xref: /linux/mm/huge_memory.c (revision 8f668fbbd571bbd5187a9a0eae150b768fc388ac)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes)
134 		min_free_kbytes = recommended_min;
135 	setup_per_zone_wmarks();
136 	return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139 
140 static int start_khugepaged(void)
141 {
142 	int err = 0;
143 	if (khugepaged_enabled()) {
144 		if (!khugepaged_thread)
145 			khugepaged_thread = kthread_run(khugepaged, NULL,
146 							"khugepaged");
147 		if (unlikely(IS_ERR(khugepaged_thread))) {
148 			printk(KERN_ERR
149 			       "khugepaged: kthread_run(khugepaged) failed\n");
150 			err = PTR_ERR(khugepaged_thread);
151 			khugepaged_thread = NULL;
152 		}
153 
154 		if (!list_empty(&khugepaged_scan.mm_head))
155 			wake_up_interruptible(&khugepaged_wait);
156 
157 		set_recommended_min_free_kbytes();
158 	} else if (khugepaged_thread) {
159 		kthread_stop(khugepaged_thread);
160 		khugepaged_thread = NULL;
161 	}
162 
163 	return err;
164 }
165 
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
168 
169 static inline bool is_huge_zero_page(struct page *page)
170 {
171 	return ACCESS_ONCE(huge_zero_page) == page;
172 }
173 
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 	return is_huge_zero_page(pmd_page(pmd));
177 }
178 
179 static struct page *get_huge_zero_page(void)
180 {
181 	struct page *zero_page;
182 retry:
183 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 		return ACCESS_ONCE(huge_zero_page);
185 
186 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 			HPAGE_PMD_ORDER);
188 	if (!zero_page) {
189 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 		return NULL;
191 	}
192 	count_vm_event(THP_ZERO_PAGE_ALLOC);
193 	preempt_disable();
194 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 		preempt_enable();
196 		__free_page(zero_page);
197 		goto retry;
198 	}
199 
200 	/* We take additional reference here. It will be put back by shrinker */
201 	atomic_set(&huge_zero_refcount, 2);
202 	preempt_enable();
203 	return ACCESS_ONCE(huge_zero_page);
204 }
205 
206 static void put_huge_zero_page(void)
207 {
208 	/*
209 	 * Counter should never go to zero here. Only shrinker can put
210 	 * last reference.
211 	 */
212 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214 
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 					struct shrink_control *sc)
217 {
218 	/* we can free zero page only if last reference remains */
219 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220 }
221 
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 				       struct shrink_control *sc)
224 {
225 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 		struct page *zero_page = xchg(&huge_zero_page, NULL);
227 		BUG_ON(zero_page == NULL);
228 		__free_page(zero_page);
229 		return HPAGE_PMD_NR;
230 	}
231 
232 	return 0;
233 }
234 
235 static struct shrinker huge_zero_page_shrinker = {
236 	.count_objects = shrink_huge_zero_page_count,
237 	.scan_objects = shrink_huge_zero_page_scan,
238 	.seeks = DEFAULT_SEEKS,
239 };
240 
241 #ifdef CONFIG_SYSFS
242 
243 static ssize_t double_flag_show(struct kobject *kobj,
244 				struct kobj_attribute *attr, char *buf,
245 				enum transparent_hugepage_flag enabled,
246 				enum transparent_hugepage_flag req_madv)
247 {
248 	if (test_bit(enabled, &transparent_hugepage_flags)) {
249 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 		return sprintf(buf, "[always] madvise never\n");
251 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
252 		return sprintf(buf, "always [madvise] never\n");
253 	else
254 		return sprintf(buf, "always madvise [never]\n");
255 }
256 static ssize_t double_flag_store(struct kobject *kobj,
257 				 struct kobj_attribute *attr,
258 				 const char *buf, size_t count,
259 				 enum transparent_hugepage_flag enabled,
260 				 enum transparent_hugepage_flag req_madv)
261 {
262 	if (!memcmp("always", buf,
263 		    min(sizeof("always")-1, count))) {
264 		set_bit(enabled, &transparent_hugepage_flags);
265 		clear_bit(req_madv, &transparent_hugepage_flags);
266 	} else if (!memcmp("madvise", buf,
267 			   min(sizeof("madvise")-1, count))) {
268 		clear_bit(enabled, &transparent_hugepage_flags);
269 		set_bit(req_madv, &transparent_hugepage_flags);
270 	} else if (!memcmp("never", buf,
271 			   min(sizeof("never")-1, count))) {
272 		clear_bit(enabled, &transparent_hugepage_flags);
273 		clear_bit(req_madv, &transparent_hugepage_flags);
274 	} else
275 		return -EINVAL;
276 
277 	return count;
278 }
279 
280 static ssize_t enabled_show(struct kobject *kobj,
281 			    struct kobj_attribute *attr, char *buf)
282 {
283 	return double_flag_show(kobj, attr, buf,
284 				TRANSPARENT_HUGEPAGE_FLAG,
285 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 }
287 static ssize_t enabled_store(struct kobject *kobj,
288 			     struct kobj_attribute *attr,
289 			     const char *buf, size_t count)
290 {
291 	ssize_t ret;
292 
293 	ret = double_flag_store(kobj, attr, buf, count,
294 				TRANSPARENT_HUGEPAGE_FLAG,
295 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296 
297 	if (ret > 0) {
298 		int err;
299 
300 		mutex_lock(&khugepaged_mutex);
301 		err = start_khugepaged();
302 		mutex_unlock(&khugepaged_mutex);
303 
304 		if (err)
305 			ret = err;
306 	}
307 
308 	return ret;
309 }
310 static struct kobj_attribute enabled_attr =
311 	__ATTR(enabled, 0644, enabled_show, enabled_store);
312 
313 static ssize_t single_flag_show(struct kobject *kobj,
314 				struct kobj_attribute *attr, char *buf,
315 				enum transparent_hugepage_flag flag)
316 {
317 	return sprintf(buf, "%d\n",
318 		       !!test_bit(flag, &transparent_hugepage_flags));
319 }
320 
321 static ssize_t single_flag_store(struct kobject *kobj,
322 				 struct kobj_attribute *attr,
323 				 const char *buf, size_t count,
324 				 enum transparent_hugepage_flag flag)
325 {
326 	unsigned long value;
327 	int ret;
328 
329 	ret = kstrtoul(buf, 10, &value);
330 	if (ret < 0)
331 		return ret;
332 	if (value > 1)
333 		return -EINVAL;
334 
335 	if (value)
336 		set_bit(flag, &transparent_hugepage_flags);
337 	else
338 		clear_bit(flag, &transparent_hugepage_flags);
339 
340 	return count;
341 }
342 
343 /*
344  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346  * memory just to allocate one more hugepage.
347  */
348 static ssize_t defrag_show(struct kobject *kobj,
349 			   struct kobj_attribute *attr, char *buf)
350 {
351 	return double_flag_show(kobj, attr, buf,
352 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 }
355 static ssize_t defrag_store(struct kobject *kobj,
356 			    struct kobj_attribute *attr,
357 			    const char *buf, size_t count)
358 {
359 	return double_flag_store(kobj, attr, buf, count,
360 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 }
363 static struct kobj_attribute defrag_attr =
364 	__ATTR(defrag, 0644, defrag_show, defrag_store);
365 
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 		struct kobj_attribute *attr, char *buf)
368 {
369 	return single_flag_show(kobj, attr, buf,
370 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 		struct kobj_attribute *attr, const char *buf, size_t count)
374 {
375 	return single_flag_store(kobj, attr, buf, count,
376 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static struct kobj_attribute use_zero_page_attr =
379 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 				struct kobj_attribute *attr, char *buf)
383 {
384 	return single_flag_show(kobj, attr, buf,
385 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 }
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 			       struct kobj_attribute *attr,
389 			       const char *buf, size_t count)
390 {
391 	return single_flag_store(kobj, attr, buf, count,
392 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static struct kobj_attribute debug_cow_attr =
395 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
397 
398 static struct attribute *hugepage_attr[] = {
399 	&enabled_attr.attr,
400 	&defrag_attr.attr,
401 	&use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 	&debug_cow_attr.attr,
404 #endif
405 	NULL,
406 };
407 
408 static struct attribute_group hugepage_attr_group = {
409 	.attrs = hugepage_attr,
410 };
411 
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 					 struct kobj_attribute *attr,
414 					 char *buf)
415 {
416 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417 }
418 
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 					  struct kobj_attribute *attr,
421 					  const char *buf, size_t count)
422 {
423 	unsigned long msecs;
424 	int err;
425 
426 	err = kstrtoul(buf, 10, &msecs);
427 	if (err || msecs > UINT_MAX)
428 		return -EINVAL;
429 
430 	khugepaged_scan_sleep_millisecs = msecs;
431 	wake_up_interruptible(&khugepaged_wait);
432 
433 	return count;
434 }
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 	       scan_sleep_millisecs_store);
438 
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 					  struct kobj_attribute *attr,
441 					  char *buf)
442 {
443 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444 }
445 
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 					   struct kobj_attribute *attr,
448 					   const char *buf, size_t count)
449 {
450 	unsigned long msecs;
451 	int err;
452 
453 	err = kstrtoul(buf, 10, &msecs);
454 	if (err || msecs > UINT_MAX)
455 		return -EINVAL;
456 
457 	khugepaged_alloc_sleep_millisecs = msecs;
458 	wake_up_interruptible(&khugepaged_wait);
459 
460 	return count;
461 }
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 	       alloc_sleep_millisecs_store);
465 
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 				  struct kobj_attribute *attr,
468 				  char *buf)
469 {
470 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 }
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 				   struct kobj_attribute *attr,
474 				   const char *buf, size_t count)
475 {
476 	int err;
477 	unsigned long pages;
478 
479 	err = kstrtoul(buf, 10, &pages);
480 	if (err || !pages || pages > UINT_MAX)
481 		return -EINVAL;
482 
483 	khugepaged_pages_to_scan = pages;
484 
485 	return count;
486 }
487 static struct kobj_attribute pages_to_scan_attr =
488 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 	       pages_to_scan_store);
490 
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 				    struct kobj_attribute *attr,
493 				    char *buf)
494 {
495 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 }
497 static struct kobj_attribute pages_collapsed_attr =
498 	__ATTR_RO(pages_collapsed);
499 
500 static ssize_t full_scans_show(struct kobject *kobj,
501 			       struct kobj_attribute *attr,
502 			       char *buf)
503 {
504 	return sprintf(buf, "%u\n", khugepaged_full_scans);
505 }
506 static struct kobj_attribute full_scans_attr =
507 	__ATTR_RO(full_scans);
508 
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 				      struct kobj_attribute *attr, char *buf)
511 {
512 	return single_flag_show(kobj, attr, buf,
513 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 }
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 				       struct kobj_attribute *attr,
517 				       const char *buf, size_t count)
518 {
519 	return single_flag_store(kobj, attr, buf, count,
520 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static struct kobj_attribute khugepaged_defrag_attr =
523 	__ATTR(defrag, 0644, khugepaged_defrag_show,
524 	       khugepaged_defrag_store);
525 
526 /*
527  * max_ptes_none controls if khugepaged should collapse hugepages over
528  * any unmapped ptes in turn potentially increasing the memory
529  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530  * reduce the available free memory in the system as it
531  * runs. Increasing max_ptes_none will instead potentially reduce the
532  * free memory in the system during the khugepaged scan.
