1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 42 #include <asm/tlb.h> 43 #include <asm/pgalloc.h> 44 #include "internal.h" 45 #include "swap.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/thp.h> 49 50 /* 51 * By default, transparent hugepage support is disabled in order to avoid 52 * risking an increased memory footprint for applications that are not 53 * guaranteed to benefit from it. When transparent hugepage support is 54 * enabled, it is for all mappings, and khugepaged scans all mappings. 55 * Defrag is invoked by khugepaged hugepage allocations and by page faults 56 * for all hugepage allocations. 57 */ 58 unsigned long transparent_hugepage_flags __read_mostly = 59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 60 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 61 #endif 62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 64 #endif 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 68 69 static struct shrinker *deferred_split_shrinker; 70 static unsigned long deferred_split_count(struct shrinker *shrink, 71 struct shrink_control *sc); 72 static unsigned long deferred_split_scan(struct shrinker *shrink, 73 struct shrink_control *sc); 74 75 static atomic_t huge_zero_refcount; 76 struct page *huge_zero_page __read_mostly; 77 unsigned long huge_zero_pfn __read_mostly = ~0UL; 78 unsigned long huge_anon_orders_always __read_mostly; 79 unsigned long huge_anon_orders_madvise __read_mostly; 80 unsigned long huge_anon_orders_inherit __read_mostly; 81 82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 83 unsigned long vm_flags, bool smaps, 84 bool in_pf, bool enforce_sysfs, 85 unsigned long orders) 86 { 87 /* Check the intersection of requested and supported orders. */ 88 orders &= vma_is_anonymous(vma) ? 89 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 90 if (!orders) 91 return 0; 92 93 if (!vma->vm_mm) /* vdso */ 94 return 0; 95 96 /* 97 * Explicitly disabled through madvise or prctl, or some 98 * architectures may disable THP for some mappings, for 99 * example, s390 kvm. 100 * */ 101 if ((vm_flags & VM_NOHUGEPAGE) || 102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 103 return 0; 104 /* 105 * If the hardware/firmware marked hugepage support disabled. 106 */ 107 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 108 return 0; 109 110 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 111 if (vma_is_dax(vma)) 112 return in_pf ? orders : 0; 113 114 /* 115 * khugepaged special VMA and hugetlb VMA. 116 * Must be checked after dax since some dax mappings may have 117 * VM_MIXEDMAP set. 118 */ 119 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 120 return 0; 121 122 /* 123 * Check alignment for file vma and size for both file and anon vma by 124 * filtering out the unsuitable orders. 125 * 126 * Skip the check for page fault. Huge fault does the check in fault 127 * handlers. 128 */ 129 if (!in_pf) { 130 int order = highest_order(orders); 131 unsigned long addr; 132 133 while (orders) { 134 addr = vma->vm_end - (PAGE_SIZE << order); 135 if (thp_vma_suitable_order(vma, addr, order)) 136 break; 137 order = next_order(&orders, order); 138 } 139 140 if (!orders) 141 return 0; 142 } 143 144 /* 145 * Enabled via shmem mount options or sysfs settings. 146 * Must be done before hugepage flags check since shmem has its 147 * own flags. 148 */ 149 if (!in_pf && shmem_file(vma->vm_file)) 150 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 151 !enforce_sysfs, vma->vm_mm, vm_flags) 152 ? orders : 0; 153 154 if (!vma_is_anonymous(vma)) { 155 /* 156 * Enforce sysfs THP requirements as necessary. Anonymous vmas 157 * were already handled in thp_vma_allowable_orders(). 158 */ 159 if (enforce_sysfs && 160 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 161 !hugepage_global_always()))) 162 return 0; 163 164 /* 165 * Trust that ->huge_fault() handlers know what they are doing 166 * in fault path. 167 */ 168 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 169 return orders; 170 /* Only regular file is valid in collapse path */ 171 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 172 return orders; 173 return 0; 174 } 175 176 if (vma_is_temporary_stack(vma)) 177 return 0; 178 179 /* 180 * THPeligible bit of smaps should show 1 for proper VMAs even 181 * though anon_vma is not initialized yet. 182 * 183 * Allow page fault since anon_vma may be not initialized until 184 * the first page fault. 185 */ 186 if (!vma->anon_vma) 187 return (smaps || in_pf) ? orders : 0; 188 189 return orders; 190 } 191 192 static bool get_huge_zero_page(void) 193 { 194 struct page *zero_page; 195 retry: 196 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 197 return true; 198 199 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 200 HPAGE_PMD_ORDER); 201 if (!zero_page) { 202 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 203 return false; 204 } 205 preempt_disable(); 206 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 207 preempt_enable(); 208 __free_pages(zero_page, compound_order(zero_page)); 209 goto retry; 210 } 211 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 212 213 /* We take additional reference here. It will be put back by shrinker */ 214 atomic_set(&huge_zero_refcount, 2); 215 preempt_enable(); 216 count_vm_event(THP_ZERO_PAGE_ALLOC); 217 return true; 218 } 219 220 static void put_huge_zero_page(void) 221 { 222 /* 223 * Counter should never go to zero here. Only shrinker can put 224 * last reference. 225 */ 226 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 227 } 228 229 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 230 { 231 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 232 return READ_ONCE(huge_zero_page); 233 234 if (!get_huge_zero_page()) 235 return NULL; 236 237 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 238 put_huge_zero_page(); 239 240 return READ_ONCE(huge_zero_page); 241 } 242 243 void mm_put_huge_zero_page(struct mm_struct *mm) 244 { 245 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 246 put_huge_zero_page(); 247 } 248 249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 250 struct shrink_control *sc) 251 { 252 /* we can free zero page only if last reference remains */ 253 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 254 } 255 256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 257 struct shrink_control *sc) 258 { 259 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 260 struct page *zero_page = xchg(&huge_zero_page, NULL); 261 BUG_ON(zero_page == NULL); 262 WRITE_ONCE(huge_zero_pfn, ~0UL); 263 __free_pages(zero_page, compound_order(zero_page)); 264 return HPAGE_PMD_NR; 265 } 266 267 return 0; 268 } 269 270 static struct shrinker *huge_zero_page_shrinker; 271 272 #ifdef CONFIG_SYSFS 273 static ssize_t enabled_show(struct kobject *kobj, 274 struct kobj_attribute *attr, char *buf) 275 { 276 const char *output; 277 278 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 279 output = "[always] madvise never"; 280 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 281 &transparent_hugepage_flags)) 282 output = "always [madvise] never"; 283 else 284 output = "always madvise [never]"; 285 286 return sysfs_emit(buf, "%s\n", output); 287 } 288 289 static ssize_t enabled_store(struct kobject *kobj, 290 struct kobj_attribute *attr, 291 const char *buf, size_t count) 292 { 293 ssize_t ret = count; 294 295 if (sysfs_streq(buf, "always")) { 296 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 297 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 298 } else if (sysfs_streq(buf, "madvise")) { 299 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 300 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 301 } else if (sysfs_streq(buf, "never")) { 302 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 303 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 304 } else 305 ret = -EINVAL; 306 307 if (ret > 0) { 308 int err = start_stop_khugepaged(); 309 if (err) 310 ret = err; 311 } 312 return ret; 313 } 314 315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 316 317 ssize_t single_hugepage_flag_show(struct kobject *kobj, 318 struct kobj_attribute *attr, char *buf, 319 enum transparent_hugepage_flag flag) 320 { 321 return sysfs_emit(buf, "%d\n", 322 !!test_bit(flag, &transparent_hugepage_flags)); 323 } 324 325 ssize_t single_hugepage_flag_store(struct kobject *kobj, 326 struct kobj_attribute *attr, 327 const char *buf, size_t count, 328 enum transparent_hugepage_flag flag) 329 { 330 unsigned long value; 331 int ret; 332 333 ret = kstrtoul(buf, 10, &value); 334 if (ret < 0) 335 return ret; 336 if (value > 1) 337 return -EINVAL; 338 339 if (value) 340 set_bit(flag, &transparent_hugepage_flags); 341 else 342 clear_bit(flag, &transparent_hugepage_flags); 343 344 return count; 345 } 346 347 static ssize_t defrag_show(struct kobject *kobj, 348 struct kobj_attribute *attr, char *buf) 349 { 350 const char *output; 351 352 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 353 &transparent_hugepage_flags)) 354 output = "[always] defer defer+madvise madvise never"; 355 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 356 &transparent_hugepage_flags)) 357 output = "always [defer] defer+madvise madvise never"; 358 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 359 &transparent_hugepage_flags)) 360 output = "always defer [defer+madvise] madvise never"; 361 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 362 &transparent_hugepage_flags)) 363 output = "always defer defer+madvise [madvise] never"; 364 else 365 output = "always defer defer+madvise madvise [never]"; 366 367 return sysfs_emit(buf, "%s\n", output); 368 } 369 370 static ssize_t defrag_store(struct kobject *kobj, 371 struct kobj_attribute *attr, 372 const char *buf, size_t count) 373 { 374 if (sysfs_streq(buf, "always")) { 375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 377 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 378 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 379 } else if (sysfs_streq(buf, "defer+madvise")) { 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 384 } else if (sysfs_streq(buf, "defer")) { 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 389 } else if (sysfs_streq(buf, "madvise")) { 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 394 } else if (sysfs_streq(buf, "never")) { 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 } else 400 return -EINVAL; 401 402 return count; 403 } 404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 405 406 static ssize_t use_zero_page_show(struct kobject *kobj, 407 struct kobj_attribute *attr, char *buf) 408 { 409 return single_hugepage_flag_show(kobj, attr, buf, 410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 411 } 412 static ssize_t use_zero_page_store(struct kobject *kobj, 413 struct kobj_attribute *attr, const char *buf, size_t count) 414 { 415 return single_hugepage_flag_store(kobj, attr, buf, count, 416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 417 } 418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 419 420 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 421 struct kobj_attribute *attr, char *buf) 422 { 423 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 424 } 425 static struct kobj_attribute hpage_pmd_size_attr = 426 __ATTR_RO(hpage_pmd_size); 427 428 static struct attribute *hugepage_attr[] = { 429 &enabled_attr.attr, 430 &defrag_attr.attr, 431 &use_zero_page_attr.attr, 432 &hpage_pmd_size_attr.attr, 433 #ifdef CONFIG_SHMEM 434 &shmem_enabled_attr.attr, 435 #endif 436 NULL, 437 }; 438 439 static const struct attribute_group hugepage_attr_group = { 440 .attrs = hugepage_attr, 441 }; 442 443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 444 static void thpsize_release(struct kobject *kobj); 445 static DEFINE_SPINLOCK(huge_anon_orders_lock); 446 static LIST_HEAD(thpsize_list); 447 448 struct thpsize { 449 struct kobject kobj; 450 struct list_head node; 451 int order; 452 }; 453 454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 455 456 static ssize_t thpsize_enabled_show(struct kobject *kobj, 457 struct kobj_attribute *attr, char *buf) 458 { 459 int order = to_thpsize(kobj)->order; 460 const char *output; 461 462 if (test_bit(order, &huge_anon_orders_always)) 463 output = "[always] inherit madvise never"; 464 else if (test_bit(order, &huge_anon_orders_inherit)) 465 output = "always [inherit] madvise never"; 466 else if (test_bit(order, &huge_anon_orders_madvise)) 467 output = "always inherit [madvise] never"; 468 else 469 output = "always inherit madvise [never]"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 474 static ssize_t thpsize_enabled_store(struct kobject *kobj, 475 struct kobj_attribute *attr, 476 const char *buf, size_t count) 477 { 478 int order = to_thpsize(kobj)->order; 479 ssize_t ret = count; 480 481 if (sysfs_streq(buf, "always")) { 482 spin_lock(&huge_anon_orders_lock); 483 clear_bit(order, &huge_anon_orders_inherit); 484 clear_bit(order, &huge_anon_orders_madvise); 485 set_bit(order, &huge_anon_orders_always); 486 spin_unlock(&huge_anon_orders_lock); 487 } else if (sysfs_streq(buf, "inherit")) { 488 spin_lock(&huge_anon_orders_lock); 489 clear_bit(order, &huge_anon_orders_always); 490 clear_bit(order, &huge_anon_orders_madvise); 491 set_bit(order, &huge_anon_orders_inherit); 492 