1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 99 struct shrink_control *sc) 100 { 101 /* we can free zero page only if last reference remains */ 102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 103 } 104 105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 106 struct shrink_control *sc) 107 { 108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 109 struct page *zero_page = xchg(&huge_zero_page, NULL); 110 BUG_ON(zero_page == NULL); 111 __free_pages(zero_page, compound_order(zero_page)); 112 return HPAGE_PMD_NR; 113 } 114 115 return 0; 116 } 117 118 static struct shrinker huge_zero_page_shrinker = { 119 .count_objects = shrink_huge_zero_page_count, 120 .scan_objects = shrink_huge_zero_page_scan, 121 .seeks = DEFAULT_SEEKS, 122 }; 123 124 #ifdef CONFIG_SYSFS 125 126 static ssize_t triple_flag_store(struct kobject *kobj, 127 struct kobj_attribute *attr, 128 const char *buf, size_t count, 129 enum transparent_hugepage_flag enabled, 130 enum transparent_hugepage_flag deferred, 131 enum transparent_hugepage_flag req_madv) 132 { 133 if (!memcmp("defer", buf, 134 min(sizeof("defer")-1, count))) { 135 if (enabled == deferred) 136 return -EINVAL; 137 clear_bit(enabled, &transparent_hugepage_flags); 138 clear_bit(req_madv, &transparent_hugepage_flags); 139 set_bit(deferred, &transparent_hugepage_flags); 140 } else if (!memcmp("always", buf, 141 min(sizeof("always")-1, count))) { 142 clear_bit(deferred, &transparent_hugepage_flags); 143 clear_bit(req_madv, &transparent_hugepage_flags); 144 set_bit(enabled, &transparent_hugepage_flags); 145 } else if (!memcmp("madvise", buf, 146 min(sizeof("madvise")-1, count))) { 147 clear_bit(enabled, &transparent_hugepage_flags); 148 clear_bit(deferred, &transparent_hugepage_flags); 149 set_bit(req_madv, &transparent_hugepage_flags); 150 } else if (!memcmp("never", buf, 151 min(sizeof("never")-1, count))) { 152 clear_bit(enabled, &transparent_hugepage_flags); 153 clear_bit(req_madv, &transparent_hugepage_flags); 154 clear_bit(deferred, &transparent_hugepage_flags); 155 } else 156 return -EINVAL; 157 158 return count; 159 } 160 161 static ssize_t enabled_show(struct kobject *kobj, 162 struct kobj_attribute *attr, char *buf) 163 { 164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 165 return sprintf(buf, "[always] madvise never\n"); 166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "always [madvise] never\n"); 168 else 169 return sprintf(buf, "always madvise [never]\n"); 170 } 171 172 static ssize_t enabled_store(struct kobject *kobj, 173 struct kobj_attribute *attr, 174 const char *buf, size_t count) 175 { 176 ssize_t ret; 177 178 ret = triple_flag_store(kobj, attr, buf, count, 179 TRANSPARENT_HUGEPAGE_FLAG, 180 TRANSPARENT_HUGEPAGE_FLAG, 181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 182 183 if (ret > 0) { 184 int err = start_stop_khugepaged(); 185 if (err) 186 ret = err; 187 } 188 189 return ret; 190 } 191 static struct kobj_attribute enabled_attr = 192 __ATTR(enabled, 0644, enabled_show, enabled_store); 193 194 ssize_t single_hugepage_flag_show(struct kobject *kobj, 195 struct kobj_attribute *attr, char *buf, 196 enum transparent_hugepage_flag flag) 197 { 198 return sprintf(buf, "%d\n", 199 !!test_bit(flag, &transparent_hugepage_flags)); 200 } 201 202 ssize_t single_hugepage_flag_store(struct kobject *kobj, 203 struct kobj_attribute *attr, 204 const char *buf, size_t count, 205 enum transparent_hugepage_flag flag) 206 { 207 unsigned long value; 208 int ret; 209 210 ret = kstrtoul(buf, 10, &value); 211 if (ret < 0) 212 return ret; 213 if (value > 1) 214 return -EINVAL; 215 216 if (value) 217 set_bit(flag, &transparent_hugepage_flags); 218 else 219 clear_bit(flag, &transparent_hugepage_flags); 220 221 return count; 222 } 223 224 /* 225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 227 * memory just to allocate one more hugepage. 228 */ 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 233 return sprintf(buf, "[always] defer madvise never\n"); 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 235 return sprintf(buf, "always [defer] madvise never\n"); 236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 237 return sprintf(buf, "always defer [madvise] never\n"); 238 else 239 return sprintf(buf, "always defer madvise [never]\n"); 240 241 } 242 static ssize_t defrag_store(struct kobject *kobj, 243 struct kobj_attribute *attr, 244 const char *buf, size_t count) 245 { 246 return triple_flag_store(kobj, attr, buf, count, 247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 250 } 251 static struct kobj_attribute defrag_attr = 252 __ATTR(defrag, 0644, defrag_show, defrag_store); 253 254 static ssize_t use_zero_page_show(struct kobject *kobj, 255 struct kobj_attribute *attr, char *buf) 256 { 257 return single_hugepage_flag_show(kobj, attr, buf, 258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 259 } 260 static ssize_t use_zero_page_store(struct kobject *kobj, 261 struct kobj_attribute *attr, const char *buf, size_t count) 262 { 263 return single_hugepage_flag_store(kobj, attr, buf, count, 264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 265 } 266 static struct kobj_attribute use_zero_page_attr = 267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 268 #ifdef CONFIG_DEBUG_VM 269 static ssize_t debug_cow_show(struct kobject *kobj, 270 struct kobj_attribute *attr, char *buf) 271 { 272 return single_hugepage_flag_show(kobj, attr, buf, 273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 274 } 275 static ssize_t debug_cow_store(struct kobject *kobj, 276 struct kobj_attribute *attr, 277 const char *buf, size_t count) 278 { 279 return single_hugepage_flag_store(kobj, attr, buf, count, 280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 281 } 282 static struct kobj_attribute debug_cow_attr = 283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 284 #endif /* CONFIG_DEBUG_VM */ 285 286 static struct attribute *hugepage_attr[] = { 287 &enabled_attr.attr, 288 &defrag_attr.attr, 289 &use_zero_page_attr.attr, 290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 291 &shmem_enabled_attr.attr, 292 #endif 293 #ifdef CONFIG_DEBUG_VM 294 &debug_cow_attr.attr, 295 #endif 296 NULL, 297 }; 298 299 static struct attribute_group hugepage_attr_group = { 300 .attrs = hugepage_attr, 301 }; 302 303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 304 { 305 int err; 306 307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 308 if (unlikely(!*hugepage_kobj)) { 309 pr_err("failed to create transparent hugepage kobject\n"); 310 return -ENOMEM; 311 } 312 313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 314 if (err) { 315 pr_err("failed to register transparent hugepage group\n"); 316 goto delete_obj; 317 } 318 319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 320 if (err) { 321 pr_err("failed to register transparent hugepage group\n"); 322 goto remove_hp_group; 323 } 324 325 return 0; 326 327 remove_hp_group: 328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 329 delete_obj: 330 kobject_put(*hugepage_kobj); 331 return err; 332 } 333 334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 335 { 336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 338 kobject_put(hugepage_kobj); 339 } 340 #else 341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 342 { 343 return 0; 344 } 345 346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 347 { 348 } 349 #endif /* CONFIG_SYSFS */ 350 351 static int __init hugepage_init(void) 352 { 353 int err; 354 struct kobject *hugepage_kobj; 355 356 if (!has_transparent_hugepage()) { 357 transparent_hugepage_flags = 0; 358 return -EINVAL; 359 } 360 361 /* 362 * hugepages can't be allocated by the buddy allocator 363 */ 364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 365 /* 366 * we use page->mapping and page->index in second tail page 367 * as list_head: assuming THP order >= 2 368 */ 369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 370 371 err = hugepage_init_sysfs(&hugepage_kobj); 372 if (err) 373 goto err_sysfs; 374 375 err = khugepaged_init(); 376 if (err) 377 goto err_slab; 378 379 err = register_shrinker(&huge_zero_page_shrinker); 380 if (err) 381 goto err_hzp_shrinker; 382 err = register_shrinker(&deferred_split_shrinker); 383 if (err) 384 goto err_split_shrinker; 385 386 /* 387 * By default disable transparent hugepages on smaller systems, 388 * where the extra memory used could hurt more than TLB overhead 389 * is likely to save. The admin can still enable it through /sys. 390 */ 391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 392 transparent_hugepage_flags = 0; 393 return 0; 394 } 395 396 err = start_stop_khugepaged(); 397 if (err) 398 goto err_khugepaged; 399 400 return 0; 401 err_khugepaged: 402 unregister_shrinker(&deferred_split_shrinker); 403 err_split_shrinker: 404 unregister_shrinker(&huge_zero_page_shrinker); 405 err_hzp_shrinker: 406 khugepaged_destroy(); 407 err_slab: 408 hugepage_exit_sysfs(hugepage_kobj); 409 err_sysfs: 410 return err; 411 } 412 subsys_initcall(hugepage_init); 413 414 static int __init setup_transparent_hugepage(char *str) 415 { 416 int ret = 0; 417 if (!str) 418 goto out; 419 if (!strcmp(str, "always")) { 420 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 421 &transparent_hugepage_flags); 422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 423 &transparent_hugepage_flags); 424 ret = 1; 425 } else if (!strcmp(str, "madvise")) { 426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 427 &transparent_hugepage_flags); 428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 429 &transparent_hugepage_flags); 430 ret = 1; 431 } else if (!strcmp(str, "never")) { 432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 433 &transparent_hugepage_flags); 434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 435 &transparent_hugepage_flags); 436 ret = 1; 437 } 438 out: 439 if (!ret) 440 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 441 return ret; 442 } 443 __setup("transparent_hugepage=", setup_transparent_hugepage); 444 445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 446 { 447 if (likely(vma->vm_flags & VM_WRITE)) 448 pmd = pmd_mkwrite(pmd); 449 return pmd; 450 } 451 452 static inline struct list_head *page_deferred_list(struct page *page) 453 { 454 /* 455 * ->lru in the tail pages is occupied by compound_head. 456 * Let's use ->mapping + ->index in the second tail page as list_head. 457 */ 458 return (struct list_head *)&page[2].mapping; 459 } 460 461 void prep_transhuge_page(struct page *page) 462 { 463 /* 464 * we use page->mapping and page->indexlru in second tail page 465 * as list_head: assuming THP order >= 2 466 */ 467 468 INIT_LIST_HEAD(page_deferred_list(page)); 469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 470 } 471 472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page, 473 gfp_t gfp) 474 { 475 struct vm_area_struct *vma = fe->vma; 476 struct mem_cgroup *memcg; 477 pgtable_t pgtable; 478 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 479 480 VM_BUG_ON_PAGE(!PageCompound(page), page); 481 482 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 483 put_page(page); 484 count_vm_event(THP_FAULT_FALLBACK); 485 return VM_FAULT_FALLBACK; 486 } 487 488 pgtable = pte_alloc_one(vma->vm_mm, haddr); 489 if (unlikely(!pgtable)) { 490 mem_cgroup_cancel_charge(page, memcg, true); 491 put_page(page); 492 return VM_FAULT_OOM; 493 } 494 495 clear_huge_page(page, haddr, HPAGE_PMD_NR); 496 /* 497 * The memory barrier inside __SetPageUptodate makes sure that 498 * clear_huge_page writes become visible before the set_pmd_at() 499 * write. 500 */ 501 __SetPageUptodate(page); 502 503 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 504 if (unlikely(!pmd_none(*fe->pmd))) { 505 spin_unlock(fe->ptl); 506 mem_cgroup_cancel_charge(page, memcg, true); 507 put_page(page); 508 pte_free(vma->vm_mm, pgtable); 509 } else { 510 pmd_t entry; 511 512 /* Deliver the page fault to userland */ 513 if (userfaultfd_missing(vma)) { 514 int ret; 515 516 spin_unlock(fe->ptl); 517 mem_cgroup_cancel_charge(page, memcg, true); 518 put_page(page); 519 pte_free(vma->vm_mm, pgtable); 520 ret = handle_userfault(fe, VM_UFFD_MISSING); 521 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 522 return ret; 523 } 524 525 entry = mk_huge_pmd(page, vma->vm_page_prot); 526 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 527 page_add_new_anon_rmap(page, vma, haddr, true); 528 mem_cgroup_commit_charge(page, memcg, false, true); 529 lru_cache_add_active_or_unevictable(page, vma); 530 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable); 531 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 532 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 533 atomic_long_inc(&vma->vm_mm->nr_ptes); 534 spin_unlock(fe->ptl); 535 count_vm_event(THP_FAULT_ALLOC); 536 } 537 538 return 0; 539 } 540 541 /* 542 * If THP defrag is set to always then directly reclaim/compact as necessary 543 * If set to defer then do only background reclaim/compact and defer to khugepaged 544 * If set to madvise and the VMA is flagged then directly reclaim/compact 545 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's 546 */ 547 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 548 { 549 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 550 551 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 552 &transparent_hugepage_flags) && vma_madvised) 553 return GFP_TRANSHUGE; 554 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 555 &transparent_hugepage_flags)) 556 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 557 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 558 &transparent_hugepage_flags)) 559 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 560 561 return GFP_TRANSHUGE_LIGHT; 562 } 563 564 /* Caller must hold page table lock. */ 565 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 566 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 567 struct page *zero_page) 568 { 569 pmd_t entry; 570 if (!pmd_none(*pmd)) 571 return false; 572 entry = mk_pmd(zero_page, vma->vm_page_prot); 573 entry = pmd_mkhuge(entry); 574 if (pgtable) 575 pgtable_trans_huge_deposit(mm, pmd, pgtable); 576 set_pmd_at(mm, haddr, pmd, entry); 577 atomic_long_inc(&mm->nr_ptes); 578 return true; 579 } 580 581 int do_huge_pmd_anonymous_page(struct fault_env *fe) 582 { 583 struct vm_area_struct *vma = fe->vma; 584 gfp_t gfp; 585 struct page *page; 586 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 587 588 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 589 return VM_FAULT_FALLBACK; 590 if (unlikely(anon_vma_prepare(vma))) 591 return VM_FAULT_OOM; 592 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 593 return VM_FAULT_OOM; 594 if (!(fe->flags & FAULT_FLAG_WRITE) && 595 !mm_forbids_zeropage(vma->vm_mm) && 596 transparent_hugepage_use_zero_page()) { 597 pgtable_t pgtable; 598 struct page *zero_page; 599 bool set; 600 int ret; 601 pgtable = pte_alloc_one(vma->vm_mm, haddr); 602 if (unlikely(!pgtable)) 603 return VM_FAULT_OOM; 604 zero_page = get_huge_zero_page(); 605 if (unlikely(!zero_page)) { 606 pte_free(vma->vm_mm, pgtable); 607 count_vm_event(THP_FAULT_FALLBACK); 608 return VM_FAULT_FALLBACK; 609 } 610 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 611 ret = 0; 612 set = false; 613 if (pmd_none(*fe->pmd)) { 614 if (userfaultfd_missing(vma)) { 615 spin_unlock(fe->ptl); 616 ret = handle_userfault(fe, VM_UFFD_MISSING); 617 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 618 } else { 619 set_huge_zero_page(pgtable, vma->vm_mm, vma, 620 haddr, fe->pmd, zero_page); 621 spin_unlock(fe->ptl); 622 set = true; 623 } 624 } else 625 spin_unlock(fe->ptl); 626 if (!set) { 627 pte_free(vma->vm_mm, pgtable); 628 put_huge_zero_page(); 629 } 630 return ret; 631 } 632 gfp = alloc_hugepage_direct_gfpmask(vma); 633 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 634 if (unlikely(!page)) { 635 count_vm_event(THP_FAULT_FALLBACK); 636 return VM_FAULT_FALLBACK; 637 } 638 prep_transhuge_page(page); 639 return __do_huge_pmd_anonymous_page(fe, page, gfp); 640 } 641 642 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 643 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 644 { 645 struct mm_struct *mm = vma->vm_mm; 646 pmd_t entry; 647 spinlock_t *ptl; 648 649 ptl = pmd_lock(mm, pmd); 650 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 651 if (pfn_t_devmap(pfn)) 