xref: /linux/mm/huge_memory.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 } khugepaged_scan = {
93 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94 };
95 
96 
97 static int set_recommended_min_free_kbytes(void)
98 {
99 	struct zone *zone;
100 	int nr_zones = 0;
101 	unsigned long recommended_min;
102 	extern int min_free_kbytes;
103 
104 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105 		      &transparent_hugepage_flags) &&
106 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107 		      &transparent_hugepage_flags))
108 		return 0;
109 
110 	for_each_populated_zone(zone)
111 		nr_zones++;
112 
113 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 	recommended_min = pageblock_nr_pages * nr_zones * 2;
115 
116 	/*
117 	 * Make sure that on average at least two pageblocks are almost free
118 	 * of another type, one for a migratetype to fall back to and a
119 	 * second to avoid subsequent fallbacks of other types There are 3
120 	 * MIGRATE_TYPES we care about.
121 	 */
122 	recommended_min += pageblock_nr_pages * nr_zones *
123 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124 
125 	/* don't ever allow to reserve more than 5% of the lowmem */
126 	recommended_min = min(recommended_min,
127 			      (unsigned long) nr_free_buffer_pages() / 20);
128 	recommended_min <<= (PAGE_SHIFT-10);
129 
130 	if (recommended_min > min_free_kbytes)
131 		min_free_kbytes = recommended_min;
132 	setup_per_zone_wmarks();
133 	return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136 
137 static int start_khugepaged(void)
138 {
139 	int err = 0;
140 	if (khugepaged_enabled()) {
141 		int wakeup;
142 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143 			err = -ENOMEM;
144 			goto out;
145 		}
146 		mutex_lock(&khugepaged_mutex);
147 		if (!khugepaged_thread)
148 			khugepaged_thread = kthread_run(khugepaged, NULL,
149 							"khugepaged");
150 		if (unlikely(IS_ERR(khugepaged_thread))) {
151 			printk(KERN_ERR
152 			       "khugepaged: kthread_run(khugepaged) failed\n");
153 			err = PTR_ERR(khugepaged_thread);
154 			khugepaged_thread = NULL;
155 		}
156 		wakeup = !list_empty(&khugepaged_scan.mm_head);
157 		mutex_unlock(&khugepaged_mutex);
158 		if (wakeup)
159 			wake_up_interruptible(&khugepaged_wait);
160 
161 		set_recommended_min_free_kbytes();
162 	} else
163 		/* wakeup to exit */
164 		wake_up_interruptible(&khugepaged_wait);
165 out:
166 	return err;
167 }
168 
169 #ifdef CONFIG_SYSFS
170 
171 static ssize_t double_flag_show(struct kobject *kobj,
172 				struct kobj_attribute *attr, char *buf,
173 				enum transparent_hugepage_flag enabled,
174 				enum transparent_hugepage_flag req_madv)
175 {
176 	if (test_bit(enabled, &transparent_hugepage_flags)) {
177 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178 		return sprintf(buf, "[always] madvise never\n");
179 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
180 		return sprintf(buf, "always [madvise] never\n");
181 	else
182 		return sprintf(buf, "always madvise [never]\n");
183 }
184 static ssize_t double_flag_store(struct kobject *kobj,
185 				 struct kobj_attribute *attr,
186 				 const char *buf, size_t count,
187 				 enum transparent_hugepage_flag enabled,
188 				 enum transparent_hugepage_flag req_madv)
189 {
190 	if (!memcmp("always", buf,
191 		    min(sizeof("always")-1, count))) {
192 		set_bit(enabled, &transparent_hugepage_flags);
193 		clear_bit(req_madv, &transparent_hugepage_flags);
194 	} else if (!memcmp("madvise", buf,
195 			   min(sizeof("madvise")-1, count))) {
196 		clear_bit(enabled, &transparent_hugepage_flags);
197 		set_bit(req_madv, &transparent_hugepage_flags);
198 	} else if (!memcmp("never", buf,
199 			   min(sizeof("never")-1, count))) {
200 		clear_bit(enabled, &transparent_hugepage_flags);
201 		clear_bit(req_madv, &transparent_hugepage_flags);
202 	} else
203 		return -EINVAL;
204 
205 	return count;
206 }
207 
208 static ssize_t enabled_show(struct kobject *kobj,
209 			    struct kobj_attribute *attr, char *buf)
210 {
211 	return double_flag_show(kobj, attr, buf,
212 				TRANSPARENT_HUGEPAGE_FLAG,
213 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214 }
215 static ssize_t enabled_store(struct kobject *kobj,
216 			     struct kobj_attribute *attr,
217 			     const char *buf, size_t count)
218 {
219 	ssize_t ret;
220 
221 	ret = double_flag_store(kobj, attr, buf, count,
222 				TRANSPARENT_HUGEPAGE_FLAG,
223 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224 
225 	if (ret > 0) {
226 		int err = start_khugepaged();
227 		if (err)
228 			ret = err;
229 	}
230 
231 	if (ret > 0 &&
232 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 		      &transparent_hugepage_flags) ||
234 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 		      &transparent_hugepage_flags)))
236 		set_recommended_min_free_kbytes();
237 
238 	return ret;
239 }
240 static struct kobj_attribute enabled_attr =
241 	__ATTR(enabled, 0644, enabled_show, enabled_store);
242 
243 static ssize_t single_flag_show(struct kobject *kobj,
244 				struct kobj_attribute *attr, char *buf,
245 				enum transparent_hugepage_flag flag)
246 {
247 	if (test_bit(flag, &transparent_hugepage_flags))
248 		return sprintf(buf, "[yes] no\n");
249 	else
250 		return sprintf(buf, "yes [no]\n");
251 }
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	if (!memcmp("yes", buf,
258 		    min(sizeof("yes")-1, count))) {
259 		set_bit(flag, &transparent_hugepage_flags);
260 	} else if (!memcmp("no", buf,
261 			   min(sizeof("no")-1, count))) {
262 		clear_bit(flag, &transparent_hugepage_flags);
263 	} else
264 		return -EINVAL;
265 
266 	return count;
267 }
268 
269 /*
270  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
271  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
272  * memory just to allocate one more hugepage.
273  */
274 static ssize_t defrag_show(struct kobject *kobj,
275 			   struct kobj_attribute *attr, char *buf)
276 {
277 	return double_flag_show(kobj, attr, buf,
278 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
279 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
280 }
281 static ssize_t defrag_store(struct kobject *kobj,
282 			    struct kobj_attribute *attr,
283 			    const char *buf, size_t count)
284 {
285 	return double_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
287 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
288 }
289 static struct kobj_attribute defrag_attr =
290 	__ATTR(defrag, 0644, defrag_show, defrag_store);
291 
292 #ifdef CONFIG_DEBUG_VM
293 static ssize_t debug_cow_show(struct kobject *kobj,
294 				struct kobj_attribute *attr, char *buf)
295 {
296 	return single_flag_show(kobj, attr, buf,
297 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
298 }
299 static ssize_t debug_cow_store(struct kobject *kobj,
300 			       struct kobj_attribute *attr,
301 			       const char *buf, size_t count)
302 {
303 	return single_flag_store(kobj, attr, buf, count,
304 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static struct kobj_attribute debug_cow_attr =
307 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
308 #endif /* CONFIG_DEBUG_VM */
309 
310 static struct attribute *hugepage_attr[] = {
311 	&enabled_attr.attr,
312 	&defrag_attr.attr,
313 #ifdef CONFIG_DEBUG_VM
314 	&debug_cow_attr.attr,
315 #endif
316 	NULL,
317 };
318 
319 static struct attribute_group hugepage_attr_group = {
320 	.attrs = hugepage_attr,
321 };
322 
323 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
324 					 struct kobj_attribute *attr,
325 					 char *buf)
326 {
327 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
328 }
329 
330 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
331 					  struct kobj_attribute *attr,
332 					  const char *buf, size_t count)
333 {
334 	unsigned long msecs;
335 	int err;
336 
337 	err = strict_strtoul(buf, 10, &msecs);
338 	if (err || msecs > UINT_MAX)
339 		return -EINVAL;
340 
341 	khugepaged_scan_sleep_millisecs = msecs;
342 	wake_up_interruptible(&khugepaged_wait);
343 
344 	return count;
345 }
346 static struct kobj_attribute scan_sleep_millisecs_attr =
347 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
348 	       scan_sleep_millisecs_store);
349 
350 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
351 					  struct kobj_attribute *attr,
352 					  char *buf)
353 {
354 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
355 }
356 
357 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
358 					   struct kobj_attribute *attr,
359 					   const char *buf, size_t count)
360 {
361 	unsigned long msecs;
362 	int err;
363 
364 	err = strict_strtoul(buf, 10, &msecs);
365 	if (err || msecs > UINT_MAX)
366 		return -EINVAL;
367 
368 	khugepaged_alloc_sleep_millisecs = msecs;
369 	wake_up_interruptible(&khugepaged_wait);
370 
371 	return count;
372 }
373 static struct kobj_attribute alloc_sleep_millisecs_attr =
374 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
375 	       alloc_sleep_millisecs_store);
376 
377 static ssize_t pages_to_scan_show(struct kobject *kobj,
378 				  struct kobj_attribute *attr,
379 				  char *buf)
380 {
381 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
382 }
383 static ssize_t pages_to_scan_store(struct kobject *kobj,
384 				   struct kobj_attribute *attr,
385 				   const char *buf, size_t count)
386 {
387 	int err;
388 	unsigned long pages;
389 
390 	err = strict_strtoul(buf, 10, &pages);
391 	if (err || !pages || pages > UINT_MAX)
392 		return -EINVAL;
393 
394 	khugepaged_pages_to_scan = pages;
395 
396 	return count;
397 }
398 static struct kobj_attribute pages_to_scan_attr =
399 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
400 	       pages_to_scan_store);
401 
402 static ssize_t pages_collapsed_show(struct kobject *kobj,
403 				    struct kobj_attribute *attr,
404 				    char *buf)
405 {
406 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
407 }
408 static struct kobj_attribute pages_collapsed_attr =
409 	__ATTR_RO(pages_collapsed);
410 
411 static ssize_t full_scans_show(struct kobject *kobj,
412 			       struct kobj_attribute *attr,
413 			       char *buf)
414 {
415 	return sprintf(buf, "%u\n", khugepaged_full_scans);
416 }
417 static struct kobj_attribute full_scans_attr =
418 	__ATTR_RO(full_scans);
419 
420 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
421 				      struct kobj_attribute *attr, char *buf)
422 {
423 	return single_flag_show(kobj, attr, buf,
424 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
425 }
426 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
427 				       struct kobj_attribute *attr,
428 				       const char *buf, size_t count)
429 {
430 	return single_flag_store(kobj, attr, buf, count,
431 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
432 }
433 static struct kobj_attribute khugepaged_defrag_attr =
434 	__ATTR(defrag, 0644, khugepaged_defrag_show,
435 	       khugepaged_defrag_store);
436 
437 /*
438  * max_ptes_none controls if khugepaged should collapse hugepages over
439  * any unmapped ptes in turn potentially increasing the memory
440  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
441  * reduce the available free memory in the system as it
442  * runs. Increasing max_ptes_none will instead potentially reduce the
443  * free memory in the system during the khugepaged scan.