spin_unlock(&huge_anon_orders_lock); 493 } else if (sysfs_streq(buf, "madvise")) { 494 spin_lock(&huge_anon_orders_lock); 495 clear_bit(order, &huge_anon_orders_always); 496 clear_bit(order, &huge_anon_orders_inherit); 497 set_bit(order, &huge_anon_orders_madvise); 498 spin_unlock(&huge_anon_orders_lock); 499 } else if (sysfs_streq(buf, "never")) { 500 spin_lock(&huge_anon_orders_lock); 501 clear_bit(order, &huge_anon_orders_always); 502 clear_bit(order, &huge_anon_orders_inherit); 503 clear_bit(order, &huge_anon_orders_madvise); 504 spin_unlock(&huge_anon_orders_lock); 505 } else 506 ret = -EINVAL; 507 508 return ret; 509 } 510 511 static struct kobj_attribute thpsize_enabled_attr = 512 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 513 514 static struct attribute *thpsize_attrs[] = { 515 &thpsize_enabled_attr.attr, 516 NULL, 517 }; 518 519 static const struct attribute_group thpsize_attr_group = { 520 .attrs = thpsize_attrs, 521 }; 522 523 static const struct kobj_type thpsize_ktype = { 524 .release = &thpsize_release, 525 .sysfs_ops = &kobj_sysfs_ops, 526 }; 527 528 static struct thpsize *thpsize_create(int order, struct kobject *parent) 529 { 530 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 531 struct thpsize *thpsize; 532 int ret; 533 534 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 535 if (!thpsize) 536 return ERR_PTR(-ENOMEM); 537 538 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 539 "hugepages-%lukB", size); 540 if (ret) { 541 kfree(thpsize); 542 return ERR_PTR(ret); 543 } 544 545 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 546 if (ret) { 547 kobject_put(&thpsize->kobj); 548 return ERR_PTR(ret); 549 } 550 551 thpsize->order = order; 552 return thpsize; 553 } 554 555 static void thpsize_release(struct kobject *kobj) 556 { 557 kfree(to_thpsize(kobj)); 558 } 559 560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 561 { 562 int err; 563 struct thpsize *thpsize; 564 unsigned long orders; 565 int order; 566 567 /* 568 * Default to setting PMD-sized THP to inherit the global setting and 569 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 570 * constant so we have to do this here. 571 */ 572 huge_anon_orders_inherit = BIT(PMD_ORDER); 573 574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 575 if (unlikely(!*hugepage_kobj)) { 576 pr_err("failed to create transparent hugepage kobject\n"); 577 return -ENOMEM; 578 } 579 580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 581 if (err) { 582 pr_err("failed to register transparent hugepage group\n"); 583 goto delete_obj; 584 } 585 586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 587 if (err) { 588 pr_err("failed to register transparent hugepage group\n"); 589 goto remove_hp_group; 590 } 591 592 orders = THP_ORDERS_ALL_ANON; 593 order = highest_order(orders); 594 while (orders) { 595 thpsize = thpsize_create(order, *hugepage_kobj); 596 if (IS_ERR(thpsize)) { 597 pr_err("failed to create thpsize for order %d\n", order); 598 err = PTR_ERR(thpsize); 599 goto remove_all; 600 } 601 list_add(&thpsize->node, &thpsize_list); 602 order = next_order(&orders, order); 603 } 604 605 return 0; 606 607 remove_all: 608 hugepage_exit_sysfs(*hugepage_kobj); 609 return err; 610 remove_hp_group: 611 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 612 delete_obj: 613 kobject_put(*hugepage_kobj); 614 return err; 615 } 616 617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 618 { 619 struct thpsize *thpsize, *tmp; 620 621 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 622 list_del(&thpsize->node); 623 kobject_put(&thpsize->kobj); 624 } 625 626 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 627 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 628 kobject_put(hugepage_kobj); 629 } 630 #else 631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 632 { 633 return 0; 634 } 635 636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 637 { 638 } 639 #endif /* CONFIG_SYSFS */ 640 641 static int __init thp_shrinker_init(void) 642 { 643 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 644 if (!huge_zero_page_shrinker) 645 return -ENOMEM; 646 647 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 648 SHRINKER_MEMCG_AWARE | 649 SHRINKER_NONSLAB, 650 "thp-deferred_split"); 651 if (!deferred_split_shrinker) { 652 shrinker_free(huge_zero_page_shrinker); 653 return -ENOMEM; 654 } 655 656 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 657 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 658 shrinker_register(huge_zero_page_shrinker); 659 660 deferred_split_shrinker->count_objects = deferred_split_count; 661 deferred_split_shrinker->scan_objects = deferred_split_scan; 662 shrinker_register(deferred_split_shrinker); 663 664 return 0; 665 } 666 667 static void __init thp_shrinker_exit(void) 668 { 669 shrinker_free(huge_zero_page_shrinker); 670 shrinker_free(deferred_split_shrinker); 671 } 672 673 static int __init hugepage_init(void) 674 { 675 int err; 676 struct kobject *hugepage_kobj; 677 678 if (!has_transparent_hugepage()) { 679 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 680 return -EINVAL; 681 } 682 683 /* 684 * hugepages can't be allocated by the buddy allocator 685 */ 686 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 687 /* 688 * we use page->mapping and page->index in second tail page 689 * as list_head: assuming THP order >= 2 690 */ 691 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 692 693 err = hugepage_init_sysfs(&hugepage_kobj); 694 if (err) 695 goto err_sysfs; 696 697 err = khugepaged_init(); 698 if (err) 699 goto err_slab; 700 701 err = thp_shrinker_init(); 702 if (err) 703 goto err_shrinker; 704 705 /* 706 * By default disable transparent hugepages on smaller systems, 707 * where the extra memory used could hurt more than TLB overhead 708 * is likely to save. The admin can still enable it through /sys. 709 */ 710 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 711 transparent_hugepage_flags = 0; 712 return 0; 713 } 714 715 err = start_stop_khugepaged(); 716 if (err) 717 goto err_khugepaged; 718 719 return 0; 720 err_khugepaged: 721 thp_shrinker_exit(); 722 err_shrinker: 723 khugepaged_destroy(); 724 err_slab: 725 hugepage_exit_sysfs(hugepage_kobj); 726 err_sysfs: 727 return err; 728 } 729 subsys_initcall(hugepage_init); 730 731 static int __init setup_transparent_hugepage(char *str) 732 { 733 int ret = 0; 734 if (!str) 735 goto out; 736 if (!strcmp(str, "always")) { 737 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 738 &transparent_hugepage_flags); 739 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 740 &transparent_hugepage_flags); 741 ret = 1; 742 } else if (!strcmp(str, "madvise")) { 743 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 744 &transparent_hugepage_flags); 745 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 746 &transparent_hugepage_flags); 747 ret = 1; 748 } else if (!strcmp(str, "never")) { 749 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 750 &transparent_hugepage_flags); 751 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 752 &transparent_hugepage_flags); 753 ret = 1; 754 } 755 out: 756 if (!ret) 757 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 758 return ret; 759 } 760 __setup("transparent_hugepage=", setup_transparent_hugepage); 761 762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 763 { 764 if (likely(vma->vm_flags & VM_WRITE)) 765 pmd = pmd_mkwrite(pmd, vma); 766 return pmd; 767 } 768 769 #ifdef CONFIG_MEMCG 770 static inline 771 struct deferred_split *get_deferred_split_queue(struct folio *folio) 772 { 773 struct mem_cgroup *memcg = folio_memcg(folio); 774 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 775 776 if (memcg) 777 return &memcg->deferred_split_queue; 778 else 779 return &pgdat->deferred_split_queue; 780 } 781 #else 782 static inline 783 struct deferred_split *get_deferred_split_queue(struct folio *folio) 784 { 785 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 786 787 return &pgdat->deferred_split_queue; 788 } 789 #endif 790 791 void folio_prep_large_rmappable(struct folio *folio) 792 { 793 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 794 INIT_LIST_HEAD(&folio->_deferred_list); 795 folio_set_large_rmappable(folio); 796 } 797 798 static inline bool is_transparent_hugepage(struct folio *folio) 799 { 800 if (!folio_test_large(folio)) 801 return false; 802 803 return is_huge_zero_page(&folio->page) || 804 folio_test_large_rmappable(folio); 805 } 806 807 static unsigned long __thp_get_unmapped_area(struct file *filp, 808 unsigned long addr, unsigned long len, 809 loff_t off, unsigned long flags, unsigned long size) 810 { 811 loff_t off_end = off + len; 812 loff_t off_align = round_up(off, size); 813 unsigned long len_pad, ret, off_sub; 814 815 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall()) 816 return 0; 817 818 if (off_end <= off_align || (off_end - off_align) < size) 819 return 0; 820 821 len_pad = len + size; 822 if (len_pad < len || (off + len_pad) < off) 823 return 0; 824 825 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 826 off >> PAGE_SHIFT, flags); 827 828 /* 829 * The failure might be due to length padding. The caller will retry 830 * without the padding. 831 */ 832 if (IS_ERR_VALUE(ret)) 833 return 0; 834 835 /* 836 * Do not try to align to THP boundary if allocation at the address 837 * hint succeeds. 838 */ 839 if (ret == addr) 840 return addr; 841 842 off_sub = (off - ret) & (size - 1); 843 844 if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown && 845 !off_sub) 846 return ret + size; 847 848 ret += off_sub; 849 return ret; 850 } 851 852 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 853 unsigned long len, unsigned long pgoff, unsigned long flags) 854 { 855 unsigned long ret; 856 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 857 858 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 859 if (ret) 860 return ret; 861 862 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 863 } 864 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 865 866 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 867 struct page *page, gfp_t gfp) 868 { 869 struct vm_area_struct *vma = vmf->vma; 870 struct folio *folio = page_folio(page); 871 pgtable_t pgtable; 872 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 873 vm_fault_t ret = 0; 874 875 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 876 877 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 878 folio_put(folio); 879 count_vm_event(THP_FAULT_FALLBACK); 880 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 881 return VM_FAULT_FALLBACK; 882 } 883 folio_throttle_swaprate(folio, gfp); 884 885 pgtable = pte_alloc_one(vma->vm_mm); 886 if (unlikely(!pgtable)) { 887 ret = VM_FAULT_OOM; 888 goto release; 889 } 890 891 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 892 /* 893 * The memory barrier inside __folio_mark_uptodate makes sure that 894 * clear_huge_page writes become visible before the set_pmd_at() 895 * write. 896 */ 897 __folio_mark_uptodate(folio); 898 899 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 900 if (unlikely(!pmd_none(*vmf->pmd))) { 901 goto unlock_release; 902 } else { 903 pmd_t entry; 904 905 ret = check_stable_address_space(vma->vm_mm); 906 if (ret) 907 goto unlock_release; 908 909 /* Deliver the page fault to userland */ 910 if (userfaultfd_missing(vma)) { 911 spin_unlock(vmf->ptl); 912 folio_put(folio); 913 pte_free(vma->vm_mm, pgtable); 914 ret = handle_userfault(vmf, VM_UFFD_MISSING); 915 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 916 return ret; 917 } 918 919 entry = mk_huge_pmd(page, vma->vm_page_prot); 920 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 921 folio_add_new_anon_rmap(folio, vma, haddr); 922 folio_add_lru_vma(folio, vma); 923 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 924 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 925 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 926 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 927 mm_inc_nr_ptes(vma->vm_mm); 928 spin_unlock(vmf->ptl); 929 count_vm_event(THP_FAULT_ALLOC); 930 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 931 } 932 933 return 0; 934 unlock_release: 935 spin_unlock(vmf->ptl); 936 release: 937 if (pgtable) 938 pte_free(vma->vm_mm, pgtable); 939 folio_put(folio); 940 return ret; 941 942 } 943 944 /* 945 * always: directly stall for all thp allocations 946 * defer: wake kswapd and fail if not immediately available 947 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 948 * fail if not immediately available 949 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 950 * available 951 * never: never stall for any thp allocation 952 */ 953 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 954 { 955 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 956 957 /* Always do synchronous compaction */ 958 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 959 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 960 961 /* Kick kcompactd and fail quickly */ 962 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 963 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 964 965 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 966 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 967 return GFP_TRANSHUGE_LIGHT | 968 (vma_madvised ? __GFP_DIRECT_RECLAIM : 969 __GFP_KSWAPD_RECLAIM); 970 971 /* Only do synchronous compaction if madvised */ 972 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 973 return GFP_TRANSHUGE_LIGHT | 974 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 975 976 return GFP_TRANSHUGE_LIGHT; 977 } 978 979 /* Caller must hold page table lock. */ 980 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 981 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 982 struct page *zero_page) 983 { 984 pmd_t entry; 985 if (!pmd_none(*pmd)) 986 return; 987 entry = mk_pmd(zero_page, vma->vm_page_prot); 988 entry = pmd_mkhuge(entry); 989 pgtable_trans_huge_deposit(mm, pmd, pgtable); 990 set_pmd_at(mm, haddr, pmd, entry); 991 mm_inc_nr_ptes(mm); 992 } 993 994 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 995 { 996 struct vm_area_struct *vma = vmf->vma; 997 gfp_t gfp; 998 struct folio *folio; 999 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1000 1001 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1002 return VM_FAULT_FALLBACK; 1003 if (unlikely(anon_vma_prepare(vma))) 1004 return VM_FAULT_OOM; 1005 khugepaged_enter_vma(vma, vma->vm_flags); 1006 1007 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1008 !mm_forbids_zeropage(vma->vm_mm) && 1009 transparent_hugepage_use_zero_page()) { 1010 pgtable_t pgtable; 1011 struct page *zero_page; 1012 vm_fault_t ret; 1013 pgtable = pte_alloc_one(vma->vm_mm); 1014 if (unlikely(!pgtable)) 1015 return VM_FAULT_OOM; 1016 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1017 if (unlikely(!zero_page)) { 1018 pte_free(vma->vm_mm, pgtable); 1019 count_vm_event(THP_FAULT_FALLBACK); 1020 return VM_FAULT_FALLBACK; 1021 } 1022 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1023 ret = 0; 1024 if (pmd_none(*vmf->pmd)) { 1025 ret = check_stable_address_space(vma->vm_mm); 1026 if (ret) { 1027 spin_unlock(vmf->ptl); 1028 pte_free(vma->vm_mm, pgtable); 1029 } else if (userfaultfd_missing(vma)) { 1030 spin_unlock(vmf->ptl); 1031 pte_free(vma->vm_mm, pgtable); 1032 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1033 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1034 } else { 1035 set_huge_zero_page(pgtable, vma->vm_mm, vma, 1036 haddr, vmf->pmd, zero_page); 1037 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1038 spin_unlock(vmf->ptl); 1039 } 1040 } else { 1041 spin_unlock(vmf->ptl); 1042 pte_free(vma->vm_mm, pgtable); 1043 } 1044 return ret; 1045 } 1046 gfp = vma_thp_gfp_mask(vma); 1047 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1048 if (unlikely(!folio)) { 1049 count_vm_event(THP_FAULT_FALLBACK); 1050 return VM_FAULT_FALLBACK; 1051 } 1052 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1053 } 1054 1055 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1056 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1057 pgtable_t pgtable) 1058 { 1059 struct mm_struct *mm = vma->vm_mm; 1060 pmd_t entry; 1061 spinlock_t *ptl; 1062 1063 ptl = pmd_lock(mm, pmd); 1064 if (!pmd_none(*pmd)) { 1065 if (write) { 1066 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1067 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1068 goto out_unlock; 1069 } 1070 entry = pmd_mkyoung(*pmd); 1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1072 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1073 update_mmu_cache_pmd(vma, addr, pmd); 1074 } 1075 1076 goto out_unlock; 1077 } 1078 1079 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1080 if (pfn_t_devmap(pfn)) 1081 entry = pmd_mkdevmap(entry); 1082 if (write) { 1083 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1084 entry = maybe_pmd_mkwrite(entry, vma); 1085 } 1086 1087 if (pgtable) { 1088 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1089 mm_inc_nr_ptes(mm); 1090 pgtable = NULL; 1091 } 1092 1093 set_pmd_at(mm, addr, pmd, entry); 1094 update_mmu_cache_pmd(vma, addr, pmd); 1095 1096 out_unlock: 1097 spin_unlock(ptl); 1098 if (pgtable) 1099 pte_free(mm, pgtable); 1100 } 1101 1102 /** 1103 * vmf_insert_pfn_pmd - insert a pmd size pfn 1104 * @vmf: Structure describing the fault 1105 * @pfn: pfn to insert 1106 * @write: whether it's a write fault 1107 * 1108 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1109 * 1110 * Return: vm_fault_t value. 1111 */ 1112 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1113 { 1114 unsigned long addr = vmf->address & PMD_MASK; 1115 struct vm_area_struct *vma = vmf->vma; 1116 pgprot_t pgprot = vma->vm_page_prot; 1117 pgtable_t pgtable = NULL; 1118 1119 /* 1120 * If we had pmd_special, we could avoid all these restrictions, 1121 * but we need to be consistent with PTEs and architectures that 1122 * can't support a 'special' bit. 1123 */ 1124 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1125 !pfn_t_devmap(pfn)); 1126 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1127 (VM_PFNMAP|VM_MIXEDMAP)); 1128 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1129 1130 if (addr < vma->vm_start || addr >= vma->vm_end) 1131 return VM_FAULT_SIGBUS; 1132 1133 if (arch_needs_pgtable_deposit()) { 1134 pgtable = pte_alloc_one(vma->vm_mm); 1135 if (!pgtable) 1136 return VM_FAULT_OOM; 1137 } 1138 1139 track_pfn_insert(vma, &pgprot, pfn); 1140 1141 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1142 return VM_FAULT_NOPAGE; 1143 } 1144 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1145 1146 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1147 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1148 { 1149 if (likely(vma->vm_flags & VM_WRITE)) 1150 pud = pud_mkwrite(pud); 1151 return pud; 1152 } 1153 1154 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1155 pud_t *pud, pfn_t pfn, bool write) 1156 { 1157 struct mm_struct *mm = vma->vm_mm; 1158 pgprot_t prot = vma->vm_page_prot; 1159 pud_t entry; 1160 spinlock_t *ptl; 1161 1162 ptl = pud_lock(mm, pud); 1163 if (!pud_none(*pud)) { 1164 if (write) { 1165 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1166 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1167 goto out_unlock; 1168 } 1169 entry = pud_mkyoung(*pud); 1170 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1171 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1172 update_mmu_cache_pud(vma, addr, pud); 1173 } 1174 goto out_unlock; 1175 } 1176 1177 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1178 if (pfn_t_devmap(pfn)) 1179 entry = pud_mkdevmap(entry); 1180 if (write) { 1181 entry = pud_mkyoung(pud_mkdirty(entry)); 1182 entry = maybe_pud_mkwrite(entry, vma); 1183 } 1184 set_pud_at(mm, addr, pud, entry); 1185 update_mmu_cache_pud(vma, addr, pud); 1186 1187 out_unlock: 1188 spin_unlock(ptl); 1189 } 1190 1191 /** 1192 * vmf_insert_pfn_pud - insert a pud size pfn 1193 * @vmf: Structure describing the fault 1194 * @pfn: pfn to insert 1195 * @write: whether it's a write fault 1196 * 1197 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1198 * 1199 * Return: vm_fault_t value. 1200 */ 1201 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1202 { 1203 unsigned long addr = vmf->address & PUD_MASK; 1204 struct vm_area_struct *vma = vmf->vma; 1205 pgprot_t pgprot = vma->vm_page_prot; 1206 1207 /* 1208 * If we had pud_special, we could avoid all these restrictions, 1209 * but we need to be consistent with PTEs and architectures that 1210 * can't support a 'special' bit. 1211 */ 1212 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1213 !pfn_t_devmap(pfn)); 1214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1215 (VM_PFNMAP|VM_MIXEDMAP)); 1216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1217 1218 if (addr < vma->vm_start || addr >= vma->vm_end) 1219 return VM_FAULT_SIGBUS; 1220 1221 track_pfn_insert(vma, &pgprot, pfn); 1222 1223 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1224 return VM_FAULT_NOPAGE; 1225 } 1226 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1227 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1228 1229 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1230 pmd_t *pmd, bool write) 1231 { 1232 pmd_t _pmd; 1233 1234 _pmd = pmd_mkyoung(*pmd); 1235 if (write) 1236 _pmd = pmd_mkdirty(_pmd); 1237 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1238 pmd, _pmd, write)) 1239 update_mmu_cache_pmd(vma, addr, pmd); 1240 } 1241 1242 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1243 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1244 { 1245 unsigned long pfn = pmd_pfn(*pmd); 1246 struct mm_struct *mm = vma->vm_mm; 1247 struct page *page; 1248 int ret; 1249 1250 assert_spin_locked(pmd_lockptr(mm, pmd)); 1251 1252 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1253 return NULL; 1254 1255 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1256 /* pass */; 1257 else 1258 return NULL; 1259 1260 if (flags & FOLL_TOUCH) 1261 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1262 1263 /* 1264 * device mapped pages can only be returned if the 1265 * caller will manage the page reference count. 1266 */ 1267 if (!(flags & (FOLL_GET | FOLL_PIN))) 1268 return ERR_PTR(-EEXIST); 1269 1270 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1271 *pgmap = get_dev_pagemap(pfn, *pgmap); 1272 if (!*pgmap) 1273 return ERR_PTR(-EFAULT); 1274 page = pfn_to_page(pfn); 1275 ret = try_grab_page(page, flags); 1276 if (ret) 1277 page = ERR_PTR(ret); 1278 1279 return page; 1280 } 1281 1282 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1283 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1284 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1285 { 1286 spinlock_t *dst_ptl, *src_ptl; 1287 struct page *src_page; 1288 struct folio *src_folio; 1289 pmd_t pmd; 1290 pgtable_t pgtable = NULL; 1291 int ret = -ENOMEM; 1292 1293 /* Skip if can be re-fill on fault */ 1294 if (!vma_is_anonymous(dst_vma)) 1295 return 0; 1296 1297 pgtable = pte_alloc_one(dst_mm); 1298 if (unlikely(!pgtable)) 1299 goto out; 1300 1301 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1302 src_ptl = pmd_lockptr(src_mm, src_pmd); 1303 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1304 1305 ret = -EAGAIN; 1306 pmd = *src_pmd; 1307 1308 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1309 if (unlikely(is_swap_pmd(pmd))) { 1310 swp_entry_t entry = pmd_to_swp_entry(pmd); 1311 1312 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1313 if (!is_readable_migration_entry(entry)) { 1314 entry = make_readable_migration_entry( 1315 swp_offset(entry)); 1316 pmd = swp_entry_to_pmd(entry); 1317 if (pmd_swp_soft_dirty(*src_pmd)) 1318 pmd = pmd_swp_mksoft_dirty(pmd); 1319 if (pmd_swp_uffd_wp(*src_pmd)) 1320 pmd = pmd_swp_mkuffd_wp(pmd); 1321 set_pmd_at(src_mm, addr, src_pmd, pmd); 1322 } 1323 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1324 mm_inc_nr_ptes(dst_mm); 1325 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1326 if (!userfaultfd_wp(dst_vma)) 1327 pmd = pmd_swp_clear_uffd_wp(pmd); 1328 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1329 ret = 0; 1330 goto out_unlock; 1331 } 1332 #endif 1333 1334 if (unlikely(!pmd_trans_huge(pmd))) { 1335 pte_free(dst_mm, pgtable); 1336 goto out_unlock; 1337 } 1338 /* 1339 * When page table lock is held, the huge zero pmd should not be 1340 * under splitting since we don't split the page itself, only pmd to 1341 * a page table. 1342 */ 1343 if (is_huge_zero_pmd(pmd)) { 1344 /* 1345 * get_huge_zero_page() will never allocate a new page here, 1346 * since we already have a zero page to copy. It just takes a 1347 * reference. 1348 */ 1349 mm_get_huge_zero_page(dst_mm); 1350 goto out_zero_page; 1351 } 1352 1353 src_page = pmd_page(pmd); 1354 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1355 src_folio = page_folio(src_page); 1356 1357 folio_get(src_folio); 1358 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1359 /* Page maybe pinned: split and retry the fault on PTEs. */ 1360 folio_put(src_folio); 1361 pte_free(dst_mm, pgtable); 1362 spin_unlock(src_ptl); 1363 spin_unlock(dst_ptl); 1364 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1365 return -EAGAIN; 1366 } 1367 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1368 out_zero_page: 1369 mm_inc_nr_ptes(dst_mm); 1370 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1371 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1372 if (!userfaultfd_wp(dst_vma)) 1373 pmd = pmd_clear_uffd_wp(pmd); 1374 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1375 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1376 1377 ret = 0; 1378 out_unlock: 1379 spin_unlock(src_ptl); 1380 spin_unlock(dst_ptl); 1381 out: 1382 return ret; 1383 } 1384 1385 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1386 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1387 pud_t *pud, bool write) 1388 { 1389 pud_t _pud; 1390 1391 _pud = pud_mkyoung(*pud); 1392 if (write) 1393 _pud = pud_mkdirty(_pud); 1394 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1395 pud, _pud, write)) 1396 update_mmu_cache_pud(vma, addr, pud); 1397 } 1398 1399 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1400 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1401 { 1402 unsigned long pfn = pud_pfn(*pud); 1403 struct mm_struct *mm = vma->vm_mm; 1404 struct page *page; 1405 int ret; 1406 1407 assert_spin_locked(pud_lockptr(mm, pud)); 1408 1409 if (flags & FOLL_WRITE && !pud_write(*pud)) 1410 return NULL; 1411 1412 if (pud_present(*pud) && pud_devmap(*pud)) 1413 /* pass */; 1414 else 1415 return NULL; 1416 1417 if (flags & FOLL_TOUCH) 1418 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1419 1420 /* 1421 * device mapped pages can only be returned if the 1422 * caller will manage the page reference count. 