652 entry = pmd_mkdevmap(entry); 653 if (write) { 654 entry = pmd_mkyoung(pmd_mkdirty(entry)); 655 entry = maybe_pmd_mkwrite(entry, vma); 656 } 657 set_pmd_at(mm, addr, pmd, entry); 658 update_mmu_cache_pmd(vma, addr, pmd); 659 spin_unlock(ptl); 660 } 661 662 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 663 pmd_t *pmd, pfn_t pfn, bool write) 664 { 665 pgprot_t pgprot = vma->vm_page_prot; 666 /* 667 * If we had pmd_special, we could avoid all these restrictions, 668 * but we need to be consistent with PTEs and architectures that 669 * can't support a 'special' bit. 670 */ 671 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 672 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 673 (VM_PFNMAP|VM_MIXEDMAP)); 674 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 675 BUG_ON(!pfn_t_devmap(pfn)); 676 677 if (addr < vma->vm_start || addr >= vma->vm_end) 678 return VM_FAULT_SIGBUS; 679 if (track_pfn_insert(vma, &pgprot, pfn)) 680 return VM_FAULT_SIGBUS; 681 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 682 return VM_FAULT_NOPAGE; 683 } 684 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 685 686 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 687 pmd_t *pmd) 688 { 689 pmd_t _pmd; 690 691 /* 692 * We should set the dirty bit only for FOLL_WRITE but for now 693 * the dirty bit in the pmd is meaningless. And if the dirty 694 * bit will become meaningful and we'll only set it with 695 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 696 * set the young bit, instead of the current set_pmd_at. 697 */ 698 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 699 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 700 pmd, _pmd, 1)) 701 update_mmu_cache_pmd(vma, addr, pmd); 702 } 703 704 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 705 pmd_t *pmd, int flags) 706 { 707 unsigned long pfn = pmd_pfn(*pmd); 708 struct mm_struct *mm = vma->vm_mm; 709 struct dev_pagemap *pgmap; 710 struct page *page; 711 712 assert_spin_locked(pmd_lockptr(mm, pmd)); 713 714 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 715 return NULL; 716 717 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 718 /* pass */; 719 else 720 return NULL; 721 722 if (flags & FOLL_TOUCH) 723 touch_pmd(vma, addr, pmd); 724 725 /* 726 * device mapped pages can only be returned if the 727 * caller will manage the page reference count. 728 */ 729 if (!(flags & FOLL_GET)) 730 return ERR_PTR(-EEXIST); 731 732 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 733 pgmap = get_dev_pagemap(pfn, NULL); 734 if (!pgmap) 735 return ERR_PTR(-EFAULT); 736 page = pfn_to_page(pfn); 737 get_page(page); 738 put_dev_pagemap(pgmap); 739 740 return page; 741 } 742 743 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 744 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 745 struct vm_area_struct *vma) 746 { 747 spinlock_t *dst_ptl, *src_ptl; 748 struct page *src_page; 749 pmd_t pmd; 750 pgtable_t pgtable = NULL; 751 int ret = -ENOMEM; 752 753 /* Skip if can be re-fill on fault */ 754 if (!vma_is_anonymous(vma)) 755 return 0; 756 757 pgtable = pte_alloc_one(dst_mm, addr); 758 if (unlikely(!pgtable)) 759 goto out; 760 761 dst_ptl = pmd_lock(dst_mm, dst_pmd); 762 src_ptl = pmd_lockptr(src_mm, src_pmd); 763 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 764 765 ret = -EAGAIN; 766 pmd = *src_pmd; 767 if (unlikely(!pmd_trans_huge(pmd))) { 768 pte_free(dst_mm, pgtable); 769 goto out_unlock; 770 } 771 /* 772 * When page table lock is held, the huge zero pmd should not be 773 * under splitting since we don't split the page itself, only pmd to 774 * a page table. 775 */ 776 if (is_huge_zero_pmd(pmd)) { 777 struct page *zero_page; 778 /* 779 * get_huge_zero_page() will never allocate a new page here, 780 * since we already have a zero page to copy. It just takes a 781 * reference. 782 */ 783 zero_page = get_huge_zero_page(); 784 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 785 zero_page); 786 ret = 0; 787 goto out_unlock; 788 } 789 790 src_page = pmd_page(pmd); 791 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 792 get_page(src_page); 793 page_dup_rmap(src_page, true); 794 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 795 atomic_long_inc(&dst_mm->nr_ptes); 796 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 797 798 pmdp_set_wrprotect(src_mm, addr, src_pmd); 799 pmd = pmd_mkold(pmd_wrprotect(pmd)); 800 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 801 802 ret = 0; 803 out_unlock: 804 spin_unlock(src_ptl); 805 spin_unlock(dst_ptl); 806 out: 807 return ret; 808 } 809 810 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd) 811 { 812 pmd_t entry; 813 unsigned long haddr; 814 815 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd); 816 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 817 goto unlock; 818 819 entry = pmd_mkyoung(orig_pmd); 820 haddr = fe->address & HPAGE_PMD_MASK; 821 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, 822 fe->flags & FAULT_FLAG_WRITE)) 823 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd); 824 825 unlock: 826 spin_unlock(fe->ptl); 827 } 828 829 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd, 830 struct page *page) 831 { 832 struct vm_area_struct *vma = fe->vma; 833 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 834 struct mem_cgroup *memcg; 835 pgtable_t pgtable; 836 pmd_t _pmd; 837 int ret = 0, i; 838 struct page **pages; 839 unsigned long mmun_start; /* For mmu_notifiers */ 840 unsigned long mmun_end; /* For mmu_notifiers */ 841 842 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 843 GFP_KERNEL); 844 if (unlikely(!pages)) { 845 ret |= VM_FAULT_OOM; 846 goto out; 847 } 848 849 for (i = 0; i < HPAGE_PMD_NR; i++) { 850 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 851 __GFP_OTHER_NODE, vma, 852 fe->address, page_to_nid(page)); 853 if (unlikely(!pages[i] || 854 mem_cgroup_try_charge(pages[i], vma->vm_mm, 855 GFP_KERNEL, &memcg, false))) { 856 if (pages[i]) 857 put_page(pages[i]); 858 while (--i >= 0) { 859 memcg = (void *)page_private(pages[i]); 860 set_page_private(pages[i], 0); 861 mem_cgroup_cancel_charge(pages[i], memcg, 862 false); 863 put_page(pages[i]); 864 } 865 kfree(pages); 866 ret |= VM_FAULT_OOM; 867 goto out; 868 } 869 set_page_private(pages[i], (unsigned long)memcg); 870 } 871 872 for (i = 0; i < HPAGE_PMD_NR; i++) { 873 copy_user_highpage(pages[i], page + i, 874 haddr + PAGE_SIZE * i, vma); 875 __SetPageUptodate(pages[i]); 876 cond_resched(); 877 } 878 879 mmun_start = haddr; 880 mmun_end = haddr + HPAGE_PMD_SIZE; 881 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 882 883 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 884 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 885 goto out_free_pages; 886 VM_BUG_ON_PAGE(!PageHead(page), page); 887 888 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 889 /* leave pmd empty until pte is filled */ 890 891 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd); 892 pmd_populate(vma->vm_mm, &_pmd, pgtable); 893 894 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 895 pte_t entry; 896 entry = mk_pte(pages[i], vma->vm_page_prot); 897 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 898 memcg = (void *)page_private(pages[i]); 899 set_page_private(pages[i], 0); 900 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false); 901 mem_cgroup_commit_charge(pages[i], memcg, false, false); 902 lru_cache_add_active_or_unevictable(pages[i], vma); 903 fe->pte = pte_offset_map(&_pmd, haddr); 904 VM_BUG_ON(!pte_none(*fe->pte)); 905 set_pte_at(vma->vm_mm, haddr, fe->pte, entry); 906 pte_unmap(fe->pte); 907 } 908 kfree(pages); 909 910 smp_wmb(); /* make pte visible before pmd */ 911 pmd_populate(vma->vm_mm, fe->pmd, pgtable); 912 page_remove_rmap(page, true); 913 spin_unlock(fe->ptl); 914 915 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 916 917 ret |= VM_FAULT_WRITE; 918 put_page(page); 919 920 out: 921 return ret; 922 923 out_free_pages: 924 spin_unlock(fe->ptl); 925 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 926 for (i = 0; i < HPAGE_PMD_NR; i++) { 927 memcg = (void *)page_private(pages[i]); 928 set_page_private(pages[i], 0); 929 