable);
1888 		goto out_unlock;
1889 	}
1890 	/*
1891 	 * When page table lock is held, the huge zero pmd should not be
1892 	 * under splitting since we don't split the page itself, only pmd to
1893 	 * a page table.
1894 	 */
1895 	if (is_huge_zero_pmd(pmd)) {
1896 		/*
1897 		 * mm_get_huge_zero_folio() will never allocate a new
1898 		 * folio here, since we already have a zero page to
1899 		 * copy. It just takes a reference.
1900 		 */
1901 		mm_get_huge_zero_folio(dst_mm);
1902 		goto out_zero_page;
1903 	}
1904 
1905 	src_page = pmd_page(pmd);
1906 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1907 	src_folio = page_folio(src_page);
1908 
1909 	folio_get(src_folio);
1910 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1911 		/* Page maybe pinned: split and retry the fault on PTEs. */
1912 		folio_put(src_folio);
1913 		pte_free(dst_mm, pgtable);
1914 		spin_unlock(src_ptl);
1915 		spin_unlock(dst_ptl);
1916 		__split_huge_pmd(src_vma, src_pmd, addr, false);
1917 		return -EAGAIN;
1918 	}
1919 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1920 out_zero_page:
1921 	mm_inc_nr_ptes(dst_mm);
1922 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1923 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1924 	if (!userfaultfd_wp(dst_vma))
1925 		pmd = pmd_clear_uffd_wp(pmd);
1926 	pmd = pmd_wrprotect(pmd);
1927 set_pmd:
1928 	pmd = pmd_mkold(pmd);
1929 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1930 
1931 	ret = 0;
1932 out_unlock:
1933 	spin_unlock(src_ptl);
1934 	spin_unlock(dst_ptl);
1935 out:
1936 	return ret;
1937 }
1938 
1939 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1940 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1941 	       pud_t *pud, bool write)
1942 {
1943 	pud_t _pud;
1944 
1945 	_pud = pud_mkyoung(*pud);
1946 	if (write)
1947 		_pud = pud_mkdirty(_pud);
1948 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1949 				  pud, _pud, write))
1950 		update_mmu_cache_pud(vma, addr, pud);
1951 }
1952 
1953 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1954 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1955 		  struct vm_area_struct *vma)
1956 {
1957 	spinlock_t *dst_ptl, *src_ptl;
1958 	pud_t pud;
1959 	int ret;
1960 
1961 	dst_ptl = pud_lock(dst_mm, dst_pud);
1962 	src_ptl = pud_lockptr(src_mm, src_pud);
1963 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1964 
1965 	ret = -EAGAIN;
1966 	pud = *src_pud;
1967 	if (unlikely(!pud_trans_huge(pud)))
1968 		goto out_unlock;
1969 
1970 	/*
1971 	 * TODO: once we support anonymous pages, use
1972 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1973 	 */
1974 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1975 		pudp_set_wrprotect(src_mm, addr, src_pud);
1976 		pud = pud_wrprotect(pud);
1977 	}
1978 	pud = pud_mkold(pud);
1979 	set_pud_at(dst_mm, addr, dst_pud, pud);
1980 
1981 	ret = 0;
1982 out_unlock:
1983 	spin_unlock(src_ptl);
1984 	spin_unlock(dst_ptl);
1985 	return ret;
1986 }
1987 
1988 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1989 {
1990 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1991 
1992 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1993 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1994 		goto unlock;
1995 
1996 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1997 unlock:
1998 	spin_unlock(vmf->ptl);
1999 }
2000 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2001 
2002 void huge_pmd_set_accessed(struct vm_fault *vmf)
2003 {
2004 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2005 
2006 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
2007 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
2008 		goto unlock;
2009 
2010 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
2011 
2012 unlock:
2013 	spin_unlock(vmf->ptl);
2014 }
2015 
2016 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
2017 {
2018 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2019 	struct vm_area_struct *vma = vmf->vma;
2020 	struct mmu_notifier_range range;
2021 	struct folio *folio;
2022 	vm_fault_t ret = 0;
2023 
2024 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
2025 	if (unlikely(!folio))
2026 		return VM_FAULT_FALLBACK;
2027 
2028 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
2029 				haddr + HPAGE_PMD_SIZE);
2030 	mmu_notifier_invalidate_range_start(&range);
2031 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2032 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
2033 		goto release;
2034 	ret = check_stable_address_space(vma->vm_mm);
2035 	if (ret)
2036 		goto release;
2037 	(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
2038 	map_anon_folio_pmd_pf(folio, vmf->pmd, vma, haddr);
2039 	goto unlock;
2040 release:
2041 	folio_put(folio);
2042 unlock:
2043 	spin_unlock(vmf->ptl);
2044 	mmu_notifier_invalidate_range_end(&range);
2045 	return ret;
2046 }
2047 
2048 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
2049 {
2050 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
2051 	struct vm_area_struct *vma = vmf->vma;
2052 	struct folio *folio;
2053 	struct page *page;
2054 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2055 	pmd_t orig_pmd = vmf->orig_pmd;
2056 
2057 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
2058 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
2059 
2060 	if (is_huge_zero_pmd(orig_pmd)) {
2061 		vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
2062 
2063 		if (!(ret & VM_FAULT_FALLBACK))
2064 			return ret;
2065 
2066 		/* Fallback to splitting PMD if THP cannot be allocated */
2067 		goto fallback;
2068 	}
2069 
2070 	spin_lock(vmf->ptl);
2071 
2072 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2073 		spin_unlock(vmf->ptl);
2074 		return 0;
2075 	}
2076 
2077 	page = pmd_page(orig_pmd);
2078 	folio = page_folio(page);
2079 	VM_BUG_ON_PAGE(!PageHead(page), page);
2080 
2081 	/* Early check when only holding the PT lock. */
2082 	if (PageAnonExclusive(page))
2083 		goto reuse;
2084 
2085 	if (!folio_trylock(folio)) {
2086 		folio_get(folio);
2087 		spin_unlock(vmf->ptl);
2088 		folio_lock(folio);
2089 		spin_lock(vmf->ptl);
2090 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
2091 			spin_unlock(vmf->ptl);
2092 			folio_unlock(folio);
2093 			folio_put(folio);
2094 			return 0;
2095 		}
2096 		folio_put(folio);
2097 	}
2098 
2099 	/* Recheck after temporarily dropping the PT lock. */
2100 	if (PageAnonExclusive(page)) {
2101 		folio_unlock(folio);
2102 		goto reuse;
2103 	}
2104 
2105 	/*
2106 	 * See do_wp_page(): we can only reuse the folio exclusively if
2107 	 * there are no additional references. Note that we always drain
2108 	 * the LRU cache immediately after adding a THP.
2109 	 */
2110 	if (folio_ref_count(folio) >
2111 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
2112 		goto unlock_fallback;
2113 	if (folio_test_swapcache(folio))
2114 		folio_free_swap(folio);
2115 	if (folio_ref_count(folio) == 1) {
2116 		pmd_t entry;
2117 
2118 		folio_move_anon_rmap(folio, vma);
2119 		SetPageAnonExclusive(page);
2120 		folio_unlock(folio);
2121 reuse:
2122 		if (unlikely(unshare)) {
2123 			spin_unlock(vmf->ptl);
2124 			return 0;
2125 		}
2126 		entry = pmd_mkyoung(orig_pmd);
2127 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2128 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2129 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2130 		spin_unlock(vmf->ptl);
2131 		return 0;
2132 	}
2133 
2134 unlock_fallback:
2135 	folio_unlock(folio);
2136 	spin_unlock(vmf->ptl);
2137 fallback:
2138 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false);
2139 	return VM_FAULT_FALLBACK;
2140 }
2141 
2142 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2143 					   unsigned long addr, pmd_t pmd)
2144 {
2145 	struct page *page;
2146 
2147 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2148 		return false;
2149 
2150 	/* Don't touch entries that are not even readable (NUMA hinting). */
2151 	if (pmd_protnone(pmd))
2152 		return false;
2153 
2154 	/* Do we need write faults for softdirty tracking? */
2155 	if (pmd_needs_soft_dirty_wp(vma, pmd))
2156 		return false;
2157 
2158 	/* Do we need write faults for uffd-wp tracking? */
2159 	if (userfaultfd_huge_pmd_wp(vma, pmd))
2160 		return false;
2161 
2162 	if (!(vma->vm_flags & VM_SHARED)) {
2163 		/* See can_change_pte_writable(). */
2164 		page = vm_normal_page_pmd(vma, addr, pmd);
2165 		return page && PageAnon(page) && PageAnonExclusive(page);
2166 	}
2167 
2168 	/* See can_change_pte_writable(). */
2169 	return pmd_dirty(pmd);
2170 }
2171 
2172 /* NUMA hinting page fault entry point for trans huge pmds */
2173 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2174 {
2175 	struct vm_area_struct *vma = vmf->vma;
2176 	struct folio *folio;
2177 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2178 	int nid = NUMA_NO_NODE;
2179 	int target_nid, last_cpupid;
2180 	pmd_t pmd, old_pmd;
2181 	bool writable = false;
2182 	int flags = 0;
2183 
2184 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2185 	old_pmd = pmdp_get(vmf->pmd);
2186 
2187 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2188 		spin_unlock(vmf->ptl);
2189 		return 0;
2190 	}
2191 
2192 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2193 
2194 	/*
2195 	 * Detect now whether the PMD could be writable; this information
2196 	 * is only valid while holding the PT lock.
2197 	 */
2198 	writable = pmd_write(pmd);
2199 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2200 	    can_change_pmd_writable(vma, vmf->address, pmd))
2201 		writable = true;
2202 
2203 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
2204 	if (!folio)
2205 		goto out_map;
2206 
2207 	nid = folio_nid(folio);
2208 
2209 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2210 					&last_cpupid);
2211 	if (target_nid == NUMA_NO_NODE)
2212 		goto out_map;
2213 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2214 		flags |= TNF_MIGRATE_FAIL;
2215 		goto out_map;
2216 	}
2217 	/* The folio is isolated and isolation code holds a folio reference. */
2218 	spin_unlock(vmf->ptl);
2219 	writable = false;
2220 
2221 	if (!migrate_misplaced_folio(folio, target_nid)) {
2222 		flags |= TNF_MIGRATED;
2223 		nid = target_nid;
2224 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2225 		return 0;
2226 	}
2227 
2228 	flags |= TNF_MIGRATE_FAIL;
2229 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2230 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2231 		spin_unlock(vmf->ptl);
2232 		return 0;
2233 	}
2234 out_map:
2235 	/* Restore the PMD */
2236 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2237 	pmd = pmd_mkyoung(pmd);
2238 	if (writable)
2239 		pmd = pmd_mkwrite(pmd, vma);
2240 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2241 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2242 	spin_unlock(vmf->ptl);
2243 
2244 	if (nid != NUMA_NO_NODE)
2245 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Return true if we do MADV_FREE successfully on entire pmd page.
2251  * Otherwise, return false.
2252  */
2253 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2254 		pmd_t *pmd, unsigned long addr, unsigned long next)
2255 {
2256 	spinlock_t *ptl;
2257 	pmd_t orig_pmd;
2258 	struct folio *folio;
2259 	struct mm_struct *mm = tlb->mm;
2260 	bool ret = false;
2261 
2262 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2263 
2264 	ptl = pmd_trans_huge_lock(pmd, vma);
2265 	if (!ptl)
2266 		goto out_unlocked;
2267 
2268 	orig_pmd = *pmd;
2269 	if (is_huge_zero_pmd(orig_pmd))
2270 		goto out;
2271 
2272 	if (unlikely(!pmd_present(orig_pmd))) {
2273 		VM_BUG_ON(thp_migration_supported() &&
2274 				  !pmd_is_migration_entry(orig_pmd));
2275 		goto out;
2276 	}
2277 
2278 	folio = pmd_folio(orig_pmd);
2279 	/*
2280 	 * If other processes are mapping this folio, we couldn't discard
2281 	 * the folio unless they all do MADV_FREE so let's skip the folio.
2282 	 */
2283 	if (folio_maybe_mapped_shared(folio))
2284 		goto out;
2285 
2286 	if (!folio_trylock(folio))
2287 		goto out;
2288 
2289 	/*
2290 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2291 	 * will deactivate only them.
