xref: /linux/mm/huge_memory.c (revision 8e3ed5440b0c305dcd1d5fa7419bd8066d22ef42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49 
50 /*
51  * By default, transparent hugepage support is disabled in order to avoid
52  * risking an increased memory footprint for applications that are not
53  * guaranteed to benefit from it. When transparent hugepage support is
54  * enabled, it is for all mappings, and khugepaged scans all mappings.
55  * Defrag is invoked by khugepaged hugepage allocations and by page faults
56  * for all hugepage allocations.
57  */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 
69 static struct shrinker *deferred_split_shrinker;
70 static unsigned long deferred_split_count(struct shrinker *shrink,
71 					  struct shrink_control *sc);
72 static unsigned long deferred_split_scan(struct shrinker *shrink,
73 					 struct shrink_control *sc);
74 
75 static atomic_t huge_zero_refcount;
76 struct page *huge_zero_page __read_mostly;
77 unsigned long huge_zero_pfn __read_mostly = ~0UL;
78 unsigned long huge_anon_orders_always __read_mostly;
79 unsigned long huge_anon_orders_madvise __read_mostly;
80 unsigned long huge_anon_orders_inherit __read_mostly;
81 
82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
83 					 unsigned long vm_flags, bool smaps,
84 					 bool in_pf, bool enforce_sysfs,
85 					 unsigned long orders)
86 {
87 	/* Check the intersection of requested and supported orders. */
88 	orders &= vma_is_anonymous(vma) ?
89 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
90 	if (!orders)
91 		return 0;
92 
93 	if (!vma->vm_mm)		/* vdso */
94 		return 0;
95 
96 	/*
97 	 * Explicitly disabled through madvise or prctl, or some
98 	 * architectures may disable THP for some mappings, for
99 	 * example, s390 kvm.
100 	 * */
101 	if ((vm_flags & VM_NOHUGEPAGE) ||
102 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
103 		return 0;
104 	/*
105 	 * If the hardware/firmware marked hugepage support disabled.
106 	 */
107 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
108 		return 0;
109 
110 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
111 	if (vma_is_dax(vma))
112 		return in_pf ? orders : 0;
113 
114 	/*
115 	 * khugepaged special VMA and hugetlb VMA.
116 	 * Must be checked after dax since some dax mappings may have
117 	 * VM_MIXEDMAP set.
118 	 */
119 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
120 		return 0;
121 
122 	/*
123 	 * Check alignment for file vma and size for both file and anon vma by
124 	 * filtering out the unsuitable orders.
125 	 *
126 	 * Skip the check for page fault. Huge fault does the check in fault
127 	 * handlers.
128 	 */
129 	if (!in_pf) {
130 		int order = highest_order(orders);
131 		unsigned long addr;
132 
133 		while (orders) {
134 			addr = vma->vm_end - (PAGE_SIZE << order);
135 			if (thp_vma_suitable_order(vma, addr, order))
136 				break;
137 			order = next_order(&orders, order);
138 		}
139 
140 		if (!orders)
141 			return 0;
142 	}
143 
144 	/*
145 	 * Enabled via shmem mount options or sysfs settings.
146 	 * Must be done before hugepage flags check since shmem has its
147 	 * own flags.
148 	 */
149 	if (!in_pf && shmem_file(vma->vm_file))
150 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
151 				     !enforce_sysfs, vma->vm_mm, vm_flags)
152 			? orders : 0;
153 
154 	if (!vma_is_anonymous(vma)) {
155 		/*
156 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
157 		 * were already handled in thp_vma_allowable_orders().
158 		 */
159 		if (enforce_sysfs &&
160 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
161 						    !hugepage_global_always())))
162 			return 0;
163 
164 		/*
165 		 * Trust that ->huge_fault() handlers know what they are doing
166 		 * in fault path.
167 		 */
168 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
169 			return orders;
170 		/* Only regular file is valid in collapse path */
171 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
172 			return orders;
173 		return 0;
174 	}
175 
176 	if (vma_is_temporary_stack(vma))
177 		return 0;
178 
179 	/*
180 	 * THPeligible bit of smaps should show 1 for proper VMAs even
181 	 * though anon_vma is not initialized yet.
182 	 *
183 	 * Allow page fault since anon_vma may be not initialized until
184 	 * the first page fault.
185 	 */
186 	if (!vma->anon_vma)
187 		return (smaps || in_pf) ? orders : 0;
188 
189 	return orders;
190 }
191 
192 static bool get_huge_zero_page(void)
193 {
194 	struct page *zero_page;
195 retry:
196 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
197 		return true;
198 
199 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
200 			HPAGE_PMD_ORDER);
201 	if (!zero_page) {
202 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
203 		return false;
204 	}
205 	preempt_disable();
206 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
207 		preempt_enable();
208 		__free_pages(zero_page, compound_order(zero_page));
209 		goto retry;
210 	}
211 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
212 
213 	/* We take additional reference here. It will be put back by shrinker */
214 	atomic_set(&huge_zero_refcount, 2);
215 	preempt_enable();
216 	count_vm_event(THP_ZERO_PAGE_ALLOC);
217 	return true;
218 }
219 
220 static void put_huge_zero_page(void)
221 {
222 	/*
223 	 * Counter should never go to zero here. Only shrinker can put
224 	 * last reference.