mem_cgroup_cancel_charge(pages[i], memcg, false); 930 put_page(pages[i]); 931 } 932 kfree(pages); 933 goto out; 934 } 935 936 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd) 937 { 938 struct vm_area_struct *vma = fe->vma; 939 struct page *page = NULL, *new_page; 940 struct mem_cgroup *memcg; 941 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 942 unsigned long mmun_start; /* For mmu_notifiers */ 943 unsigned long mmun_end; /* For mmu_notifiers */ 944 gfp_t huge_gfp; /* for allocation and charge */ 945 int ret = 0; 946 947 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd); 948 VM_BUG_ON_VMA(!vma->anon_vma, vma); 949 if (is_huge_zero_pmd(orig_pmd)) 950 goto alloc; 951 spin_lock(fe->ptl); 952 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 953 goto out_unlock; 954 955 page = pmd_page(orig_pmd); 956 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 957 /* 958 * We can only reuse the page if nobody else maps the huge page or it's 959 * part. 960 */ 961 if (page_trans_huge_mapcount(page, NULL) == 1) { 962 pmd_t entry; 963 entry = pmd_mkyoung(orig_pmd); 964 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 965 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1)) 966 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 967 ret |= VM_FAULT_WRITE; 968 goto out_unlock; 969 } 970 get_page(page); 971 spin_unlock(fe->ptl); 972 alloc: 973 if (transparent_hugepage_enabled(vma) && 974 !transparent_hugepage_debug_cow()) { 975 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 976 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 977 } else 978 new_page = NULL; 979 980 if (likely(new_page)) { 981 prep_transhuge_page(new_page); 982 } else { 983 if (!page) { 984 split_huge_pmd(vma, fe->pmd, fe->address); 985 ret |= VM_FAULT_FALLBACK; 986 } else { 987 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page); 988 if (ret & VM_FAULT_OOM) { 989 split_huge_pmd(vma, fe->pmd, fe->address); 990 ret |= VM_FAULT_FALLBACK; 991 } 992 put_page(page); 993 } 994 count_vm_event(THP_FAULT_FALLBACK); 995 goto out; 996 } 997 998 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 999 huge_gfp, &memcg, true))) { 1000 put_page(new_page); 1001 split_huge_pmd(vma, fe->pmd, fe->address); 1002 if (page) 1003 put_page(page); 1004 ret |= VM_FAULT_FALLBACK; 1005 count_vm_event(THP_FAULT_FALLBACK); 1006 goto out; 1007 } 1008 1009 count_vm_event(THP_FAULT_ALLOC); 1010 1011 if (!page) 1012 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1013 else 1014 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1015 __SetPageUptodate(new_page); 1016 1017 mmun_start = haddr; 1018 mmun_end = haddr + HPAGE_PMD_SIZE; 1019 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1020 1021 spin_lock(fe->ptl); 1022 if (page) 1023 put_page(page); 1024 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) { 1025 spin_unlock(fe->ptl); 1026 mem_cgroup_cancel_charge(new_page, memcg, true); 1027 put_page(new_page); 1028 goto out_mn; 1029 } else { 1030 pmd_t entry; 1031 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1032 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1033 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 1034 page_add_new_anon_rmap(new_page, vma, haddr, true); 1035 mem_cgroup_commit_charge(new_page, memcg, false, true); 1036 lru_cache_add_active_or_unevictable(new_page, vma); 1037 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 1038 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1039 if (!page) { 1040 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1041 put_huge_zero_page(); 1042 } else { 1043 VM_BUG_ON_PAGE(!PageHead(page), page); 1044 page_remove_rmap(page, true); 1045 put_page(page); 1046 } 1047 ret |= VM_FAULT_WRITE; 1048 } 1049 spin_unlock(fe->ptl); 1050 out_mn: 1051 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1052 out: 1053 return ret; 1054 out_unlock: 1055 spin_unlock(fe->ptl); 1056 return ret; 1057 } 1058 1059 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1060 unsigned long addr, 1061 pmd_t *pmd, 1062 unsigned int flags) 1063 { 1064 struct mm_struct *mm = vma->vm_mm; 1065 struct page *page = NULL; 1066 1067 assert_spin_locked(pmd_lockptr(mm, pmd)); 1068 1069 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1070 goto out; 1071 1072 /* Avoid dumping huge zero page */ 1073 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1074 return ERR_PTR(-EFAULT); 1075 1076 /* Full NUMA hinting faults to serialise migration in fault paths */ 1077 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1078 goto out; 1079 1080 page = pmd_page(*pmd); 1081 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1082 if (flags & FOLL_TOUCH) 1083 touch_pmd(vma, addr, pmd); 1084 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1085 /* 1086 * We don't mlock() pte-mapped THPs. This way we can avoid 1087 * leaking mlocked pages into non-VM_LOCKED VMAs. 1088 * 1089 * For anon THP: 1090 * 1091 * In most cases the pmd is the only mapping of the page as we 1092 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1093 * writable private mappings in populate_vma_page_range(). 1094 * 1095 * The only scenario when we have the page shared here is if we 1096 * mlocking read-only mapping shared over fork(). We skip 1097 * mlocking such pages. 1098 * 1099 * For file THP: 1100 * 1101 * We can expect PageDoubleMap() to be stable under page lock: 1102 * for file pages we set it in page_add_file_rmap(), which 1103 * requires page to be locked. 1104 */ 1105 1106 if (PageAnon(page) && compound_mapcount(page) != 1) 1107 goto skip_mlock; 1108 if (PageDoubleMap(page) || !page->mapping) 1109 goto skip_mlock; 1110 if (!trylock_page(page)) 1111 goto skip_mlock; 1112 lru_add_drain(); 1113 if (page->mapping && !PageDoubleMap(page)) 1114 mlock_vma_page(page); 1115 unlock_page(page); 1116 } 1117 skip_mlock: 1118 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1119 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1120 if (flags & FOLL_GET) 1121 get_page(page); 1122 1123 out: 1124 return page; 1125 } 1126 1127 /* NUMA hinting page fault entry point for trans huge pmds */ 1128 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd) 1129 { 1130 struct vm_area_struct *vma = fe->vma; 1131 struct anon_vma *anon_vma = NULL; 1132 struct page *page; 1133 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 1134 int page_nid = -1, this_nid = numa_node_id(); 1135 int target_nid, last_cpupid = -1; 1136 bool page_locked; 1137 bool migrated = false; 1138 bool was_writable; 1139 int flags = 0; 1140 1141 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 1142 if (unlikely(!pmd_same(pmd, *fe->pmd))) 1143 goto out_unlock; 1144 1145 /* 1146 * If there are potential migrations, wait for completion and retry 1147 * without disrupting NUMA hinting information. Do not relock and 1148 * check_same as the page may no longer be mapped. 1149 */ 1150 if (unlikely(pmd_trans_migrating(*fe->pmd))) { 1151 page = pmd_page(*fe->pmd); 1152 spin_unlock(fe->ptl); 1153 wait_on_page_locked(page); 1154 goto out; 1155 } 1156 1157 page = pmd_page(pmd); 1158 BUG_ON(is_huge_zero_page(page)); 1159 page_nid = page_to_nid(page); 1160 last_cpupid = page_cpupid_last(page); 1161 count_vm_numa_event(NUMA_HINT_FAULTS); 1162 if (page_nid == this_nid) { 1163 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1164 flags |= TNF_FAULT_LOCAL; 1165 } 1166 1167 /* See similar comment in do_numa_page for explanation */ 1168 if (!(vma->vm_flags & VM_WRITE)) 1169 flags |= TNF_NO_GROUP; 1170 1171 /* 1172 * Acquire the page lock to serialise THP migrations but avoid dropping 1173 * page_table_lock if at all possible 1174 */ 1175 page_locked = trylock_page(page); 1176 target_nid = mpol_misplaced(page, vma, haddr); 1177 if (target_nid == -1) { 1178 /* If the page was locked, there are no parallel migrations */ 1179 if (page_locked) 1180 goto clear_pmdnuma; 1181 } 1182 1183 /* Migration could have started since the pmd_trans_migrating check */ 1184 if (!page_locked) { 1185 spin_unlock(fe->ptl); 1186 wait_on_page_locked(page); 1187 page_nid = -1; 1188 goto out; 1189 } 1190 1191 /* 1192 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1193 * to serialises splits 1194 */ 1195 get_page(page); 1196 spin_unlock(fe->ptl); 1197 anon_vma = page_lock_anon_vma_read(page); 1198 1199 /* Confirm the PMD did not change while page_table_lock was released */ 1200 spin_lock(fe->ptl); 1201 if (unlikely(!pmd_same(pmd, *fe->pmd))) { 1202 unlock_page(page); 1203 put_page(page); 1204 page_nid = -1; 1205 goto out_unlock; 1206 } 1207 1208 /* Bail if we fail to protect against THP splits for any reason */ 1209 if (unlikely(!anon_vma)) { 1210 put_page(page); 1211 page_nid = -1; 1212 goto clear_pmdnuma; 1213 } 1214 1215 /* 1216 * Migrate the THP to the requested node, returns with page unlocked 1217 * and access rights restored. 