1423 * 1424 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1425 */ 1426 if (!(flags & (FOLL_GET | FOLL_PIN))) 1427 return ERR_PTR(-EEXIST); 1428 1429 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1430 *pgmap = get_dev_pagemap(pfn, *pgmap); 1431 if (!*pgmap) 1432 return ERR_PTR(-EFAULT); 1433 page = pfn_to_page(pfn); 1434 1435 ret = try_grab_page(page, flags); 1436 if (ret) 1437 page = ERR_PTR(ret); 1438 1439 return page; 1440 } 1441 1442 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1443 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1444 struct vm_area_struct *vma) 1445 { 1446 spinlock_t *dst_ptl, *src_ptl; 1447 pud_t pud; 1448 int ret; 1449 1450 dst_ptl = pud_lock(dst_mm, dst_pud); 1451 src_ptl = pud_lockptr(src_mm, src_pud); 1452 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1453 1454 ret = -EAGAIN; 1455 pud = *src_pud; 1456 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1457 goto out_unlock; 1458 1459 /* 1460 * When page table lock is held, the huge zero pud should not be 1461 * under splitting since we don't split the page itself, only pud to 1462 * a page table. 1463 */ 1464 if (is_huge_zero_pud(pud)) { 1465 /* No huge zero pud yet */ 1466 } 1467 1468 /* 1469 * TODO: once we support anonymous pages, use 1470 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1471 */ 1472 pudp_set_wrprotect(src_mm, addr, src_pud); 1473 pud = pud_mkold(pud_wrprotect(pud)); 1474 set_pud_at(dst_mm, addr, dst_pud, pud); 1475 1476 ret = 0; 1477 out_unlock: 1478 spin_unlock(src_ptl); 1479 spin_unlock(dst_ptl); 1480 return ret; 1481 } 1482 1483 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1484 { 1485 bool write = vmf->flags & FAULT_FLAG_WRITE; 1486 1487 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1488 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1489 goto unlock; 1490 1491 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1492 unlock: 1493 spin_unlock(vmf->ptl); 1494 } 1495 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1496 1497 void huge_pmd_set_accessed(struct vm_fault *vmf) 1498 { 1499 bool write = vmf->flags & FAULT_FLAG_WRITE; 1500 1501 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1502 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1503 goto unlock; 1504 1505 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1506 1507 unlock: 1508 spin_unlock(vmf->ptl); 1509 } 1510 1511 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1512 { 1513 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1514 struct vm_area_struct *vma = vmf->vma; 1515 struct folio *folio; 1516 struct page *page; 1517 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1518 pmd_t orig_pmd = vmf->orig_pmd; 1519 1520 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1521 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1522 1523 if (is_huge_zero_pmd(orig_pmd)) 1524 goto fallback; 1525 1526 spin_lock(vmf->ptl); 1527 1528 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1529 spin_unlock(vmf->ptl); 1530 return 0; 1531 } 1532 1533 page = pmd_page(orig_pmd); 1534 folio = page_folio(page); 1535 VM_BUG_ON_PAGE(!PageHead(page), page); 1536 1537 /* Early check when only holding the PT lock. */ 1538 if (PageAnonExclusive(page)) 1539 goto reuse; 1540 1541 if (!folio_trylock(folio)) { 1542 folio_get(folio); 1543 spin_unlock(vmf->ptl); 1544 folio_lock(folio); 1545 spin_lock(vmf->ptl); 1546 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1547 spin_unlock(vmf->ptl); 1548 folio_unlock(folio); 1549 folio_put(folio); 1550 return 0; 1551 } 1552 folio_put(folio); 1553 } 1554 1555 /* Recheck after temporarily dropping the PT lock. */ 1556 if (PageAnonExclusive(page)) { 1557 folio_unlock(folio); 1558 goto reuse; 1559 } 1560 1561 /* 1562 * See do_wp_page(): we can only reuse the folio exclusively if 1563 * there are no additional references. Note that we always drain 1564 * the LRU cache immediately after adding a THP. 1565 */ 1566 if (folio_ref_count(folio) > 1567 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1568 goto unlock_fallback; 1569 if (folio_test_swapcache(folio)) 1570 folio_free_swap(folio); 1571 if (folio_ref_count(folio) == 1) { 1572 pmd_t entry; 1573 1574 folio_move_anon_rmap(folio, vma); 1575 SetPageAnonExclusive(page); 1576 folio_unlock(folio); 1577 reuse: 1578 if (unlikely(unshare)) { 1579 spin_unlock(vmf->ptl); 1580 return 0; 1581 } 1582 entry = pmd_mkyoung(orig_pmd); 1583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1584 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1585 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1586 spin_unlock(vmf->ptl); 1587 return 0; 1588 } 1589 1590 unlock_fallback: 1591 folio_unlock(folio); 1592 spin_unlock(vmf->ptl); 1593 fallback: 1594 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1595 return VM_FAULT_FALLBACK; 1596 } 1597 1598 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1599 unsigned long addr, pmd_t pmd) 1600 { 1601 struct page *page; 1602 1603 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1604 return false; 1605 1606 /* Don't touch entries that are not even readable (NUMA hinting). */ 1607 if (pmd_protnone(pmd)) 1608 return false; 1609 1610 /* Do we need write faults for softdirty tracking? */ 1611 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1612 return false; 1613 1614 /* Do we need write faults for uffd-wp tracking? */ 1615 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1616 return false; 1617 1618 if (!(vma->vm_flags & VM_SHARED)) { 1619 /* See can_change_pte_writable(). */ 1620 page = vm_normal_page_pmd(vma, addr, pmd); 1621 return page && PageAnon(page) && PageAnonExclusive(page); 1622 } 1623 1624 /* See can_change_pte_writable(). */ 1625 return pmd_dirty(pmd); 1626 } 1627 1628 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1629 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1630 struct vm_area_struct *vma, 1631 unsigned int flags) 1632 { 1633 /* If the pmd is writable, we can write to the page. */ 1634 if (pmd_write(pmd)) 1635 return true; 1636 1637 /* Maybe FOLL_FORCE is set to override it? */ 1638 if (!(flags & FOLL_FORCE)) 1639 return false; 1640 1641 /* But FOLL_FORCE has no effect on shared mappings */ 1642 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1643 return false; 1644 1645 /* ... or read-only private ones */ 1646 if (!(vma->vm_flags & VM_MAYWRITE)) 1647 return false; 1648 1649 /* ... or already writable ones that just need to take a write fault */ 1650 if (vma->vm_flags & VM_WRITE) 1651 return false; 1652 1653 /* 1654 * See can_change_pte_writable(): we broke COW and could map the page 1655 * writable if we have an exclusive anonymous page ... 1656 */ 1657 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1658 return false; 1659 1660 /* ... and a write-fault isn't required for other reasons. */ 1661 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1662 return false; 1663 return !userfaultfd_huge_pmd_wp(vma, pmd); 1664 } 1665 1666 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1667 unsigned long addr, 1668 pmd_t *pmd, 1669 unsigned int flags) 1670 { 1671 struct mm_struct *mm = vma->vm_mm; 1672 struct page *page; 1673 int ret; 1674 1675 assert_spin_locked(pmd_lockptr(mm, pmd)); 1676 1677 page = pmd_page(*pmd); 1678 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1679 1680 if ((flags & FOLL_WRITE) && 1681 !can_follow_write_pmd(*pmd, page, vma, flags)) 1682 return NULL; 1683 1684 /* Avoid dumping huge zero page */ 1685 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1686 return ERR_PTR(-EFAULT); 1687 1688 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1689 return NULL; 1690 1691 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1692 return ERR_PTR(-EMLINK); 1693 1694 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1695 !PageAnonExclusive(page), page); 1696 1697 ret = try_grab_page(page, flags); 1698 if (ret) 1699 return ERR_PTR(ret); 1700 1701 if (flags & FOLL_TOUCH) 1702 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1703 1704 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1705 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1706 1707 return page; 1708 } 1709 1710 /* NUMA hinting page fault entry point for trans huge pmds */ 1711 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1712 { 1713 struct vm_area_struct *vma = vmf->vma; 1714 pmd_t oldpmd = vmf->orig_pmd; 1715 pmd_t pmd; 1716 struct folio *folio; 1717 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1718 int nid = NUMA_NO_NODE; 1719 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1720 bool migrated = false, writable = false; 1721 int flags = 0; 1722 1723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1724 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1725 spin_unlock(vmf->ptl); 1726 goto out; 1727 } 1728 1729 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1730 1731 /* 1732 * Detect now whether the PMD could be writable; this information 1733 * is only valid while holding the PT lock. 1734 */ 1735 writable = pmd_write(pmd); 1736 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1737 can_change_pmd_writable(vma, vmf->address, pmd)) 1738 writable = true; 1739 1740 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1741 if (!folio) 1742 goto out_map; 1743 1744 /* See similar comment in do_numa_page for explanation */ 1745 if (!writable) 1746 flags |= TNF_NO_GROUP; 1747 1748 nid = folio_nid(folio); 1749 /* 1750 * For memory tiering mode, cpupid of slow memory page is used 1751 * to record page access time. So use default value. 1752 */ 1753 if (node_is_toptier(nid)) 1754 last_cpupid = folio_last_cpupid(folio); 1755 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags); 1756 if (target_nid == NUMA_NO_NODE) { 1757 folio_put(folio); 1758 goto out_map; 1759 } 1760 1761 spin_unlock(vmf->ptl); 1762 writable = false; 1763 1764 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1765 if (migrated) { 1766 flags |= TNF_MIGRATED; 1767 nid = target_nid; 1768 } else { 1769 flags |= TNF_MIGRATE_FAIL; 1770 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1771 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1772 spin_unlock(vmf->ptl); 1773 goto out; 1774 } 1775 goto out_map; 1776 } 1777 1778 out: 1779 if (nid != NUMA_NO_NODE) 1780 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1781 1782 return 0; 1783 1784 out_map: 1785 /* Restore the PMD */ 1786 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1787 pmd = pmd_mkyoung(pmd); 1788 if (writable) 1789 pmd = pmd_mkwrite(pmd, vma); 1790 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1791 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1792 spin_unlock(vmf->ptl); 1793 goto out; 1794 } 1795 1796 /* 1797 * Return true if we do MADV_FREE successfully on entire pmd page. 1798 * Otherwise, return false. 1799 */ 1800 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1801 pmd_t *pmd, unsigned long addr, unsigned long next) 1802 { 1803 spinlock_t *ptl; 1804 pmd_t orig_pmd; 1805 struct folio *folio; 1806 struct mm_struct *mm = tlb->mm; 1807 bool ret = false; 1808 1809 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1810 1811 ptl = pmd_trans_huge_lock(pmd, vma); 1812 if (!ptl) 1813 goto out_unlocked; 1814 1815 orig_pmd = *pmd; 1816 if (is_huge_zero_pmd(orig_pmd)) 1817 goto out; 1818 1819 if (unlikely(!pmd_present(orig_pmd))) { 1820 VM_BUG_ON(thp_migration_supported() && 1821 !is_pmd_migration_entry(orig_pmd)); 1822 goto out; 1823 } 1824 1825 folio = pfn_folio(pmd_pfn(orig_pmd)); 1826 /* 1827 * If other processes are mapping this folio, we couldn't discard 1828 * the folio unless they all do MADV_FREE so let's skip the folio. 1829 */ 1830 if (folio_estimated_sharers(folio) != 1) 1831 goto out; 1832 1833 if (!folio_trylock(folio)) 1834 goto out; 1835 1836 /* 1837 * If user want to discard part-pages of THP, split it so MADV_FREE 1838 * will deactivate only them. 1839 */ 1840 if (next - addr != HPAGE_PMD_SIZE) { 1841 folio_get(folio); 1842 spin_unlock(ptl); 1843 split_folio(folio); 1844 folio_unlock(folio); 1845 folio_put(folio); 1846 goto out_unlocked; 1847 } 1848 1849 if (folio_test_dirty(folio)) 1850 folio_clear_dirty(folio); 1851 folio_unlock(folio); 1852 1853 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1854 pmdp_invalidate(vma, addr, pmd); 1855 orig_pmd = pmd_mkold(orig_pmd); 1856 orig_pmd = pmd_mkclean(orig_pmd); 1857 1858 set_pmd_at(mm, addr, pmd, orig_pmd); 1859 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1860 } 1861 1862 folio_mark_lazyfree(folio); 1863 ret = true; 1864 out: 1865 spin_unlock(ptl); 1866 out_unlocked: 1867 return ret; 1868 } 1869 1870 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1871 { 1872 pgtable_t pgtable; 1873 1874 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1875 pte_free(mm, pgtable); 1876 mm_dec_nr_ptes(mm); 1877 } 1878 1879 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1880 pmd_t *pmd, unsigned long addr) 1881 { 1882 pmd_t orig_pmd; 1883 spinlock_t *ptl; 1884 1885 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1886 1887 ptl = __pmd_trans_huge_lock(pmd, vma); 1888 if (!ptl) 1889 return 0; 1890 /* 1891 * For architectures like ppc64 we look at deposited pgtable 1892 * when calling pmdp_huge_get_and_clear. So do the 1893 * pgtable_trans_huge_withdraw after finishing pmdp related 1894 * operations. 