xref: /linux/mm/huge_memory.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 enum scan_result {
39 	SCAN_FAIL,
40 	SCAN_SUCCEED,
41 	SCAN_PMD_NULL,
42 	SCAN_EXCEED_NONE_PTE,
43 	SCAN_PTE_NON_PRESENT,
44 	SCAN_PAGE_RO,
45 	SCAN_NO_REFERENCED_PAGE,
46 	SCAN_PAGE_NULL,
47 	SCAN_SCAN_ABORT,
48 	SCAN_PAGE_COUNT,
49 	SCAN_PAGE_LRU,
50 	SCAN_PAGE_LOCK,
51 	SCAN_PAGE_ANON,
52 	SCAN_PAGE_COMPOUND,
53 	SCAN_ANY_PROCESS,
54 	SCAN_VMA_NULL,
55 	SCAN_VMA_CHECK,
56 	SCAN_ADDRESS_RANGE,
57 	SCAN_SWAP_CACHE_PAGE,
58 	SCAN_DEL_PAGE_LRU,
59 	SCAN_ALLOC_HUGE_PAGE_FAIL,
60 	SCAN_CGROUP_CHARGE_FAIL
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84 
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102 
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106 
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109 
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111 
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119 	struct hlist_node hash;
120 	struct list_head mm_node;
121 	struct mm_struct *mm;
122 };
123 
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133 	struct list_head mm_head;
134 	struct mm_slot *mm_slot;
135 	unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140 
141 static struct shrinker deferred_split_shrinker;
142 
143 static void set_recommended_min_free_kbytes(void)
144 {
145 	struct zone *zone;
146 	int nr_zones = 0;
147 	unsigned long recommended_min;
148 
149 	for_each_populated_zone(zone)
150 		nr_zones++;
151 
152 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 	recommended_min = pageblock_nr_pages * nr_zones * 2;
154 
155 	/*
156 	 * Make sure that on average at least two pageblocks are almost free
157 	 * of another type, one for a migratetype to fall back to and a
158 	 * second to avoid subsequent fallbacks of other types There are 3
159 	 * MIGRATE_TYPES we care about.
160 	 */
161 	recommended_min += pageblock_nr_pages * nr_zones *
162 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163 
164 	/* don't ever allow to reserve more than 5% of the lowmem */
165 	recommended_min = min(recommended_min,
166 			      (unsigned long) nr_free_buffer_pages() / 20);
167 	recommended_min <<= (PAGE_SHIFT-10);
168 
169 	if (recommended_min > min_free_kbytes) {
170 		if (user_min_free_kbytes >= 0)
171 			pr_info("raising min_free_kbytes from %d to %lu "
172 				"to help transparent hugepage allocations\n",
173 				min_free_kbytes, recommended_min);
174 
175 		min_free_kbytes = recommended_min;
176 	}
177 	setup_per_zone_wmarks();
178 }
179 
180 static int start_stop_khugepaged(void)
181 {
182 	int err = 0;
183 	if (khugepaged_enabled()) {
184 		if (!khugepaged_thread)
185 			khugepaged_thread = kthread_run(khugepaged, NULL,
186 							"khugepaged");
187 		if (IS_ERR(khugepaged_thread)) {
188 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 			err = PTR_ERR(khugepaged_thread);
190 			khugepaged_thread = NULL;
191 			goto fail;
192 		}
193 
194 		if (!list_empty(&khugepaged_scan.mm_head))
195 			wake_up_interruptible(&khugepaged_wait);
196 
197 		set_recommended_min_free_kbytes();
198 	} else if (khugepaged_thread) {
199 		kthread_stop(khugepaged_thread);
200 		khugepaged_thread = NULL;
201 	}
202 fail:
203 	return err;
204 }
205 
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208 
209 struct page *get_huge_zero_page(void)
210 {
211 	struct page *zero_page;
212 retry:
213 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 		return READ_ONCE(huge_zero_page);
215 
216 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 			HPAGE_PMD_ORDER);
218 	if (!zero_page) {
219 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 		return NULL;
221 	}
222 	count_vm_event(THP_ZERO_PAGE_ALLOC);
223 	preempt_disable();
224 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 		preempt_enable();
226 		__free_pages(zero_page, compound_order(zero_page));
227 		goto retry;
228 	}
229 
230 	/* We take additional reference here. It will be put back by shrinker */
231 	atomic_set(&huge_zero_refcount, 2);
232 	preempt_enable();
233 	return READ_ONCE(huge_zero_page);
234 }
235 
236 static void put_huge_zero_page(void)
237 {
238 	/*
239 	 * Counter should never go to zero here. Only shrinker can put
240 	 * last reference.
241 	 */
242 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244 
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 					struct shrink_control *sc)
247 {
248 	/* we can free zero page only if last reference remains */
249 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251 
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 				       struct shrink_control *sc)
254 {
255 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 		struct page *zero_page = xchg(&huge_zero_page, NULL);
257 		BUG_ON(zero_page == NULL);
258 		__free_pages(zero_page, compound_order(zero_page));
259 		return HPAGE_PMD_NR;
260 	}
261 
262 	return 0;
263 }
264 
265 static struct shrinker huge_zero_page_shrinker = {
266 	.count_objects = shrink_huge_zero_page_count,
267 	.scan_objects = shrink_huge_zero_page_scan,
268 	.seeks = DEFAULT_SEEKS,
269 };
270 
271 #ifdef CONFIG_SYSFS
272 
273 static ssize_t double_flag_show(struct kobject *kobj,
274 				struct kobj_attribute *attr, char *buf,
275 				enum transparent_hugepage_flag enabled,
276 				enum transparent_hugepage_flag req_madv)
277 {
278 	if (test_bit(enabled, &transparent_hugepage_flags)) {
279 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 		return sprintf(buf, "[always] madvise never\n");
281 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
282 		return sprintf(buf, "always [madvise] never\n");
283 	else
284 		return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287 				 struct kobj_attribute *attr,
288 				 const char *buf, size_t count,
289 				 enum transparent_hugepage_flag enabled,
290 				 enum transparent_hugepage_flag req_madv)
291 {
292 	if (!memcmp("always", buf,
293 		    min(sizeof("always")-1, count))) {
294 		set_bit(enabled, &transparent_hugepage_flags);
295 		clear_bit(req_madv, &transparent_hugepage_flags);
296 	} else if (!memcmp("madvise", buf,
297 			   min(sizeof("madvise")-1, count))) {
298 		clear_bit(enabled, &transparent_hugepage_flags);
299 		set_bit(req_madv, &transparent_hugepage_flags);
300 	} else if (!memcmp("never", buf,
301 			   min(sizeof("never")-1, count))) {
302 		clear_bit(enabled, &transparent_hugepage_flags);
303 		clear_bit(req_madv, &transparent_hugepage_flags);
304 	} else
305 		return -EINVAL;
306 
307 	return count;
308 }
309 
310 static ssize_t enabled_show(struct kobject *kobj,
311 			    struct kobj_attribute *attr, char *buf)
312 {
313 	return double_flag_show(kobj, attr, buf,
314 				TRANSPARENT_HUGEPAGE_FLAG,
315 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318 			     struct kobj_attribute *attr,
319 			     const char *buf, size_t count)
320 {
321 	ssize_t ret;
322 
323 	ret = double_flag_store(kobj, attr, buf, count,
324 				TRANSPARENT_HUGEPAGE_FLAG,
325 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326 
327 	if (ret > 0) {
328 		int err;
329 
330 		mutex_lock(&khugepaged_mutex);
331 		err = start_stop_khugepaged();
332 		mutex_unlock(&khugepaged_mutex);
333 
334 		if (err)
335 			ret = err;
336 	}
337 
338 	return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341 	__ATTR(enabled, 0644, enabled_show, enabled_store);
342 
343 static ssize_t single_flag_show(struct kobject *kobj,
344 				struct kobj_attribute *attr, char *buf,
345 				enum transparent_hugepage_flag flag)
346 {
347 	return sprintf(buf, "%d\n",
348 		       !!test_bit(flag, &transparent_hugepage_flags));
349 }
350 
351 static ssize_t single_flag_store(struct kobject *kobj,
352 				 struct kobj_attribute *attr,
353 				 const char *buf, size_t count,
354 				 enum transparent_hugepage_flag flag)
355 {
356 	unsigned long value;
357 	int ret;
358 
359 	ret = kstrtoul(buf, 10, &value);
360 	if (ret < 0)
361 		return ret;
362 	if (value > 1)
363 		return -EINVAL;
364 
365 	if (value)
366 		set_bit(flag, &transparent_hugepage_flags);
367 	else
368 		clear_bit(flag, &transparent_hugepage_flags);
369 
370 	return count;
371 }
372 
373 /*
374  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376  * memory just to allocate one more hugepage.
377  */
378 static ssize_t defrag_show(struct kobject *kobj,
379 			   struct kobj_attribute *attr, char *buf)
380 {
381 	return double_flag_show(kobj, attr, buf,
382 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386 			    struct kobj_attribute *attr,
387 			    const char *buf, size_t count)
388 {
389 	return double_flag_store(kobj, attr, buf, count,
390 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394 	__ATTR(defrag, 0644, defrag_show, defrag_store);
395 
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397 		struct kobj_attribute *attr, char *buf)
398 {
399 	return single_flag_show(kobj, attr, buf,
400 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403 		struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405 	return single_flag_store(kobj, attr, buf, count,
406 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412 				struct kobj_attribute *attr, char *buf)
413 {
414 	return single_flag_show(kobj, attr, buf,
415 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418 			       struct kobj_attribute *attr,
419 			       const char *buf, size_t count)
420 {
421 	return single_flag_store(kobj, attr, buf, count,
422 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427 
428 static struct attribute *hugepage_attr[] = {
429 	&enabled_attr.attr,
430 	&defrag_attr.attr,
431 	&use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433 	&debug_cow_attr.attr,
434 #endif
435 	NULL,
436 };
437 
438 static struct attribute_group hugepage_attr_group = {
439 	.attrs = hugepage_attr,
440 };
441 
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 					 struct kobj_attribute *attr,
444 					 char *buf)
445 {
446 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448 
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 					  struct kobj_attribute *attr,
451 					  const char *buf, size_t count)
452 {
453 	unsigned long msecs;
454 	int err;
455 
456 	err = kstrtoul(buf, 10, &msecs);
457 	if (err || msecs > UINT_MAX)
458 		return -EINVAL;
459 
460 	khugepaged_scan_sleep_millisecs = msecs;
461 	wake_up_interruptible(&khugepaged_wait);
462 
463 	return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 	       scan_sleep_millisecs_store);
468 
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 					  struct kobj_attribute *attr,
471 					  char *buf)
472 {
473 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475 
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 					   struct kobj_attribute *attr,
478 					   const char *buf, size_t count)
479 {
480 	unsigned long msecs;
481 	int err;
482 
483 	err = kstrtoul(buf, 10, &msecs);
484 	if (err || msecs > UINT_MAX)
485 		return -EINVAL;
486 
487 	khugepaged_alloc_sleep_millisecs = msecs;
488 	wake_up_interruptible(&khugepaged_wait);
489 
490 	return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 	       alloc_sleep_millisecs_store);
495 
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497 				  struct kobj_attribute *attr,
498 				  char *buf)
499 {
500 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503 				   struct kobj_attribute *attr,
504 				   const char *buf, size_t count)
505 {
506 	int err;
507 	unsigned long pages;
508 
509 	err = kstrtoul(buf, 10, &pages);
510 	if (err || !pages || pages > UINT_MAX)
511 		return -EINVAL;
512 
513 	khugepaged_pages_to_scan = pages;
514 
515 	return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 	       pages_to_scan_store);
520 
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522 				    struct kobj_attribute *attr,
523 				    char *buf)
524 {
525 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528 	__ATTR_RO(pages_collapsed);
529 
530 static ssize_t full_scans_show(struct kobject *kobj,
531 			       struct kobj_attribute *attr,
532 			       char *buf)
533 {
534 	return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537 	__ATTR_RO(full_scans);
538 
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 				      struct kobj_attribute *attr, char *buf)
541 {
542 	return single_flag_show(kobj, attr, buf,
543 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 				       struct kobj_attribute *attr,
547 				       const char *buf, size_t count)
548 {
549 	return single_flag_store(kobj, attr, buf, count,
550 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553 	__ATTR(defrag, 0644, khugepaged_defrag_show,
554 	       khugepaged_defrag_store);
555 
556 /*
557  * max_ptes_none controls if khugepaged should collapse hugepages over
558  * any unmapped ptes in turn potentially increasing the memory
559  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560  * reduce the available free memory in the system as it
561  * runs. Increasing max_ptes_none will instead potentially reduce the
562  * free memory in the system during the khugepaged scan.