1218 */ 1219 spin_unlock(fe->ptl); 1220 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1221 fe->pmd, pmd, fe->address, page, target_nid); 1222 if (migrated) { 1223 flags |= TNF_MIGRATED; 1224 page_nid = target_nid; 1225 } else 1226 flags |= TNF_MIGRATE_FAIL; 1227 1228 goto out; 1229 clear_pmdnuma: 1230 BUG_ON(!PageLocked(page)); 1231 was_writable = pmd_write(pmd); 1232 pmd = pmd_modify(pmd, vma->vm_page_prot); 1233 pmd = pmd_mkyoung(pmd); 1234 if (was_writable) 1235 pmd = pmd_mkwrite(pmd); 1236 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd); 1237 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1238 unlock_page(page); 1239 out_unlock: 1240 spin_unlock(fe->ptl); 1241 1242 out: 1243 if (anon_vma) 1244 page_unlock_anon_vma_read(anon_vma); 1245 1246 if (page_nid != -1) 1247 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags); 1248 1249 return 0; 1250 } 1251 1252 /* 1253 * Return true if we do MADV_FREE successfully on entire pmd page. 1254 * Otherwise, return false. 1255 */ 1256 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1257 pmd_t *pmd, unsigned long addr, unsigned long next) 1258 { 1259 spinlock_t *ptl; 1260 pmd_t orig_pmd; 1261 struct page *page; 1262 struct mm_struct *mm = tlb->mm; 1263 bool ret = false; 1264 1265 ptl = pmd_trans_huge_lock(pmd, vma); 1266 if (!ptl) 1267 goto out_unlocked; 1268 1269 orig_pmd = *pmd; 1270 if (is_huge_zero_pmd(orig_pmd)) 1271 goto out; 1272 1273 page = pmd_page(orig_pmd); 1274 /* 1275 * If other processes are mapping this page, we couldn't discard 1276 * the page unless they all do MADV_FREE so let's skip the page. 1277 */ 1278 if (page_mapcount(page) != 1) 1279 goto out; 1280 1281 if (!trylock_page(page)) 1282 goto out; 1283 1284 /* 1285 * If user want to discard part-pages of THP, split it so MADV_FREE 1286 * will deactivate only them. 1287 */ 1288 if (next - addr != HPAGE_PMD_SIZE) { 1289 get_page(page); 1290 spin_unlock(ptl); 1291 split_huge_page(page); 1292 put_page(page); 1293 unlock_page(page); 1294 goto out_unlocked; 1295 } 1296 1297 if (PageDirty(page)) 1298 ClearPageDirty(page); 1299 unlock_page(page); 1300 1301 if (PageActive(page)) 1302 deactivate_page(page); 1303 1304 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1305 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1306 tlb->fullmm); 1307 orig_pmd = pmd_mkold(orig_pmd); 1308 orig_pmd = pmd_mkclean(orig_pmd); 1309 1310 set_pmd_at(mm, addr, pmd, orig_pmd); 1311 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1312 } 1313 ret = true; 1314 out: 1315 spin_unlock(ptl); 1316 out_unlocked: 1317 return ret; 1318 } 1319 1320 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1321 pmd_t *pmd, unsigned long addr) 1322 { 1323 pmd_t orig_pmd; 1324 spinlock_t *ptl; 1325 1326 ptl = __pmd_trans_huge_lock(pmd, vma); 1327 if (!ptl) 1328 return 0; 1329 /* 1330 * For architectures like ppc64 we look at deposited pgtable 1331 * when calling pmdp_huge_get_and_clear. So do the 1332 * pgtable_trans_huge_withdraw after finishing pmdp related 1333 * operations. 1334 */ 1335 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1336 tlb->fullmm); 1337 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1338 if (vma_is_dax(vma)) { 1339 spin_unlock(ptl); 1340 if (is_huge_zero_pmd(orig_pmd)) 1341 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1342 } else if (is_huge_zero_pmd(orig_pmd)) { 1343 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1344 atomic_long_dec(&tlb->mm->nr_ptes); 1345 spin_unlock(ptl); 1346 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1347 } else { 1348 struct page *page = pmd_page(orig_pmd); 1349 page_remove_rmap(page, true); 1350 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1351 VM_BUG_ON_PAGE(!PageHead(page), page); 1352 if (PageAnon(page)) { 1353 pgtable_t pgtable; 1354 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1355 pte_free(tlb->mm, pgtable); 1356 atomic_long_dec(&tlb->mm->nr_ptes); 1357 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1358 } else { 1359 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1360 } 1361 spin_unlock(ptl); 1362 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1363 } 1364 return 1; 1365 } 1366 1367 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1368 unsigned long new_addr, unsigned long old_end, 1369 pmd_t *old_pmd, pmd_t *new_pmd) 1370 { 1371 spinlock_t *old_ptl, *new_ptl; 1372 pmd_t pmd; 1373 struct mm_struct *mm = vma->vm_mm; 1374 1375 if ((old_addr & ~HPAGE_PMD_MASK) || 1376 (new_addr & ~HPAGE_PMD_MASK) || 1377 old_end - old_addr < HPAGE_PMD_SIZE) 1378 return false; 1379 1380 /* 1381 * The destination pmd shouldn't be established, free_pgtables() 1382 * should have release it. 1383 */ 1384 if (WARN_ON(!pmd_none(*new_pmd))) { 1385 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1386 return false; 1387 } 1388 1389 /* 1390 * We don't have to worry about the ordering of src and dst 1391 * ptlocks because exclusive mmap_sem prevents deadlock. 1392 */ 1393 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1394 if (old_ptl) { 1395 new_ptl = pmd_lockptr(mm, new_pmd); 1396 if (new_ptl != old_ptl) 1397 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1398 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1399 VM_BUG_ON(!pmd_none(*new_pmd)); 1400 1401 if (pmd_move_must_withdraw(new_ptl, old_ptl) && 1402 vma_is_anonymous(vma)) { 1403 pgtable_t pgtable; 1404 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1405 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1406 } 1407 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1408 if (new_ptl != old_ptl) 1409 spin_unlock(new_ptl); 1410 spin_unlock(old_ptl); 1411 return true; 1412 } 1413 return false; 1414 } 1415 1416 /* 1417 * Returns 1418 * - 0 if PMD could not be locked 1419 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1420 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1421 */ 1422 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1423 unsigned long addr, pgprot_t newprot, int prot_numa) 1424 { 1425 struct mm_struct *mm = vma->vm_mm; 1426 spinlock_t *ptl; 1427 int ret = 0; 1428 1429 ptl = __pmd_trans_huge_lock(pmd, vma); 1430 if (ptl) { 1431 pmd_t entry; 1432 bool preserve_write = prot_numa && pmd_write(*pmd); 1433 ret = 1; 1434 1435 /* 1436 * Avoid trapping faults against the zero page. The read-only 1437 * data is likely to be read-cached on the local CPU and 1438 * local/remote hits to the zero page are not interesting. 