1895 */ 1896 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1897 tlb->fullmm); 1898 arch_check_zapped_pmd(vma, orig_pmd); 1899 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1900 if (vma_is_special_huge(vma)) { 1901 if (arch_needs_pgtable_deposit()) 1902 zap_deposited_table(tlb->mm, pmd); 1903 spin_unlock(ptl); 1904 } else if (is_huge_zero_pmd(orig_pmd)) { 1905 zap_deposited_table(tlb->mm, pmd); 1906 spin_unlock(ptl); 1907 } else { 1908 struct folio *folio = NULL; 1909 int flush_needed = 1; 1910 1911 if (pmd_present(orig_pmd)) { 1912 struct page *page = pmd_page(orig_pmd); 1913 1914 folio = page_folio(page); 1915 folio_remove_rmap_pmd(folio, page, vma); 1916 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1917 VM_BUG_ON_PAGE(!PageHead(page), page); 1918 } else if (thp_migration_supported()) { 1919 swp_entry_t entry; 1920 1921 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1922 entry = pmd_to_swp_entry(orig_pmd); 1923 folio = pfn_swap_entry_folio(entry); 1924 flush_needed = 0; 1925 } else 1926 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1927 1928 if (folio_test_anon(folio)) { 1929 zap_deposited_table(tlb->mm, pmd); 1930 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1931 } else { 1932 if (arch_needs_pgtable_deposit()) 1933 zap_deposited_table(tlb->mm, pmd); 1934 add_mm_counter(tlb->mm, mm_counter_file(folio), 1935 -HPAGE_PMD_NR); 1936 } 1937 1938 spin_unlock(ptl); 1939 if (flush_needed) 1940 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1941 } 1942 return 1; 1943 } 1944 1945 #ifndef pmd_move_must_withdraw 1946 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1947 spinlock_t *old_pmd_ptl, 1948 struct vm_area_struct *vma) 1949 { 1950 /* 1951 * With split pmd lock we also need to move preallocated 1952 * PTE page table if new_pmd is on different PMD page table. 1953 * 1954 * We also don't deposit and withdraw tables for file pages. 1955 */ 1956 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1957 } 1958 #endif 1959 1960 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1961 { 1962 #ifdef CONFIG_MEM_SOFT_DIRTY 1963 if (unlikely(is_pmd_migration_entry(pmd))) 1964 pmd = pmd_swp_mksoft_dirty(pmd); 1965 else if (pmd_present(pmd)) 1966 pmd = pmd_mksoft_dirty(pmd); 1967 #endif 1968 return pmd; 1969 } 1970 1971 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1972 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1973 { 1974 spinlock_t *old_ptl, *new_ptl; 1975 pmd_t pmd; 1976 struct mm_struct *mm = vma->vm_mm; 1977 bool force_flush = false; 1978 1979 /* 1980 * The destination pmd shouldn't be established, free_pgtables() 1981 * should have released it; but move_page_tables() might have already 1982 * inserted a page table, if racing against shmem/file collapse. 1983 */ 1984 if (!pmd_none(*new_pmd)) { 1985 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1986 return false; 1987 } 1988 1989 /* 1990 * We don't have to worry about the ordering of src and dst 1991 * ptlocks because exclusive mmap_lock prevents deadlock. 1992 */ 1993 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1994 if (old_ptl) { 1995 new_ptl = pmd_lockptr(mm, new_pmd); 1996 if (new_ptl != old_ptl) 1997 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1998 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1999 if (pmd_present(pmd)) 2000 force_flush = true; 2001 VM_BUG_ON(!pmd_none(*new_pmd)); 2002 2003 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2004 pgtable_t pgtable; 2005 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2006 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2007 } 2008 pmd = move_soft_dirty_pmd(pmd); 2009 set_pmd_at(mm, new_addr, new_pmd, pmd); 2010 if (force_flush) 2011 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2012 if (new_ptl != old_ptl) 2013 spin_unlock(new_ptl); 2014 spin_unlock(old_ptl); 2015 return true; 2016 } 2017 return false; 2018 } 2019 2020 /* 2021 * Returns 2022 * - 0 if PMD could not be locked 2023 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2024 * or if prot_numa but THP migration is not supported 2025 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2026 */ 2027 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2028 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2029 unsigned long cp_flags) 2030 { 2031 struct mm_struct *mm = vma->vm_mm; 2032 spinlock_t *ptl; 2033 pmd_t oldpmd, entry; 2034 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2035 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2036 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2037 int ret = 1; 2038 2039 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2040 2041 if (prot_numa && !thp_migration_supported()) 2042 return 1; 2043 2044 ptl = __pmd_trans_huge_lock(pmd, vma); 2045 if (!ptl) 2046 return 0; 2047 2048 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2049 if (is_swap_pmd(*pmd)) { 2050 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2051 struct folio *folio = pfn_swap_entry_folio(entry); 2052 pmd_t newpmd; 2053 2054 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2055 if (is_writable_migration_entry(entry)) { 2056 /* 2057 * A protection check is difficult so 2058 * just be safe and disable write 2059 */ 2060 if (folio_test_anon(folio)) 2061 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2062 else 2063 entry = make_readable_migration_entry(swp_offset(entry)); 2064 newpmd = swp_entry_to_pmd(entry); 2065 if (pmd_swp_soft_dirty(*pmd)) 2066 newpmd = pmd_swp_mksoft_dirty(newpmd); 2067 } else { 2068 newpmd = *pmd; 2069 } 2070 2071 if (uffd_wp) 2072 newpmd = pmd_swp_mkuffd_wp(newpmd); 2073 else if (uffd_wp_resolve) 2074 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2075 if (!pmd_same(*pmd, newpmd)) 2076 set_pmd_at(mm, addr, pmd, newpmd); 2077 goto unlock; 2078 } 2079 #endif 2080 2081 if (prot_numa) { 2082 struct folio *folio; 2083 bool toptier; 2084 /* 2085 * Avoid trapping faults against the zero page. The read-only 2086 * data is likely to be read-cached on the local CPU and 2087 * local/remote hits to the zero page are not interesting. 2088 */ 2089 if (is_huge_zero_pmd(*pmd)) 2090 goto unlock; 2091 2092 if (pmd_protnone(*pmd)) 2093 goto unlock; 2094 2095 folio = page_folio(pmd_page(*pmd)); 2096 toptier = node_is_toptier(folio_nid(folio)); 2097 /* 2098 * Skip scanning top tier node if normal numa 2099 * balancing is disabled 2100 */ 2101 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2102 toptier) 2103 goto unlock; 2104 2105 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2106 !toptier) 2107 folio_xchg_access_time(folio, 2108 jiffies_to_msecs(jiffies)); 2109 } 2110 /* 2111 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2112 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2113 * which is also under mmap_read_lock(mm): 2114 * 2115 * CPU0: CPU1: 2116 * change_huge_pmd(prot_numa=1) 2117 * pmdp_huge_get_and_clear_notify() 2118 * madvise_dontneed() 2119 * zap_pmd_range() 2120 * pmd_trans_huge(*pmd) == 0 (without ptl) 2121 * // skip the pmd 2122 * set_pmd_at(); 2123 * // pmd is re-established 2124 * 2125 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2126 * which may break userspace. 2127 * 2128 * pmdp_invalidate_ad() is required to make sure we don't miss 2129 * dirty/young flags set by hardware. 2130 */ 2131 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2132 2133 entry = pmd_modify(oldpmd, newprot); 2134 if (uffd_wp) 2135 entry = pmd_mkuffd_wp(entry); 2136 else if (uffd_wp_resolve) 2137 /* 2138 * Leave the write bit to be handled by PF interrupt 2139 * handler, then things like COW could be properly 2140 * handled. 2141 */ 2142 entry = pmd_clear_uffd_wp(entry); 2143 2144 /* See change_pte_range(). */ 2145 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2146 can_change_pmd_writable(vma, addr, entry)) 2147 entry = pmd_mkwrite(entry, vma); 2148 2149 ret = HPAGE_PMD_NR; 2150 set_pmd_at(mm, addr, pmd, entry); 2151 2152 if (huge_pmd_needs_flush(oldpmd, entry)) 2153 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2154 unlock: 2155 spin_unlock(ptl); 2156 return ret; 2157 } 2158 2159 #ifdef CONFIG_USERFAULTFD 2160 /* 2161 * The PT lock for src_pmd and the mmap_lock for reading are held by 2162 * the caller, but it must return after releasing the page_table_lock. 2163 * Just move the page from src_pmd to dst_pmd if possible. 2164 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2165 * repeated by the caller, or other errors in case of failure. 2166 */ 2167 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2168 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2169 unsigned long dst_addr, unsigned long src_addr) 2170 { 2171 pmd_t _dst_pmd, src_pmdval; 2172 struct page *src_page; 2173 struct folio *src_folio; 2174 struct anon_vma *src_anon_vma; 2175 spinlock_t *src_ptl, *dst_ptl; 2176 pgtable_t src_pgtable; 2177 struct mmu_notifier_range range; 2178 int err = 0; 2179 2180 src_pmdval = *src_pmd; 2181 src_ptl = pmd_lockptr(mm, src_pmd); 2182 2183 lockdep_assert_held(src_ptl); 2184 mmap_assert_locked(mm); 2185 2186 /* Sanity checks before the operation */ 2187 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2188 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2189 spin_unlock(src_ptl); 2190 return -EINVAL; 2191 } 2192 2193 if (!pmd_trans_huge(src_pmdval)) { 2194 spin_unlock(src_ptl); 2195 if (is_pmd_migration_entry(src_pmdval)) { 2196 pmd_migration_entry_wait(mm, &src_pmdval); 2197 return -EAGAIN; 2198 } 2199 return -ENOENT; 2200 } 2201 2202 src_page = pmd_page(src_pmdval); 2203 if (unlikely(!PageAnonExclusive(src_page))) { 2204 spin_unlock(src_ptl); 2205 return -EBUSY; 2206 } 2207 2208 src_folio = page_folio(src_page); 2209 folio_get(src_folio); 2210 spin_unlock(src_ptl); 2211 2212 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2213 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2214 src_addr + HPAGE_PMD_SIZE); 2215 mmu_notifier_invalidate_range_start(&range); 2216 2217 folio_lock(src_folio); 2218 2219 /* 2220 * split_huge_page walks the anon_vma chain without the page 2221 * lock. Serialize against it with the anon_vma lock, the page 2222 * lock is not enough. 2223 */ 2224 src_anon_vma = folio_get_anon_vma(src_folio); 2225 if (!src_anon_vma) { 2226 err = -EAGAIN; 2227 goto unlock_folio; 2228 } 2229 anon_vma_lock_write(src_anon_vma); 2230 2231 dst_ptl = pmd_lockptr(mm, dst_pmd); 2232 double_pt_lock(src_ptl, dst_ptl); 2233 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2234 !pmd_same(*dst_pmd, dst_pmdval))) { 2235 err = -EAGAIN; 2236 goto unlock_ptls; 2237 } 2238 if (folio_maybe_dma_pinned(src_folio) || 2239 !PageAnonExclusive(&src_folio->page)) { 2240 err = -EBUSY; 2241 goto unlock_ptls; 2242 } 2243 2244 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2245 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2246 err = -EBUSY; 2247 goto unlock_ptls; 2248 } 2249 2250 folio_move_anon_rmap(src_folio, dst_vma); 2251 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr)); 2252 2253 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2254 /* Folio got pinned from under us. Put it back and fail the move. */ 2255 if (folio_maybe_dma_pinned(src_folio)) { 2256 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2257 err = -EBUSY; 2258 goto unlock_ptls; 2259 } 2260 2261 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2262 /* Follow mremap() behavior and treat the entry dirty after the move */ 2263 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2264 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2265 2266 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2267 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2268 unlock_ptls: 2269 double_pt_unlock(src_ptl, dst_ptl); 2270 anon_vma_unlock_write(src_anon_vma); 2271 put_anon_vma(src_anon_vma); 2272 unlock_folio: 2273 /* unblock rmap walks */ 2274 folio_unlock(src_folio); 2275 mmu_notifier_invalidate_range_end(&range); 2276 folio_put(src_folio); 2277 return err; 2278 } 2279 #endif /* CONFIG_USERFAULTFD */ 2280 2281 /* 2282 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2283 * 2284 * Note that if it returns page table lock pointer, this routine returns without 2285 * unlocking page table lock. So callers must unlock it. 2286 */ 2287 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2288 { 2289 spinlock_t *ptl; 2290 ptl = pmd_lock(vma->vm_mm, pmd); 2291 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2292 pmd_devmap(*pmd))) 2293 return ptl; 2294 spin_unlock(ptl); 2295 return NULL; 2296 } 2297 2298 /* 2299 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2300 * 2301 * Note that if it returns page table lock pointer, this routine returns without 2302 * unlocking page table lock. So callers must unlock it. 2303 */ 2304 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2305 { 2306 spinlock_t *ptl; 2307 2308 ptl = pud_lock(vma->vm_mm, pud); 2309 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2310 return ptl; 2311 spin_unlock(ptl); 2312 return NULL; 2313 } 2314 2315 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2316 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2317 pud_t *pud, unsigned long addr) 