563  */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 					     struct kobj_attribute *attr,
566 					     char *buf)
567 {
568 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 					      struct kobj_attribute *attr,
572 					      const char *buf, size_t count)
573 {
574 	int err;
575 	unsigned long max_ptes_none;
576 
577 	err = kstrtoul(buf, 10, &max_ptes_none);
578 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 		return -EINVAL;
580 
581 	khugepaged_max_ptes_none = max_ptes_none;
582 
583 	return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 	       khugepaged_max_ptes_none_store);
588 
589 static struct attribute *khugepaged_attr[] = {
590 	&khugepaged_defrag_attr.attr,
591 	&khugepaged_max_ptes_none_attr.attr,
592 	&pages_to_scan_attr.attr,
593 	&pages_collapsed_attr.attr,
594 	&full_scans_attr.attr,
595 	&scan_sleep_millisecs_attr.attr,
596 	&alloc_sleep_millisecs_attr.attr,
597 	NULL,
598 };
599 
600 static struct attribute_group khugepaged_attr_group = {
601 	.attrs = khugepaged_attr,
602 	.name = "khugepaged",
603 };
604 
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607 	int err;
608 
609 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 	if (unlikely(!*hugepage_kobj)) {
611 		pr_err("failed to create transparent hugepage kobject\n");
612 		return -ENOMEM;
613 	}
614 
615 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616 	if (err) {
617 		pr_err("failed to register transparent hugepage group\n");
618 		goto delete_obj;
619 	}
620 
621 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622 	if (err) {
623 		pr_err("failed to register transparent hugepage group\n");
624 		goto remove_hp_group;
625 	}
626 
627 	return 0;
628 
629 remove_hp_group:
630 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632 	kobject_put(*hugepage_kobj);
633 	return err;
634 }
635 
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 	kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645 	return 0;
646 }
647 
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652 
653 static int __init hugepage_init(void)
654 {
655 	int err;
656 	struct kobject *hugepage_kobj;
657 
658 	if (!has_transparent_hugepage()) {
659 		transparent_hugepage_flags = 0;
660 		return -EINVAL;
661 	}
662 
663 	err = hugepage_init_sysfs(&hugepage_kobj);
664 	if (err)
665 		goto err_sysfs;
666 
667 	err = khugepaged_slab_init();
668 	if (err)
669 		goto err_slab;
670 
671 	err = register_shrinker(&huge_zero_page_shrinker);
672 	if (err)
673 		goto err_hzp_shrinker;
674 	err = register_shrinker(&deferred_split_shrinker);
675 	if (err)
676 		goto err_split_shrinker;
677 
678 	/*
679 	 * By default disable transparent hugepages on smaller systems,
680 	 * where the extra memory used could hurt more than TLB overhead
681 	 * is likely to save.  The admin can still enable it through /sys.
682 	 */
683 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
684 		transparent_hugepage_flags = 0;
685 		return 0;
686 	}
687 
688 	err = start_stop_khugepaged();
689 	if (err)
690 		goto err_khugepaged;
691 
692 	return 0;
693 err_khugepaged:
694 	unregister_shrinker(&deferred_split_shrinker);
695 err_split_shrinker:
696 	unregister_shrinker(&huge_zero_page_shrinker);
697 err_hzp_shrinker:
698 	khugepaged_slab_exit();
699 err_slab:
700 	hugepage_exit_sysfs(hugepage_kobj);
701 err_sysfs:
702 	return err;
703 }
704 subsys_initcall(hugepage_init);
705 
706 static int __init setup_transparent_hugepage(char *str)
707 {
708 	int ret = 0;
709 	if (!str)
710 		goto out;
711 	if (!strcmp(str, "always")) {
712 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 			&transparent_hugepage_flags);
714 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 			  &transparent_hugepage_flags);
716 		ret = 1;
717 	} else if (!strcmp(str, "madvise")) {
718 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 			  &transparent_hugepage_flags);
720 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 			&transparent_hugepage_flags);
722 		ret = 1;
723 	} else if (!strcmp(str, "never")) {
724 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 			  &transparent_hugepage_flags);
726 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 			  &transparent_hugepage_flags);
728 		ret = 1;
729 	}
730 out:
731 	if (!ret)
732 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
733 	return ret;
734 }
735 __setup("transparent_hugepage=", setup_transparent_hugepage);
736 
737 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
738 {
739 	if (likely(vma->vm_flags & VM_WRITE))
740 		pmd = pmd_mkwrite(pmd);
741 	return pmd;
742 }
743 
744 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
745 {
746 	pmd_t entry;
747 	entry = mk_pmd(page, prot);
748 	entry = pmd_mkhuge(entry);
749 	return entry;
750 }
751 
752 static inline struct list_head *page_deferred_list(struct page *page)
753 {
754 	/*
755 	 * ->lru in the tail pages is occupied by compound_head.
756 	 * Let's use ->mapping + ->index in the second tail page as list_head.
757 	 */
758 	return (struct list_head *)&page[2].mapping;
759 }
760 
761 void prep_transhuge_page(struct page *page)
762 {
763 	/*
764 	 * we use page->mapping and page->indexlru in second tail page
765 	 * as list_head: assuming THP order >= 2
766 	 */
767 	BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768 
769 	INIT_LIST_HEAD(page_deferred_list(page));
770 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771 }
772 
773 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 					struct vm_area_struct *vma,
775 					unsigned long address, pmd_t *pmd,
776 					struct page *page, gfp_t gfp,
777 					unsigned int flags)
778 {
779 	struct mem_cgroup *memcg;
780 	pgtable_t pgtable;
781 	spinlock_t *ptl;
782 	unsigned long haddr = address & HPAGE_PMD_MASK;
783 
784 	VM_BUG_ON_PAGE(!PageCompound(page), page);
785 
786 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
787 		put_page(page);
788 		count_vm_event(THP_FAULT_FALLBACK);
789 		return VM_FAULT_FALLBACK;
790 	}
791 
792 	pgtable = pte_alloc_one(mm, haddr);
793 	if (unlikely(!pgtable)) {
794 		mem_cgroup_cancel_charge(page, memcg, true);
795 		put_page(page);
796 		return VM_FAULT_OOM;
797 	}
798 
799 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
800 	/*
801 	 * The memory barrier inside __SetPageUptodate makes sure that
802 	 * clear_huge_page writes become visible before the set_pmd_at()
803 	 * write.
804 	 */
805 	__SetPageUptodate(page);
806 
807 	ptl = pmd_lock(mm, pmd);
808 	if (unlikely(!pmd_none(*pmd))) {
809 		spin_unlock(ptl);
810 		mem_cgroup_cancel_charge(page, memcg, true);
811 		put_page(page);
812 		pte_free(mm, pgtable);
813 	} else {
814 		pmd_t entry;
815 
816 		/* Deliver the page fault to userland */
817 		if (userfaultfd_missing(vma)) {
818 			int ret;
819 
820 			spin_unlock(ptl);
821 			mem_cgroup_cancel_charge(page, memcg, true);
822 			put_page(page);
823 			pte_free(mm, pgtable);
824 			ret = handle_userfault(vma, address, flags,
825 					       VM_UFFD_MISSING);
826 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 			return ret;
828 		}
829 
830 		entry = mk_huge_pmd(page, vma->vm_page_prot);
831 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
832 		page_add_new_anon_rmap(page, vma, haddr, true);
833 		mem_cgroup_commit_charge(page, memcg, false, true);
834 		lru_cache_add_active_or_unevictable(page, vma);
835 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
836 		set_pmd_at(mm, haddr, pmd, entry);
837 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 		atomic_long_inc(&mm->nr_ptes);
839 		spin_unlock(ptl);
840 		count_vm_event(THP_FAULT_ALLOC);
841 	}
842 
843 	return 0;
844 }
845 
846 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
847 {
848 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
849 }
850 
851 /* Caller must hold page table lock. */
852 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
853 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
854 		struct page *zero_page)
855 {
856 	pmd_t entry;
857 	if (!pmd_none(*pmd))
858 		return false;
859 	entry = mk_pmd(zero_page, vma->vm_page_prot);
860 	entry = pmd_mkhuge(entry);
861 	if (pgtable)
862 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
863 	set_pmd_at(mm, haddr, pmd, entry);
864 	atomic_long_inc(&mm->nr_ptes);
865 	return true;
866 }
867 
868 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
869 			       unsigned long address, pmd_t *pmd,
870 			       unsigned int flags)
871 {
872 	gfp_t gfp;
873 	struct page *page;
874 	unsigned long haddr = address & HPAGE_PMD_MASK;
875 
876 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
877 		return VM_FAULT_FALLBACK;
878 	if (unlikely(anon_vma_prepare(vma)))
879 		return VM_FAULT_OOM;
880 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
881 		return VM_FAULT_OOM;
882 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
883 			transparent_hugepage_use_zero_page()) {
884 		spinlock_t *ptl;
885 		pgtable_t pgtable;
886 		struct page *zero_page;
887 		bool set;
888 		int ret;
889 		pgtable = pte_alloc_one(mm, haddr);
890 		if (unlikely(!pgtable))
891 			return VM_FAULT_OOM;
892 		zero_page = get_huge_zero_page();
893 		if (unlikely(!zero_page)) {
894 			pte_free(mm, pgtable);
895 			count_vm_event(THP_FAULT_FALLBACK);
896 			return VM_FAULT_FALLBACK;
897 		}
898 		ptl = pmd_lock(mm, pmd);
899 		ret = 0;
900 		set = false;
901 		if (pmd_none(*pmd)) {
902 			if (userfaultfd_missing(vma)) {
903 				spin_unlock(ptl);
904 				ret = handle_userfault(vma, address, flags,
905 						       VM_UFFD_MISSING);
906 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
907 			} else {
908 				set_huge_zero_page(pgtable, mm, vma,
909 						   haddr, pmd,
910 						   zero_page);
911 				spin_unlock(ptl);
912 				set = true;
913 			}
914 		} else
915 			spin_unlock(ptl);
916 		if (!set) {
917 			pte_free(mm, pgtable);
918 			put_huge_zero_page();
919 		}
920 		return ret;
921 	}
922 	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
923 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
924 	if (unlikely(!page)) {
925 		count_vm_event(THP_FAULT_FALLBACK);
926 		return VM_FAULT_FALLBACK;
927 	}
928 	prep_transhuge_page(page);
929 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
930 					    flags);
931 }
932 
933 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
934 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
935 {
936 	struct mm_struct *mm = vma->vm_mm;
937 	pmd_t entry;
938 	spinlock_t *ptl;
939 
940 	ptl = pmd_lock(mm, pmd);
941 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
942 	if (pfn_t_devmap(pfn))
943 		entry = pmd_mkdevmap(entry);
944 	if (write) {
945 		entry = pmd_mkyoung(pmd_mkdirty(entry));
946 		entry = maybe_pmd_mkwrite(entry, vma);
947 	}
948 	set_pmd_at(mm, addr, pmd, entry);
949 	update_mmu_cache_pmd(vma, addr, pmd);
950 	spin_unlock(ptl);
951 }
952 
953 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
954 			pmd_t *pmd, pfn_t pfn, bool write)
955 {
956 	pgprot_t pgprot = vma->vm_page_prot;
957 	/*
958 	 * If we had pmd_special, we could avoid all these restrictions,
959 	 * but we need to be consistent with PTEs and architectures that
960 	 * can't support a 'special' bit.
961 	 */
962 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
963 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
964 						(VM_PFNMAP|VM_MIXEDMAP));
965 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
966 	BUG_ON(!pfn_t_devmap(pfn));
967 
968 	if (addr < vma->vm_start || addr >= vma->vm_end)
969 		return VM_FAULT_SIGBUS;
970 	if (track_pfn_insert(vma, &pgprot, pfn))
971 		return VM_FAULT_SIGBUS;
972 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
973 	return VM_FAULT_NOPAGE;
974 }
975 
976 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
977 		pmd_t *pmd)
978 {
979 	pmd_t _pmd;
980 
981 	/*
982 	 * We should set the dirty bit only for FOLL_WRITE but for now
983 	 * the dirty bit in the pmd is meaningless.  And if the dirty
984 	 * bit will become meaningful and we'll only set it with
985 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
986 	 * set the young bit, instead of the current set_pmd_at.
987 	 */
988 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
989 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
990 				pmd, _pmd,  1))
991 		update_mmu_cache_pmd(vma, addr, pmd);
992 }
993 
994 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
995 		pmd_t *pmd, int flags)
996 {
997 	unsigned long pfn = pmd_pfn(*pmd);
998 	struct mm_struct *mm = vma->vm_mm;
999 	struct dev_pagemap *pgmap;
1000 	struct page *page;
1001 
1002 	assert_spin_locked(pmd_lockptr(mm, pmd));
1003 
1004 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005 		return NULL;
1006 
1007 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1008 		/* pass */;
1009 	else
1010 		return NULL;
1011 
1012 	if (flags & FOLL_TOUCH)
1013 		touch_pmd(vma, addr, pmd);
1014 
1015 	/*
1016 	 * device mapped pages can only be returned if the
1017 	 * caller will manage the page reference count.
1018 	 */
1019 	if (!(flags & FOLL_GET))
1020 		return ERR_PTR(-EEXIST);
1021 
1022 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1023 	pgmap = get_dev_pagemap(pfn, NULL);
1024 	if (!pgmap)
1025 		return ERR_PTR(-EFAULT);
1026 	page = pfn_to_page(pfn);
1027 	get_page(page);
1028 	put_dev_pagemap(pgmap);
1029 
1030 	return page;
1031 }
1032 
1033 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1035 		  struct vm_area_struct *vma)
1036 {
1037 	spinlock_t *dst_ptl, *src_ptl;
1038 	struct page *src_page;
1039 	pmd_t pmd;
1040 	pgtable_t pgtable = NULL;
1041 	int ret;
1042 
1043 	if (!vma_is_dax(vma)) {
1044 		ret = -ENOMEM;
1045 		pgtable = pte_alloc_one(dst_mm, addr);
1046 		if (unlikely(!pgtable))
1047 			goto out;
1048 	}
1049 
1050 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1051 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1052 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1053 
1054 	ret = -EAGAIN;
1055 	pmd = *src_pmd;
1056 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1057 		pte_free(dst_mm, pgtable);
1058 		goto out_unlock;
1059 	}
1060 	/*
1061 	 * When page table lock is held, the huge zero pmd should not be
1062 	 * under splitting since we don't split the page itself, only pmd to
1063 	 * a page table.