1439 */ 1440 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1441 spin_unlock(ptl); 1442 return ret; 1443 } 1444 1445 if (!prot_numa || !pmd_protnone(*pmd)) { 1446 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1447 entry = pmd_modify(entry, newprot); 1448 if (preserve_write) 1449 entry = pmd_mkwrite(entry); 1450 ret = HPAGE_PMD_NR; 1451 set_pmd_at(mm, addr, pmd, entry); 1452 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1453 pmd_write(entry)); 1454 } 1455 spin_unlock(ptl); 1456 } 1457 1458 return ret; 1459 } 1460 1461 /* 1462 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1463 * 1464 * Note that if it returns page table lock pointer, this routine returns without 1465 * unlocking page table lock. So callers must unlock it. 1466 */ 1467 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1468 { 1469 spinlock_t *ptl; 1470 ptl = pmd_lock(vma->vm_mm, pmd); 1471 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1472 return ptl; 1473 spin_unlock(ptl); 1474 return NULL; 1475 } 1476 1477 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1478 unsigned long haddr, pmd_t *pmd) 1479 { 1480 struct mm_struct *mm = vma->vm_mm; 1481 pgtable_t pgtable; 1482 pmd_t _pmd; 1483 int i; 1484 1485 /* leave pmd empty until pte is filled */ 1486 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1487 1488 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1489 pmd_populate(mm, &_pmd, pgtable); 1490 1491 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1492 pte_t *pte, entry; 1493 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1494 entry = pte_mkspecial(entry); 1495 pte = pte_offset_map(&_pmd, haddr); 1496 VM_BUG_ON(!pte_none(*pte)); 1497 set_pte_at(mm, haddr, pte, entry); 1498 pte_unmap(pte); 1499 } 1500 smp_wmb(); /* make pte visible before pmd */ 1501 pmd_populate(mm, pmd, pgtable); 1502 put_huge_zero_page(); 1503 } 1504 1505 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1506 unsigned long haddr, bool freeze) 1507 { 1508 struct mm_struct *mm = vma->vm_mm; 1509 struct page *page; 1510 pgtable_t pgtable; 1511 pmd_t _pmd; 1512 bool young, write, dirty, soft_dirty; 1513 unsigned long addr; 1514 int i; 1515 1516 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1517 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1518 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1519 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1520 1521 count_vm_event(THP_SPLIT_PMD); 1522 1523 if (!vma_is_anonymous(vma)) { 1524 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1525 if (is_huge_zero_pmd(_pmd)) 1526 put_huge_zero_page(); 1527 if (vma_is_dax(vma)) 1528 return; 1529 page = pmd_page(_pmd); 1530 if (!PageReferenced(page) && pmd_young(_pmd)) 1531 SetPageReferenced(page); 1532 page_remove_rmap(page, true); 1533 put_page(page); 1534 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1535 return; 1536 } else if (is_huge_zero_pmd(*pmd)) { 1537 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1538 } 1539 1540 page = pmd_page(*pmd); 1541 VM_BUG_ON_PAGE(!page_count(page), page); 1542 page_ref_add(page, HPAGE_PMD_NR - 1); 1543 write = pmd_write(*pmd); 1544 young = pmd_young(*pmd); 1545 dirty = pmd_dirty(*pmd); 1546 soft_dirty = pmd_soft_dirty(*pmd); 1547 1548 pmdp_huge_split_prepare(vma, haddr, pmd); 1549 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1550 pmd_populate(mm, &_pmd, pgtable); 1551 1552 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1553 pte_t entry, *pte; 1554 /* 1555 * Note that NUMA hinting access restrictions are not 1556 * transferred to avoid any possibility of altering 1557 * permissions across VMAs. 1558 */ 1559 if (freeze) { 1560 swp_entry_t swp_entry; 1561 swp_entry = make_migration_entry(page + i, write); 1562 entry = swp_entry_to_pte(swp_entry); 1563 if (soft_dirty) 1564 entry = pte_swp_mksoft_dirty(entry); 1565 } else { 1566 entry = mk_pte(page + i, vma->vm_page_prot); 1567 entry = maybe_mkwrite(entry, vma); 1568 if (!write) 1569 entry = pte_wrprotect(entry); 1570 if (!young) 1571 entry = pte_mkold(entry); 1572 if (soft_dirty) 1573 entry = pte_mksoft_dirty(entry); 1574 } 1575 if (dirty) 1576 SetPageDirty(page + i); 1577 pte = pte_offset_map(&_pmd, addr); 1578 BUG_ON(!pte_none(*pte)); 1579 set_pte_at(mm, addr, pte, entry); 1580 atomic_inc(&page[i]._mapcount); 1581 pte_unmap(pte); 1582 } 1583 1584 /* 1585 * Set PG_double_map before dropping compound_mapcount to avoid 1586 * false-negative page_mapped(). 1587 */ 1588 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1589 for (i = 0; i < HPAGE_PMD_NR; i++) 1590 atomic_inc(&page[i]._mapcount); 1591 } 1592 1593 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1594 /* Last compound_mapcount is gone. */ 1595 __dec_node_page_state(page, NR_ANON_THPS); 1596 if (TestClearPageDoubleMap(page)) { 1597 /* No need in mapcount reference anymore */ 1598 for (i = 0; i < HPAGE_PMD_NR; i++) 1599 atomic_dec(&page[i]._mapcount); 1600 } 1601 } 1602 1603 smp_wmb(); /* make pte visible before pmd */ 1604 /* 1605 * Up to this point the pmd is present and huge and userland has the 1606 * whole access to the hugepage during the split (which happens in 1607 * place). If we overwrite the pmd with the not-huge version pointing 1608 * to the pte here (which of course we could if all CPUs were bug 1609 * free), userland could trigger a small page size TLB miss on the 1610 * small sized TLB while the hugepage TLB entry is still established in 1611 * the huge TLB. Some CPU doesn't like that. 1612 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1613 * 383 on page 93. Intel should be safe but is also warns that it's 1614 * only safe if the permission and cache attributes of the two entries 1615 * loaded in the two TLB is identical (which should be the case here). 1616 * But it is generally safer to never allow small and huge TLB entries 1617 * for the same virtual address to be loaded simultaneously. So instead 1618 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1619 * current pmd notpresent (atomically because here the pmd_trans_huge 1620 * and pmd_trans_splitting must remain set at all times on the pmd 1621 * until the split is complete for this pmd), then we flush the SMP TLB 1622 * and finally we write the non-huge version of the pmd entry with 1623 * pmd_populate. 1624 */ 1625 pmdp_invalidate(vma, haddr, pmd); 1626 pmd_populate(mm, pmd, pgtable); 1627 1628 if (freeze) { 1629 for (i = 0; i < HPAGE_PMD_NR; i++) { 1630 page_remove_rmap(page + i, false); 1631 put_page(page + i); 1632 } 1633 } 1634 } 1635 1636 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1637 unsigned long address, bool freeze, struct page *page) 1638 { 1639 spinlock_t *ptl; 1640 struct mm_struct *mm = vma->vm_mm; 1641 unsigned long haddr = address & HPAGE_PMD_MASK; 1642 1643 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 1644 ptl = pmd_lock(mm, pmd); 1645 1646 /* 1647 * If caller asks to setup a migration entries, we need a page to check 1648 * pmd against. Otherwise we can end up replacing wrong page. 1649 */ 1650 VM_BUG_ON(freeze && !page); 1651 if (page && page != pmd_page(*pmd)) 1652 goto out; 1653 1654 if (pmd_trans_huge(*pmd)) { 1655 page = pmd_page(*pmd); 1656 if (PageMlocked(page)) 1657 clear_page_mlock(page); 1658 } else if (!pmd_devmap(*pmd)) 1659 goto out; 1660 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 1661 out: 1662 spin_unlock(ptl); 1663 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 1664 } 1665 1666 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 1667 bool freeze, struct page *page) 1668 { 1669 pgd_t *pgd; 1670 pud_t *pud; 1671 pmd_t *pmd; 1672 1673 pgd = pgd_offset(vma->vm_mm, address); 1674 if (!pgd_present(*pgd)) 1675 return; 1676 1677 pud = pud_offset(pgd, address); 1678 if (!pud_present(*pud)) 1679 return; 1680 1681 pmd = pmd_offset(pud, address); 1682 1683 __split_huge_pmd(vma, pmd, address, freeze, page); 1684 } 1685 1686 void vma_adjust_trans_huge(struct vm_area_struct *vma, 1687 unsigned long start, 1688 unsigned long end, 1689 long adjust_next) 1690 { 1691 /* 1692 * If the new start address isn't hpage aligned and it could 1693 * previously contain an hugepage: check if we need to split 1694 * an huge pmd. 1695 */ 1696 if (start & ~HPAGE_PMD_MASK && 1697 (start & HPAGE_PMD_MASK) >= vma->vm_start && 1698 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1699 split_huge_pmd_address(vma, start, false, NULL); 1700 1701 /* 1702 * If the new end address isn't hpage aligned and it could 1703 * previously contain an hugepage: check if we need to split 1704 * an huge pmd. 1705 */ 1706 if (end & ~HPAGE_PMD_MASK && 1707 (end & HPAGE_PMD_MASK) >= vma->vm_start && 1708 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1709 split_huge_pmd_address(vma, end, false, NULL); 1710 1711 /* 1712 * If we're also updating the vma->vm_next->vm_start, if the new 1713 * vm_next->vm_start isn't page aligned and it could previously 1714 * contain an hugepage: check if we need to split an huge pmd. 1715 */ 1716 if (adjust_next > 0) { 1717 struct vm_area_struct *next = vma->vm_next; 1718 unsigned long nstart = next->vm_start; 1719 nstart += adjust_next << PAGE_SHIFT; 1720 if (nstart & ~HPAGE_PMD_MASK && 1721 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 1722 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 1723 split_huge_pmd_address(next, nstart, false, NULL); 1724 } 1725 } 1726 1727 