444  */
445 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
446 					     struct kobj_attribute *attr,
447 					     char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
450 }
451 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
452 					      struct kobj_attribute *attr,
453 					      const char *buf, size_t count)
454 {
455 	int err;
456 	unsigned long max_ptes_none;
457 
458 	err = strict_strtoul(buf, 10, &max_ptes_none);
459 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
460 		return -EINVAL;
461 
462 	khugepaged_max_ptes_none = max_ptes_none;
463 
464 	return count;
465 }
466 static struct kobj_attribute khugepaged_max_ptes_none_attr =
467 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
468 	       khugepaged_max_ptes_none_store);
469 
470 static struct attribute *khugepaged_attr[] = {
471 	&khugepaged_defrag_attr.attr,
472 	&khugepaged_max_ptes_none_attr.attr,
473 	&pages_to_scan_attr.attr,
474 	&pages_collapsed_attr.attr,
475 	&full_scans_attr.attr,
476 	&scan_sleep_millisecs_attr.attr,
477 	&alloc_sleep_millisecs_attr.attr,
478 	NULL,
479 };
480 
481 static struct attribute_group khugepaged_attr_group = {
482 	.attrs = khugepaged_attr,
483 	.name = "khugepaged",
484 };
485 #endif /* CONFIG_SYSFS */
486 
487 static int __init hugepage_init(void)
488 {
489 	int err;
490 #ifdef CONFIG_SYSFS
491 	static struct kobject *hugepage_kobj;
492 #endif
493 
494 	err = -EINVAL;
495 	if (!has_transparent_hugepage()) {
496 		transparent_hugepage_flags = 0;
497 		goto out;
498 	}
499 
500 #ifdef CONFIG_SYSFS
501 	err = -ENOMEM;
502 	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
503 	if (unlikely(!hugepage_kobj)) {
504 		printk(KERN_ERR "hugepage: failed kobject create\n");
505 		goto out;
506 	}
507 
508 	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
509 	if (err) {
510 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
511 		goto out;
512 	}
513 
514 	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
515 	if (err) {
516 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
517 		goto out;
518 	}
519 #endif
520 
521 	err = khugepaged_slab_init();
522 	if (err)
523 		goto out;
524 
525 	err = mm_slots_hash_init();
526 	if (err) {
527 		khugepaged_slab_free();
528 		goto out;
529 	}
530 
531 	/*
532 	 * By default disable transparent hugepages on smaller systems,
533 	 * where the extra memory used could hurt more than TLB overhead
534 	 * is likely to save.  The admin can still enable it through /sys.
535 	 */
536 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
537 		transparent_hugepage_flags = 0;
538 
539 	start_khugepaged();
540 
541 	set_recommended_min_free_kbytes();
542 
543 out:
544 	return err;
545 }
546 module_init(hugepage_init)
547 
548 static int __init setup_transparent_hugepage(char *str)
549 {
550 	int ret = 0;
551 	if (!str)
552 		goto out;
553 	if (!strcmp(str, "always")) {
554 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
555 			&transparent_hugepage_flags);
556 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
557 			  &transparent_hugepage_flags);
558 		ret = 1;
559 	} else if (!strcmp(str, "madvise")) {
560 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
561 			  &transparent_hugepage_flags);
562 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
563 			&transparent_hugepage_flags);
564 		ret = 1;
565 	} else if (!strcmp(str, "never")) {
566 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
567 			  &transparent_hugepage_flags);
568 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
569 			  &transparent_hugepage_flags);
570 		ret = 1;
571 	}
572 out:
573 	if (!ret)
574 		printk(KERN_WARNING
575 		       "transparent_hugepage= cannot parse, ignored\n");
576 	return ret;
577 }
578 __setup("transparent_hugepage=", setup_transparent_hugepage);
579 
580 static void prepare_pmd_huge_pte(pgtable_t pgtable,
581 				 struct mm_struct *mm)
582 {
583 	assert_spin_locked(&mm->page_table_lock);
584 
585 	/* FIFO */
586 	if (!mm->pmd_huge_pte)
587 		INIT_LIST_HEAD(&pgtable->lru);
588 	else
589 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
590 	mm->pmd_huge_pte = pgtable;
591 }
592 
593 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
594 {
595 	if (likely(vma->vm_flags & VM_WRITE))
596 		pmd = pmd_mkwrite(pmd);
597 	return pmd;
598 }
599 
600 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
601 					struct vm_area_struct *vma,
602 					unsigned long haddr, pmd_t *pmd,
603 					struct page *page)
604 {
605 	int ret = 0;
606 	pgtable_t pgtable;
607 
608 	VM_BUG_ON(!PageCompound(page));
609 	pgtable = pte_alloc_one(mm, haddr);
610 	if (unlikely(!pgtable)) {
611 		mem_cgroup_uncharge_page(page);
612 		put_page(page);
613 		return VM_FAULT_OOM;
614 	}
615 
616 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
617 	__SetPageUptodate(page);
618 
619 	spin_lock(&mm->page_table_lock);
620 	if (unlikely(!pmd_none(*pmd))) {
621 		spin_unlock(&mm->page_table_lock);
622 		mem_cgroup_uncharge_page(page);
623 		put_page(page);
624 		pte_free(mm, pgtable);
625 	} else {
626 		pmd_t entry;
627 		entry = mk_pmd(page, vma->vm_page_prot);
628 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
629 		entry = pmd_mkhuge(entry);
630 		/*
631 		 * The spinlocking to take the lru_lock inside
632 		 * page_add_new_anon_rmap() acts as a full memory
633 		 * barrier to be sure clear_huge_page writes become
634 		 * visible after the set_pmd_at() write.
635 		 */
636 		page_add_new_anon_rmap(page, vma, haddr);
637 		set_pmd_at(mm, haddr, pmd, entry);
638 		prepare_pmd_huge_pte(pgtable, mm);
639 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 		spin_unlock(&mm->page_table_lock);
641 	}
642 
643 	return ret;
644 }
645 
646 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
647 {
648 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
649 }
650 
651 static inline struct page *alloc_hugepage_vma(int defrag,
652 					      struct vm_area_struct *vma,
653 					      unsigned long haddr, int nd,
654 					      gfp_t extra_gfp)
655 {
656 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
657 			       HPAGE_PMD_ORDER, vma, haddr, nd);
658 }
659 
660 #ifndef CONFIG_NUMA
661 static inline struct page *alloc_hugepage(int defrag)
662 {
663 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
664 			   HPAGE_PMD_ORDER);
665 }
666 #endif
667 
668 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
669 			       unsigned long address, pmd_t *pmd,
670 			       unsigned int flags)
671 {
672 	struct page *page;
673 	unsigned long haddr = address & HPAGE_PMD_MASK;
674 	pte_t *pte;
675 
676 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
677 		if (unlikely(anon_vma_prepare(vma)))
678 			return VM_FAULT_OOM;
679 		if (unlikely(khugepaged_enter(vma)))
680 			return VM_FAULT_OOM;
681 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
682 					  vma, haddr, numa_node_id(), 0);
683 		if (unlikely(!page))
684 			goto out;
685 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
686 			put_page(page);
687 			goto out;
688 		}
689 
690 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
691 	}
692 out:
693 	/*
694 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
695 	 * run pte_offset_map on the pmd, if an huge pmd could
696 	 * materialize from under us from a different thread.
697 	 */
698 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
699 		return VM_FAULT_OOM;
700 	/* if an huge pmd materialized from under us just retry later */
701 	if (unlikely(pmd_trans_huge(*pmd)))
702 		return 0;
703 	/*
704 	 * A regular pmd is established and it can't morph into a huge pmd
705 	 * from under us anymore at this point because we hold the mmap_sem
706 	 * read mode and khugepaged takes it in write mode. So now it's
707 	 * safe to run pte_offset_map().
