xref: /linux/mm/huge_memory.c (revision 8f3f06dfd6873135068ccf1a0b386308e8c4da38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 				     !enforce_sysfs, vma->vm_mm, vm_flags);
124 
125 	/* Enforce sysfs THP requirements as necessary */
126 	if (enforce_sysfs &&
127 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 					   !hugepage_flags_always())))
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	preempt_disable();
168 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 		preempt_enable();
170 		__free_pages(zero_page, compound_order(zero_page));
171 		goto retry;
172 	}
173 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 
175 	/* We take additional reference here. It will be put back by shrinker */
176 	atomic_set(&huge_zero_refcount, 2);
177 	preempt_enable();
178 	count_vm_event(THP_ZERO_PAGE_ALLOC);
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 		return -EINVAL;
465 	}
466 
467 	/*
468 	 * hugepages can't be allocated by the buddy allocator
469 	 */
470 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
471 	/*
472 	 * we use page->mapping and page->index in second tail page
473 	 * as list_head: assuming THP order >= 2
474 	 */
475 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476 
477 	err = hugepage_init_sysfs(&hugepage_kobj);
478 	if (err)
479 		goto err_sysfs;
480 
481 	err = khugepaged_init();
482 	if (err)
483 		goto err_slab;
484 
485 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 	if (err)
487 		goto err_hzp_shrinker;
488 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 	if (err)
490 		goto err_split_shrinker;
491 
492 	/*
493 	 * By default disable transparent hugepages on smaller systems,
494 	 * where the extra memory used could hurt more than TLB overhead
495 	 * is likely to save.  The admin can still enable it through /sys.
496 	 */
497 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 		transparent_hugepage_flags = 0;
499 		return 0;
500 	}
501 
502 	err = start_stop_khugepaged();
503 	if (err)
504 		goto err_khugepaged;
505 
506 	return 0;
507 err_khugepaged:
508 	unregister_shrinker(&deferred_split_shrinker);
509 err_split_shrinker:
510 	unregister_shrinker(&huge_zero_page_shrinker);
511 err_hzp_shrinker:
512 	khugepaged_destroy();
513 err_slab:
514 	hugepage_exit_sysfs(hugepage_kobj);
515 err_sysfs:
516 	return err;
517 }
518 subsys_initcall(hugepage_init);
519 
520 static int __init setup_transparent_hugepage(char *str)
521 {
522 	int ret = 0;
523 	if (!str)
524 		goto out;
525 	if (!strcmp(str, "always")) {
526 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 			&transparent_hugepage_flags);
528 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 			  &transparent_hugepage_flags);
530 		ret = 1;
531 	} else if (!strcmp(str, "madvise")) {
532 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 			  &transparent_hugepage_flags);
534 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 			&transparent_hugepage_flags);
536 		ret = 1;
537 	} else if (!strcmp(str, "never")) {
538 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 			  &transparent_hugepage_flags);
540 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 			  &transparent_hugepage_flags);
542 		ret = 1;
543 	}
544 out:
545 	if (!ret)
546 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 	return ret;
548 }
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
550 
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552 {
553 	if (likely(vma->vm_flags & VM_WRITE))
554 		pmd = pmd_mkwrite(pmd);
555 	return pmd;
556 }
557 
558 #ifdef CONFIG_MEMCG
559 static inline
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
561 {
562 	struct mem_cgroup *memcg = folio_memcg(folio);
563 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564 
565 	if (memcg)
566 		return &memcg->deferred_split_queue;
567 	else
568 		return &pgdat->deferred_split_queue;
569 }
570 #else
571 static inline
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
573 {
574 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575 
576 	return &pgdat->deferred_split_queue;
577 }
578 #endif
579 
580 void prep_transhuge_page(struct page *page)
581 {
582 	struct folio *folio = (struct folio *)page;
583 
584 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
585 	INIT_LIST_HEAD(&folio->_deferred_list);
586 	folio_set_compound_dtor(folio, TRANSHUGE_PAGE_DTOR);
587 }
588 
589 static inline bool is_transparent_hugepage(struct page *page)
590 {
591 	struct folio *folio;
592 
593 	if (!PageCompound(page))
594 		return false;
595 
596 	folio = page_folio(page);
597 	return is_huge_zero_page(&folio->page) ||
598 	       folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
599 }
600 
601 static unsigned long __thp_get_unmapped_area(struct file *filp,
602 		unsigned long addr, unsigned long len,
603 		loff_t off, unsigned long flags, unsigned long size)
604 {
605 	loff_t off_end = off + len;
606 	loff_t off_align = round_up(off, size);
607 	unsigned long len_pad, ret;
608 
609 	if (off_end <= off_align || (off_end - off_align) < size)
610 		return 0;
611 
612 	len_pad = len + size;
613 	if (len_pad < len || (off + len_pad) < off)
614 		return 0;
615 
616 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 					      off >> PAGE_SHIFT, flags);
618 
619 	/*
620 	 * The failure might be due to length padding. The caller will retry
621 	 * without the padding.
622 	 */
623 	if (IS_ERR_VALUE(ret))
624 		return 0;
625 
626 	/*
627 	 * Do not try to align to THP boundary if allocation at the address
628 	 * hint succeeds.
629 	 */
630 	if (ret == addr)
631 		return addr;
632 
633 	ret += (off - ret) & (size - 1);
634 	return ret;
635 }
636 
637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 		unsigned long len, unsigned long pgoff, unsigned long flags)
639 {
640 	unsigned long ret;
641 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642 
643 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 	if (ret)
645 		return ret;
646 
647 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648 }
649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650 
651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 			struct page *page, gfp_t gfp)
653 {
654 	struct vm_area_struct *vma = vmf->vma;
655 	struct folio *folio = page_folio(page);
656 	pgtable_t pgtable;
657 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 	vm_fault_t ret = 0;
659 
660 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
661 
662 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
663 		folio_put(folio);
664 		count_vm_event(THP_FAULT_FALLBACK);
665 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 		return VM_FAULT_FALLBACK;
667 	}
668 	folio_throttle_swaprate(folio, gfp);
669 
670 	pgtable = pte_alloc_one(vma->vm_mm);
671 	if (unlikely(!pgtable)) {
672 		ret = VM_FAULT_OOM;
673 		goto release;
674 	}
675 
676 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 	/*
678 	 * The memory barrier inside __folio_mark_uptodate makes sure that
679 	 * clear_huge_page writes become visible before the set_pmd_at()
680 	 * write.
681 	 */
682 	__folio_mark_uptodate(folio);
683 
684 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 	if (unlikely(!pmd_none(*vmf->pmd))) {
686 		goto unlock_release;
687 	} else {
688 		pmd_t entry;
689 
690 		ret = check_stable_address_space(vma->vm_mm);
691 		if (ret)
692 			goto unlock_release;
693 
694 		/* Deliver the page fault to userland */
695 		if (userfaultfd_missing(vma)) {
696 			spin_unlock(vmf->ptl);
697 			folio_put(folio);
698 			pte_free(vma->vm_mm, pgtable);
699 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 			return ret;
702 		}
703 
704 		entry = mk_huge_pmd(page, vma->vm_page_prot);
705 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 		folio_add_new_anon_rmap(folio, vma, haddr);
707 		folio_add_lru_vma(folio, vma);
708 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 		mm_inc_nr_ptes(vma->vm_mm);
713 		spin_unlock(vmf->ptl);
714 		count_vm_event(THP_FAULT_ALLOC);
715 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 	}
717 
718 	return 0;
719 unlock_release:
720 	spin_unlock(vmf->ptl);
721 release:
722 	if (pgtable)
723 		pte_free(vma->vm_mm, pgtable);
724 	folio_put(folio);
725 	return ret;
726 
727 }
728 
729 /*
730  * always: directly stall for all thp allocations
731  * defer: wake kswapd and fail if not immediately available
732  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733  *		  fail if not immediately available
734  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735  *	    available
736  * never: never stall for any thp allocation
737  */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741 
742 	/* Always do synchronous compaction */
743 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745 
746 	/* Kick kcompactd and fail quickly */
747 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749 
750 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
751 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 		return GFP_TRANSHUGE_LIGHT |
753 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
754 					__GFP_KSWAPD_RECLAIM);
755 
756 	/* Only do synchronous compaction if madvised */
757 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 		return GFP_TRANSHUGE_LIGHT |
759 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760 
761 	return GFP_TRANSHUGE_LIGHT;
762 }
763 
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	mm_inc_nr_ptes(mm);
777 }
778 
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 	struct vm_area_struct *vma = vmf->vma;
782 	gfp_t gfp;
783 	struct folio *folio;
784 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785 
786 	if (!transhuge_vma_suitable(vma, haddr))
787 		return VM_FAULT_FALLBACK;
788 	if (unlikely(anon_vma_prepare(vma)))
789 		return VM_FAULT_OOM;
790 	khugepaged_enter_vma(vma, vma->vm_flags);
791 
792 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 			!mm_forbids_zeropage(vma->vm_mm) &&
794 			transparent_hugepage_use_zero_page()) {
795 		pgtable_t pgtable;
796 		struct page *zero_page;
797 		vm_fault_t ret;
798 		pgtable = pte_alloc_one(vma->vm_mm);
799 		if (unlikely(!pgtable))
800 			return VM_FAULT_OOM;
801 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 		if (unlikely(!zero_page)) {
803 			pte_free(vma->vm_mm, pgtable);
804 			count_vm_event(THP_FAULT_FALLBACK);
805 			return VM_FAULT_FALLBACK;
806 		}
807 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 		ret = 0;
809 		if (pmd_none(*vmf->pmd)) {
810 			ret = check_stable_address_space(vma->vm_mm);
811 			if (ret) {
812 				spin_unlock(vmf->ptl);
813 				pte_free(vma->vm_mm, pgtable);
814 			} else if (userfaultfd_missing(vma)) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 			} else {
820 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 						   haddr, vmf->pmd, zero_page);
822 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 				spin_unlock(vmf->ptl);
824 			}
825 		} else {
826 			spin_unlock(vmf->ptl);
827 			pte_free(vma->vm_mm, pgtable);
828 		}
829 		return ret;
830 	}
831 	gfp = vma_thp_gfp_mask(vma);
832 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 	if (unlikely(!folio)) {
834 		count_vm_event(THP_FAULT_FALLBACK);
835 		return VM_FAULT_FALLBACK;
836 	}
837 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839 
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 		pgtable_t pgtable)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pmd_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pmd_lock(mm, pmd);
849 	if (!pmd_none(*pmd)) {
850 		if (write) {
851 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 				goto out_unlock;
854 			}
855 			entry = pmd_mkyoung(*pmd);
856 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 				update_mmu_cache_pmd(vma, addr, pmd);
859 		}
860 
861 		goto out_unlock;
862 	}
863 
864 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pmd_mkdevmap(entry);
867 	if (write) {
868 		entry = pmd_mkyoung(pmd_mkdirty(entry));
869 		entry = maybe_pmd_mkwrite(entry, vma);
870 	}
871 
872 	if (pgtable) {
873 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 		mm_inc_nr_ptes(mm);
875 		pgtable = NULL;
876 	}
877 
878 	set_pmd_at(mm, addr, pmd, entry);
879 	update_mmu_cache_pmd(vma, addr, pmd);
880 
881 out_unlock:
882 	spin_unlock(ptl);
883 	if (pgtable)
884 		pte_free(mm, pgtable);
885 }
886 
887 /**
888  * vmf_insert_pfn_pmd - insert a pmd size pfn
889  * @vmf: Structure describing the fault
890  * @pfn: pfn to insert
891  * @write: whether it's a write fault
892  *
893  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
894  *
895  * Return: vm_fault_t value.