2292 	 */
2293 	if (next - addr != HPAGE_PMD_SIZE) {
2294 		folio_get(folio);
2295 		spin_unlock(ptl);
2296 		split_folio(folio);
2297 		folio_unlock(folio);
2298 		folio_put(folio);
2299 		goto out_unlocked;
2300 	}
2301 
2302 	if (folio_test_dirty(folio))
2303 		folio_clear_dirty(folio);
2304 	folio_unlock(folio);
2305 
2306 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2307 		pmdp_invalidate(vma, addr, pmd);
2308 		orig_pmd = pmd_mkold(orig_pmd);
2309 		orig_pmd = pmd_mkclean(orig_pmd);
2310 
2311 		set_pmd_at(mm, addr, pmd, orig_pmd);
2312 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2313 	}
2314 
2315 	folio_mark_lazyfree(folio);
2316 	ret = true;
2317 out:
2318 	spin_unlock(ptl);
2319 out_unlocked:
2320 	return ret;
2321 }
2322 
2323 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2324 {
2325 	pgtable_t pgtable;
2326 
2327 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2328 	pte_free(mm, pgtable);
2329 	mm_dec_nr_ptes(mm);
2330 }
2331 
2332 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2333 		 pmd_t *pmd, unsigned long addr)
2334 {
2335 	pmd_t orig_pmd;
2336 	spinlock_t *ptl;
2337 
2338 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2339 
2340 	ptl = __pmd_trans_huge_lock(pmd, vma);
2341 	if (!ptl)
2342 		return 0;
2343 	/*
2344 	 * For architectures like ppc64 we look at deposited pgtable
2345 	 * when calling pmdp_huge_get_and_clear. So do the
2346 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2347 	 * operations.
2348 	 */
2349 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2350 						tlb->fullmm);
2351 	arch_check_zapped_pmd(vma, orig_pmd);
2352 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2353 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2354 		if (arch_needs_pgtable_deposit())
2355 			zap_deposited_table(tlb->mm, pmd);
2356 		spin_unlock(ptl);
2357 	} else if (is_huge_zero_pmd(orig_pmd)) {
2358 		if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2359 			zap_deposited_table(tlb->mm, pmd);
2360 		spin_unlock(ptl);
2361 	} else {
2362 		struct folio *folio = NULL;
2363 		int flush_needed = 1;
2364 
2365 		if (pmd_present(orig_pmd)) {
2366 			struct page *page = pmd_page(orig_pmd);
2367 
2368 			folio = page_folio(page);
2369 			folio_remove_rmap_pmd(folio, page, vma);
2370 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2371 			VM_BUG_ON_PAGE(!PageHead(page), page);
2372 		} else if (pmd_is_valid_softleaf(orig_pmd)) {
2373 			const softleaf_t entry = softleaf_from_pmd(orig_pmd);
2374 
2375 			folio = softleaf_to_folio(entry);
2376 			flush_needed = 0;
2377 
2378 			if (!thp_migration_supported())
2379 				WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2380 		}
2381 
2382 		if (folio_test_anon(folio)) {
2383 			zap_deposited_table(tlb->mm, pmd);
2384 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2385 		} else {
2386 			if (arch_needs_pgtable_deposit())
2387 				zap_deposited_table(tlb->mm, pmd);
2388 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2389 				       -HPAGE_PMD_NR);
2390 
2391 			/*
2392 			 * Use flush_needed to indicate whether the PMD entry
2393 			 * is present, instead of checking pmd_present() again.
2394 			 */
2395 			if (flush_needed && pmd_young(orig_pmd) &&
2396 			    likely(vma_has_recency(vma)))
2397 				folio_mark_accessed(folio);
2398 		}
2399 
2400 		if (folio_is_device_private(folio)) {
2401 			folio_remove_rmap_pmd(folio, &folio->page, vma);
2402 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2403 			folio_put(folio);
2404 		}
2405 
2406 		spin_unlock(ptl);
2407 		if (flush_needed)
2408 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2409 	}
2410 	return 1;
2411 }
2412 
2413 #ifndef pmd_move_must_withdraw
2414 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2415 					 spinlock_t *old_pmd_ptl,
2416 					 struct vm_area_struct *vma)
2417 {
2418 	/*
2419 	 * With split pmd lock we also need to move preallocated
2420 	 * PTE page table if new_pmd is on different PMD page table.
2421 	 *
2422 	 * We also don't deposit and withdraw tables for file pages.
2423 	 */
2424 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2425 }
2426 #endif
2427 
2428 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2429 {
2430 	if (pgtable_supports_soft_dirty()) {
2431 		if (unlikely(pmd_is_migration_entry(pmd)))
2432 			pmd = pmd_swp_mksoft_dirty(pmd);
2433 		else if (pmd_present(pmd))
2434 			pmd = pmd_mksoft_dirty(pmd);
2435 	}
2436 
2437 	return pmd;
2438 }
2439 
2440 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2441 {
2442 	if (pmd_none(pmd))
2443 		return pmd;
2444 	if (pmd_present(pmd))
2445 		pmd = pmd_clear_uffd_wp(pmd);
2446 	else
2447 		pmd = pmd_swp_clear_uffd_wp(pmd);
2448 
2449 	return pmd;
2450 }
2451 
2452 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2453 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2454 {
2455 	spinlock_t *old_ptl, *new_ptl;
2456 	pmd_t pmd;
2457 	struct mm_struct *mm = vma->vm_mm;
2458 	bool force_flush = false;
2459 
2460 	/*
2461 	 * The destination pmd shouldn't be established, free_pgtables()
2462 	 * should have released it; but move_page_tables() might have already
2463 	 * inserted a page table, if racing against shmem/file collapse.
2464 	 */
2465 	if (!pmd_none(*new_pmd)) {
2466 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2467 		return false;
2468 	}
2469 
2470 	/*
2471 	 * We don't have to worry about the ordering of src and dst
2472 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2473 	 */
2474 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2475 	if (old_ptl) {
2476 		new_ptl = pmd_lockptr(mm, new_pmd);
2477 		if (new_ptl != old_ptl)
2478 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2479 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2480 		if (pmd_present(pmd))
2481 			force_flush = true;
2482 		VM_BUG_ON(!pmd_none(*new_pmd));
2483 
2484 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2485 			pgtable_t pgtable;
2486 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2487 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2488 		}
2489 		pmd = move_soft_dirty_pmd(pmd);
2490 		if (vma_has_uffd_without_event_remap(vma))
2491 			pmd = clear_uffd_wp_pmd(pmd);
2492 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2493 		if (force_flush)
2494 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2495 		if (new_ptl != old_ptl)
2496 			spin_unlock(new_ptl);
2497 		spin_unlock(old_ptl);
2498 		return true;
2499 	}
2500 	return false;
2501 }
2502 
2503 static void change_non_present_huge_pmd(struct mm_struct *mm,
2504 		unsigned long addr, pmd_t *pmd, bool uffd_wp,
2505 		bool uffd_wp_resolve)
2506 {
2507 	softleaf_t entry = softleaf_from_pmd(*pmd);
2508 	const struct folio *folio = softleaf_to_folio(entry);
2509 	pmd_t newpmd;
2510 
2511 	VM_WARN_ON(!pmd_is_valid_softleaf(*pmd));
2512 	if (softleaf_is_migration_write(entry)) {
2513 		/*
2514 		 * A protection check is difficult so
2515 		 * just be safe and disable write
2516 		 */
2517 		if (folio_test_anon(folio))
2518 			entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2519 		else
2520 			entry = make_readable_migration_entry(swp_offset(entry));
2521 		newpmd = swp_entry_to_pmd(entry);
2522 		if (pmd_swp_soft_dirty(*pmd))
2523 			newpmd = pmd_swp_mksoft_dirty(newpmd);
2524 	} else if (softleaf_is_device_private_write(entry)) {
2525 		entry = make_readable_device_private_entry(swp_offset(entry));
2526 		newpmd = swp_entry_to_pmd(entry);
2527 	} else {
2528 		newpmd = *pmd;
2529 	}
2530 
2531 	if (uffd_wp)
2532 		newpmd = pmd_swp_mkuffd_wp(newpmd);
2533 	else if (uffd_wp_resolve)
2534 		newpmd = pmd_swp_clear_uffd_wp(newpmd);
2535 	if (!pmd_same(*pmd, newpmd))
2536 		set_pmd_at(mm, addr, pmd, newpmd);
2537 }
2538 
2539 /*
2540  * Returns
2541  *  - 0 if PMD could not be locked
2542  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2543  *      or if prot_numa but THP migration is not supported
2544  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2545  */
2546 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2547 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2548 		    unsigned long cp_flags)
2549 {
2550 	struct mm_struct *mm = vma->vm_mm;
2551 	spinlock_t *ptl;
2552 	pmd_t oldpmd, entry;
2553 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2554 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2555 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2556 	int ret = 1;
2557 
2558 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2559 
2560 	if (prot_numa && !thp_migration_supported())
2561 		return 1;
2562 
2563 	ptl = __pmd_trans_huge_lock(pmd, vma);
2564 	if (!ptl)
2565 		return 0;
2566 
2567 	if (thp_migration_supported() && pmd_is_valid_softleaf(*pmd)) {
2568 		change_non_present_huge_pmd(mm, addr, pmd, uffd_wp,
2569 					    uffd_wp_resolve);
2570 		goto unlock;
2571 	}
2572 
2573 	if (prot_numa) {
2574 
2575 		/*
2576 		 * Avoid trapping faults against the zero page. The read-only
2577 		 * data is likely to be read-cached on the local CPU and
2578 		 * local/remote hits to the zero page are not interesting.
2579 		 */
2580 		if (is_huge_zero_pmd(*pmd))
2581 			goto unlock;
2582 
2583 		if (pmd_protnone(*pmd))
2584 			goto unlock;
2585 
2586 		if (!folio_can_map_prot_numa(pmd_folio(*pmd), vma,
2587 					     vma_is_single_threaded_private(vma)))
2588 			goto unlock;
2589 	}
2590 	/*
2591 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2592 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2593 	 * which is also under mmap_read_lock(mm):
2594 	 *
2595 	 *	CPU0:				CPU1:
2596 	 *				change_huge_pmd(prot_numa=1)
2597 	 *				 pmdp_huge_get_and_clear_notify()
2598 	 * madvise_dontneed()
2599 	 *  zap_pmd_range()
2600 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2601 	 *   // skip the pmd
2602 	 *				 set_pmd_at();
2603 	 *				 // pmd is re-established
2604 	 *
2605 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2606 	 * which may break userspace.
2607 	 *
2608 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2609 	 * dirty/young flags set by hardware.
2610 	 */
2611 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2612 
2613 	entry = pmd_modify(oldpmd, newprot);
2614 	if (uffd_wp)
2615 		entry = pmd_mkuffd_wp(entry);
2616 	else if (uffd_wp_resolve)
2617 		/*
2618 		 * Leave the write bit to be handled by PF interrupt
2619 		 * handler, then things like COW could be properly
2620 		 * handled.
2621 		 */
2622 		entry = pmd_clear_uffd_wp(entry);
2623 
2624 	/* See change_pte_range(). */
2625 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2626 	    can_change_pmd_writable(vma, addr, entry))
2627 		entry = pmd_mkwrite(entry, vma);
2628 
2629 	ret = HPAGE_PMD_NR;
2630 	set_pmd_at(mm, addr, pmd, entry);
2631 
2632 	if (huge_pmd_needs_flush(oldpmd, entry))
2633 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2634 unlock:
2635 	spin_unlock(ptl);
2636 	return ret;
2637 }
2638 
2639 /*
2640  * Returns:
2641  *
2642  * - 0: if pud leaf changed from under us
2643  * - 1: if pud can be skipped
2644  * - HPAGE_PUD_NR: if pud was successfully processed
2645  */
2646 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2647 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2648 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2649 		    unsigned long cp_flags)
2650 {
2651 	struct mm_struct *mm = vma->vm_mm;
2652 	pud_t oldpud, entry;
2653 	spinlock_t *ptl;
2654 
2655 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2656 
2657 	/* NUMA balancing doesn't apply to dax */
2658 	if (cp_flags & MM_CP_PROT_NUMA)
2659 		return 1;
2660 
2661 	/*
2662 	 * Huge entries on userfault-wp only works with anonymous, while we
2663 	 * don't have anonymous PUDs yet.
2664 	 */
2665 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2666 		return 1;
2667 
2668 	ptl = __pud_trans_huge_lock(pudp, vma);
2669 	if (!ptl)
2670 		return 0;
2671 
2672 	/*
2673 	 * Can't clear PUD or it can race with concurrent zapping.  See
2674 	 * change_huge_pmd().
2675 	 */
2676 	oldpud = pudp_invalidate(vma, addr, pudp);
2677 	entry = pud_modify(oldpud, newprot);
2678 	set_pud_at(mm, addr, pudp, entry);
2679 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2680 
2681 	spin_unlock(ptl);
2682 	return HPAGE_PUD_NR;
2683 }
2684 #endif
2685 
2686 #ifdef CONFIG_USERFAULTFD
2687 /*
2688  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2689  * the caller, but it must return after releasing the page_table_lock.
2690  * Just move the page from src_pmd to dst_pmd if possible.
2691  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2692  * repeated by the caller, or other errors in case of failure.