533  */
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 					     struct kobj_attribute *attr,
536 					     char *buf)
537 {
538 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 }
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 					      struct kobj_attribute *attr,
542 					      const char *buf, size_t count)
543 {
544 	int err;
545 	unsigned long max_ptes_none;
546 
547 	err = kstrtoul(buf, 10, &max_ptes_none);
548 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 		return -EINVAL;
550 
551 	khugepaged_max_ptes_none = max_ptes_none;
552 
553 	return count;
554 }
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 	       khugepaged_max_ptes_none_store);
558 
559 static struct attribute *khugepaged_attr[] = {
560 	&khugepaged_defrag_attr.attr,
561 	&khugepaged_max_ptes_none_attr.attr,
562 	&pages_to_scan_attr.attr,
563 	&pages_collapsed_attr.attr,
564 	&full_scans_attr.attr,
565 	&scan_sleep_millisecs_attr.attr,
566 	&alloc_sleep_millisecs_attr.attr,
567 	NULL,
568 };
569 
570 static struct attribute_group khugepaged_attr_group = {
571 	.attrs = khugepaged_attr,
572 	.name = "khugepaged",
573 };
574 
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 {
577 	int err;
578 
579 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 	if (unlikely(!*hugepage_kobj)) {
581 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 		return -ENOMEM;
583 	}
584 
585 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 	if (err) {
587 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 		goto delete_obj;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto remove_hp_group;
595 	}
596 
597 	return 0;
598 
599 remove_hp_group:
600 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 	kobject_put(*hugepage_kobj);
603 	return err;
604 }
605 
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 {
608 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 	kobject_put(hugepage_kobj);
611 }
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 {
615 	return 0;
616 }
617 
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 {
620 }
621 #endif /* CONFIG_SYSFS */
622 
623 static int __init hugepage_init(void)
624 {
625 	int err;
626 	struct kobject *hugepage_kobj;
627 
628 	if (!has_transparent_hugepage()) {
629 		transparent_hugepage_flags = 0;
630 		return -EINVAL;
631 	}
632 
633 	err = hugepage_init_sysfs(&hugepage_kobj);
634 	if (err)
635 		return err;
636 
637 	err = khugepaged_slab_init();
638 	if (err)
639 		goto out;
640 
641 	register_shrinker(&huge_zero_page_shrinker);
642 
643 	/*
644 	 * By default disable transparent hugepages on smaller systems,
645 	 * where the extra memory used could hurt more than TLB overhead
646 	 * is likely to save.  The admin can still enable it through /sys.
647 	 */
648 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 		transparent_hugepage_flags = 0;
650 
651 	start_khugepaged();
652 
653 	return 0;
654 out:
655 	hugepage_exit_sysfs(hugepage_kobj);
656 	return err;
657 }
658 module_init(hugepage_init)
659 
660 static int __init setup_transparent_hugepage(char *str)
661 {
662 	int ret = 0;
663 	if (!str)
664 		goto out;
665 	if (!strcmp(str, "always")) {
666 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 			&transparent_hugepage_flags);
668 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 			  &transparent_hugepage_flags);
670 		ret = 1;
671 	} else if (!strcmp(str, "madvise")) {
672 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			  &transparent_hugepage_flags);
674 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			&transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "never")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			  &transparent_hugepage_flags);
682 		ret = 1;
683 	}
684 out:
685 	if (!ret)
686 		printk(KERN_WARNING
687 		       "transparent_hugepage= cannot parse, ignored\n");
688 	return ret;
689 }
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
691 
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 {
694 	if (likely(vma->vm_flags & VM_WRITE))
695 		pmd = pmd_mkwrite(pmd);
696 	return pmd;
697 }
698 
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 {
701 	pmd_t entry;
702 	entry = mk_pmd(page, prot);
703 	entry = pmd_mkhuge(entry);
704 	return entry;
705 }
706 
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 					struct vm_area_struct *vma,
709 					unsigned long haddr, pmd_t *pmd,
710 					struct page *page)
711 {
712 	pgtable_t pgtable;
713 	spinlock_t *ptl;
714 
715 	VM_BUG_ON(!PageCompound(page));
716 	pgtable = pte_alloc_one(mm, haddr);
717 	if (unlikely(!pgtable))
718 		return VM_FAULT_OOM;
719 
720 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
721 	/*
722 	 * The memory barrier inside __SetPageUptodate makes sure that
723 	 * clear_huge_page writes become visible before the set_pmd_at()
724 	 * write.
725 	 */
726 	__SetPageUptodate(page);
727 
728 	ptl = pmd_lock(mm, pmd);
729 	if (unlikely(!pmd_none(*pmd))) {
730 		spin_unlock(ptl);
731 		mem_cgroup_uncharge_page(page);
732 		put_page(page);
733 		pte_free(mm, pgtable);
734 	} else {
735 		pmd_t entry;
736 		entry = mk_huge_pmd(page, vma->vm_page_prot);
737 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 		page_add_new_anon_rmap(page, vma, haddr);
739 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 		set_pmd_at(mm, haddr, pmd, entry);
741 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 		atomic_long_inc(&mm->nr_ptes);
743 		spin_unlock(ptl);
744 	}
745 
746 	return 0;
747 }
748 
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
750 {
751 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
752 }
753 
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 					      struct vm_area_struct *vma,
756 					      unsigned long haddr, int nd,
757 					      gfp_t extra_gfp)
758 {
759 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 			       HPAGE_PMD_ORDER, vma, haddr, nd);
761 }
762 
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 		struct page *zero_page)
767 {
768 	pmd_t entry;
769 	if (!pmd_none(*pmd))
770 		return false;
771 	entry = mk_pmd(zero_page, vma->vm_page_prot);
772 	entry = pmd_wrprotect(entry);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	atomic_long_inc(&mm->nr_ptes);
777 	return true;
778 }
779 
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 			       unsigned long address, pmd_t *pmd,
782 			       unsigned int flags)
783 {
784 	struct page *page;
785 	unsigned long haddr = address & HPAGE_PMD_MASK;
786 
787 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 		return VM_FAULT_FALLBACK;
789 	if (unlikely(anon_vma_prepare(vma)))
790 		return VM_FAULT_OOM;
791 	if (unlikely(khugepaged_enter(vma)))
792 		return VM_FAULT_OOM;
793 	if (!(flags & FAULT_FLAG_WRITE) &&
794 			transparent_hugepage_use_zero_page()) {
795 		spinlock_t *ptl;
796 		pgtable_t pgtable;
797 		struct page *zero_page;
798 		bool set;
799 		pgtable = pte_alloc_one(mm, haddr);
800 		if (unlikely(!pgtable))
801 			return VM_FAULT_OOM;
802 		zero_page = get_huge_zero_page();
803 		if (unlikely(!zero_page)) {
804 			pte_free(mm, pgtable);
805 			count_vm_event(THP_FAULT_FALLBACK);
806 			return VM_FAULT_FALLBACK;
807 		}
808 		ptl = pmd_lock(mm, pmd);
809 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 				zero_page);
811 		spin_unlock(ptl);
812 		if (!set) {
813 			pte_free(mm, pgtable);
814 			put_huge_zero_page();
815 		}
816 		return 0;
817 	}
818 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 			vma, haddr, numa_node_id(), 0);
820 	if (unlikely(!page)) {
821 		count_vm_event(THP_FAULT_FALLBACK);
822 		return VM_FAULT_FALLBACK;
823 	}
824 	if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 		put_page(page);
826 		count_vm_event(THP_FAULT_FALLBACK);
827 		return VM_FAULT_FALLBACK;
828 	}
829 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 		mem_cgroup_uncharge_page(page);
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 
836 	count_vm_event(THP_FAULT_ALLOC);
837 	return 0;
838 }
839 
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 		  struct vm_area_struct *vma)
843 {
844 	spinlock_t *dst_ptl, *src_ptl;
845 	struct page *src_page;
846 	pmd_t pmd;
847 	pgtable_t pgtable;
848 	int ret;
849 
850 	ret = -ENOMEM;
851 	pgtable = pte_alloc_one(dst_mm, addr);
852 	if (unlikely(!pgtable))
853 		goto out;
854 
855 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 	src_ptl = pmd_lockptr(src_mm, src_pmd);
857 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
858 
859 	ret = -EAGAIN;
860 	pmd = *src_pmd;
861 	if (unlikely(!pmd_trans_huge(pmd))) {
862 		pte_free(dst_mm, pgtable);
863 		goto out_unlock;
864 	}
865 	/*
866 	 * When page table lock is held, the huge zero pmd should not be
867 	 * under splitting since we don't split the page itself, only pmd to
868 	 * a page table.
869 	 */
870 	if (is_huge_zero_pmd(pmd)) {
871 		struct page *zero_page;
872 		bool set;
873 		/*
874 		 * get_huge_zero_page() will never allocate a new page here,
875 		 * since we already have a zero page to copy. It just takes a
876 		 * reference.