896  */
897 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
898 {
899 	unsigned long addr = vmf->address & PMD_MASK;
900 	struct vm_area_struct *vma = vmf->vma;
901 	pgprot_t pgprot = vma->vm_page_prot;
902 	pgtable_t pgtable = NULL;
903 
904 	/*
905 	 * If we had pmd_special, we could avoid all these restrictions,
906 	 * but we need to be consistent with PTEs and architectures that
907 	 * can't support a 'special' bit.
908 	 */
909 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
910 			!pfn_t_devmap(pfn));
911 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
912 						(VM_PFNMAP|VM_MIXEDMAP));
913 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
914 
915 	if (addr < vma->vm_start || addr >= vma->vm_end)
916 		return VM_FAULT_SIGBUS;
917 
918 	if (arch_needs_pgtable_deposit()) {
919 		pgtable = pte_alloc_one(vma->vm_mm);
920 		if (!pgtable)
921 			return VM_FAULT_OOM;
922 	}
923 
924 	track_pfn_insert(vma, &pgprot, pfn);
925 
926 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
927 	return VM_FAULT_NOPAGE;
928 }
929 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
930 
931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
932 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
933 {
934 	if (likely(vma->vm_flags & VM_WRITE))
935 		pud = pud_mkwrite(pud);
936 	return pud;
937 }
938 
939 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
940 		pud_t *pud, pfn_t pfn, bool write)
941 {
942 	struct mm_struct *mm = vma->vm_mm;
943 	pgprot_t prot = vma->vm_page_prot;
944 	pud_t entry;
945 	spinlock_t *ptl;
946 
947 	ptl = pud_lock(mm, pud);
948 	if (!pud_none(*pud)) {
949 		if (write) {
950 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
951 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
952 				goto out_unlock;
953 			}
954 			entry = pud_mkyoung(*pud);
955 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
956 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
957 				update_mmu_cache_pud(vma, addr, pud);
958 		}
959 		goto out_unlock;
960 	}
961 
962 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
963 	if (pfn_t_devmap(pfn))
964 		entry = pud_mkdevmap(entry);
965 	if (write) {
966 		entry = pud_mkyoung(pud_mkdirty(entry));
967 		entry = maybe_pud_mkwrite(entry, vma);
968 	}
969 	set_pud_at(mm, addr, pud, entry);
970 	update_mmu_cache_pud(vma, addr, pud);
971 
972 out_unlock:
973 	spin_unlock(ptl);
974 }
975 
976 /**
977  * vmf_insert_pfn_pud - insert a pud size pfn
978  * @vmf: Structure describing the fault
979  * @pfn: pfn to insert
980  * @write: whether it's a write fault
981  *
982  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
983  *
984  * Return: vm_fault_t value.
985  */
986 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
987 {
988 	unsigned long addr = vmf->address & PUD_MASK;
989 	struct vm_area_struct *vma = vmf->vma;
990 	pgprot_t pgprot = vma->vm_page_prot;
991 
992 	/*
993 	 * If we had pud_special, we could avoid all these restrictions,
994 	 * but we need to be consistent with PTEs and architectures that
995 	 * can't support a 'special' bit.
996 	 */
997 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
998 			!pfn_t_devmap(pfn));
999 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1000 						(VM_PFNMAP|VM_MIXEDMAP));
1001 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1002 
1003 	if (addr < vma->vm_start || addr >= vma->vm_end)
1004 		return VM_FAULT_SIGBUS;
1005 
1006 	track_pfn_insert(vma, &pgprot, pfn);
1007 
1008 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1009 	return VM_FAULT_NOPAGE;
1010 }
1011 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1012 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1013 
1014 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1015 		      pmd_t *pmd, bool write)
1016 {
1017 	pmd_t _pmd;
1018 
1019 	_pmd = pmd_mkyoung(*pmd);
1020 	if (write)
1021 		_pmd = pmd_mkdirty(_pmd);
1022 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1023 				  pmd, _pmd, write))
1024 		update_mmu_cache_pmd(vma, addr, pmd);
1025 }
1026 
1027 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1028 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1029 {
1030 	unsigned long pfn = pmd_pfn(*pmd);
1031 	struct mm_struct *mm = vma->vm_mm;
1032 	struct page *page;
1033 	int ret;
1034 
1035 	assert_spin_locked(pmd_lockptr(mm, pmd));
1036 
1037 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1038 		return NULL;
1039 
1040 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1041 		/* pass */;
1042 	else
1043 		return NULL;
1044 
1045 	if (flags & FOLL_TOUCH)
1046 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1047 
1048 	/*
1049 	 * device mapped pages can only be returned if the
1050 	 * caller will manage the page reference count.
1051 	 */
1052 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1053 		return ERR_PTR(-EEXIST);
1054 
1055 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1056 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1057 	if (!*pgmap)
1058 		return ERR_PTR(-EFAULT);
1059 	page = pfn_to_page(pfn);
1060 	ret = try_grab_page(page, flags);
1061 	if (ret)
1062 		page = ERR_PTR(ret);
1063 
1064 	return page;
1065 }
1066 
1067 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1069 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1070 {
1071 	spinlock_t *dst_ptl, *src_ptl;
1072 	struct page *src_page;
1073 	pmd_t pmd;
1074 	pgtable_t pgtable = NULL;
1075 	int ret = -ENOMEM;
1076 
1077 	/* Skip if can be re-fill on fault */
1078 	if (!vma_is_anonymous(dst_vma))
1079 		return 0;
1080 
1081 	pgtable = pte_alloc_one(dst_mm);
1082 	if (unlikely(!pgtable))
1083 		goto out;
1084 
1085 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1086 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1087 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088 
1089 	ret = -EAGAIN;
1090 	pmd = *src_pmd;
1091 
1092 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1093 	if (unlikely(is_swap_pmd(pmd))) {
1094 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1095 
1096 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1097 		if (!is_readable_migration_entry(entry)) {
1098 			entry = make_readable_migration_entry(
1099 							swp_offset(entry));
1100 			pmd = swp_entry_to_pmd(entry);
1101 			if (pmd_swp_soft_dirty(*src_pmd))
1102 				pmd = pmd_swp_mksoft_dirty(pmd);
1103 			if (pmd_swp_uffd_wp(*src_pmd))
1104 				pmd = pmd_swp_mkuffd_wp(pmd);
1105 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1106 		}
1107 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1108 		mm_inc_nr_ptes(dst_mm);
1109 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1110 		if (!userfaultfd_wp(dst_vma))
1111 			pmd = pmd_swp_clear_uffd_wp(pmd);
1112 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 		ret = 0;
1114 		goto out_unlock;
1115 	}
1116 #endif
1117 
1118 	if (unlikely(!pmd_trans_huge(pmd))) {
1119 		pte_free(dst_mm, pgtable);
1120 		goto out_unlock;
1121 	}
1122 	/*
1123 	 * When page table lock is held, the huge zero pmd should not be
1124 	 * under splitting since we don't split the page itself, only pmd to
1125 	 * a page table.
1126 	 */
1127 	if (is_huge_zero_pmd(pmd)) {
1128 		/*
1129 		 * get_huge_zero_page() will never allocate a new page here,
1130 		 * since we already have a zero page to copy. It just takes a
1131 		 * reference.
1132 		 */
1133 		mm_get_huge_zero_page(dst_mm);
1134 		goto out_zero_page;
1135 	}
1136 
1137 	src_page = pmd_page(pmd);
1138 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1139 
1140 	get_page(src_page);
1141 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1142 		/* Page maybe pinned: split and retry the fault on PTEs. */
1143 		put_page(src_page);
1144 		pte_free(dst_mm, pgtable);
1145 		spin_unlock(src_ptl);
1146 		spin_unlock(dst_ptl);
1147 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1148 		return -EAGAIN;
1149 	}
1150 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151 out_zero_page:
1152 	mm_inc_nr_ptes(dst_mm);
1153 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1154 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1155 	if (!userfaultfd_wp(dst_vma))
1156 		pmd = pmd_clear_uffd_wp(pmd);
1157 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1158 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1159 
1160 	ret = 0;
1161 out_unlock:
1162 	spin_unlock(src_ptl);
1163 	spin_unlock(dst_ptl);
1164 out:
1165 	return ret;
1166 }
1167 
1168 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1169 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1170 		      pud_t *pud, bool write)
1171 {
1172 	pud_t _pud;
1173 
1174 	_pud = pud_mkyoung(*pud);
1175 	if (write)
1176 		_pud = pud_mkdirty(_pud);
1177 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1178 				  pud, _pud, write))
1179 		update_mmu_cache_pud(vma, addr, pud);
1180 }
1181 
1182 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1183 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1184 {
1185 	unsigned long pfn = pud_pfn(*pud);
1186 	struct mm_struct *mm = vma->vm_mm;
1187 	struct page *page;
1188 	int ret;
1189 
1190 	assert_spin_locked(pud_lockptr(mm, pud));
1191 
1192 	if (flags & FOLL_WRITE && !pud_write(*pud))
1193 		return NULL;
1194 
1195 	if (pud_present(*pud) && pud_devmap(*pud))
1196 		/* pass */;
1197 	else
1198 		return NULL;
1199 
1200 	if (flags & FOLL_TOUCH)
1201 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1202 
1203 	/*
1204 	 * device mapped pages can only be returned if the
1205 	 * caller will manage the page reference count.
1206 	 *
1207 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1208 	 */
1209 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1210 		return ERR_PTR(-EEXIST);
1211 
1212 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1213 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1214 	if (!*pgmap)
1215 		return ERR_PTR(-EFAULT);
1216 	page = pfn_to_page(pfn);
1217 
1218 	ret = try_grab_page(page, flags);
1219 	if (ret)
1220 		page = ERR_PTR(ret);
1221 
1222 	return page;
1223 }
1224 
1225 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1226 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1227 		  struct vm_area_struct *vma)
1228 {
1229 	spinlock_t *dst_ptl, *src_ptl;
1230 	pud_t pud;
1231 	int ret;
1232 
1233 	dst_ptl = pud_lock(dst_mm, dst_pud);
1234 	src_ptl = pud_lockptr(src_mm, src_pud);
1235 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1236 
1237 	ret = -EAGAIN;
1238 	pud = *src_pud;
1239 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1240 		goto out_unlock;
1241 
1242 	/*
1243 	 * When page table lock is held, the huge zero pud should not be
1244 	 * under splitting since we don't split the page itself, only pud to
1245 	 * a page table.