static void freeze_page(struct page *page) 1728 { 1729 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 1730 TTU_RMAP_LOCKED; 1731 int i, ret; 1732 1733 VM_BUG_ON_PAGE(!PageHead(page), page); 1734 1735 if (PageAnon(page)) 1736 ttu_flags |= TTU_MIGRATION; 1737 1738 /* We only need TTU_SPLIT_HUGE_PMD once */ 1739 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); 1740 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { 1741 /* Cut short if the page is unmapped */ 1742 if (page_count(page) == 1) 1743 return; 1744 1745 ret = try_to_unmap(page + i, ttu_flags); 1746 } 1747 VM_BUG_ON_PAGE(ret, page + i - 1); 1748 } 1749 1750 static void unfreeze_page(struct page *page) 1751 { 1752 int i; 1753 1754 for (i = 0; i < HPAGE_PMD_NR; i++) 1755 remove_migration_ptes(page + i, page + i, true); 1756 } 1757 1758 static void __split_huge_page_tail(struct page *head, int tail, 1759 struct lruvec *lruvec, struct list_head *list) 1760 { 1761 struct page *page_tail = head + tail; 1762 1763 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 1764 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 1765 1766 /* 1767 * tail_page->_refcount is zero and not changing from under us. But 1768 * get_page_unless_zero() may be running from under us on the 1769 * tail_page. If we used atomic_set() below instead of atomic_inc() or 1770 * atomic_add(), we would then run atomic_set() concurrently with 1771 * get_page_unless_zero(), and atomic_set() is implemented in C not 1772 * using locked ops. spin_unlock on x86 sometime uses locked ops 1773 * because of PPro errata 66, 92, so unless somebody can guarantee 1774 * atomic_set() here would be safe on all archs (and not only on x86), 1775 * it's safer to use atomic_inc()/atomic_add(). 1776 */ 1777 if (PageAnon(head)) { 1778 page_ref_inc(page_tail); 1779 } else { 1780 /* Additional pin to radix tree */ 1781 page_ref_add(page_tail, 2); 1782 } 1783 1784 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1785 page_tail->flags |= (head->flags & 1786 ((1L << PG_referenced) | 1787 (1L << PG_swapbacked) | 1788 (1L << PG_mlocked) | 1789 (1L << PG_uptodate) | 1790 (1L << PG_active) | 1791 (1L << PG_locked) | 1792 (1L << PG_unevictable) | 1793 (1L << PG_dirty))); 1794 1795 /* 1796 * After clearing PageTail the gup refcount can be released. 1797 * Page flags also must be visible before we make the page non-compound. 1798 */ 1799 smp_wmb(); 1800 1801 clear_compound_head(page_tail); 1802 1803 if (page_is_young(head)) 1804 set_page_young(page_tail); 1805 if (page_is_idle(head)) 1806 set_page_idle(page_tail); 1807 1808 /* ->mapping in first tail page is compound_mapcount */ 1809 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 1810 page_tail); 1811 page_tail->mapping = head->mapping; 1812 1813 page_tail->index = head->index + tail; 1814 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 1815 lru_add_page_tail(head, page_tail, lruvec, list); 1816 } 1817 1818 static void __split_huge_page(struct page *page, struct list_head *list, 1819 unsigned long flags) 1820 { 1821 struct page *head = compound_head(page); 1822 struct zone *zone = page_zone(head); 1823 struct lruvec *lruvec; 1824 pgoff_t end = -1; 1825 int i; 1826 1827 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 1828 1829 /* complete memcg works before add pages to LRU */ 1830 mem_cgroup_split_huge_fixup(head); 1831 1832 if (!PageAnon(page)) 1833 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 1834 1835 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1836 __split_huge_page_tail(head, i, lruvec, list); 1837 /* Some pages can be beyond i_size: drop them from page cache */ 1838 if (head[i].index >= end) { 1839 __ClearPageDirty(head + i); 1840 __delete_from_page_cache(head + i, NULL); 1841 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 1842 shmem_uncharge(head->mapping->host, 1); 1843 put_page(head + i); 1844 } 1845 } 1846 1847 ClearPageCompound(head); 1848 /* See comment in __split_huge_page_tail() */ 1849 if (PageAnon(head)) { 1850 page_ref_inc(head); 1851 } else { 1852 /* Additional pin to radix tree */ 1853 page_ref_add(head, 2); 1854 spin_unlock(&head->mapping->tree_lock); 1855 } 1856 1857 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 1858 1859 unfreeze_page(head); 1860 1861 for (i = 0; i < HPAGE_PMD_NR; i++) { 1862 struct page *subpage = head + i; 1863 if (subpage == page) 1864 continue; 1865 unlock_page(subpage); 1866 1867 /* 1868 * Subpages may be freed if there wasn't any mapping 1869 * like if add_to_swap() is running on a lru page that 1870 * had its mapping zapped. And freeing these pages 1871 * requires taking the lru_lock so we do the put_page 1872 * of the tail pages after the split is complete. 1873 */ 1874 put_page(subpage); 1875 } 1876 } 1877 1878 int total_mapcount(struct page *page) 1879 { 1880 int i, compound, ret; 1881 1882 VM_BUG_ON_PAGE(PageTail(page), page); 1883 1884 if (likely(!PageCompound(page))) 1885 return atomic_read(&page->_mapcount) + 1; 1886 1887 compound = compound_mapcount(page); 1888 if (PageHuge(page)) 1889 return compound; 1890 ret = compound; 1891 for (i = 0; i < HPAGE_PMD_NR; i++) 1892 ret += atomic_read(&page[i]._mapcount) + 1; 1893 /* File pages has compound_mapcount included in _mapcount */ 1894 if (!PageAnon(page)) 1895 return ret - compound * HPAGE_PMD_NR; 1896 if (PageDoubleMap(page)) 1897 ret -= HPAGE_PMD_NR; 1898 return ret; 1899 } 1900 1901 /* 1902 * This calculates accurately how many mappings a transparent hugepage 1903 * has (unlike page_mapcount() which isn't fully accurate). This full 1904 * accuracy is primarily needed to know if copy-on-write faults can 1905 * reuse the page and change the mapping to read-write instead of 1906 * copying them. At the same time this returns the total_mapcount too. 1907 * 1908 * The function returns the highest mapcount any one of the subpages 1909 * has. If the return value is one, even if different processes are 1910 * mapping different subpages of the transparent hugepage, they can 1911 * all reuse it, because each process is reusing a different subpage. 1912 * 1913 * The total_mapcount is instead counting all virtual mappings of the 1914 * subpages. If the total_mapcount is equal to "one", it tells the 1915 * caller all mappings belong to the same "mm" and in turn the 1916 * anon_vma of the transparent hugepage can become the vma->anon_vma 1917 * local one as no other process may be mapping any of the subpages. 1918 * 1919 * It would be more accurate to replace page_mapcount() with 1920 * page_trans_huge_mapcount(), however we only use 1921 * page_trans_huge_mapcount() in the copy-on-write faults where we 1922 * need full accuracy to avoid breaking page pinning, because 1923 * page_trans_huge_mapcount() is slower than page_mapcount(). 1924 */ 1925 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 1926 { 1927 int i, ret, _total_mapcount, mapcount; 1928 1929 /* hugetlbfs shouldn't call it */ 1930 VM_BUG_ON_PAGE(PageHuge(page), page); 1931 1932 if (likely(!PageTransCompound(page))) { 1933 mapcount = atomic_read(&page->_mapcount) + 1; 1934 if (total_mapcount) 1935 *total_mapcount = mapcount; 1936 return mapcount; 1937 } 1938 1939 page = compound_head(page); 1940 1941 _total_mapcount = ret = 0; 1942 for (i = 0; i < HPAGE_PMD_NR; i++) { 1943 mapcount = atomic_read(&page[i]._mapcount) + 1; 1944 ret = max(ret, mapcount); 1945 _total_mapcount += mapcount; 1946 } 1947 if (PageDoubleMap(page)) { 1948 ret -= 1; 1949 _total_mapcount -= HPAGE_PMD_NR; 1950 } 1951 mapcount = compound_mapcount(page); 1952 ret += mapcount; 1953 _total_mapcount += mapcount; 1954 if (total_mapcount) 1955 *total_mapcount = _total_mapcount; 1956 return ret; 1957 } 1958 1959 /* 1960 * This function splits huge page into normal pages. @page can point to any 1961 * subpage of huge page to split. Split doesn't change the position of @page. 1962 * 1963 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 1964 * The huge page must be locked. 1965 * 1966 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 1967 * 1968 * Both head page and tail pages will inherit mapping, flags, and so on from 1969 * the hugepage. 1970 * 1971 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 1972 * they are not mapped. 