708 	 */
709 	pte = pte_offset_map(pmd, address);
710 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
711 }
712 
713 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
714 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
715 		  struct vm_area_struct *vma)
716 {
717 	struct page *src_page;
718 	pmd_t pmd;
719 	pgtable_t pgtable;
720 	int ret;
721 
722 	ret = -ENOMEM;
723 	pgtable = pte_alloc_one(dst_mm, addr);
724 	if (unlikely(!pgtable))
725 		goto out;
726 
727 	spin_lock(&dst_mm->page_table_lock);
728 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
729 
730 	ret = -EAGAIN;
731 	pmd = *src_pmd;
732 	if (unlikely(!pmd_trans_huge(pmd))) {
733 		pte_free(dst_mm, pgtable);
734 		goto out_unlock;
735 	}
736 	if (unlikely(pmd_trans_splitting(pmd))) {
737 		/* split huge page running from under us */
738 		spin_unlock(&src_mm->page_table_lock);
739 		spin_unlock(&dst_mm->page_table_lock);
740 		pte_free(dst_mm, pgtable);
741 
742 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
743 		goto out;
744 	}
745 	src_page = pmd_page(pmd);
746 	VM_BUG_ON(!PageHead(src_page));
747 	get_page(src_page);
748 	page_dup_rmap(src_page);
749 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
750 
751 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
752 	pmd = pmd_mkold(pmd_wrprotect(pmd));
753 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
754 	prepare_pmd_huge_pte(pgtable, dst_mm);
755 
756 	ret = 0;
757 out_unlock:
758 	spin_unlock(&src_mm->page_table_lock);
759 	spin_unlock(&dst_mm->page_table_lock);
760 out:
761 	return ret;
762 }
763 
764 /* no "address" argument so destroys page coloring of some arch */
765 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
766 {
767 	pgtable_t pgtable;
768 
769 	assert_spin_locked(&mm->page_table_lock);
770 
771 	/* FIFO */
772 	pgtable = mm->pmd_huge_pte;
773 	if (list_empty(&pgtable->lru))
774 		mm->pmd_huge_pte = NULL;
775 	else {
776 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
777 					      struct page, lru);
778 		list_del(&pgtable->lru);
779 	}
780 	return pgtable;
781 }
782 
783 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
784 					struct vm_area_struct *vma,
785 					unsigned long address,
786 					pmd_t *pmd, pmd_t orig_pmd,
787 					struct page *page,
788 					unsigned long haddr)
789 {
790 	pgtable_t pgtable;
791 	pmd_t _pmd;
792 	int ret = 0, i;
793 	struct page **pages;
794 
795 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
796 			GFP_KERNEL);
797 	if (unlikely(!pages)) {
798 		ret |= VM_FAULT_OOM;
799 		goto out;
800 	}
801 
802 	for (i = 0; i < HPAGE_PMD_NR; i++) {
803 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
804 					       __GFP_OTHER_NODE,
805 					       vma, address, page_to_nid(page));
806 		if (unlikely(!pages[i] ||
807 			     mem_cgroup_newpage_charge(pages[i], mm,
808 						       GFP_KERNEL))) {
809 			if (pages[i])
810 				put_page(pages[i]);
811 			mem_cgroup_uncharge_start();
812 			while (--i >= 0) {
813 				mem_cgroup_uncharge_page(pages[i]);
814 				put_page(pages[i]);
815 			}
816 			mem_cgroup_uncharge_end();
817 			kfree(pages);
818 			ret |= VM_FAULT_OOM;
819 			goto out;
820 		}
821 	}
822 
823 	for (i = 0; i < HPAGE_PMD_NR; i++) {
824 		copy_user_highpage(pages[i], page + i,
825 				   haddr + PAGE_SHIFT*i, vma);
826 		__SetPageUptodate(pages[i]);
827 		cond_resched();
828 	}
829 
830 	spin_lock(&mm->page_table_lock);
831 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
832 		goto out_free_pages;
833 	VM_BUG_ON(!PageHead(page));
834 
835 	pmdp_clear_flush_notify(vma, haddr, pmd);
836 	/* leave pmd empty until pte is filled */
837 
838 	pgtable = get_pmd_huge_pte(mm);
839 	pmd_populate(mm, &_pmd, pgtable);
840 
841 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
842 		pte_t *pte, entry;
843 		entry = mk_pte(pages[i], vma->vm_page_prot);
844 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
845 		page_add_new_anon_rmap(pages[i], vma, haddr);
846 		pte = pte_offset_map(&_pmd, haddr);
847 		VM_BUG_ON(!pte_none(*pte));
848 		set_pte_at(mm, haddr, pte, entry);
849 		pte_unmap(pte);
850 	}
851 	kfree(pages);
852 
853 	mm->nr_ptes++;
854 	smp_wmb(); /* make pte visible before pmd */
855 	pmd_populate(mm, pmd, pgtable);
856 	page_remove_rmap(page);
857 	spin_unlock(&mm->page_table_lock);
858 
859 	ret |= VM_FAULT_WRITE;
860 	put_page(page);
861 
862 out:
863 	return ret;
864 
865 out_free_pages:
866 	spin_unlock(&mm->page_table_lock);
867 	mem_cgroup_uncharge_start();
868 	for (i = 0; i < HPAGE_PMD_NR; i++) {
869 		mem_cgroup_uncharge_page(pages[i]);
870 		put_page(pages[i]);
871 	}
872 	mem_cgroup_uncharge_end();
873 	kfree(pages);
874 	goto out;
875 }
876 
877 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
878 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
879 {
880 	int ret = 0;
881 	struct page *page, *new_page;
882 	unsigned long haddr;
883 
884 	VM_BUG_ON(!vma->anon_vma);
885 	spin_lock(&mm->page_table_lock);
886 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
887 		goto out_unlock;
888 
889 	page = pmd_page(orig_pmd);
890 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
891 	haddr = address & HPAGE_PMD_MASK;
892 	if (page_mapcount(page) == 1) {
893 		pmd_t entry;
894 		entry = pmd_mkyoung(orig_pmd);
895 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
896 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
897 			update_mmu_cache(vma, address, entry);
898 		ret |= VM_FAULT_WRITE;
899 		goto out_unlock;
900 	}
901 	get_page(page);
902 	spin_unlock(&mm->page_table_lock);
903 
904 	if (transparent_hugepage_enabled(vma) &&
905 	    !transparent_hugepage_debug_cow())
906 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
907 					      vma, haddr, numa_node_id(), 0);
908 	else
909 		new_page = NULL;
910 
911 	if (unlikely(!new_page)) {
912 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
913 						   pmd, orig_pmd, page, haddr);
914 		put_page(page);
915 		goto out;
916 	}
917 
918 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
919 		put_page(new_page);
920 		put_page(page);
921 		ret |= VM_FAULT_OOM;
922 		goto out;
923 	}
924 
925 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
926 	__SetPageUptodate(new_page);
927 
928 	spin_lock(&mm->page_table_lock);
929 	put_page(page);
930 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
931 		mem_cgroup_uncharge_page(new_page);
932 		put_page(new_page);
933 	} else {
934 		pmd_t entry;
935 		VM_BUG_ON(!PageHead(page));
936 		entry = mk_pmd(new_page, vma->vm_page_prot);
937 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
938 		entry = pmd_mkhuge(entry);
939 		pmdp_clear_flush_notify(vma, haddr, pmd);
940 		page_add_new_anon_rmap(new_page, vma, haddr);
941 		set_pmd_at(mm, haddr, pmd, entry);
942 		update_mmu_cache(vma, address, entry);
943 		page_remove_rmap(page);
944 		put_page(page);
945 		ret |= VM_FAULT_WRITE;
946 	}
947 out_unlock:
948 	spin_unlock(&mm->page_table_lock);
949 out:
950 	return ret;
951 }
952 
953 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
954 				   unsigned long addr,
955 				   pmd_t *pmd,
956 				   unsigned int flags)
957 {
958 	struct page *page = NULL;
959 
960 	assert_spin_locked(&mm->page_table_lock);
961 
962 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
963 		goto out;
964 
965 	page = pmd_page(*pmd);
966 	VM_BUG_ON(!PageHead(page));
967 	if (flags & FOLL_TOUCH) {
968 		pmd_t _pmd;
969 		/*
970 		 * We should set the dirty bit only for FOLL_WRITE but
971 		 * for now the dirty bit in the pmd is meaningless.
972 		 * And if the dirty bit will become meaningful and
973 		 * we'll only set it with FOLL_WRITE, an atomic
974 		 * set_bit will be required on the pmd to set the
975 		 * young bit, instead of the current set_pmd_at.