1246 	 */
1247 	if (is_huge_zero_pud(pud)) {
1248 		/* No huge zero pud yet */
1249 	}
1250 
1251 	/*
1252 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1253 	 * and split if duplicating fails.
1254 	 */
1255 	pudp_set_wrprotect(src_mm, addr, src_pud);
1256 	pud = pud_mkold(pud_wrprotect(pud));
1257 	set_pud_at(dst_mm, addr, dst_pud, pud);
1258 
1259 	ret = 0;
1260 out_unlock:
1261 	spin_unlock(src_ptl);
1262 	spin_unlock(dst_ptl);
1263 	return ret;
1264 }
1265 
1266 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1267 {
1268 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1269 
1270 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1271 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1272 		goto unlock;
1273 
1274 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1275 unlock:
1276 	spin_unlock(vmf->ptl);
1277 }
1278 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1279 
1280 void huge_pmd_set_accessed(struct vm_fault *vmf)
1281 {
1282 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1283 
1284 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1285 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1286 		goto unlock;
1287 
1288 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1289 
1290 unlock:
1291 	spin_unlock(vmf->ptl);
1292 }
1293 
1294 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1295 {
1296 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1297 	struct vm_area_struct *vma = vmf->vma;
1298 	struct folio *folio;
1299 	struct page *page;
1300 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 	pmd_t orig_pmd = vmf->orig_pmd;
1302 
1303 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1304 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1305 
1306 	if (is_huge_zero_pmd(orig_pmd))
1307 		goto fallback;
1308 
1309 	spin_lock(vmf->ptl);
1310 
1311 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 		spin_unlock(vmf->ptl);
1313 		return 0;
1314 	}
1315 
1316 	page = pmd_page(orig_pmd);
1317 	folio = page_folio(page);
1318 	VM_BUG_ON_PAGE(!PageHead(page), page);
1319 
1320 	/* Early check when only holding the PT lock. */
1321 	if (PageAnonExclusive(page))
1322 		goto reuse;
1323 
1324 	if (!folio_trylock(folio)) {
1325 		folio_get(folio);
1326 		spin_unlock(vmf->ptl);
1327 		folio_lock(folio);
1328 		spin_lock(vmf->ptl);
1329 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1330 			spin_unlock(vmf->ptl);
1331 			folio_unlock(folio);
1332 			folio_put(folio);
1333 			return 0;
1334 		}
1335 		folio_put(folio);
1336 	}
1337 
1338 	/* Recheck after temporarily dropping the PT lock. */
1339 	if (PageAnonExclusive(page)) {
1340 		folio_unlock(folio);
1341 		goto reuse;
1342 	}
1343 
1344 	/*
1345 	 * See do_wp_page(): we can only reuse the folio exclusively if
1346 	 * there are no additional references. Note that we always drain
1347 	 * the LRU cache immediately after adding a THP.
1348 	 */
1349 	if (folio_ref_count(folio) >
1350 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1351 		goto unlock_fallback;
1352 	if (folio_test_swapcache(folio))
1353 		folio_free_swap(folio);
1354 	if (folio_ref_count(folio) == 1) {
1355 		pmd_t entry;
1356 
1357 		page_move_anon_rmap(page, vma);
1358 		folio_unlock(folio);
1359 reuse:
1360 		if (unlikely(unshare)) {
1361 			spin_unlock(vmf->ptl);
1362 			return 0;
1363 		}
1364 		entry = pmd_mkyoung(orig_pmd);
1365 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1366 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368 		spin_unlock(vmf->ptl);
1369 		return 0;
1370 	}
1371 
1372 unlock_fallback:
1373 	folio_unlock(folio);
1374 	spin_unlock(vmf->ptl);
1375 fallback:
1376 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1377 	return VM_FAULT_FALLBACK;
1378 }
1379 
1380 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1381 					   unsigned long addr, pmd_t pmd)
1382 {
1383 	struct page *page;
1384 
1385 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1386 		return false;
1387 
1388 	/* Don't touch entries that are not even readable (NUMA hinting). */
1389 	if (pmd_protnone(pmd))
1390 		return false;
1391 
1392 	/* Do we need write faults for softdirty tracking? */
1393 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1394 		return false;
1395 
1396 	/* Do we need write faults for uffd-wp tracking? */
1397 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1398 		return false;
1399 
1400 	if (!(vma->vm_flags & VM_SHARED)) {
1401 		/* See can_change_pte_writable(). */
1402 		page = vm_normal_page_pmd(vma, addr, pmd);
1403 		return page && PageAnon(page) && PageAnonExclusive(page);
1404 	}
1405 
1406 	/* See can_change_pte_writable(). */
1407 	return pmd_dirty(pmd);
1408 }
1409 
1410 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1411 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1412 					struct vm_area_struct *vma,
1413 					unsigned int flags)
1414 {
1415 	/* If the pmd is writable, we can write to the page. */
1416 	if (pmd_write(pmd))
1417 		return true;
1418 
1419 	/* Maybe FOLL_FORCE is set to override it? */
1420 	if (!(flags & FOLL_FORCE))
1421 		return false;
1422 
1423 	/* But FOLL_FORCE has no effect on shared mappings */
1424 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1425 		return false;
1426 
1427 	/* ... or read-only private ones */
1428 	if (!(vma->vm_flags & VM_MAYWRITE))
1429 		return false;
1430 
1431 	/* ... or already writable ones that just need to take a write fault */
1432 	if (vma->vm_flags & VM_WRITE)
1433 		return false;
1434 
1435 	/*
1436 	 * See can_change_pte_writable(): we broke COW and could map the page
1437 	 * writable if we have an exclusive anonymous page ...
1438 	 */
1439 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1440 		return false;
1441 
1442 	/* ... and a write-fault isn't required for other reasons. */
1443 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1444 		return false;
1445 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1446 }
1447 
1448 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1449 				   unsigned long addr,
1450 				   pmd_t *pmd,
1451 				   unsigned int flags)
1452 {
1453 	struct mm_struct *mm = vma->vm_mm;
1454 	struct page *page;
1455 	int ret;
1456 
1457 	assert_spin_locked(pmd_lockptr(mm, pmd));
1458 
1459 	page = pmd_page(*pmd);
1460 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1461 
1462 	if ((flags & FOLL_WRITE) &&
1463 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1464 		return NULL;
1465 
1466 	/* Avoid dumping huge zero page */
1467 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1468 		return ERR_PTR(-EFAULT);
1469 
1470 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1471 		return NULL;
1472 
1473 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1474 		return ERR_PTR(-EMLINK);
1475 
1476 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1477 			!PageAnonExclusive(page), page);
1478 
1479 	ret = try_grab_page(page, flags);
1480 	if (ret)
1481 		return ERR_PTR(ret);
1482 
1483 	if (flags & FOLL_TOUCH)
1484 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1485 
1486 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1487 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1488 
1489 	return page;
1490 }
1491 
1492 /* NUMA hinting page fault entry point for trans huge pmds */
1493 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1494 {
1495 	struct vm_area_struct *vma = vmf->vma;
1496 	pmd_t oldpmd = vmf->orig_pmd;
1497 	pmd_t pmd;
1498 	struct page *page;
1499 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1500 	int page_nid = NUMA_NO_NODE;
1501 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1502 	bool migrated = false, writable = false;
1503 	int flags = 0;
1504 
1505 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1506 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1507 		spin_unlock(vmf->ptl);
1508 		goto out;
1509 	}
1510 
1511 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1512 
1513 	/*
1514 	 * Detect now whether the PMD could be writable; this information
1515 	 * is only valid while holding the PT lock.
1516 	 */
1517 	writable = pmd_write(pmd);
1518 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1519 	    can_change_pmd_writable(vma, vmf->address, pmd))
1520 		writable = true;
1521 
1522 	page = vm_normal_page_pmd(vma, haddr, pmd);
1523 	if (!page)
1524 		goto out_map;
1525 
1526 	/* See similar comment in do_numa_page for explanation */
1527 	if (!writable)
1528 		flags |= TNF_NO_GROUP;
1529 
1530 	page_nid = page_to_nid(page);
1531 	/*
1532 	 * For memory tiering mode, cpupid of slow memory page is used
1533 	 * to record page access time.  So use default value.
1534 	 */
1535 	if (node_is_toptier(page_nid))
1536 		last_cpupid = page_cpupid_last(page);
1537 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1538 				       &flags);
1539 
1540 	if (target_nid == NUMA_NO_NODE) {
1541 		put_page(page);
1542 		goto out_map;
1543 	}
1544 
1545 	spin_unlock(vmf->ptl);
1546 	writable = false;
1547 
1548 	migrated = migrate_misplaced_page(page, vma, target_nid);
1549 	if (migrated) {
1550 		flags |= TNF_MIGRATED;
1551 		page_nid = target_nid;
1552 	} else {
1553 		flags |= TNF_MIGRATE_FAIL;
1554 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1555 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1556 			spin_unlock(vmf->ptl);
1557 			goto out;
1558 		}
1559 		goto out_map;
1560 	}
1561 
1562 out:
1563 	if (page_nid != NUMA_NO_NODE)
1564 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1565 				flags);
1566 
1567 	return 0;
1568 
1569 out_map:
1570 	/* Restore the PMD */
1571 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1572 	pmd = pmd_mkyoung(pmd);
1573 	if (writable)
1574 		pmd = pmd_mkwrite(pmd);
1575 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1576 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1577 	spin_unlock(vmf->ptl);
1578 	goto out;
1579 }
1580 
1581 /*
1582  * Return true if we do MADV_FREE successfully on entire pmd page.
1583  * Otherwise, return false.
1584  */
1585 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1586 		pmd_t *pmd, unsigned long addr, unsigned long next)
1587 {
1588 	spinlock_t *ptl;
1589 	pmd_t orig_pmd;
1590 	struct folio *folio;
1591 	struct mm_struct *mm = tlb->mm;
1592 	bool ret = false;
1593 
1594 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1595 
1596 	ptl = pmd_trans_huge_lock(pmd, vma);
1597 	if (!ptl)
1598 		goto out_unlocked;
1599 
1600 	orig_pmd = *pmd;
1601 	if (is_huge_zero_pmd(orig_pmd))
1602 		goto out;
1603 
1604 	if (unlikely(!pmd_present(orig_pmd))) {
1605 		VM_BUG_ON(thp_migration_supported() &&
1606 				  !is_pmd_migration_entry(orig_pmd));
1607 		goto out;
1608 	}
1609 
1610 	folio = pfn_folio(pmd_pfn(orig_pmd));
1611 	/*
1612 	 * If other processes are mapping this folio, we couldn't discard
1613 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1614 	 */
1615 	if (folio_estimated_sharers(folio) != 1)
1616 		goto out;
1617 
1618 	if (!folio_trylock(folio))
1619 		goto out;
1620 
1621 	/*
1622 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1623 	 * will deactivate only them.
