xref: /linux/mm/huge_memory.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 		      &transparent_hugepage_flags) &&
107 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 		      &transparent_hugepage_flags))
109 		return 0;
110 
111 	for_each_populated_zone(zone)
112 		nr_zones++;
113 
114 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 	recommended_min = pageblock_nr_pages * nr_zones * 2;
116 
117 	/*
118 	 * Make sure that on average at least two pageblocks are almost free
119 	 * of another type, one for a migratetype to fall back to and a
120 	 * second to avoid subsequent fallbacks of other types There are 3
121 	 * MIGRATE_TYPES we care about.
122 	 */
123 	recommended_min += pageblock_nr_pages * nr_zones *
124 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125 
126 	/* don't ever allow to reserve more than 5% of the lowmem */
127 	recommended_min = min(recommended_min,
128 			      (unsigned long) nr_free_buffer_pages() / 20);
129 	recommended_min <<= (PAGE_SHIFT-10);
130 
131 	if (recommended_min > min_free_kbytes)
132 		min_free_kbytes = recommended_min;
133 	setup_per_zone_wmarks();
134 	return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137 
138 static int start_khugepaged(void)
139 {
140 	int err = 0;
141 	if (khugepaged_enabled()) {
142 		int wakeup;
143 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 			err = -ENOMEM;
145 			goto out;
146 		}
147 		mutex_lock(&khugepaged_mutex);
148 		if (!khugepaged_thread)
149 			khugepaged_thread = kthread_run(khugepaged, NULL,
150 							"khugepaged");
151 		if (unlikely(IS_ERR(khugepaged_thread))) {
152 			printk(KERN_ERR
153 			       "khugepaged: kthread_run(khugepaged) failed\n");
154 			err = PTR_ERR(khugepaged_thread);
155 			khugepaged_thread = NULL;
156 		}
157 		wakeup = !list_empty(&khugepaged_scan.mm_head);
158 		mutex_unlock(&khugepaged_mutex);
159 		if (wakeup)
160 			wake_up_interruptible(&khugepaged_wait);
161 
162 		set_recommended_min_free_kbytes();
163 	} else
164 		/* wakeup to exit */
165 		wake_up_interruptible(&khugepaged_wait);
166 out:
167 	return err;
168 }
169 
170 #ifdef CONFIG_SYSFS
171 
172 static ssize_t double_flag_show(struct kobject *kobj,
173 				struct kobj_attribute *attr, char *buf,
174 				enum transparent_hugepage_flag enabled,
175 				enum transparent_hugepage_flag req_madv)
176 {
177 	if (test_bit(enabled, &transparent_hugepage_flags)) {
178 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 		return sprintf(buf, "[always] madvise never\n");
180 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186 				 struct kobj_attribute *attr,
187 				 const char *buf, size_t count,
188 				 enum transparent_hugepage_flag enabled,
189 				 enum transparent_hugepage_flag req_madv)
190 {
191 	if (!memcmp("always", buf,
192 		    min(sizeof("always")-1, count))) {
193 		set_bit(enabled, &transparent_hugepage_flags);
194 		clear_bit(req_madv, &transparent_hugepage_flags);
195 	} else if (!memcmp("madvise", buf,
196 			   min(sizeof("madvise")-1, count))) {
197 		clear_bit(enabled, &transparent_hugepage_flags);
198 		set_bit(req_madv, &transparent_hugepage_flags);
199 	} else if (!memcmp("never", buf,
200 			   min(sizeof("never")-1, count))) {
201 		clear_bit(enabled, &transparent_hugepage_flags);
202 		clear_bit(req_madv, &transparent_hugepage_flags);
203 	} else
204 		return -EINVAL;
205 
206 	return count;
207 }
208 
209 static ssize_t enabled_show(struct kobject *kobj,
210 			    struct kobj_attribute *attr, char *buf)
211 {
212 	return double_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_FLAG,
214 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217 			     struct kobj_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	ssize_t ret;
221 
222 	ret = double_flag_store(kobj, attr, buf, count,
223 				TRANSPARENT_HUGEPAGE_FLAG,
224 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225 
226 	if (ret > 0) {
227 		int err = start_khugepaged();
228 		if (err)
229 			ret = err;
230 	}
231 
232 	if (ret > 0 &&
233 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 		      &transparent_hugepage_flags) ||
235 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 		      &transparent_hugepage_flags)))
237 		set_recommended_min_free_kbytes();
238 
239 	return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 	__ATTR(enabled, 0644, enabled_show, enabled_store);
243 
244 static ssize_t single_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag flag)
247 {
248 	return sprintf(buf, "%d\n",
249 		       !!test_bit(flag, &transparent_hugepage_flags));
250 }
251 
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	unsigned long value;
258 	int ret;
259 
260 	ret = kstrtoul(buf, 10, &value);
261 	if (ret < 0)
262 		return ret;
263 	if (value > 1)
264 		return -EINVAL;
265 
266 	if (value)
267 		set_bit(flag, &transparent_hugepage_flags);
268 	else
269 		clear_bit(flag, &transparent_hugepage_flags);
270 
271 	return count;
272 }
273 
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280 			   struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287 			    struct kobj_attribute *attr,
288 			    const char *buf, size_t count)
289 {
290 	return double_flag_store(kobj, attr, buf, count,
291 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 	&debug_cow_attr.attr,
320 #endif
321 	NULL,
322 };
323 
324 static struct attribute_group hugepage_attr_group = {
325 	.attrs = hugepage_attr,
326 };
327 
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 					 struct kobj_attribute *attr,
330 					 char *buf)
331 {
332 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334 
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 					  struct kobj_attribute *attr,
337 					  const char *buf, size_t count)
338 {
339 	unsigned long msecs;
340 	int err;
341 
342 	err = strict_strtoul(buf, 10, &msecs);
343 	if (err || msecs > UINT_MAX)
344 		return -EINVAL;
345 
346 	khugepaged_scan_sleep_millisecs = msecs;
347 	wake_up_interruptible(&khugepaged_wait);
348 
349 	return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 	       scan_sleep_millisecs_store);
354 
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 					  struct kobj_attribute *attr,
357 					  char *buf)
358 {
359 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361 
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 					   struct kobj_attribute *attr,
364 					   const char *buf, size_t count)
365 {
366 	unsigned long msecs;
367 	int err;
368 
369 	err = strict_strtoul(buf, 10, &msecs);
370 	if (err || msecs > UINT_MAX)
371 		return -EINVAL;
372 
373 	khugepaged_alloc_sleep_millisecs = msecs;
374 	wake_up_interruptible(&khugepaged_wait);
375 
376 	return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 	       alloc_sleep_millisecs_store);
381 
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 				  struct kobj_attribute *attr,
384 				  char *buf)
385 {
386 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 				   struct kobj_attribute *attr,
390 				   const char *buf, size_t count)
391 {
392 	int err;
393 	unsigned long pages;
394 
395 	err = strict_strtoul(buf, 10, &pages);
396 	if (err || !pages || pages > UINT_MAX)
397 		return -EINVAL;
398 
399 	khugepaged_pages_to_scan = pages;
400 
401 	return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 	       pages_to_scan_store);
406 
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 				    struct kobj_attribute *attr,
409 				    char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 	__ATTR_RO(pages_collapsed);
415 
416 static ssize_t full_scans_show(struct kobject *kobj,
417 			       struct kobj_attribute *attr,
418 			       char *buf)
419 {
420 	return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 	__ATTR_RO(full_scans);
424 
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 				      struct kobj_attribute *attr, char *buf)
427 {
428 	return single_flag_show(kobj, attr, buf,
429 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 				       struct kobj_attribute *attr,
433 				       const char *buf, size_t count)
434 {
435 	return single_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 	__ATTR(defrag, 0644, khugepaged_defrag_show,
440 	       khugepaged_defrag_store);
441 
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 					     struct kobj_attribute *attr,
452 					     char *buf)
453 {
454 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 					      struct kobj_attribute *attr,
458 					      const char *buf, size_t count)
459 {
460 	int err;
461 	unsigned long max_ptes_none;
462 
463 	err = strict_strtoul(buf, 10, &max_ptes_none);
464 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 		return -EINVAL;
466 
467 	khugepaged_max_ptes_none = max_ptes_none;
468 
469 	return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 	       khugepaged_max_ptes_none_store);
474 
475 static struct attribute *khugepaged_attr[] = {
476 	&khugepaged_defrag_attr.attr,
477 	&khugepaged_max_ptes_none_attr.attr,
478 	&pages_to_scan_attr.attr,
479 	&pages_collapsed_attr.attr,
480 	&full_scans_attr.attr,
481 	&scan_sleep_millisecs_attr.attr,
482 	&alloc_sleep_millisecs_attr.attr,
483 	NULL,
484 };
485 
486 static struct attribute_group khugepaged_attr_group = {
487 	.attrs = khugepaged_attr,
488 	.name = "khugepaged",
489 };
490 #endif /* CONFIG_SYSFS */
491 
492 static int __init hugepage_init(void)
493 {
494 	int err;
495 #ifdef CONFIG_SYSFS
496 	static struct kobject *hugepage_kobj;
497 #endif
498 
499 	err = -EINVAL;
500 	if (!has_transparent_hugepage()) {
501 		transparent_hugepage_flags = 0;
502 		goto out;
503 	}
504 
505 #ifdef CONFIG_SYSFS
506 	err = -ENOMEM;
507 	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
508 	if (unlikely(!hugepage_kobj)) {
509 		printk(KERN_ERR "hugepage: failed kobject create\n");
510 		goto out;
511 	}
512 
513 	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
514 	if (err) {
515 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 		goto out;
517 	}
518 
519 	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
520 	if (err) {
521 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
522 		goto out;
523 	}
524 #endif
525 
526 	err = khugepaged_slab_init();
527 	if (err)
528 		goto out;
529 
530 	err = mm_slots_hash_init();
531 	if (err) {
532 		khugepaged_slab_free();
533 		goto out;
534 	}
535 
536 	/*
537 	 * By default disable transparent hugepages on smaller systems,
538 	 * where the extra memory used could hurt more than TLB overhead
539 	 * is likely to save.  The admin can still enable it through /sys.