2318 { 2319 spinlock_t *ptl; 2320 2321 ptl = __pud_trans_huge_lock(pud, vma); 2322 if (!ptl) 2323 return 0; 2324 2325 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2326 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2327 if (vma_is_special_huge(vma)) { 2328 spin_unlock(ptl); 2329 /* No zero page support yet */ 2330 } else { 2331 /* No support for anonymous PUD pages yet */ 2332 BUG(); 2333 } 2334 return 1; 2335 } 2336 2337 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2338 unsigned long haddr) 2339 { 2340 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2341 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2342 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2343 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2344 2345 count_vm_event(THP_SPLIT_PUD); 2346 2347 pudp_huge_clear_flush(vma, haddr, pud); 2348 } 2349 2350 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2351 unsigned long address) 2352 { 2353 spinlock_t *ptl; 2354 struct mmu_notifier_range range; 2355 2356 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2357 address & HPAGE_PUD_MASK, 2358 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2359 mmu_notifier_invalidate_range_start(&range); 2360 ptl = pud_lock(vma->vm_mm, pud); 2361 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2362 goto out; 2363 __split_huge_pud_locked(vma, pud, range.start); 2364 2365 out: 2366 spin_unlock(ptl); 2367 mmu_notifier_invalidate_range_end(&range); 2368 } 2369 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2370 2371 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2372 unsigned long haddr, pmd_t *pmd) 2373 { 2374 struct mm_struct *mm = vma->vm_mm; 2375 pgtable_t pgtable; 2376 pmd_t _pmd, old_pmd; 2377 unsigned long addr; 2378 pte_t *pte; 2379 int i; 2380 2381 /* 2382 * Leave pmd empty until pte is filled note that it is fine to delay 2383 * notification until mmu_notifier_invalidate_range_end() as we are 2384 * replacing a zero pmd write protected page with a zero pte write 2385 * protected page. 2386 * 2387 * See Documentation/mm/mmu_notifier.rst 2388 */ 2389 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2390 2391 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2392 pmd_populate(mm, &_pmd, pgtable); 2393 2394 pte = pte_offset_map(&_pmd, haddr); 2395 VM_BUG_ON(!pte); 2396 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2397 pte_t entry; 2398 2399 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2400 entry = pte_mkspecial(entry); 2401 if (pmd_uffd_wp(old_pmd)) 2402 entry = pte_mkuffd_wp(entry); 2403 VM_BUG_ON(!pte_none(ptep_get(pte))); 2404 set_pte_at(mm, addr, pte, entry); 2405 pte++; 2406 } 2407 pte_unmap(pte - 1); 2408 smp_wmb(); /* make pte visible before pmd */ 2409 pmd_populate(mm, pmd, pgtable); 2410 } 2411 2412 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2413 unsigned long haddr, bool freeze) 2414 { 2415 struct mm_struct *mm = vma->vm_mm; 2416 struct folio *folio; 2417 struct page *page; 2418 pgtable_t pgtable; 2419 pmd_t old_pmd, _pmd; 2420 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2421 bool anon_exclusive = false, dirty = false; 2422 unsigned long addr; 2423 pte_t *pte; 2424 int i; 2425 2426 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2427 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2428 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2429 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2430 && !pmd_devmap(*pmd)); 2431 2432 count_vm_event(THP_SPLIT_PMD); 2433 2434 if (!vma_is_anonymous(vma)) { 2435 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2436 /* 2437 * We are going to unmap this huge page. So 2438 * just go ahead and zap it 2439 */ 2440 if (arch_needs_pgtable_deposit()) 2441 zap_deposited_table(mm, pmd); 2442 if (vma_is_special_huge(vma)) 2443 return; 2444 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2445 swp_entry_t entry; 2446 2447 entry = pmd_to_swp_entry(old_pmd); 2448 folio = pfn_swap_entry_folio(entry); 2449 } else { 2450 page = pmd_page(old_pmd); 2451 folio = page_folio(page); 2452 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2453 folio_mark_dirty(folio); 2454 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2455 folio_set_referenced(folio); 2456 folio_remove_rmap_pmd(folio, page, vma); 2457 folio_put(folio); 2458 } 2459 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2460 return; 2461 } 2462 2463 if (is_huge_zero_pmd(*pmd)) { 2464 /* 2465 * FIXME: Do we want to invalidate secondary mmu by calling 2466 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2467 * inside __split_huge_pmd() ? 2468 * 2469 * We are going from a zero huge page write protected to zero 2470 * small page also write protected so it does not seems useful 2471 * to invalidate secondary mmu at this time. 2472 */ 2473 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2474 } 2475 2476 /* 2477 * Up to this point the pmd is present and huge and userland has the 2478 * whole access to the hugepage during the split (which happens in 2479 * place). If we overwrite the pmd with the not-huge version pointing 2480 * to the pte here (which of course we could if all CPUs were bug 2481 * free), userland could trigger a small page size TLB miss on the 2482 * small sized TLB while the hugepage TLB entry is still established in 2483 * the huge TLB. Some CPU doesn't like that. 2484 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2485 * 383 on page 105. Intel should be safe but is also warns that it's 2486 * only safe if the permission and cache attributes of the two entries 2487 * loaded in the two TLB is identical (which should be the case here). 2488 * But it is generally safer to never allow small and huge TLB entries 2489 * for the same virtual address to be loaded simultaneously. So instead 2490 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2491 * current pmd notpresent (atomically because here the pmd_trans_huge 2492 * must remain set at all times on the pmd until the split is complete 2493 * for this pmd), then we flush the SMP TLB and finally we write the 2494 * non-huge version of the pmd entry with pmd_populate. 2495 */ 2496 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2497 2498 pmd_migration = is_pmd_migration_entry(old_pmd); 2499 if (unlikely(pmd_migration)) { 2500 swp_entry_t entry; 2501 2502 entry = pmd_to_swp_entry(old_pmd); 2503 page = pfn_swap_entry_to_page(entry); 2504 write = is_writable_migration_entry(entry); 2505 if (PageAnon(page)) 2506 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2507 young = is_migration_entry_young(entry); 2508 dirty = is_migration_entry_dirty(entry); 2509 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2510 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2511 } else { 2512 page = pmd_page(old_pmd); 2513 folio = page_folio(page); 2514 if (pmd_dirty(old_pmd)) { 2515 dirty = true; 2516 folio_set_dirty(folio); 2517 } 2518 write = pmd_write(old_pmd); 2519 young = pmd_young(old_pmd); 2520 soft_dirty = pmd_soft_dirty(old_pmd); 2521 uffd_wp = pmd_uffd_wp(old_pmd); 2522 2523 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2524 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2525 2526 /* 2527 * Without "freeze", we'll simply split the PMD, propagating the 2528 * PageAnonExclusive() flag for each PTE by setting it for 2529 * each subpage -- no need to (temporarily) clear. 2530 * 2531 * With "freeze" we want to replace mapped pages by 2532 * migration entries right away. This is only possible if we 2533 * managed to clear PageAnonExclusive() -- see 2534 * set_pmd_migration_entry(). 2535 * 2536 * In case we cannot clear PageAnonExclusive(), split the PMD 2537 * only and let try_to_migrate_one() fail later. 2538 * 2539 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2540 */ 2541 anon_exclusive = PageAnonExclusive(page); 2542 if (freeze && anon_exclusive && 2543 folio_try_share_anon_rmap_pmd(folio, page)) 2544 freeze = false; 2545 if (!freeze) { 2546 rmap_t rmap_flags = RMAP_NONE; 2547 2548 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2549 if (anon_exclusive) 2550 rmap_flags |= RMAP_EXCLUSIVE; 2551 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2552 vma, haddr, rmap_flags); 2553 } 2554 } 2555 2556 /* 2557 * Withdraw the table only after we mark the pmd entry invalid. 2558 * This's critical for some architectures (Power). 2559 */ 2560 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2561 pmd_populate(mm, &_pmd, pgtable); 2562 2563 pte = pte_offset_map(&_pmd, haddr); 2564 VM_BUG_ON(!pte); 2565 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2566 pte_t entry; 2567 /* 2568 * Note that NUMA hinting access restrictions are not 2569 * transferred to avoid any possibility of altering 2570 * permissions across VMAs. 2571 */ 2572 if (freeze || pmd_migration) { 2573 swp_entry_t swp_entry; 2574 if (write) 2575 swp_entry = make_writable_migration_entry( 2576 page_to_pfn(page + i)); 2577 else if (anon_exclusive) 2578 swp_entry = make_readable_exclusive_migration_entry( 2579 page_to_pfn(page + i)); 2580 else 2581 swp_entry = make_readable_migration_entry( 2582 page_to_pfn(page + i)); 2583 if (young) 2584 swp_entry = make_migration_entry_young(swp_entry); 2585 if (dirty) 2586 swp_entry = make_migration_entry_dirty(swp_entry); 2587 entry = swp_entry_to_pte(swp_entry); 2588 if (soft_dirty) 2589 entry = pte_swp_mksoft_dirty(entry); 2590 if (uffd_wp) 2591 entry = pte_swp_mkuffd_wp(entry); 2592 } else { 2593 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2594 if (write) 2595 entry = pte_mkwrite(entry, vma); 2596 if (!young) 2597 entry = pte_mkold(entry); 2598 /* NOTE: this may set soft-dirty too on some archs */ 2599 if (dirty) 2600 entry = pte_mkdirty(entry); 2601 if (soft_dirty) 2602 entry = pte_mksoft_dirty(entry); 2603 if (uffd_wp) 2604 entry = pte_mkuffd_wp(entry); 2605 } 2606 VM_BUG_ON(!pte_none(ptep_get(pte))); 2607 set_pte_at(mm, addr, pte, entry); 2608 pte++; 2609 } 2610 pte_unmap(pte - 1); 2611 2612 if (!pmd_migration) 2613 folio_remove_rmap_pmd(folio, page, vma); 2614 if (freeze) 2615 put_page(page); 2616 2617 smp_wmb(); /* make pte visible before pmd */ 2618 pmd_populate(mm, pmd, pgtable); 2619 } 2620 2621 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2622 unsigned long address, bool freeze, struct folio *folio) 2623 { 2624 spinlock_t *ptl; 2625 struct mmu_notifier_range range; 2626 2627 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2628 address & HPAGE_PMD_MASK, 2629 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2630 mmu_notifier_invalidate_range_start(&range); 2631 ptl = pmd_lock(vma->vm_mm, pmd); 2632 2633 /* 2634 * If caller asks to setup a migration entry, we need a folio to check 2635 * pmd against. Otherwise we can end up replacing wrong folio. 2636 */ 2637 VM_BUG_ON(freeze && !folio); 2638 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2639 2640 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2641 is_pmd_migration_entry(*pmd)) { 2642 /* 2643 * It's safe to call pmd_page when folio is set because it's 2644 * guaranteed that pmd is present. 2645 */ 2646 if (folio && folio != page_folio(pmd_page(*pmd))) 2647 goto out; 2648 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2649 } 2650 2651 out: 2652 spin_unlock(ptl); 2653 mmu_notifier_invalidate_range_end(&range); 2654 } 2655 2656 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2657 bool freeze, struct folio *folio) 2658 { 2659 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2660 2661 if (!pmd) 2662 return; 2663 2664 __split_huge_pmd(vma, pmd, address, freeze, folio); 2665 } 2666 2667 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2668 { 2669 /* 2670 * If the new address isn't hpage aligned and it could previously 2671 * contain an hugepage: check if we need to split an huge pmd. 2672 */ 2673 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2674 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2675 ALIGN(address, HPAGE_PMD_SIZE))) 2676 split_huge_pmd_address(vma, address, false, NULL); 2677 } 2678 2679 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2680 unsigned long start, 2681 unsigned long end, 2682 long adjust_next) 2683 { 2684 /* Check if we need to split start first. */ 2685 split_huge_pmd_if_needed(vma, start); 2686 2687 /* Check if we need to split end next. */ 2688 split_huge_pmd_if_needed(vma, end); 2689 2690 /* 2691 * If we're also updating the next vma vm_start, 2692 * check if we need to split it. 2693 */ 2694 if (adjust_next > 0) { 2695 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2696 unsigned long nstart = next->vm_start; 2697 nstart += adjust_next; 2698 split_huge_pmd_if_needed(next, nstart); 2699 } 2700 } 2701 2702 static void unmap_folio(struct folio *folio) 2703 { 2704 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2705 TTU_SYNC | TTU_BATCH_FLUSH; 2706 2707 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2708 2709 /* 2710 * Anon pages need migration entries to preserve them, but file 2711 * pages can simply be left unmapped, then faulted back on demand. 2712 * If that is ever changed (perhaps for mlock), update remap_page(). 