976 		 */
977 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
978 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
979 	}
980 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
981 	VM_BUG_ON(!PageCompound(page));
982 	if (flags & FOLL_GET)
983 		get_page(page);
984 
985 out:
986 	return page;
987 }
988 
989 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
990 		 pmd_t *pmd)
991 {
992 	int ret = 0;
993 
994 	spin_lock(&tlb->mm->page_table_lock);
995 	if (likely(pmd_trans_huge(*pmd))) {
996 		if (unlikely(pmd_trans_splitting(*pmd))) {
997 			spin_unlock(&tlb->mm->page_table_lock);
998 			wait_split_huge_page(vma->anon_vma,
999 					     pmd);
1000 		} else {
1001 			struct page *page;
1002 			pgtable_t pgtable;
1003 			pgtable = get_pmd_huge_pte(tlb->mm);
1004 			page = pmd_page(*pmd);
1005 			pmd_clear(pmd);
1006 			page_remove_rmap(page);
1007 			VM_BUG_ON(page_mapcount(page) < 0);
1008 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1009 			VM_BUG_ON(!PageHead(page));
1010 			spin_unlock(&tlb->mm->page_table_lock);
1011 			tlb_remove_page(tlb, page);
1012 			pte_free(tlb->mm, pgtable);
1013 			ret = 1;
1014 		}
1015 	} else
1016 		spin_unlock(&tlb->mm->page_table_lock);
1017 
1018 	return ret;
1019 }
1020 
1021 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1022 		unsigned long addr, unsigned long end,
1023 		unsigned char *vec)
1024 {
1025 	int ret = 0;
1026 
1027 	spin_lock(&vma->vm_mm->page_table_lock);
1028 	if (likely(pmd_trans_huge(*pmd))) {
1029 		ret = !pmd_trans_splitting(*pmd);
1030 		spin_unlock(&vma->vm_mm->page_table_lock);
1031 		if (unlikely(!ret))
1032 			wait_split_huge_page(vma->anon_vma, pmd);
1033 		else {
1034 			/*
1035 			 * All logical pages in the range are present
1036 			 * if backed by a huge page.
1037 			 */
1038 			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1039 		}
1040 	} else
1041 		spin_unlock(&vma->vm_mm->page_table_lock);
1042 
1043 	return ret;
1044 }
1045 
1046 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1047 		unsigned long addr, pgprot_t newprot)
1048 {
1049 	struct mm_struct *mm = vma->vm_mm;
1050 	int ret = 0;
1051 
1052 	spin_lock(&mm->page_table_lock);
1053 	if (likely(pmd_trans_huge(*pmd))) {
1054 		if (unlikely(pmd_trans_splitting(*pmd))) {
1055 			spin_unlock(&mm->page_table_lock);
1056 			wait_split_huge_page(vma->anon_vma, pmd);
1057 		} else {
1058 			pmd_t entry;
1059 
1060 			entry = pmdp_get_and_clear(mm, addr, pmd);
1061 			entry = pmd_modify(entry, newprot);
1062 			set_pmd_at(mm, addr, pmd, entry);
1063 			spin_unlock(&vma->vm_mm->page_table_lock);
1064 			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1065 			ret = 1;
1066 		}
1067 	} else
1068 		spin_unlock(&vma->vm_mm->page_table_lock);
1069 
1070 	return ret;
1071 }
1072 
1073 pmd_t *page_check_address_pmd(struct page *page,
1074 			      struct mm_struct *mm,
1075 			      unsigned long address,
1076 			      enum page_check_address_pmd_flag flag)
1077 {
1078 	pgd_t *pgd;
1079 	pud_t *pud;
1080 	pmd_t *pmd, *ret = NULL;
1081 
1082 	if (address & ~HPAGE_PMD_MASK)
1083 		goto out;
1084 
1085 	pgd = pgd_offset(mm, address);
1086 	if (!pgd_present(*pgd))
1087 		goto out;
1088 
1089 	pud = pud_offset(pgd, address);
1090 	if (!pud_present(*pud))
1091 		goto out;
1092 
1093 	pmd = pmd_offset(pud, address);
1094 	if (pmd_none(*pmd))
1095 		goto out;
1096 	if (pmd_page(*pmd) != page)
1097 		goto out;
1098 	/*
1099 	 * split_vma() may create temporary aliased mappings. There is
1100 	 * no risk as long as all huge pmd are found and have their
1101 	 * splitting bit set before __split_huge_page_refcount
1102 	 * runs. Finding the same huge pmd more than once during the
1103 	 * same rmap walk is not a problem.
1104 	 */
1105 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1106 	    pmd_trans_splitting(*pmd))
1107 		goto out;
1108 	if (pmd_trans_huge(*pmd)) {
1109 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1110 			  !pmd_trans_splitting(*pmd));
1111 		ret = pmd;
1112 	}
1113 out:
1114 	return ret;
1115 }
1116 
1117 static int __split_huge_page_splitting(struct page *page,
1118 				       struct vm_area_struct *vma,
1119 				       unsigned long address)
1120 {
1121 	struct mm_struct *mm = vma->vm_mm;
1122 	pmd_t *pmd;
1123 	int ret = 0;
1124 
1125 	spin_lock(&mm->page_table_lock);
1126 	pmd = page_check_address_pmd(page, mm, address,
1127 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1128 	if (pmd) {
1129 		/*
1130 		 * We can't temporarily set the pmd to null in order
1131 		 * to split it, the pmd must remain marked huge at all
1132 		 * times or the VM won't take the pmd_trans_huge paths
1133 		 * and it won't wait on the anon_vma->root->lock to
1134 		 * serialize against split_huge_page*.
1135 		 */
1136 		pmdp_splitting_flush_notify(vma, address, pmd);
1137 		ret = 1;
1138 	}
1139 	spin_unlock(&mm->page_table_lock);
1140 
1141 	return ret;
1142 }
1143 
1144 static void __split_huge_page_refcount(struct page *page)
1145 {
1146 	int i;
1147 	unsigned long head_index = page->index;
1148 	struct zone *zone = page_zone(page);
1149 	int zonestat;
1150 
1151 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1152 	spin_lock_irq(&zone->lru_lock);
1153 	compound_lock(page);
1154 
1155 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1156 		struct page *page_tail = page + i;
1157 
1158 		/* tail_page->_count cannot change */
1159 		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1160 		BUG_ON(page_count(page) <= 0);
1161 		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1162 		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1163 
1164 		/* after clearing PageTail the gup refcount can be released */
1165 		smp_mb();
1166 
1167 		/*
1168 		 * retain hwpoison flag of the poisoned tail page:
1169 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1170 		 *   by the memory-failure.
1171 		 */
1172 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1173 		page_tail->flags |= (page->flags &
1174 				     ((1L << PG_referenced) |
1175 				      (1L << PG_swapbacked) |
1176 				      (1L << PG_mlocked) |
1177 				      (1L << PG_uptodate)));
1178 		page_tail->flags |= (1L << PG_dirty);
1179 
1180 		/*
1181 		 * 1) clear PageTail before overwriting first_page
1182 		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1183 		 */
1184 		smp_wmb();
1185 
1186 		/*
1187 		 * __split_huge_page_splitting() already set the
1188 		 * splitting bit in all pmd that could map this
1189 		 * hugepage, that will ensure no CPU can alter the
1190 		 * mapcount on the head page. The mapcount is only
1191 		 * accounted in the head page and it has to be
1192 		 * transferred to all tail pages in the below code. So
1193 		 * for this code to be safe, the split the mapcount
1194 		 * can't change. But that doesn't mean userland can't
1195 		 * keep changing and reading the page contents while
1196 		 * we transfer the mapcount, so the pmd splitting
1197 		 * status is achieved setting a reserved bit in the
1198 		 * pmd, not by clearing the present bit.
1199 		*/
1200 		BUG_ON(page_mapcount(page_tail));
1201 		page_tail->_mapcount = page->_mapcount;
1202 
1203 		BUG_ON(page_tail->mapping);
1204 		page_tail->mapping = page->mapping;
1205 
1206 		page_tail->index = ++head_index;
1207 
1208 		BUG_ON(!PageAnon(page_tail));
1209 		BUG_ON(!PageUptodate(page_tail));
1210 		BUG_ON(!PageDirty(page_tail));
1211 		BUG_ON(!PageSwapBacked(page_tail));
1212 
1213 		mem_cgroup_split_huge_fixup(page, page_tail);
1214 
1215 		lru_add_page_tail(zone, page, page_tail);
1216 	}
1217 
1218 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1219 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1220 
1221 	/*
1222 	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1223 	 * so adjust those appropriately if this page is on the LRU.
1224 	 */
1225 	if (PageLRU(page)) {
1226 		zonestat = NR_LRU_BASE + page_lru(page);
1227 		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1228 	}
1229 
1230 	ClearPageCompound(page);
1231 	compound_unlock(page);
1232 	spin_unlock_irq(&zone->lru_lock);
1233 
1234 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1235 		struct page *page_tail = page + i;
1236 		BUG_ON(page_count(page_tail) <= 0);
1237 		/*
1238 		 * Tail pages may be freed if there wasn't any mapping
1239 		 * like if add_to_swap() is running on a lru page that
1240 		 * had its mapping zapped. And freeing these pages
1241 		 * requires taking the lru_lock so we do the put_page
1242 		 * of the tail pages after the split is complete.
1243 		 */
1244 		put_page(page_tail);
1245 	}
1246 
1247 	/*
1248 	 * Only the head page (now become a regular page) is required
1249 	 * to be pinned by the caller.