1624 	 */
1625 	if (next - addr != HPAGE_PMD_SIZE) {
1626 		folio_get(folio);
1627 		spin_unlock(ptl);
1628 		split_folio(folio);
1629 		folio_unlock(folio);
1630 		folio_put(folio);
1631 		goto out_unlocked;
1632 	}
1633 
1634 	if (folio_test_dirty(folio))
1635 		folio_clear_dirty(folio);
1636 	folio_unlock(folio);
1637 
1638 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1639 		pmdp_invalidate(vma, addr, pmd);
1640 		orig_pmd = pmd_mkold(orig_pmd);
1641 		orig_pmd = pmd_mkclean(orig_pmd);
1642 
1643 		set_pmd_at(mm, addr, pmd, orig_pmd);
1644 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1645 	}
1646 
1647 	folio_mark_lazyfree(folio);
1648 	ret = true;
1649 out:
1650 	spin_unlock(ptl);
1651 out_unlocked:
1652 	return ret;
1653 }
1654 
1655 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1656 {
1657 	pgtable_t pgtable;
1658 
1659 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1660 	pte_free(mm, pgtable);
1661 	mm_dec_nr_ptes(mm);
1662 }
1663 
1664 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1665 		 pmd_t *pmd, unsigned long addr)
1666 {
1667 	pmd_t orig_pmd;
1668 	spinlock_t *ptl;
1669 
1670 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1671 
1672 	ptl = __pmd_trans_huge_lock(pmd, vma);
1673 	if (!ptl)
1674 		return 0;
1675 	/*
1676 	 * For architectures like ppc64 we look at deposited pgtable
1677 	 * when calling pmdp_huge_get_and_clear. So do the
1678 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1679 	 * operations.
1680 	 */
1681 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1682 						tlb->fullmm);
1683 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684 	if (vma_is_special_huge(vma)) {
1685 		if (arch_needs_pgtable_deposit())
1686 			zap_deposited_table(tlb->mm, pmd);
1687 		spin_unlock(ptl);
1688 	} else if (is_huge_zero_pmd(orig_pmd)) {
1689 		zap_deposited_table(tlb->mm, pmd);
1690 		spin_unlock(ptl);
1691 	} else {
1692 		struct page *page = NULL;
1693 		int flush_needed = 1;
1694 
1695 		if (pmd_present(orig_pmd)) {
1696 			page = pmd_page(orig_pmd);
1697 			page_remove_rmap(page, vma, true);
1698 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1699 			VM_BUG_ON_PAGE(!PageHead(page), page);
1700 		} else if (thp_migration_supported()) {
1701 			swp_entry_t entry;
1702 
1703 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1704 			entry = pmd_to_swp_entry(orig_pmd);
1705 			page = pfn_swap_entry_to_page(entry);
1706 			flush_needed = 0;
1707 		} else
1708 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1709 
1710 		if (PageAnon(page)) {
1711 			zap_deposited_table(tlb->mm, pmd);
1712 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1713 		} else {
1714 			if (arch_needs_pgtable_deposit())
1715 				zap_deposited_table(tlb->mm, pmd);
1716 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1717 		}
1718 
1719 		spin_unlock(ptl);
1720 		if (flush_needed)
1721 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1722 	}
1723 	return 1;
1724 }
1725 
1726 #ifndef pmd_move_must_withdraw
1727 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1728 					 spinlock_t *old_pmd_ptl,
1729 					 struct vm_area_struct *vma)
1730 {
1731 	/*
1732 	 * With split pmd lock we also need to move preallocated
1733 	 * PTE page table if new_pmd is on different PMD page table.
1734 	 *
1735 	 * We also don't deposit and withdraw tables for file pages.
1736 	 */
1737 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1738 }
1739 #endif
1740 
1741 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1742 {
1743 #ifdef CONFIG_MEM_SOFT_DIRTY
1744 	if (unlikely(is_pmd_migration_entry(pmd)))
1745 		pmd = pmd_swp_mksoft_dirty(pmd);
1746 	else if (pmd_present(pmd))
1747 		pmd = pmd_mksoft_dirty(pmd);
1748 #endif
1749 	return pmd;
1750 }
1751 
1752 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1753 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1754 {
1755 	spinlock_t *old_ptl, *new_ptl;
1756 	pmd_t pmd;
1757 	struct mm_struct *mm = vma->vm_mm;
1758 	bool force_flush = false;
1759 
1760 	/*
1761 	 * The destination pmd shouldn't be established, free_pgtables()
1762 	 * should have released it; but move_page_tables() might have already
1763 	 * inserted a page table, if racing against shmem/file collapse.
1764 	 */
1765 	if (!pmd_none(*new_pmd)) {
1766 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1767 		return false;
1768 	}
1769 
1770 	/*
1771 	 * We don't have to worry about the ordering of src and dst
1772 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1773 	 */
1774 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1775 	if (old_ptl) {
1776 		new_ptl = pmd_lockptr(mm, new_pmd);
1777 		if (new_ptl != old_ptl)
1778 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1779 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1780 		if (pmd_present(pmd))
1781 			force_flush = true;
1782 		VM_BUG_ON(!pmd_none(*new_pmd));
1783 
1784 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1785 			pgtable_t pgtable;
1786 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1787 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1788 		}
1789 		pmd = move_soft_dirty_pmd(pmd);
1790 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1791 		if (force_flush)
1792 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1793 		if (new_ptl != old_ptl)
1794 			spin_unlock(new_ptl);
1795 		spin_unlock(old_ptl);
1796 		return true;
1797 	}
1798 	return false;
1799 }
1800 
1801 /*
1802  * Returns
1803  *  - 0 if PMD could not be locked
1804  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1805  *      or if prot_numa but THP migration is not supported
1806  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1807  */
1808 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1809 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1810 		    unsigned long cp_flags)
1811 {
1812 	struct mm_struct *mm = vma->vm_mm;
1813 	spinlock_t *ptl;
1814 	pmd_t oldpmd, entry;
1815 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1816 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1817 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1818 	int ret = 1;
1819 
1820 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1821 
1822 	if (prot_numa && !thp_migration_supported())
1823 		return 1;
1824 
1825 	ptl = __pmd_trans_huge_lock(pmd, vma);
1826 	if (!ptl)
1827 		return 0;
1828 
1829 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1830 	if (is_swap_pmd(*pmd)) {
1831 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1832 		struct page *page = pfn_swap_entry_to_page(entry);
1833 		pmd_t newpmd;
1834 
1835 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1836 		if (is_writable_migration_entry(entry)) {
1837 			/*
1838 			 * A protection check is difficult so
1839 			 * just be safe and disable write
1840 			 */
1841 			if (PageAnon(page))
1842 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1843 			else
1844 				entry = make_readable_migration_entry(swp_offset(entry));
1845 			newpmd = swp_entry_to_pmd(entry);
1846 			if (pmd_swp_soft_dirty(*pmd))
1847 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1848 		} else {
1849 			newpmd = *pmd;
1850 		}
1851 
1852 		if (uffd_wp)
1853 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1854 		else if (uffd_wp_resolve)
1855 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1856 		if (!pmd_same(*pmd, newpmd))
1857 			set_pmd_at(mm, addr, pmd, newpmd);
1858 		goto unlock;
1859 	}
1860 #endif
1861 
1862 	if (prot_numa) {
1863 		struct page *page;
1864 		bool toptier;
1865 		/*
1866 		 * Avoid trapping faults against the zero page. The read-only
1867 		 * data is likely to be read-cached on the local CPU and
1868 		 * local/remote hits to the zero page are not interesting.
1869 		 */
1870 		if (is_huge_zero_pmd(*pmd))
1871 			goto unlock;
1872 
1873 		if (pmd_protnone(*pmd))
1874 			goto unlock;
1875 
1876 		page = pmd_page(*pmd);
1877 		toptier = node_is_toptier(page_to_nid(page));
1878 		/*
1879 		 * Skip scanning top tier node if normal numa
1880 		 * balancing is disabled
1881 		 */
1882 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1883 		    toptier)
1884 			goto unlock;
1885 
1886 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1887 		    !toptier)
1888 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1889 	}
1890 	/*
1891 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1892 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1893 	 * which is also under mmap_read_lock(mm):
1894 	 *
1895 	 *	CPU0:				CPU1:
1896 	 *				change_huge_pmd(prot_numa=1)
1897 	 *				 pmdp_huge_get_and_clear_notify()
1898 	 * madvise_dontneed()
1899 	 *  zap_pmd_range()
1900 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1901 	 *   // skip the pmd
1902 	 *				 set_pmd_at();
1903 	 *				 // pmd is re-established
1904 	 *
1905 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1906 	 * which may break userspace.
1907 	 *
1908 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1909 	 * dirty/young flags set by hardware.
1910 	 */
1911 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1912 
1913 	entry = pmd_modify(oldpmd, newprot);
1914 	if (uffd_wp)
1915 		entry = pmd_mkuffd_wp(entry);
1916 	else if (uffd_wp_resolve)
1917 		/*
1918 		 * Leave the write bit to be handled by PF interrupt
1919 		 * handler, then things like COW could be properly
1920 		 * handled.
1921 		 */
1922 		entry = pmd_clear_uffd_wp(entry);
1923 
1924 	/* See change_pte_range(). */
1925 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1926 	    can_change_pmd_writable(vma, addr, entry))
1927 		entry = pmd_mkwrite(entry);
1928 
1929 	ret = HPAGE_PMD_NR;
1930 	set_pmd_at(mm, addr, pmd, entry);
1931 
1932 	if (huge_pmd_needs_flush(oldpmd, entry))
1933 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1934 unlock:
1935 	spin_unlock(ptl);
1936 	return ret;
1937 }
1938 
1939 /*
1940  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1941  *
1942  * Note that if it returns page table lock pointer, this routine returns without
1943  * unlocking page table lock. So callers must unlock it.
1944  */
1945 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1946 {
1947 	spinlock_t *ptl;
1948 	ptl = pmd_lock(vma->vm_mm, pmd);
1949 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1950 			pmd_devmap(*pmd)))
1951 		return ptl;
1952 	spin_unlock(ptl);
1953 	return NULL;
1954 }
1955 
1956 /*
1957  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1958  *
1959  * Note that if it returns page table lock pointer, this routine returns without
1960  * unlocking page table lock. So callers must unlock it.