1064 	 */
1065 	if (is_huge_zero_pmd(pmd)) {
1066 		struct page *zero_page;
1067 		/*
1068 		 * get_huge_zero_page() will never allocate a new page here,
1069 		 * since we already have a zero page to copy. It just takes a
1070 		 * reference.
1071 		 */
1072 		zero_page = get_huge_zero_page();
1073 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1074 				zero_page);
1075 		ret = 0;
1076 		goto out_unlock;
1077 	}
1078 
1079 	if (!vma_is_dax(vma)) {
1080 		/* thp accounting separate from pmd_devmap accounting */
1081 		src_page = pmd_page(pmd);
1082 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1083 		get_page(src_page);
1084 		page_dup_rmap(src_page, true);
1085 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1086 		atomic_long_inc(&dst_mm->nr_ptes);
1087 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1088 	}
1089 
1090 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1091 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1092 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1093 
1094 	ret = 0;
1095 out_unlock:
1096 	spin_unlock(src_ptl);
1097 	spin_unlock(dst_ptl);
1098 out:
1099 	return ret;
1100 }
1101 
1102 void huge_pmd_set_accessed(struct mm_struct *mm,
1103 			   struct vm_area_struct *vma,
1104 			   unsigned long address,
1105 			   pmd_t *pmd, pmd_t orig_pmd,
1106 			   int dirty)
1107 {
1108 	spinlock_t *ptl;
1109 	pmd_t entry;
1110 	unsigned long haddr;
1111 
1112 	ptl = pmd_lock(mm, pmd);
1113 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1114 		goto unlock;
1115 
1116 	entry = pmd_mkyoung(orig_pmd);
1117 	haddr = address & HPAGE_PMD_MASK;
1118 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1119 		update_mmu_cache_pmd(vma, address, pmd);
1120 
1121 unlock:
1122 	spin_unlock(ptl);
1123 }
1124 
1125 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1126 					struct vm_area_struct *vma,
1127 					unsigned long address,
1128 					pmd_t *pmd, pmd_t orig_pmd,
1129 					struct page *page,
1130 					unsigned long haddr)
1131 {
1132 	struct mem_cgroup *memcg;
1133 	spinlock_t *ptl;
1134 	pgtable_t pgtable;
1135 	pmd_t _pmd;
1136 	int ret = 0, i;
1137 	struct page **pages;
1138 	unsigned long mmun_start;	/* For mmu_notifiers */
1139 	unsigned long mmun_end;		/* For mmu_notifiers */
1140 
1141 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1142 			GFP_KERNEL);
1143 	if (unlikely(!pages)) {
1144 		ret |= VM_FAULT_OOM;
1145 		goto out;
1146 	}
1147 
1148 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1149 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1150 					       __GFP_OTHER_NODE,
1151 					       vma, address, page_to_nid(page));
1152 		if (unlikely(!pages[i] ||
1153 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1154 						   &memcg, false))) {
1155 			if (pages[i])
1156 				put_page(pages[i]);
1157 			while (--i >= 0) {
1158 				memcg = (void *)page_private(pages[i]);
1159 				set_page_private(pages[i], 0);
1160 				mem_cgroup_cancel_charge(pages[i], memcg,
1161 						false);
1162 				put_page(pages[i]);
1163 			}
1164 			kfree(pages);
1165 			ret |= VM_FAULT_OOM;
1166 			goto out;
1167 		}
1168 		set_page_private(pages[i], (unsigned long)memcg);
1169 	}
1170 
1171 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1172 		copy_user_highpage(pages[i], page + i,
1173 				   haddr + PAGE_SIZE * i, vma);
1174 		__SetPageUptodate(pages[i]);
1175 		cond_resched();
1176 	}
1177 
1178 	mmun_start = haddr;
1179 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1180 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1181 
1182 	ptl = pmd_lock(mm, pmd);
1183 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1184 		goto out_free_pages;
1185 	VM_BUG_ON_PAGE(!PageHead(page), page);
1186 
1187 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1188 	/* leave pmd empty until pte is filled */
1189 
1190 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1191 	pmd_populate(mm, &_pmd, pgtable);
1192 
1193 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1194 		pte_t *pte, entry;
1195 		entry = mk_pte(pages[i], vma->vm_page_prot);
1196 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1197 		memcg = (void *)page_private(pages[i]);
1198 		set_page_private(pages[i], 0);
1199 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1200 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1201 		lru_cache_add_active_or_unevictable(pages[i], vma);
1202 		pte = pte_offset_map(&_pmd, haddr);
1203 		VM_BUG_ON(!pte_none(*pte));
1204 		set_pte_at(mm, haddr, pte, entry);
1205 		pte_unmap(pte);
1206 	}
1207 	kfree(pages);
1208 
1209 	smp_wmb(); /* make pte visible before pmd */
1210 	pmd_populate(mm, pmd, pgtable);
1211 	page_remove_rmap(page, true);
1212 	spin_unlock(ptl);
1213 
1214 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1215 
1216 	ret |= VM_FAULT_WRITE;
1217 	put_page(page);
1218 
1219 out:
1220 	return ret;
1221 
1222 out_free_pages:
1223 	spin_unlock(ptl);
1224 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1225 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1226 		memcg = (void *)page_private(pages[i]);
1227 		set_page_private(pages[i], 0);
1228 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1229 		put_page(pages[i]);
1230 	}
1231 	kfree(pages);
1232 	goto out;
1233 }
1234 
1235 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1236 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1237 {
1238 	spinlock_t *ptl;
1239 	int ret = 0;
1240 	struct page *page = NULL, *new_page;
1241 	struct mem_cgroup *memcg;
1242 	unsigned long haddr;
1243 	unsigned long mmun_start;	/* For mmu_notifiers */
1244 	unsigned long mmun_end;		/* For mmu_notifiers */
1245 	gfp_t huge_gfp;			/* for allocation and charge */
1246 
1247 	ptl = pmd_lockptr(mm, pmd);
1248 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1249 	haddr = address & HPAGE_PMD_MASK;
1250 	if (is_huge_zero_pmd(orig_pmd))
1251 		goto alloc;
1252 	spin_lock(ptl);
1253 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1254 		goto out_unlock;
1255 
1256 	page = pmd_page(orig_pmd);
1257 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1258 	/*
1259 	 * We can only reuse the page if nobody else maps the huge page or it's
1260 	 * part. We can do it by checking page_mapcount() on each sub-page, but
1261 	 * it's expensive.
1262 	 * The cheaper way is to check page_count() to be equal 1: every
1263 	 * mapcount takes page reference reference, so this way we can
1264 	 * guarantee, that the PMD is the only mapping.
1265 	 * This can give false negative if somebody pinned the page, but that's
1266 	 * fine.
1267 	 */
1268 	if (page_mapcount(page) == 1 && page_count(page) == 1) {
1269 		pmd_t entry;
1270 		entry = pmd_mkyoung(orig_pmd);
1271 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1273 			update_mmu_cache_pmd(vma, address, pmd);
1274 		ret |= VM_FAULT_WRITE;
1275 		goto out_unlock;
1276 	}
1277 	get_page(page);
1278 	spin_unlock(ptl);
1279 alloc:
1280 	if (transparent_hugepage_enabled(vma) &&
1281 	    !transparent_hugepage_debug_cow()) {
1282 		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1283 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1284 	} else
1285 		new_page = NULL;
1286 
1287 	if (likely(new_page)) {
1288 		prep_transhuge_page(new_page);
1289 	} else {
1290 		if (!page) {
1291 			split_huge_pmd(vma, pmd, address);
1292 			ret |= VM_FAULT_FALLBACK;
1293 		} else {
1294 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1295 					pmd, orig_pmd, page, haddr);
1296 			if (ret & VM_FAULT_OOM) {
1297 				split_huge_pmd(vma, pmd, address);
1298 				ret |= VM_FAULT_FALLBACK;
1299 			}
1300 			put_page(page);
1301 		}
1302 		count_vm_event(THP_FAULT_FALLBACK);
1303 		goto out;
1304 	}
1305 
1306 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1307 					   true))) {
1308 		put_page(new_page);
1309 		if (page) {
1310 			split_huge_pmd(vma, pmd, address);
1311 			put_page(page);
1312 		} else
1313 			split_huge_pmd(vma, pmd, address);
1314 		ret |= VM_FAULT_FALLBACK;
1315 		count_vm_event(THP_FAULT_FALLBACK);
1316 		goto out;
1317 	}
1318 
1319 	count_vm_event(THP_FAULT_ALLOC);
1320 
1321 	if (!page)
1322 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1323 	else
1324 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1325 	__SetPageUptodate(new_page);
1326 
1327 	mmun_start = haddr;
1328 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1329 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1330 
1331 	spin_lock(ptl);
1332 	if (page)
1333 		put_page(page);
1334 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1335 		spin_unlock(ptl);
1336 		mem_cgroup_cancel_charge(new_page, memcg, true);
1337 		put_page(new_page);
1338 		goto out_mn;
1339 	} else {
1340 		pmd_t entry;
1341 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1342 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1343 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1344 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1345 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1346 		lru_cache_add_active_or_unevictable(new_page, vma);
1347 		set_pmd_at(mm, haddr, pmd, entry);
1348 		update_mmu_cache_pmd(vma, address, pmd);
1349 		if (!page) {
1350 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1351 			put_huge_zero_page();
1352 		} else {
1353 			VM_BUG_ON_PAGE(!PageHead(page), page);
1354 			page_remove_rmap(page, true);
1355 			put_page(page);
1356 		}
1357 		ret |= VM_FAULT_WRITE;
1358 	}
1359 	spin_unlock(ptl);
1360 out_mn:
1361 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1362 out:
1363 	return ret;
1364 out_unlock:
1365 	spin_unlock(ptl);
1366 	return ret;
1367 }
1368 
1369 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1370 				   unsigned long addr,
1371 				   pmd_t *pmd,
1372 				   unsigned int flags)
1373 {
1374 	struct mm_struct *mm = vma->vm_mm;
1375 	struct page *page = NULL;
1376 
1377 	assert_spin_locked(pmd_lockptr(mm, pmd));
1378 
1379 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1380 		goto out;
1381 
1382 	/* Avoid dumping huge zero page */
1383 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1384 		return ERR_PTR(-EFAULT);
1385 
1386 	/* Full NUMA hinting faults to serialise migration in fault paths */
1387 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1388 		goto out;
1389 
1390 	page = pmd_page(*pmd);
1391 	VM_BUG_ON_PAGE(!PageHead(page), page);
1392 	if (flags & FOLL_TOUCH)
1393 		touch_pmd(vma, addr, pmd);
1394 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1395 		/*
1396 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1397 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1398 		 *
1399 		 * In most cases the pmd is the only mapping of the page as we
1400 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1401 		 * writable private mappings in populate_vma_page_range().
1402 		 *
1403 		 * The only scenario when we have the page shared here is if we
1404 		 * mlocking read-only mapping shared over fork(). We skip
1405 		 * mlocking such pages.
1406 		 */
1407 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1408 				page->mapping && trylock_page(page)) {
1409 			lru_add_drain();
1410 			if (page->mapping)
1411 				mlock_vma_page(page);
1412 			unlock_page(page);
1413 		}
1414 	}
1415 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1416 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1417 	if (flags & FOLL_GET)
1418 		get_page(page);
1419 
1420 out:
1421 	return page;
1422 }
1423 
1424 /* NUMA hinting page fault entry point for trans huge pmds */
1425 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1426 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1427 {
1428 	spinlock_t *ptl;
1429 	struct anon_vma *anon_vma = NULL;
1430 	struct page *page;
1431 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1432 	int page_nid = -1, this_nid = numa_node_id();
1433 	int target_nid, last_cpupid = -1;
1434 	bool page_locked;
1435 	bool migrated = false;
1436 	bool was_writable;
1437 	int flags = 0;
1438 
1439 	/* A PROT_NONE fault should not end up here */
1440 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1441 
1442 	ptl = pmd_lock(mm, pmdp);
1443 	if (unlikely(!pmd_same(pmd, *pmdp)))
1444 		goto out_unlock;
1445 
1446 	/*
1447 	 * If there are potential migrations, wait for completion and retry
1448 	 * without disrupting NUMA hinting information. Do not relock and
1449 	 * check_same as the page may no longer be mapped.
1450 	 */
1451 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1452 		page = pmd_page(*pmdp);
1453 		spin_unlock(ptl);
1454 		wait_on_page_locked(page);
1455 		goto out;
1456 	}
1457 
1458 	page = pmd_page(pmd);
1459 	BUG_ON(is_huge_zero_page(page));
1460 	page_nid = page_to_nid(page);
1461 	last_cpupid = page_cpupid_last(page);
1462 	count_vm_numa_event(NUMA_HINT_FAULTS);
1463 	if (page_nid == this_nid) {
1464 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1465 		flags |= TNF_FAULT_LOCAL;
1466 	}
1467 
1468 	/* See similar comment in do_numa_page for explanation */
1469 	if (!(vma->vm_flags & VM_WRITE))
1470 		flags |= TNF_NO_GROUP;
1471 
1472 	/*
1473 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1474 	 * page_table_lock if at all possible
1475 	 */
1476 	page_locked = trylock_page(page);
1477 	target_nid = mpol_misplaced(page, vma, haddr);
1478 	if (target_nid == -1) {
1479 		/* If the page was locked, there are no parallel migrations */
1480 		if (page_locked)
1481 			goto clear_pmdnuma;
1482 	}
1483 
1484 	/* Migration could have started since the pmd_trans_migrating check */
1485 	if (!page_locked) {
1486 		spin_unlock(ptl);
1487 		wait_on_page_locked(page);
1488 		page_nid = -1;
1489 		goto out;
1490 	}
1491 
1492 	/*
1493 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1494 	 * to serialises splits
1495 	 */
1496 	get_page(page);
1497 	spin_unlock(ptl);
1498 	anon_vma = page_lock_anon_vma_read(page);
1499 
1500 	/* Confirm the PMD did not change while page_table_lock was released */
1501 	spin_lock(ptl);
1502 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1503 		unlock_page(page);
1504 		put_page(page);
1505 		page_nid = -1;
1506 		goto out_unlock;
1507 	}
1508 
1509 	/* Bail if we fail to protect against THP splits for any reason */
1510 	if (unlikely(!anon_vma)) {
1511 		put_page(page);
1512 		page_nid = -1;
1513 		goto clear_pmdnuma;
1514 	}
1515 
1516 	/*
1517 	 * Migrate the THP to the requested node, returns with page unlocked
1518 	 * and access rights restored.