1250 	 */
1251 	BUG_ON(page_count(page) <= 0);
1252 }
1253 
1254 static int __split_huge_page_map(struct page *page,
1255 				 struct vm_area_struct *vma,
1256 				 unsigned long address)
1257 {
1258 	struct mm_struct *mm = vma->vm_mm;
1259 	pmd_t *pmd, _pmd;
1260 	int ret = 0, i;
1261 	pgtable_t pgtable;
1262 	unsigned long haddr;
1263 
1264 	spin_lock(&mm->page_table_lock);
1265 	pmd = page_check_address_pmd(page, mm, address,
1266 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1267 	if (pmd) {
1268 		pgtable = get_pmd_huge_pte(mm);
1269 		pmd_populate(mm, &_pmd, pgtable);
1270 
1271 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1272 		     i++, haddr += PAGE_SIZE) {
1273 			pte_t *pte, entry;
1274 			BUG_ON(PageCompound(page+i));
1275 			entry = mk_pte(page + i, vma->vm_page_prot);
1276 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1277 			if (!pmd_write(*pmd))
1278 				entry = pte_wrprotect(entry);
1279 			else
1280 				BUG_ON(page_mapcount(page) != 1);
1281 			if (!pmd_young(*pmd))
1282 				entry = pte_mkold(entry);
1283 			pte = pte_offset_map(&_pmd, haddr);
1284 			BUG_ON(!pte_none(*pte));
1285 			set_pte_at(mm, haddr, pte, entry);
1286 			pte_unmap(pte);
1287 		}
1288 
1289 		mm->nr_ptes++;
1290 		smp_wmb(); /* make pte visible before pmd */
1291 		/*
1292 		 * Up to this point the pmd is present and huge and
1293 		 * userland has the whole access to the hugepage
1294 		 * during the split (which happens in place). If we
1295 		 * overwrite the pmd with the not-huge version
1296 		 * pointing to the pte here (which of course we could
1297 		 * if all CPUs were bug free), userland could trigger
1298 		 * a small page size TLB miss on the small sized TLB
1299 		 * while the hugepage TLB entry is still established
1300 		 * in the huge TLB. Some CPU doesn't like that. See
1301 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1302 		 * Erratum 383 on page 93. Intel should be safe but is
1303 		 * also warns that it's only safe if the permission
1304 		 * and cache attributes of the two entries loaded in
1305 		 * the two TLB is identical (which should be the case
1306 		 * here). But it is generally safer to never allow
1307 		 * small and huge TLB entries for the same virtual
1308 		 * address to be loaded simultaneously. So instead of
1309 		 * doing "pmd_populate(); flush_tlb_range();" we first
1310 		 * mark the current pmd notpresent (atomically because
1311 		 * here the pmd_trans_huge and pmd_trans_splitting
1312 		 * must remain set at all times on the pmd until the
1313 		 * split is complete for this pmd), then we flush the
1314 		 * SMP TLB and finally we write the non-huge version
1315 		 * of the pmd entry with pmd_populate.
1316 		 */
1317 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1318 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1319 		pmd_populate(mm, pmd, pgtable);
1320 		ret = 1;
1321 	}
1322 	spin_unlock(&mm->page_table_lock);
1323 
1324 	return ret;
1325 }
1326 
1327 /* must be called with anon_vma->root->lock hold */
1328 static void __split_huge_page(struct page *page,
1329 			      struct anon_vma *anon_vma)
1330 {
1331 	int mapcount, mapcount2;
1332 	struct anon_vma_chain *avc;
1333 
1334 	BUG_ON(!PageHead(page));
1335 	BUG_ON(PageTail(page));
1336 
1337 	mapcount = 0;
1338 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1339 		struct vm_area_struct *vma = avc->vma;
1340 		unsigned long addr = vma_address(page, vma);
1341 		BUG_ON(is_vma_temporary_stack(vma));
1342 		if (addr == -EFAULT)
1343 			continue;
1344 		mapcount += __split_huge_page_splitting(page, vma, addr);
1345 	}
1346 	/*
1347 	 * It is critical that new vmas are added to the tail of the
1348 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1349 	 * and establishes a child pmd before
1350 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1351 	 * we fail to prevent copy_huge_pmd() from running until the
1352 	 * whole __split_huge_page() is complete), we will still see
1353 	 * the newly established pmd of the child later during the
1354 	 * walk, to be able to set it as pmd_trans_splitting too.
1355 	 */
1356 	if (mapcount != page_mapcount(page))
1357 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1358 		       mapcount, page_mapcount(page));
1359 	BUG_ON(mapcount != page_mapcount(page));
1360 
1361 	__split_huge_page_refcount(page);
1362 
1363 	mapcount2 = 0;
1364 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1365 		struct vm_area_struct *vma = avc->vma;
1366 		unsigned long addr = vma_address(page, vma);
1367 		BUG_ON(is_vma_temporary_stack(vma));
1368 		if (addr == -EFAULT)
1369 			continue;
1370 		mapcount2 += __split_huge_page_map(page, vma, addr);
1371 	}
1372 	if (mapcount != mapcount2)
1373 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1374 		       mapcount, mapcount2, page_mapcount(page));
1375 	BUG_ON(mapcount != mapcount2);
1376 }
1377 
1378 int split_huge_page(struct page *page)
1379 {
1380 	struct anon_vma *anon_vma;
1381 	int ret = 1;
1382 
1383 	BUG_ON(!PageAnon(page));
1384 	anon_vma = page_lock_anon_vma(page);
1385 	if (!anon_vma)
1386 		goto out;
1387 	ret = 0;
1388 	if (!PageCompound(page))
1389 		goto out_unlock;
1390 
1391 	BUG_ON(!PageSwapBacked(page));
1392 	__split_huge_page(page, anon_vma);
1393 
1394 	BUG_ON(PageCompound(page));
1395 out_unlock:
1396 	page_unlock_anon_vma(anon_vma);
1397 out:
1398 	return ret;
1399 }
1400 
1401 int hugepage_madvise(struct vm_area_struct *vma,
1402 		     unsigned long *vm_flags, int advice)
1403 {
1404 	switch (advice) {
1405 	case MADV_HUGEPAGE:
1406 		/*
1407 		 * Be somewhat over-protective like KSM for now!
1408 		 */
1409 		if (*vm_flags & (VM_HUGEPAGE |
1410 				 VM_SHARED   | VM_MAYSHARE   |
1411 				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1412 				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1413 				 VM_MIXEDMAP | VM_SAO))
1414 			return -EINVAL;
1415 		*vm_flags &= ~VM_NOHUGEPAGE;
1416 		*vm_flags |= VM_HUGEPAGE;
1417 		/*
1418 		 * If the vma become good for khugepaged to scan,
1419 		 * register it here without waiting a page fault that
1420 		 * may not happen any time soon.
1421 		 */
1422 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1423 			return -ENOMEM;
1424 		break;
1425 	case MADV_NOHUGEPAGE:
1426 		/*
1427 		 * Be somewhat over-protective like KSM for now!
1428 		 */
1429 		if (*vm_flags & (VM_NOHUGEPAGE |
1430 				 VM_SHARED   | VM_MAYSHARE   |
1431 				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1432 				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1433 				 VM_MIXEDMAP | VM_SAO))
1434 			return -EINVAL;
1435 		*vm_flags &= ~VM_HUGEPAGE;
1436 		*vm_flags |= VM_NOHUGEPAGE;
1437 		/*
1438 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1439 		 * this vma even if we leave the mm registered in khugepaged if
1440 		 * it got registered before VM_NOHUGEPAGE was set.
1441 		 */
1442 		break;
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static int __init khugepaged_slab_init(void)
1449 {
1450 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1451 					  sizeof(struct mm_slot),
1452 					  __alignof__(struct mm_slot), 0, NULL);
1453 	if (!mm_slot_cache)
1454 		return -ENOMEM;
1455 
1456 	return 0;
1457 }
1458 
1459 static void __init khugepaged_slab_free(void)
1460 {
1461 	kmem_cache_destroy(mm_slot_cache);
1462 	mm_slot_cache = NULL;
1463 }
1464 
1465 static inline struct mm_slot *alloc_mm_slot(void)
1466 {
1467 	if (!mm_slot_cache)	/* initialization failed */
1468 		return NULL;
1469 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1470 }
1471 
1472 static inline void free_mm_slot(struct mm_slot *mm_slot)
1473 {
1474 	kmem_cache_free(mm_slot_cache, mm_slot);
1475 }
1476 
1477 static int __init mm_slots_hash_init(void)
1478 {
1479 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1480 				GFP_KERNEL);
1481 	if (!mm_slots_hash)
1482 		return -ENOMEM;
1483 	return 0;
1484 }
1485 
1486 #if 0
1487 static void __init mm_slots_hash_free(void)
1488 {
1489 	kfree(mm_slots_hash);
1490 	mm_slots_hash = NULL;
1491 }
1492 #endif
1493 
1494 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1495 {
1496 	struct mm_slot *mm_slot;
1497 	struct hlist_head *bucket;
1498 	struct hlist_node *node;
1499 
1500 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1501 				% MM_SLOTS_HASH_HEADS];
1502 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1503 		if (mm == mm_slot->mm)
1504 			return mm_slot;
1505 	}
1506 	return NULL;
1507 }
1508 
1509 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1510 				    struct mm_slot *mm_slot)
1511 {
1512 	struct hlist_head *bucket;
1513 
1514 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1515 				% MM_SLOTS_HASH_HEADS];
1516 	mm_slot->mm = mm;
1517 	hlist_add_head(&mm_slot->hash, bucket);
1518 }
1519 
1520 static inline int khugepaged_test_exit(struct mm_struct *mm)
1521 {
1522 	return atomic_read(&mm->mm_users) == 0;
1523 }
1524 
1525 int __khugepaged_enter(struct mm_struct *mm)
1526 {
1527 	struct mm_slot *mm_slot;
1528 	int wakeup;
1529 
1530 	mm_slot = alloc_mm_slot();
1531 	if (!mm_slot)
1532 		return -ENOMEM;
1533 
1534 	/* __khugepaged_exit() must not run from under us */
1535 	VM_BUG_ON(khugepaged_test_exit(mm));
1536 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1537 		free_mm_slot(mm_slot);
1538 		return 0;
1539 	}
1540 
1541 	spin_lock(&khugepaged_mm_lock);
1542 	insert_to_mm_slots_hash(mm, mm_slot);
1543 	/*
1544 	 * Insert just behind the scanning cursor, to let the area settle
1545 	 * down a little.