2693  */
2694 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2695 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2696 			unsigned long dst_addr, unsigned long src_addr)
2697 {
2698 	pmd_t _dst_pmd, src_pmdval;
2699 	struct page *src_page;
2700 	struct folio *src_folio;
2701 	spinlock_t *src_ptl, *dst_ptl;
2702 	pgtable_t src_pgtable;
2703 	struct mmu_notifier_range range;
2704 	int err = 0;
2705 
2706 	src_pmdval = *src_pmd;
2707 	src_ptl = pmd_lockptr(mm, src_pmd);
2708 
2709 	lockdep_assert_held(src_ptl);
2710 	vma_assert_locked(src_vma);
2711 	vma_assert_locked(dst_vma);
2712 
2713 	/* Sanity checks before the operation */
2714 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2715 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2716 		spin_unlock(src_ptl);
2717 		return -EINVAL;
2718 	}
2719 
2720 	if (!pmd_trans_huge(src_pmdval)) {
2721 		spin_unlock(src_ptl);
2722 		if (pmd_is_migration_entry(src_pmdval)) {
2723 			pmd_migration_entry_wait(mm, &src_pmdval);
2724 			return -EAGAIN;
2725 		}
2726 		return -ENOENT;
2727 	}
2728 
2729 	src_page = pmd_page(src_pmdval);
2730 
2731 	if (!is_huge_zero_pmd(src_pmdval)) {
2732 		if (unlikely(!PageAnonExclusive(src_page))) {
2733 			spin_unlock(src_ptl);
2734 			return -EBUSY;
2735 		}
2736 
2737 		src_folio = page_folio(src_page);
2738 		folio_get(src_folio);
2739 	} else
2740 		src_folio = NULL;
2741 
2742 	spin_unlock(src_ptl);
2743 
2744 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2745 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2746 				src_addr + HPAGE_PMD_SIZE);
2747 	mmu_notifier_invalidate_range_start(&range);
2748 
2749 	if (src_folio)
2750 		folio_lock(src_folio);
2751 
2752 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2753 	double_pt_lock(src_ptl, dst_ptl);
2754 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2755 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2756 		err = -EAGAIN;
2757 		goto unlock_ptls;
2758 	}
2759 	if (src_folio) {
2760 		if (folio_maybe_dma_pinned(src_folio) ||
2761 		    !PageAnonExclusive(&src_folio->page)) {
2762 			err = -EBUSY;
2763 			goto unlock_ptls;
2764 		}
2765 
2766 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2767 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2768 			err = -EBUSY;
2769 			goto unlock_ptls;
2770 		}
2771 
2772 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2773 		/* Folio got pinned from under us. Put it back and fail the move. */
2774 		if (folio_maybe_dma_pinned(src_folio)) {
2775 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2776 			err = -EBUSY;
2777 			goto unlock_ptls;
2778 		}
2779 
2780 		folio_move_anon_rmap(src_folio, dst_vma);
2781 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2782 
2783 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2784 		/* Follow mremap() behavior and treat the entry dirty after the move */
2785 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2786 	} else {
2787 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2788 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2789 	}
2790 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2791 
2792 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2793 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2794 unlock_ptls:
2795 	double_pt_unlock(src_ptl, dst_ptl);
2796 	/* unblock rmap walks */
2797 	if (src_folio)
2798 		folio_unlock(src_folio);
2799 	mmu_notifier_invalidate_range_end(&range);
2800 	if (src_folio)
2801 		folio_put(src_folio);
2802 	return err;
2803 }
2804 #endif /* CONFIG_USERFAULTFD */
2805 
2806 /*
2807  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2808  *
2809  * Note that if it returns page table lock pointer, this routine returns without
2810  * unlocking page table lock. So callers must unlock it.
2811  */
2812 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2813 {
2814 	spinlock_t *ptl;
2815 
2816 	ptl = pmd_lock(vma->vm_mm, pmd);
2817 	if (likely(pmd_is_huge(*pmd)))
2818 		return ptl;
2819 	spin_unlock(ptl);
2820 	return NULL;
2821 }
2822 
2823 /*
2824  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2825  *
2826  * Note that if it returns page table lock pointer, this routine returns without
2827  * unlocking page table lock. So callers must unlock it.
2828  */
2829 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2830 {
2831 	spinlock_t *ptl;
2832 
2833 	ptl = pud_lock(vma->vm_mm, pud);
2834 	if (likely(pud_trans_huge(*pud)))
2835 		return ptl;
2836 	spin_unlock(ptl);
2837 	return NULL;
2838 }
2839 
2840 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2841 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2842 		 pud_t *pud, unsigned long addr)
2843 {
2844 	spinlock_t *ptl;
2845 	pud_t orig_pud;
2846 
2847 	ptl = __pud_trans_huge_lock(pud, vma);
2848 	if (!ptl)
2849 		return 0;
2850 
2851 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2852 	arch_check_zapped_pud(vma, orig_pud);
2853 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2854 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2855 		spin_unlock(ptl);
2856 		/* No zero page support yet */
2857 	} else {
2858 		struct page *page = NULL;
2859 		struct folio *folio;
2860 
2861 		/* No support for anonymous PUD pages or migration yet */
2862 		VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2863 				!pud_present(orig_pud));
2864 
2865 		page = pud_page(orig_pud);
2866 		folio = page_folio(page);
2867 		folio_remove_rmap_pud(folio, page, vma);
2868 		add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2869 
2870 		spin_unlock(ptl);
2871 		tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2872 	}
2873 	return 1;
2874 }
2875 
2876 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2877 		unsigned long haddr)
2878 {
2879 	struct folio *folio;
2880 	struct page *page;
2881 	pud_t old_pud;
2882 
2883 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2884 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2885 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2886 	VM_BUG_ON(!pud_trans_huge(*pud));
2887 
2888 	count_vm_event(THP_SPLIT_PUD);
2889 
2890 	old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2891 
2892 	if (!vma_is_dax(vma))
2893 		return;
2894 
2895 	page = pud_page(old_pud);
2896 	folio = page_folio(page);
2897 
2898 	if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2899 		folio_mark_dirty(folio);
2900 	if (!folio_test_referenced(folio) && pud_young(old_pud))
2901 		folio_set_referenced(folio);
2902 	folio_remove_rmap_pud(folio, page, vma);
2903 	folio_put(folio);
2904 	add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2905 		-HPAGE_PUD_NR);
2906 }
2907 
2908 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2909 		unsigned long address)
2910 {
2911 	spinlock_t *ptl;
2912 	struct mmu_notifier_range range;
2913 
2914 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2915 				address & HPAGE_PUD_MASK,
2916 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2917 	mmu_notifier_invalidate_range_start(&range);
2918 	ptl = pud_lock(vma->vm_mm, pud);
2919 	if (unlikely(!pud_trans_huge(*pud)))
2920 		goto out;
2921 	__split_huge_pud_locked(vma, pud, range.start);
2922 
2923 out:
2924 	spin_unlock(ptl);
2925 	mmu_notifier_invalidate_range_end(&range);
2926 }
2927 #else
2928 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2929 		unsigned long address)
2930 {
2931 }
2932 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2933 
2934 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2935 		unsigned long haddr, pmd_t *pmd)
2936 {
2937 	struct mm_struct *mm = vma->vm_mm;
2938 	pgtable_t pgtable;
2939 	pmd_t _pmd, old_pmd;
2940 	unsigned long addr;
2941 	pte_t *pte;
2942 	int i;
2943 
2944 	/*
2945 	 * Leave pmd empty until pte is filled note that it is fine to delay
2946 	 * notification until mmu_notifier_invalidate_range_end() as we are
2947 	 * replacing a zero pmd write protected page with a zero pte write
2948 	 * protected page.
2949 	 *
2950 	 * See Documentation/mm/mmu_notifier.rst
2951 	 */
2952 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2953 
2954 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2955 	pmd_populate(mm, &_pmd, pgtable);
2956 
2957 	pte = pte_offset_map(&_pmd, haddr);
2958 	VM_BUG_ON(!pte);
2959 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2960 		pte_t entry;
2961 
2962 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2963 		entry = pte_mkspecial(entry);
2964 		if (pmd_uffd_wp(old_pmd))
2965 			entry = pte_mkuffd_wp(entry);
2966 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2967 		set_pte_at(mm, addr, pte, entry);
2968 		pte++;
2969 	}
2970 	pte_unmap(pte - 1);
2971 	smp_wmb(); /* make pte visible before pmd */
2972 	pmd_populate(mm, pmd, pgtable);
2973 }
2974 
2975 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2976 		unsigned long haddr, bool freeze)
2977 {
2978 	struct mm_struct *mm = vma->vm_mm;
2979 	struct folio *folio;
2980 	struct page *page;
2981 	pgtable_t pgtable;
2982 	pmd_t old_pmd, _pmd;
2983 	bool soft_dirty, uffd_wp = false, young = false, write = false;
2984 	bool anon_exclusive = false, dirty = false;
2985 	unsigned long addr;
2986 	pte_t *pte;
2987 	int i;
2988 
2989 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2990 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2991 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2992 
2993 	VM_WARN_ON_ONCE(!pmd_is_valid_softleaf(*pmd) && !pmd_trans_huge(*pmd));
2994 
2995 	count_vm_event(THP_SPLIT_PMD);
2996 
2997 	if (!vma_is_anonymous(vma)) {
2998 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2999 		/*
3000 		 * We are going to unmap this huge page. So
3001 		 * just go ahead and zap it
3002 		 */
3003 		if (arch_needs_pgtable_deposit())
3004 			zap_deposited_table(mm, pmd);
3005 		if (!vma_is_dax(vma) && vma_is_special_huge(vma))
3006 			return;
3007 		if (unlikely(pmd_is_migration_entry(old_pmd))) {
3008 			const softleaf_t old_entry = softleaf_from_pmd(old_pmd);
3009 
3010 			folio = softleaf_to_folio(old_entry);
3011 		} else if (is_huge_zero_pmd(old_pmd)) {
3012 			return;
3013 		} else {
3014 			page = pmd_page(old_pmd);
3015 			folio = page_folio(page);
3016 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
3017 				folio_mark_dirty(folio);
3018 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
3019 				folio_set_referenced(folio);
3020 			folio_remove_rmap_pmd(folio, page, vma);
3021 			folio_put(folio);
3022 		}
3023 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
3024 		return;
3025 	}
3026 
3027 	if (is_huge_zero_pmd(*pmd)) {
3028 		/*
3029 		 * FIXME: Do we want to invalidate secondary mmu by calling
3030 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
3031 		 * inside __split_huge_pmd() ?
3032 		 *
3033 		 * We are going from a zero huge page write protected to zero
3034 		 * small page also write protected so it does not seems useful
3035 		 * to invalidate secondary mmu at this time.
3036 		 */
3037 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
3038 	}
3039 
3040 	if (pmd_is_migration_entry(*pmd)) {
3041 		softleaf_t entry;
3042 
3043 		old_pmd = *pmd;
3044 		entry = softleaf_from_pmd(old_pmd);
3045 		page = softleaf_to_page(entry);
3046 		folio = page_folio(page);
3047 
3048 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
3049 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
3050 
3051 		write = softleaf_is_migration_write(entry);
3052 		if (PageAnon(page))
3053 			anon_exclusive = softleaf_is_migration_read_exclusive(entry);
3054 		young = softleaf_is_migration_young(entry);
3055 		dirty = softleaf_is_migration_dirty(entry);
3056 	} else if (pmd_is_device_private_entry(*pmd)) {
3057 		softleaf_t entry;
3058 
3059 		old_pmd = *pmd;
3060 		entry = softleaf_from_pmd(old_pmd);
3061 		page = softleaf_to_page(entry);
3062 		folio = page_folio(page);
3063 
3064 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
3065 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
3066 
3067 		write = softleaf_is_device_private_write(entry);
3068 		anon_exclusive = PageAnonExclusive(page);
3069 
3070 		/*
3071 		 * Device private THP should be treated the same as regular
3072 		 * folios w.r.t anon exclusive handling. See the comments for
3073 		 * folio handling and anon_exclusive below.
3074 		 */
3075 		if (freeze && anon_exclusive &&
3076 		    folio_try_share_anon_rmap_pmd(folio, page))
3077 			freeze = false;
3078 		if (!freeze) {
3079 			rmap_t rmap_flags = RMAP_NONE;
3080 
3081 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
3082 			if (anon_exclusive)
3083 				rmap_flags |= RMAP_EXCLUSIVE;
3084 
3085 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3086 						 vma, haddr, rmap_flags);
3087 		}
3088 	} else {
3089 		/*
3090 		 * Up to this point the pmd is present and huge and userland has
3091 		 * the whole access to the hugepage during the split (which
3092 		 * happens in place). If we overwrite the pmd with the not-huge
3093 		 * version pointing to the pte here (which of course we could if
3094 		 * all CPUs were bug free), userland could trigger a small page
3095 		 * size TLB miss on the small sized TLB while the hugepage TLB
3096 		 * entry is still established in the huge TLB. Some CPU doesn't
3097 		 * like that. See
3098 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
3099 		 * 383 on page 105. Intel should be safe but is also warns that
3100 		 * it's only safe if the permission and cache attributes of the
3101 		 * two entries loaded in the two TLB is identical (which should
3102 		 * be the case here). But it is generally safer to never allow
3103 		 * small and huge TLB entries for the same virtual address to be
3104 		 * loaded simultaneously. So instead of doing "pmd_populate();
3105 		 * flush_pmd_tlb_range();" we first mark the current pmd
3106 		 * notpresent (atomically because here the pmd_trans_huge must
3107 		 * remain set at all times on the pmd until the split is
3108 		 * complete for this pmd), then we flush the SMP TLB and finally
3109 		 * we write the non-huge version of the pmd entry with
3110 		 * pmd_populate.