877 		 */
878 		zero_page = get_huge_zero_page();
879 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880 				zero_page);
881 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882 		ret = 0;
883 		goto out_unlock;
884 	}
885 
886 	/* mmap_sem prevents this happening but warn if that changes */
887 	WARN_ON(pmd_trans_migrating(pmd));
888 
889 	if (unlikely(pmd_trans_splitting(pmd))) {
890 		/* split huge page running from under us */
891 		spin_unlock(src_ptl);
892 		spin_unlock(dst_ptl);
893 		pte_free(dst_mm, pgtable);
894 
895 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
896 		goto out;
897 	}
898 	src_page = pmd_page(pmd);
899 	VM_BUG_ON(!PageHead(src_page));
900 	get_page(src_page);
901 	page_dup_rmap(src_page);
902 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
903 
904 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
905 	pmd = pmd_mkold(pmd_wrprotect(pmd));
906 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
907 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
908 	atomic_long_inc(&dst_mm->nr_ptes);
909 
910 	ret = 0;
911 out_unlock:
912 	spin_unlock(src_ptl);
913 	spin_unlock(dst_ptl);
914 out:
915 	return ret;
916 }
917 
918 void huge_pmd_set_accessed(struct mm_struct *mm,
919 			   struct vm_area_struct *vma,
920 			   unsigned long address,
921 			   pmd_t *pmd, pmd_t orig_pmd,
922 			   int dirty)
923 {
924 	spinlock_t *ptl;
925 	pmd_t entry;
926 	unsigned long haddr;
927 
928 	ptl = pmd_lock(mm, pmd);
929 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
930 		goto unlock;
931 
932 	entry = pmd_mkyoung(orig_pmd);
933 	haddr = address & HPAGE_PMD_MASK;
934 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
935 		update_mmu_cache_pmd(vma, address, pmd);
936 
937 unlock:
938 	spin_unlock(ptl);
939 }
940 
941 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
942 		struct vm_area_struct *vma, unsigned long address,
943 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
944 {
945 	spinlock_t *ptl;
946 	pgtable_t pgtable;
947 	pmd_t _pmd;
948 	struct page *page;
949 	int i, ret = 0;
950 	unsigned long mmun_start;	/* For mmu_notifiers */
951 	unsigned long mmun_end;		/* For mmu_notifiers */
952 
953 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
954 	if (!page) {
955 		ret |= VM_FAULT_OOM;
956 		goto out;
957 	}
958 
959 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
960 		put_page(page);
961 		ret |= VM_FAULT_OOM;
962 		goto out;
963 	}
964 
965 	clear_user_highpage(page, address);
966 	__SetPageUptodate(page);
967 
968 	mmun_start = haddr;
969 	mmun_end   = haddr + HPAGE_PMD_SIZE;
970 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
971 
972 	ptl = pmd_lock(mm, pmd);
973 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
974 		goto out_free_page;
975 
976 	pmdp_clear_flush(vma, haddr, pmd);
977 	/* leave pmd empty until pte is filled */
978 
979 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
980 	pmd_populate(mm, &_pmd, pgtable);
981 
982 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
983 		pte_t *pte, entry;
984 		if (haddr == (address & PAGE_MASK)) {
985 			entry = mk_pte(page, vma->vm_page_prot);
986 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
987 			page_add_new_anon_rmap(page, vma, haddr);
988 		} else {
989 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
990 			entry = pte_mkspecial(entry);
991 		}
992 		pte = pte_offset_map(&_pmd, haddr);
993 		VM_BUG_ON(!pte_none(*pte));
994 		set_pte_at(mm, haddr, pte, entry);
995 		pte_unmap(pte);
996 	}
997 	smp_wmb(); /* make pte visible before pmd */
998 	pmd_populate(mm, pmd, pgtable);
999 	spin_unlock(ptl);
1000 	put_huge_zero_page();
1001 	inc_mm_counter(mm, MM_ANONPAGES);
1002 
1003 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1004 
1005 	ret |= VM_FAULT_WRITE;
1006 out:
1007 	return ret;
1008 out_free_page:
1009 	spin_unlock(ptl);
1010 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1011 	mem_cgroup_uncharge_page(page);
1012 	put_page(page);
1013 	goto out;
1014 }
1015 
1016 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1017 					struct vm_area_struct *vma,
1018 					unsigned long address,
1019 					pmd_t *pmd, pmd_t orig_pmd,
1020 					struct page *page,
1021 					unsigned long haddr)
1022 {
1023 	spinlock_t *ptl;
1024 	pgtable_t pgtable;
1025 	pmd_t _pmd;
1026 	int ret = 0, i;
1027 	struct page **pages;
1028 	unsigned long mmun_start;	/* For mmu_notifiers */
1029 	unsigned long mmun_end;		/* For mmu_notifiers */
1030 
1031 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1032 			GFP_KERNEL);
1033 	if (unlikely(!pages)) {
1034 		ret |= VM_FAULT_OOM;
1035 		goto out;
1036 	}
1037 
1038 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1040 					       __GFP_OTHER_NODE,
1041 					       vma, address, page_to_nid(page));
1042 		if (unlikely(!pages[i] ||
1043 			     mem_cgroup_newpage_charge(pages[i], mm,
1044 						       GFP_KERNEL))) {
1045 			if (pages[i])
1046 				put_page(pages[i]);
1047 			mem_cgroup_uncharge_start();
1048 			while (--i >= 0) {
1049 				mem_cgroup_uncharge_page(pages[i]);
1050 				put_page(pages[i]);
1051 			}
1052 			mem_cgroup_uncharge_end();
1053 			kfree(pages);
1054 			ret |= VM_FAULT_OOM;
1055 			goto out;
1056 		}
1057 	}
1058 
1059 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1060 		copy_user_highpage(pages[i], page + i,
1061 				   haddr + PAGE_SIZE * i, vma);
1062 		__SetPageUptodate(pages[i]);
1063 		cond_resched();
1064 	}
1065 
1066 	mmun_start = haddr;
1067 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1068 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1069 
1070 	ptl = pmd_lock(mm, pmd);
1071 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1072 		goto out_free_pages;
1073 	VM_BUG_ON(!PageHead(page));
1074 
1075 	pmdp_clear_flush(vma, haddr, pmd);
1076 	/* leave pmd empty until pte is filled */
1077 
1078 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1079 	pmd_populate(mm, &_pmd, pgtable);
1080 
1081 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1082 		pte_t *pte, entry;
1083 		entry = mk_pte(pages[i], vma->vm_page_prot);
1084 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1085 		page_add_new_anon_rmap(pages[i], vma, haddr);
1086 		pte = pte_offset_map(&_pmd, haddr);
1087 		VM_BUG_ON(!pte_none(*pte));
1088 		set_pte_at(mm, haddr, pte, entry);
1089 		pte_unmap(pte);
1090 	}
1091 	kfree(pages);
1092 
1093 	smp_wmb(); /* make pte visible before pmd */
1094 	pmd_populate(mm, pmd, pgtable);
1095 	page_remove_rmap(page);
1096 	spin_unlock(ptl);
1097 
1098 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1099 
1100 	ret |= VM_FAULT_WRITE;
1101 	put_page(page);
1102 
1103 out:
1104 	return ret;
1105 
1106 out_free_pages:
1107 	spin_unlock(ptl);
1108 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109 	mem_cgroup_uncharge_start();
1110 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1111 		mem_cgroup_uncharge_page(pages[i]);
1112 		put_page(pages[i]);
1113 	}
1114 	mem_cgroup_uncharge_end();
1115 	kfree(pages);
1116 	goto out;
1117 }
1118 
1119 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1120 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1121 {
1122 	spinlock_t *ptl;
1123 	int ret = 0;
1124 	struct page *page = NULL, *new_page;
1125 	unsigned long haddr;
1126 	unsigned long mmun_start;	/* For mmu_notifiers */
1127 	unsigned long mmun_end;		/* For mmu_notifiers */
1128 
1129 	ptl = pmd_lockptr(mm, pmd);
1130 	VM_BUG_ON(!vma->anon_vma);
1131 	haddr = address & HPAGE_PMD_MASK;
1132 	if (is_huge_zero_pmd(orig_pmd))
1133 		goto alloc;
1134 	spin_lock(ptl);
1135 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1136 		goto out_unlock;
1137 
1138 	page = pmd_page(orig_pmd);
1139 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1140 	if (page_mapcount(page) == 1) {
1141 		pmd_t entry;
1142 		entry = pmd_mkyoung(orig_pmd);
1143 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1144 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1145 			update_mmu_cache_pmd(vma, address, pmd);
1146 		ret |= VM_FAULT_WRITE;
1147 		goto out_unlock;
1148 	}
1149 	get_page(page);
1150 	spin_unlock(ptl);
1151 alloc:
1152 	if (transparent_hugepage_enabled(vma) &&
1153 	    !transparent_hugepage_debug_cow())
1154 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1155 					      vma, haddr, numa_node_id(), 0);
1156 	else
1157 		new_page = NULL;
1158 
1159 	if (unlikely(!new_page)) {
1160 		if (is_huge_zero_pmd(orig_pmd)) {
1161 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1162 					address, pmd, orig_pmd, haddr);
1163 		} else {
1164 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1165 					pmd, orig_pmd, page, haddr);
1166 			if (ret & VM_FAULT_OOM)
1167 				split_huge_page(page);
1168 			put_page(page);
1169 		}
1170 		count_vm_event(THP_FAULT_FALLBACK);
1171 		goto out;
1172 	}
1173 
1174 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1175 		put_page(new_page);
1176 		if (page) {
1177 			split_huge_page(page);
1178 			put_page(page);
1179 		}
1180 		count_vm_event(THP_FAULT_FALLBACK);
1181 		ret |= VM_FAULT_OOM;
1182 		goto out;
1183 	}
1184 
1185 	count_vm_event(THP_FAULT_ALLOC);
1186 
1187 	if (is_huge_zero_pmd(orig_pmd))
1188 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1189 	else
1190 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1191 	__SetPageUptodate(new_page);
1192 
1193 	mmun_start = haddr;
1194 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1195 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1196 
1197 	spin_lock(ptl);
1198 	if (page)
1199 		put_page(page);
1200 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1201 		spin_unlock(ptl);
1202 		mem_cgroup_uncharge_page(new_page);
1203 		put_page(new_page);
1204 		goto out_mn;
1205 	} else {
1206 		pmd_t entry;
1207 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1208 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1209 		pmdp_clear_flush(vma, haddr, pmd);
1210 		page_add_new_anon_rmap(new_page, vma, haddr);
1211 		set_pmd_at(mm, haddr, pmd, entry);
1212 		update_mmu_cache_pmd(vma, address, pmd);
1213 		if (is_huge_zero_pmd(orig_pmd)) {
1214 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1215 			put_huge_zero_page();
1216 		} else {
1217 			VM_BUG_ON(!PageHead(page));
1218 			page_remove_rmap(page);
1219 			put_page(page);
1220 		}
1221 		ret |= VM_FAULT_WRITE;
1222 	}
1223 	spin_unlock(ptl);
1224 out_mn:
1225 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1226 out:
1227 	return ret;
1228 out_unlock:
1229 	spin_unlock(ptl);
1230 	return ret;
1231 }
1232 
1233 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1234 				   unsigned long addr,
1235 				   pmd_t *pmd,
1236 				   unsigned int flags)
1237 {
1238 	struct mm_struct *mm = vma->vm_mm;
1239 	struct page *page = NULL;
1240 
1241 	assert_spin_locked(pmd_lockptr(mm, pmd));
1242 
1243 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1244 		goto out;
1245 
1246 	/* Avoid dumping huge zero page */
1247 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1248 		return ERR_PTR(-EFAULT);
1249 
1250 	/* Full NUMA hinting faults to serialise migration in fault paths */
1251 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1252 		goto out;
1253 
1254 	page = pmd_page(*pmd);
1255 	VM_BUG_ON(!PageHead(page));
1256 	if (flags & FOLL_TOUCH) {
1257 		pmd_t _pmd;
1258 		/*
1259 		 * We should set the dirty bit only for FOLL_WRITE but
1260 		 * for now the dirty bit in the pmd is meaningless.
1261 		 * And if the dirty bit will become meaningful and
1262 		 * we'll only set it with FOLL_WRITE, an atomic
1263 		 * set_bit will be required on the pmd to set the
1264 		 * young bit, instead of the current set_pmd_at.
1265 		 */
1266 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1267 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1268 					  pmd, _pmd,  1))
1269 			update_mmu_cache_pmd(vma, addr, pmd);
1270 	}
1271 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1272 		if (page->mapping && trylock_page(page)) {
1273 			lru_add_drain();
1274 			if (page->mapping)
1275 				mlock_vma_page(page);
1276 			unlock_page(page);
1277 		}
1278 	}
1279 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1280 	VM_BUG_ON(!PageCompound(page));
1281 	if (flags & FOLL_GET)
1282 		get_page_foll(page);
1283 
1284 out:
1285 	return page;
1286 }
1287 
1288 /* NUMA hinting page fault entry point for trans huge pmds */
1289 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1290 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1291 {
1292 	spinlock_t *ptl;
1293 	struct anon_vma *anon_vma = NULL;
1294 	struct page *page;
1295 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1296 	int page_nid = -1, this_nid = numa_node_id();
1297 	int target_nid, last_cpupid = -1;
1298 	bool page_locked;
1299 	bool migrated = false;
1300 	int flags = 0;
1301 
1302 	ptl = pmd_lock(mm, pmdp);
1303 	if (unlikely(!pmd_same(pmd, *pmdp)))
1304 		goto out_unlock;
1305 
1306 	/*
1307 	 * If there are potential migrations, wait for completion and retry
1308 	 * without disrupting NUMA hinting information. Do not relock and
1309 	 * check_same as the page may no longer be mapped.