2713 */ 2714 if (folio_test_anon(folio)) 2715 try_to_migrate(folio, ttu_flags); 2716 else 2717 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2718 2719 try_to_unmap_flush(); 2720 } 2721 2722 static void remap_page(struct folio *folio, unsigned long nr) 2723 { 2724 int i = 0; 2725 2726 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2727 if (!folio_test_anon(folio)) 2728 return; 2729 for (;;) { 2730 remove_migration_ptes(folio, folio, true); 2731 i += folio_nr_pages(folio); 2732 if (i >= nr) 2733 break; 2734 folio = folio_next(folio); 2735 } 2736 } 2737 2738 static void lru_add_page_tail(struct page *head, struct page *tail, 2739 struct lruvec *lruvec, struct list_head *list) 2740 { 2741 VM_BUG_ON_PAGE(!PageHead(head), head); 2742 VM_BUG_ON_PAGE(PageCompound(tail), head); 2743 VM_BUG_ON_PAGE(PageLRU(tail), head); 2744 lockdep_assert_held(&lruvec->lru_lock); 2745 2746 if (list) { 2747 /* page reclaim is reclaiming a huge page */ 2748 VM_WARN_ON(PageLRU(head)); 2749 get_page(tail); 2750 list_add_tail(&tail->lru, list); 2751 } else { 2752 /* head is still on lru (and we have it frozen) */ 2753 VM_WARN_ON(!PageLRU(head)); 2754 if (PageUnevictable(tail)) 2755 tail->mlock_count = 0; 2756 else 2757 list_add_tail(&tail->lru, &head->lru); 2758 SetPageLRU(tail); 2759 } 2760 } 2761 2762 static void __split_huge_page_tail(struct folio *folio, int tail, 2763 struct lruvec *lruvec, struct list_head *list) 2764 { 2765 struct page *head = &folio->page; 2766 struct page *page_tail = head + tail; 2767 /* 2768 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2769 * Don't pass it around before clear_compound_head(). 2770 */ 2771 struct folio *new_folio = (struct folio *)page_tail; 2772 2773 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2774 2775 /* 2776 * Clone page flags before unfreezing refcount. 2777 * 2778 * After successful get_page_unless_zero() might follow flags change, 2779 * for example lock_page() which set PG_waiters. 2780 * 2781 * Note that for mapped sub-pages of an anonymous THP, 2782 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2783 * the migration entry instead from where remap_page() will restore it. 2784 * We can still have PG_anon_exclusive set on effectively unmapped and 2785 * unreferenced sub-pages of an anonymous THP: we can simply drop 2786 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2787 */ 2788 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2789 page_tail->flags |= (head->flags & 2790 ((1L << PG_referenced) | 2791 (1L << PG_swapbacked) | 2792 (1L << PG_swapcache) | 2793 (1L << PG_mlocked) | 2794 (1L << PG_uptodate) | 2795 (1L << PG_active) | 2796 (1L << PG_workingset) | 2797 (1L << PG_locked) | 2798 (1L << PG_unevictable) | 2799 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2800 (1L << PG_arch_2) | 2801 (1L << PG_arch_3) | 2802 #endif 2803 (1L << PG_dirty) | 2804 LRU_GEN_MASK | LRU_REFS_MASK)); 2805 2806 /* ->mapping in first and second tail page is replaced by other uses */ 2807 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2808 page_tail); 2809 page_tail->mapping = head->mapping; 2810 page_tail->index = head->index + tail; 2811 2812 /* 2813 * page->private should not be set in tail pages. Fix up and warn once 2814 * if private is unexpectedly set. 2815 */ 2816 if (unlikely(page_tail->private)) { 2817 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2818 page_tail->private = 0; 2819 } 2820 if (folio_test_swapcache(folio)) 2821 new_folio->swap.val = folio->swap.val + tail; 2822 2823 /* Page flags must be visible before we make the page non-compound. */ 2824 smp_wmb(); 2825 2826 /* 2827 * Clear PageTail before unfreezing page refcount. 2828 * 2829 * After successful get_page_unless_zero() might follow put_page() 2830 * which needs correct compound_head(). 2831 */ 2832 clear_compound_head(page_tail); 2833 2834 /* Finally unfreeze refcount. Additional reference from page cache. */ 2835 page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) || 2836 folio_test_swapcache(folio))); 2837 2838 if (folio_test_young(folio)) 2839 folio_set_young(new_folio); 2840 if (folio_test_idle(folio)) 2841 folio_set_idle(new_folio); 2842 2843 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2844 2845 /* 2846 * always add to the tail because some iterators expect new 2847 * pages to show after the currently processed elements - e.g. 2848 * migrate_pages 2849 */ 2850 lru_add_page_tail(head, page_tail, lruvec, list); 2851 } 2852 2853 static void __split_huge_page(struct page *page, struct list_head *list, 2854 pgoff_t end) 2855 { 2856 struct folio *folio = page_folio(page); 2857 struct page *head = &folio->page; 2858 struct lruvec *lruvec; 2859 struct address_space *swap_cache = NULL; 2860 unsigned long offset = 0; 2861 unsigned int nr = thp_nr_pages(head); 2862 int i, nr_dropped = 0; 2863 2864 /* complete memcg works before add pages to LRU */ 2865 split_page_memcg(head, nr); 2866 2867 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2868 offset = swp_offset(folio->swap); 2869 swap_cache = swap_address_space(folio->swap); 2870 xa_lock(&swap_cache->i_pages); 2871 } 2872 2873 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2874 lruvec = folio_lruvec_lock(folio); 2875 2876 ClearPageHasHWPoisoned(head); 2877 2878 for (i = nr - 1; i >= 1; i--) { 2879 __split_huge_page_tail(folio, i, lruvec, list); 2880 /* Some pages can be beyond EOF: drop them from page cache */ 2881 if (head[i].index >= end) { 2882 struct folio *tail = page_folio(head + i); 2883 2884 if (shmem_mapping(head->mapping)) 2885 nr_dropped++; 2886 else if (folio_test_clear_dirty(tail)) 2887 folio_account_cleaned(tail, 2888 inode_to_wb(folio->mapping->host)); 2889 __filemap_remove_folio(tail, NULL); 2890 folio_put(tail); 2891 } else if (!PageAnon(page)) { 2892 __xa_store(&head->mapping->i_pages, head[i].index, 2893 head + i, 0); 2894 } else if (swap_cache) { 2895 __xa_store(&swap_cache->i_pages, offset + i, 2896 head + i, 0); 2897 } 2898 } 2899 2900 ClearPageCompound(head); 2901 unlock_page_lruvec(lruvec); 2902 /* Caller disabled irqs, so they are still disabled here */ 2903 2904 split_page_owner(head, nr); 2905 2906 /* See comment in __split_huge_page_tail() */ 2907 if (PageAnon(head)) { 2908 /* Additional pin to swap cache */ 2909 if (PageSwapCache(head)) { 2910 page_ref_add(head, 2); 2911 xa_unlock(&swap_cache->i_pages); 2912 } else { 2913 page_ref_inc(head); 2914 } 2915 } else { 2916 /* Additional pin to page cache */ 2917 page_ref_add(head, 2); 2918 xa_unlock(&head->mapping->i_pages); 2919 } 2920 local_irq_enable(); 2921 2922 if (nr_dropped) 2923 shmem_uncharge(head->mapping->host, nr_dropped); 2924 remap_page(folio, nr); 2925 2926 if (folio_test_swapcache(folio)) 2927 split_swap_cluster(folio->swap); 2928 2929 for (i = 0; i < nr; i++) { 2930 struct page *subpage = head + i; 2931 if (subpage == page) 2932 continue; 2933 unlock_page(subpage); 2934 2935 /* 2936 * Subpages may be freed if there wasn't any mapping 2937 * like if add_to_swap() is running on a lru page that 2938 * had its mapping zapped. And freeing these pages 2939 * requires taking the lru_lock so we do the put_page 2940 * of the tail pages after the split is complete. 2941 */ 2942 free_page_and_swap_cache(subpage); 2943 } 2944 } 2945 2946 /* Racy check whether the huge page can be split */ 2947 bool can_split_folio(struct folio *folio, int *pextra_pins) 2948 { 2949 int extra_pins; 2950 2951 /* Additional pins from page cache */ 2952 if (folio_test_anon(folio)) 2953 extra_pins = folio_test_swapcache(folio) ? 2954 folio_nr_pages(folio) : 0; 2955 else 2956 extra_pins = folio_nr_pages(folio); 2957 if (pextra_pins) 2958 *pextra_pins = extra_pins; 2959 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2960 } 2961 2962 /* 2963 * This function splits huge page into normal pages. @page can point to any 2964 * subpage of huge page to split. Split doesn't change the position of @page. 2965 * 2966 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2967 * The huge page must be locked. 2968 * 2969 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2970 * 2971 * Both head page and tail pages will inherit mapping, flags, and so on from 2972 * the hugepage. 2973 * 2974 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2975 * they are not mapped. 2976 * 2977 * Returns 0 if the hugepage is split successfully. 2978 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2979 * us. 2980 */ 2981 int split_huge_page_to_list(struct page *page, struct list_head *list) 2982 { 2983 struct folio *folio = page_folio(page); 2984 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2985 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2986 struct anon_vma *anon_vma = NULL; 2987 struct address_space *mapping = NULL; 2988 int extra_pins, ret; 2989 pgoff_t end; 2990 bool is_hzp; 2991 2992 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2993 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2994 2995 is_hzp = is_huge_zero_page(&folio->page); 2996 if (is_hzp) { 2997 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 2998 return -EBUSY; 2999 } 3000 3001 if (folio_test_writeback(folio)) 3002 return -EBUSY; 3003 3004 if (folio_test_anon(folio)) { 3005 /* 3006 * The caller does not necessarily hold an mmap_lock that would 3007 * prevent the anon_vma disappearing so we first we take a 3008 * reference to it and then lock the anon_vma for write. This 3009 * is similar to folio_lock_anon_vma_read except the write lock 3010 * is taken to serialise against parallel split or collapse 3011 * operations. 3012 */ 3013 anon_vma = folio_get_anon_vma(folio); 3014 if (!anon_vma) { 3015 ret = -EBUSY; 3016 goto out; 3017 } 3018 end = -1; 3019 mapping = NULL; 3020 anon_vma_lock_write(anon_vma); 3021 } else { 3022 gfp_t gfp; 3023 3024 mapping = folio->mapping; 3025 3026 /* Truncated ? */ 3027 if (!mapping) { 3028 ret = -EBUSY; 3029 goto out; 3030 } 3031 3032 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3033 GFP_RECLAIM_MASK); 3034 3035 if (!filemap_release_folio(folio, gfp)) { 3036 ret = -EBUSY; 3037 goto out; 3038 } 3039 3040 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3041 if (xas_error(&xas)) { 3042 ret = xas_error(&xas); 3043 goto out; 3044 } 3045 3046 anon_vma = NULL; 3047 i_mmap_lock_read(mapping); 3048 3049 /* 3050 *__split_huge_page() may need to trim off pages beyond EOF: 3051 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3052 * which cannot be nested inside the page tree lock. So note 3053 * end now: i_size itself may be changed at any moment, but 3054 * folio lock is good enough to serialize the trimming. 3055 */ 3056 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3057 if (shmem_mapping(mapping)) 3058 end = shmem_fallocend(mapping->host, end); 3059 } 3060 3061 /* 3062 * Racy check if we can split the page, before unmap_folio() will 3063 * split PMDs 3064 */ 3065 if (!can_split_folio(folio, &extra_pins)) { 3066 ret = -EAGAIN; 3067 goto out_unlock; 3068 } 3069 3070 unmap_folio(folio); 3071 3072 /* block interrupt reentry in xa_lock and spinlock */ 3073 local_irq_disable(); 3074 if (mapping) { 3075 /* 3076 * Check if the folio is present in page cache. 3077 * We assume all tail are present too, if folio is there. 3078 */ 3079 xas_lock(&xas); 3080 xas_reset(&xas); 3081 if (xas_load(&xas) != folio) 3082 goto fail; 3083 } 3084 3085 /* Prevent deferred_split_scan() touching ->_refcount */ 3086 spin_lock(&ds_queue->split_queue_lock); 3087 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3088 if (!list_empty(&folio->_deferred_list)) { 3089 ds_queue->split_queue_len--; 3090 list_del(&folio->_deferred_list); 3091 } 3092 spin_unlock(&ds_queue->split_queue_lock); 3093 if (mapping) { 3094 int nr = folio_nr_pages(folio); 3095 3096 xas_split(&xas, folio, folio_order(folio)); 3097 if (folio_test_pmd_mappable(folio)) { 3098 if (folio_test_swapbacked(folio)) { 3099 __lruvec_stat_mod_folio(folio, 3100 NR_SHMEM_THPS, -nr); 3101 } else { 3102 __lruvec_stat_mod_folio(folio, 3103 NR_FILE_THPS, -nr); 3104 filemap_nr_thps_dec(mapping); 3105 } 3106 } 3107 } 3108 3109 __split_huge_page(page, list, end); 3110 ret = 0; 3111 } else { 3112 spin_unlock(&ds_queue->split_queue_lock); 3113 fail: 3114 if (mapping) 3115 xas_unlock(&xas); 3116 local_irq_enable(); 3117 remap_page(folio, folio_nr_pages(folio)); 3118 ret = -EAGAIN; 3119 } 3120 3121 out_unlock: 3122 if (anon_vma) { 3123 anon_vma_unlock_write(anon_vma); 3124 put_anon_vma(anon_vma); 3125 } 3126 if (mapping) 3127 i_mmap_unlock_read(mapping); 3128 out: 3129 xas_destroy(&xas); 3130 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3131 return ret; 3132 } 3133 3134 void folio_undo_large_rmappable(struct folio *folio) 3135 { 3136 struct deferred_split *ds_queue; 3137 unsigned long flags; 3138 3139 /* 3140 * At this point, there is no one trying to add the folio to 3141 * deferred_list. If folio is not in deferred_list, it's safe 3142 * to check without acquiring the split_queue_lock. 3143 */ 3144 if (data_race(list_empty(&folio->_deferred_list))) 3145 return; 3146 3147 ds_queue = get_deferred_split_queue(folio); 3148 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3149 if (!list_empty(&folio->_deferred_list)) { 3150 ds_queue->split_queue_len--; 3151 list_del_init(&folio->_deferred_list); 3152 } 3153 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3154 } 3155 3156 void deferred_split_folio(struct folio *folio) 3157 { 3158 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3159 #ifdef CONFIG_MEMCG 3160 struct mem_cgroup *memcg = folio_memcg(folio); 3161 #endif 3162 unsigned long flags; 3163 3164 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 3165 3166 /* 3167 * The try_to_unmap() in page reclaim path might reach here too, 3168 * this may cause a race condition to corrupt deferred split queue. 