1961  */
1962 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1963 {
1964 	spinlock_t *ptl;
1965 
1966 	ptl = pud_lock(vma->vm_mm, pud);
1967 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1968 		return ptl;
1969 	spin_unlock(ptl);
1970 	return NULL;
1971 }
1972 
1973 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1974 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1975 		 pud_t *pud, unsigned long addr)
1976 {
1977 	spinlock_t *ptl;
1978 
1979 	ptl = __pud_trans_huge_lock(pud, vma);
1980 	if (!ptl)
1981 		return 0;
1982 
1983 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1984 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1985 	if (vma_is_special_huge(vma)) {
1986 		spin_unlock(ptl);
1987 		/* No zero page support yet */
1988 	} else {
1989 		/* No support for anonymous PUD pages yet */
1990 		BUG();
1991 	}
1992 	return 1;
1993 }
1994 
1995 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1996 		unsigned long haddr)
1997 {
1998 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1999 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2001 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2002 
2003 	count_vm_event(THP_SPLIT_PUD);
2004 
2005 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2006 }
2007 
2008 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2009 		unsigned long address)
2010 {
2011 	spinlock_t *ptl;
2012 	struct mmu_notifier_range range;
2013 
2014 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2015 				address & HPAGE_PUD_MASK,
2016 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2017 	mmu_notifier_invalidate_range_start(&range);
2018 	ptl = pud_lock(vma->vm_mm, pud);
2019 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2020 		goto out;
2021 	__split_huge_pud_locked(vma, pud, range.start);
2022 
2023 out:
2024 	spin_unlock(ptl);
2025 	/*
2026 	 * No need to double call mmu_notifier->invalidate_range() callback as
2027 	 * the above pudp_huge_clear_flush_notify() did already call it.
2028 	 */
2029 	mmu_notifier_invalidate_range_only_end(&range);
2030 }
2031 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2032 
2033 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2034 		unsigned long haddr, pmd_t *pmd)
2035 {
2036 	struct mm_struct *mm = vma->vm_mm;
2037 	pgtable_t pgtable;
2038 	pmd_t _pmd, old_pmd;
2039 	unsigned long addr;
2040 	pte_t *pte;
2041 	int i;
2042 
2043 	/*
2044 	 * Leave pmd empty until pte is filled note that it is fine to delay
2045 	 * notification until mmu_notifier_invalidate_range_end() as we are
2046 	 * replacing a zero pmd write protected page with a zero pte write
2047 	 * protected page.
2048 	 *
2049 	 * See Documentation/mm/mmu_notifier.rst
2050 	 */
2051 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2052 
2053 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2054 	pmd_populate(mm, &_pmd, pgtable);
2055 
2056 	pte = pte_offset_map(&_pmd, haddr);
2057 	VM_BUG_ON(!pte);
2058 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2059 		pte_t entry;
2060 
2061 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2062 		entry = pte_mkspecial(entry);
2063 		if (pmd_uffd_wp(old_pmd))
2064 			entry = pte_mkuffd_wp(entry);
2065 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2066 		set_pte_at(mm, addr, pte, entry);
2067 		pte++;
2068 	}
2069 	pte_unmap(pte - 1);
2070 	smp_wmb(); /* make pte visible before pmd */
2071 	pmd_populate(mm, pmd, pgtable);
2072 }
2073 
2074 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2075 		unsigned long haddr, bool freeze)
2076 {
2077 	struct mm_struct *mm = vma->vm_mm;
2078 	struct page *page;
2079 	pgtable_t pgtable;
2080 	pmd_t old_pmd, _pmd;
2081 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2082 	bool anon_exclusive = false, dirty = false;
2083 	unsigned long addr;
2084 	pte_t *pte;
2085 	int i;
2086 
2087 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2088 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2089 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2090 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2091 				&& !pmd_devmap(*pmd));
2092 
2093 	count_vm_event(THP_SPLIT_PMD);
2094 
2095 	if (!vma_is_anonymous(vma)) {
2096 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2097 		/*
2098 		 * We are going to unmap this huge page. So
2099 		 * just go ahead and zap it
2100 		 */
2101 		if (arch_needs_pgtable_deposit())
2102 			zap_deposited_table(mm, pmd);
2103 		if (vma_is_special_huge(vma))
2104 			return;
2105 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2106 			swp_entry_t entry;
2107 
2108 			entry = pmd_to_swp_entry(old_pmd);
2109 			page = pfn_swap_entry_to_page(entry);
2110 		} else {
2111 			page = pmd_page(old_pmd);
2112 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2113 				set_page_dirty(page);
2114 			if (!PageReferenced(page) && pmd_young(old_pmd))
2115 				SetPageReferenced(page);
2116 			page_remove_rmap(page, vma, true);
2117 			put_page(page);
2118 		}
2119 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2120 		return;
2121 	}
2122 
2123 	if (is_huge_zero_pmd(*pmd)) {
2124 		/*
2125 		 * FIXME: Do we want to invalidate secondary mmu by calling
2126 		 * mmu_notifier_invalidate_range() see comments below inside
2127 		 * __split_huge_pmd() ?
2128 		 *
2129 		 * We are going from a zero huge page write protected to zero
2130 		 * small page also write protected so it does not seems useful
2131 		 * to invalidate secondary mmu at this time.
2132 		 */
2133 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2134 	}
2135 
2136 	/*
2137 	 * Up to this point the pmd is present and huge and userland has the
2138 	 * whole access to the hugepage during the split (which happens in
2139 	 * place). If we overwrite the pmd with the not-huge version pointing
2140 	 * to the pte here (which of course we could if all CPUs were bug
2141 	 * free), userland could trigger a small page size TLB miss on the
2142 	 * small sized TLB while the hugepage TLB entry is still established in
2143 	 * the huge TLB. Some CPU doesn't like that.
2144 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2145 	 * 383 on page 105. Intel should be safe but is also warns that it's
2146 	 * only safe if the permission and cache attributes of the two entries
2147 	 * loaded in the two TLB is identical (which should be the case here).
2148 	 * But it is generally safer to never allow small and huge TLB entries
2149 	 * for the same virtual address to be loaded simultaneously. So instead
2150 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2151 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2152 	 * must remain set at all times on the pmd until the split is complete
2153 	 * for this pmd), then we flush the SMP TLB and finally we write the
2154 	 * non-huge version of the pmd entry with pmd_populate.
2155 	 */
2156 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2157 
2158 	pmd_migration = is_pmd_migration_entry(old_pmd);
2159 	if (unlikely(pmd_migration)) {
2160 		swp_entry_t entry;
2161 
2162 		entry = pmd_to_swp_entry(old_pmd);
2163 		page = pfn_swap_entry_to_page(entry);
2164 		write = is_writable_migration_entry(entry);
2165 		if (PageAnon(page))
2166 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2167 		young = is_migration_entry_young(entry);
2168 		dirty = is_migration_entry_dirty(entry);
2169 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2170 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2171 	} else {
2172 		page = pmd_page(old_pmd);
2173 		if (pmd_dirty(old_pmd)) {
2174 			dirty = true;
2175 			SetPageDirty(page);
2176 		}
2177 		write = pmd_write(old_pmd);
2178 		young = pmd_young(old_pmd);
2179 		soft_dirty = pmd_soft_dirty(old_pmd);
2180 		uffd_wp = pmd_uffd_wp(old_pmd);
2181 
2182 		VM_BUG_ON_PAGE(!page_count(page), page);
2183 
2184 		/*
2185 		 * Without "freeze", we'll simply split the PMD, propagating the
2186 		 * PageAnonExclusive() flag for each PTE by setting it for
2187 		 * each subpage -- no need to (temporarily) clear.
2188 		 *
2189 		 * With "freeze" we want to replace mapped pages by
2190 		 * migration entries right away. This is only possible if we
2191 		 * managed to clear PageAnonExclusive() -- see
2192 		 * set_pmd_migration_entry().
2193 		 *
2194 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2195 		 * only and let try_to_migrate_one() fail later.
2196 		 *
2197 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2198 		 */
2199 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2200 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2201 			freeze = false;
2202 		if (!freeze)
2203 			page_ref_add(page, HPAGE_PMD_NR - 1);
2204 	}
2205 
2206 	/*
2207 	 * Withdraw the table only after we mark the pmd entry invalid.
2208 	 * This's critical for some architectures (Power).
2209 	 */
2210 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2211 	pmd_populate(mm, &_pmd, pgtable);
2212 
2213 	pte = pte_offset_map(&_pmd, haddr);
2214 	VM_BUG_ON(!pte);
2215 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2216 		pte_t entry;
2217 		/*
2218 		 * Note that NUMA hinting access restrictions are not
2219 		 * transferred to avoid any possibility of altering
2220 		 * permissions across VMAs.
2221 		 */
2222 		if (freeze || pmd_migration) {
2223 			swp_entry_t swp_entry;
2224 			if (write)
2225 				swp_entry = make_writable_migration_entry(
2226 							page_to_pfn(page + i));
2227 			else if (anon_exclusive)
2228 				swp_entry = make_readable_exclusive_migration_entry(
2229 							page_to_pfn(page + i));
2230 			else
2231 				swp_entry = make_readable_migration_entry(
2232 							page_to_pfn(page + i));
2233 			if (young)
2234 				swp_entry = make_migration_entry_young(swp_entry);
2235 			if (dirty)
2236 				swp_entry = make_migration_entry_dirty(swp_entry);
2237 			entry = swp_entry_to_pte(swp_entry);
2238 			if (soft_dirty)
2239 				entry = pte_swp_mksoft_dirty(entry);
2240 			if (uffd_wp)
2241 				entry = pte_swp_mkuffd_wp(entry);
2242 		} else {
2243 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2244 			if (write)
2245 				entry = pte_mkwrite(entry);
2246 			if (anon_exclusive)
2247 				SetPageAnonExclusive(page + i);
2248 			if (!young)
2249 				entry = pte_mkold(entry);
2250 			/* NOTE: this may set soft-dirty too on some archs */
2251 			if (dirty)
2252 				entry = pte_mkdirty(entry);
2253 			if (soft_dirty)
2254 				entry = pte_mksoft_dirty(entry);
2255 			if (uffd_wp)
2256 				entry = pte_mkuffd_wp(entry);
2257 			page_add_anon_rmap(page + i, vma, addr, false);
2258 		}
2259 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2260 		set_pte_at(mm, addr, pte, entry);
2261 		pte++;
2262 	}
2263 	pte_unmap(pte - 1);
2264 
2265 	if (!pmd_migration)
2266 		page_remove_rmap(page, vma, true);
2267 	if (freeze)
2268 		put_page(page);
2269 
2270 	smp_wmb(); /* make pte visible before pmd */
2271 	pmd_populate(mm, pmd, pgtable);
2272 }
2273 
2274 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2275 		unsigned long address, bool freeze, struct folio *folio)
2276 {
2277 	spinlock_t *ptl;
2278 	struct mmu_notifier_range range;
2279 
2280 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2281 				address & HPAGE_PMD_MASK,
2282 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283 	mmu_notifier_invalidate_range_start(&range);
2284 	ptl = pmd_lock(vma->vm_mm, pmd);
2285 
2286 	/*
2287 	 * If caller asks to setup a migration entry, we need a folio to check
2288 	 * pmd against. Otherwise we can end up replacing wrong folio.