1310 	 */
1311 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1312 		spin_unlock(ptl);
1313 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1314 		goto out;
1315 	}
1316 
1317 	page = pmd_page(pmd);
1318 	BUG_ON(is_huge_zero_page(page));
1319 	page_nid = page_to_nid(page);
1320 	last_cpupid = page_cpupid_last(page);
1321 	count_vm_numa_event(NUMA_HINT_FAULTS);
1322 	if (page_nid == this_nid) {
1323 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1324 		flags |= TNF_FAULT_LOCAL;
1325 	}
1326 
1327 	/*
1328 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1329 	 * in general, RO pages shouldn't hurt as much anyway since
1330 	 * they can be in shared cache state.
1331 	 */
1332 	if (!pmd_write(pmd))
1333 		flags |= TNF_NO_GROUP;
1334 
1335 	/*
1336 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1337 	 * page_table_lock if at all possible
1338 	 */
1339 	page_locked = trylock_page(page);
1340 	target_nid = mpol_misplaced(page, vma, haddr);
1341 	if (target_nid == -1) {
1342 		/* If the page was locked, there are no parallel migrations */
1343 		if (page_locked)
1344 			goto clear_pmdnuma;
1345 	}
1346 
1347 	/* Migration could have started since the pmd_trans_migrating check */
1348 	if (!page_locked) {
1349 		spin_unlock(ptl);
1350 		wait_on_page_locked(page);
1351 		page_nid = -1;
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1357 	 * to serialises splits
1358 	 */
1359 	get_page(page);
1360 	spin_unlock(ptl);
1361 	anon_vma = page_lock_anon_vma_read(page);
1362 
1363 	/* Confirm the PMD did not change while page_table_lock was released */
1364 	spin_lock(ptl);
1365 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1366 		unlock_page(page);
1367 		put_page(page);
1368 		page_nid = -1;
1369 		goto out_unlock;
1370 	}
1371 
1372 	/* Bail if we fail to protect against THP splits for any reason */
1373 	if (unlikely(!anon_vma)) {
1374 		put_page(page);
1375 		page_nid = -1;
1376 		goto clear_pmdnuma;
1377 	}
1378 
1379 	/*
1380 	 * Migrate the THP to the requested node, returns with page unlocked
1381 	 * and pmd_numa cleared.
1382 	 */
1383 	spin_unlock(ptl);
1384 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1385 				pmdp, pmd, addr, page, target_nid);
1386 	if (migrated) {
1387 		flags |= TNF_MIGRATED;
1388 		page_nid = target_nid;
1389 	}
1390 
1391 	goto out;
1392 clear_pmdnuma:
1393 	BUG_ON(!PageLocked(page));
1394 	pmd = pmd_mknonnuma(pmd);
1395 	set_pmd_at(mm, haddr, pmdp, pmd);
1396 	VM_BUG_ON(pmd_numa(*pmdp));
1397 	update_mmu_cache_pmd(vma, addr, pmdp);
1398 	unlock_page(page);
1399 out_unlock:
1400 	spin_unlock(ptl);
1401 
1402 out:
1403 	if (anon_vma)
1404 		page_unlock_anon_vma_read(anon_vma);
1405 
1406 	if (page_nid != -1)
1407 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1408 
1409 	return 0;
1410 }
1411 
1412 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1413 		 pmd_t *pmd, unsigned long addr)
1414 {
1415 	spinlock_t *ptl;
1416 	int ret = 0;
1417 
1418 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1419 		struct page *page;
1420 		pgtable_t pgtable;
1421 		pmd_t orig_pmd;
1422 		/*
1423 		 * For architectures like ppc64 we look at deposited pgtable
1424 		 * when calling pmdp_get_and_clear. So do the
1425 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1426 		 * operations.
1427 		 */
1428 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1429 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1430 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1431 		if (is_huge_zero_pmd(orig_pmd)) {
1432 			atomic_long_dec(&tlb->mm->nr_ptes);
1433 			spin_unlock(ptl);
1434 			put_huge_zero_page();
1435 		} else {
1436 			page = pmd_page(orig_pmd);
1437 			page_remove_rmap(page);
1438 			VM_BUG_ON(page_mapcount(page) < 0);
1439 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1440 			VM_BUG_ON(!PageHead(page));
1441 			atomic_long_dec(&tlb->mm->nr_ptes);
1442 			spin_unlock(ptl);
1443 			tlb_remove_page(tlb, page);
1444 		}
1445 		pte_free(tlb->mm, pgtable);
1446 		ret = 1;
1447 	}
1448 	return ret;
1449 }
1450 
1451 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1452 		unsigned long addr, unsigned long end,
1453 		unsigned char *vec)
1454 {
1455 	spinlock_t *ptl;
1456 	int ret = 0;
1457 
1458 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1459 		/*
1460 		 * All logical pages in the range are present
1461 		 * if backed by a huge page.
1462 		 */
1463 		spin_unlock(ptl);
1464 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1465 		ret = 1;
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1472 		  unsigned long old_addr,
1473 		  unsigned long new_addr, unsigned long old_end,
1474 		  pmd_t *old_pmd, pmd_t *new_pmd)
1475 {
1476 	spinlock_t *old_ptl, *new_ptl;
1477 	int ret = 0;
1478 	pmd_t pmd;
1479 
1480 	struct mm_struct *mm = vma->vm_mm;
1481 
1482 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1483 	    (new_addr & ~HPAGE_PMD_MASK) ||
1484 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1485 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1486 		goto out;
1487 
1488 	/*
1489 	 * The destination pmd shouldn't be established, free_pgtables()
1490 	 * should have release it.
1491 	 */
1492 	if (WARN_ON(!pmd_none(*new_pmd))) {
1493 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1494 		goto out;
1495 	}
1496 
1497 	/*
1498 	 * We don't have to worry about the ordering of src and dst
1499 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1500 	 */
1501 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1502 	if (ret == 1) {
1503 		new_ptl = pmd_lockptr(mm, new_pmd);
1504 		if (new_ptl != old_ptl)
1505 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1506 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1507 		VM_BUG_ON(!pmd_none(*new_pmd));
1508 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1509 		if (new_ptl != old_ptl) {
1510 			pgtable_t pgtable;
1511 
1512 			/*
1513 			 * Move preallocated PTE page table if new_pmd is on
1514 			 * different PMD page table.
1515 			 */
1516 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1517 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1518 
1519 			spin_unlock(new_ptl);
1520 		}
1521 		spin_unlock(old_ptl);
1522 	}
1523 out:
1524 	return ret;
1525 }
1526 
1527 /*
1528  * Returns
1529  *  - 0 if PMD could not be locked
1530  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1531  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1532  */
1533 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1534 		unsigned long addr, pgprot_t newprot, int prot_numa)
1535 {
1536 	struct mm_struct *mm = vma->vm_mm;
1537 	spinlock_t *ptl;
1538 	int ret = 0;
1539 
1540 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541 		pmd_t entry;
1542 		ret = 1;
1543 		if (!prot_numa) {
1544 			entry = pmdp_get_and_clear(mm, addr, pmd);
1545 			if (pmd_numa(entry))
1546 				entry = pmd_mknonnuma(entry);
1547 			entry = pmd_modify(entry, newprot);
1548 			ret = HPAGE_PMD_NR;
1549 			BUG_ON(pmd_write(entry));
1550 		} else {
1551 			struct page *page = pmd_page(*pmd);
1552 
1553 			/*
1554 			 * Do not trap faults against the zero page. The
1555 			 * read-only data is likely to be read-cached on the
1556 			 * local CPU cache and it is less useful to know about
1557 			 * local vs remote hits on the zero page.
1558 			 */
1559 			if (!is_huge_zero_page(page) &&
1560 			    !pmd_numa(*pmd)) {
1561 				entry = *pmd;
1562 				entry = pmd_mknuma(entry);
1563 				ret = HPAGE_PMD_NR;
1564 			}
1565 		}
1566 
1567 		/* Set PMD if cleared earlier */
1568 		if (ret == HPAGE_PMD_NR)
1569 			set_pmd_at(mm, addr, pmd, entry);
1570 
1571 		spin_unlock(ptl);
1572 	}
1573 
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1579  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1580  *
1581  * Note that if it returns 1, this routine returns without unlocking page
1582  * table locks. So callers must unlock them.
1583  */
1584 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1585 		spinlock_t **ptl)
1586 {
1587 	*ptl = pmd_lock(vma->vm_mm, pmd);
1588 	if (likely(pmd_trans_huge(*pmd))) {
1589 		if (unlikely(pmd_trans_splitting(*pmd))) {
1590 			spin_unlock(*ptl);
1591 			wait_split_huge_page(vma->anon_vma, pmd);
1592 			return -1;
1593 		} else {
1594 			/* Thp mapped by 'pmd' is stable, so we can
1595 			 * handle it as it is. */
1596 			return 1;
1597 		}
1598 	}
1599 	spin_unlock(*ptl);
1600 	return 0;
1601 }
1602 
1603 /*
1604  * This function returns whether a given @page is mapped onto the @address
1605  * in the virtual space of @mm.
1606  *
1607  * When it's true, this function returns *pmd with holding the page table lock
1608  * and passing it back to the caller via @ptl.
1609  * If it's false, returns NULL without holding the page table lock.
1610  */
1611 pmd_t *page_check_address_pmd(struct page *page,
1612 			      struct mm_struct *mm,
1613 			      unsigned long address,
1614 			      enum page_check_address_pmd_flag flag,
1615 			      spinlock_t **ptl)
1616 {
1617 	pmd_t *pmd;
1618 
1619 	if (address & ~HPAGE_PMD_MASK)
1620 		return NULL;
1621 
1622 	pmd = mm_find_pmd(mm, address);
1623 	if (!pmd)
1624 		return NULL;
1625 	*ptl = pmd_lock(mm, pmd);
1626 	if (pmd_none(*pmd))
1627 		goto unlock;
1628 	if (pmd_page(*pmd) != page)
1629 		goto unlock;
1630 	/*
1631 	 * split_vma() may create temporary aliased mappings. There is
1632 	 * no risk as long as all huge pmd are found and have their
1633 	 * splitting bit set before __split_huge_page_refcount
1634 	 * runs. Finding the same huge pmd more than once during the
1635 	 * same rmap walk is not a problem.