540 	 */
541 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
542 		transparent_hugepage_flags = 0;
543 
544 	start_khugepaged();
545 
546 	set_recommended_min_free_kbytes();
547 
548 out:
549 	return err;
550 }
551 module_init(hugepage_init)
552 
553 static int __init setup_transparent_hugepage(char *str)
554 {
555 	int ret = 0;
556 	if (!str)
557 		goto out;
558 	if (!strcmp(str, "always")) {
559 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 			&transparent_hugepage_flags);
561 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 			  &transparent_hugepage_flags);
563 		ret = 1;
564 	} else if (!strcmp(str, "madvise")) {
565 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 			  &transparent_hugepage_flags);
567 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 			&transparent_hugepage_flags);
569 		ret = 1;
570 	} else if (!strcmp(str, "never")) {
571 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 			  &transparent_hugepage_flags);
573 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 			  &transparent_hugepage_flags);
575 		ret = 1;
576 	}
577 out:
578 	if (!ret)
579 		printk(KERN_WARNING
580 		       "transparent_hugepage= cannot parse, ignored\n");
581 	return ret;
582 }
583 __setup("transparent_hugepage=", setup_transparent_hugepage);
584 
585 static void prepare_pmd_huge_pte(pgtable_t pgtable,
586 				 struct mm_struct *mm)
587 {
588 	assert_spin_locked(&mm->page_table_lock);
589 
590 	/* FIFO */
591 	if (!mm->pmd_huge_pte)
592 		INIT_LIST_HEAD(&pgtable->lru);
593 	else
594 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
595 	mm->pmd_huge_pte = pgtable;
596 }
597 
598 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
599 {
600 	if (likely(vma->vm_flags & VM_WRITE))
601 		pmd = pmd_mkwrite(pmd);
602 	return pmd;
603 }
604 
605 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
606 					struct vm_area_struct *vma,
607 					unsigned long haddr, pmd_t *pmd,
608 					struct page *page)
609 {
610 	int ret = 0;
611 	pgtable_t pgtable;
612 
613 	VM_BUG_ON(!PageCompound(page));
614 	pgtable = pte_alloc_one(mm, haddr);
615 	if (unlikely(!pgtable)) {
616 		mem_cgroup_uncharge_page(page);
617 		put_page(page);
618 		return VM_FAULT_OOM;
619 	}
620 
621 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 	__SetPageUptodate(page);
623 
624 	spin_lock(&mm->page_table_lock);
625 	if (unlikely(!pmd_none(*pmd))) {
626 		spin_unlock(&mm->page_table_lock);
627 		mem_cgroup_uncharge_page(page);
628 		put_page(page);
629 		pte_free(mm, pgtable);
630 	} else {
631 		pmd_t entry;
632 		entry = mk_pmd(page, vma->vm_page_prot);
633 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 		entry = pmd_mkhuge(entry);
635 		/*
636 		 * The spinlocking to take the lru_lock inside
637 		 * page_add_new_anon_rmap() acts as a full memory
638 		 * barrier to be sure clear_huge_page writes become
639 		 * visible after the set_pmd_at() write.
640 		 */
641 		page_add_new_anon_rmap(page, vma, haddr);
642 		set_pmd_at(mm, haddr, pmd, entry);
643 		prepare_pmd_huge_pte(pgtable, mm);
644 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 		spin_unlock(&mm->page_table_lock);
646 	}
647 
648 	return ret;
649 }
650 
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655 
656 static inline struct page *alloc_hugepage_vma(int defrag,
657 					      struct vm_area_struct *vma,
658 					      unsigned long haddr, int nd,
659 					      gfp_t extra_gfp)
660 {
661 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662 			       HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664 
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669 			   HPAGE_PMD_ORDER);
670 }
671 #endif
672 
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 			       unsigned long address, pmd_t *pmd,
675 			       unsigned int flags)
676 {
677 	struct page *page;
678 	unsigned long haddr = address & HPAGE_PMD_MASK;
679 	pte_t *pte;
680 
681 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 		if (unlikely(anon_vma_prepare(vma)))
683 			return VM_FAULT_OOM;
684 		if (unlikely(khugepaged_enter(vma)))
685 			return VM_FAULT_OOM;
686 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687 					  vma, haddr, numa_node_id(), 0);
688 		if (unlikely(!page)) {
689 			count_vm_event(THP_FAULT_FALLBACK);
690 			goto out;
691 		}
692 		count_vm_event(THP_FAULT_ALLOC);
693 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 			put_page(page);
695 			goto out;
696 		}
697 
698 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
699 	}
700 out:
701 	/*
702 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
703 	 * run pte_offset_map on the pmd, if an huge pmd could
704 	 * materialize from under us from a different thread.
705 	 */
706 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
707 		return VM_FAULT_OOM;
708 	/* if an huge pmd materialized from under us just retry later */
709 	if (unlikely(pmd_trans_huge(*pmd)))
710 		return 0;
711 	/*
712 	 * A regular pmd is established and it can't morph into a huge pmd
713 	 * from under us anymore at this point because we hold the mmap_sem
714 	 * read mode and khugepaged takes it in write mode. So now it's
715 	 * safe to run pte_offset_map().
716 	 */
717 	pte = pte_offset_map(pmd, address);
718 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
719 }
720 
721 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
722 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
723 		  struct vm_area_struct *vma)
724 {
725 	struct page *src_page;
726 	pmd_t pmd;
727 	pgtable_t pgtable;
728 	int ret;
729 
730 	ret = -ENOMEM;
731 	pgtable = pte_alloc_one(dst_mm, addr);
732 	if (unlikely(!pgtable))
733 		goto out;
734 
735 	spin_lock(&dst_mm->page_table_lock);
736 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
737 
738 	ret = -EAGAIN;
739 	pmd = *src_pmd;
740 	if (unlikely(!pmd_trans_huge(pmd))) {
741 		pte_free(dst_mm, pgtable);
742 		goto out_unlock;
743 	}
744 	if (unlikely(pmd_trans_splitting(pmd))) {
745 		/* split huge page running from under us */
746 		spin_unlock(&src_mm->page_table_lock);
747 		spin_unlock(&dst_mm->page_table_lock);
748 		pte_free(dst_mm, pgtable);
749 
750 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
751 		goto out;
752 	}
753 	src_page = pmd_page(pmd);
754 	VM_BUG_ON(!PageHead(src_page));
755 	get_page(src_page);
756 	page_dup_rmap(src_page);
757 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
758 
759 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
760 	pmd = pmd_mkold(pmd_wrprotect(pmd));
761 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
762 	prepare_pmd_huge_pte(pgtable, dst_mm);
763 
764 	ret = 0;
765 out_unlock:
766 	spin_unlock(&src_mm->page_table_lock);
767 	spin_unlock(&dst_mm->page_table_lock);
768 out:
769 	return ret;
770 }
771 
772 /* no "address" argument so destroys page coloring of some arch */
773 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
774 {
775 	pgtable_t pgtable;
776 
777 	assert_spin_locked(&mm->page_table_lock);
778 
779 	/* FIFO */
780 	pgtable = mm->pmd_huge_pte;
781 	if (list_empty(&pgtable->lru))
782 		mm->pmd_huge_pte = NULL;
783 	else {
784 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
785 					      struct page, lru);
786 		list_del(&pgtable->lru);
787 	}
788 	return pgtable;
789 }
790 
791 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
792 					struct vm_area_struct *vma,
793 					unsigned long address,
794 					pmd_t *pmd, pmd_t orig_pmd,
795 					struct page *page,
796 					unsigned long haddr)
797 {
798 	pgtable_t pgtable;
799 	pmd_t _pmd;
800 	int ret = 0, i;
801 	struct page **pages;
802 
803 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
804 			GFP_KERNEL);
805 	if (unlikely(!pages)) {
806 		ret |= VM_FAULT_OOM;
807 		goto out;
808 	}
809 
810 	for (i = 0; i < HPAGE_PMD_NR; i++) {