1973 * 1974 * Returns 0 if the hugepage is split successfully. 1975 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 1976 * us. 1977 */ 1978 int split_huge_page_to_list(struct page *page, struct list_head *list) 1979 { 1980 struct page *head = compound_head(page); 1981 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 1982 struct anon_vma *anon_vma = NULL; 1983 struct address_space *mapping = NULL; 1984 int count, mapcount, extra_pins, ret; 1985 bool mlocked; 1986 unsigned long flags; 1987 1988 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 1989 VM_BUG_ON_PAGE(!PageLocked(page), page); 1990 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1991 VM_BUG_ON_PAGE(!PageCompound(page), page); 1992 1993 if (PageAnon(head)) { 1994 /* 1995 * The caller does not necessarily hold an mmap_sem that would 1996 * prevent the anon_vma disappearing so we first we take a 1997 * reference to it and then lock the anon_vma for write. This 1998 * is similar to page_lock_anon_vma_read except the write lock 1999 * is taken to serialise against parallel split or collapse 2000 * operations. 2001 */ 2002 anon_vma = page_get_anon_vma(head); 2003 if (!anon_vma) { 2004 ret = -EBUSY; 2005 goto out; 2006 } 2007 extra_pins = 0; 2008 mapping = NULL; 2009 anon_vma_lock_write(anon_vma); 2010 } else { 2011 mapping = head->mapping; 2012 2013 /* Truncated ? */ 2014 if (!mapping) { 2015 ret = -EBUSY; 2016 goto out; 2017 } 2018 2019 /* Addidional pins from radix tree */ 2020 extra_pins = HPAGE_PMD_NR; 2021 anon_vma = NULL; 2022 i_mmap_lock_read(mapping); 2023 } 2024 2025 /* 2026 * Racy check if we can split the page, before freeze_page() will 2027 * split PMDs 2028 */ 2029 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2030 ret = -EBUSY; 2031 goto out_unlock; 2032 } 2033 2034 mlocked = PageMlocked(page); 2035 freeze_page(head); 2036 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2037 2038 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2039 if (mlocked) 2040 lru_add_drain(); 2041 2042 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2043 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2044 2045 if (mapping) { 2046 void **pslot; 2047 2048 spin_lock(&mapping->tree_lock); 2049 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2050 page_index(head)); 2051 /* 2052 * Check if the head page is present in radix tree. 2053 * We assume all tail are present too, if head is there. 2054 */ 2055 if (radix_tree_deref_slot_protected(pslot, 2056 &mapping->tree_lock) != head) 2057 goto fail; 2058 } 2059 2060 /* Prevent deferred_split_scan() touching ->_refcount */ 2061 spin_lock(&pgdata->split_queue_lock); 2062 count = page_count(head); 2063 mapcount = total_mapcount(head); 2064 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2065 if (!list_empty(page_deferred_list(head))) { 2066 pgdata->split_queue_len--; 2067 list_del(page_deferred_list(head)); 2068 } 2069 if (mapping) 2070 __dec_node_page_state(page, NR_SHMEM_THPS); 2071 spin_unlock(&pgdata->split_queue_lock); 2072 __split_huge_page(page, list, flags); 2073 ret = 0; 2074 } else { 2075 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2076 pr_alert("total_mapcount: %u, page_count(): %u\n", 2077 mapcount, count); 2078 if (PageTail(page)) 2079 dump_page(head, NULL); 2080 dump_page(page, "total_mapcount(head) > 0"); 2081 BUG(); 2082 } 2083 spin_unlock(&pgdata->split_queue_lock); 2084 fail: if (mapping) 2085 spin_unlock(&mapping->tree_lock); 2086 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2087 unfreeze_page(head); 2088 ret = -EBUSY; 2089 } 2090 2091 out_unlock: 2092 if (anon_vma) { 2093 anon_vma_unlock_write(anon_vma); 2094 put_anon_vma(anon_vma); 2095 } 2096 if (mapping) 2097 i_mmap_unlock_read(mapping); 2098 out: 2099 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2100 return ret; 2101 } 2102 2103 void free_transhuge_page(struct page *page) 2104 { 2105 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2106 unsigned long flags; 2107 2108 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2109 if (!list_empty(page_deferred_list(page))) { 2110 pgdata->split_queue_len--; 2111 list_del(page_deferred_list(page)); 2112 } 2113 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2114 free_compound_page(page); 2115 } 2116 2117 void deferred_split_huge_page(struct page *page) 2118 { 2119 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2120 unsigned long flags; 2121 2122 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2123 2124 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2125 if (list_empty(page_deferred_list(page))) { 2126 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2127 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2128 pgdata->split_queue_len++; 2129 } 2130 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2131 } 2132 2133 static unsigned long deferred_split_count(struct shrinker *shrink, 2134 struct shrink_control *sc) 2135 { 2136 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2137 return ACCESS_ONCE(pgdata->split_queue_len); 2138 } 2139 2140 static unsigned long deferred_split_scan(struct shrinker *shrink, 2141 struct shrink_control *sc) 2142 { 2143 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2144 unsigned long flags; 2145 LIST_HEAD(list), *pos, *next; 2146 struct page *page; 2147 int split = 0; 2148 2149 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2150 /* Take pin on all head pages to avoid freeing them under us */ 2151 list_for_each_safe(pos, next, &pgdata->split_queue) { 2152 page = list_entry((void *)pos, struct page, mapping); 2153 page = compound_head(page); 2154 if (get_page_unless_zero(page)) { 2155 list_move(page_deferred_list(page), &list); 2156 } else { 2157 /* We lost race with put_compound_page() */ 2158 list_del_init(page_deferred_list(page)); 2159 pgdata->split_queue_len--; 2160 } 2161 if (!--sc->nr_to_scan) 2162 break; 2163 } 2164 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2165 2166 list_for_each_safe(pos, next, &list) { 2167 page = list_entry((void *)pos, struct page, mapping); 2168 lock_page(page); 2169 /* split_huge_page() removes page from list on success */ 2170 if (!split_huge_page(page)) 2171 split++; 2172 unlock_page(page); 2173 put_page(page); 2174 } 2175 2176 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2177 list_splice_tail(&list, &pgdata->split_queue); 2178 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2179 2180 /* 2181 * Stop shrinker if we didn't split any page, but the queue is empty. 2182 * This can happen if pages were freed under us. 2183 */ 2184 if (!split && list_empty(&pgdata->split_queue)) 2185 return SHRINK_STOP; 2186 return split; 2187 } 2188 2189 static struct shrinker deferred_split_shrinker = { 2190 .count_objects = deferred_split_count, 2191 .scan_objects = deferred_split_scan, 2192 .seeks = DEFAULT_SEEKS, 2193 .flags = SHRINKER_NUMA_AWARE, 2194 }; 2195 2196 #ifdef CONFIG_DEBUG_FS 2197 static int split_huge_pages_set(void *data, u64 val) 2198 { 2199 struct zone *zone; 2200 struct page *page; 2201 unsigned long pfn, max_zone_pfn; 2202 unsigned long total = 0, split = 0; 2203 2204 if (val != 1) 2205 return -EINVAL; 2206 2207 for_each_populated_zone(zone) { 2208 max_zone_pfn = zone_end_pfn(zone); 2209 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2210 if (!pfn_valid(pfn)) 2211 continue; 2212 2213 page = pfn_to_page(pfn); 2214 if (!get_page_unless_zero(page)) 2215 continue; 2216 2217 if (zone != page_zone(page)) 2218 goto next; 2219 2220 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2221 goto next; 2222 2223 total++; 2224 lock_page(page); 2225 if (!split_huge_page(page)) 2226 split++; 2227 unlock_page(page); 2228 next: 2229 put_page(page); 2230 } 2231 } 2232 2233 pr_info("%lu of %lu THP split\n", split, total); 2234 2235 return 0; 2236 } 2237 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2238 "%llu\n"); 2239 2240 static int __init split_huge_pages_debugfs(void) 2241 { 2242 void *ret; 2243 2244 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2245 &split_huge_pages_fops); 2246 if (!ret) 2247 pr_warn("Failed to create split_huge_pages in debugfs"); 2248 return 0; 2249 } 2250 late_initcall(split_huge_pages_debugfs); 2251 #endif 2252