1636 	 */
1637 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1638 	    pmd_trans_splitting(*pmd))
1639 		goto unlock;
1640 	if (pmd_trans_huge(*pmd)) {
1641 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1642 			  !pmd_trans_splitting(*pmd));
1643 		return pmd;
1644 	}
1645 unlock:
1646 	spin_unlock(*ptl);
1647 	return NULL;
1648 }
1649 
1650 static int __split_huge_page_splitting(struct page *page,
1651 				       struct vm_area_struct *vma,
1652 				       unsigned long address)
1653 {
1654 	struct mm_struct *mm = vma->vm_mm;
1655 	spinlock_t *ptl;
1656 	pmd_t *pmd;
1657 	int ret = 0;
1658 	/* For mmu_notifiers */
1659 	const unsigned long mmun_start = address;
1660 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1661 
1662 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1663 	pmd = page_check_address_pmd(page, mm, address,
1664 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1665 	if (pmd) {
1666 		/*
1667 		 * We can't temporarily set the pmd to null in order
1668 		 * to split it, the pmd must remain marked huge at all
1669 		 * times or the VM won't take the pmd_trans_huge paths
1670 		 * and it won't wait on the anon_vma->root->rwsem to
1671 		 * serialize against split_huge_page*.
1672 		 */
1673 		pmdp_splitting_flush(vma, address, pmd);
1674 		ret = 1;
1675 		spin_unlock(ptl);
1676 	}
1677 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1678 
1679 	return ret;
1680 }
1681 
1682 static void __split_huge_page_refcount(struct page *page,
1683 				       struct list_head *list)
1684 {
1685 	int i;
1686 	struct zone *zone = page_zone(page);
1687 	struct lruvec *lruvec;
1688 	int tail_count = 0;
1689 
1690 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1691 	spin_lock_irq(&zone->lru_lock);
1692 	lruvec = mem_cgroup_page_lruvec(page, zone);
1693 
1694 	compound_lock(page);
1695 	/* complete memcg works before add pages to LRU */
1696 	mem_cgroup_split_huge_fixup(page);
1697 
1698 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1699 		struct page *page_tail = page + i;
1700 
1701 		/* tail_page->_mapcount cannot change */
1702 		BUG_ON(page_mapcount(page_tail) < 0);
1703 		tail_count += page_mapcount(page_tail);
1704 		/* check for overflow */
1705 		BUG_ON(tail_count < 0);
1706 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1707 		/*
1708 		 * tail_page->_count is zero and not changing from
1709 		 * under us. But get_page_unless_zero() may be running
1710 		 * from under us on the tail_page. If we used
1711 		 * atomic_set() below instead of atomic_add(), we
1712 		 * would then run atomic_set() concurrently with
1713 		 * get_page_unless_zero(), and atomic_set() is
1714 		 * implemented in C not using locked ops. spin_unlock
1715 		 * on x86 sometime uses locked ops because of PPro
1716 		 * errata 66, 92, so unless somebody can guarantee
1717 		 * atomic_set() here would be safe on all archs (and
1718 		 * not only on x86), it's safer to use atomic_add().
1719 		 */
1720 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1721 			   &page_tail->_count);
1722 
1723 		/* after clearing PageTail the gup refcount can be released */
1724 		smp_mb();
1725 
1726 		/*
1727 		 * retain hwpoison flag of the poisoned tail page:
1728 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1729 		 *   by the memory-failure.
1730 		 */
1731 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1732 		page_tail->flags |= (page->flags &
1733 				     ((1L << PG_referenced) |
1734 				      (1L << PG_swapbacked) |
1735 				      (1L << PG_mlocked) |
1736 				      (1L << PG_uptodate) |
1737 				      (1L << PG_active) |
1738 				      (1L << PG_unevictable)));
1739 		page_tail->flags |= (1L << PG_dirty);
1740 
1741 		/* clear PageTail before overwriting first_page */
1742 		smp_wmb();
1743 
1744 		/*
1745 		 * __split_huge_page_splitting() already set the
1746 		 * splitting bit in all pmd that could map this
1747 		 * hugepage, that will ensure no CPU can alter the
1748 		 * mapcount on the head page. The mapcount is only
1749 		 * accounted in the head page and it has to be
1750 		 * transferred to all tail pages in the below code. So
1751 		 * for this code to be safe, the split the mapcount
1752 		 * can't change. But that doesn't mean userland can't
1753 		 * keep changing and reading the page contents while
1754 		 * we transfer the mapcount, so the pmd splitting
1755 		 * status is achieved setting a reserved bit in the
1756 		 * pmd, not by clearing the present bit.
1757 		*/
1758 		page_tail->_mapcount = page->_mapcount;
1759 
1760 		BUG_ON(page_tail->mapping);
1761 		page_tail->mapping = page->mapping;
1762 
1763 		page_tail->index = page->index + i;
1764 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1765 
1766 		BUG_ON(!PageAnon(page_tail));
1767 		BUG_ON(!PageUptodate(page_tail));
1768 		BUG_ON(!PageDirty(page_tail));
1769 		BUG_ON(!PageSwapBacked(page_tail));
1770 
1771 		lru_add_page_tail(page, page_tail, lruvec, list);
1772 	}
1773 	atomic_sub(tail_count, &page->_count);
1774 	BUG_ON(atomic_read(&page->_count) <= 0);
1775 
1776 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1777 
1778 	ClearPageCompound(page);
1779 	compound_unlock(page);
1780 	spin_unlock_irq(&zone->lru_lock);
1781 
1782 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1783 		struct page *page_tail = page + i;
1784 		BUG_ON(page_count(page_tail) <= 0);
1785 		/*
1786 		 * Tail pages may be freed if there wasn't any mapping
1787 		 * like if add_to_swap() is running on a lru page that
1788 		 * had its mapping zapped. And freeing these pages
1789 		 * requires taking the lru_lock so we do the put_page
1790 		 * of the tail pages after the split is complete.
1791 		 */
1792 		put_page(page_tail);
1793 	}
1794 
1795 	/*
1796 	 * Only the head page (now become a regular page) is required
1797 	 * to be pinned by the caller.
1798 	 */
1799 	BUG_ON(page_count(page) <= 0);
1800 }
1801 
1802 static int __split_huge_page_map(struct page *page,
1803 				 struct vm_area_struct *vma,
1804 				 unsigned long address)
1805 {
1806 	struct mm_struct *mm = vma->vm_mm;
1807 	spinlock_t *ptl;
1808 	pmd_t *pmd, _pmd;
1809 	int ret = 0, i;
1810 	pgtable_t pgtable;
1811 	unsigned long haddr;
1812 
1813 	pmd = page_check_address_pmd(page, mm, address,
1814 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1815 	if (pmd) {
1816 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1817 		pmd_populate(mm, &_pmd, pgtable);
1818 
1819 		haddr = address;
1820 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1821 			pte_t *pte, entry;
1822 			BUG_ON(PageCompound(page+i));
1823 			entry = mk_pte(page + i, vma->vm_page_prot);
1824 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1825 			if (!pmd_write(*pmd))
1826 				entry = pte_wrprotect(entry);
1827 			else
1828 				BUG_ON(page_mapcount(page) != 1);
1829 			if (!pmd_young(*pmd))
1830 				entry = pte_mkold(entry);
1831 			if (pmd_numa(*pmd))
1832 				entry = pte_mknuma(entry);
1833 			pte = pte_offset_map(&_pmd, haddr);
1834 			BUG_ON(!pte_none(*pte));
1835 			set_pte_at(mm, haddr, pte, entry);
1836 			pte_unmap(pte);
1837 		}
1838 
1839 		smp_wmb(); /* make pte visible before pmd */
1840 		/*
1841 		 * Up to this point the pmd is present and huge and
1842 		 * userland has the whole access to the hugepage
1843 		 * during the split (which happens in place). If we
1844 		 * overwrite the pmd with the not-huge version
1845 		 * pointing to the pte here (which of course we could
1846 		 * if all CPUs were bug free), userland could trigger
1847 		 * a small page size TLB miss on the small sized TLB
1848 		 * while the hugepage TLB entry is still established
1849 		 * in the huge TLB. Some CPU doesn't like that. See
1850 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1851 		 * Erratum 383 on page 93. Intel should be safe but is
1852 		 * also warns that it's only safe if the permission
1853 		 * and cache attributes of the two entries loaded in
1854 		 * the two TLB is identical (which should be the case
1855 		 * here). But it is generally safer to never allow
1856 		 * small and huge TLB entries for the same virtual
1857 		 * address to be loaded simultaneously. So instead of
1858 		 * doing "pmd_populate(); flush_tlb_range();" we first
1859 		 * mark the current pmd notpresent (atomically because
1860 		 * here the pmd_trans_huge and pmd_trans_splitting
1861 		 * must remain set at all times on the pmd until the
1862 		 * split is complete for this pmd), then we flush the
1863 		 * SMP TLB and finally we write the non-huge version
1864 		 * of the pmd entry with pmd_populate.
1865 		 */
1866 		pmdp_invalidate(vma, address, pmd);
1867 		pmd_populate(mm, pmd, pgtable);
1868 		ret = 1;
1869 		spin_unlock(ptl);
1870 	}
1871 
1872 	return ret;
1873 }
1874 
1875 /* must be called with anon_vma->root->rwsem held */
1876 static void __split_huge_page(struct page *page,
1877 			      struct anon_vma *anon_vma,
1878 			      struct list_head *list)
1879 {
1880 	int mapcount, mapcount2;
1881 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1882 	struct anon_vma_chain *avc;
1883 
1884 	BUG_ON(!PageHead(page));
1885 	BUG_ON(PageTail(page));
1886 
1887 	mapcount = 0;
1888 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1889 		struct vm_area_struct *vma = avc->vma;
1890 		unsigned long addr = vma_address(page, vma);
1891 		BUG_ON(is_vma_temporary_stack(vma));
1892 		mapcount += __split_huge_page_splitting(page, vma, addr);
1893 	}
1894 	/*
1895 	 * It is critical that new vmas are added to the tail of the
1896 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1897 	 * and establishes a child pmd before
1898 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1899 	 * we fail to prevent copy_huge_pmd() from running until the
1900 	 * whole __split_huge_page() is complete), we will still see
1901 	 * the newly established pmd of the child later during the
1902 	 * walk, to be able to set it as pmd_trans_splitting too.
1903 	 */
1904 	if (mapcount != page_mapcount(page))
1905 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1906 		       mapcount, page_mapcount(page));
1907 	BUG_ON(mapcount != page_mapcount(page));
1908 
1909 	__split_huge_page_refcount(page, list);
1910 
1911 	mapcount2 = 0;
1912 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1913 		struct vm_area_struct *vma = avc->vma;
1914 		unsigned long addr = vma_address(page, vma);
1915 		BUG_ON(is_vma_temporary_stack(vma));
1916 		mapcount2 += __split_huge_page_map(page, vma, addr);
1917 	}
1918 	if (mapcount != mapcount2)
1919 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1920 		       mapcount, mapcount2, page_mapcount(page));
1921 	BUG_ON(mapcount != mapcount2);
1922 }
1923 
1924 /*
1925  * Split a hugepage into normal pages. This doesn't change the position of head
1926  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1927  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1928  * from the hugepage.
1929  * Return 0 if the hugepage is split successfully otherwise return 1.