811 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
812 					       __GFP_OTHER_NODE,
813 					       vma, address, page_to_nid(page));
814 		if (unlikely(!pages[i] ||
815 			     mem_cgroup_newpage_charge(pages[i], mm,
816 						       GFP_KERNEL))) {
817 			if (pages[i])
818 				put_page(pages[i]);
819 			mem_cgroup_uncharge_start();
820 			while (--i >= 0) {
821 				mem_cgroup_uncharge_page(pages[i]);
822 				put_page(pages[i]);
823 			}
824 			mem_cgroup_uncharge_end();
825 			kfree(pages);
826 			ret |= VM_FAULT_OOM;
827 			goto out;
828 		}
829 	}
830 
831 	for (i = 0; i < HPAGE_PMD_NR; i++) {
832 		copy_user_highpage(pages[i], page + i,
833 				   haddr + PAGE_SIZE * i, vma);
834 		__SetPageUptodate(pages[i]);
835 		cond_resched();
836 	}
837 
838 	spin_lock(&mm->page_table_lock);
839 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
840 		goto out_free_pages;
841 	VM_BUG_ON(!PageHead(page));
842 
843 	pmdp_clear_flush_notify(vma, haddr, pmd);
844 	/* leave pmd empty until pte is filled */
845 
846 	pgtable = get_pmd_huge_pte(mm);
847 	pmd_populate(mm, &_pmd, pgtable);
848 
849 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
850 		pte_t *pte, entry;
851 		entry = mk_pte(pages[i], vma->vm_page_prot);
852 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
853 		page_add_new_anon_rmap(pages[i], vma, haddr);
854 		pte = pte_offset_map(&_pmd, haddr);
855 		VM_BUG_ON(!pte_none(*pte));
856 		set_pte_at(mm, haddr, pte, entry);
857 		pte_unmap(pte);
858 	}
859 	kfree(pages);
860 
861 	mm->nr_ptes++;
862 	smp_wmb(); /* make pte visible before pmd */
863 	pmd_populate(mm, pmd, pgtable);
864 	page_remove_rmap(page);
865 	spin_unlock(&mm->page_table_lock);
866 
867 	ret |= VM_FAULT_WRITE;
868 	put_page(page);
869 
870 out:
871 	return ret;
872 
873 out_free_pages:
874 	spin_unlock(&mm->page_table_lock);
875 	mem_cgroup_uncharge_start();
876 	for (i = 0; i < HPAGE_PMD_NR; i++) {
877 		mem_cgroup_uncharge_page(pages[i]);
878 		put_page(pages[i]);
879 	}
880 	mem_cgroup_uncharge_end();
881 	kfree(pages);
882 	goto out;
883 }
884 
885 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
886 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
887 {
888 	int ret = 0;
889 	struct page *page, *new_page;
890 	unsigned long haddr;
891 
892 	VM_BUG_ON(!vma->anon_vma);
893 	spin_lock(&mm->page_table_lock);
894 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
895 		goto out_unlock;
896 
897 	page = pmd_page(orig_pmd);
898 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
899 	haddr = address & HPAGE_PMD_MASK;
900 	if (page_mapcount(page) == 1) {
901 		pmd_t entry;
902 		entry = pmd_mkyoung(orig_pmd);
903 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
904 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
905 			update_mmu_cache(vma, address, entry);
906 		ret |= VM_FAULT_WRITE;
907 		goto out_unlock;
908 	}
909 	get_page(page);
910 	spin_unlock(&mm->page_table_lock);
911 
912 	if (transparent_hugepage_enabled(vma) &&
913 	    !transparent_hugepage_debug_cow())
914 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
915 					      vma, haddr, numa_node_id(), 0);
916 	else
917 		new_page = NULL;
918 
919 	if (unlikely(!new_page)) {
920 		count_vm_event(THP_FAULT_FALLBACK);
921 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
922 						   pmd, orig_pmd, page, haddr);
923 		put_page(page);
924 		goto out;
925 	}
926 	count_vm_event(THP_FAULT_ALLOC);
927 
928 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 		put_page(new_page);
930 		put_page(page);
931 		ret |= VM_FAULT_OOM;
932 		goto out;
933 	}
934 
935 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
936 	__SetPageUptodate(new_page);
937 
938 	spin_lock(&mm->page_table_lock);
939 	put_page(page);
940 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
941 		mem_cgroup_uncharge_page(new_page);
942 		put_page(new_page);
943 	} else {
944 		pmd_t entry;
945 		VM_BUG_ON(!PageHead(page));
946 		entry = mk_pmd(new_page, vma->vm_page_prot);
947 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
948 		entry = pmd_mkhuge(entry);
949 		pmdp_clear_flush_notify(vma, haddr, pmd);
950 		page_add_new_anon_rmap(new_page, vma, haddr);
951 		set_pmd_at(mm, haddr, pmd, entry);
952 		update_mmu_cache(vma, address, entry);
953 		page_remove_rmap(page);
954 		put_page(page);
955 		ret |= VM_FAULT_WRITE;
956 	}
957 out_unlock:
958 	spin_unlock(&mm->page_table_lock);
959 out:
960 	return ret;
961 }
962 
963 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
964 				   unsigned long addr,
965 				   pmd_t *pmd,
966 				   unsigned int flags)
967 {
968 	struct page *page = NULL;
969 
970 	assert_spin_locked(&mm->page_table_lock);
971 
972 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
973 		goto out;
974 
975 	page = pmd_page(*pmd);
976 	VM_BUG_ON(!PageHead(page));
977 	if (flags & FOLL_TOUCH) {
978 		pmd_t _pmd;
979 		/*
980 		 * We should set the dirty bit only for FOLL_WRITE but
981 		 * for now the dirty bit in the pmd is meaningless.
982 		 * And if the dirty bit will become meaningful and
983 		 * we'll only set it with FOLL_WRITE, an atomic
984 		 * set_bit will be required on the pmd to set the
985 		 * young bit, instead of the current set_pmd_at.
986 		 */
987 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
988 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
989 	}
990 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
991 	VM_BUG_ON(!PageCompound(page));
992 	if (flags & FOLL_GET)
993 		get_page_foll(page);
994 
995 out:
996 	return page;
997 }
998 
999 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1000 		 pmd_t *pmd)
1001 {
1002 	int ret = 0;
1003 
1004 	spin_lock(&tlb->mm->page_table_lock);
1005 	if (likely(pmd_trans_huge(*pmd))) {
1006 		if (unlikely(pmd_trans_splitting(*pmd))) {
1007 			spin_unlock(&tlb->mm->page_table_lock);
1008 			wait_split_huge_page(vma->anon_vma,
1009 					     pmd);
1010 		} else {
1011 			struct page *page;
1012 			pgtable_t pgtable;
1013 			pgtable = get_pmd_huge_pte(tlb->mm);
1014 			page = pmd_page(*pmd);
1015 			pmd_clear(pmd);
1016 			page_remove_rmap(page);
1017 			VM_BUG_ON(page_mapcount(page) < 0);
1018 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1019 			VM_BUG_ON(!PageHead(page));
1020 			spin_unlock(&tlb->mm->page_table_lock);
1021 			tlb_remove_page(tlb, page);
1022 			pte_free(tlb->mm, pgtable);
1023 			ret = 1;
1024 		}
1025 	} else
1026 		spin_unlock(&tlb->mm->page_table_lock);
1027 
1028 	return ret;
1029 }
1030 
1031 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1032 		unsigned long addr, unsigned long end,
1033 		unsigned char *vec)
1034 {
1035 	int ret = 0;
1036 
1037 	spin_lock(&vma->vm_mm->page_table_lock);
1038 	if (likely(pmd_trans_huge(*pmd))) {
1039 		ret = !pmd_trans_splitting(*pmd);
1040 		spin_unlock(&vma->vm_mm->page_table_lock);
1041 		if (unlikely(!ret))
1042 			wait_split_huge_page(vma->anon_vma, pmd);
1043 		else {
1044 			/*
1045 			 * All logical pages in the range are present
1046 			 * if backed by a huge page.
1047 			 */
1048 			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1049 		}
1050 	} else
1051 		spin_unlock(&vma->vm_mm->page_table_lock);
1052 
1053 	return ret;
1054 }
1055 
1056 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1057 		  unsigned long old_addr,
1058 		  unsigned long new_addr, unsigned long old_end,
1059 		  pmd_t *old_pmd, pmd_t *new_pmd)
1060 {
1061 	int ret = 0;
1062 	pmd_t pmd;
1063 
1064 	struct mm_struct *mm = vma->vm_mm;
1065 
1066 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1067 	    (new_addr & ~HPAGE_PMD_MASK) ||
1068 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1069 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1070 		goto out;
1071 
1072 	/*
1073 	 * The destination pmd shouldn't be established, free_pgtables()
1074 	 * should have release it.