2289 	 */
2290 	VM_BUG_ON(freeze && !folio);
2291 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2292 
2293 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2294 	    is_pmd_migration_entry(*pmd)) {
2295 		/*
2296 		 * It's safe to call pmd_page when folio is set because it's
2297 		 * guaranteed that pmd is present.
2298 		 */
2299 		if (folio && folio != page_folio(pmd_page(*pmd)))
2300 			goto out;
2301 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2302 	}
2303 
2304 out:
2305 	spin_unlock(ptl);
2306 	/*
2307 	 * No need to double call mmu_notifier->invalidate_range() callback.
2308 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2309 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2310 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2311 	 *    fault will trigger a flush_notify before pointing to a new page
2312 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2313 	 *    page in the meantime)
2314 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2315 	 *     to invalidate secondary tlb entry they are all still valid.
2316 	 *     any further changes to individual pte will notify. So no need
2317 	 *     to call mmu_notifier->invalidate_range()
2318 	 */
2319 	mmu_notifier_invalidate_range_only_end(&range);
2320 }
2321 
2322 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2323 		bool freeze, struct folio *folio)
2324 {
2325 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2326 
2327 	if (!pmd)
2328 		return;
2329 
2330 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2331 }
2332 
2333 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 	/*
2336 	 * If the new address isn't hpage aligned and it could previously
2337 	 * contain an hugepage: check if we need to split an huge pmd.
2338 	 */
2339 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2340 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2341 			 ALIGN(address, HPAGE_PMD_SIZE)))
2342 		split_huge_pmd_address(vma, address, false, NULL);
2343 }
2344 
2345 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2346 			     unsigned long start,
2347 			     unsigned long end,
2348 			     long adjust_next)
2349 {
2350 	/* Check if we need to split start first. */
2351 	split_huge_pmd_if_needed(vma, start);
2352 
2353 	/* Check if we need to split end next. */
2354 	split_huge_pmd_if_needed(vma, end);
2355 
2356 	/*
2357 	 * If we're also updating the next vma vm_start,
2358 	 * check if we need to split it.
2359 	 */
2360 	if (adjust_next > 0) {
2361 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2362 		unsigned long nstart = next->vm_start;
2363 		nstart += adjust_next;
2364 		split_huge_pmd_if_needed(next, nstart);
2365 	}
2366 }
2367 
2368 static void unmap_folio(struct folio *folio)
2369 {
2370 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2371 		TTU_SYNC;
2372 
2373 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2374 
2375 	/*
2376 	 * Anon pages need migration entries to preserve them, but file
2377 	 * pages can simply be left unmapped, then faulted back on demand.
2378 	 * If that is ever changed (perhaps for mlock), update remap_page().
2379 	 */
2380 	if (folio_test_anon(folio))
2381 		try_to_migrate(folio, ttu_flags);
2382 	else
2383 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2384 }
2385 
2386 static void remap_page(struct folio *folio, unsigned long nr)
2387 {
2388 	int i = 0;
2389 
2390 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2391 	if (!folio_test_anon(folio))
2392 		return;
2393 	for (;;) {
2394 		remove_migration_ptes(folio, folio, true);
2395 		i += folio_nr_pages(folio);
2396 		if (i >= nr)
2397 			break;
2398 		folio = folio_next(folio);
2399 	}
2400 }
2401 
2402 static void lru_add_page_tail(struct page *head, struct page *tail,
2403 		struct lruvec *lruvec, struct list_head *list)
2404 {
2405 	VM_BUG_ON_PAGE(!PageHead(head), head);
2406 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2407 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2408 	lockdep_assert_held(&lruvec->lru_lock);
2409 
2410 	if (list) {
2411 		/* page reclaim is reclaiming a huge page */
2412 		VM_WARN_ON(PageLRU(head));
2413 		get_page(tail);
2414 		list_add_tail(&tail->lru, list);
2415 	} else {
2416 		/* head is still on lru (and we have it frozen) */
2417 		VM_WARN_ON(!PageLRU(head));
2418 		if (PageUnevictable(tail))
2419 			tail->mlock_count = 0;
2420 		else
2421 			list_add_tail(&tail->lru, &head->lru);
2422 		SetPageLRU(tail);
2423 	}
2424 }
2425 
2426 static void __split_huge_page_tail(struct page *head, int tail,
2427 		struct lruvec *lruvec, struct list_head *list)
2428 {
2429 	struct page *page_tail = head + tail;
2430 
2431 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2432 
2433 	/*
2434 	 * Clone page flags before unfreezing refcount.
2435 	 *
2436 	 * After successful get_page_unless_zero() might follow flags change,
2437 	 * for example lock_page() which set PG_waiters.
2438 	 *
2439 	 * Note that for mapped sub-pages of an anonymous THP,
2440 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2441 	 * the migration entry instead from where remap_page() will restore it.
2442 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2443 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2444 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2445 	 */
2446 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2447 	page_tail->flags |= (head->flags &
2448 			((1L << PG_referenced) |
2449 			 (1L << PG_swapbacked) |
2450 			 (1L << PG_swapcache) |
2451 			 (1L << PG_mlocked) |
2452 			 (1L << PG_uptodate) |
2453 			 (1L << PG_active) |
2454 			 (1L << PG_workingset) |
2455 			 (1L << PG_locked) |
2456 			 (1L << PG_unevictable) |
2457 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2458 			 (1L << PG_arch_2) |
2459 			 (1L << PG_arch_3) |
2460 #endif
2461 			 (1L << PG_dirty) |
2462 			 LRU_GEN_MASK | LRU_REFS_MASK));
2463 
2464 	/* ->mapping in first and second tail page is replaced by other uses */
2465 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2466 			page_tail);
2467 	page_tail->mapping = head->mapping;
2468 	page_tail->index = head->index + tail;
2469 
2470 	/*
2471 	 * page->private should not be set in tail pages with the exception
2472 	 * of swap cache pages that store the swp_entry_t in tail pages.
2473 	 * Fix up and warn once if private is unexpectedly set.
2474 	 *
2475 	 * What of 32-bit systems, on which folio->_pincount overlays
2476 	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2477 	 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2478 	 */
2479 	if (!folio_test_swapcache(page_folio(head))) {
2480 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2481 		page_tail->private = 0;
2482 	}
2483 
2484 	/* Page flags must be visible before we make the page non-compound. */
2485 	smp_wmb();
2486 
2487 	/*
2488 	 * Clear PageTail before unfreezing page refcount.
2489 	 *
2490 	 * After successful get_page_unless_zero() might follow put_page()
2491 	 * which needs correct compound_head().
2492 	 */
2493 	clear_compound_head(page_tail);
2494 
2495 	/* Finally unfreeze refcount. Additional reference from page cache. */
2496 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2497 					  PageSwapCache(head)));
2498 
2499 	if (page_is_young(head))
2500 		set_page_young(page_tail);
2501 	if (page_is_idle(head))
2502 		set_page_idle(page_tail);
2503 
2504 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2505 
2506 	/*
2507 	 * always add to the tail because some iterators expect new
2508 	 * pages to show after the currently processed elements - e.g.
2509 	 * migrate_pages
2510 	 */
2511 	lru_add_page_tail(head, page_tail, lruvec, list);
2512 }
2513 
2514 static void __split_huge_page(struct page *page, struct list_head *list,
2515 		pgoff_t end)
2516 {
2517 	struct folio *folio = page_folio(page);
2518 	struct page *head = &folio->page;
2519 	struct lruvec *lruvec;
2520 	struct address_space *swap_cache = NULL;
2521 	unsigned long offset = 0;
2522 	unsigned int nr = thp_nr_pages(head);
2523 	int i;
2524 
2525 	/* complete memcg works before add pages to LRU */
2526 	split_page_memcg(head, nr);
2527 
2528 	if (PageAnon(head) && PageSwapCache(head)) {
2529 		swp_entry_t entry = { .val = page_private(head) };
2530 
2531 		offset = swp_offset(entry);
2532 		swap_cache = swap_address_space(entry);
2533 		xa_lock(&swap_cache->i_pages);
2534 	}
2535 
2536 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2537 	lruvec = folio_lruvec_lock(folio);
2538 
2539 	ClearPageHasHWPoisoned(head);
2540 
2541 	for (i = nr - 1; i >= 1; i--) {
2542 		__split_huge_page_tail(head, i, lruvec, list);
2543 		/* Some pages can be beyond EOF: drop them from page cache */
2544 		if (head[i].index >= end) {
2545 			struct folio *tail = page_folio(head + i);
2546 
2547 			if (shmem_mapping(head->mapping))
2548 				shmem_uncharge(head->mapping->host, 1);
2549 			else if (folio_test_clear_dirty(tail))
2550 				folio_account_cleaned(tail,
2551 					inode_to_wb(folio->mapping->host));
2552 			__filemap_remove_folio(tail, NULL);
2553 			folio_put(tail);
2554 		} else if (!PageAnon(page)) {
2555 			__xa_store(&head->mapping->i_pages, head[i].index,
2556 					head + i, 0);
2557 		} else if (swap_cache) {
2558 			__xa_store(&swap_cache->i_pages, offset + i,
2559 					head + i, 0);
2560 		}
2561 	}
2562 
2563 	ClearPageCompound(head);
2564 	unlock_page_lruvec(lruvec);
2565 	/* Caller disabled irqs, so they are still disabled here */
2566 
2567 	split_page_owner(head, nr);
2568 
2569 	/* See comment in __split_huge_page_tail() */
2570 	if (PageAnon(head)) {
2571 		/* Additional pin to swap cache */
2572 		if (PageSwapCache(head)) {
2573 			page_ref_add(head, 2);
2574 			xa_unlock(&swap_cache->i_pages);
2575 		} else {
2576 			page_ref_inc(head);
2577 		}
2578 	} else {
2579 		/* Additional pin to page cache */
2580 		page_ref_add(head, 2);
2581 		xa_unlock(&head->mapping->i_pages);
2582 	}
2583 	local_irq_enable();
2584 
2585 	remap_page(folio, nr);
2586 
2587 	if (PageSwapCache(head)) {
2588 		swp_entry_t entry = { .val = page_private(head) };
2589 
2590 		split_swap_cluster(entry);
2591 	}
2592 
2593 	for (i = 0; i < nr; i++) {
2594 		struct page *subpage = head + i;
2595 		if (subpage == page)
2596 			continue;
2597 		unlock_page(subpage);
2598 
2599 		/*
2600 		 * Subpages may be freed if there wasn't any mapping
2601 		 * like if add_to_swap() is running on a lru page that
2602 		 * had its mapping zapped. And freeing these pages
2603 		 * requires taking the lru_lock so we do the put_page
2604 		 * of the tail pages after the split is complete.