1519 	 */
1520 	spin_unlock(ptl);
1521 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1522 				pmdp, pmd, addr, page, target_nid);
1523 	if (migrated) {
1524 		flags |= TNF_MIGRATED;
1525 		page_nid = target_nid;
1526 	} else
1527 		flags |= TNF_MIGRATE_FAIL;
1528 
1529 	goto out;
1530 clear_pmdnuma:
1531 	BUG_ON(!PageLocked(page));
1532 	was_writable = pmd_write(pmd);
1533 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1534 	pmd = pmd_mkyoung(pmd);
1535 	if (was_writable)
1536 		pmd = pmd_mkwrite(pmd);
1537 	set_pmd_at(mm, haddr, pmdp, pmd);
1538 	update_mmu_cache_pmd(vma, addr, pmdp);
1539 	unlock_page(page);
1540 out_unlock:
1541 	spin_unlock(ptl);
1542 
1543 out:
1544 	if (anon_vma)
1545 		page_unlock_anon_vma_read(anon_vma);
1546 
1547 	if (page_nid != -1)
1548 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1549 
1550 	return 0;
1551 }
1552 
1553 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1554 		pmd_t *pmd, unsigned long addr, unsigned long next)
1555 
1556 {
1557 	spinlock_t *ptl;
1558 	pmd_t orig_pmd;
1559 	struct page *page;
1560 	struct mm_struct *mm = tlb->mm;
1561 	int ret = 0;
1562 
1563 	ptl = pmd_trans_huge_lock(pmd, vma);
1564 	if (!ptl)
1565 		goto out_unlocked;
1566 
1567 	orig_pmd = *pmd;
1568 	if (is_huge_zero_pmd(orig_pmd)) {
1569 		ret = 1;
1570 		goto out;
1571 	}
1572 
1573 	page = pmd_page(orig_pmd);
1574 	/*
1575 	 * If other processes are mapping this page, we couldn't discard
1576 	 * the page unless they all do MADV_FREE so let's skip the page.
1577 	 */
1578 	if (page_mapcount(page) != 1)
1579 		goto out;
1580 
1581 	if (!trylock_page(page))
1582 		goto out;
1583 
1584 	/*
1585 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1586 	 * will deactivate only them.
1587 	 */
1588 	if (next - addr != HPAGE_PMD_SIZE) {
1589 		get_page(page);
1590 		spin_unlock(ptl);
1591 		if (split_huge_page(page)) {
1592 			put_page(page);
1593 			unlock_page(page);
1594 			goto out_unlocked;
1595 		}
1596 		put_page(page);
1597 		unlock_page(page);
1598 		ret = 1;
1599 		goto out_unlocked;
1600 	}
1601 
1602 	if (PageDirty(page))
1603 		ClearPageDirty(page);
1604 	unlock_page(page);
1605 
1606 	if (PageActive(page))
1607 		deactivate_page(page);
1608 
1609 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1610 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 			tlb->fullmm);
1612 		orig_pmd = pmd_mkold(orig_pmd);
1613 		orig_pmd = pmd_mkclean(orig_pmd);
1614 
1615 		set_pmd_at(mm, addr, pmd, orig_pmd);
1616 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617 	}
1618 	ret = 1;
1619 out:
1620 	spin_unlock(ptl);
1621 out_unlocked:
1622 	return ret;
1623 }
1624 
1625 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1626 		 pmd_t *pmd, unsigned long addr)
1627 {
1628 	pmd_t orig_pmd;
1629 	spinlock_t *ptl;
1630 
1631 	ptl = __pmd_trans_huge_lock(pmd, vma);
1632 	if (!ptl)
1633 		return 0;
1634 	/*
1635 	 * For architectures like ppc64 we look at deposited pgtable
1636 	 * when calling pmdp_huge_get_and_clear. So do the
1637 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1638 	 * operations.
1639 	 */
1640 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1641 			tlb->fullmm);
1642 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643 	if (vma_is_dax(vma)) {
1644 		spin_unlock(ptl);
1645 		if (is_huge_zero_pmd(orig_pmd))
1646 			put_huge_zero_page();
1647 	} else if (is_huge_zero_pmd(orig_pmd)) {
1648 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1649 		atomic_long_dec(&tlb->mm->nr_ptes);
1650 		spin_unlock(ptl);
1651 		put_huge_zero_page();
1652 	} else {
1653 		struct page *page = pmd_page(orig_pmd);
1654 		page_remove_rmap(page, true);
1655 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1656 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1657 		VM_BUG_ON_PAGE(!PageHead(page), page);
1658 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1659 		atomic_long_dec(&tlb->mm->nr_ptes);
1660 		spin_unlock(ptl);
1661 		tlb_remove_page(tlb, page);
1662 	}
1663 	return 1;
1664 }
1665 
1666 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1667 		  unsigned long old_addr,
1668 		  unsigned long new_addr, unsigned long old_end,
1669 		  pmd_t *old_pmd, pmd_t *new_pmd)
1670 {
1671 	spinlock_t *old_ptl, *new_ptl;
1672 	pmd_t pmd;
1673 
1674 	struct mm_struct *mm = vma->vm_mm;
1675 
1676 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1677 	    (new_addr & ~HPAGE_PMD_MASK) ||
1678 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1679 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1680 		return false;
1681 
1682 	/*
1683 	 * The destination pmd shouldn't be established, free_pgtables()
1684 	 * should have release it.
1685 	 */
1686 	if (WARN_ON(!pmd_none(*new_pmd))) {
1687 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1688 		return false;
1689 	}
1690 
1691 	/*
1692 	 * We don't have to worry about the ordering of src and dst
1693 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1694 	 */
1695 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1696 	if (old_ptl) {
1697 		new_ptl = pmd_lockptr(mm, new_pmd);
1698 		if (new_ptl != old_ptl)
1699 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1700 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1701 		VM_BUG_ON(!pmd_none(*new_pmd));
1702 
1703 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1704 			pgtable_t pgtable;
1705 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1706 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1707 		}
1708 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1709 		if (new_ptl != old_ptl)
1710 			spin_unlock(new_ptl);
1711 		spin_unlock(old_ptl);
1712 		return true;
1713 	}
1714 	return false;
1715 }
1716 
1717 /*
1718  * Returns
1719  *  - 0 if PMD could not be locked
1720  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1721  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1722  */
1723 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1724 		unsigned long addr, pgprot_t newprot, int prot_numa)
1725 {
1726 	struct mm_struct *mm = vma->vm_mm;
1727 	spinlock_t *ptl;
1728 	int ret = 0;
1729 
1730 	ptl = __pmd_trans_huge_lock(pmd, vma);
1731 	if (ptl) {
1732 		pmd_t entry;
1733 		bool preserve_write = prot_numa && pmd_write(*pmd);
1734 		ret = 1;
1735 
1736 		/*
1737 		 * Avoid trapping faults against the zero page. The read-only
1738 		 * data is likely to be read-cached on the local CPU and
1739 		 * local/remote hits to the zero page are not interesting.
1740 		 */
1741 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1742 			spin_unlock(ptl);
1743 			return ret;
1744 		}
1745 
1746 		if (!prot_numa || !pmd_protnone(*pmd)) {
1747 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1748 			entry = pmd_modify(entry, newprot);
1749 			if (preserve_write)
1750 				entry = pmd_mkwrite(entry);
1751 			ret = HPAGE_PMD_NR;
1752 			set_pmd_at(mm, addr, pmd, entry);
1753 			BUG_ON(!preserve_write && pmd_write(entry));
1754 		}
1755 		spin_unlock(ptl);
1756 	}
1757 
1758 	return ret;
1759 }
1760 
1761 /*
1762  * Returns true if a given pmd maps a thp, false otherwise.
1763  *
1764  * Note that if it returns true, this routine returns without unlocking page
1765  * table lock. So callers must unlock it.
1766  */
1767 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1768 {
1769 	spinlock_t *ptl;
1770 	ptl = pmd_lock(vma->vm_mm, pmd);
1771 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1772 		return ptl;
1773 	spin_unlock(ptl);
1774 	return NULL;
1775 }
1776 
1777 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1778 
1779 int hugepage_madvise(struct vm_area_struct *vma,
1780 		     unsigned long *vm_flags, int advice)
1781 {
1782 	switch (advice) {
1783 	case MADV_HUGEPAGE:
1784 #ifdef CONFIG_S390
1785 		/*
1786 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1787 		 * can't handle this properly after s390_enable_sie, so we simply
1788 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1789 		 */
1790 		if (mm_has_pgste(vma->vm_mm))
1791 			return 0;
1792 #endif
1793 		/*
1794 		 * Be somewhat over-protective like KSM for now!
1795 		 */
1796 		if (*vm_flags & VM_NO_THP)
1797 			return -EINVAL;
1798 		*vm_flags &= ~VM_NOHUGEPAGE;
1799 		*vm_flags |= VM_HUGEPAGE;
1800 		/*
1801 		 * If the vma become good for khugepaged to scan,
1802 		 * register it here without waiting a page fault that
1803 		 * may not happen any time soon.
1804 		 */
1805 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1806 			return -ENOMEM;
1807 		break;
1808 	case MADV_NOHUGEPAGE:
1809 		/*
1810 		 * Be somewhat over-protective like KSM for now!
1811 		 */
1812 		if (*vm_flags & VM_NO_THP)
1813 			return -EINVAL;
1814 		*vm_flags &= ~VM_HUGEPAGE;
1815 		*vm_flags |= VM_NOHUGEPAGE;
1816 		/*
1817 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1818 		 * this vma even if we leave the mm registered in khugepaged if
1819 		 * it got registered before VM_NOHUGEPAGE was set.
1820 		 */
1821 		break;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 static int __init khugepaged_slab_init(void)
1828 {
1829 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1830 					  sizeof(struct mm_slot),
1831 					  __alignof__(struct mm_slot), 0, NULL);
1832 	if (!mm_slot_cache)
1833 		return -ENOMEM;
1834 
1835 	return 0;
1836 }
1837 
1838 static void __init khugepaged_slab_exit(void)
1839 {
1840 	kmem_cache_destroy(mm_slot_cache);
1841 }
1842 
1843 static inline struct mm_slot *alloc_mm_slot(void)
1844 {
1845 	if (!mm_slot_cache)	/* initialization failed */
1846 		return NULL;
1847 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1848 }
1849 
1850 static inline void free_mm_slot(struct mm_slot *mm_slot)
1851 {
1852 	kmem_cache_free(mm_slot_cache, mm_slot);
1853 }
1854 
1855 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1856 {
1857 	struct mm_slot *mm_slot;
1858 
1859 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1860 		if (mm == mm_slot->mm)
1861 			return mm_slot;
1862 
1863 	return NULL;
1864 }
1865 
1866 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1867 				    struct mm_slot *mm_slot)
1868 {
1869 	mm_slot->mm = mm;
1870 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1871 }
1872 
1873 static inline int khugepaged_test_exit(struct mm_struct *mm)
1874 {
1875 	return atomic_read(&mm->mm_users) == 0;
1876 }
1877 
1878 int __khugepaged_enter(struct mm_struct *mm)
1879 {
1880 	struct mm_slot *mm_slot;
1881 	int wakeup;
1882 
1883 	mm_slot = alloc_mm_slot();
1884 	if (!mm_slot)
1885 		return -ENOMEM;
1886 
1887 	/* __khugepaged_exit() must not run from under us */
1888 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1889 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1890 		free_mm_slot(mm_slot);
1891 		return 0;
1892 	}
1893 
1894 	spin_lock(&khugepaged_mm_lock);
1895 	insert_to_mm_slots_hash(mm, mm_slot);
1896 	/*
1897 	 * Insert just behind the scanning cursor, to let the area settle
1898 	 * down a little.
1899 	 */
1900 	wakeup = list_empty(&khugepaged_scan.mm_head);
1901 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1902 	spin_unlock(&khugepaged_mm_lock);
1903 
1904 	atomic_inc(&mm->mm_count);
1905 	if (wakeup)
1906 		wake_up_interruptible(&khugepaged_wait);
1907 
1908 	return 0;
1909 }
1910 
1911 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1912 			       unsigned long vm_flags)
1913 {
1914 	unsigned long hstart, hend;
1915 	if (!vma->anon_vma)
1916 		/*
1917 		 * Not yet faulted in so we will register later in the
1918 		 * page fault if needed.