1075 	 */
1076 	if (WARN_ON(!pmd_none(*new_pmd))) {
1077 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1078 		goto out;
1079 	}
1080 
1081 	spin_lock(&mm->page_table_lock);
1082 	if (likely(pmd_trans_huge(*old_pmd))) {
1083 		if (pmd_trans_splitting(*old_pmd)) {
1084 			spin_unlock(&mm->page_table_lock);
1085 			wait_split_huge_page(vma->anon_vma, old_pmd);
1086 			ret = -1;
1087 		} else {
1088 			pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1089 			VM_BUG_ON(!pmd_none(*new_pmd));
1090 			set_pmd_at(mm, new_addr, new_pmd, pmd);
1091 			spin_unlock(&mm->page_table_lock);
1092 			ret = 1;
1093 		}
1094 	} else {
1095 		spin_unlock(&mm->page_table_lock);
1096 	}
1097 out:
1098 	return ret;
1099 }
1100 
1101 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102 		unsigned long addr, pgprot_t newprot)
1103 {
1104 	struct mm_struct *mm = vma->vm_mm;
1105 	int ret = 0;
1106 
1107 	spin_lock(&mm->page_table_lock);
1108 	if (likely(pmd_trans_huge(*pmd))) {
1109 		if (unlikely(pmd_trans_splitting(*pmd))) {
1110 			spin_unlock(&mm->page_table_lock);
1111 			wait_split_huge_page(vma->anon_vma, pmd);
1112 		} else {
1113 			pmd_t entry;
1114 
1115 			entry = pmdp_get_and_clear(mm, addr, pmd);
1116 			entry = pmd_modify(entry, newprot);
1117 			set_pmd_at(mm, addr, pmd, entry);
1118 			spin_unlock(&vma->vm_mm->page_table_lock);
1119 			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1120 			ret = 1;
1121 		}
1122 	} else
1123 		spin_unlock(&vma->vm_mm->page_table_lock);
1124 
1125 	return ret;
1126 }
1127 
1128 pmd_t *page_check_address_pmd(struct page *page,
1129 			      struct mm_struct *mm,
1130 			      unsigned long address,
1131 			      enum page_check_address_pmd_flag flag)
1132 {
1133 	pgd_t *pgd;
1134 	pud_t *pud;
1135 	pmd_t *pmd, *ret = NULL;
1136 
1137 	if (address & ~HPAGE_PMD_MASK)
1138 		goto out;
1139 
1140 	pgd = pgd_offset(mm, address);
1141 	if (!pgd_present(*pgd))
1142 		goto out;
1143 
1144 	pud = pud_offset(pgd, address);
1145 	if (!pud_present(*pud))
1146 		goto out;
1147 
1148 	pmd = pmd_offset(pud, address);
1149 	if (pmd_none(*pmd))
1150 		goto out;
1151 	if (pmd_page(*pmd) != page)
1152 		goto out;
1153 	/*
1154 	 * split_vma() may create temporary aliased mappings. There is
1155 	 * no risk as long as all huge pmd are found and have their
1156 	 * splitting bit set before __split_huge_page_refcount
1157 	 * runs. Finding the same huge pmd more than once during the
1158 	 * same rmap walk is not a problem.
1159 	 */
1160 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1161 	    pmd_trans_splitting(*pmd))
1162 		goto out;
1163 	if (pmd_trans_huge(*pmd)) {
1164 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1165 			  !pmd_trans_splitting(*pmd));
1166 		ret = pmd;
1167 	}
1168 out:
1169 	return ret;
1170 }
1171 
1172 static int __split_huge_page_splitting(struct page *page,
1173 				       struct vm_area_struct *vma,
1174 				       unsigned long address)
1175 {
1176 	struct mm_struct *mm = vma->vm_mm;
1177 	pmd_t *pmd;
1178 	int ret = 0;
1179 
1180 	spin_lock(&mm->page_table_lock);
1181 	pmd = page_check_address_pmd(page, mm, address,
1182 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1183 	if (pmd) {
1184 		/*
1185 		 * We can't temporarily set the pmd to null in order
1186 		 * to split it, the pmd must remain marked huge at all
1187 		 * times or the VM won't take the pmd_trans_huge paths
1188 		 * and it won't wait on the anon_vma->root->mutex to
1189 		 * serialize against split_huge_page*.
1190 		 */
1191 		pmdp_splitting_flush_notify(vma, address, pmd);
1192 		ret = 1;
1193 	}
1194 	spin_unlock(&mm->page_table_lock);
1195 
1196 	return ret;
1197 }
1198 
1199 static void __split_huge_page_refcount(struct page *page)
1200 {
1201 	int i;
1202 	unsigned long head_index = page->index;
1203 	struct zone *zone = page_zone(page);
1204 	int zonestat;
1205 	int tail_count = 0;
1206 
1207 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1208 	spin_lock_irq(&zone->lru_lock);
1209 	compound_lock(page);
1210 
1211 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1212 		struct page *page_tail = page + i;
1213 
1214 		/* tail_page->_mapcount cannot change */
1215 		BUG_ON(page_mapcount(page_tail) < 0);
1216 		tail_count += page_mapcount(page_tail);
1217 		/* check for overflow */
1218 		BUG_ON(tail_count < 0);
1219 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1220 		/*
1221 		 * tail_page->_count is zero and not changing from
1222 		 * under us. But get_page_unless_zero() may be running
1223 		 * from under us on the tail_page. If we used
1224 		 * atomic_set() below instead of atomic_add(), we
1225 		 * would then run atomic_set() concurrently with
1226 		 * get_page_unless_zero(), and atomic_set() is
1227 		 * implemented in C not using locked ops. spin_unlock
1228 		 * on x86 sometime uses locked ops because of PPro
1229 		 * errata 66, 92, so unless somebody can guarantee
1230 		 * atomic_set() here would be safe on all archs (and
1231 		 * not only on x86), it's safer to use atomic_add().
1232 		 */
1233 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1234 			   &page_tail->_count);
1235 
1236 		/* after clearing PageTail the gup refcount can be released */
1237 		smp_mb();
1238 
1239 		/*
1240 		 * retain hwpoison flag of the poisoned tail page:
1241 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1242 		 *   by the memory-failure.
1243 		 */
1244 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1245 		page_tail->flags |= (page->flags &
1246 				     ((1L << PG_referenced) |
1247 				      (1L << PG_swapbacked) |
1248 				      (1L << PG_mlocked) |
1249 				      (1L << PG_uptodate)));
1250 		page_tail->flags |= (1L << PG_dirty);
1251 
1252 		/* clear PageTail before overwriting first_page */
1253 		smp_wmb();
1254 
1255 		/*
1256 		 * __split_huge_page_splitting() already set the
1257 		 * splitting bit in all pmd that could map this
1258 		 * hugepage, that will ensure no CPU can alter the
1259 		 * mapcount on the head page. The mapcount is only
1260 		 * accounted in the head page and it has to be
1261 		 * transferred to all tail pages in the below code. So
1262 		 * for this code to be safe, the split the mapcount
1263 		 * can't change. But that doesn't mean userland can't
1264 		 * keep changing and reading the page contents while
1265 		 * we transfer the mapcount, so the pmd splitting
1266 		 * status is achieved setting a reserved bit in the
1267 		 * pmd, not by clearing the present bit.
1268 		*/
1269 		page_tail->_mapcount = page->_mapcount;
1270 
1271 		BUG_ON(page_tail->mapping);
1272 		page_tail->mapping = page->mapping;
1273 
1274 		page_tail->index = ++head_index;
1275 
1276 		BUG_ON(!PageAnon(page_tail));
1277 		BUG_ON(!PageUptodate(page_tail));
1278 		BUG_ON(!PageDirty(page_tail));
1279 		BUG_ON(!PageSwapBacked(page_tail));
1280 
1281 		mem_cgroup_split_huge_fixup(page, page_tail);
1282 
1283 		lru_add_page_tail(zone, page, page_tail);
1284 	}
1285 	atomic_sub(tail_count, &page->_count);
1286 	BUG_ON(atomic_read(&page->_count) <= 0);
1287 
1288 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1289 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1290 
1291 	/*
1292 	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1293 	 * so adjust those appropriately if this page is on the LRU.
1294 	 */
1295 	if (PageLRU(page)) {
1296 		zonestat = NR_LRU_BASE + page_lru(page);
1297 		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1298 	}
1299 
1300 	ClearPageCompound(page);
1301 	compound_unlock(page);
1302 	spin_unlock_irq(&zone->lru_lock);
1303 
1304 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1305 		struct page *page_tail = page + i;
1306 		BUG_ON(page_count(page_tail) <= 0);
1307 		/*
1308 		 * Tail pages may be freed if there wasn't any mapping
1309 		 * like if add_to_swap() is running on a lru page that
1310 		 * had its mapping zapped. And freeing these pages
1311 		 * requires taking the lru_lock so we do the put_page
1312 		 * of the tail pages after the split is complete.
1313 		 */
1314 		put_page(page_tail);
1315 	}
1316 
1317 	/*
1318 	 * Only the head page (now become a regular page) is required
1319 	 * to be pinned by the caller.