1546 	 */
1547 	wakeup = list_empty(&khugepaged_scan.mm_head);
1548 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1549 	spin_unlock(&khugepaged_mm_lock);
1550 
1551 	atomic_inc(&mm->mm_count);
1552 	if (wakeup)
1553 		wake_up_interruptible(&khugepaged_wait);
1554 
1555 	return 0;
1556 }
1557 
1558 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1559 {
1560 	unsigned long hstart, hend;
1561 	if (!vma->anon_vma)
1562 		/*
1563 		 * Not yet faulted in so we will register later in the
1564 		 * page fault if needed.
1565 		 */
1566 		return 0;
1567 	if (vma->vm_file || vma->vm_ops)
1568 		/* khugepaged not yet working on file or special mappings */
1569 		return 0;
1570 	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1571 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1572 	hend = vma->vm_end & HPAGE_PMD_MASK;
1573 	if (hstart < hend)
1574 		return khugepaged_enter(vma);
1575 	return 0;
1576 }
1577 
1578 void __khugepaged_exit(struct mm_struct *mm)
1579 {
1580 	struct mm_slot *mm_slot;
1581 	int free = 0;
1582 
1583 	spin_lock(&khugepaged_mm_lock);
1584 	mm_slot = get_mm_slot(mm);
1585 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1586 		hlist_del(&mm_slot->hash);
1587 		list_del(&mm_slot->mm_node);
1588 		free = 1;
1589 	}
1590 
1591 	if (free) {
1592 		spin_unlock(&khugepaged_mm_lock);
1593 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1594 		free_mm_slot(mm_slot);
1595 		mmdrop(mm);
1596 	} else if (mm_slot) {
1597 		spin_unlock(&khugepaged_mm_lock);
1598 		/*
1599 		 * This is required to serialize against
1600 		 * khugepaged_test_exit() (which is guaranteed to run
1601 		 * under mmap sem read mode). Stop here (after we
1602 		 * return all pagetables will be destroyed) until
1603 		 * khugepaged has finished working on the pagetables
1604 		 * under the mmap_sem.
1605 		 */
1606 		down_write(&mm->mmap_sem);
1607 		up_write(&mm->mmap_sem);
1608 	} else
1609 		spin_unlock(&khugepaged_mm_lock);
1610 }
1611 
1612 static void release_pte_page(struct page *page)
1613 {
1614 	/* 0 stands for page_is_file_cache(page) == false */
1615 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1616 	unlock_page(page);
1617 	putback_lru_page(page);
1618 }
1619 
1620 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1621 {
1622 	while (--_pte >= pte) {
1623 		pte_t pteval = *_pte;
1624 		if (!pte_none(pteval))
1625 			release_pte_page(pte_page(pteval));
1626 	}
1627 }
1628 
1629 static void release_all_pte_pages(pte_t *pte)
1630 {
1631 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1632 }
1633 
1634 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1635 					unsigned long address,
1636 					pte_t *pte)
1637 {
1638 	struct page *page;
1639 	pte_t *_pte;
1640 	int referenced = 0, isolated = 0, none = 0;
1641 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1642 	     _pte++, address += PAGE_SIZE) {
1643 		pte_t pteval = *_pte;
1644 		if (pte_none(pteval)) {
1645 			if (++none <= khugepaged_max_ptes_none)
1646 				continue;
1647 			else {
1648 				release_pte_pages(pte, _pte);
1649 				goto out;
1650 			}
1651 		}
1652 		if (!pte_present(pteval) || !pte_write(pteval)) {
1653 			release_pte_pages(pte, _pte);
1654 			goto out;
1655 		}
1656 		page = vm_normal_page(vma, address, pteval);
1657 		if (unlikely(!page)) {
1658 			release_pte_pages(pte, _pte);
1659 			goto out;
1660 		}
1661 		VM_BUG_ON(PageCompound(page));
1662 		BUG_ON(!PageAnon(page));
1663 		VM_BUG_ON(!PageSwapBacked(page));
1664 
1665 		/* cannot use mapcount: can't collapse if there's a gup pin */
1666 		if (page_count(page) != 1) {
1667 			release_pte_pages(pte, _pte);
1668 			goto out;
1669 		}
1670 		/*
1671 		 * We can do it before isolate_lru_page because the
1672 		 * page can't be freed from under us. NOTE: PG_lock
1673 		 * is needed to serialize against split_huge_page
1674 		 * when invoked from the VM.
1675 		 */
1676 		if (!trylock_page(page)) {
1677 			release_pte_pages(pte, _pte);
1678 			goto out;
1679 		}
1680 		/*
1681 		 * Isolate the page to avoid collapsing an hugepage
1682 		 * currently in use by the VM.
1683 		 */
1684 		if (isolate_lru_page(page)) {
1685 			unlock_page(page);
1686 			release_pte_pages(pte, _pte);
1687 			goto out;
1688 		}
1689 		/* 0 stands for page_is_file_cache(page) == false */
1690 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1691 		VM_BUG_ON(!PageLocked(page));
1692 		VM_BUG_ON(PageLRU(page));
1693 
1694 		/* If there is no mapped pte young don't collapse the page */
1695 		if (pte_young(pteval) || PageReferenced(page) ||
1696 		    mmu_notifier_test_young(vma->vm_mm, address))
1697 			referenced = 1;
1698 	}
1699 	if (unlikely(!referenced))
1700 		release_all_pte_pages(pte);
1701 	else
1702 		isolated = 1;
1703 out:
1704 	return isolated;
1705 }
1706 
1707 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1708 				      struct vm_area_struct *vma,
1709 				      unsigned long address,
1710 				      spinlock_t *ptl)
1711 {
1712 	pte_t *_pte;
1713 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1714 		pte_t pteval = *_pte;
1715 		struct page *src_page;
1716 
1717 		if (pte_none(pteval)) {
1718 			clear_user_highpage(page, address);
1719 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1720 		} else {
1721 			src_page = pte_page(pteval);
1722 			copy_user_highpage(page, src_page, address, vma);
1723 			VM_BUG_ON(page_mapcount(src_page) != 1);
1724 			VM_BUG_ON(page_count(src_page) != 2);
1725 			release_pte_page(src_page);
1726 			/*
1727 			 * ptl mostly unnecessary, but preempt has to
1728 			 * be disabled to update the per-cpu stats
1729 			 * inside page_remove_rmap().
1730 			 */
1731 			spin_lock(ptl);
1732 			/*
1733 			 * paravirt calls inside pte_clear here are
1734 			 * superfluous.
1735 			 */
1736 			pte_clear(vma->vm_mm, address, _pte);
1737 			page_remove_rmap(src_page);
1738 			spin_unlock(ptl);
1739 			free_page_and_swap_cache(src_page);
1740 		}
1741 
1742 		address += PAGE_SIZE;
1743 		page++;
1744 	}
1745 }
1746 
1747 static void collapse_huge_page(struct mm_struct *mm,
1748 			       unsigned long address,
1749 			       struct page **hpage,
1750 			       struct vm_area_struct *vma,
1751 			       int node)
1752 {
1753 	pgd_t *pgd;
1754 	pud_t *pud;
1755 	pmd_t *pmd, _pmd;
1756 	pte_t *pte;
1757 	pgtable_t pgtable;
1758 	struct page *new_page;
1759 	spinlock_t *ptl;
1760 	int isolated;
1761 	unsigned long hstart, hend;
1762 
1763 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1764 #ifndef CONFIG_NUMA
1765 	VM_BUG_ON(!*hpage);
1766 	new_page = *hpage;
1767 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1768 		up_read(&mm->mmap_sem);
1769 		return;
1770 	}
1771 #else
1772 	VM_BUG_ON(*hpage);
1773 	/*
1774 	 * Allocate the page while the vma is still valid and under
1775 	 * the mmap_sem read mode so there is no memory allocation
1776 	 * later when we take the mmap_sem in write mode. This is more
1777 	 * friendly behavior (OTOH it may actually hide bugs) to
1778 	 * filesystems in userland with daemons allocating memory in
1779 	 * the userland I/O paths.  Allocating memory with the
1780 	 * mmap_sem in read mode is good idea also to allow greater
1781 	 * scalability.
1782 	 */
1783 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1784 				      node, __GFP_OTHER_NODE);
1785 	if (unlikely(!new_page)) {
1786 		up_read(&mm->mmap_sem);
1787 		*hpage = ERR_PTR(-ENOMEM);
1788 		return;
1789 	}
1790 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1791 		up_read(&mm->mmap_sem);
1792 		put_page(new_page);
1793 		return;
1794 	}
1795 #endif
1796 
1797 	/* after allocating the hugepage upgrade to mmap_sem write mode */
1798 	up_read(&mm->mmap_sem);
1799 
1800 	/*
1801 	 * Prevent all access to pagetables with the exception of
1802 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1803 	 * handled by the anon_vma lock + PG_lock.