1919 		 */
1920 		return 0;
1921 	if (vma->vm_ops)
1922 		/* khugepaged not yet working on file or special mappings */
1923 		return 0;
1924 	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1925 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1926 	hend = vma->vm_end & HPAGE_PMD_MASK;
1927 	if (hstart < hend)
1928 		return khugepaged_enter(vma, vm_flags);
1929 	return 0;
1930 }
1931 
1932 void __khugepaged_exit(struct mm_struct *mm)
1933 {
1934 	struct mm_slot *mm_slot;
1935 	int free = 0;
1936 
1937 	spin_lock(&khugepaged_mm_lock);
1938 	mm_slot = get_mm_slot(mm);
1939 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1940 		hash_del(&mm_slot->hash);
1941 		list_del(&mm_slot->mm_node);
1942 		free = 1;
1943 	}
1944 	spin_unlock(&khugepaged_mm_lock);
1945 
1946 	if (free) {
1947 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1948 		free_mm_slot(mm_slot);
1949 		mmdrop(mm);
1950 	} else if (mm_slot) {
1951 		/*
1952 		 * This is required to serialize against
1953 		 * khugepaged_test_exit() (which is guaranteed to run
1954 		 * under mmap sem read mode). Stop here (after we
1955 		 * return all pagetables will be destroyed) until
1956 		 * khugepaged has finished working on the pagetables
1957 		 * under the mmap_sem.
1958 		 */
1959 		down_write(&mm->mmap_sem);
1960 		up_write(&mm->mmap_sem);
1961 	}
1962 }
1963 
1964 static void release_pte_page(struct page *page)
1965 {
1966 	/* 0 stands for page_is_file_cache(page) == false */
1967 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1968 	unlock_page(page);
1969 	putback_lru_page(page);
1970 }
1971 
1972 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1973 {
1974 	while (--_pte >= pte) {
1975 		pte_t pteval = *_pte;
1976 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1977 			release_pte_page(pte_page(pteval));
1978 	}
1979 }
1980 
1981 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1982 					unsigned long address,
1983 					pte_t *pte)
1984 {
1985 	struct page *page = NULL;
1986 	pte_t *_pte;
1987 	int none_or_zero = 0, result = 0;
1988 	bool referenced = false, writable = false;
1989 
1990 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1991 	     _pte++, address += PAGE_SIZE) {
1992 		pte_t pteval = *_pte;
1993 		if (pte_none(pteval) || (pte_present(pteval) &&
1994 				is_zero_pfn(pte_pfn(pteval)))) {
1995 			if (!userfaultfd_armed(vma) &&
1996 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1997 				continue;
1998 			} else {
1999 				result = SCAN_EXCEED_NONE_PTE;
2000 				goto out;
2001 			}
2002 		}
2003 		if (!pte_present(pteval)) {
2004 			result = SCAN_PTE_NON_PRESENT;
2005 			goto out;
2006 		}
2007 		page = vm_normal_page(vma, address, pteval);
2008 		if (unlikely(!page)) {
2009 			result = SCAN_PAGE_NULL;
2010 			goto out;
2011 		}
2012 
2013 		VM_BUG_ON_PAGE(PageCompound(page), page);
2014 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2015 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2016 
2017 		/*
2018 		 * We can do it before isolate_lru_page because the
2019 		 * page can't be freed from under us. NOTE: PG_lock
2020 		 * is needed to serialize against split_huge_page
2021 		 * when invoked from the VM.
2022 		 */
2023 		if (!trylock_page(page)) {
2024 			result = SCAN_PAGE_LOCK;
2025 			goto out;
2026 		}
2027 
2028 		/*
2029 		 * cannot use mapcount: can't collapse if there's a gup pin.
2030 		 * The page must only be referenced by the scanned process
2031 		 * and page swap cache.
2032 		 */
2033 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2034 			unlock_page(page);
2035 			result = SCAN_PAGE_COUNT;
2036 			goto out;
2037 		}
2038 		if (pte_write(pteval)) {
2039 			writable = true;
2040 		} else {
2041 			if (PageSwapCache(page) && !reuse_swap_page(page)) {
2042 				unlock_page(page);
2043 				result = SCAN_SWAP_CACHE_PAGE;
2044 				goto out;
2045 			}
2046 			/*
2047 			 * Page is not in the swap cache. It can be collapsed
2048 			 * into a THP.
2049 			 */
2050 		}
2051 
2052 		/*
2053 		 * Isolate the page to avoid collapsing an hugepage
2054 		 * currently in use by the VM.
2055 		 */
2056 		if (isolate_lru_page(page)) {
2057 			unlock_page(page);
2058 			result = SCAN_DEL_PAGE_LRU;
2059 			goto out;
2060 		}
2061 		/* 0 stands for page_is_file_cache(page) == false */
2062 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2063 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2064 		VM_BUG_ON_PAGE(PageLRU(page), page);
2065 
2066 		/* If there is no mapped pte young don't collapse the page */
2067 		if (pte_young(pteval) ||
2068 		    page_is_young(page) || PageReferenced(page) ||
2069 		    mmu_notifier_test_young(vma->vm_mm, address))
2070 			referenced = true;
2071 	}
2072 	if (likely(writable)) {
2073 		if (likely(referenced)) {
2074 			result = SCAN_SUCCEED;
2075 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2076 							    referenced, writable, result);
2077 			return 1;
2078 		}
2079 	} else {
2080 		result = SCAN_PAGE_RO;
2081 	}
2082 
2083 out:
2084 	release_pte_pages(pte, _pte);
2085 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2086 					    referenced, writable, result);
2087 	return 0;
2088 }
2089 
2090 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2091 				      struct vm_area_struct *vma,
2092 				      unsigned long address,
2093 				      spinlock_t *ptl)
2094 {
2095 	pte_t *_pte;
2096 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2097 		pte_t pteval = *_pte;
2098 		struct page *src_page;
2099 
2100 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2101 			clear_user_highpage(page, address);
2102 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2103 			if (is_zero_pfn(pte_pfn(pteval))) {
2104 				/*
2105 				 * ptl mostly unnecessary.
2106 				 */
2107 				spin_lock(ptl);
2108 				/*
2109 				 * paravirt calls inside pte_clear here are
2110 				 * superfluous.
2111 				 */
2112 				pte_clear(vma->vm_mm, address, _pte);
2113 				spin_unlock(ptl);
2114 			}
2115 		} else {
2116 			src_page = pte_page(pteval);
2117 			copy_user_highpage(page, src_page, address, vma);
2118 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2119 			release_pte_page(src_page);
2120 			/*
2121 			 * ptl mostly unnecessary, but preempt has to
2122 			 * be disabled to update the per-cpu stats
2123 			 * inside page_remove_rmap().
2124 			 */
2125 			spin_lock(ptl);
2126 			/*
2127 			 * paravirt calls inside pte_clear here are
2128 			 * superfluous.
2129 			 */
2130 			pte_clear(vma->vm_mm, address, _pte);
2131 			page_remove_rmap(src_page, false);
2132 			spin_unlock(ptl);
2133 			free_page_and_swap_cache(src_page);
2134 		}
2135 
2136 		address += PAGE_SIZE;
2137 		page++;
2138 	}
2139 }
2140 
2141 static void khugepaged_alloc_sleep(void)
2142 {
2143 	DEFINE_WAIT(wait);
2144 
2145 	add_wait_queue(&khugepaged_wait, &wait);
2146 	freezable_schedule_timeout_interruptible(
2147 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2148 	remove_wait_queue(&khugepaged_wait, &wait);
2149 }
2150 
2151 static int khugepaged_node_load[MAX_NUMNODES];
2152 
2153 static bool khugepaged_scan_abort(int nid)
2154 {
2155 	int i;
2156 
2157 	/*
2158 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2159 	 * allocate memory locally.
2160 	 */
2161 	if (!zone_reclaim_mode)
2162 		return false;
2163 
2164 	/* If there is a count for this node already, it must be acceptable */
2165 	if (khugepaged_node_load[nid])
2166 		return false;
2167 
2168 	for (i = 0; i < MAX_NUMNODES; i++) {
2169 		if (!khugepaged_node_load[i])
2170 			continue;
2171 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2172 			return true;
2173 	}
2174 	return false;
2175 }
2176 
2177 #ifdef CONFIG_NUMA
2178 static int khugepaged_find_target_node(void)
2179 {
2180 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2181 	int nid, target_node = 0, max_value = 0;
2182 
2183 	/* find first node with max normal pages hit */
2184 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2185 		if (khugepaged_node_load[nid] > max_value) {
2186 			max_value = khugepaged_node_load[nid];
2187 			target_node = nid;
2188 		}
2189 
2190 	/* do some balance if several nodes have the same hit record */
2191 	if (target_node <= last_khugepaged_target_node)
2192 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2193 				nid++)
2194 			if (max_value == khugepaged_node_load[nid]) {
2195 				target_node = nid;
2196 				break;
2197 			}
2198 
2199 	last_khugepaged_target_node = target_node;
2200 	return target_node;
2201 }
2202 
2203 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2204 {
2205 	if (IS_ERR(*hpage)) {
2206 		if (!*wait)
2207 			return false;
2208 
2209 		*wait = false;
2210 		*hpage = NULL;
2211 		khugepaged_alloc_sleep();
2212 	} else if (*hpage) {
2213 		put_page(*hpage);
2214 		*hpage = NULL;
2215 	}
2216 
2217 	return true;
2218 }
2219 
2220 static struct page *
2221 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2222 		       unsigned long address, int node)
2223 {
2224 	VM_BUG_ON_PAGE(*hpage, *hpage);
2225 
2226 	/*
2227 	 * Before allocating the hugepage, release the mmap_sem read lock.
2228 	 * The allocation can take potentially a long time if it involves
2229 	 * sync compaction, and we do not need to hold the mmap_sem during
2230 	 * that. We will recheck the vma after taking it again in write mode.
2231 	 */
2232 	up_read(&mm->mmap_sem);
2233 
2234 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2235 	if (unlikely(!*hpage)) {
2236 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2237 		*hpage = ERR_PTR(-ENOMEM);
2238 		return NULL;
2239 	}
2240 
2241 	prep_transhuge_page(*hpage);
2242 	count_vm_event(THP_COLLAPSE_ALLOC);
2243 	return *hpage;
2244 }
2245 #else
2246 static int khugepaged_find_target_node(void)
2247 {
2248 	return 0;
2249 }
2250 
2251 static inline struct page *alloc_hugepage(int defrag)
2252 {
2253 	struct page *page;
2254 
2255 	page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2256 	if (page)
2257 		prep_transhuge_page(page);
2258 	return page;
2259 }
2260 
2261 static struct page *khugepaged_alloc_hugepage(bool *wait)
2262 {
2263 	struct page *hpage;
2264 
2265 	do {
2266 		hpage = alloc_hugepage(khugepaged_defrag());
2267 		if (!hpage) {
2268 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2269 			if (!*wait)
2270 				return NULL;
2271 
2272 			*wait = false;
2273 			khugepaged_alloc_sleep();
2274 		} else
2275 			count_vm_event(THP_COLLAPSE_ALLOC);
2276 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2277 
2278 	return hpage;
2279 }
2280 
2281 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2282 {
2283 	if (!*hpage)
2284 		*hpage = khugepaged_alloc_hugepage(wait);
2285 
2286 	if (unlikely(!*hpage))
2287 		return false;
2288 
2289 	return true;
2290 }
2291 
2292 static struct page *
2293 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2294 		       unsigned long address, int node)
2295 {
2296 	up_read(&mm->mmap_sem);
2297 	VM_BUG_ON(!*hpage);
2298 
2299 	return  *hpage;
2300 }
2301 #endif
2302 
2303 static bool hugepage_vma_check(struct vm_area_struct *vma)
2304 {
2305 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2306 	    (vma->vm_flags & VM_NOHUGEPAGE))
2307 		return false;
2308 	if (!vma->anon_vma || vma->vm_ops)
2309 		return false;
2310 	if (is_vma_temporary_stack(vma))
2311 		return false;
2312 	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2313 	return true;
2314 }
2315 
2316 static void collapse_huge_page(struct mm_struct *mm,
2317 				   unsigned long address,
2318 				   struct page **hpage,
2319 				   struct vm_area_struct *vma,
2320 				   int node)
2321 {
2322 	pmd_t *pmd, _pmd;
2323 	pte_t *pte;
2324 	pgtable_t pgtable;
2325 	struct page *new_page;
2326 	spinlock_t *pmd_ptl, *pte_ptl;
2327 	int isolated = 0, result = 0;
2328 	unsigned long hstart, hend;
2329 	struct mem_cgroup *memcg;
2330 	unsigned long mmun_start;	/* For mmu_notifiers */
2331 	unsigned long mmun_end;		/* For mmu_notifiers */
2332 	gfp_t gfp;
2333 
2334 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2335 
2336 	/* Only allocate from the target node */
2337 	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2338 		__GFP_THISNODE;
2339 
2340 	/* release the mmap_sem read lock. */
2341 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2342 	if (!new_page) {
2343 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2344 		goto out_nolock;
2345 	}
2346 
2347 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2348 		result = SCAN_CGROUP_CHARGE_FAIL;
2349 		goto out_nolock;
2350 	}
2351 
2352 	/*
2353 	 * Prevent all access to pagetables with the exception of
2354 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2355 	 * handled by the anon_vma lock + PG_lock.