3169 * And, if page reclaim is already handling the same folio, it is 3170 * unnecessary to handle it again in shrinker. 3171 * 3172 * Check the swapcache flag to determine if the folio is being 3173 * handled by page reclaim since THP swap would add the folio into 3174 * swap cache before calling try_to_unmap(). 3175 */ 3176 if (folio_test_swapcache(folio)) 3177 return; 3178 3179 if (!list_empty(&folio->_deferred_list)) 3180 return; 3181 3182 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3183 if (list_empty(&folio->_deferred_list)) { 3184 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3185 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3186 ds_queue->split_queue_len++; 3187 #ifdef CONFIG_MEMCG 3188 if (memcg) 3189 set_shrinker_bit(memcg, folio_nid(folio), 3190 deferred_split_shrinker->id); 3191 #endif 3192 } 3193 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3194 } 3195 3196 static unsigned long deferred_split_count(struct shrinker *shrink, 3197 struct shrink_control *sc) 3198 { 3199 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3200 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3201 3202 #ifdef CONFIG_MEMCG 3203 if (sc->memcg) 3204 ds_queue = &sc->memcg->deferred_split_queue; 3205 #endif 3206 return READ_ONCE(ds_queue->split_queue_len); 3207 } 3208 3209 static unsigned long deferred_split_scan(struct shrinker *shrink, 3210 struct shrink_control *sc) 3211 { 3212 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3213 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3214 unsigned long flags; 3215 LIST_HEAD(list); 3216 struct folio *folio, *next; 3217 int split = 0; 3218 3219 #ifdef CONFIG_MEMCG 3220 if (sc->memcg) 3221 ds_queue = &sc->memcg->deferred_split_queue; 3222 #endif 3223 3224 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3225 /* Take pin on all head pages to avoid freeing them under us */ 3226 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3227 _deferred_list) { 3228 if (folio_try_get(folio)) { 3229 list_move(&folio->_deferred_list, &list); 3230 } else { 3231 /* We lost race with folio_put() */ 3232 list_del_init(&folio->_deferred_list); 3233 ds_queue->split_queue_len--; 3234 } 3235 if (!--sc->nr_to_scan) 3236 break; 3237 } 3238 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3239 3240 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3241 if (!folio_trylock(folio)) 3242 goto next; 3243 /* split_huge_page() removes page from list on success */ 3244 if (!split_folio(folio)) 3245 split++; 3246 folio_unlock(folio); 3247 next: 3248 folio_put(folio); 3249 } 3250 3251 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3252 list_splice_tail(&list, &ds_queue->split_queue); 3253 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3254 3255 /* 3256 * Stop shrinker if we didn't split any page, but the queue is empty. 3257 * This can happen if pages were freed under us. 3258 */ 3259 if (!split && list_empty(&ds_queue->split_queue)) 3260 return SHRINK_STOP; 3261 return split; 3262 } 3263 3264 #ifdef CONFIG_DEBUG_FS 3265 static void split_huge_pages_all(void) 3266 { 3267 struct zone *zone; 3268 struct page *page; 3269 struct folio *folio; 3270 unsigned long pfn, max_zone_pfn; 3271 unsigned long total = 0, split = 0; 3272 3273 pr_debug("Split all THPs\n"); 3274 for_each_zone(zone) { 3275 if (!managed_zone(zone)) 3276 continue; 3277 max_zone_pfn = zone_end_pfn(zone); 3278 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3279 int nr_pages; 3280 3281 page = pfn_to_online_page(pfn); 3282 if (!page || PageTail(page)) 3283 continue; 3284 folio = page_folio(page); 3285 if (!folio_try_get(folio)) 3286 continue; 3287 3288 if (unlikely(page_folio(page) != folio)) 3289 goto next; 3290 3291 if (zone != folio_zone(folio)) 3292 goto next; 3293 3294 if (!folio_test_large(folio) 3295 || folio_test_hugetlb(folio) 3296 || !folio_test_lru(folio)) 3297 goto next; 3298 3299 total++; 3300 folio_lock(folio); 3301 nr_pages = folio_nr_pages(folio); 3302 if (!split_folio(folio)) 3303 split++; 3304 pfn += nr_pages - 1; 3305 folio_unlock(folio); 3306 next: 3307 folio_put(folio); 3308 cond_resched(); 3309 } 3310 } 3311 3312 pr_debug("%lu of %lu THP split\n", split, total); 3313 } 3314 3315 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3316 { 3317 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3318 is_vm_hugetlb_page(vma); 3319 } 3320 3321 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3322 unsigned long vaddr_end) 3323 { 3324 int ret = 0; 3325 struct task_struct *task; 3326 struct mm_struct *mm; 3327 unsigned long total = 0, split = 0; 3328 unsigned long addr; 3329 3330 vaddr_start &= PAGE_MASK; 3331 vaddr_end &= PAGE_MASK; 3332 3333 /* Find the task_struct from pid */ 3334 rcu_read_lock(); 3335 task = find_task_by_vpid(pid); 3336 if (!task) { 3337 rcu_read_unlock(); 3338 ret = -ESRCH; 3339 goto out; 3340 } 3341 get_task_struct(task); 3342 rcu_read_unlock(); 3343 3344 /* Find the mm_struct */ 3345 mm = get_task_mm(task); 3346 put_task_struct(task); 3347 3348 if (!mm) { 3349 ret = -EINVAL; 3350 goto out; 3351 } 3352 3353 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3354 pid, vaddr_start, vaddr_end); 3355 3356 mmap_read_lock(mm); 3357 /* 3358 * always increase addr by PAGE_SIZE, since we could have a PTE page 3359 * table filled with PTE-mapped THPs, each of which is distinct. 3360 */ 3361 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3362 struct vm_area_struct *vma = vma_lookup(mm, addr); 3363 struct page *page; 3364 struct folio *folio; 3365 3366 if (!vma) 3367 break; 3368 3369 /* skip special VMA and hugetlb VMA */ 3370 if (vma_not_suitable_for_thp_split(vma)) { 3371 addr = vma->vm_end; 3372 continue; 3373 } 3374 3375 /* FOLL_DUMP to ignore special (like zero) pages */ 3376 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3377 3378 if (IS_ERR_OR_NULL(page)) 3379 continue; 3380 3381 folio = page_folio(page); 3382 if (!is_transparent_hugepage(folio)) 3383 goto next; 3384 3385 total++; 3386 if (!can_split_folio(folio, NULL)) 3387 goto next; 3388 3389 if (!folio_trylock(folio)) 3390 goto next; 3391 3392 if (!split_folio(folio)) 3393 split++; 3394 3395 folio_unlock(folio); 3396 next: 3397 folio_put(folio); 3398 cond_resched(); 3399 } 3400 mmap_read_unlock(mm); 3401 mmput(mm); 3402 3403 pr_debug("%lu of %lu THP split\n", split, total); 3404 3405 out: 3406 return ret; 3407 } 3408 3409 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3410 pgoff_t off_end) 3411 { 3412 struct filename *file; 3413 struct file *candidate; 3414 struct address_space *mapping; 3415 int ret = -EINVAL; 3416 pgoff_t index; 3417 int nr_pages = 1; 3418 unsigned long total = 0, split = 0; 3419 3420 file = getname_kernel(file_path); 3421 if (IS_ERR(file)) 3422 return ret; 3423 3424 candidate = file_open_name(file, O_RDONLY, 0); 3425 if (IS_ERR(candidate)) 3426 goto out; 3427 3428 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3429 file_path, off_start, off_end); 3430 3431 mapping = candidate->f_mapping; 3432 3433 for (index = off_start; index < off_end; index += nr_pages) { 3434 struct folio *folio = filemap_get_folio(mapping, index); 3435 3436 nr_pages = 1; 3437 if (IS_ERR(folio)) 3438 continue; 3439 3440 if (!folio_test_large(folio)) 3441 goto next; 3442 3443 total++; 3444 nr_pages = folio_nr_pages(folio); 3445 3446 if (!folio_trylock(folio)) 3447 goto next; 3448 3449 if (!split_folio(folio)) 3450 split++; 3451 3452 folio_unlock(folio); 3453 next: 3454 folio_put(folio); 3455 cond_resched(); 3456 } 3457 3458 filp_close(candidate, NULL); 3459 ret = 0; 3460 3461 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3462 out: 3463 putname(file); 3464 return ret; 3465 } 3466 3467 #define MAX_INPUT_BUF_SZ 255 3468 3469 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3470 size_t count, loff_t *ppops) 3471 { 3472 static DEFINE_MUTEX(split_debug_mutex); 3473 ssize_t ret; 3474 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3475 char input_buf[MAX_INPUT_BUF_SZ]; 3476 int pid; 3477 unsigned long vaddr_start, vaddr_end; 3478 3479 ret = mutex_lock_interruptible(&split_debug_mutex); 3480 if (ret) 3481 return ret; 3482 3483 ret = -EFAULT; 3484 3485 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3486 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3487 goto out; 3488 3489 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3490 3491 if (input_buf[0] == '/') { 3492 char *tok; 3493 char *buf = input_buf; 3494 char file_path[MAX_INPUT_BUF_SZ]; 3495 pgoff_t off_start = 0, off_end = 0; 3496 size_t input_len = strlen(input_buf); 3497 3498 tok = strsep(&buf, ","); 3499 if (tok) { 3500 strcpy(file_path, tok); 3501 } else { 3502 ret = -EINVAL; 3503 goto out; 3504 } 3505 3506 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3507 if (ret != 2) { 3508 ret = -EINVAL; 3509 goto out; 3510 } 3511 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3512 if (!ret) 3513 ret = input_len; 3514 3515 goto out; 3516 } 3517 3518 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3519 if (ret == 1 && pid == 1) { 3520 split_huge_pages_all(); 3521 ret = strlen(input_buf); 3522 goto out; 3523 } else if (ret != 3) { 3524 ret = -EINVAL; 3525 goto out; 3526 } 3527 3528 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3529 if (!ret) 3530 ret = strlen(input_buf); 3531 out: 3532 mutex_unlock(&split_debug_mutex); 3533 return ret; 3534 3535 } 3536 3537 static const struct file_operations split_huge_pages_fops = { 3538 .owner = THIS_MODULE, 3539 .write = split_huge_pages_write, 3540 .llseek = no_llseek, 3541 }; 3542 3543 static int __init split_huge_pages_debugfs(void) 3544 { 3545 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3546 &split_huge_pages_fops); 3547 return 0; 3548 } 3549 late_initcall(split_huge_pages_debugfs); 3550 #endif 3551 3552 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3553 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3554 struct page *page) 3555 { 3556 struct folio *folio = page_folio(page); 3557 struct vm_area_struct *vma = pvmw->vma; 3558 struct mm_struct *mm = vma->vm_mm; 3559 unsigned long address = pvmw->address; 3560 bool anon_exclusive; 3561 pmd_t pmdval; 3562 swp_entry_t entry; 3563 pmd_t pmdswp; 3564 3565 if (!(pvmw->pmd && !pvmw->pte)) 3566 return 0; 3567 3568 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3569 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3570 3571 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3572 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3573 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3574 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3575 return -EBUSY; 3576 } 3577 3578 if (pmd_dirty(pmdval)) 3579 folio_mark_dirty(folio); 3580 if (pmd_write(pmdval)) 3581 entry = make_writable_migration_entry(page_to_pfn(page)); 3582 else if (anon_exclusive) 3583 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3584 else 3585 entry = make_readable_migration_entry(page_to_pfn(page)); 3586 if (pmd_young(pmdval)) 3587 entry = make_migration_entry_young(entry); 3588 if (pmd_dirty(pmdval)) 3589 entry = make_migration_entry_dirty(entry); 3590 pmdswp = swp_entry_to_pmd(entry); 3591 if (pmd_soft_dirty(pmdval)) 3592 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3593 if (pmd_uffd_wp(pmdval)) 3594 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3595 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3596 folio_remove_rmap_pmd(folio, page, vma); 3597 folio_put(folio); 3598 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3599 3600 return 0; 3601 } 3602 3603 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3604 { 3605 struct folio *folio = page_folio(new); 3606 struct vm_area_struct *vma = pvmw->vma; 3607 struct mm_struct *mm = vma->vm_mm; 3608 unsigned long address = pvmw->address; 3609 unsigned long haddr = address & HPAGE_PMD_MASK; 3610 pmd_t pmde; 3611 swp_entry_t entry; 3612 3613 if (!(pvmw->pmd && !pvmw->pte)) 3614 return; 3615 3616 entry = pmd_to_swp_entry(*pvmw->pmd); 3617 folio_get(folio); 3618 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3619 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3620 pmde = pmd_mksoft_dirty(pmde); 3621 if (is_writable_migration_entry(entry)) 3622 pmde = pmd_mkwrite(pmde, vma); 3623 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3624 pmde = pmd_mkuffd_wp(pmde); 3625 if (!is_migration_entry_young(entry)) 3626 pmde = pmd_mkold(pmde); 3627 /* NOTE: this may contain setting soft-dirty on some archs */ 3628 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3629 pmde = pmd_mkdirty(pmde); 3630 3631 if (folio_test_anon(folio)) { 3632 rmap_t rmap_flags = RMAP_NONE; 3633 3634 if (!is_readable_migration_entry(entry)) 3635 rmap_flags |= RMAP_EXCLUSIVE; 3636 3637 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3638 } else { 3639 folio_add_file_rmap_pmd(folio, new, vma); 3640 } 3641 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3642 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3643 3644 /* No need to invalidate - it was non-present before */ 3645 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3646 trace_remove_migration_pmd(address, pmd_val(pmde)); 3647 } 3648 #endif 3649