1930  */
1931 int split_huge_page_to_list(struct page *page, struct list_head *list)
1932 {
1933 	struct anon_vma *anon_vma;
1934 	int ret = 1;
1935 
1936 	BUG_ON(is_huge_zero_page(page));
1937 	BUG_ON(!PageAnon(page));
1938 
1939 	/*
1940 	 * The caller does not necessarily hold an mmap_sem that would prevent
1941 	 * the anon_vma disappearing so we first we take a reference to it
1942 	 * and then lock the anon_vma for write. This is similar to
1943 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1944 	 * against parallel split or collapse operations.
1945 	 */
1946 	anon_vma = page_get_anon_vma(page);
1947 	if (!anon_vma)
1948 		goto out;
1949 	anon_vma_lock_write(anon_vma);
1950 
1951 	ret = 0;
1952 	if (!PageCompound(page))
1953 		goto out_unlock;
1954 
1955 	BUG_ON(!PageSwapBacked(page));
1956 	__split_huge_page(page, anon_vma, list);
1957 	count_vm_event(THP_SPLIT);
1958 
1959 	BUG_ON(PageCompound(page));
1960 out_unlock:
1961 	anon_vma_unlock_write(anon_vma);
1962 	put_anon_vma(anon_vma);
1963 out:
1964 	return ret;
1965 }
1966 
1967 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1968 
1969 int hugepage_madvise(struct vm_area_struct *vma,
1970 		     unsigned long *vm_flags, int advice)
1971 {
1972 	struct mm_struct *mm = vma->vm_mm;
1973 
1974 	switch (advice) {
1975 	case MADV_HUGEPAGE:
1976 		/*
1977 		 * Be somewhat over-protective like KSM for now!
1978 		 */
1979 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1980 			return -EINVAL;
1981 		if (mm->def_flags & VM_NOHUGEPAGE)
1982 			return -EINVAL;
1983 		*vm_flags &= ~VM_NOHUGEPAGE;
1984 		*vm_flags |= VM_HUGEPAGE;
1985 		/*
1986 		 * If the vma become good for khugepaged to scan,
1987 		 * register it here without waiting a page fault that
1988 		 * may not happen any time soon.
1989 		 */
1990 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1991 			return -ENOMEM;
1992 		break;
1993 	case MADV_NOHUGEPAGE:
1994 		/*
1995 		 * Be somewhat over-protective like KSM for now!
1996 		 */
1997 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1998 			return -EINVAL;
1999 		*vm_flags &= ~VM_HUGEPAGE;
2000 		*vm_flags |= VM_NOHUGEPAGE;
2001 		/*
2002 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2003 		 * this vma even if we leave the mm registered in khugepaged if
2004 		 * it got registered before VM_NOHUGEPAGE was set.
2005 		 */
2006 		break;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static int __init khugepaged_slab_init(void)
2013 {
2014 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2015 					  sizeof(struct mm_slot),
2016 					  __alignof__(struct mm_slot), 0, NULL);
2017 	if (!mm_slot_cache)
2018 		return -ENOMEM;
2019 
2020 	return 0;
2021 }
2022 
2023 static inline struct mm_slot *alloc_mm_slot(void)
2024 {
2025 	if (!mm_slot_cache)	/* initialization failed */
2026 		return NULL;
2027 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2028 }
2029 
2030 static inline void free_mm_slot(struct mm_slot *mm_slot)
2031 {
2032 	kmem_cache_free(mm_slot_cache, mm_slot);
2033 }
2034 
2035 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2036 {
2037 	struct mm_slot *mm_slot;
2038 
2039 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2040 		if (mm == mm_slot->mm)
2041 			return mm_slot;
2042 
2043 	return NULL;
2044 }
2045 
2046 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2047 				    struct mm_slot *mm_slot)
2048 {
2049 	mm_slot->mm = mm;
2050 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2051 }
2052 
2053 static inline int khugepaged_test_exit(struct mm_struct *mm)
2054 {
2055 	return atomic_read(&mm->mm_users) == 0;
2056 }
2057 
2058 int __khugepaged_enter(struct mm_struct *mm)
2059 {
2060 	struct mm_slot *mm_slot;
2061 	int wakeup;
2062 
2063 	mm_slot = alloc_mm_slot();
2064 	if (!mm_slot)
2065 		return -ENOMEM;
2066 
2067 	/* __khugepaged_exit() must not run from under us */
2068 	VM_BUG_ON(khugepaged_test_exit(mm));
2069 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2070 		free_mm_slot(mm_slot);
2071 		return 0;
2072 	}
2073 
2074 	spin_lock(&khugepaged_mm_lock);
2075 	insert_to_mm_slots_hash(mm, mm_slot);
2076 	/*
2077 	 * Insert just behind the scanning cursor, to let the area settle
2078 	 * down a little.
2079 	 */
2080 	wakeup = list_empty(&khugepaged_scan.mm_head);
2081 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2082 	spin_unlock(&khugepaged_mm_lock);
2083 
2084 	atomic_inc(&mm->mm_count);
2085 	if (wakeup)
2086 		wake_up_interruptible(&khugepaged_wait);
2087 
2088 	return 0;
2089 }
2090 
2091 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2092 {
2093 	unsigned long hstart, hend;
2094 	if (!vma->anon_vma)
2095 		/*
2096 		 * Not yet faulted in so we will register later in the
2097 		 * page fault if needed.
2098 		 */
2099 		return 0;
2100 	if (vma->vm_ops)
2101 		/* khugepaged not yet working on file or special mappings */
2102 		return 0;
2103 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2104 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105 	hend = vma->vm_end & HPAGE_PMD_MASK;
2106 	if (hstart < hend)
2107 		return khugepaged_enter(vma);
2108 	return 0;
2109 }
2110 
2111 void __khugepaged_exit(struct mm_struct *mm)
2112 {
2113 	struct mm_slot *mm_slot;
2114 	int free = 0;
2115 
2116 	spin_lock(&khugepaged_mm_lock);
2117 	mm_slot = get_mm_slot(mm);
2118 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2119 		hash_del(&mm_slot->hash);
2120 		list_del(&mm_slot->mm_node);
2121 		free = 1;
2122 	}
2123 	spin_unlock(&khugepaged_mm_lock);
2124 
2125 	if (free) {
2126 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2127 		free_mm_slot(mm_slot);
2128 		mmdrop(mm);
2129 	} else if (mm_slot) {
2130 		/*
2131 		 * This is required to serialize against
2132 		 * khugepaged_test_exit() (which is guaranteed to run
2133 		 * under mmap sem read mode). Stop here (after we
2134 		 * return all pagetables will be destroyed) until
2135 		 * khugepaged has finished working on the pagetables
2136 		 * under the mmap_sem.
2137 		 */
2138 		down_write(&mm->mmap_sem);
2139 		up_write(&mm->mmap_sem);
2140 	}
2141 }
2142 
2143 static void release_pte_page(struct page *page)
2144 {
2145 	/* 0 stands for page_is_file_cache(page) == false */
2146 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2147 	unlock_page(page);
2148 	putback_lru_page(page);
2149 }
2150 
2151 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2152 {
2153 	while (--_pte >= pte) {
2154 		pte_t pteval = *_pte;
2155 		if (!pte_none(pteval))
2156 			release_pte_page(pte_page(pteval));
2157 	}
2158 }
2159 
2160 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2161 					unsigned long address,
2162 					pte_t *pte)
2163 {
2164 	struct page *page;
2165 	pte_t *_pte;
2166 	int referenced = 0, none = 0;
2167 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2168 	     _pte++, address += PAGE_SIZE) {
2169 		pte_t pteval = *_pte;
2170 		if (pte_none(pteval)) {
2171 			if (++none <= khugepaged_max_ptes_none)
2172 				continue;
2173 			else
2174 				goto out;
2175 		}
2176 		if (!pte_present(pteval) || !pte_write(pteval))
2177 			goto out;
2178 		page = vm_normal_page(vma, address, pteval);
2179 		if (unlikely(!page))
2180 			goto out;
2181 
2182 		VM_BUG_ON(PageCompound(page));
2183 		BUG_ON(!PageAnon(page));
2184 		VM_BUG_ON(!PageSwapBacked(page));
2185 
2186 		/* cannot use mapcount: can't collapse if there's a gup pin */
2187 		if (page_count(page) != 1)
2188 			goto out;
2189 		/*
2190 		 * We can do it before isolate_lru_page because the
2191 		 * page can't be freed from under us. NOTE: PG_lock
2192 		 * is needed to serialize against split_huge_page
2193 		 * when invoked from the VM.
2194 		 */
2195 		if (!trylock_page(page))
2196 			goto out;
2197 		/*
2198 		 * Isolate the page to avoid collapsing an hugepage
2199 		 * currently in use by the VM.
2200 		 */
2201 		if (isolate_lru_page(page)) {
2202 			unlock_page(page);
2203 			goto out;
2204 		}
2205 		/* 0 stands for page_is_file_cache(page) == false */
2206 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2207 		VM_BUG_ON(!PageLocked(page));
2208 		VM_BUG_ON(PageLRU(page));
2209 
2210 		/* If there is no mapped pte young don't collapse the page */
2211 		if (pte_young(pteval) || PageReferenced(page) ||
2212 		    mmu_notifier_test_young(vma->vm_mm, address))
2213 			referenced = 1;
2214 	}
2215 	if (likely(referenced))
2216 		return 1;
2217 out:
2218 	release_pte_pages(pte, _pte);
2219 	return 0;
2220 }
2221 
2222 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2223 				      struct vm_area_struct *vma,
2224 				      unsigned long address,
2225 				      spinlock_t *ptl)
2226 {
2227 	pte_t *_pte;
2228 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2229 		pte_t pteval = *_pte;
2230 		struct page *src_page;
2231 
2232 		if (pte_none(pteval)) {
2233 			clear_user_highpage(page, address);
2234 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2235 		} else {
2236 			src_page = pte_page(pteval);
2237 			copy_user_highpage(page, src_page, address, vma);
2238 			VM_BUG_ON(page_mapcount(src_page) != 1);
2239 			release_pte_page(src_page);
2240 			/*
2241 			 * ptl mostly unnecessary, but preempt has to
2242 			 * be disabled to update the per-cpu stats
2243 			 * inside page_remove_rmap().
2244 			 */
2245 			spin_lock(ptl);
2246 			/*
2247 			 * paravirt calls inside pte_clear here are
2248 			 * superfluous.