2605 		 */
2606 		free_page_and_swap_cache(subpage);
2607 	}
2608 }
2609 
2610 /* Racy check whether the huge page can be split */
2611 bool can_split_folio(struct folio *folio, int *pextra_pins)
2612 {
2613 	int extra_pins;
2614 
2615 	/* Additional pins from page cache */
2616 	if (folio_test_anon(folio))
2617 		extra_pins = folio_test_swapcache(folio) ?
2618 				folio_nr_pages(folio) : 0;
2619 	else
2620 		extra_pins = folio_nr_pages(folio);
2621 	if (pextra_pins)
2622 		*pextra_pins = extra_pins;
2623 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2624 }
2625 
2626 /*
2627  * This function splits huge page into normal pages. @page can point to any
2628  * subpage of huge page to split. Split doesn't change the position of @page.
2629  *
2630  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2631  * The huge page must be locked.
2632  *
2633  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2634  *
2635  * Both head page and tail pages will inherit mapping, flags, and so on from
2636  * the hugepage.
2637  *
2638  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2639  * they are not mapped.
2640  *
2641  * Returns 0 if the hugepage is split successfully.
2642  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2643  * us.
2644  */
2645 int split_huge_page_to_list(struct page *page, struct list_head *list)
2646 {
2647 	struct folio *folio = page_folio(page);
2648 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2649 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2650 	struct anon_vma *anon_vma = NULL;
2651 	struct address_space *mapping = NULL;
2652 	int extra_pins, ret;
2653 	pgoff_t end;
2654 	bool is_hzp;
2655 
2656 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2657 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2658 
2659 	is_hzp = is_huge_zero_page(&folio->page);
2660 	if (is_hzp) {
2661 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2662 		return -EBUSY;
2663 	}
2664 
2665 	if (folio_test_writeback(folio))
2666 		return -EBUSY;
2667 
2668 	if (folio_test_anon(folio)) {
2669 		/*
2670 		 * The caller does not necessarily hold an mmap_lock that would
2671 		 * prevent the anon_vma disappearing so we first we take a
2672 		 * reference to it and then lock the anon_vma for write. This
2673 		 * is similar to folio_lock_anon_vma_read except the write lock
2674 		 * is taken to serialise against parallel split or collapse
2675 		 * operations.
2676 		 */
2677 		anon_vma = folio_get_anon_vma(folio);
2678 		if (!anon_vma) {
2679 			ret = -EBUSY;
2680 			goto out;
2681 		}
2682 		end = -1;
2683 		mapping = NULL;
2684 		anon_vma_lock_write(anon_vma);
2685 	} else {
2686 		gfp_t gfp;
2687 
2688 		mapping = folio->mapping;
2689 
2690 		/* Truncated ? */
2691 		if (!mapping) {
2692 			ret = -EBUSY;
2693 			goto out;
2694 		}
2695 
2696 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2697 							GFP_RECLAIM_MASK);
2698 
2699 		if (folio_test_private(folio) &&
2700 				!filemap_release_folio(folio, gfp)) {
2701 			ret = -EBUSY;
2702 			goto out;
2703 		}
2704 
2705 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2706 		if (xas_error(&xas)) {
2707 			ret = xas_error(&xas);
2708 			goto out;
2709 		}
2710 
2711 		anon_vma = NULL;
2712 		i_mmap_lock_read(mapping);
2713 
2714 		/*
2715 		 *__split_huge_page() may need to trim off pages beyond EOF:
2716 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2717 		 * which cannot be nested inside the page tree lock. So note
2718 		 * end now: i_size itself may be changed at any moment, but
2719 		 * folio lock is good enough to serialize the trimming.
2720 		 */
2721 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2722 		if (shmem_mapping(mapping))
2723 			end = shmem_fallocend(mapping->host, end);
2724 	}
2725 
2726 	/*
2727 	 * Racy check if we can split the page, before unmap_folio() will
2728 	 * split PMDs
2729 	 */
2730 	if (!can_split_folio(folio, &extra_pins)) {
2731 		ret = -EAGAIN;
2732 		goto out_unlock;
2733 	}
2734 
2735 	unmap_folio(folio);
2736 
2737 	/* block interrupt reentry in xa_lock and spinlock */
2738 	local_irq_disable();
2739 	if (mapping) {
2740 		/*
2741 		 * Check if the folio is present in page cache.
2742 		 * We assume all tail are present too, if folio is there.
2743 		 */
2744 		xas_lock(&xas);
2745 		xas_reset(&xas);
2746 		if (xas_load(&xas) != folio)
2747 			goto fail;
2748 	}
2749 
2750 	/* Prevent deferred_split_scan() touching ->_refcount */
2751 	spin_lock(&ds_queue->split_queue_lock);
2752 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2753 		if (!list_empty(&folio->_deferred_list)) {
2754 			ds_queue->split_queue_len--;
2755 			list_del(&folio->_deferred_list);
2756 		}
2757 		spin_unlock(&ds_queue->split_queue_lock);
2758 		if (mapping) {
2759 			int nr = folio_nr_pages(folio);
2760 
2761 			xas_split(&xas, folio, folio_order(folio));
2762 			if (folio_test_swapbacked(folio)) {
2763 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2764 							-nr);
2765 			} else {
2766 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2767 							-nr);
2768 				filemap_nr_thps_dec(mapping);
2769 			}
2770 		}
2771 
2772 		__split_huge_page(page, list, end);
2773 		ret = 0;
2774 	} else {
2775 		spin_unlock(&ds_queue->split_queue_lock);
2776 fail:
2777 		if (mapping)
2778 			xas_unlock(&xas);
2779 		local_irq_enable();
2780 		remap_page(folio, folio_nr_pages(folio));
2781 		ret = -EAGAIN;
2782 	}
2783 
2784 out_unlock:
2785 	if (anon_vma) {
2786 		anon_vma_unlock_write(anon_vma);
2787 		put_anon_vma(anon_vma);
2788 	}
2789 	if (mapping)
2790 		i_mmap_unlock_read(mapping);
2791 out:
2792 	xas_destroy(&xas);
2793 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794 	return ret;
2795 }
2796 
2797 void free_transhuge_page(struct page *page)
2798 {
2799 	struct folio *folio = (struct folio *)page;
2800 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2801 	unsigned long flags;
2802 
2803 	/*
2804 	 * At this point, there is no one trying to add the folio to
2805 	 * deferred_list. If folio is not in deferred_list, it's safe
2806 	 * to check without acquiring the split_queue_lock.
2807 	 */
2808 	if (data_race(!list_empty(&folio->_deferred_list))) {
2809 		spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2810 		if (!list_empty(&folio->_deferred_list)) {
2811 			ds_queue->split_queue_len--;
2812 			list_del(&folio->_deferred_list);
2813 		}
2814 		spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2815 	}
2816 	free_compound_page(page);
2817 }
2818 
2819 void deferred_split_folio(struct folio *folio)
2820 {
2821 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2822 #ifdef CONFIG_MEMCG
2823 	struct mem_cgroup *memcg = folio_memcg(folio);
2824 #endif
2825 	unsigned long flags;
2826 
2827 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2828 
2829 	/*
2830 	 * The try_to_unmap() in page reclaim path might reach here too,
2831 	 * this may cause a race condition to corrupt deferred split queue.
2832 	 * And, if page reclaim is already handling the same folio, it is
2833 	 * unnecessary to handle it again in shrinker.
2834 	 *
2835 	 * Check the swapcache flag to determine if the folio is being
2836 	 * handled by page reclaim since THP swap would add the folio into
2837 	 * swap cache before calling try_to_unmap().
2838 	 */
2839 	if (folio_test_swapcache(folio))
2840 		return;
2841 
2842 	if (!list_empty(&folio->_deferred_list))
2843 		return;
2844 
2845 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2846 	if (list_empty(&folio->_deferred_list)) {
2847 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2848 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2849 		ds_queue->split_queue_len++;
2850 #ifdef CONFIG_MEMCG
2851 		if (memcg)
2852 			set_shrinker_bit(memcg, folio_nid(folio),
2853 					 deferred_split_shrinker.id);
2854 #endif
2855 	}
2856 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2857 }
2858 
2859 static unsigned long deferred_split_count(struct shrinker *shrink,
2860 		struct shrink_control *sc)
2861 {
2862 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2863 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2864 
2865 #ifdef CONFIG_MEMCG
2866 	if (sc->memcg)
2867 		ds_queue = &sc->memcg->deferred_split_queue;
2868 #endif
2869 	return READ_ONCE(ds_queue->split_queue_len);
2870 }
2871 
2872 static unsigned long deferred_split_scan(struct shrinker *shrink,
2873 		struct shrink_control *sc)
2874 {
2875 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2876 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2877 	unsigned long flags;
2878 	LIST_HEAD(list);
2879 	struct folio *folio, *next;
2880 	int split = 0;
2881 
2882 #ifdef CONFIG_MEMCG
2883 	if (sc->memcg)
2884 		ds_queue = &sc->memcg->deferred_split_queue;
2885 #endif
2886 
2887 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2888 	/* Take pin on all head pages to avoid freeing them under us */
2889 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2890 							_deferred_list) {
2891 		if (folio_try_get(folio)) {
2892 			list_move(&folio->_deferred_list, &list);
2893 		} else {
2894 			/* We lost race with folio_put() */
2895 			list_del_init(&folio->_deferred_list);
2896 			ds_queue->split_queue_len--;
2897 		}
2898 		if (!--sc->nr_to_scan)
2899 			break;
2900 	}
2901 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902 
2903 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2904 		if (!folio_trylock(folio))
2905 			goto next;
2906 		/* split_huge_page() removes page from list on success */
2907 		if (!split_folio(folio))
2908 			split++;
2909 		folio_unlock(folio);
2910 next:
2911 		folio_put(folio);
2912 	}
2913 
2914 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2915 	list_splice_tail(&list, &ds_queue->split_queue);
2916 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2917 
2918 	/*
2919 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2920 	 * This can happen if pages were freed under us.