3111 		 */
3112 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
3113 		page = pmd_page(old_pmd);
3114 		folio = page_folio(page);
3115 		if (pmd_dirty(old_pmd)) {
3116 			dirty = true;
3117 			folio_set_dirty(folio);
3118 		}
3119 		write = pmd_write(old_pmd);
3120 		young = pmd_young(old_pmd);
3121 		soft_dirty = pmd_soft_dirty(old_pmd);
3122 		uffd_wp = pmd_uffd_wp(old_pmd);
3123 
3124 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
3125 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3126 
3127 		/*
3128 		 * Without "freeze", we'll simply split the PMD, propagating the
3129 		 * PageAnonExclusive() flag for each PTE by setting it for
3130 		 * each subpage -- no need to (temporarily) clear.
3131 		 *
3132 		 * With "freeze" we want to replace mapped pages by
3133 		 * migration entries right away. This is only possible if we
3134 		 * managed to clear PageAnonExclusive() -- see
3135 		 * set_pmd_migration_entry().
3136 		 *
3137 		 * In case we cannot clear PageAnonExclusive(), split the PMD
3138 		 * only and let try_to_migrate_one() fail later.
3139 		 *
3140 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
3141 		 */
3142 		anon_exclusive = PageAnonExclusive(page);
3143 		if (freeze && anon_exclusive &&
3144 		    folio_try_share_anon_rmap_pmd(folio, page))
3145 			freeze = false;
3146 		if (!freeze) {
3147 			rmap_t rmap_flags = RMAP_NONE;
3148 
3149 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
3150 			if (anon_exclusive)
3151 				rmap_flags |= RMAP_EXCLUSIVE;
3152 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3153 						 vma, haddr, rmap_flags);
3154 		}
3155 	}
3156 
3157 	/*
3158 	 * Withdraw the table only after we mark the pmd entry invalid.
3159 	 * This's critical for some architectures (Power).
3160 	 */
3161 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3162 	pmd_populate(mm, &_pmd, pgtable);
3163 
3164 	pte = pte_offset_map(&_pmd, haddr);
3165 	VM_BUG_ON(!pte);
3166 
3167 	/*
3168 	 * Note that NUMA hinting access restrictions are not transferred to
3169 	 * avoid any possibility of altering permissions across VMAs.
3170 	 */
3171 	if (freeze || pmd_is_migration_entry(old_pmd)) {
3172 		pte_t entry;
3173 		swp_entry_t swp_entry;
3174 
3175 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3176 			if (write)
3177 				swp_entry = make_writable_migration_entry(
3178 							page_to_pfn(page + i));
3179 			else if (anon_exclusive)
3180 				swp_entry = make_readable_exclusive_migration_entry(
3181 							page_to_pfn(page + i));
3182 			else
3183 				swp_entry = make_readable_migration_entry(
3184 							page_to_pfn(page + i));
3185 			if (young)
3186 				swp_entry = make_migration_entry_young(swp_entry);
3187 			if (dirty)
3188 				swp_entry = make_migration_entry_dirty(swp_entry);
3189 			entry = swp_entry_to_pte(swp_entry);
3190 			if (soft_dirty)
3191 				entry = pte_swp_mksoft_dirty(entry);
3192 			if (uffd_wp)
3193 				entry = pte_swp_mkuffd_wp(entry);
3194 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3195 			set_pte_at(mm, addr, pte + i, entry);
3196 		}
3197 	} else if (pmd_is_device_private_entry(old_pmd)) {
3198 		pte_t entry;
3199 		swp_entry_t swp_entry;
3200 
3201 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3202 			/*
3203 			 * anon_exclusive was already propagated to the relevant
3204 			 * pages corresponding to the pte entries when freeze
3205 			 * is false.
3206 			 */
3207 			if (write)
3208 				swp_entry = make_writable_device_private_entry(
3209 							page_to_pfn(page + i));
3210 			else
3211 				swp_entry = make_readable_device_private_entry(
3212 							page_to_pfn(page + i));
3213 			/*
3214 			 * Young and dirty bits are not progated via swp_entry
3215 			 */
3216 			entry = swp_entry_to_pte(swp_entry);
3217 			if (soft_dirty)
3218 				entry = pte_swp_mksoft_dirty(entry);
3219 			if (uffd_wp)
3220 				entry = pte_swp_mkuffd_wp(entry);
3221 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3222 			set_pte_at(mm, addr, pte + i, entry);
3223 		}
3224 	} else {
3225 		pte_t entry;
3226 
3227 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3228 		if (write)
3229 			entry = pte_mkwrite(entry, vma);
3230 		if (!young)
3231 			entry = pte_mkold(entry);
3232 		/* NOTE: this may set soft-dirty too on some archs */
3233 		if (dirty)
3234 			entry = pte_mkdirty(entry);
3235 		if (soft_dirty)
3236 			entry = pte_mksoft_dirty(entry);
3237 		if (uffd_wp)
3238 			entry = pte_mkuffd_wp(entry);
3239 
3240 		for (i = 0; i < HPAGE_PMD_NR; i++)
3241 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3242 
3243 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3244 	}
3245 	pte_unmap(pte);
3246 
3247 	if (!pmd_is_migration_entry(*pmd))
3248 		folio_remove_rmap_pmd(folio, page, vma);
3249 	if (freeze)
3250 		put_page(page);
3251 
3252 	smp_wmb(); /* make pte visible before pmd */
3253 	pmd_populate(mm, pmd, pgtable);
3254 }
3255 
3256 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3257 			   pmd_t *pmd, bool freeze)
3258 {
3259 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3260 	if (pmd_trans_huge(*pmd) || pmd_is_valid_softleaf(*pmd))
3261 		__split_huge_pmd_locked(vma, pmd, address, freeze);
3262 }
3263 
3264 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3265 		unsigned long address, bool freeze)
3266 {
3267 	spinlock_t *ptl;
3268 	struct mmu_notifier_range range;
3269 
3270 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3271 				address & HPAGE_PMD_MASK,
3272 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3273 	mmu_notifier_invalidate_range_start(&range);
3274 	ptl = pmd_lock(vma->vm_mm, pmd);
3275 	split_huge_pmd_locked(vma, range.start, pmd, freeze);
3276 	spin_unlock(ptl);
3277 	mmu_notifier_invalidate_range_end(&range);
3278 }
3279 
3280 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3281 		bool freeze)
3282 {
3283 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3284 
3285 	if (!pmd)
3286 		return;
3287 
3288 	__split_huge_pmd(vma, pmd, address, freeze);
3289 }
3290 
3291 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3292 {
3293 	/*
3294 	 * If the new address isn't hpage aligned and it could previously
3295 	 * contain an hugepage: check if we need to split an huge pmd.
3296 	 */
3297 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3298 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3299 			 ALIGN(address, HPAGE_PMD_SIZE)))
3300 		split_huge_pmd_address(vma, address, false);
3301 }
3302 
3303 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3304 			   unsigned long start,
3305 			   unsigned long end,
3306 			   struct vm_area_struct *next)
3307 {
3308 	/* Check if we need to split start first. */
3309 	split_huge_pmd_if_needed(vma, start);
3310 
3311 	/* Check if we need to split end next. */
3312 	split_huge_pmd_if_needed(vma, end);
3313 
3314 	/* If we're incrementing next->vm_start, we might need to split it. */
3315 	if (next)
3316 		split_huge_pmd_if_needed(next, end);
3317 }
3318 
3319 static void unmap_folio(struct folio *folio)
3320 {
3321 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3322 		TTU_BATCH_FLUSH;
3323 
3324 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3325 
3326 	if (folio_test_pmd_mappable(folio))
3327 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
3328 
3329 	/*
3330 	 * Anon pages need migration entries to preserve them, but file
3331 	 * pages can simply be left unmapped, then faulted back on demand.
3332 	 * If that is ever changed (perhaps for mlock), update remap_page().
3333 	 */
3334 	if (folio_test_anon(folio))
3335 		try_to_migrate(folio, ttu_flags);
3336 	else
3337 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3338 
3339 	try_to_unmap_flush();
3340 }
3341 
3342 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3343 					    unsigned long addr, pmd_t *pmdp,
3344 					    struct folio *folio)
3345 {
3346 	struct mm_struct *mm = vma->vm_mm;
3347 	int ref_count, map_count;
3348 	pmd_t orig_pmd = *pmdp;
3349 
3350 	if (pmd_dirty(orig_pmd))
3351 		folio_set_dirty(folio);
3352 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3353 		folio_set_swapbacked(folio);
3354 		return false;
3355 	}
3356 
3357 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3358 
3359 	/*
3360 	 * Syncing against concurrent GUP-fast:
3361 	 * - clear PMD; barrier; read refcount
3362 	 * - inc refcount; barrier; read PMD
3363 	 */
3364 	smp_mb();
3365 
3366 	ref_count = folio_ref_count(folio);
3367 	map_count = folio_mapcount(folio);
3368 
3369 	/*
3370 	 * Order reads for folio refcount and dirty flag
3371 	 * (see comments in __remove_mapping()).
3372 	 */
3373 	smp_rmb();
3374 
3375 	/*
3376 	 * If the folio or its PMD is redirtied at this point, or if there
3377 	 * are unexpected references, we will give up to discard this folio
3378 	 * and remap it.
3379 	 *
3380 	 * The only folio refs must be one from isolation plus the rmap(s).
3381 	 */
3382 	if (pmd_dirty(orig_pmd))
3383 		folio_set_dirty(folio);
3384 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3385 		folio_set_swapbacked(folio);
3386 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3387 		return false;
3388 	}
3389 
3390 	if (ref_count != map_count + 1) {
3391 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3392 		return false;
3393 	}
3394 
3395 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3396 	zap_deposited_table(mm, pmdp);
3397 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3398 	if (vma->vm_flags & VM_LOCKED)
3399 		mlock_drain_local();
3400 	folio_put(folio);
3401 
3402 	return true;
3403 }
3404 
3405 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3406 			   pmd_t *pmdp, struct folio *folio)
3407 {
3408 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3409 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3410 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3411 	VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3412 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3413 
3414 	return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3415 }
3416 
3417 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3418 {
3419 	int i = 0;
3420 
3421 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3422 	if (!folio_test_anon(folio))
3423 		return;
3424 	for (;;) {
3425 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3426 		i += folio_nr_pages(folio);
3427 		if (i >= nr)
3428 			break;
3429 		folio = folio_next(folio);
3430 	}
3431 }
3432 
3433 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3434 		struct lruvec *lruvec, struct list_head *list)
3435 {
3436 	VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3437 	lockdep_assert_held(&lruvec->lru_lock);
3438 
3439 	if (folio_is_device_private(folio))
3440 		return;
3441 
3442 	if (list) {
3443 		/* page reclaim is reclaiming a huge page */
3444 		VM_WARN_ON(folio_test_lru(folio));
3445 		folio_get(new_folio);
3446 		list_add_tail(&new_folio->lru, list);
3447 	} else {
3448 		/* head is still on lru (and we have it frozen) */
3449 		VM_WARN_ON(!folio_test_lru(folio));
3450 		if (folio_test_unevictable(folio))
3451 			new_folio->mlock_count = 0;
3452 		else
3453 			list_add_tail(&new_folio->lru, &folio->lru);
3454 		folio_set_lru(new_folio);
3455 	}
3456 }
3457 
3458 /* Racy check whether the huge page can be split */
3459 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3460 {
3461 	int extra_pins;
3462 
3463 	/* Additional pins from page cache */
3464 	if (folio_test_anon(folio))
3465 		extra_pins = folio_test_swapcache(folio) ?
3466 				folio_nr_pages(folio) : 0;
3467 	else
3468 		extra_pins = folio_nr_pages(folio);
3469 	if (pextra_pins)
3470 		*pextra_pins = extra_pins;
3471 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3472 					caller_pins;
3473 }
3474 
3475 static bool page_range_has_hwpoisoned(struct page *page, long nr_pages)
3476 {
3477 	for (; nr_pages; page++, nr_pages--)
3478 		if (PageHWPoison(page))
3479 			return true;
3480 	return false;
3481 }
3482 
3483 /*
3484  * It splits @folio into @new_order folios and copies the @folio metadata to
3485  * all the resulting folios.
3486  */
3487 static void __split_folio_to_order(struct folio *folio, int old_order,
3488 		int new_order)
3489 {
3490 	/* Scan poisoned pages when split a poisoned folio to large folios */
3491 	const bool handle_hwpoison = folio_test_has_hwpoisoned(folio) && new_order;
3492 	long new_nr_pages = 1 << new_order;
3493 	long nr_pages = 1 << old_order;
3494 	long i;
3495 
3496 	folio_clear_has_hwpoisoned(folio);
3497 
3498 	/* Check first new_nr_pages since the loop below skips them */
3499 	if (handle_hwpoison &&
3500 	    page_range_has_hwpoisoned(folio_page(folio, 0), new_nr_pages))
3501 		folio_set_has_hwpoisoned(folio);
3502 	/*
3503 	 * Skip the first new_nr_pages, since the new folio from them have all
3504 	 * the flags from the original folio.