1804 	 */
1805 	down_write(&mm->mmap_sem);
1806 	if (unlikely(khugepaged_test_exit(mm)))
1807 		goto out;
1808 
1809 	vma = find_vma(mm, address);
1810 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1811 	hend = vma->vm_end & HPAGE_PMD_MASK;
1812 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1813 		goto out;
1814 
1815 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1816 	    (vma->vm_flags & VM_NOHUGEPAGE))
1817 		goto out;
1818 
1819 	/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1820 	if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1821 		goto out;
1822 	if (is_vma_temporary_stack(vma))
1823 		goto out;
1824 	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1825 
1826 	pgd = pgd_offset(mm, address);
1827 	if (!pgd_present(*pgd))
1828 		goto out;
1829 
1830 	pud = pud_offset(pgd, address);
1831 	if (!pud_present(*pud))
1832 		goto out;
1833 
1834 	pmd = pmd_offset(pud, address);
1835 	/* pmd can't go away or become huge under us */
1836 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1837 		goto out;
1838 
1839 	anon_vma_lock(vma->anon_vma);
1840 
1841 	pte = pte_offset_map(pmd, address);
1842 	ptl = pte_lockptr(mm, pmd);
1843 
1844 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1845 	/*
1846 	 * After this gup_fast can't run anymore. This also removes
1847 	 * any huge TLB entry from the CPU so we won't allow
1848 	 * huge and small TLB entries for the same virtual address
1849 	 * to avoid the risk of CPU bugs in that area.
1850 	 */
1851 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1852 	spin_unlock(&mm->page_table_lock);
1853 
1854 	spin_lock(ptl);
1855 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1856 	spin_unlock(ptl);
1857 
1858 	if (unlikely(!isolated)) {
1859 		pte_unmap(pte);
1860 		spin_lock(&mm->page_table_lock);
1861 		BUG_ON(!pmd_none(*pmd));
1862 		set_pmd_at(mm, address, pmd, _pmd);
1863 		spin_unlock(&mm->page_table_lock);
1864 		anon_vma_unlock(vma->anon_vma);
1865 		goto out;
1866 	}
1867 
1868 	/*
1869 	 * All pages are isolated and locked so anon_vma rmap
1870 	 * can't run anymore.
1871 	 */
1872 	anon_vma_unlock(vma->anon_vma);
1873 
1874 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1875 	pte_unmap(pte);
1876 	__SetPageUptodate(new_page);
1877 	pgtable = pmd_pgtable(_pmd);
1878 	VM_BUG_ON(page_count(pgtable) != 1);
1879 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1880 
1881 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1882 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1883 	_pmd = pmd_mkhuge(_pmd);
1884 
1885 	/*
1886 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1887 	 * this is needed to avoid the copy_huge_page writes to become
1888 	 * visible after the set_pmd_at() write.
1889 	 */
1890 	smp_wmb();
1891 
1892 	spin_lock(&mm->page_table_lock);
1893 	BUG_ON(!pmd_none(*pmd));
1894 	page_add_new_anon_rmap(new_page, vma, address);
1895 	set_pmd_at(mm, address, pmd, _pmd);
1896 	update_mmu_cache(vma, address, entry);
1897 	prepare_pmd_huge_pte(pgtable, mm);
1898 	mm->nr_ptes--;
1899 	spin_unlock(&mm->page_table_lock);
1900 
1901 #ifndef CONFIG_NUMA
1902 	*hpage = NULL;
1903 #endif
1904 	khugepaged_pages_collapsed++;
1905 out_up_write:
1906 	up_write(&mm->mmap_sem);
1907 	return;
1908 
1909 out:
1910 	mem_cgroup_uncharge_page(new_page);
1911 #ifdef CONFIG_NUMA
1912 	put_page(new_page);
1913 #endif
1914 	goto out_up_write;
1915 }
1916 
1917 static int khugepaged_scan_pmd(struct mm_struct *mm,
1918 			       struct vm_area_struct *vma,
1919 			       unsigned long address,
1920 			       struct page **hpage)
1921 {
1922 	pgd_t *pgd;
1923 	pud_t *pud;
1924 	pmd_t *pmd;
1925 	pte_t *pte, *_pte;
1926 	int ret = 0, referenced = 0, none = 0;
1927 	struct page *page;
1928 	unsigned long _address;
1929 	spinlock_t *ptl;
1930 	int node = -1;
1931 
1932 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1933 
1934 	pgd = pgd_offset(mm, address);
1935 	if (!pgd_present(*pgd))
1936 		goto out;
1937 
1938 	pud = pud_offset(pgd, address);
1939 	if (!pud_present(*pud))
1940 		goto out;
1941 
1942 	pmd = pmd_offset(pud, address);
1943 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1944 		goto out;
1945 
1946 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1947 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1948 	     _pte++, _address += PAGE_SIZE) {
1949 		pte_t pteval = *_pte;
1950 		if (pte_none(pteval)) {
1951 			if (++none <= khugepaged_max_ptes_none)
1952 				continue;
1953 			else
1954 				goto out_unmap;
1955 		}
1956 		if (!pte_present(pteval) || !pte_write(pteval))
1957 			goto out_unmap;
1958 		page = vm_normal_page(vma, _address, pteval);
1959 		if (unlikely(!page))
1960 			goto out_unmap;
1961 		/*
1962 		 * Chose the node of the first page. This could
1963 		 * be more sophisticated and look at more pages,
1964 		 * but isn't for now.
1965 		 */
1966 		if (node == -1)
1967 			node = page_to_nid(page);
1968 		VM_BUG_ON(PageCompound(page));
1969 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1970 			goto out_unmap;
1971 		/* cannot use mapcount: can't collapse if there's a gup pin */
1972 		if (page_count(page) != 1)
1973 			goto out_unmap;
1974 		if (pte_young(pteval) || PageReferenced(page) ||
1975 		    mmu_notifier_test_young(vma->vm_mm, address))
1976 			referenced = 1;
1977 	}
1978 	if (referenced)
1979 		ret = 1;
1980 out_unmap:
1981 	pte_unmap_unlock(pte, ptl);
1982 	if (ret)
1983 		/* collapse_huge_page will return with the mmap_sem released */
1984 		collapse_huge_page(mm, address, hpage, vma, node);
1985 out:
1986 	return ret;
1987 }
1988 
1989 static void collect_mm_slot(struct mm_slot *mm_slot)
1990 {
1991 	struct mm_struct *mm = mm_slot->mm;
1992 
1993 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1994 
1995 	if (khugepaged_test_exit(mm)) {
1996 		/* free mm_slot */
1997 		hlist_del(&mm_slot->hash);
1998 		list_del(&mm_slot->mm_node);
1999 
2000 		/*
2001 		 * Not strictly needed because the mm exited already.
2002 		 *
2003 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2004 		 */
2005 
2006 		/* khugepaged_mm_lock actually not necessary for the below */
2007 		free_mm_slot(mm_slot);
2008 		mmdrop(mm);
2009 	}
2010 }
2011 
2012 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2013 					    struct page **hpage)
2014 {
2015 	struct mm_slot *mm_slot;
2016 	struct mm_struct *mm;
2017 	struct vm_area_struct *vma;
2018 	int progress = 0;
2019 
2020 	VM_BUG_ON(!pages);
2021 	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2022 
2023 	if (khugepaged_scan.mm_slot)
2024 		mm_slot = khugepaged_scan.mm_slot;
2025 	else {
2026 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2027 				     struct mm_slot, mm_node);
2028 		khugepaged_scan.address = 0;
2029 		khugepaged_scan.mm_slot = mm_slot;
2030 	}
2031 	spin_unlock(&khugepaged_mm_lock);
2032 
2033 	mm = mm_slot->mm;
2034 	down_read(&mm->mmap_sem);
2035 	if (unlikely(khugepaged_test_exit(mm)))
2036 		vma = NULL;
2037 	else
2038 		vma = find_vma(mm, khugepaged_scan.address);
2039 
2040 	progress++;
2041 	for (; vma; vma = vma->vm_next) {
2042 		unsigned long hstart, hend;
2043 
2044 		cond_resched();
2045 		if (unlikely(khugepaged_test_exit(mm))) {
2046 			progress++;
2047 			break;
2048 		}
2049 
2050 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2051 		     !khugepaged_always()) ||
2052 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2053 		skip:
2054 			progress++;
2055 			continue;
2056 		}
2057 		/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2058 		if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
2059 			goto skip;
2060 		if (is_vma_temporary_stack(vma))
2061 			goto skip;
2062 
2063 		VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2064 
2065 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2066 		hend = vma->vm_end & HPAGE_PMD_MASK;
2067 		if (hstart >= hend)
2068 			goto skip;
2069 		if (khugepaged_scan.address > hend)
2070 			goto skip;
2071 		if (khugepaged_scan.address < hstart)
2072 			khugepaged_scan.address = hstart;
2073 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2074 
2075 		while (khugepaged_scan.address < hend) {
2076 			int ret;
2077 			cond_resched();
2078 			if (unlikely(khugepaged_test_exit(mm)))
2079 				goto breakouterloop;
2080 
2081 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2082 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2083 				  hend);
2084 			ret = khugepaged_scan_pmd(mm, vma,
2085 						  khugepaged_scan.address,
2086 						  hpage);
2087 			/* move to next address */
2088 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2089 			progress += HPAGE_PMD_NR;
2090 			if (ret)
2091 				/* we released mmap_sem so break loop */
2092 				goto breakouterloop_mmap_sem;
2093 			if (progress >= pages)
2094 				goto breakouterloop;
2095 		}
2096 	}
2097 breakouterloop:
2098 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2099 breakouterloop_mmap_sem:
2100 
2101 	spin_lock(&khugepaged_mm_lock);
2102 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2103 	/*
2104 	 * Release the current mm_slot if this mm is about to die, or
2105 	 * if we scanned all vmas of this mm.