2249 			 */
2250 			pte_clear(vma->vm_mm, address, _pte);
2251 			page_remove_rmap(src_page);
2252 			spin_unlock(ptl);
2253 			free_page_and_swap_cache(src_page);
2254 		}
2255 
2256 		address += PAGE_SIZE;
2257 		page++;
2258 	}
2259 }
2260 
2261 static void khugepaged_alloc_sleep(void)
2262 {
2263 	wait_event_freezable_timeout(khugepaged_wait, false,
2264 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2265 }
2266 
2267 static int khugepaged_node_load[MAX_NUMNODES];
2268 
2269 #ifdef CONFIG_NUMA
2270 static int khugepaged_find_target_node(void)
2271 {
2272 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2273 	int nid, target_node = 0, max_value = 0;
2274 
2275 	/* find first node with max normal pages hit */
2276 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2277 		if (khugepaged_node_load[nid] > max_value) {
2278 			max_value = khugepaged_node_load[nid];
2279 			target_node = nid;
2280 		}
2281 
2282 	/* do some balance if several nodes have the same hit record */
2283 	if (target_node <= last_khugepaged_target_node)
2284 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2285 				nid++)
2286 			if (max_value == khugepaged_node_load[nid]) {
2287 				target_node = nid;
2288 				break;
2289 			}
2290 
2291 	last_khugepaged_target_node = target_node;
2292 	return target_node;
2293 }
2294 
2295 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2296 {
2297 	if (IS_ERR(*hpage)) {
2298 		if (!*wait)
2299 			return false;
2300 
2301 		*wait = false;
2302 		*hpage = NULL;
2303 		khugepaged_alloc_sleep();
2304 	} else if (*hpage) {
2305 		put_page(*hpage);
2306 		*hpage = NULL;
2307 	}
2308 
2309 	return true;
2310 }
2311 
2312 static struct page
2313 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2314 		       struct vm_area_struct *vma, unsigned long address,
2315 		       int node)
2316 {
2317 	VM_BUG_ON(*hpage);
2318 	/*
2319 	 * Allocate the page while the vma is still valid and under
2320 	 * the mmap_sem read mode so there is no memory allocation
2321 	 * later when we take the mmap_sem in write mode. This is more
2322 	 * friendly behavior (OTOH it may actually hide bugs) to
2323 	 * filesystems in userland with daemons allocating memory in
2324 	 * the userland I/O paths.  Allocating memory with the
2325 	 * mmap_sem in read mode is good idea also to allow greater
2326 	 * scalability.
2327 	 */
2328 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2329 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2330 	/*
2331 	 * After allocating the hugepage, release the mmap_sem read lock in
2332 	 * preparation for taking it in write mode.
2333 	 */
2334 	up_read(&mm->mmap_sem);
2335 	if (unlikely(!*hpage)) {
2336 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2337 		*hpage = ERR_PTR(-ENOMEM);
2338 		return NULL;
2339 	}
2340 
2341 	count_vm_event(THP_COLLAPSE_ALLOC);
2342 	return *hpage;
2343 }
2344 #else
2345 static int khugepaged_find_target_node(void)
2346 {
2347 	return 0;
2348 }
2349 
2350 static inline struct page *alloc_hugepage(int defrag)
2351 {
2352 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2353 			   HPAGE_PMD_ORDER);
2354 }
2355 
2356 static struct page *khugepaged_alloc_hugepage(bool *wait)
2357 {
2358 	struct page *hpage;
2359 
2360 	do {
2361 		hpage = alloc_hugepage(khugepaged_defrag());
2362 		if (!hpage) {
2363 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2364 			if (!*wait)
2365 				return NULL;
2366 
2367 			*wait = false;
2368 			khugepaged_alloc_sleep();
2369 		} else
2370 			count_vm_event(THP_COLLAPSE_ALLOC);
2371 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2372 
2373 	return hpage;
2374 }
2375 
2376 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2377 {
2378 	if (!*hpage)
2379 		*hpage = khugepaged_alloc_hugepage(wait);
2380 
2381 	if (unlikely(!*hpage))
2382 		return false;
2383 
2384 	return true;
2385 }
2386 
2387 static struct page
2388 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2389 		       struct vm_area_struct *vma, unsigned long address,
2390 		       int node)
2391 {
2392 	up_read(&mm->mmap_sem);
2393 	VM_BUG_ON(!*hpage);
2394 	return  *hpage;
2395 }
2396 #endif
2397 
2398 static bool hugepage_vma_check(struct vm_area_struct *vma)
2399 {
2400 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2401 	    (vma->vm_flags & VM_NOHUGEPAGE))
2402 		return false;
2403 
2404 	if (!vma->anon_vma || vma->vm_ops)
2405 		return false;
2406 	if (is_vma_temporary_stack(vma))
2407 		return false;
2408 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2409 	return true;
2410 }
2411 
2412 static void collapse_huge_page(struct mm_struct *mm,
2413 				   unsigned long address,
2414 				   struct page **hpage,
2415 				   struct vm_area_struct *vma,
2416 				   int node)
2417 {
2418 	pmd_t *pmd, _pmd;
2419 	pte_t *pte;
2420 	pgtable_t pgtable;
2421 	struct page *new_page;
2422 	spinlock_t *pmd_ptl, *pte_ptl;
2423 	int isolated;
2424 	unsigned long hstart, hend;
2425 	unsigned long mmun_start;	/* For mmu_notifiers */
2426 	unsigned long mmun_end;		/* For mmu_notifiers */
2427 
2428 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2429 
2430 	/* release the mmap_sem read lock. */
2431 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2432 	if (!new_page)
2433 		return;
2434 
2435 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2436 		return;
2437 
2438 	/*
2439 	 * Prevent all access to pagetables with the exception of
2440 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2441 	 * handled by the anon_vma lock + PG_lock.
2442 	 */
2443 	down_write(&mm->mmap_sem);
2444 	if (unlikely(khugepaged_test_exit(mm)))
2445 		goto out;
2446 
2447 	vma = find_vma(mm, address);
2448 	if (!vma)
2449 		goto out;
2450 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2451 	hend = vma->vm_end & HPAGE_PMD_MASK;
2452 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2453 		goto out;
2454 	if (!hugepage_vma_check(vma))
2455 		goto out;
2456 	pmd = mm_find_pmd(mm, address);
2457 	if (!pmd)
2458 		goto out;
2459 	if (pmd_trans_huge(*pmd))
2460 		goto out;
2461 
2462 	anon_vma_lock_write(vma->anon_vma);
2463 
2464 	pte = pte_offset_map(pmd, address);
2465 	pte_ptl = pte_lockptr(mm, pmd);
2466 
2467 	mmun_start = address;
2468 	mmun_end   = address + HPAGE_PMD_SIZE;
2469 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2470 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2471 	/*
2472 	 * After this gup_fast can't run anymore. This also removes
2473 	 * any huge TLB entry from the CPU so we won't allow
2474 	 * huge and small TLB entries for the same virtual address
2475 	 * to avoid the risk of CPU bugs in that area.
2476 	 */
2477 	_pmd = pmdp_clear_flush(vma, address, pmd);
2478 	spin_unlock(pmd_ptl);
2479 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2480 
2481 	spin_lock(pte_ptl);
2482 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2483 	spin_unlock(pte_ptl);
2484 
2485 	if (unlikely(!isolated)) {
2486 		pte_unmap(pte);
2487 		spin_lock(pmd_ptl);
2488 		BUG_ON(!pmd_none(*pmd));
2489 		/*
2490 		 * We can only use set_pmd_at when establishing
2491 		 * hugepmds and never for establishing regular pmds that
2492 		 * points to regular pagetables. Use pmd_populate for that
2493 		 */
2494 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2495 		spin_unlock(pmd_ptl);
2496 		anon_vma_unlock_write(vma->anon_vma);
2497 		goto out;
2498 	}
2499 
2500 	/*
2501 	 * All pages are isolated and locked so anon_vma rmap
2502 	 * can't run anymore.
2503 	 */
2504 	anon_vma_unlock_write(vma->anon_vma);
2505 
2506 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2507 	pte_unmap(pte);
2508 	__SetPageUptodate(new_page);
2509 	pgtable = pmd_pgtable(_pmd);
2510 
2511 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2512 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2513 
2514 	/*
2515 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2516 	 * this is needed to avoid the copy_huge_page writes to become
2517 	 * visible after the set_pmd_at() write.
2518 	 */
2519 	smp_wmb();
2520 
2521 	spin_lock(pmd_ptl);
2522 	BUG_ON(!pmd_none(*pmd));
2523 	page_add_new_anon_rmap(new_page, vma, address);
2524 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2525 	set_pmd_at(mm, address, pmd, _pmd);
2526 	update_mmu_cache_pmd(vma, address, pmd);
2527 	spin_unlock(pmd_ptl);
2528 
2529 	*hpage = NULL;
2530 
2531 	khugepaged_pages_collapsed++;
2532 out_up_write:
2533 	up_write(&mm->mmap_sem);
2534 	return;
2535 
2536 out:
2537 	mem_cgroup_uncharge_page(new_page);
2538 	goto out_up_write;
2539 }
2540 
2541 static int khugepaged_scan_pmd(struct mm_struct *mm,
2542 			       struct vm_area_struct *vma,
2543 			       unsigned long address,
2544 			       struct page **hpage)
2545 {
2546 	pmd_t *pmd;
2547 	pte_t *pte, *_pte;
2548 	int ret = 0, referenced = 0, none = 0;
2549 	struct page *page;
2550 	unsigned long _address;
2551 	spinlock_t *ptl;
2552 	int node = NUMA_NO_NODE;
2553 
2554 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2555 
2556 	pmd = mm_find_pmd(mm, address);
2557 	if (!pmd)
2558 		goto out;
2559 	if (pmd_trans_huge(*pmd))
2560 		goto out;
2561 
2562 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2563 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2564 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2565 	     _pte++, _address += PAGE_SIZE) {
2566 		pte_t pteval = *_pte;
2567 		if (pte_none(pteval)) {
2568 			if (++none <= khugepaged_max_ptes_none)
2569 				continue;
2570 			else
2571 				goto out_unmap;
2572 		}
2573 		if (!pte_present(pteval) || !pte_write(pteval))
2574 			goto out_unmap;
2575 		page = vm_normal_page(vma, _address, pteval);
2576 		if (unlikely(!page))
2577 			goto out_unmap;
2578 		/*
2579 		 * Record which node the original page is from and save this
2580 		 * information to khugepaged_node_load[].
2581 		 * Khupaged will allocate hugepage from the node has the max
2582 		 * hit record.
2583 		 */
2584 		node = page_to_nid(page);
2585 		khugepaged_node_load[node]++;
2586 		VM_BUG_ON(PageCompound(page));
2587 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2588 			goto out_unmap;
2589 		/* cannot use mapcount: can't collapse if there's a gup pin */
2590 		if (page_count(page) != 1)
2591 			goto out_unmap;
2592 		if (pte_young(pteval) || PageReferenced(page) ||
2593 		    mmu_notifier_test_young(vma->vm_mm, address))
2594 			referenced = 1;
2595 	}
2596 	if (referenced)
2597 		ret = 1;
2598 out_unmap:
2599 	pte_unmap_unlock(pte, ptl);
2600 	if (ret) {
2601 		node = khugepaged_find_target_node();
2602 		/* collapse_huge_page will return with the mmap_sem released */
2603 		collapse_huge_page(mm, address, hpage, vma, node);
2604 	}
2605 out:
2606 	return ret;
2607 }
2608 
2609 static void collect_mm_slot(struct mm_slot *mm_slot)
2610 {
2611 	struct mm_struct *mm = mm_slot->mm;
2612 
2613 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2614 
2615 	if (khugepaged_test_exit(mm)) {
2616 		/* free mm_slot */
2617 		hash_del(&mm_slot->hash);
2618 		list_del(&mm_slot->mm_node);
2619 
2620 		/*
2621 		 * Not strictly needed because the mm exited already.