3505 	 */
3506 	for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3507 		struct page *new_head = &folio->page + i;
3508 		/*
3509 		 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3510 		 * Don't pass it around before clear_compound_head().
3511 		 */
3512 		struct folio *new_folio = (struct folio *)new_head;
3513 
3514 		VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3515 
3516 		/*
3517 		 * Clone page flags before unfreezing refcount.
3518 		 *
3519 		 * After successful get_page_unless_zero() might follow flags change,
3520 		 * for example lock_page() which set PG_waiters.
3521 		 *
3522 		 * Note that for mapped sub-pages of an anonymous THP,
3523 		 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3524 		 * the migration entry instead from where remap_page() will restore it.
3525 		 * We can still have PG_anon_exclusive set on effectively unmapped and
3526 		 * unreferenced sub-pages of an anonymous THP: we can simply drop
3527 		 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3528 		 */
3529 		new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
3530 		new_folio->flags.f |= (folio->flags.f &
3531 				((1L << PG_referenced) |
3532 				 (1L << PG_swapbacked) |
3533 				 (1L << PG_swapcache) |
3534 				 (1L << PG_mlocked) |
3535 				 (1L << PG_uptodate) |
3536 				 (1L << PG_active) |
3537 				 (1L << PG_workingset) |
3538 				 (1L << PG_locked) |
3539 				 (1L << PG_unevictable) |
3540 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3541 				 (1L << PG_arch_2) |
3542 #endif
3543 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3544 				 (1L << PG_arch_3) |
3545 #endif
3546 				 (1L << PG_dirty) |
3547 				 LRU_GEN_MASK | LRU_REFS_MASK));
3548 
3549 		if (handle_hwpoison &&
3550 		    page_range_has_hwpoisoned(new_head, new_nr_pages))
3551 			folio_set_has_hwpoisoned(new_folio);
3552 
3553 		new_folio->mapping = folio->mapping;
3554 		new_folio->index = folio->index + i;
3555 
3556 		if (folio_test_swapcache(folio))
3557 			new_folio->swap.val = folio->swap.val + i;
3558 
3559 		/* Page flags must be visible before we make the page non-compound. */
3560 		smp_wmb();
3561 
3562 		/*
3563 		 * Clear PageTail before unfreezing page refcount.
3564 		 *
3565 		 * After successful get_page_unless_zero() might follow put_page()
3566 		 * which needs correct compound_head().
3567 		 */
3568 		clear_compound_head(new_head);
3569 		if (new_order) {
3570 			prep_compound_page(new_head, new_order);
3571 			folio_set_large_rmappable(new_folio);
3572 		}
3573 
3574 		if (folio_test_young(folio))
3575 			folio_set_young(new_folio);
3576 		if (folio_test_idle(folio))
3577 			folio_set_idle(new_folio);
3578 #ifdef CONFIG_MEMCG
3579 		new_folio->memcg_data = folio->memcg_data;
3580 #endif
3581 
3582 		folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3583 	}
3584 
3585 	if (new_order)
3586 		folio_set_order(folio, new_order);
3587 	else
3588 		ClearPageCompound(&folio->page);
3589 }
3590 
3591 /**
3592  * __split_unmapped_folio() - splits an unmapped @folio to lower order folios in
3593  * two ways: uniform split or non-uniform split.
3594  * @folio: the to-be-split folio
3595  * @new_order: the smallest order of the after split folios (since buddy
3596  *             allocator like split generates folios with orders from @folio's
3597  *             order - 1 to new_order).
3598  * @split_at: in buddy allocator like split, the folio containing @split_at
3599  *            will be split until its order becomes @new_order.
3600  * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3601  * @mapping: @folio->mapping
3602  * @split_type: if the split is uniform or not (buddy allocator like split)
3603  *
3604  *
3605  * 1. uniform split: the given @folio into multiple @new_order small folios,
3606  *    where all small folios have the same order. This is done when
3607  *    split_type is SPLIT_TYPE_UNIFORM.
3608  * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3609  *    half and one of the half (containing the given page) is split into half
3610  *    until the given @folio's order becomes @new_order. This is done when
3611  *    split_type is SPLIT_TYPE_NON_UNIFORM.
3612  *
3613  * The high level flow for these two methods are:
3614  *
3615  * 1. uniform split: @xas is split with no expectation of failure and a single
3616  *    __split_folio_to_order() is called to split the @folio into @new_order
3617  *    along with stats update.
3618  * 2. non-uniform split: folio_order - @new_order calls to
3619  *    __split_folio_to_order() are expected to be made in a for loop to split
3620  *    the @folio to one lower order at a time. The folio containing @split_at
3621  *    is split in each iteration. @xas is split into half in each iteration and
3622  *    can fail. A failed @xas split leaves split folios as is without merging
3623  *    them back.
3624  *
3625  * After splitting, the caller's folio reference will be transferred to the
3626  * folio containing @split_at. The caller needs to unlock and/or free
3627  * after-split folios if necessary.
3628  *
3629  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3630  * split but not to @new_order, the caller needs to check)
3631  */
3632 static int __split_unmapped_folio(struct folio *folio, int new_order,
3633 		struct page *split_at, struct xa_state *xas,
3634 		struct address_space *mapping, enum split_type split_type)
3635 {
3636 	const bool is_anon = folio_test_anon(folio);
3637 	int old_order = folio_order(folio);
3638 	int start_order = split_type == SPLIT_TYPE_UNIFORM ? new_order : old_order - 1;
3639 	int split_order;
3640 
3641 	/*
3642 	 * split to new_order one order at a time. For uniform split,
3643 	 * folio is split to new_order directly.
3644 	 */
3645 	for (split_order = start_order;
3646 	     split_order >= new_order;
3647 	     split_order--) {
3648 		int nr_new_folios = 1UL << (old_order - split_order);
3649 
3650 		/* order-1 anonymous folio is not supported */
3651 		if (is_anon && split_order == 1)
3652 			continue;
3653 
3654 		if (mapping) {
3655 			/*
3656 			 * uniform split has xas_split_alloc() called before
3657 			 * irq is disabled to allocate enough memory, whereas
3658 			 * non-uniform split can handle ENOMEM.
3659 			 */
3660 			if (split_type == SPLIT_TYPE_UNIFORM)
3661 				xas_split(xas, folio, old_order);
3662 			else {
3663 				xas_set_order(xas, folio->index, split_order);
3664 				xas_try_split(xas, folio, old_order);
3665 				if (xas_error(xas))
3666 					return xas_error(xas);
3667 			}
3668 		}
3669 
3670 		folio_split_memcg_refs(folio, old_order, split_order);
3671 		split_page_owner(&folio->page, old_order, split_order);
3672 		pgalloc_tag_split(folio, old_order, split_order);
3673 		__split_folio_to_order(folio, old_order, split_order);
3674 
3675 		if (is_anon) {
3676 			mod_mthp_stat(old_order, MTHP_STAT_NR_ANON, -1);
3677 			mod_mthp_stat(split_order, MTHP_STAT_NR_ANON, nr_new_folios);
3678 		}
3679 		/*
3680 		 * If uniform split, the process is complete.
3681 		 * If non-uniform, continue splitting the folio at @split_at
3682 		 * as long as the next @split_order is >= @new_order.
3683 		 */
3684 		folio = page_folio(split_at);
3685 		old_order = split_order;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 bool folio_split_supported(struct folio *folio, unsigned int new_order,
3692 		enum split_type split_type, bool warns)
3693 {
3694 	if (folio_test_anon(folio)) {
3695 		/* order-1 is not supported for anonymous THP. */
3696 		VM_WARN_ONCE(warns && new_order == 1,
3697 				"Cannot split to order-1 folio");
3698 		if (new_order == 1)
3699 			return false;
3700 	} else if (split_type == SPLIT_TYPE_NON_UNIFORM || new_order) {
3701 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3702 		    !mapping_large_folio_support(folio->mapping)) {
3703 			/*
3704 			 * We can always split a folio down to a single page
3705 			 * (new_order == 0) uniformly.
3706 			 *
3707 			 * For any other scenario
3708 			 *   a) uniform split targeting a large folio
3709 			 *      (new_order > 0)
3710 			 *   b) any non-uniform split
3711 			 * we must confirm that the file system supports large
3712 			 * folios.
3713 			 *
3714 			 * Note that we might still have THPs in such
3715 			 * mappings, which is created from khugepaged when
3716 			 * CONFIG_READ_ONLY_THP_FOR_FS is enabled. But in that
3717 			 * case, the mapping does not actually support large
3718 			 * folios properly.
3719 			 */
3720 			VM_WARN_ONCE(warns,
3721 				"Cannot split file folio to non-0 order");
3722 			return false;
3723 		}
3724 	}
3725 
3726 	/*
3727 	 * swapcache folio could only be split to order 0
3728 	 *
3729 	 * non-uniform split creates after-split folios with orders from
3730 	 * folio_order(folio) - 1 to new_order, making it not suitable for any
3731 	 * swapcache folio split. Only uniform split to order-0 can be used
3732 	 * here.
3733 	 */
3734 	if ((split_type == SPLIT_TYPE_NON_UNIFORM || new_order) && folio_test_swapcache(folio)) {
3735 		VM_WARN_ONCE(warns,
3736 			"Cannot split swapcache folio to non-0 order");
3737 		return false;
3738 	}
3739 
3740 	return true;
3741 }
3742 
3743 static int __folio_freeze_and_split_unmapped(struct folio *folio, unsigned int new_order,
3744 					     struct page *split_at, struct xa_state *xas,
3745 					     struct address_space *mapping, bool do_lru,
3746 					     struct list_head *list, enum split_type split_type,
3747 					     pgoff_t end, int *nr_shmem_dropped, int extra_pins)
3748 {
3749 	struct folio *end_folio = folio_next(folio);
3750 	struct folio *new_folio, *next;
3751 	int old_order = folio_order(folio);
3752 	int ret = 0;
3753 	struct deferred_split *ds_queue;
3754 
3755 	VM_WARN_ON_ONCE(!mapping && end);
3756 	/* Prevent deferred_split_scan() touching ->_refcount */
3757 	ds_queue = folio_split_queue_lock(folio);
3758 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3759 		struct swap_cluster_info *ci = NULL;
3760 		struct lruvec *lruvec;
3761 		int expected_refs;
3762 
3763 		if (old_order > 1) {
3764 			if (!list_empty(&folio->_deferred_list)) {
3765 				ds_queue->split_queue_len--;
3766 				/*
3767 				 * Reinitialize page_deferred_list after removing the
3768 				 * page from the split_queue, otherwise a subsequent
3769 				 * split will see list corruption when checking the
3770 				 * page_deferred_list.
3771 				 */
3772 				list_del_init(&folio->_deferred_list);
3773 			}
3774 			if (folio_test_partially_mapped(folio)) {
3775 				folio_clear_partially_mapped(folio);
3776 				mod_mthp_stat(old_order,
3777 					MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3778 			}
3779 		}
3780 		split_queue_unlock(ds_queue);
3781 		if (mapping) {
3782 			int nr = folio_nr_pages(folio);
3783 
3784 			if (folio_test_pmd_mappable(folio) &&
3785 			    new_order < HPAGE_PMD_ORDER) {
3786 				if (folio_test_swapbacked(folio)) {
3787 					lruvec_stat_mod_folio(folio,
3788 							NR_SHMEM_THPS, -nr);
3789 				} else {
3790 					lruvec_stat_mod_folio(folio,
3791 							NR_FILE_THPS, -nr);
3792 					filemap_nr_thps_dec(mapping);
3793 				}
3794 			}
3795 		}
3796 
3797 		if (folio_test_swapcache(folio)) {
3798 			if (mapping) {
3799 				VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3800 				return -EINVAL;
3801 			}
3802 
3803 			ci = swap_cluster_get_and_lock(folio);
3804 		}
3805 
3806 		/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3807 		if (do_lru)
3808 			lruvec = folio_lruvec_lock(folio);
3809 
3810 		ret = __split_unmapped_folio(folio, new_order, split_at, xas,
3811 					     mapping, split_type);
3812 
3813 		/*
3814 		 * Unfreeze after-split folios and put them back to the right
3815 		 * list. @folio should be kept frozon until page cache
3816 		 * entries are updated with all the other after-split folios
3817 		 * to prevent others seeing stale page cache entries.
3818 		 * As a result, new_folio starts from the next folio of
3819 		 * @folio.
3820 		 */
3821 		for (new_folio = folio_next(folio); new_folio != end_folio;
3822 		     new_folio = next) {
3823 			unsigned long nr_pages = folio_nr_pages(new_folio);
3824 
3825 			next = folio_next(new_folio);
3826 
3827 			zone_device_private_split_cb(folio, new_folio);
3828 
3829 			expected_refs = folio_expected_ref_count(new_folio) + 1;
3830 			folio_ref_unfreeze(new_folio, expected_refs);
3831 
3832 			if (do_lru)
3833 				lru_add_split_folio(folio, new_folio, lruvec, list);
3834 
3835 			/*
3836 			 * Anonymous folio with swap cache.