1320 	 */
1321 	BUG_ON(page_count(page) <= 0);
1322 }
1323 
1324 static int __split_huge_page_map(struct page *page,
1325 				 struct vm_area_struct *vma,
1326 				 unsigned long address)
1327 {
1328 	struct mm_struct *mm = vma->vm_mm;
1329 	pmd_t *pmd, _pmd;
1330 	int ret = 0, i;
1331 	pgtable_t pgtable;
1332 	unsigned long haddr;
1333 
1334 	spin_lock(&mm->page_table_lock);
1335 	pmd = page_check_address_pmd(page, mm, address,
1336 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1337 	if (pmd) {
1338 		pgtable = get_pmd_huge_pte(mm);
1339 		pmd_populate(mm, &_pmd, pgtable);
1340 
1341 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1342 		     i++, haddr += PAGE_SIZE) {
1343 			pte_t *pte, entry;
1344 			BUG_ON(PageCompound(page+i));
1345 			entry = mk_pte(page + i, vma->vm_page_prot);
1346 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1347 			if (!pmd_write(*pmd))
1348 				entry = pte_wrprotect(entry);
1349 			else
1350 				BUG_ON(page_mapcount(page) != 1);
1351 			if (!pmd_young(*pmd))
1352 				entry = pte_mkold(entry);
1353 			pte = pte_offset_map(&_pmd, haddr);
1354 			BUG_ON(!pte_none(*pte));
1355 			set_pte_at(mm, haddr, pte, entry);
1356 			pte_unmap(pte);
1357 		}
1358 
1359 		mm->nr_ptes++;
1360 		smp_wmb(); /* make pte visible before pmd */
1361 		/*
1362 		 * Up to this point the pmd is present and huge and
1363 		 * userland has the whole access to the hugepage
1364 		 * during the split (which happens in place). If we
1365 		 * overwrite the pmd with the not-huge version
1366 		 * pointing to the pte here (which of course we could
1367 		 * if all CPUs were bug free), userland could trigger
1368 		 * a small page size TLB miss on the small sized TLB
1369 		 * while the hugepage TLB entry is still established
1370 		 * in the huge TLB. Some CPU doesn't like that. See
1371 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1372 		 * Erratum 383 on page 93. Intel should be safe but is
1373 		 * also warns that it's only safe if the permission
1374 		 * and cache attributes of the two entries loaded in
1375 		 * the two TLB is identical (which should be the case
1376 		 * here). But it is generally safer to never allow
1377 		 * small and huge TLB entries for the same virtual
1378 		 * address to be loaded simultaneously. So instead of
1379 		 * doing "pmd_populate(); flush_tlb_range();" we first
1380 		 * mark the current pmd notpresent (atomically because
1381 		 * here the pmd_trans_huge and pmd_trans_splitting
1382 		 * must remain set at all times on the pmd until the
1383 		 * split is complete for this pmd), then we flush the
1384 		 * SMP TLB and finally we write the non-huge version
1385 		 * of the pmd entry with pmd_populate.
1386 		 */
1387 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1388 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1389 		pmd_populate(mm, pmd, pgtable);
1390 		ret = 1;
1391 	}
1392 	spin_unlock(&mm->page_table_lock);
1393 
1394 	return ret;
1395 }
1396 
1397 /* must be called with anon_vma->root->mutex hold */
1398 static void __split_huge_page(struct page *page,
1399 			      struct anon_vma *anon_vma)
1400 {
1401 	int mapcount, mapcount2;
1402 	struct anon_vma_chain *avc;
1403 
1404 	BUG_ON(!PageHead(page));
1405 	BUG_ON(PageTail(page));
1406 
1407 	mapcount = 0;
1408 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1409 		struct vm_area_struct *vma = avc->vma;
1410 		unsigned long addr = vma_address(page, vma);
1411 		BUG_ON(is_vma_temporary_stack(vma));
1412 		if (addr == -EFAULT)
1413 			continue;
1414 		mapcount += __split_huge_page_splitting(page, vma, addr);
1415 	}
1416 	/*
1417 	 * It is critical that new vmas are added to the tail of the
1418 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1419 	 * and establishes a child pmd before
1420 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1421 	 * we fail to prevent copy_huge_pmd() from running until the
1422 	 * whole __split_huge_page() is complete), we will still see
1423 	 * the newly established pmd of the child later during the
1424 	 * walk, to be able to set it as pmd_trans_splitting too.
1425 	 */
1426 	if (mapcount != page_mapcount(page))
1427 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1428 		       mapcount, page_mapcount(page));
1429 	BUG_ON(mapcount != page_mapcount(page));
1430 
1431 	__split_huge_page_refcount(page);
1432 
1433 	mapcount2 = 0;
1434 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1435 		struct vm_area_struct *vma = avc->vma;
1436 		unsigned long addr = vma_address(page, vma);
1437 		BUG_ON(is_vma_temporary_stack(vma));
1438 		if (addr == -EFAULT)
1439 			continue;
1440 		mapcount2 += __split_huge_page_map(page, vma, addr);
1441 	}
1442 	if (mapcount != mapcount2)
1443 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1444 		       mapcount, mapcount2, page_mapcount(page));
1445 	BUG_ON(mapcount != mapcount2);
1446 }
1447 
1448 int split_huge_page(struct page *page)
1449 {
1450 	struct anon_vma *anon_vma;
1451 	int ret = 1;
1452 
1453 	BUG_ON(!PageAnon(page));
1454 	anon_vma = page_lock_anon_vma(page);
1455 	if (!anon_vma)
1456 		goto out;
1457 	ret = 0;
1458 	if (!PageCompound(page))
1459 		goto out_unlock;
1460 
1461 	BUG_ON(!PageSwapBacked(page));
1462 	__split_huge_page(page, anon_vma);
1463 	count_vm_event(THP_SPLIT);
1464 
1465 	BUG_ON(PageCompound(page));
1466 out_unlock:
1467 	page_unlock_anon_vma(anon_vma);
1468 out:
1469 	return ret;
1470 }
1471 
1472 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1473 		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1474 
1475 int hugepage_madvise(struct vm_area_struct *vma,
1476 		     unsigned long *vm_flags, int advice)
1477 {
1478 	switch (advice) {
1479 	case MADV_HUGEPAGE:
1480 		/*
1481 		 * Be somewhat over-protective like KSM for now!
1482 		 */
1483 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1484 			return -EINVAL;
1485 		*vm_flags &= ~VM_NOHUGEPAGE;
1486 		*vm_flags |= VM_HUGEPAGE;
1487 		/*
1488 		 * If the vma become good for khugepaged to scan,
1489 		 * register it here without waiting a page fault that
1490 		 * may not happen any time soon.
1491 		 */
1492 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1493 			return -ENOMEM;
1494 		break;
1495 	case MADV_NOHUGEPAGE:
1496 		/*
1497 		 * Be somewhat over-protective like KSM for now!
1498 		 */
1499 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1500 			return -EINVAL;
1501 		*vm_flags &= ~VM_HUGEPAGE;
1502 		*vm_flags |= VM_NOHUGEPAGE;
1503 		/*
1504 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1505 		 * this vma even if we leave the mm registered in khugepaged if
1506 		 * it got registered before VM_NOHUGEPAGE was set.
1507 		 */
1508 		break;
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static int __init khugepaged_slab_init(void)
1515 {
1516 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1517 					  sizeof(struct mm_slot),
1518 					  __alignof__(struct mm_slot), 0, NULL);
1519 	if (!mm_slot_cache)
1520 		return -ENOMEM;
1521 
1522 	return 0;
1523 }
1524 
1525 static void __init khugepaged_slab_free(void)
1526 {
1527 	kmem_cache_destroy(mm_slot_cache);
1528 	mm_slot_cache = NULL;
1529 }
1530 
1531 static inline struct mm_slot *alloc_mm_slot(void)
1532 {
1533 	if (!mm_slot_cache)	/* initialization failed */
1534 		return NULL;
1535 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1536 }
1537 
1538 static inline void free_mm_slot(struct mm_slot *mm_slot)
1539 {
1540 	kmem_cache_free(mm_slot_cache, mm_slot);
1541 }
1542 
1543 static int __init mm_slots_hash_init(void)
1544 {
1545 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1546 				GFP_KERNEL);
1547 	if (!mm_slots_hash)
1548 		return -ENOMEM;
1549 	return 0;
1550 }
1551 
1552 #if 0
1553 static void __init mm_slots_hash_free(void)
1554 {
1555 	kfree(mm_slots_hash);
1556 	mm_slots_hash = NULL;
1557 }
1558 #endif
1559 
1560 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1561 {
1562 	struct mm_slot *mm_slot;
1563 	struct hlist_head *bucket;
1564 	struct hlist_node *node;
1565 
1566 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1567 				% MM_SLOTS_HASH_HEADS];
1568 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1569 		if (mm == mm_slot->mm)
1570 			return mm_slot;
1571 	}
1572 	return NULL;
1573 }
1574 
1575 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1576 				    struct mm_slot *mm_slot)
1577 {
1578 	struct hlist_head *bucket;
1579 
1580 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1581 				% MM_SLOTS_HASH_HEADS];
1582 	mm_slot->mm = mm;
1583 	hlist_add_head(&mm_slot->hash, bucket);
1584 }
1585 
1586 static inline int khugepaged_test_exit(struct mm_struct *mm)
1587 {
1588 	return atomic_read(&mm->mm_users) == 0;
1589 }
1590 
1591 int __khugepaged_enter(struct mm_struct *mm)
1592 {
1593 	struct mm_slot *mm_slot;
1594 	int wakeup;
1595 
1596 	mm_slot = alloc_mm_slot();
1597 	if (!mm_slot)
1598 		return -ENOMEM;
1599 
1600 	/* __khugepaged_exit() must not run from under us */
1601 	VM_BUG_ON(khugepaged_test_exit(mm));
1602 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1603 		free_mm_slot(mm_slot);
1604 		return 0;
1605 	}
1606 
1607 	spin_lock(&khugepaged_mm_lock);
1608 	insert_to_mm_slots_hash(mm, mm_slot);
1609 	/*
1610 	 * Insert just behind the scanning cursor, to let the area settle
1611 	 * down a little.
1612 	 */
1613 	wakeup = list_empty(&khugepaged_scan.mm_head);
1614 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1615 	spin_unlock(&khugepaged_mm_lock);
1616 
1617 	atomic_inc(&mm->mm_count);
1618 	if (wakeup)
1619 		wake_up_interruptible(&khugepaged_wait);
1620 
1621 	return 0;
1622 }
1623 
1624 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1625 {
1626 	unsigned long hstart, hend;
1627 	if (!vma->anon_vma)
1628 		/*
1629 		 * Not yet faulted in so we will register later in the
1630 		 * page fault if needed.