2356 	 */
2357 	down_write(&mm->mmap_sem);
2358 	if (unlikely(khugepaged_test_exit(mm))) {
2359 		result = SCAN_ANY_PROCESS;
2360 		goto out;
2361 	}
2362 
2363 	vma = find_vma(mm, address);
2364 	if (!vma) {
2365 		result = SCAN_VMA_NULL;
2366 		goto out;
2367 	}
2368 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2369 	hend = vma->vm_end & HPAGE_PMD_MASK;
2370 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2371 		result = SCAN_ADDRESS_RANGE;
2372 		goto out;
2373 	}
2374 	if (!hugepage_vma_check(vma)) {
2375 		result = SCAN_VMA_CHECK;
2376 		goto out;
2377 	}
2378 	pmd = mm_find_pmd(mm, address);
2379 	if (!pmd) {
2380 		result = SCAN_PMD_NULL;
2381 		goto out;
2382 	}
2383 
2384 	anon_vma_lock_write(vma->anon_vma);
2385 
2386 	pte = pte_offset_map(pmd, address);
2387 	pte_ptl = pte_lockptr(mm, pmd);
2388 
2389 	mmun_start = address;
2390 	mmun_end   = address + HPAGE_PMD_SIZE;
2391 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2392 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2393 	/*
2394 	 * After this gup_fast can't run anymore. This also removes
2395 	 * any huge TLB entry from the CPU so we won't allow
2396 	 * huge and small TLB entries for the same virtual address
2397 	 * to avoid the risk of CPU bugs in that area.
2398 	 */
2399 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2400 	spin_unlock(pmd_ptl);
2401 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2402 
2403 	spin_lock(pte_ptl);
2404 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2405 	spin_unlock(pte_ptl);
2406 
2407 	if (unlikely(!isolated)) {
2408 		pte_unmap(pte);
2409 		spin_lock(pmd_ptl);
2410 		BUG_ON(!pmd_none(*pmd));
2411 		/*
2412 		 * We can only use set_pmd_at when establishing
2413 		 * hugepmds and never for establishing regular pmds that
2414 		 * points to regular pagetables. Use pmd_populate for that
2415 		 */
2416 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2417 		spin_unlock(pmd_ptl);
2418 		anon_vma_unlock_write(vma->anon_vma);
2419 		result = SCAN_FAIL;
2420 		goto out;
2421 	}
2422 
2423 	/*
2424 	 * All pages are isolated and locked so anon_vma rmap
2425 	 * can't run anymore.
2426 	 */
2427 	anon_vma_unlock_write(vma->anon_vma);
2428 
2429 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2430 	pte_unmap(pte);
2431 	__SetPageUptodate(new_page);
2432 	pgtable = pmd_pgtable(_pmd);
2433 
2434 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2435 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2436 
2437 	/*
2438 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2439 	 * this is needed to avoid the copy_huge_page writes to become
2440 	 * visible after the set_pmd_at() write.
2441 	 */
2442 	smp_wmb();
2443 
2444 	spin_lock(pmd_ptl);
2445 	BUG_ON(!pmd_none(*pmd));
2446 	page_add_new_anon_rmap(new_page, vma, address, true);
2447 	mem_cgroup_commit_charge(new_page, memcg, false, true);
2448 	lru_cache_add_active_or_unevictable(new_page, vma);
2449 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2450 	set_pmd_at(mm, address, pmd, _pmd);
2451 	update_mmu_cache_pmd(vma, address, pmd);
2452 	spin_unlock(pmd_ptl);
2453 
2454 	*hpage = NULL;
2455 
2456 	khugepaged_pages_collapsed++;
2457 	result = SCAN_SUCCEED;
2458 out_up_write:
2459 	up_write(&mm->mmap_sem);
2460 	trace_mm_collapse_huge_page(mm, isolated, result);
2461 	return;
2462 
2463 out_nolock:
2464 	trace_mm_collapse_huge_page(mm, isolated, result);
2465 	return;
2466 out:
2467 	mem_cgroup_cancel_charge(new_page, memcg, true);
2468 	goto out_up_write;
2469 }
2470 
2471 static int khugepaged_scan_pmd(struct mm_struct *mm,
2472 			       struct vm_area_struct *vma,
2473 			       unsigned long address,
2474 			       struct page **hpage)
2475 {
2476 	pmd_t *pmd;
2477 	pte_t *pte, *_pte;
2478 	int ret = 0, none_or_zero = 0, result = 0;
2479 	struct page *page = NULL;
2480 	unsigned long _address;
2481 	spinlock_t *ptl;
2482 	int node = NUMA_NO_NODE;
2483 	bool writable = false, referenced = false;
2484 
2485 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2486 
2487 	pmd = mm_find_pmd(mm, address);
2488 	if (!pmd) {
2489 		result = SCAN_PMD_NULL;
2490 		goto out;
2491 	}
2492 
2493 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2494 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2495 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2496 	     _pte++, _address += PAGE_SIZE) {
2497 		pte_t pteval = *_pte;
2498 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2499 			if (!userfaultfd_armed(vma) &&
2500 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2501 				continue;
2502 			} else {
2503 				result = SCAN_EXCEED_NONE_PTE;
2504 				goto out_unmap;
2505 			}
2506 		}
2507 		if (!pte_present(pteval)) {
2508 			result = SCAN_PTE_NON_PRESENT;
2509 			goto out_unmap;
2510 		}
2511 		if (pte_write(pteval))
2512 			writable = true;
2513 
2514 		page = vm_normal_page(vma, _address, pteval);
2515 		if (unlikely(!page)) {
2516 			result = SCAN_PAGE_NULL;
2517 			goto out_unmap;
2518 		}
2519 
2520 		/* TODO: teach khugepaged to collapse THP mapped with pte */
2521 		if (PageCompound(page)) {
2522 			result = SCAN_PAGE_COMPOUND;
2523 			goto out_unmap;
2524 		}
2525 
2526 		/*
2527 		 * Record which node the original page is from and save this
2528 		 * information to khugepaged_node_load[].
2529 		 * Khupaged will allocate hugepage from the node has the max
2530 		 * hit record.
2531 		 */
2532 		node = page_to_nid(page);
2533 		if (khugepaged_scan_abort(node)) {
2534 			result = SCAN_SCAN_ABORT;
2535 			goto out_unmap;
2536 		}
2537 		khugepaged_node_load[node]++;
2538 		if (!PageLRU(page)) {
2539 			result = SCAN_SCAN_ABORT;
2540 			goto out_unmap;
2541 		}
2542 		if (PageLocked(page)) {
2543 			result = SCAN_PAGE_LOCK;
2544 			goto out_unmap;
2545 		}
2546 		if (!PageAnon(page)) {
2547 			result = SCAN_PAGE_ANON;
2548 			goto out_unmap;
2549 		}
2550 
2551 		/*
2552 		 * cannot use mapcount: can't collapse if there's a gup pin.
2553 		 * The page must only be referenced by the scanned process
2554 		 * and page swap cache.
2555 		 */
2556 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2557 			result = SCAN_PAGE_COUNT;
2558 			goto out_unmap;
2559 		}
2560 		if (pte_young(pteval) ||
2561 		    page_is_young(page) || PageReferenced(page) ||
2562 		    mmu_notifier_test_young(vma->vm_mm, address))
2563 			referenced = true;
2564 	}
2565 	if (writable) {
2566 		if (referenced) {
2567 			result = SCAN_SUCCEED;
2568 			ret = 1;
2569 		} else {
2570 			result = SCAN_NO_REFERENCED_PAGE;
2571 		}
2572 	} else {
2573 		result = SCAN_PAGE_RO;
2574 	}
2575 out_unmap:
2576 	pte_unmap_unlock(pte, ptl);
2577 	if (ret) {
2578 		node = khugepaged_find_target_node();
2579 		/* collapse_huge_page will return with the mmap_sem released */
2580 		collapse_huge_page(mm, address, hpage, vma, node);
2581 	}
2582 out:
2583 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2584 				     none_or_zero, result);
2585 	return ret;
2586 }
2587 
2588 static void collect_mm_slot(struct mm_slot *mm_slot)
2589 {
2590 	struct mm_struct *mm = mm_slot->mm;
2591 
2592 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2593 
2594 	if (khugepaged_test_exit(mm)) {
2595 		/* free mm_slot */
2596 		hash_del(&mm_slot->hash);
2597 		list_del(&mm_slot->mm_node);
2598 
2599 		/*
2600 		 * Not strictly needed because the mm exited already.
2601 		 *
2602 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2603 		 */
2604 
2605 		/* khugepaged_mm_lock actually not necessary for the below */
2606 		free_mm_slot(mm_slot);
2607 		mmdrop(mm);
2608 	}
2609 }
2610 
2611 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2612 					    struct page **hpage)
2613 	__releases(&khugepaged_mm_lock)
2614 	__acquires(&khugepaged_mm_lock)
2615 {
2616 	struct mm_slot *mm_slot;
2617 	struct mm_struct *mm;
2618 	struct vm_area_struct *vma;
2619 	int progress = 0;
2620 
2621 	VM_BUG_ON(!pages);
2622 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2623 
2624 	if (khugepaged_scan.mm_slot)
2625 		mm_slot = khugepaged_scan.mm_slot;
2626 	else {
2627 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2628 				     struct mm_slot, mm_node);
2629 		khugepaged_scan.address = 0;
2630 		khugepaged_scan.mm_slot = mm_slot;
2631 	}
2632 	spin_unlock(&khugepaged_mm_lock);
2633 
2634 	mm = mm_slot->mm;
2635 	down_read(&mm->mmap_sem);
2636 	if (unlikely(khugepaged_test_exit(mm)))
2637 		vma = NULL;
2638 	else
2639 		vma = find_vma(mm, khugepaged_scan.address);
2640 
2641 	progress++;
2642 	for (; vma; vma = vma->vm_next) {
2643 		unsigned long hstart, hend;
2644 
2645 		cond_resched();
2646 		if (unlikely(khugepaged_test_exit(mm))) {
2647 			progress++;
2648 			break;
2649 		}
2650 		if (!hugepage_vma_check(vma)) {
2651 skip:
2652 			progress++;
2653 			continue;
2654 		}
2655 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2656 		hend = vma->vm_end & HPAGE_PMD_MASK;
2657 		if (hstart >= hend)
2658 			goto skip;
2659 		if (khugepaged_scan.address > hend)
2660 			goto skip;
2661 		if (khugepaged_scan.address < hstart)
2662 			khugepaged_scan.address = hstart;
2663 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2664 
2665 		while (khugepaged_scan.address < hend) {
2666 			int ret;
2667 			cond_resched();
2668 			if (unlikely(khugepaged_test_exit(mm)))
2669 				goto breakouterloop;
2670 
2671 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2672 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2673 				  hend);
2674 			ret = khugepaged_scan_pmd(mm, vma,
2675 						  khugepaged_scan.address,
2676 						  hpage);
2677 			/* move to next address */
2678 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2679 			progress += HPAGE_PMD_NR;
2680 			if (ret)
2681 				/* we released mmap_sem so break loop */
2682 				goto breakouterloop_mmap_sem;
2683 			if (progress >= pages)
2684 				goto breakouterloop;
2685 		}
2686 	}
2687 breakouterloop:
2688 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2689 breakouterloop_mmap_sem:
2690 
2691 	spin_lock(&khugepaged_mm_lock);
2692 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2693 	/*
2694 	 * Release the current mm_slot if this mm is about to die, or
2695 	 * if we scanned all vmas of this mm.
2696 	 */
2697 	if (khugepaged_test_exit(mm) || !vma) {
2698 		/*
2699 		 * Make sure that if mm_users is reaching zero while
2700 		 * khugepaged runs here, khugepaged_exit will find
2701 		 * mm_slot not pointing to the exiting mm.