3837 			 * NOTE: shmem in swap cache is not supported yet.
3838 			 */
3839 			if (ci) {
3840 				__swap_cache_replace_folio(ci, folio, new_folio);
3841 				continue;
3842 			}
3843 
3844 			/* Anonymous folio without swap cache */
3845 			if (!mapping)
3846 				continue;
3847 
3848 			/* Add the new folio to the page cache. */
3849 			if (new_folio->index < end) {
3850 				__xa_store(&mapping->i_pages, new_folio->index,
3851 					   new_folio, 0);
3852 				continue;
3853 			}
3854 
3855 			VM_WARN_ON_ONCE(!nr_shmem_dropped);
3856 			/* Drop folio beyond EOF: ->index >= end */
3857 			if (shmem_mapping(mapping) && nr_shmem_dropped)
3858 				*nr_shmem_dropped += nr_pages;
3859 			else if (folio_test_clear_dirty(new_folio))
3860 				folio_account_cleaned(
3861 					new_folio, inode_to_wb(mapping->host));
3862 			__filemap_remove_folio(new_folio, NULL);
3863 			folio_put_refs(new_folio, nr_pages);
3864 		}
3865 
3866 		zone_device_private_split_cb(folio, NULL);
3867 		/*
3868 		 * Unfreeze @folio only after all page cache entries, which
3869 		 * used to point to it, have been updated with new folios.
3870 		 * Otherwise, a parallel folio_try_get() can grab @folio
3871 		 * and its caller can see stale page cache entries.
3872 		 */
3873 		expected_refs = folio_expected_ref_count(folio) + 1;
3874 		folio_ref_unfreeze(folio, expected_refs);
3875 
3876 		if (do_lru)
3877 			unlock_page_lruvec(lruvec);
3878 
3879 		if (ci)
3880 			swap_cluster_unlock(ci);
3881 	} else {
3882 		split_queue_unlock(ds_queue);
3883 		return -EAGAIN;
3884 	}
3885 
3886 	return ret;
3887 }
3888 
3889 /**
3890  * __folio_split() - split a folio at @split_at to a @new_order folio
3891  * @folio: folio to split
3892  * @new_order: the order of the new folio
3893  * @split_at: a page within the new folio
3894  * @lock_at: a page within @folio to be left locked to caller
3895  * @list: after-split folios will be put on it if non NULL
3896  * @split_type: perform uniform split or not (non-uniform split)
3897  *
3898  * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3899  * It is in charge of checking whether the split is supported or not and
3900  * preparing @folio for __split_unmapped_folio().
3901  *
3902  * After splitting, the after-split folio containing @lock_at remains locked
3903  * and others are unlocked:
3904  * 1. for uniform split, @lock_at points to one of @folio's subpages;
3905  * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3906  *
3907  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
3908  * split but not to @new_order, the caller needs to check)
3909  */
3910 static int __folio_split(struct folio *folio, unsigned int new_order,
3911 		struct page *split_at, struct page *lock_at,
3912 		struct list_head *list, enum split_type split_type)
3913 {
3914 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3915 	struct folio *end_folio = folio_next(folio);
3916 	bool is_anon = folio_test_anon(folio);
3917 	struct address_space *mapping = NULL;
3918 	struct anon_vma *anon_vma = NULL;
3919 	int old_order = folio_order(folio);
3920 	struct folio *new_folio, *next;
3921 	int nr_shmem_dropped = 0;
3922 	int remap_flags = 0;
3923 	int extra_pins, ret;
3924 	pgoff_t end = 0;
3925 	bool is_hzp;
3926 
3927 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3928 	VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3929 
3930 	if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3931 		return -EINVAL;
3932 
3933 	/*
3934 	 * Folios that just got truncated cannot get split. Signal to the
3935 	 * caller that there was a race.
3936 	 *
3937 	 * TODO: this will also currently refuse shmem folios that are in the
3938 	 * swapcache.
3939 	 */
3940 	if (!is_anon && !folio->mapping)
3941 		return -EBUSY;
3942 
3943 	if (new_order >= old_order)
3944 		return -EINVAL;
3945 
3946 	if (!folio_split_supported(folio, new_order, split_type, /* warn = */ true))
3947 		return -EINVAL;
3948 
3949 	is_hzp = is_huge_zero_folio(folio);
3950 	if (is_hzp) {
3951 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3952 		return -EBUSY;
3953 	}
3954 
3955 	if (folio_test_writeback(folio))
3956 		return -EBUSY;
3957 
3958 	if (is_anon) {
3959 		/*
3960 		 * The caller does not necessarily hold an mmap_lock that would
3961 		 * prevent the anon_vma disappearing so we first we take a
3962 		 * reference to it and then lock the anon_vma for write. This
3963 		 * is similar to folio_lock_anon_vma_read except the write lock
3964 		 * is taken to serialise against parallel split or collapse
3965 		 * operations.
3966 		 */
3967 		anon_vma = folio_get_anon_vma(folio);
3968 		if (!anon_vma) {
3969 			ret = -EBUSY;
3970 			goto out;
3971 		}
3972 		anon_vma_lock_write(anon_vma);
3973 		mapping = NULL;
3974 	} else {
3975 		unsigned int min_order;
3976 		gfp_t gfp;
3977 
3978 		mapping = folio->mapping;
3979 		min_order = mapping_min_folio_order(folio->mapping);
3980 		if (new_order < min_order) {
3981 			ret = -EINVAL;
3982 			goto out;
3983 		}
3984 
3985 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3986 							GFP_RECLAIM_MASK);
3987 
3988 		if (!filemap_release_folio(folio, gfp)) {
3989 			ret = -EBUSY;
3990 			goto out;
3991 		}
3992 
3993 		if (split_type == SPLIT_TYPE_UNIFORM) {
3994 			xas_set_order(&xas, folio->index, new_order);
3995 			xas_split_alloc(&xas, folio, old_order, gfp);
3996 			if (xas_error(&xas)) {
3997 				ret = xas_error(&xas);
3998 				goto out;
3999 			}
4000 		}
4001 
4002 		anon_vma = NULL;
4003 		i_mmap_lock_read(mapping);
4004 
4005 		/*
4006 		 *__split_unmapped_folio() may need to trim off pages beyond
4007 		 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
4008 		 * seqlock, which cannot be nested inside the page tree lock.
4009 		 * So note end now: i_size itself may be changed at any moment,
4010 		 * but folio lock is good enough to serialize the trimming.
4011 		 */
4012 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
4013 		if (shmem_mapping(mapping))
4014 			end = shmem_fallocend(mapping->host, end);
4015 	}
4016 
4017 	/*
4018 	 * Racy check if we can split the page, before unmap_folio() will
4019 	 * split PMDs
4020 	 */
4021 	if (!can_split_folio(folio, 1, &extra_pins)) {
4022 		ret = -EAGAIN;
4023 		goto out_unlock;
4024 	}
4025 
4026 	unmap_folio(folio);
4027 
4028 	/* block interrupt reentry in xa_lock and spinlock */
4029 	local_irq_disable();
4030 	if (mapping) {
4031 		/*
4032 		 * Check if the folio is present in page cache.
4033 		 * We assume all tail are present too, if folio is there.
4034 		 */
4035 		xas_lock(&xas);
4036 		xas_reset(&xas);
4037 		if (xas_load(&xas) != folio) {
4038 			ret = -EAGAIN;
4039 			goto fail;
4040 		}
4041 	}
4042 
4043 	ret = __folio_freeze_and_split_unmapped(folio, new_order, split_at, &xas, mapping,
4044 						true, list, split_type, end, &nr_shmem_dropped,
4045 						extra_pins);
4046 fail:
4047 	if (mapping)
4048 		xas_unlock(&xas);
4049 
4050 	local_irq_enable();
4051 
4052 	if (nr_shmem_dropped)
4053 		shmem_uncharge(mapping->host, nr_shmem_dropped);
4054 
4055 	if (!ret && is_anon && !folio_is_device_private(folio))
4056 		remap_flags = RMP_USE_SHARED_ZEROPAGE;
4057 
4058 	remap_page(folio, 1 << old_order, remap_flags);
4059 
4060 	/*
4061 	 * Unlock all after-split folios except the one containing
4062 	 * @lock_at page. If @folio is not split, it will be kept locked.
4063 	 */
4064 	for (new_folio = folio; new_folio != end_folio; new_folio = next) {
4065 		next = folio_next(new_folio);
4066 		if (new_folio == page_folio(lock_at))
4067 			continue;
4068 
4069 		folio_unlock(new_folio);
4070 		/*
4071 		 * Subpages may be freed if there wasn't any mapping
4072 		 * like if add_to_swap() is running on a lru page that
4073 		 * had its mapping zapped. And freeing these pages
4074 		 * requires taking the lru_lock so we do the put_page
4075 		 * of the tail pages after the split is complete.
4076 		 */
4077 		free_folio_and_swap_cache(new_folio);
4078 	}
4079 
4080 out_unlock:
4081 	if (anon_vma) {
4082 		anon_vma_unlock_write(anon_vma);
4083 		put_anon_vma(anon_vma);
4084 	}
4085 	if (mapping)
4086 		i_mmap_unlock_read(mapping);
4087 out:
4088 	xas_destroy(&xas);
4089 	if (old_order == HPAGE_PMD_ORDER)
4090 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
4091 	count_mthp_stat(old_order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
4092 	return ret;
4093 }
4094 
4095 /**
4096  * folio_split_unmapped() - split a large anon folio that is already unmapped
4097  * @folio: folio to split
4098  * @new_order: the order of folios after split
4099  *
4100  * This function is a helper for splitting folios that have already been
4101  * unmapped. The use case is that the device or the CPU can refuse to migrate
4102  * THP pages in the middle of migration, due to allocation issues on either
4103  * side.
4104  *
4105  * anon_vma_lock is not required to be held, mmap_read_lock() or
4106  * mmap_write_lock() should be held. @folio is expected to be locked by the
4107  * caller. device-private and non device-private folios are supported along
4108  * with folios that are in the swapcache. @folio should also be unmapped and
4109  * isolated from LRU (if applicable)
4110  *
4111  * Upon return, the folio is not remapped, split folios are not added to LRU,
4112  * free_folio_and_swap_cache() is not called, and new folios remain locked.
4113  *
4114  * Return: 0 on success, -EAGAIN if the folio cannot be split (e.g., due to
4115  *         insufficient reference count or extra pins).
4116  */
4117 int folio_split_unmapped(struct folio *folio, unsigned int new_order)
4118 {
4119 	int extra_pins, ret = 0;
4120 
4121 	VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio);
4122 	VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
4123 	VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
4124 	VM_WARN_ON_ONCE_FOLIO(!folio_test_anon(folio), folio);
4125 
4126 	if (!can_split_folio(folio, 1, &extra_pins))
4127 		return -EAGAIN;
4128 
4129 	local_irq_disable();
4130 	ret = __folio_freeze_and_split_unmapped(folio, new_order, &folio->page, NULL,
4131 						NULL, false, NULL, SPLIT_TYPE_UNIFORM,
4132 						0, NULL, extra_pins);
4133 	local_irq_enable();
4134 	return ret;
4135 }
4136 
4137 /*
4138  * This function splits a large folio into smaller folios of order @new_order.
4139  * @page can point to any page of the large folio to split. The split operation
4140  * does not change the position of @page.
4141  *
4142  * Prerequisites:
4143  *
4144  * 1) The caller must hold a reference on the @page's owning folio, also known
4145  *    as the large folio.
4146  *
4147  * 2) The large folio must be locked.
4148  *
4149  * 3) The folio must not be pinned. Any unexpected folio references, including
4150  *    GUP pins, will result in the folio not getting split; instead, the caller
4151  *    will receive an -EAGAIN.
4152  *
4153  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
4154  *    supported for non-file-backed folios, because folio->_deferred_list, which
4155  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
4156  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
4157  *    since they do not use _deferred_list.
4158  *
4159  * After splitting, the caller's folio reference will be transferred to @page,
4160  * resulting in a raised refcount of @page after this call. The other pages may
4161  * be freed if they are not mapped.
4162  *
4163  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
4164  *
4165  * Pages in @new_order will inherit the mapping, flags, and so on from the
4166  * huge page.
4167  *
4168  * Returns 0 if the huge page was split successfully.
4169  *
4170  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
4171  * the folio was concurrently removed from the page cache.
4172  *
4173  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
4174  * under writeback, if fs-specific folio metadata cannot currently be
4175  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
4176  * truncation).
4177  *
4178  * Callers should ensure that the order respects the address space mapping
4179  * min-order if one is set for non-anonymous folios.
4180  *
4181  * Returns -EINVAL when trying to split to an order that is incompatible
4182  * with the folio. Splitting to order 0 is compatible with all folios.