1631 		 */
1632 		return 0;
1633 	if (vma->vm_ops)
1634 		/* khugepaged not yet working on file or special mappings */
1635 		return 0;
1636 	/*
1637 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1638 	 * true too, verify it here.
1639 	 */
1640 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1641 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1642 	hend = vma->vm_end & HPAGE_PMD_MASK;
1643 	if (hstart < hend)
1644 		return khugepaged_enter(vma);
1645 	return 0;
1646 }
1647 
1648 void __khugepaged_exit(struct mm_struct *mm)
1649 {
1650 	struct mm_slot *mm_slot;
1651 	int free = 0;
1652 
1653 	spin_lock(&khugepaged_mm_lock);
1654 	mm_slot = get_mm_slot(mm);
1655 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1656 		hlist_del(&mm_slot->hash);
1657 		list_del(&mm_slot->mm_node);
1658 		free = 1;
1659 	}
1660 	spin_unlock(&khugepaged_mm_lock);
1661 
1662 	if (free) {
1663 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1664 		free_mm_slot(mm_slot);
1665 		mmdrop(mm);
1666 	} else if (mm_slot) {
1667 		/*
1668 		 * This is required to serialize against
1669 		 * khugepaged_test_exit() (which is guaranteed to run
1670 		 * under mmap sem read mode). Stop here (after we
1671 		 * return all pagetables will be destroyed) until
1672 		 * khugepaged has finished working on the pagetables
1673 		 * under the mmap_sem.
1674 		 */
1675 		down_write(&mm->mmap_sem);
1676 		up_write(&mm->mmap_sem);
1677 	}
1678 }
1679 
1680 static void release_pte_page(struct page *page)
1681 {
1682 	/* 0 stands for page_is_file_cache(page) == false */
1683 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1684 	unlock_page(page);
1685 	putback_lru_page(page);
1686 }
1687 
1688 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1689 {
1690 	while (--_pte >= pte) {
1691 		pte_t pteval = *_pte;
1692 		if (!pte_none(pteval))
1693 			release_pte_page(pte_page(pteval));
1694 	}
1695 }
1696 
1697 static void release_all_pte_pages(pte_t *pte)
1698 {
1699 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1700 }
1701 
1702 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1703 					unsigned long address,
1704 					pte_t *pte)
1705 {
1706 	struct page *page;
1707 	pte_t *_pte;
1708 	int referenced = 0, isolated = 0, none = 0;
1709 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1710 	     _pte++, address += PAGE_SIZE) {
1711 		pte_t pteval = *_pte;
1712 		if (pte_none(pteval)) {
1713 			if (++none <= khugepaged_max_ptes_none)
1714 				continue;
1715 			else {
1716 				release_pte_pages(pte, _pte);
1717 				goto out;
1718 			}
1719 		}
1720 		if (!pte_present(pteval) || !pte_write(pteval)) {
1721 			release_pte_pages(pte, _pte);
1722 			goto out;
1723 		}
1724 		page = vm_normal_page(vma, address, pteval);
1725 		if (unlikely(!page)) {
1726 			release_pte_pages(pte, _pte);
1727 			goto out;
1728 		}
1729 		VM_BUG_ON(PageCompound(page));
1730 		BUG_ON(!PageAnon(page));
1731 		VM_BUG_ON(!PageSwapBacked(page));
1732 
1733 		/* cannot use mapcount: can't collapse if there's a gup pin */
1734 		if (page_count(page) != 1) {
1735 			release_pte_pages(pte, _pte);
1736 			goto out;
1737 		}
1738 		/*
1739 		 * We can do it before isolate_lru_page because the
1740 		 * page can't be freed from under us. NOTE: PG_lock
1741 		 * is needed to serialize against split_huge_page
1742 		 * when invoked from the VM.
1743 		 */
1744 		if (!trylock_page(page)) {
1745 			release_pte_pages(pte, _pte);
1746 			goto out;
1747 		}
1748 		/*
1749 		 * Isolate the page to avoid collapsing an hugepage
1750 		 * currently in use by the VM.
1751 		 */
1752 		if (isolate_lru_page(page)) {
1753 			unlock_page(page);
1754 			release_pte_pages(pte, _pte);
1755 			goto out;
1756 		}
1757 		/* 0 stands for page_is_file_cache(page) == false */
1758 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1759 		VM_BUG_ON(!PageLocked(page));
1760 		VM_BUG_ON(PageLRU(page));
1761 
1762 		/* If there is no mapped pte young don't collapse the page */
1763 		if (pte_young(pteval) || PageReferenced(page) ||
1764 		    mmu_notifier_test_young(vma->vm_mm, address))
1765 			referenced = 1;
1766 	}
1767 	if (unlikely(!referenced))
1768 		release_all_pte_pages(pte);
1769 	else
1770 		isolated = 1;
1771 out:
1772 	return isolated;
1773 }
1774 
1775 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1776 				      struct vm_area_struct *vma,
1777 				      unsigned long address,
1778 				      spinlock_t *ptl)
1779 {
1780 	pte_t *_pte;
1781 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1782 		pte_t pteval = *_pte;
1783 		struct page *src_page;
1784 
1785 		if (pte_none(pteval)) {
1786 			clear_user_highpage(page, address);
1787 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1788 		} else {
1789 			src_page = pte_page(pteval);
1790 			copy_user_highpage(page, src_page, address, vma);
1791 			VM_BUG_ON(page_mapcount(src_page) != 1);
1792 			VM_BUG_ON(page_count(src_page) != 2);
1793 			release_pte_page(src_page);
1794 			/*
1795 			 * ptl mostly unnecessary, but preempt has to
1796 			 * be disabled to update the per-cpu stats
1797 			 * inside page_remove_rmap().
1798 			 */
1799 			spin_lock(ptl);
1800 			/*
1801 			 * paravirt calls inside pte_clear here are
1802 			 * superfluous.
1803 			 */
1804 			pte_clear(vma->vm_mm, address, _pte);
1805 			page_remove_rmap(src_page);
1806 			spin_unlock(ptl);
1807 			free_page_and_swap_cache(src_page);
1808 		}
1809 
1810 		address += PAGE_SIZE;
1811 		page++;
1812 	}
1813 }
1814 
1815 static void collapse_huge_page(struct mm_struct *mm,
1816 			       unsigned long address,
1817 			       struct page **hpage,
1818 			       struct vm_area_struct *vma,
1819 			       int node)
1820 {
1821 	pgd_t *pgd;
1822 	pud_t *pud;
1823 	pmd_t *pmd, _pmd;
1824 	pte_t *pte;
1825 	pgtable_t pgtable;
1826 	struct page *new_page;
1827 	spinlock_t *ptl;
1828 	int isolated;
1829 	unsigned long hstart, hend;
1830 
1831 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1832 #ifndef CONFIG_NUMA
1833 	up_read(&mm->mmap_sem);
1834 	VM_BUG_ON(!*hpage);
1835 	new_page = *hpage;
1836 #else
1837 	VM_BUG_ON(*hpage);
1838 	/*
1839 	 * Allocate the page while the vma is still valid and under
1840 	 * the mmap_sem read mode so there is no memory allocation
1841 	 * later when we take the mmap_sem in write mode. This is more
1842 	 * friendly behavior (OTOH it may actually hide bugs) to
1843 	 * filesystems in userland with daemons allocating memory in
1844 	 * the userland I/O paths.  Allocating memory with the
1845 	 * mmap_sem in read mode is good idea also to allow greater
1846 	 * scalability.
1847 	 */
1848 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1849 				      node, __GFP_OTHER_NODE);
1850 
1851 	/*
1852 	 * After allocating the hugepage, release the mmap_sem read lock in
1853 	 * preparation for taking it in write mode.
1854 	 */
1855 	up_read(&mm->mmap_sem);
1856 	if (unlikely(!new_page)) {
1857 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1858 		*hpage = ERR_PTR(-ENOMEM);
1859 		return;
1860 	}
1861 #endif
1862 
1863 	count_vm_event(THP_COLLAPSE_ALLOC);
1864 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1865 #ifdef CONFIG_NUMA
1866 		put_page(new_page);
1867 #endif
1868 		return;
1869 	}
1870 
1871 	/*
1872 	 * Prevent all access to pagetables with the exception of
1873 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1874 	 * handled by the anon_vma lock + PG_lock.
1875 	 */
1876 	down_write(&mm->mmap_sem);
1877 	if (unlikely(khugepaged_test_exit(mm)))
1878 		goto out;
1879 
1880 	vma = find_vma(mm, address);
1881 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1882 	hend = vma->vm_end & HPAGE_PMD_MASK;
1883 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1884 		goto out;
1885 
1886 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1887 	    (vma->vm_flags & VM_NOHUGEPAGE))
1888 		goto out;
1889 
1890 	if (!vma->anon_vma || vma->vm_ops)
1891 		goto out;
1892 	if (is_vma_temporary_stack(vma))
1893 		goto out;
1894 	/*
1895 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1896 	 * true too, verify it here.