2622 		 *
2623 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2624 		 */
2625 
2626 		/* khugepaged_mm_lock actually not necessary for the below */
2627 		free_mm_slot(mm_slot);
2628 		mmdrop(mm);
2629 	}
2630 }
2631 
2632 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2633 					    struct page **hpage)
2634 	__releases(&khugepaged_mm_lock)
2635 	__acquires(&khugepaged_mm_lock)
2636 {
2637 	struct mm_slot *mm_slot;
2638 	struct mm_struct *mm;
2639 	struct vm_area_struct *vma;
2640 	int progress = 0;
2641 
2642 	VM_BUG_ON(!pages);
2643 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2644 
2645 	if (khugepaged_scan.mm_slot)
2646 		mm_slot = khugepaged_scan.mm_slot;
2647 	else {
2648 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2649 				     struct mm_slot, mm_node);
2650 		khugepaged_scan.address = 0;
2651 		khugepaged_scan.mm_slot = mm_slot;
2652 	}
2653 	spin_unlock(&khugepaged_mm_lock);
2654 
2655 	mm = mm_slot->mm;
2656 	down_read(&mm->mmap_sem);
2657 	if (unlikely(khugepaged_test_exit(mm)))
2658 		vma = NULL;
2659 	else
2660 		vma = find_vma(mm, khugepaged_scan.address);
2661 
2662 	progress++;
2663 	for (; vma; vma = vma->vm_next) {
2664 		unsigned long hstart, hend;
2665 
2666 		cond_resched();
2667 		if (unlikely(khugepaged_test_exit(mm))) {
2668 			progress++;
2669 			break;
2670 		}
2671 		if (!hugepage_vma_check(vma)) {
2672 skip:
2673 			progress++;
2674 			continue;
2675 		}
2676 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2677 		hend = vma->vm_end & HPAGE_PMD_MASK;
2678 		if (hstart >= hend)
2679 			goto skip;
2680 		if (khugepaged_scan.address > hend)
2681 			goto skip;
2682 		if (khugepaged_scan.address < hstart)
2683 			khugepaged_scan.address = hstart;
2684 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2685 
2686 		while (khugepaged_scan.address < hend) {
2687 			int ret;
2688 			cond_resched();
2689 			if (unlikely(khugepaged_test_exit(mm)))
2690 				goto breakouterloop;
2691 
2692 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2693 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2694 				  hend);
2695 			ret = khugepaged_scan_pmd(mm, vma,
2696 						  khugepaged_scan.address,
2697 						  hpage);
2698 			/* move to next address */
2699 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2700 			progress += HPAGE_PMD_NR;
2701 			if (ret)
2702 				/* we released mmap_sem so break loop */
2703 				goto breakouterloop_mmap_sem;
2704 			if (progress >= pages)
2705 				goto breakouterloop;
2706 		}
2707 	}
2708 breakouterloop:
2709 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2710 breakouterloop_mmap_sem:
2711 
2712 	spin_lock(&khugepaged_mm_lock);
2713 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2714 	/*
2715 	 * Release the current mm_slot if this mm is about to die, or
2716 	 * if we scanned all vmas of this mm.
2717 	 */
2718 	if (khugepaged_test_exit(mm) || !vma) {
2719 		/*
2720 		 * Make sure that if mm_users is reaching zero while
2721 		 * khugepaged runs here, khugepaged_exit will find
2722 		 * mm_slot not pointing to the exiting mm.
2723 		 */
2724 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2725 			khugepaged_scan.mm_slot = list_entry(
2726 				mm_slot->mm_node.next,
2727 				struct mm_slot, mm_node);
2728 			khugepaged_scan.address = 0;
2729 		} else {
2730 			khugepaged_scan.mm_slot = NULL;
2731 			khugepaged_full_scans++;
2732 		}
2733 
2734 		collect_mm_slot(mm_slot);
2735 	}
2736 
2737 	return progress;
2738 }
2739 
2740 static int khugepaged_has_work(void)
2741 {
2742 	return !list_empty(&khugepaged_scan.mm_head) &&
2743 		khugepaged_enabled();
2744 }
2745 
2746 static int khugepaged_wait_event(void)
2747 {
2748 	return !list_empty(&khugepaged_scan.mm_head) ||
2749 		kthread_should_stop();
2750 }
2751 
2752 static void khugepaged_do_scan(void)
2753 {
2754 	struct page *hpage = NULL;
2755 	unsigned int progress = 0, pass_through_head = 0;
2756 	unsigned int pages = khugepaged_pages_to_scan;
2757 	bool wait = true;
2758 
2759 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2760 
2761 	while (progress < pages) {
2762 		if (!khugepaged_prealloc_page(&hpage, &wait))
2763 			break;
2764 
2765 		cond_resched();
2766 
2767 		if (unlikely(kthread_should_stop() || freezing(current)))
2768 			break;
2769 
2770 		spin_lock(&khugepaged_mm_lock);
2771 		if (!khugepaged_scan.mm_slot)
2772 			pass_through_head++;
2773 		if (khugepaged_has_work() &&
2774 		    pass_through_head < 2)
2775 			progress += khugepaged_scan_mm_slot(pages - progress,
2776 							    &hpage);
2777 		else
2778 			progress = pages;
2779 		spin_unlock(&khugepaged_mm_lock);
2780 	}
2781 
2782 	if (!IS_ERR_OR_NULL(hpage))
2783 		put_page(hpage);
2784 }
2785 
2786 static void khugepaged_wait_work(void)
2787 {
2788 	try_to_freeze();
2789 
2790 	if (khugepaged_has_work()) {
2791 		if (!khugepaged_scan_sleep_millisecs)
2792 			return;
2793 
2794 		wait_event_freezable_timeout(khugepaged_wait,
2795 					     kthread_should_stop(),
2796 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2797 		return;
2798 	}
2799 
2800 	if (khugepaged_enabled())
2801 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2802 }
2803 
2804 static int khugepaged(void *none)
2805 {
2806 	struct mm_slot *mm_slot;
2807 
2808 	set_freezable();
2809 	set_user_nice(current, 19);
2810 
2811 	while (!kthread_should_stop()) {
2812 		khugepaged_do_scan();
2813 		khugepaged_wait_work();
2814 	}
2815 
2816 	spin_lock(&khugepaged_mm_lock);
2817 	mm_slot = khugepaged_scan.mm_slot;
2818 	khugepaged_scan.mm_slot = NULL;
2819 	if (mm_slot)
2820 		collect_mm_slot(mm_slot);
2821 	spin_unlock(&khugepaged_mm_lock);
2822 	return 0;
2823 }
2824 
2825 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2826 		unsigned long haddr, pmd_t *pmd)
2827 {
2828 	struct mm_struct *mm = vma->vm_mm;
2829 	pgtable_t pgtable;
2830 	pmd_t _pmd;
2831 	int i;
2832 
2833 	pmdp_clear_flush(vma, haddr, pmd);
2834 	/* leave pmd empty until pte is filled */
2835 
2836 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2837 	pmd_populate(mm, &_pmd, pgtable);
2838 
2839 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2840 		pte_t *pte, entry;
2841 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2842 		entry = pte_mkspecial(entry);
2843 		pte = pte_offset_map(&_pmd, haddr);
2844 		VM_BUG_ON(!pte_none(*pte));
2845 		set_pte_at(mm, haddr, pte, entry);
2846 		pte_unmap(pte);
2847 	}
2848 	smp_wmb(); /* make pte visible before pmd */
2849 	pmd_populate(mm, pmd, pgtable);
2850 	put_huge_zero_page();
2851 }
2852 
2853 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2854 		pmd_t *pmd)
2855 {
2856 	spinlock_t *ptl;
2857 	struct page *page;
2858 	struct mm_struct *mm = vma->vm_mm;
2859 	unsigned long haddr = address & HPAGE_PMD_MASK;
2860 	unsigned long mmun_start;	/* For mmu_notifiers */
2861 	unsigned long mmun_end;		/* For mmu_notifiers */
2862 
2863 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2864 
2865 	mmun_start = haddr;
2866 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2867 again:
2868 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2869 	ptl = pmd_lock(mm, pmd);
2870 	if (unlikely(!pmd_trans_huge(*pmd))) {
2871 		spin_unlock(ptl);
2872 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873 		return;
2874 	}
2875 	if (is_huge_zero_pmd(*pmd)) {
2876 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2877 		spin_unlock(ptl);
2878 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879 		return;
2880 	}
2881 	page = pmd_page(*pmd);
2882 	VM_BUG_ON(!page_count(page));
2883 	get_page(page);
2884 	spin_unlock(ptl);
2885 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2886 
2887 	split_huge_page(page);
2888 
2889 	put_page(page);
2890 
2891 	/*
2892 	 * We don't always have down_write of mmap_sem here: a racing
2893 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2894 	 * huge page before our split_huge_page() got the anon_vma lock.
2895 	 */
2896 	if (unlikely(pmd_trans_huge(*pmd)))
2897 		goto again;
2898 }
2899 
2900 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2901 		pmd_t *pmd)
2902 {
2903 	struct vm_area_struct *vma;
2904 
2905 	vma = find_vma(mm, address);
2906 	BUG_ON(vma == NULL);
2907 	split_huge_page_pmd(vma, address, pmd);
2908 }
2909 
2910 static void split_huge_page_address(struct mm_struct *mm,
2911 				    unsigned long address)
2912 {
2913 	pmd_t *pmd;
2914 
2915 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2916 
2917 	pmd = mm_find_pmd(mm, address);
2918 	if (!pmd)
2919 		return;
2920 	/*
2921 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2922 	 * materialize from under us.
2923 	 */
2924 	split_huge_page_pmd_mm(mm, address, pmd);
2925 }
2926 
2927 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2928 			     unsigned long start,
2929 			     unsigned long end,
2930 			     long adjust_next)
2931 {
2932 	/*
2933 	 * If the new start address isn't hpage aligned and it could
2934 	 * previously contain an hugepage: check if we need to split
2935 	 * an huge pmd.
2936 	 */
2937 	if (start & ~HPAGE_PMD_MASK &&
2938 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2939 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2940 		split_huge_page_address(vma->vm_mm, start);
2941 
2942 	/*
2943 	 * If the new end address isn't hpage aligned and it could
2944 	 * previously contain an hugepage: check if we need to split
2945 	 * an huge pmd.
2946 	 */
2947 	if (end & ~HPAGE_PMD_MASK &&
2948 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2949 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2950 		split_huge_page_address(vma->vm_mm, end);
2951 
2952 	/*
2953 	 * If we're also updating the vma->vm_next->vm_start, if the new
2954 	 * vm_next->vm_start isn't page aligned and it could previously
2955 	 * contain an hugepage: check if we need to split an huge pmd.
2956 	 */
2957 	if (adjust_next > 0) {
2958 		struct vm_area_struct *next = vma->vm_next;
2959 		unsigned long nstart = next->vm_start;
2960 		nstart += adjust_next << PAGE_SHIFT;
2961 		if (nstart & ~HPAGE_PMD_MASK &&
2962 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2963 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2964 			split_huge_page_address(next->vm_mm, nstart);
2965 	}
2966 }
2967