4183  */
4184 int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
4185 				     unsigned int new_order)
4186 {
4187 	struct folio *folio = page_folio(page);
4188 
4189 	return __folio_split(folio, new_order, &folio->page, page, list,
4190 			     SPLIT_TYPE_UNIFORM);
4191 }
4192 
4193 /**
4194  * folio_split() - split a folio at @split_at to a @new_order folio
4195  * @folio: folio to split
4196  * @new_order: the order of the new folio
4197  * @split_at: a page within the new folio
4198  * @list: after-split folios are added to @list if not null, otherwise to LRU
4199  *        list
4200  *
4201  * It has the same prerequisites and returns as
4202  * split_huge_page_to_list_to_order().
4203  *
4204  * Split a folio at @split_at to a new_order folio, leave the
4205  * remaining subpages of the original folio as large as possible. For example,
4206  * in the case of splitting an order-9 folio at its third order-3 subpages to
4207  * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
4208  * After the split, there will be a group of folios with different orders and
4209  * the new folio containing @split_at is marked in bracket:
4210  * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
4211  *
4212  * After split, folio is left locked for caller.
4213  *
4214  * Return: 0 - successful, <0 - failed (if -ENOMEM is returned, @folio might be
4215  * split but not to @new_order, the caller needs to check)
4216  */
4217 int folio_split(struct folio *folio, unsigned int new_order,
4218 		struct page *split_at, struct list_head *list)
4219 {
4220 	return __folio_split(folio, new_order, split_at, &folio->page, list,
4221 			     SPLIT_TYPE_NON_UNIFORM);
4222 }
4223 
4224 int min_order_for_split(struct folio *folio)
4225 {
4226 	if (folio_test_anon(folio))
4227 		return 0;
4228 
4229 	if (!folio->mapping) {
4230 		if (folio_test_pmd_mappable(folio))
4231 			count_vm_event(THP_SPLIT_PAGE_FAILED);
4232 		return -EBUSY;
4233 	}
4234 
4235 	return mapping_min_folio_order(folio->mapping);
4236 }
4237 
4238 int split_folio_to_list(struct folio *folio, struct list_head *list)
4239 {
4240 	return split_huge_page_to_list_to_order(&folio->page, list, 0);
4241 }
4242 
4243 /*
4244  * __folio_unqueue_deferred_split() is not to be called directly:
4245  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4246  * limits its calls to those folios which may have a _deferred_list for
4247  * queueing THP splits, and that list is (racily observed to be) non-empty.
4248  *
4249  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4250  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4251  * might be in use on deferred_split_scan()'s unlocked on-stack list.
4252  *
4253  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4254  * therefore important to unqueue deferred split before changing folio memcg.
4255  */
4256 bool __folio_unqueue_deferred_split(struct folio *folio)
4257 {
4258 	struct deferred_split *ds_queue;
4259 	unsigned long flags;
4260 	bool unqueued = false;
4261 
4262 	WARN_ON_ONCE(folio_ref_count(folio));
4263 	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg_charged(folio));
4264 
4265 	ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4266 	if (!list_empty(&folio->_deferred_list)) {
4267 		ds_queue->split_queue_len--;
4268 		if (folio_test_partially_mapped(folio)) {
4269 			folio_clear_partially_mapped(folio);
4270 			mod_mthp_stat(folio_order(folio),
4271 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4272 		}
4273 		list_del_init(&folio->_deferred_list);
4274 		unqueued = true;
4275 	}
4276 	split_queue_unlock_irqrestore(ds_queue, flags);
4277 
4278 	return unqueued;	/* useful for debug warnings */
4279 }
4280 
4281 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
4282 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4283 {
4284 	struct deferred_split *ds_queue;
4285 	unsigned long flags;
4286 
4287 	/*
4288 	 * Order 1 folios have no space for a deferred list, but we also
4289 	 * won't waste much memory by not adding them to the deferred list.
4290 	 */
4291 	if (folio_order(folio) <= 1)
4292 		return;
4293 
4294 	if (!partially_mapped && !split_underused_thp)
4295 		return;
4296 
4297 	/*
4298 	 * Exclude swapcache: originally to avoid a corrupt deferred split
4299 	 * queue. Nowadays that is fully prevented by memcg1_swapout();
4300 	 * but if page reclaim is already handling the same folio, it is
4301 	 * unnecessary to handle it again in the shrinker, so excluding
4302 	 * swapcache here may still be a useful optimization.
4303 	 */
4304 	if (folio_test_swapcache(folio))
4305 		return;
4306 
4307 	ds_queue = folio_split_queue_lock_irqsave(folio, &flags);
4308 	if (partially_mapped) {
4309 		if (!folio_test_partially_mapped(folio)) {
4310 			folio_set_partially_mapped(folio);
4311 			if (folio_test_pmd_mappable(folio))
4312 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4313 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4314 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4315 
4316 		}
4317 	} else {
4318 		/* partially mapped folios cannot become non-partially mapped */
4319 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4320 	}
4321 	if (list_empty(&folio->_deferred_list)) {
4322 		struct mem_cgroup *memcg;
4323 
4324 		memcg = folio_split_queue_memcg(folio, ds_queue);
4325 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4326 		ds_queue->split_queue_len++;
4327 		if (memcg)
4328 			set_shrinker_bit(memcg, folio_nid(folio),
4329 					 shrinker_id(deferred_split_shrinker));
4330 	}
4331 	split_queue_unlock_irqrestore(ds_queue, flags);
4332 }
4333 
4334 static unsigned long deferred_split_count(struct shrinker *shrink,
4335 		struct shrink_control *sc)
4336 {
4337 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4338 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4339 
4340 #ifdef CONFIG_MEMCG
4341 	if (sc->memcg)
4342 		ds_queue = &sc->memcg->deferred_split_queue;
4343 #endif
4344 	return READ_ONCE(ds_queue->split_queue_len);
4345 }
4346 
4347 static bool thp_underused(struct folio *folio)
4348 {
4349 	int num_zero_pages = 0, num_filled_pages = 0;
4350 	int i;
4351 
4352 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4353 		return false;
4354 
4355 	if (folio_contain_hwpoisoned_page(folio))
4356 		return false;
4357 
4358 	for (i = 0; i < folio_nr_pages(folio); i++) {
4359 		if (pages_identical(folio_page(folio, i), ZERO_PAGE(0))) {
4360 			if (++num_zero_pages > khugepaged_max_ptes_none)
4361 				return true;
4362 		} else {
4363 			/*
4364 			 * Another path for early exit once the number
4365 			 * of non-zero filled pages exceeds threshold.
4366 			 */
4367 			if (++num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none)
4368 				return false;
4369 		}
4370 	}
4371 	return false;
4372 }
4373 
4374 static unsigned long deferred_split_scan(struct shrinker *shrink,
4375 		struct shrink_control *sc)
4376 {
4377 	struct deferred_split *ds_queue;
4378 	unsigned long flags;
4379 	struct folio *folio, *next;
4380 	int split = 0, i;
4381 	struct folio_batch fbatch;
4382 
4383 	folio_batch_init(&fbatch);
4384 
4385 retry:
4386 	ds_queue = split_queue_lock_irqsave(sc->nid, sc->memcg, &flags);
4387 	/* Take pin on all head pages to avoid freeing them under us */
4388 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4389 							_deferred_list) {
4390 		if (folio_try_get(folio)) {
4391 			folio_batch_add(&fbatch, folio);
4392 		} else if (folio_test_partially_mapped(folio)) {
4393 			/* We lost race with folio_put() */
4394 			folio_clear_partially_mapped(folio);
4395 			mod_mthp_stat(folio_order(folio),
4396 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4397 		}
4398 		list_del_init(&folio->_deferred_list);
4399 		ds_queue->split_queue_len--;
4400 		if (!--sc->nr_to_scan)
4401 			break;
4402 		if (!folio_batch_space(&fbatch))
4403 			break;
4404 	}
4405 	split_queue_unlock_irqrestore(ds_queue, flags);
4406 
4407 	for (i = 0; i < folio_batch_count(&fbatch); i++) {
4408 		bool did_split = false;
4409 		bool underused = false;
4410 		struct deferred_split *fqueue;
4411 
4412 		folio = fbatch.folios[i];
4413 		if (!folio_test_partially_mapped(folio)) {
4414 			/*
4415 			 * See try_to_map_unused_to_zeropage(): we cannot
4416 			 * optimize zero-filled pages after splitting an
4417 			 * mlocked folio.
4418 			 */
4419 			if (folio_test_mlocked(folio))
4420 				goto next;
4421 			underused = thp_underused(folio);
4422 			if (!underused)
4423 				goto next;
4424 		}
4425 		if (!folio_trylock(folio))
4426 			goto next;
4427 		if (!split_folio(folio)) {
4428 			did_split = true;
4429 			if (underused)
4430 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4431 			split++;
4432 		}
4433 		folio_unlock(folio);
4434 next:
4435 		if (did_split || !folio_test_partially_mapped(folio))
4436 			continue;
4437 		/*
4438 		 * Only add back to the queue if folio is partially mapped.
4439 		 * If thp_underused returns false, or if split_folio fails
4440 		 * in the case it was underused, then consider it used and
4441 		 * don't add it back to split_queue.
4442 		 */
4443 		fqueue = folio_split_queue_lock_irqsave(folio, &flags);
4444 		if (list_empty(&folio->_deferred_list)) {
4445 			list_add_tail(&folio->_deferred_list, &fqueue->split_queue);
4446 			fqueue->split_queue_len++;
4447 		}
4448 		split_queue_unlock_irqrestore(fqueue, flags);
4449 	}
4450 	folios_put(&fbatch);
4451 
4452 	if (sc->nr_to_scan && !list_empty(&ds_queue->split_queue)) {
4453 		cond_resched();
4454 		goto retry;
4455 	}
4456 
4457 	/*
4458 	 * Stop shrinker if we didn't split any page, but the queue is empty.
4459 	 * This can happen if pages were freed under us.
4460 	 */
4461 	if (!split && list_empty(&ds_queue->split_queue))
4462 		return SHRINK_STOP;
4463 	return split;
4464 }
4465 
4466 #ifdef CONFIG_MEMCG
4467 void reparent_deferred_split_queue(struct mem_cgroup *memcg)
4468 {
4469 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4470 	struct deferred_split *ds_queue = &memcg->deferred_split_queue;
4471 	struct deferred_split *parent_ds_queue = &parent->deferred_split_queue;
4472 	int nid;
4473 
4474 	spin_lock_irq(&ds_queue->split_queue_lock);
4475 	spin_lock_nested(&parent_ds_queue->split_queue_lock, SINGLE_DEPTH_NESTING);
4476 
4477 	if (!ds_queue->split_queue_len)
4478 		goto unlock;
4479 
4480 	list_splice_tail_init(&ds_queue->split_queue, &parent_ds_queue->split_queue);
4481 	parent_ds_queue->split_queue_len += ds_queue->split_queue_len;
4482 	ds_queue->split_queue_len = 0;
4483 
4484 	for_each_node(nid)
4485 		set_shrinker_bit(parent, nid, shrinker_id(deferred_split_shrinker));
4486 
4487 unlock:
4488 	spin_unlock(&parent_ds_queue->split_queue_lock);
4489 	spin_unlock_irq(&ds_queue->split_queue_lock);
4490 }
4491 #endif
4492 
4493 #ifdef CONFIG_DEBUG_FS
4494 static void split_huge_pages_all(void)
4495 {
4496 	struct zone *zone;
4497 	struct page *page;
4498 	struct folio *folio;
4499 	unsigned long pfn, max_zone_pfn;
4500 	unsigned long total = 0, split = 0;
4501 
4502 	pr_debug("Split all THPs\n");
4503 	for_each_zone(zone) {
4504 		if (!managed_zone(zone))
4505 			continue;
4506 		max_zone_pfn = zone_end_pfn(zone);
4507 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4508 			int nr_pages;
4509 
4510 			page = pfn_to_online_page(pfn);
4511 			if (!page || PageTail(page))
4512 				continue;
4513 			folio = page_folio(page);
4514 			if (!folio_try_get(folio))
4515 				continue;
4516 
4517 			if (unlikely(page_folio(page) != folio))
4518 				goto next;
4519 
4520 			if (zone != folio_zone(folio))
4521 				goto next;
4522 
4523 			if (!folio_test_large(folio)
4524 				|| folio_test_hugetlb(folio)
4525 				|| !folio_test_lru(folio))
4526 				goto next;
4527 
4528 			total++;
4529 			folio_lock(folio);
4530 			nr_pages = folio_nr_pages(folio);
4531 			if (!split_folio(folio))
4532 				split++;
4533 			pfn += nr_pages - 1;
4534 			folio_unlock(folio);
4535 next:
4536 			folio_put(folio);
4537 			cond_resched();
4538 		}
4539 	}
4540 
4541 	pr_debug("%lu of %lu THP split\n", split, total);
4542 }
4543 
4544 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4545 {
4546 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4547 		    is_vm_hugetlb_page(vma);
4548 }
4549 
4550 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4551 				unsigned long vaddr_end, unsigned int new_order,
4552 				long in_folio_offset)
4553 {
4554 	int ret = 0;
4555 	struct task_struct *task;
4556 	struct mm_struct *mm;
4557 	unsigned long total = 0, split = 0;
4558 	unsigned long addr;
4559 
4560 	vaddr_start &= PAGE_MASK;
4561 	vaddr_end &= PAGE_MASK;
4562 
4563 	task = find_get_task_by_vpid(pid);
4564 	if (!task) {
4565 		ret = -ESRCH;
4566 		goto out;
4567 	}
4568 
4569 	/* Find the mm_struct */
4570 	mm = get_task_mm(task);
4571 	put_task_struct(task);
4572 
4573 	if (!mm) {
4574 		ret = -EINVAL;
4575 		goto out;
4576 	}
4577 
4578 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4579 		 pid, vaddr_start, vaddr_end, new_order, in_folio_offset);
4580 
4581 	mmap_read_lock(mm);
4582 	/*
4583 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
4584 	 * table filled with PTE-mapped THPs, each of which is distinct.