2921 	 */
2922 	if (!split && list_empty(&ds_queue->split_queue))
2923 		return SHRINK_STOP;
2924 	return split;
2925 }
2926 
2927 static struct shrinker deferred_split_shrinker = {
2928 	.count_objects = deferred_split_count,
2929 	.scan_objects = deferred_split_scan,
2930 	.seeks = DEFAULT_SEEKS,
2931 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2932 		 SHRINKER_NONSLAB,
2933 };
2934 
2935 #ifdef CONFIG_DEBUG_FS
2936 static void split_huge_pages_all(void)
2937 {
2938 	struct zone *zone;
2939 	struct page *page;
2940 	struct folio *folio;
2941 	unsigned long pfn, max_zone_pfn;
2942 	unsigned long total = 0, split = 0;
2943 
2944 	pr_debug("Split all THPs\n");
2945 	for_each_zone(zone) {
2946 		if (!managed_zone(zone))
2947 			continue;
2948 		max_zone_pfn = zone_end_pfn(zone);
2949 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2950 			int nr_pages;
2951 
2952 			page = pfn_to_online_page(pfn);
2953 			if (!page || PageTail(page))
2954 				continue;
2955 			folio = page_folio(page);
2956 			if (!folio_try_get(folio))
2957 				continue;
2958 
2959 			if (unlikely(page_folio(page) != folio))
2960 				goto next;
2961 
2962 			if (zone != folio_zone(folio))
2963 				goto next;
2964 
2965 			if (!folio_test_large(folio)
2966 				|| folio_test_hugetlb(folio)
2967 				|| !folio_test_lru(folio))
2968 				goto next;
2969 
2970 			total++;
2971 			folio_lock(folio);
2972 			nr_pages = folio_nr_pages(folio);
2973 			if (!split_folio(folio))
2974 				split++;
2975 			pfn += nr_pages - 1;
2976 			folio_unlock(folio);
2977 next:
2978 			folio_put(folio);
2979 			cond_resched();
2980 		}
2981 	}
2982 
2983 	pr_debug("%lu of %lu THP split\n", split, total);
2984 }
2985 
2986 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2987 {
2988 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2989 		    is_vm_hugetlb_page(vma);
2990 }
2991 
2992 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2993 				unsigned long vaddr_end)
2994 {
2995 	int ret = 0;
2996 	struct task_struct *task;
2997 	struct mm_struct *mm;
2998 	unsigned long total = 0, split = 0;
2999 	unsigned long addr;
3000 
3001 	vaddr_start &= PAGE_MASK;
3002 	vaddr_end &= PAGE_MASK;
3003 
3004 	/* Find the task_struct from pid */
3005 	rcu_read_lock();
3006 	task = find_task_by_vpid(pid);
3007 	if (!task) {
3008 		rcu_read_unlock();
3009 		ret = -ESRCH;
3010 		goto out;
3011 	}
3012 	get_task_struct(task);
3013 	rcu_read_unlock();
3014 
3015 	/* Find the mm_struct */
3016 	mm = get_task_mm(task);
3017 	put_task_struct(task);
3018 
3019 	if (!mm) {
3020 		ret = -EINVAL;
3021 		goto out;
3022 	}
3023 
3024 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3025 		 pid, vaddr_start, vaddr_end);
3026 
3027 	mmap_read_lock(mm);
3028 	/*
3029 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3030 	 * table filled with PTE-mapped THPs, each of which is distinct.
3031 	 */
3032 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3033 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3034 		struct page *page;
3035 
3036 		if (!vma)
3037 			break;
3038 
3039 		/* skip special VMA and hugetlb VMA */
3040 		if (vma_not_suitable_for_thp_split(vma)) {
3041 			addr = vma->vm_end;
3042 			continue;
3043 		}
3044 
3045 		/* FOLL_DUMP to ignore special (like zero) pages */
3046 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3047 
3048 		if (IS_ERR_OR_NULL(page))
3049 			continue;
3050 
3051 		if (!is_transparent_hugepage(page))
3052 			goto next;
3053 
3054 		total++;
3055 		if (!can_split_folio(page_folio(page), NULL))
3056 			goto next;
3057 
3058 		if (!trylock_page(page))
3059 			goto next;
3060 
3061 		if (!split_huge_page(page))
3062 			split++;
3063 
3064 		unlock_page(page);
3065 next:
3066 		put_page(page);
3067 		cond_resched();
3068 	}
3069 	mmap_read_unlock(mm);
3070 	mmput(mm);
3071 
3072 	pr_debug("%lu of %lu THP split\n", split, total);
3073 
3074 out:
3075 	return ret;
3076 }
3077 
3078 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3079 				pgoff_t off_end)
3080 {
3081 	struct filename *file;
3082 	struct file *candidate;
3083 	struct address_space *mapping;
3084 	int ret = -EINVAL;
3085 	pgoff_t index;
3086 	int nr_pages = 1;
3087 	unsigned long total = 0, split = 0;
3088 
3089 	file = getname_kernel(file_path);
3090 	if (IS_ERR(file))
3091 		return ret;
3092 
3093 	candidate = file_open_name(file, O_RDONLY, 0);
3094 	if (IS_ERR(candidate))
3095 		goto out;
3096 
3097 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3098 		 file_path, off_start, off_end);
3099 
3100 	mapping = candidate->f_mapping;
3101 
3102 	for (index = off_start; index < off_end; index += nr_pages) {
3103 		struct folio *folio = filemap_get_folio(mapping, index);
3104 
3105 		nr_pages = 1;
3106 		if (IS_ERR(folio))
3107 			continue;
3108 
3109 		if (!folio_test_large(folio))
3110 			goto next;
3111 
3112 		total++;
3113 		nr_pages = folio_nr_pages(folio);
3114 
3115 		if (!folio_trylock(folio))
3116 			goto next;
3117 
3118 		if (!split_folio(folio))
3119 			split++;
3120 
3121 		folio_unlock(folio);
3122 next:
3123 		folio_put(folio);
3124 		cond_resched();
3125 	}
3126 
3127 	filp_close(candidate, NULL);
3128 	ret = 0;
3129 
3130 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3131 out:
3132 	putname(file);
3133 	return ret;
3134 }
3135 
3136 #define MAX_INPUT_BUF_SZ 255
3137 
3138 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3139 				size_t count, loff_t *ppops)
3140 {
3141 	static DEFINE_MUTEX(split_debug_mutex);
3142 	ssize_t ret;
3143 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3144 	char input_buf[MAX_INPUT_BUF_SZ];
3145 	int pid;
3146 	unsigned long vaddr_start, vaddr_end;
3147 
3148 	ret = mutex_lock_interruptible(&split_debug_mutex);
3149 	if (ret)
3150 		return ret;
3151 
3152 	ret = -EFAULT;
3153 
3154 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3155 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3156 		goto out;
3157 
3158 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3159 
3160 	if (input_buf[0] == '/') {
3161 		char *tok;
3162 		char *buf = input_buf;
3163 		char file_path[MAX_INPUT_BUF_SZ];
3164 		pgoff_t off_start = 0, off_end = 0;
3165 		size_t input_len = strlen(input_buf);
3166 
3167 		tok = strsep(&buf, ",");
3168 		if (tok) {
3169 			strcpy(file_path, tok);
3170 		} else {
3171 			ret = -EINVAL;
3172 			goto out;
3173 		}
3174 
3175 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3176 		if (ret != 2) {
3177 			ret = -EINVAL;
3178 			goto out;
3179 		}
3180 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3181 		if (!ret)
3182 			ret = input_len;
3183 
3184 		goto out;
3185 	}
3186 
3187 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3188 	if (ret == 1 && pid == 1) {
3189 		split_huge_pages_all();
3190 		ret = strlen(input_buf);
3191 		goto out;
3192 	} else if (ret != 3) {
3193 		ret = -EINVAL;
3194 		goto out;
3195 	}
3196 
3197 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3198 	if (!ret)
3199 		ret = strlen(input_buf);
3200 out:
3201 	mutex_unlock(&split_debug_mutex);
3202 	return ret;
3203 
3204 }
3205 
3206 static const struct file_operations split_huge_pages_fops = {
3207 	.owner	 = THIS_MODULE,
3208 	.write	 = split_huge_pages_write,
3209 	.llseek  = no_llseek,
3210 };
3211 
3212 static int __init split_huge_pages_debugfs(void)
3213 {
3214 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3215 			    &split_huge_pages_fops);
3216 	return 0;
3217 }
3218 late_initcall(split_huge_pages_debugfs);
3219 #endif
3220 
3221 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3222 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3223 		struct page *page)
3224 {
3225 	struct vm_area_struct *vma = pvmw->vma;
3226 	struct mm_struct *mm = vma->vm_mm;
3227 	unsigned long address = pvmw->address;
3228 	bool anon_exclusive;
3229 	pmd_t pmdval;
3230 	swp_entry_t entry;
3231 	pmd_t pmdswp;
3232 
3233 	if (!(pvmw->pmd && !pvmw->pte))
3234 		return 0;
3235 
3236 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3237 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3238 
3239 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3240 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3241 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3242 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3243 		return -EBUSY;
3244 	}
3245 
3246 	if (pmd_dirty(pmdval))
3247 		set_page_dirty(page);
3248 	if (pmd_write(pmdval))
3249 		entry = make_writable_migration_entry(page_to_pfn(page));
3250 	else if (anon_exclusive)
3251 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3252 	else
3253 		entry = make_readable_migration_entry(page_to_pfn(page));
3254 	if (pmd_young(pmdval))
3255 		entry = make_migration_entry_young(entry);
3256 	if (pmd_dirty(pmdval))
3257 		entry = make_migration_entry_dirty(entry);
3258 	pmdswp = swp_entry_to_pmd(entry);
3259 	if (pmd_soft_dirty(pmdval))
3260 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3261 	if (pmd_uffd_wp(pmdval))
3262 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3263 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3264 	page_remove_rmap(page, vma, true);
3265 	put_page(page);
3266 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3267 
3268 	return 0;
3269 }
3270 
3271 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3272 {
3273 	struct vm_area_struct *vma = pvmw->vma;
3274 	struct mm_struct *mm = vma->vm_mm;
3275 	unsigned long address = pvmw->address;
3276 	unsigned long haddr = address & HPAGE_PMD_MASK;
3277 	pmd_t pmde;
3278 	swp_entry_t entry;
3279 
3280 	if (!(pvmw->pmd && !pvmw->pte))
3281 		return;
3282 
3283 	entry = pmd_to_swp_entry(*pvmw->pmd);
3284 	get_page(new);
3285 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3286 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3287 		pmde = pmd_mksoft_dirty(pmde);
3288 	if (is_writable_migration_entry(entry))
3289 		pmde = pmd_mkwrite(pmde);
3290 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3291 		pmde = pmd_mkuffd_wp(pmde);
3292 	if (!is_migration_entry_young(entry))
3293 		pmde = pmd_mkold(pmde);
3294 	/* NOTE: this may contain setting soft-dirty on some archs */
3295 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3296 		pmde = pmd_mkdirty(pmde);
3297 
3298 	if (PageAnon(new)) {
3299 		rmap_t rmap_flags = RMAP_COMPOUND;
3300 
3301 		if (!is_readable_migration_entry(entry))
3302 			rmap_flags |= RMAP_EXCLUSIVE;
3303 
3304 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3305 	} else {
3306 		page_add_file_rmap(new, vma, true);
3307 	}
3308 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3309 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3310 
3311 	/* No need to invalidate - it was non-present before */
3312 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3313 	trace_remove_migration_pmd(address, pmd_val(pmde));
3314 }
3315 #endif
3316