1897 	 */
1898 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1899 
1900 	pgd = pgd_offset(mm, address);
1901 	if (!pgd_present(*pgd))
1902 		goto out;
1903 
1904 	pud = pud_offset(pgd, address);
1905 	if (!pud_present(*pud))
1906 		goto out;
1907 
1908 	pmd = pmd_offset(pud, address);
1909 	/* pmd can't go away or become huge under us */
1910 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1911 		goto out;
1912 
1913 	anon_vma_lock(vma->anon_vma);
1914 
1915 	pte = pte_offset_map(pmd, address);
1916 	ptl = pte_lockptr(mm, pmd);
1917 
1918 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1919 	/*
1920 	 * After this gup_fast can't run anymore. This also removes
1921 	 * any huge TLB entry from the CPU so we won't allow
1922 	 * huge and small TLB entries for the same virtual address
1923 	 * to avoid the risk of CPU bugs in that area.
1924 	 */
1925 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1926 	spin_unlock(&mm->page_table_lock);
1927 
1928 	spin_lock(ptl);
1929 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1930 	spin_unlock(ptl);
1931 
1932 	if (unlikely(!isolated)) {
1933 		pte_unmap(pte);
1934 		spin_lock(&mm->page_table_lock);
1935 		BUG_ON(!pmd_none(*pmd));
1936 		set_pmd_at(mm, address, pmd, _pmd);
1937 		spin_unlock(&mm->page_table_lock);
1938 		anon_vma_unlock(vma->anon_vma);
1939 		goto out;
1940 	}
1941 
1942 	/*
1943 	 * All pages are isolated and locked so anon_vma rmap
1944 	 * can't run anymore.
1945 	 */
1946 	anon_vma_unlock(vma->anon_vma);
1947 
1948 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1949 	pte_unmap(pte);
1950 	__SetPageUptodate(new_page);
1951 	pgtable = pmd_pgtable(_pmd);
1952 	VM_BUG_ON(page_count(pgtable) != 1);
1953 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1954 
1955 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1956 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1957 	_pmd = pmd_mkhuge(_pmd);
1958 
1959 	/*
1960 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1961 	 * this is needed to avoid the copy_huge_page writes to become
1962 	 * visible after the set_pmd_at() write.
1963 	 */
1964 	smp_wmb();
1965 
1966 	spin_lock(&mm->page_table_lock);
1967 	BUG_ON(!pmd_none(*pmd));
1968 	page_add_new_anon_rmap(new_page, vma, address);
1969 	set_pmd_at(mm, address, pmd, _pmd);
1970 	update_mmu_cache(vma, address, _pmd);
1971 	prepare_pmd_huge_pte(pgtable, mm);
1972 	mm->nr_ptes--;
1973 	spin_unlock(&mm->page_table_lock);
1974 
1975 #ifndef CONFIG_NUMA
1976 	*hpage = NULL;
1977 #endif
1978 	khugepaged_pages_collapsed++;
1979 out_up_write:
1980 	up_write(&mm->mmap_sem);
1981 	return;
1982 
1983 out:
1984 	mem_cgroup_uncharge_page(new_page);
1985 #ifdef CONFIG_NUMA
1986 	put_page(new_page);
1987 #endif
1988 	goto out_up_write;
1989 }
1990 
1991 static int khugepaged_scan_pmd(struct mm_struct *mm,
1992 			       struct vm_area_struct *vma,
1993 			       unsigned long address,
1994 			       struct page **hpage)
1995 {
1996 	pgd_t *pgd;
1997 	pud_t *pud;
1998 	pmd_t *pmd;
1999 	pte_t *pte, *_pte;
2000 	int ret = 0, referenced = 0, none = 0;
2001 	struct page *page;
2002 	unsigned long _address;
2003 	spinlock_t *ptl;
2004 	int node = -1;
2005 
2006 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2007 
2008 	pgd = pgd_offset(mm, address);
2009 	if (!pgd_present(*pgd))
2010 		goto out;
2011 
2012 	pud = pud_offset(pgd, address);
2013 	if (!pud_present(*pud))
2014 		goto out;
2015 
2016 	pmd = pmd_offset(pud, address);
2017 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2018 		goto out;
2019 
2020 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2021 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2022 	     _pte++, _address += PAGE_SIZE) {
2023 		pte_t pteval = *_pte;
2024 		if (pte_none(pteval)) {
2025 			if (++none <= khugepaged_max_ptes_none)
2026 				continue;
2027 			else
2028 				goto out_unmap;
2029 		}
2030 		if (!pte_present(pteval) || !pte_write(pteval))
2031 			goto out_unmap;
2032 		page = vm_normal_page(vma, _address, pteval);
2033 		if (unlikely(!page))
2034 			goto out_unmap;
2035 		/*
2036 		 * Chose the node of the first page. This could
2037 		 * be more sophisticated and look at more pages,
2038 		 * but isn't for now.
2039 		 */
2040 		if (node == -1)
2041 			node = page_to_nid(page);
2042 		VM_BUG_ON(PageCompound(page));
2043 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2044 			goto out_unmap;
2045 		/* cannot use mapcount: can't collapse if there's a gup pin */
2046 		if (page_count(page) != 1)
2047 			goto out_unmap;
2048 		if (pte_young(pteval) || PageReferenced(page) ||
2049 		    mmu_notifier_test_young(vma->vm_mm, address))
2050 			referenced = 1;
2051 	}
2052 	if (referenced)
2053 		ret = 1;
2054 out_unmap:
2055 	pte_unmap_unlock(pte, ptl);
2056 	if (ret)
2057 		/* collapse_huge_page will return with the mmap_sem released */
2058 		collapse_huge_page(mm, address, hpage, vma, node);
2059 out:
2060 	return ret;
2061 }
2062 
2063 static void collect_mm_slot(struct mm_slot *mm_slot)
2064 {
2065 	struct mm_struct *mm = mm_slot->mm;
2066 
2067 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2068 
2069 	if (khugepaged_test_exit(mm)) {
2070 		/* free mm_slot */
2071 		hlist_del(&mm_slot->hash);
2072 		list_del(&mm_slot->mm_node);
2073 
2074 		/*
2075 		 * Not strictly needed because the mm exited already.
2076 		 *
2077 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2078 		 */
2079 
2080 		/* khugepaged_mm_lock actually not necessary for the below */
2081 		free_mm_slot(mm_slot);
2082 		mmdrop(mm);
2083 	}
2084 }
2085 
2086 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2087 					    struct page **hpage)
2088 	__releases(&khugepaged_mm_lock)
2089 	__acquires(&khugepaged_mm_lock)
2090 {
2091 	struct mm_slot *mm_slot;
2092 	struct mm_struct *mm;
2093 	struct vm_area_struct *vma;
2094 	int progress = 0;
2095 
2096 	VM_BUG_ON(!pages);
2097 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2098 
2099 	if (khugepaged_scan.mm_slot)
2100 		mm_slot = khugepaged_scan.mm_slot;
2101 	else {
2102 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2103 				     struct mm_slot, mm_node);
2104 		khugepaged_scan.address = 0;
2105 		khugepaged_scan.mm_slot = mm_slot;
2106 	}
2107 	spin_unlock(&khugepaged_mm_lock);
2108 
2109 	mm = mm_slot->mm;
2110 	down_read(&mm->mmap_sem);
2111 	if (unlikely(khugepaged_test_exit(mm)))
2112 		vma = NULL;
2113 	else
2114 		vma = find_vma(mm, khugepaged_scan.address);
2115 
2116 	progress++;
2117 	for (; vma; vma = vma->vm_next) {
2118 		unsigned long hstart, hend;
2119 
2120 		cond_resched();
2121 		if (unlikely(khugepaged_test_exit(mm))) {
2122 			progress++;
2123 			break;
2124 		}
2125 
2126 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2127 		     !khugepaged_always()) ||
2128 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2129 		skip:
2130 			progress++;
2131 			continue;
2132 		}
2133 		if (!vma->anon_vma || vma->vm_ops)
2134 			goto skip;
2135 		if (is_vma_temporary_stack(vma))
2136 			goto skip;
2137 		/*
2138 		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2139 		 * must be true too, verify it here.
2140 		 */
2141 		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2142 			  vma->vm_flags & VM_NO_THP);
2143 
2144 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2145 		hend = vma->vm_end & HPAGE_PMD_MASK;
2146 		if (hstart >= hend)
2147 			goto skip;
2148 		if (khugepaged_scan.address > hend)
2149 			goto skip;
2150 		if (khugepaged_scan.address < hstart)
2151 			khugepaged_scan.address = hstart;
2152 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2153 
2154 		while (khugepaged_scan.address < hend) {
2155 			int ret;
2156 			cond_resched();
2157 			if (unlikely(khugepaged_test_exit(mm)))
2158 				goto breakouterloop;
2159 
2160 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2161 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2162 				  hend);
2163 			ret = khugepaged_scan_pmd(mm, vma,
2164 						  khugepaged_scan.address,
2165 						  hpage);
2166 			/* move to next address */
2167 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2168 			progress += HPAGE_PMD_NR;
2169 			if (ret)
2170 				/* we released mmap_sem so break loop */
2171 				goto breakouterloop_mmap_sem;
2172 			if (progress >= pages)
2173 				goto breakouterloop;
2174 		}
2175 	}
2176 breakouterloop:
2177 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2178 breakouterloop_mmap_sem:
2179 
2180 	spin_lock(&khugepaged_mm_lock);
2181 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2182 	/*
2183 	 * Release the current mm_slot if this mm is about to die, or
2184 	 * if we scanned all vmas of this mm.