4585 	 */
4586 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4587 		struct vm_area_struct *vma = vma_lookup(mm, addr);
4588 		struct folio_walk fw;
4589 		struct folio *folio;
4590 		struct address_space *mapping;
4591 		unsigned int target_order = new_order;
4592 
4593 		if (!vma)
4594 			break;
4595 
4596 		/* skip special VMA and hugetlb VMA */
4597 		if (vma_not_suitable_for_thp_split(vma)) {
4598 			addr = vma->vm_end;
4599 			continue;
4600 		}
4601 
4602 		folio = folio_walk_start(&fw, vma, addr, 0);
4603 		if (!folio)
4604 			continue;
4605 
4606 		if (!is_transparent_hugepage(folio))
4607 			goto next;
4608 
4609 		if (!folio_test_anon(folio)) {
4610 			mapping = folio->mapping;
4611 			target_order = max(new_order,
4612 					   mapping_min_folio_order(mapping));
4613 		}
4614 
4615 		if (target_order >= folio_order(folio))
4616 			goto next;
4617 
4618 		total++;
4619 		/*
4620 		 * For folios with private, split_huge_page_to_list_to_order()
4621 		 * will try to drop it before split and then check if the folio
4622 		 * can be split or not. So skip the check here.
4623 		 */
4624 		if (!folio_test_private(folio) &&
4625 		    !can_split_folio(folio, 0, NULL))
4626 			goto next;
4627 
4628 		if (!folio_trylock(folio))
4629 			goto next;
4630 		folio_get(folio);
4631 		folio_walk_end(&fw, vma);
4632 
4633 		if (!folio_test_anon(folio) && folio->mapping != mapping)
4634 			goto unlock;
4635 
4636 		if (in_folio_offset < 0 ||
4637 		    in_folio_offset >= folio_nr_pages(folio)) {
4638 			if (!split_folio_to_order(folio, target_order))
4639 				split++;
4640 		} else {
4641 			struct page *split_at = folio_page(folio,
4642 							   in_folio_offset);
4643 			if (!folio_split(folio, target_order, split_at, NULL))
4644 				split++;
4645 		}
4646 
4647 unlock:
4648 
4649 		folio_unlock(folio);
4650 		folio_put(folio);
4651 
4652 		cond_resched();
4653 		continue;
4654 next:
4655 		folio_walk_end(&fw, vma);
4656 		cond_resched();
4657 	}
4658 	mmap_read_unlock(mm);
4659 	mmput(mm);
4660 
4661 	pr_debug("%lu of %lu THP split\n", split, total);
4662 
4663 out:
4664 	return ret;
4665 }
4666 
4667 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4668 				pgoff_t off_end, unsigned int new_order,
4669 				long in_folio_offset)
4670 {
4671 	struct filename *file;
4672 	struct file *candidate;
4673 	struct address_space *mapping;
4674 	int ret = -EINVAL;
4675 	pgoff_t index;
4676 	int nr_pages = 1;
4677 	unsigned long total = 0, split = 0;
4678 	unsigned int min_order;
4679 	unsigned int target_order;
4680 
4681 	file = getname_kernel(file_path);
4682 	if (IS_ERR(file))
4683 		return ret;
4684 
4685 	candidate = file_open_name(file, O_RDONLY, 0);
4686 	if (IS_ERR(candidate))
4687 		goto out;
4688 
4689 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n",
4690 		 file_path, off_start, off_end, new_order, in_folio_offset);
4691 
4692 	mapping = candidate->f_mapping;
4693 	min_order = mapping_min_folio_order(mapping);
4694 	target_order = max(new_order, min_order);
4695 
4696 	for (index = off_start; index < off_end; index += nr_pages) {
4697 		struct folio *folio = filemap_get_folio(mapping, index);
4698 
4699 		nr_pages = 1;
4700 		if (IS_ERR(folio))
4701 			continue;
4702 
4703 		if (!folio_test_large(folio))
4704 			goto next;
4705 
4706 		total++;
4707 		nr_pages = folio_nr_pages(folio);
4708 
4709 		if (target_order >= folio_order(folio))
4710 			goto next;
4711 
4712 		if (!folio_trylock(folio))
4713 			goto next;
4714 
4715 		if (folio->mapping != mapping)
4716 			goto unlock;
4717 
4718 		if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4719 			if (!split_folio_to_order(folio, target_order))
4720 				split++;
4721 		} else {
4722 			struct page *split_at = folio_page(folio,
4723 							   in_folio_offset);
4724 			if (!folio_split(folio, target_order, split_at, NULL))
4725 				split++;
4726 		}
4727 
4728 unlock:
4729 		folio_unlock(folio);
4730 next:
4731 		folio_put(folio);
4732 		cond_resched();
4733 	}
4734 
4735 	filp_close(candidate, NULL);
4736 	ret = 0;
4737 
4738 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4739 out:
4740 	putname(file);
4741 	return ret;
4742 }
4743 
4744 #define MAX_INPUT_BUF_SZ 255
4745 
4746 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4747 				size_t count, loff_t *ppops)
4748 {
4749 	static DEFINE_MUTEX(split_debug_mutex);
4750 	ssize_t ret;
4751 	/*
4752 	 * hold pid, start_vaddr, end_vaddr, new_order or
4753 	 * file_path, off_start, off_end, new_order
4754 	 */
4755 	char input_buf[MAX_INPUT_BUF_SZ];
4756 	int pid;
4757 	unsigned long vaddr_start, vaddr_end;
4758 	unsigned int new_order = 0;
4759 	long in_folio_offset = -1;
4760 
4761 	ret = mutex_lock_interruptible(&split_debug_mutex);
4762 	if (ret)
4763 		return ret;
4764 
4765 	ret = -EFAULT;
4766 
4767 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4768 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4769 		goto out;
4770 
4771 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4772 
4773 	if (input_buf[0] == '/') {
4774 		char *tok;
4775 		char *tok_buf = input_buf;
4776 		char file_path[MAX_INPUT_BUF_SZ];
4777 		pgoff_t off_start = 0, off_end = 0;
4778 		size_t input_len = strlen(input_buf);
4779 
4780 		tok = strsep(&tok_buf, ",");
4781 		if (tok && tok_buf) {
4782 			strscpy(file_path, tok);
4783 		} else {
4784 			ret = -EINVAL;
4785 			goto out;
4786 		}
4787 
4788 		ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4789 				&new_order, &in_folio_offset);
4790 		if (ret != 2 && ret != 3 && ret != 4) {
4791 			ret = -EINVAL;
4792 			goto out;
4793 		}
4794 		ret = split_huge_pages_in_file(file_path, off_start, off_end,
4795 				new_order, in_folio_offset);
4796 		if (!ret)
4797 			ret = input_len;
4798 
4799 		goto out;
4800 	}
4801 
4802 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4803 			&vaddr_end, &new_order, &in_folio_offset);
4804 	if (ret == 1 && pid == 1) {
4805 		split_huge_pages_all();
4806 		ret = strlen(input_buf);
4807 		goto out;
4808 	} else if (ret != 3 && ret != 4 && ret != 5) {
4809 		ret = -EINVAL;
4810 		goto out;
4811 	}
4812 
4813 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4814 			in_folio_offset);
4815 	if (!ret)
4816 		ret = strlen(input_buf);
4817 out:
4818 	mutex_unlock(&split_debug_mutex);
4819 	return ret;
4820 
4821 }
4822 
4823 static const struct file_operations split_huge_pages_fops = {
4824 	.owner	 = THIS_MODULE,
4825 	.write	 = split_huge_pages_write,
4826 };
4827 
4828 static int __init split_huge_pages_debugfs(void)
4829 {
4830 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4831 			    &split_huge_pages_fops);
4832 	return 0;
4833 }
4834 late_initcall(split_huge_pages_debugfs);
4835 #endif
4836 
4837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4838 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4839 		struct page *page)
4840 {
4841 	struct folio *folio = page_folio(page);
4842 	struct vm_area_struct *vma = pvmw->vma;
4843 	struct mm_struct *mm = vma->vm_mm;
4844 	unsigned long address = pvmw->address;
4845 	bool anon_exclusive;
4846 	pmd_t pmdval;
4847 	swp_entry_t entry;
4848 	pmd_t pmdswp;
4849 
4850 	if (!(pvmw->pmd && !pvmw->pte))
4851 		return 0;
4852 
4853 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4854 	if (unlikely(!pmd_present(*pvmw->pmd)))
4855 		pmdval = pmdp_huge_get_and_clear(vma->vm_mm, address, pvmw->pmd);
4856 	else
4857 		pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4858 
4859 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4860 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4861 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4862 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4863 		return -EBUSY;
4864 	}
4865 
4866 	if (pmd_dirty(pmdval))
4867 		folio_mark_dirty(folio);
4868 	if (pmd_write(pmdval))
4869 		entry = make_writable_migration_entry(page_to_pfn(page));
4870 	else if (anon_exclusive)
4871 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4872 	else
4873 		entry = make_readable_migration_entry(page_to_pfn(page));
4874 	if (pmd_young(pmdval))
4875 		entry = make_migration_entry_young(entry);
4876 	if (pmd_dirty(pmdval))
4877 		entry = make_migration_entry_dirty(entry);
4878 	pmdswp = swp_entry_to_pmd(entry);
4879 	if (pmd_soft_dirty(pmdval))
4880 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4881 	if (pmd_uffd_wp(pmdval))
4882 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4883 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4884 	folio_remove_rmap_pmd(folio, page, vma);
4885 	folio_put(folio);
4886 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4887 
4888 	return 0;
4889 }
4890 
4891 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4892 {
4893 	struct folio *folio = page_folio(new);
4894 	struct vm_area_struct *vma = pvmw->vma;
4895 	struct mm_struct *mm = vma->vm_mm;
4896 	unsigned long address = pvmw->address;
4897 	unsigned long haddr = address & HPAGE_PMD_MASK;
4898 	pmd_t pmde;
4899 	softleaf_t entry;
4900 
4901 	if (!(pvmw->pmd && !pvmw->pte))
4902 		return;
4903 
4904 	entry = softleaf_from_pmd(*pvmw->pmd);
4905 	folio_get(folio);
4906 	pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4907 
4908 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4909 		pmde = pmd_mksoft_dirty(pmde);
4910 	if (softleaf_is_migration_write(entry))
4911 		pmde = pmd_mkwrite(pmde, vma);
4912 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4913 		pmde = pmd_mkuffd_wp(pmde);
4914 	if (!softleaf_is_migration_young(entry))
4915 		pmde = pmd_mkold(pmde);
4916 	/* NOTE: this may contain setting soft-dirty on some archs */
4917 	if (folio_test_dirty(folio) && softleaf_is_migration_dirty(entry))
4918 		pmde = pmd_mkdirty(pmde);
4919 
4920 	if (folio_is_device_private(folio)) {
4921 		swp_entry_t entry;
4922 
4923 		if (pmd_write(pmde))
4924 			entry = make_writable_device_private_entry(
4925 							page_to_pfn(new));
4926 		else
4927 			entry = make_readable_device_private_entry(
4928 							page_to_pfn(new));
4929 		pmde = swp_entry_to_pmd(entry);
4930 
4931 		if (pmd_swp_soft_dirty(*pvmw->pmd))
4932 			pmde = pmd_swp_mksoft_dirty(pmde);
4933 		if (pmd_swp_uffd_wp(*pvmw->pmd))
4934 			pmde = pmd_swp_mkuffd_wp(pmde);
4935 	}
4936 
4937 	if (folio_test_anon(folio)) {
4938 		rmap_t rmap_flags = RMAP_NONE;
4939 
4940 		if (!softleaf_is_migration_read(entry))
4941 			rmap_flags |= RMAP_EXCLUSIVE;
4942 
4943 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4944 	} else {
4945 		folio_add_file_rmap_pmd(folio, new, vma);
4946 	}
4947 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4948 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4949 
4950 	/* No need to invalidate - it was non-present before */
4951 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4952 	trace_remove_migration_pmd(address, pmd_val(pmde));
4953 }
4954 #endif
4955