2702 		 */
2703 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2704 			khugepaged_scan.mm_slot = list_entry(
2705 				mm_slot->mm_node.next,
2706 				struct mm_slot, mm_node);
2707 			khugepaged_scan.address = 0;
2708 		} else {
2709 			khugepaged_scan.mm_slot = NULL;
2710 			khugepaged_full_scans++;
2711 		}
2712 
2713 		collect_mm_slot(mm_slot);
2714 	}
2715 
2716 	return progress;
2717 }
2718 
2719 static int khugepaged_has_work(void)
2720 {
2721 	return !list_empty(&khugepaged_scan.mm_head) &&
2722 		khugepaged_enabled();
2723 }
2724 
2725 static int khugepaged_wait_event(void)
2726 {
2727 	return !list_empty(&khugepaged_scan.mm_head) ||
2728 		kthread_should_stop();
2729 }
2730 
2731 static void khugepaged_do_scan(void)
2732 {
2733 	struct page *hpage = NULL;
2734 	unsigned int progress = 0, pass_through_head = 0;
2735 	unsigned int pages = khugepaged_pages_to_scan;
2736 	bool wait = true;
2737 
2738 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2739 
2740 	while (progress < pages) {
2741 		if (!khugepaged_prealloc_page(&hpage, &wait))
2742 			break;
2743 
2744 		cond_resched();
2745 
2746 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2747 			break;
2748 
2749 		spin_lock(&khugepaged_mm_lock);
2750 		if (!khugepaged_scan.mm_slot)
2751 			pass_through_head++;
2752 		if (khugepaged_has_work() &&
2753 		    pass_through_head < 2)
2754 			progress += khugepaged_scan_mm_slot(pages - progress,
2755 							    &hpage);
2756 		else
2757 			progress = pages;
2758 		spin_unlock(&khugepaged_mm_lock);
2759 	}
2760 
2761 	if (!IS_ERR_OR_NULL(hpage))
2762 		put_page(hpage);
2763 }
2764 
2765 static void khugepaged_wait_work(void)
2766 {
2767 	if (khugepaged_has_work()) {
2768 		if (!khugepaged_scan_sleep_millisecs)
2769 			return;
2770 
2771 		wait_event_freezable_timeout(khugepaged_wait,
2772 					     kthread_should_stop(),
2773 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2774 		return;
2775 	}
2776 
2777 	if (khugepaged_enabled())
2778 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2779 }
2780 
2781 static int khugepaged(void *none)
2782 {
2783 	struct mm_slot *mm_slot;
2784 
2785 	set_freezable();
2786 	set_user_nice(current, MAX_NICE);
2787 
2788 	while (!kthread_should_stop()) {
2789 		khugepaged_do_scan();
2790 		khugepaged_wait_work();
2791 	}
2792 
2793 	spin_lock(&khugepaged_mm_lock);
2794 	mm_slot = khugepaged_scan.mm_slot;
2795 	khugepaged_scan.mm_slot = NULL;
2796 	if (mm_slot)
2797 		collect_mm_slot(mm_slot);
2798 	spin_unlock(&khugepaged_mm_lock);
2799 	return 0;
2800 }
2801 
2802 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2803 		unsigned long haddr, pmd_t *pmd)
2804 {
2805 	struct mm_struct *mm = vma->vm_mm;
2806 	pgtable_t pgtable;
2807 	pmd_t _pmd;
2808 	int i;
2809 
2810 	/* leave pmd empty until pte is filled */
2811 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2812 
2813 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2814 	pmd_populate(mm, &_pmd, pgtable);
2815 
2816 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2817 		pte_t *pte, entry;
2818 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2819 		entry = pte_mkspecial(entry);
2820 		pte = pte_offset_map(&_pmd, haddr);
2821 		VM_BUG_ON(!pte_none(*pte));
2822 		set_pte_at(mm, haddr, pte, entry);
2823 		pte_unmap(pte);
2824 	}
2825 	smp_wmb(); /* make pte visible before pmd */
2826 	pmd_populate(mm, pmd, pgtable);
2827 	put_huge_zero_page();
2828 }
2829 
2830 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2831 		unsigned long haddr, bool freeze)
2832 {
2833 	struct mm_struct *mm = vma->vm_mm;
2834 	struct page *page;
2835 	pgtable_t pgtable;
2836 	pmd_t _pmd;
2837 	bool young, write, dirty;
2838 	int i;
2839 
2840 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2841 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2842 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2843 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2844 
2845 	count_vm_event(THP_SPLIT_PMD);
2846 
2847 	if (vma_is_dax(vma)) {
2848 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2849 		if (is_huge_zero_pmd(_pmd))
2850 			put_huge_zero_page();
2851 		return;
2852 	} else if (is_huge_zero_pmd(*pmd)) {
2853 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2854 	}
2855 
2856 	page = pmd_page(*pmd);
2857 	VM_BUG_ON_PAGE(!page_count(page), page);
2858 	atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2859 	write = pmd_write(*pmd);
2860 	young = pmd_young(*pmd);
2861 	dirty = pmd_dirty(*pmd);
2862 
2863 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2864 	pmd_populate(mm, &_pmd, pgtable);
2865 
2866 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2867 		pte_t entry, *pte;
2868 		/*
2869 		 * Note that NUMA hinting access restrictions are not
2870 		 * transferred to avoid any possibility of altering
2871 		 * permissions across VMAs.
2872 		 */
2873 		if (freeze) {
2874 			swp_entry_t swp_entry;
2875 			swp_entry = make_migration_entry(page + i, write);
2876 			entry = swp_entry_to_pte(swp_entry);
2877 		} else {
2878 			entry = mk_pte(page + i, vma->vm_page_prot);
2879 			entry = maybe_mkwrite(entry, vma);
2880 			if (!write)
2881 				entry = pte_wrprotect(entry);
2882 			if (!young)
2883 				entry = pte_mkold(entry);
2884 		}
2885 		if (dirty)
2886 			SetPageDirty(page + i);
2887 		pte = pte_offset_map(&_pmd, haddr);
2888 		BUG_ON(!pte_none(*pte));
2889 		set_pte_at(mm, haddr, pte, entry);
2890 		atomic_inc(&page[i]._mapcount);
2891 		pte_unmap(pte);
2892 	}
2893 
2894 	/*
2895 	 * Set PG_double_map before dropping compound_mapcount to avoid
2896 	 * false-negative page_mapped().
2897 	 */
2898 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2899 		for (i = 0; i < HPAGE_PMD_NR; i++)
2900 			atomic_inc(&page[i]._mapcount);
2901 	}
2902 
2903 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2904 		/* Last compound_mapcount is gone. */
2905 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2906 		if (TestClearPageDoubleMap(page)) {
2907 			/* No need in mapcount reference anymore */
2908 			for (i = 0; i < HPAGE_PMD_NR; i++)
2909 				atomic_dec(&page[i]._mapcount);
2910 		}
2911 	}
2912 
2913 	smp_wmb(); /* make pte visible before pmd */
2914 	/*
2915 	 * Up to this point the pmd is present and huge and userland has the
2916 	 * whole access to the hugepage during the split (which happens in
2917 	 * place). If we overwrite the pmd with the not-huge version pointing
2918 	 * to the pte here (which of course we could if all CPUs were bug
2919 	 * free), userland could trigger a small page size TLB miss on the
2920 	 * small sized TLB while the hugepage TLB entry is still established in
2921 	 * the huge TLB. Some CPU doesn't like that.
2922 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2923 	 * 383 on page 93. Intel should be safe but is also warns that it's
2924 	 * only safe if the permission and cache attributes of the two entries
2925 	 * loaded in the two TLB is identical (which should be the case here).
2926 	 * But it is generally safer to never allow small and huge TLB entries
2927 	 * for the same virtual address to be loaded simultaneously. So instead
2928 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2929 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2930 	 * and pmd_trans_splitting must remain set at all times on the pmd
2931 	 * until the split is complete for this pmd), then we flush the SMP TLB
2932 	 * and finally we write the non-huge version of the pmd entry with
2933 	 * pmd_populate.
2934 	 */
2935 	pmdp_invalidate(vma, haddr, pmd);
2936 	pmd_populate(mm, pmd, pgtable);
2937 
2938 	if (freeze) {
2939 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2940 			page_remove_rmap(page + i, false);
2941 			put_page(page + i);
2942 		}
2943 	}
2944 }
2945 
2946 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2947 		unsigned long address)
2948 {
2949 	spinlock_t *ptl;
2950 	struct mm_struct *mm = vma->vm_mm;
2951 	struct page *page = NULL;
2952 	unsigned long haddr = address & HPAGE_PMD_MASK;
2953 
2954 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2955 	ptl = pmd_lock(mm, pmd);
2956 	if (pmd_trans_huge(*pmd)) {
2957 		page = pmd_page(*pmd);
2958 		if (PageMlocked(page))
2959 			get_page(page);
2960 		else
2961 			page = NULL;
2962 	} else if (!pmd_devmap(*pmd))
2963 		goto out;
2964 	__split_huge_pmd_locked(vma, pmd, haddr, false);
2965 out:
2966 	spin_unlock(ptl);
2967 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2968 	if (page) {
2969 		lock_page(page);
2970 		munlock_vma_page(page);
2971 		unlock_page(page);
2972 		put_page(page);
2973 	}
2974 }
2975 
2976 static void split_huge_pmd_address(struct vm_area_struct *vma,
2977 				    unsigned long address)
2978 {
2979 	pgd_t *pgd;
2980 	pud_t *pud;
2981 	pmd_t *pmd;
2982 
2983 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2984 
2985 	pgd = pgd_offset(vma->vm_mm, address);
2986 	if (!pgd_present(*pgd))
2987 		return;
2988 
2989 	pud = pud_offset(pgd, address);
2990 	if (!pud_present(*pud))
2991 		return;
2992 
2993 	pmd = pmd_offset(pud, address);
2994 	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
2995 		return;
2996 	/*
2997 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2998 	 * materialize from under us.
2999 	 */
3000 	split_huge_pmd(vma, pmd, address);
3001 }
3002 
3003 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3004 			     unsigned long start,
3005 			     unsigned long end,
3006 			     long adjust_next)
3007 {
3008 	/*
3009 	 * If the new start address isn't hpage aligned and it could
3010 	 * previously contain an hugepage: check if we need to split
3011 	 * an huge pmd.
3012 	 */
3013 	if (start & ~HPAGE_PMD_MASK &&
3014 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3015 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3016 		split_huge_pmd_address(vma, start);
3017 
3018 	/*
3019 	 * If the new end address isn't hpage aligned and it could
3020 	 * previously contain an hugepage: check if we need to split
3021 	 * an huge pmd.
3022 	 */
3023 	if (end & ~HPAGE_PMD_MASK &&
3024 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3025 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3026 		split_huge_pmd_address(vma, end);
3027 
3028 	/*
3029 	 * If we're also updating the vma->vm_next->vm_start, if the new
3030 	 * vm_next->vm_start isn't page aligned and it could previously
3031 	 * contain an hugepage: check if we need to split an huge pmd.
3032 	 */
3033 	if (adjust_next > 0) {
3034 		struct vm_area_struct *next = vma->vm_next;
3035 		unsigned long nstart = next->vm_start;
3036 		nstart += adjust_next << PAGE_SHIFT;
3037 		if (nstart & ~HPAGE_PMD_MASK &&
3038 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3039 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3040 			split_huge_pmd_address(next, nstart);
3041 	}
3042 }
3043 
3044 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3045 		unsigned long address)
3046 {
3047 	unsigned long haddr = address & HPAGE_PMD_MASK;
3048 	spinlock_t *ptl;
3049 	pgd_t *pgd;
3050 	pud_t *pud;
3051 	pmd_t *pmd;
3052 	pte_t *pte;
3053 	int i, nr = HPAGE_PMD_NR;
3054 
3055 	/* Skip pages which doesn't belong to the VMA */
3056 	if (address < vma->vm_start) {
3057 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
3058 		page += off;
3059 		nr -= off;
3060 		address = vma->vm_start;
3061 	}
3062 
3063 	pgd = pgd_offset(vma->vm_mm, address);
3064 	if (!pgd_present(*pgd))
3065 		return;
3066 	pud = pud_offset(pgd, address);
3067 	if (!pud_present(*pud))
3068 		return;
3069 	pmd = pmd_offset(pud, address);
3070 	ptl = pmd_lock(vma->vm_mm, pmd);
3071 	if (!pmd_present(*pmd)) {
3072 		spin_unlock(ptl);
3073 		return;
3074 	}
3075 	if (pmd_trans_huge(*pmd)) {
3076 		if (page == pmd_page(*pmd))
3077 			__split_huge_pmd_locked(vma, pmd, haddr, true);
3078 		spin_unlock(ptl);
3079 		return;
3080 	}
3081 	spin_unlock(ptl);
3082 
3083 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3084 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3085 		pte_t entry, swp_pte;
3086 		swp_entry_t swp_entry;
3087 
3088 		/*
3089 		 * We've just crossed page table boundary: need to map next one.
3090 		 * It can happen if THP was mremaped to non PMD-aligned address.
3091 		 */
3092 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3093 			pte_unmap_unlock(pte - 1, ptl);
3094 			pmd = mm_find_pmd(vma->vm_mm, address);
3095 			if (!pmd)
3096 				return;
3097 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
3098 					address, &ptl);
3099 		}
3100 
3101 		if (!pte_present(*pte))
3102 			continue;
3103 		if (page_to_pfn(page) != pte_pfn(*pte))
3104 			continue;
3105 		flush_cache_page(vma, address, page_to_pfn(page));
3106 		entry = ptep_clear_flush(vma, address, pte);
3107 		if (pte_dirty(entry))
3108 			SetPageDirty(page);
3109 		swp_entry = make_migration_entry(page, pte_write(entry));
3110 		swp_pte = swp_entry_to_pte(swp_entry);
3111 		if (pte_soft_dirty(entry))
3112 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
3113 		set_pte_at(vma->vm_mm, address, pte, swp_pte);
3114 		page_remove_rmap(page, false);
3115 		put_page(page);
3116 	}
3117 	pte_unmap_unlock(pte - 1, ptl);
3118 }
3119 
3120 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3121 {
3122 	struct anon_vma_chain *avc;
3123 	pgoff_t pgoff = page_to_pgoff(page);
3124 
3125 	VM_BUG_ON_PAGE(!PageHead(page), page);
3126 
3127 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3128 			pgoff + HPAGE_PMD_NR - 1) {
3129 		unsigned long address = __vma_address(page, avc->vma);
3130 
3131 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3132 				address, address + HPAGE_PMD_SIZE);
3133 		freeze_page_vma(avc->vma, page, address);
3134 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3135 				address, address + HPAGE_PMD_SIZE);
3136 	}
3137 }
3138 
3139 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3140 		unsigned long address)
3141 {
3142 	spinlock_t *ptl;
3143 	pmd_t *pmd;
3144 	pte_t *pte, entry;
3145 	swp_entry_t swp_entry;
3146 	unsigned long haddr = address & HPAGE_PMD_MASK;
3147 	int i, nr = HPAGE_PMD_NR;
3148 
3149 	/* Skip pages which doesn't belong to the VMA */
3150 	if (address < vma->vm_start) {
3151 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
3152 		page += off;
3153 		nr -= off;
3154 		address = vma->vm_start;
3155 	}
3156 
3157 	pmd = mm_find_pmd(vma->vm_mm, address);
3158 	if (!pmd)
3159 		return;
3160 
3161 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3162 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3163 		/*
3164 		 * We've just crossed page table boundary: need to map next one.
3165 		 * It can happen if THP was mremaped to non-PMD aligned address.