2185 	 */
2186 	if (khugepaged_test_exit(mm) || !vma) {
2187 		/*
2188 		 * Make sure that if mm_users is reaching zero while
2189 		 * khugepaged runs here, khugepaged_exit will find
2190 		 * mm_slot not pointing to the exiting mm.
2191 		 */
2192 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2193 			khugepaged_scan.mm_slot = list_entry(
2194 				mm_slot->mm_node.next,
2195 				struct mm_slot, mm_node);
2196 			khugepaged_scan.address = 0;
2197 		} else {
2198 			khugepaged_scan.mm_slot = NULL;
2199 			khugepaged_full_scans++;
2200 		}
2201 
2202 		collect_mm_slot(mm_slot);
2203 	}
2204 
2205 	return progress;
2206 }
2207 
2208 static int khugepaged_has_work(void)
2209 {
2210 	return !list_empty(&khugepaged_scan.mm_head) &&
2211 		khugepaged_enabled();
2212 }
2213 
2214 static int khugepaged_wait_event(void)
2215 {
2216 	return !list_empty(&khugepaged_scan.mm_head) ||
2217 		!khugepaged_enabled();
2218 }
2219 
2220 static void khugepaged_do_scan(struct page **hpage)
2221 {
2222 	unsigned int progress = 0, pass_through_head = 0;
2223 	unsigned int pages = khugepaged_pages_to_scan;
2224 
2225 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2226 
2227 	while (progress < pages) {
2228 		cond_resched();
2229 
2230 #ifndef CONFIG_NUMA
2231 		if (!*hpage) {
2232 			*hpage = alloc_hugepage(khugepaged_defrag());
2233 			if (unlikely(!*hpage)) {
2234 				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2235 				break;
2236 			}
2237 			count_vm_event(THP_COLLAPSE_ALLOC);
2238 		}
2239 #else
2240 		if (IS_ERR(*hpage))
2241 			break;
2242 #endif
2243 
2244 		if (unlikely(kthread_should_stop() || freezing(current)))
2245 			break;
2246 
2247 		spin_lock(&khugepaged_mm_lock);
2248 		if (!khugepaged_scan.mm_slot)
2249 			pass_through_head++;
2250 		if (khugepaged_has_work() &&
2251 		    pass_through_head < 2)
2252 			progress += khugepaged_scan_mm_slot(pages - progress,
2253 							    hpage);
2254 		else
2255 			progress = pages;
2256 		spin_unlock(&khugepaged_mm_lock);
2257 	}
2258 }
2259 
2260 static void khugepaged_alloc_sleep(void)
2261 {
2262 	DEFINE_WAIT(wait);
2263 	add_wait_queue(&khugepaged_wait, &wait);
2264 	schedule_timeout_interruptible(
2265 		msecs_to_jiffies(
2266 			khugepaged_alloc_sleep_millisecs));
2267 	remove_wait_queue(&khugepaged_wait, &wait);
2268 }
2269 
2270 #ifndef CONFIG_NUMA
2271 static struct page *khugepaged_alloc_hugepage(void)
2272 {
2273 	struct page *hpage;
2274 
2275 	do {
2276 		hpage = alloc_hugepage(khugepaged_defrag());
2277 		if (!hpage) {
2278 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2279 			khugepaged_alloc_sleep();
2280 		} else
2281 			count_vm_event(THP_COLLAPSE_ALLOC);
2282 	} while (unlikely(!hpage) &&
2283 		 likely(khugepaged_enabled()));
2284 	return hpage;
2285 }
2286 #endif
2287 
2288 static void khugepaged_loop(void)
2289 {
2290 	struct page *hpage;
2291 
2292 #ifdef CONFIG_NUMA
2293 	hpage = NULL;
2294 #endif
2295 	while (likely(khugepaged_enabled())) {
2296 #ifndef CONFIG_NUMA
2297 		hpage = khugepaged_alloc_hugepage();
2298 		if (unlikely(!hpage))
2299 			break;
2300 #else
2301 		if (IS_ERR(hpage)) {
2302 			khugepaged_alloc_sleep();
2303 			hpage = NULL;
2304 		}
2305 #endif
2306 
2307 		khugepaged_do_scan(&hpage);
2308 #ifndef CONFIG_NUMA
2309 		if (hpage)
2310 			put_page(hpage);
2311 #endif
2312 		try_to_freeze();
2313 		if (unlikely(kthread_should_stop()))
2314 			break;
2315 		if (khugepaged_has_work()) {
2316 			DEFINE_WAIT(wait);
2317 			if (!khugepaged_scan_sleep_millisecs)
2318 				continue;
2319 			add_wait_queue(&khugepaged_wait, &wait);
2320 			schedule_timeout_interruptible(
2321 				msecs_to_jiffies(
2322 					khugepaged_scan_sleep_millisecs));
2323 			remove_wait_queue(&khugepaged_wait, &wait);
2324 		} else if (khugepaged_enabled())
2325 			wait_event_freezable(khugepaged_wait,
2326 					     khugepaged_wait_event());
2327 	}
2328 }
2329 
2330 static int khugepaged(void *none)
2331 {
2332 	struct mm_slot *mm_slot;
2333 
2334 	set_freezable();
2335 	set_user_nice(current, 19);
2336 
2337 	/* serialize with start_khugepaged() */
2338 	mutex_lock(&khugepaged_mutex);
2339 
2340 	for (;;) {
2341 		mutex_unlock(&khugepaged_mutex);
2342 		VM_BUG_ON(khugepaged_thread != current);
2343 		khugepaged_loop();
2344 		VM_BUG_ON(khugepaged_thread != current);
2345 
2346 		mutex_lock(&khugepaged_mutex);
2347 		if (!khugepaged_enabled())
2348 			break;
2349 		if (unlikely(kthread_should_stop()))
2350 			break;
2351 	}
2352 
2353 	spin_lock(&khugepaged_mm_lock);
2354 	mm_slot = khugepaged_scan.mm_slot;
2355 	khugepaged_scan.mm_slot = NULL;
2356 	if (mm_slot)
2357 		collect_mm_slot(mm_slot);
2358 	spin_unlock(&khugepaged_mm_lock);
2359 
2360 	khugepaged_thread = NULL;
2361 	mutex_unlock(&khugepaged_mutex);
2362 
2363 	return 0;
2364 }
2365 
2366 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2367 {
2368 	struct page *page;
2369 
2370 	spin_lock(&mm->page_table_lock);
2371 	if (unlikely(!pmd_trans_huge(*pmd))) {
2372 		spin_unlock(&mm->page_table_lock);
2373 		return;
2374 	}
2375 	page = pmd_page(*pmd);
2376 	VM_BUG_ON(!page_count(page));
2377 	get_page(page);
2378 	spin_unlock(&mm->page_table_lock);
2379 
2380 	split_huge_page(page);
2381 
2382 	put_page(page);
2383 	BUG_ON(pmd_trans_huge(*pmd));
2384 }
2385 
2386 static void split_huge_page_address(struct mm_struct *mm,
2387 				    unsigned long address)
2388 {
2389 	pgd_t *pgd;
2390 	pud_t *pud;
2391 	pmd_t *pmd;
2392 
2393 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2394 
2395 	pgd = pgd_offset(mm, address);
2396 	if (!pgd_present(*pgd))
2397 		return;
2398 
2399 	pud = pud_offset(pgd, address);
2400 	if (!pud_present(*pud))
2401 		return;
2402 
2403 	pmd = pmd_offset(pud, address);
2404 	if (!pmd_present(*pmd))
2405 		return;
2406 	/*
2407 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2408 	 * materialize from under us.
2409 	 */
2410 	split_huge_page_pmd(mm, pmd);
2411 }
2412 
2413 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2414 			     unsigned long start,
2415 			     unsigned long end,
2416 			     long adjust_next)
2417 {
2418 	/*
2419 	 * If the new start address isn't hpage aligned and it could
2420 	 * previously contain an hugepage: check if we need to split
2421 	 * an huge pmd.
2422 	 */
2423 	if (start & ~HPAGE_PMD_MASK &&
2424 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2425 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2426 		split_huge_page_address(vma->vm_mm, start);
2427 
2428 	/*
2429 	 * If the new end address isn't hpage aligned and it could
2430 	 * previously contain an hugepage: check if we need to split
2431 	 * an huge pmd.
2432 	 */
2433 	if (end & ~HPAGE_PMD_MASK &&
2434 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2435 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2436 		split_huge_page_address(vma->vm_mm, end);
2437 
2438 	/*
2439 	 * If we're also updating the vma->vm_next->vm_start, if the new
2440 	 * vm_next->vm_start isn't page aligned and it could previously
2441 	 * contain an hugepage: check if we need to split an huge pmd.
2442 	 */
2443 	if (adjust_next > 0) {
2444 		struct vm_area_struct *next = vma->vm_next;
2445 		unsigned long nstart = next->vm_start;
2446 		nstart += adjust_next << PAGE_SHIFT;
2447 		if (nstart & ~HPAGE_PMD_MASK &&
2448 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2449 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2450 			split_huge_page_address(next->vm_mm, nstart);
2451 	}
2452 }
2453