2106 	 */
2107 	if (khugepaged_test_exit(mm) || !vma) {
2108 		/*
2109 		 * Make sure that if mm_users is reaching zero while
2110 		 * khugepaged runs here, khugepaged_exit will find
2111 		 * mm_slot not pointing to the exiting mm.
2112 		 */
2113 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2114 			khugepaged_scan.mm_slot = list_entry(
2115 				mm_slot->mm_node.next,
2116 				struct mm_slot, mm_node);
2117 			khugepaged_scan.address = 0;
2118 		} else {
2119 			khugepaged_scan.mm_slot = NULL;
2120 			khugepaged_full_scans++;
2121 		}
2122 
2123 		collect_mm_slot(mm_slot);
2124 	}
2125 
2126 	return progress;
2127 }
2128 
2129 static int khugepaged_has_work(void)
2130 {
2131 	return !list_empty(&khugepaged_scan.mm_head) &&
2132 		khugepaged_enabled();
2133 }
2134 
2135 static int khugepaged_wait_event(void)
2136 {
2137 	return !list_empty(&khugepaged_scan.mm_head) ||
2138 		!khugepaged_enabled();
2139 }
2140 
2141 static void khugepaged_do_scan(struct page **hpage)
2142 {
2143 	unsigned int progress = 0, pass_through_head = 0;
2144 	unsigned int pages = khugepaged_pages_to_scan;
2145 
2146 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2147 
2148 	while (progress < pages) {
2149 		cond_resched();
2150 
2151 #ifndef CONFIG_NUMA
2152 		if (!*hpage) {
2153 			*hpage = alloc_hugepage(khugepaged_defrag());
2154 			if (unlikely(!*hpage))
2155 				break;
2156 		}
2157 #else
2158 		if (IS_ERR(*hpage))
2159 			break;
2160 #endif
2161 
2162 		if (unlikely(kthread_should_stop() || freezing(current)))
2163 			break;
2164 
2165 		spin_lock(&khugepaged_mm_lock);
2166 		if (!khugepaged_scan.mm_slot)
2167 			pass_through_head++;
2168 		if (khugepaged_has_work() &&
2169 		    pass_through_head < 2)
2170 			progress += khugepaged_scan_mm_slot(pages - progress,
2171 							    hpage);
2172 		else
2173 			progress = pages;
2174 		spin_unlock(&khugepaged_mm_lock);
2175 	}
2176 }
2177 
2178 static void khugepaged_alloc_sleep(void)
2179 {
2180 	DEFINE_WAIT(wait);
2181 	add_wait_queue(&khugepaged_wait, &wait);
2182 	schedule_timeout_interruptible(
2183 		msecs_to_jiffies(
2184 			khugepaged_alloc_sleep_millisecs));
2185 	remove_wait_queue(&khugepaged_wait, &wait);
2186 }
2187 
2188 #ifndef CONFIG_NUMA
2189 static struct page *khugepaged_alloc_hugepage(void)
2190 {
2191 	struct page *hpage;
2192 
2193 	do {
2194 		hpage = alloc_hugepage(khugepaged_defrag());
2195 		if (!hpage)
2196 			khugepaged_alloc_sleep();
2197 	} while (unlikely(!hpage) &&
2198 		 likely(khugepaged_enabled()));
2199 	return hpage;
2200 }
2201 #endif
2202 
2203 static void khugepaged_loop(void)
2204 {
2205 	struct page *hpage;
2206 
2207 #ifdef CONFIG_NUMA
2208 	hpage = NULL;
2209 #endif
2210 	while (likely(khugepaged_enabled())) {
2211 #ifndef CONFIG_NUMA
2212 		hpage = khugepaged_alloc_hugepage();
2213 		if (unlikely(!hpage))
2214 			break;
2215 #else
2216 		if (IS_ERR(hpage)) {
2217 			khugepaged_alloc_sleep();
2218 			hpage = NULL;
2219 		}
2220 #endif
2221 
2222 		khugepaged_do_scan(&hpage);
2223 #ifndef CONFIG_NUMA
2224 		if (hpage)
2225 			put_page(hpage);
2226 #endif
2227 		try_to_freeze();
2228 		if (unlikely(kthread_should_stop()))
2229 			break;
2230 		if (khugepaged_has_work()) {
2231 			DEFINE_WAIT(wait);
2232 			if (!khugepaged_scan_sleep_millisecs)
2233 				continue;
2234 			add_wait_queue(&khugepaged_wait, &wait);
2235 			schedule_timeout_interruptible(
2236 				msecs_to_jiffies(
2237 					khugepaged_scan_sleep_millisecs));
2238 			remove_wait_queue(&khugepaged_wait, &wait);
2239 		} else if (khugepaged_enabled())
2240 			wait_event_freezable(khugepaged_wait,
2241 					     khugepaged_wait_event());
2242 	}
2243 }
2244 
2245 static int khugepaged(void *none)
2246 {
2247 	struct mm_slot *mm_slot;
2248 
2249 	set_freezable();
2250 	set_user_nice(current, 19);
2251 
2252 	/* serialize with start_khugepaged() */
2253 	mutex_lock(&khugepaged_mutex);
2254 
2255 	for (;;) {
2256 		mutex_unlock(&khugepaged_mutex);
2257 		VM_BUG_ON(khugepaged_thread != current);
2258 		khugepaged_loop();
2259 		VM_BUG_ON(khugepaged_thread != current);
2260 
2261 		mutex_lock(&khugepaged_mutex);
2262 		if (!khugepaged_enabled())
2263 			break;
2264 		if (unlikely(kthread_should_stop()))
2265 			break;
2266 	}
2267 
2268 	spin_lock(&khugepaged_mm_lock);
2269 	mm_slot = khugepaged_scan.mm_slot;
2270 	khugepaged_scan.mm_slot = NULL;
2271 	if (mm_slot)
2272 		collect_mm_slot(mm_slot);
2273 	spin_unlock(&khugepaged_mm_lock);
2274 
2275 	khugepaged_thread = NULL;
2276 	mutex_unlock(&khugepaged_mutex);
2277 
2278 	return 0;
2279 }
2280 
2281 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2282 {
2283 	struct page *page;
2284 
2285 	spin_lock(&mm->page_table_lock);
2286 	if (unlikely(!pmd_trans_huge(*pmd))) {
2287 		spin_unlock(&mm->page_table_lock);
2288 		return;
2289 	}
2290 	page = pmd_page(*pmd);
2291 	VM_BUG_ON(!page_count(page));
2292 	get_page(page);
2293 	spin_unlock(&mm->page_table_lock);
2294 
2295 	split_huge_page(page);
2296 
2297 	put_page(page);
2298 	BUG_ON(pmd_trans_huge(*pmd));
2299 }
2300 
2301 static void split_huge_page_address(struct mm_struct *mm,
2302 				    unsigned long address)
2303 {
2304 	pgd_t *pgd;
2305 	pud_t *pud;
2306 	pmd_t *pmd;
2307 
2308 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2309 
2310 	pgd = pgd_offset(mm, address);
2311 	if (!pgd_present(*pgd))
2312 		return;
2313 
2314 	pud = pud_offset(pgd, address);
2315 	if (!pud_present(*pud))
2316 		return;
2317 
2318 	pmd = pmd_offset(pud, address);
2319 	if (!pmd_present(*pmd))
2320 		return;
2321 	/*
2322 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2323 	 * materialize from under us.
2324 	 */
2325 	split_huge_page_pmd(mm, pmd);
2326 }
2327 
2328 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2329 			     unsigned long start,
2330 			     unsigned long end,
2331 			     long adjust_next)
2332 {
2333 	/*
2334 	 * If the new start address isn't hpage aligned and it could
2335 	 * previously contain an hugepage: check if we need to split
2336 	 * an huge pmd.
2337 	 */
2338 	if (start & ~HPAGE_PMD_MASK &&
2339 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2340 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2341 		split_huge_page_address(vma->vm_mm, start);
2342 
2343 	/*
2344 	 * If the new end address isn't hpage aligned and it could
2345 	 * previously contain an hugepage: check if we need to split
2346 	 * an huge pmd.
2347 	 */
2348 	if (end & ~HPAGE_PMD_MASK &&
2349 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2350 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2351 		split_huge_page_address(vma->vm_mm, end);
2352 
2353 	/*
2354 	 * If we're also updating the vma->vm_next->vm_start, if the new
2355 	 * vm_next->vm_start isn't page aligned and it could previously
2356 	 * contain an hugepage: check if we need to split an huge pmd.
2357 	 */
2358 	if (adjust_next > 0) {
2359 		struct vm_area_struct *next = vma->vm_next;
2360 		unsigned long nstart = next->vm_start;
2361 		nstart += adjust_next << PAGE_SHIFT;
2362 		if (nstart & ~HPAGE_PMD_MASK &&
2363 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2364 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2365 			split_huge_page_address(next->vm_mm, nstart);
2366 	}
2367 }
2368