3166 		 */
3167 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3168 			pte_unmap_unlock(pte - 1, ptl);
3169 			pmd = mm_find_pmd(vma->vm_mm, address);
3170 			if (!pmd)
3171 				return;
3172 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
3173 					address, &ptl);
3174 		}
3175 
3176 		if (!is_swap_pte(*pte))
3177 			continue;
3178 
3179 		swp_entry = pte_to_swp_entry(*pte);
3180 		if (!is_migration_entry(swp_entry))
3181 			continue;
3182 		if (migration_entry_to_page(swp_entry) != page)
3183 			continue;
3184 
3185 		get_page(page);
3186 		page_add_anon_rmap(page, vma, address, false);
3187 
3188 		entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3189 		if (PageDirty(page))
3190 			entry = pte_mkdirty(entry);
3191 		if (is_write_migration_entry(swp_entry))
3192 			entry = maybe_mkwrite(entry, vma);
3193 
3194 		flush_dcache_page(page);
3195 		set_pte_at(vma->vm_mm, address, pte, entry);
3196 
3197 		/* No need to invalidate - it was non-present before */
3198 		update_mmu_cache(vma, address, pte);
3199 	}
3200 	pte_unmap_unlock(pte - 1, ptl);
3201 }
3202 
3203 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3204 {
3205 	struct anon_vma_chain *avc;
3206 	pgoff_t pgoff = page_to_pgoff(page);
3207 
3208 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3209 			pgoff, pgoff + HPAGE_PMD_NR - 1) {
3210 		unsigned long address = __vma_address(page, avc->vma);
3211 
3212 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3213 				address, address + HPAGE_PMD_SIZE);
3214 		unfreeze_page_vma(avc->vma, page, address);
3215 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3216 				address, address + HPAGE_PMD_SIZE);
3217 	}
3218 }
3219 
3220 static int __split_huge_page_tail(struct page *head, int tail,
3221 		struct lruvec *lruvec, struct list_head *list)
3222 {
3223 	int mapcount;
3224 	struct page *page_tail = head + tail;
3225 
3226 	mapcount = atomic_read(&page_tail->_mapcount) + 1;
3227 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3228 
3229 	/*
3230 	 * tail_page->_count is zero and not changing from under us. But
3231 	 * get_page_unless_zero() may be running from under us on the
3232 	 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3233 	 * would then run atomic_set() concurrently with
3234 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3235 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3236 	 * because of PPro errata 66, 92, so unless somebody can guarantee
3237 	 * atomic_set() here would be safe on all archs (and not only on x86),
3238 	 * it's safer to use atomic_add().
3239 	 */
3240 	atomic_add(mapcount + 1, &page_tail->_count);
3241 
3242 
3243 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3244 	page_tail->flags |= (head->flags &
3245 			((1L << PG_referenced) |
3246 			 (1L << PG_swapbacked) |
3247 			 (1L << PG_mlocked) |
3248 			 (1L << PG_uptodate) |
3249 			 (1L << PG_active) |
3250 			 (1L << PG_locked) |
3251 			 (1L << PG_unevictable) |
3252 			 (1L << PG_dirty)));
3253 
3254 	/*
3255 	 * After clearing PageTail the gup refcount can be released.
3256 	 * Page flags also must be visible before we make the page non-compound.
3257 	 */
3258 	smp_wmb();
3259 
3260 	clear_compound_head(page_tail);
3261 
3262 	if (page_is_young(head))
3263 		set_page_young(page_tail);
3264 	if (page_is_idle(head))
3265 		set_page_idle(page_tail);
3266 
3267 	/* ->mapping in first tail page is compound_mapcount */
3268 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3269 			page_tail);
3270 	page_tail->mapping = head->mapping;
3271 
3272 	page_tail->index = head->index + tail;
3273 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3274 	lru_add_page_tail(head, page_tail, lruvec, list);
3275 
3276 	return mapcount;
3277 }
3278 
3279 static void __split_huge_page(struct page *page, struct list_head *list)
3280 {
3281 	struct page *head = compound_head(page);
3282 	struct zone *zone = page_zone(head);
3283 	struct lruvec *lruvec;
3284 	int i, tail_mapcount;
3285 
3286 	/* prevent PageLRU to go away from under us, and freeze lru stats */
3287 	spin_lock_irq(&zone->lru_lock);
3288 	lruvec = mem_cgroup_page_lruvec(head, zone);
3289 
3290 	/* complete memcg works before add pages to LRU */
3291 	mem_cgroup_split_huge_fixup(head);
3292 
3293 	tail_mapcount = 0;
3294 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3295 		tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3296 	atomic_sub(tail_mapcount, &head->_count);
3297 
3298 	ClearPageCompound(head);
3299 	spin_unlock_irq(&zone->lru_lock);
3300 
3301 	unfreeze_page(page_anon_vma(head), head);
3302 
3303 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3304 		struct page *subpage = head + i;
3305 		if (subpage == page)
3306 			continue;
3307 		unlock_page(subpage);
3308 
3309 		/*
3310 		 * Subpages may be freed if there wasn't any mapping
3311 		 * like if add_to_swap() is running on a lru page that
3312 		 * had its mapping zapped. And freeing these pages
3313 		 * requires taking the lru_lock so we do the put_page
3314 		 * of the tail pages after the split is complete.
3315 		 */
3316 		put_page(subpage);
3317 	}
3318 }
3319 
3320 int total_mapcount(struct page *page)
3321 {
3322 	int i, ret;
3323 
3324 	VM_BUG_ON_PAGE(PageTail(page), page);
3325 
3326 	if (likely(!PageCompound(page)))
3327 		return atomic_read(&page->_mapcount) + 1;
3328 
3329 	ret = compound_mapcount(page);
3330 	if (PageHuge(page))
3331 		return ret;
3332 	for (i = 0; i < HPAGE_PMD_NR; i++)
3333 		ret += atomic_read(&page[i]._mapcount) + 1;
3334 	if (PageDoubleMap(page))
3335 		ret -= HPAGE_PMD_NR;
3336 	return ret;
3337 }
3338 
3339 /*
3340  * This function splits huge page into normal pages. @page can point to any
3341  * subpage of huge page to split. Split doesn't change the position of @page.
3342  *
3343  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3344  * The huge page must be locked.
3345  *
3346  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3347  *
3348  * Both head page and tail pages will inherit mapping, flags, and so on from
3349  * the hugepage.
3350  *
3351  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3352  * they are not mapped.
3353  *
3354  * Returns 0 if the hugepage is split successfully.
3355  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3356  * us.
3357  */
3358 int split_huge_page_to_list(struct page *page, struct list_head *list)
3359 {
3360 	struct page *head = compound_head(page);
3361 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3362 	struct anon_vma *anon_vma;
3363 	int count, mapcount, ret;
3364 	bool mlocked;
3365 	unsigned long flags;
3366 
3367 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3368 	VM_BUG_ON_PAGE(!PageAnon(page), page);
3369 	VM_BUG_ON_PAGE(!PageLocked(page), page);
3370 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3371 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3372 
3373 	/*
3374 	 * The caller does not necessarily hold an mmap_sem that would prevent
3375 	 * the anon_vma disappearing so we first we take a reference to it
3376 	 * and then lock the anon_vma for write. This is similar to
3377 	 * page_lock_anon_vma_read except the write lock is taken to serialise
3378 	 * against parallel split or collapse operations.
3379 	 */
3380 	anon_vma = page_get_anon_vma(head);
3381 	if (!anon_vma) {
3382 		ret = -EBUSY;
3383 		goto out;
3384 	}
3385 	anon_vma_lock_write(anon_vma);
3386 
3387 	/*
3388 	 * Racy check if we can split the page, before freeze_page() will
3389 	 * split PMDs
3390 	 */
3391 	if (total_mapcount(head) != page_count(head) - 1) {
3392 		ret = -EBUSY;
3393 		goto out_unlock;
3394 	}
3395 
3396 	mlocked = PageMlocked(page);
3397 	freeze_page(anon_vma, head);
3398 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3399 
3400 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3401 	if (mlocked)
3402 		lru_add_drain();
3403 
3404 	/* Prevent deferred_split_scan() touching ->_count */
3405 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3406 	count = page_count(head);
3407 	mapcount = total_mapcount(head);
3408 	if (!mapcount && count == 1) {
3409 		if (!list_empty(page_deferred_list(head))) {
3410 			pgdata->split_queue_len--;
3411 			list_del(page_deferred_list(head));
3412 		}
3413 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3414 		__split_huge_page(page, list);
3415 		ret = 0;
3416 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3417 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3418 		pr_alert("total_mapcount: %u, page_count(): %u\n",
3419 				mapcount, count);
3420 		if (PageTail(page))
3421 			dump_page(head, NULL);
3422 		dump_page(page, "total_mapcount(head) > 0");
3423 		BUG();
3424 	} else {
3425 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3426 		unfreeze_page(anon_vma, head);
3427 		ret = -EBUSY;
3428 	}
3429 
3430 out_unlock:
3431 	anon_vma_unlock_write(anon_vma);
3432 	put_anon_vma(anon_vma);
3433 out:
3434 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3435 	return ret;
3436 }
3437 
3438 void free_transhuge_page(struct page *page)
3439 {
3440 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3441 	unsigned long flags;
3442 
3443 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3444 	if (!list_empty(page_deferred_list(page))) {
3445 		pgdata->split_queue_len--;
3446 		list_del(page_deferred_list(page));
3447 	}
3448 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3449 	free_compound_page(page);
3450 }
3451 
3452 void deferred_split_huge_page(struct page *page)
3453 {
3454 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3455 	unsigned long flags;
3456 
3457 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3458 
3459 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3460 	if (list_empty(page_deferred_list(page))) {
3461 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3462 		pgdata->split_queue_len++;
3463 	}
3464 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3465 }
3466 
3467 static unsigned long deferred_split_count(struct shrinker *shrink,
3468 		struct shrink_control *sc)
3469 {
3470 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3471 	return ACCESS_ONCE(pgdata->split_queue_len);
3472 }
3473 
3474 static unsigned long deferred_split_scan(struct shrinker *shrink,
3475 		struct shrink_control *sc)
3476 {
3477 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3478 	unsigned long flags;
3479 	LIST_HEAD(list), *pos, *next;
3480 	struct page *page;
3481 	int split = 0;
3482 
3483 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3484 	/* Take pin on all head pages to avoid freeing them under us */
3485 	list_for_each_safe(pos, next, &pgdata->split_queue) {
3486 		page = list_entry((void *)pos, struct page, mapping);
3487 		page = compound_head(page);
3488 		if (get_page_unless_zero(page)) {
3489 			list_move(page_deferred_list(page), &list);
3490 		} else {
3491 			/* We lost race with put_compound_page() */
3492 			list_del_init(page_deferred_list(page));
3493 			pgdata->split_queue_len--;
3494 		}
3495 		if (!--sc->nr_to_scan)
3496 			break;
3497 	}
3498 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3499 
3500 	list_for_each_safe(pos, next, &list) {
3501 		page = list_entry((void *)pos, struct page, mapping);
3502 		lock_page(page);
3503 		/* split_huge_page() removes page from list on success */
3504 		if (!split_huge_page(page))
3505 			split++;
3506 		unlock_page(page);
3507 		put_page(page);
3508 	}
3509 
3510 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3511 	list_splice_tail(&list, &pgdata->split_queue);
3512 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3513 
3514 	/*
3515 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3516 	 * This can happen if pages were freed under us.
3517 	 */
3518 	if (!split && list_empty(&pgdata->split_queue))
3519 		return SHRINK_STOP;
3520 	return split;
3521 }
3522 
3523 static struct shrinker deferred_split_shrinker = {
3524 	.count_objects = deferred_split_count,
3525 	.scan_objects = deferred_split_scan,
3526 	.seeks = DEFAULT_SEEKS,
3527 	.flags = SHRINKER_NUMA_AWARE,
3528 };
3529 
3530 #ifdef CONFIG_DEBUG_FS
3531 static int split_huge_pages_set(void *data, u64 val)
3532 {
3533 	struct zone *zone;
3534 	struct page *page;
3535 	unsigned long pfn, max_zone_pfn;
3536 	unsigned long total = 0, split = 0;
3537 
3538 	if (val != 1)
3539 		return -EINVAL;
3540 
3541 	for_each_populated_zone(zone) {
3542 		max_zone_pfn = zone_end_pfn(zone);
3543 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3544 			if (!pfn_valid(pfn))
3545 				continue;
3546 
3547 			page = pfn_to_page(pfn);
3548 			if (!get_page_unless_zero(page))
3549 				continue;
3550 
3551 			if (zone != page_zone(page))
3552 				goto next;
3553 
3554 			if (!PageHead(page) || !PageAnon(page) ||
3555 					PageHuge(page))
3556 				goto next;
3557 
3558 			total++;
3559 			lock_page(page);
3560 			if (!split_huge_page(page))
3561 				split++;
3562 			unlock_page(page);
3563 next:
3564 			put_page(page);
3565 		}
3566 	}
3567 
3568 	pr_info("%lu of %lu THP split", split, total);
3569 
3570 	return 0;
3571 }
3572 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3573 		"%llu\n");
3574 
3575 static int __init split_huge_pages_debugfs(void)
3576 {
3577 	void *ret;
3578 
3579 	ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3580 			&split_huge_pages_fops);
3581 	if (!ret)
3582 		pr_warn("Failed to create split_huge_pages in debugfs");
3583 	return 0;
3584 }
3585 late_initcall(split_huge_pages_debugfs);
3586 #endif
3587