225 	 */
226 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
227 }
228 
229 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
230 {
231 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
232 		return READ_ONCE(huge_zero_page);
233 
234 	if (!get_huge_zero_page())
235 		return NULL;
236 
237 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
238 		put_huge_zero_page();
239 
240 	return READ_ONCE(huge_zero_page);
241 }
242 
243 void mm_put_huge_zero_page(struct mm_struct *mm)
244 {
245 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
246 		put_huge_zero_page();
247 }
248 
249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
250 					struct shrink_control *sc)
251 {
252 	/* we can free zero page only if last reference remains */
253 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
254 }
255 
256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
257 				       struct shrink_control *sc)
258 {
259 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
260 		struct page *zero_page = xchg(&huge_zero_page, NULL);
261 		BUG_ON(zero_page == NULL);
262 		WRITE_ONCE(huge_zero_pfn, ~0UL);
263 		__free_pages(zero_page, compound_order(zero_page));
264 		return HPAGE_PMD_NR;
265 	}
266 
267 	return 0;
268 }
269 
270 static struct shrinker *huge_zero_page_shrinker;
271 
272 #ifdef CONFIG_SYSFS
273 static ssize_t enabled_show(struct kobject *kobj,
274 			    struct kobj_attribute *attr, char *buf)
275 {
276 	const char *output;
277 
278 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
279 		output = "[always] madvise never";
280 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
281 			  &transparent_hugepage_flags))
282 		output = "always [madvise] never";
283 	else
284 		output = "always madvise [never]";
285 
286 	return sysfs_emit(buf, "%s\n", output);
287 }
288 
289 static ssize_t enabled_store(struct kobject *kobj,
290 			     struct kobj_attribute *attr,
291 			     const char *buf, size_t count)
292 {
293 	ssize_t ret = count;
294 
295 	if (sysfs_streq(buf, "always")) {
296 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
298 	} else if (sysfs_streq(buf, "madvise")) {
299 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
300 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 	} else if (sysfs_streq(buf, "never")) {
302 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
303 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 	} else
305 		ret = -EINVAL;
306 
307 	if (ret > 0) {
308 		int err = start_stop_khugepaged();
309 		if (err)
310 			ret = err;
311 	}
312 	return ret;
313 }
314 
315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
316 
317 ssize_t single_hugepage_flag_show(struct kobject *kobj,
318 				  struct kobj_attribute *attr, char *buf,
319 				  enum transparent_hugepage_flag flag)
320 {
321 	return sysfs_emit(buf, "%d\n",
322 			  !!test_bit(flag, &transparent_hugepage_flags));
323 }
324 
325 ssize_t single_hugepage_flag_store(struct kobject *kobj,
326 				 struct kobj_attribute *attr,
327 				 const char *buf, size_t count,
328 				 enum transparent_hugepage_flag flag)
329 {
330 	unsigned long value;
331 	int ret;
332 
333 	ret = kstrtoul(buf, 10, &value);
334 	if (ret < 0)
335 		return ret;
336 	if (value > 1)
337 		return -EINVAL;
338 
339 	if (value)
340 		set_bit(flag, &transparent_hugepage_flags);
341 	else
342 		clear_bit(flag, &transparent_hugepage_flags);
343 
344 	return count;
345 }
346 
347 static ssize_t defrag_show(struct kobject *kobj,
348 			   struct kobj_attribute *attr, char *buf)
349 {
350 	const char *output;
351 
352 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
353 		     &transparent_hugepage_flags))
354 		output = "[always] defer defer+madvise madvise never";
355 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
356 			  &transparent_hugepage_flags))
357 		output = "always [defer] defer+madvise madvise never";
358 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
359 			  &transparent_hugepage_flags))
360 		output = "always defer [defer+madvise] madvise never";
361 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
362 			  &transparent_hugepage_flags))
363 		output = "always defer defer+madvise [madvise] never";
364 	else
365 		output = "always defer defer+madvise madvise [never]";
366 
367 	return sysfs_emit(buf, "%s\n", output);
368 }
369 
370 static ssize_t defrag_store(struct kobject *kobj,
371 			    struct kobj_attribute *attr,
372 			    const char *buf, size_t count)
373 {
374 	if (sysfs_streq(buf, "always")) {
375 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
376 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
377 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
378 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
379 	} else if (sysfs_streq(buf, "defer+madvise")) {
380 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
381 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
382 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
383 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 	} else if (sysfs_streq(buf, "defer")) {
385 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
387 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
388 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 	} else if (sysfs_streq(buf, "madvise")) {
390 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
391 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
393 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 	} else if (sysfs_streq(buf, "never")) {
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 	} else
400 		return -EINVAL;
401 
402 	return count;
403 }
404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
405 
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 				  struct kobj_attribute *attr, char *buf)
408 {
409 	return single_hugepage_flag_show(kobj, attr, buf,
410 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 		struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 	return single_hugepage_flag_store(kobj, attr, buf, count,
416 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
419 
420 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
421 				   struct kobj_attribute *attr, char *buf)
422 {
423 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
424 }
425 static struct kobj_attribute hpage_pmd_size_attr =
426 	__ATTR_RO(hpage_pmd_size);
427 
428 static struct attribute *hugepage_attr[] = {
429 	&enabled_attr.attr,
430 	&defrag_attr.attr,
431 	&use_zero_page_attr.attr,
432 	&hpage_pmd_size_attr.attr,
433 #ifdef CONFIG_SHMEM
434 	&shmem_enabled_attr.attr,
435 #endif
436 	NULL,
437 };
438 
439 static const struct attribute_group hugepage_attr_group = {
440 	.attrs = hugepage_attr,
441 };
442 
443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
444 static void thpsize_release(struct kobject *kobj);
445 static DEFINE_SPINLOCK(huge_anon_orders_lock);
446 static LIST_HEAD(thpsize_list);
447 
448 struct thpsize {
449 	struct kobject kobj;
450 	struct list_head node;
451 	int order;
452 };
453 
454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
455 
456 static ssize_t thpsize_enabled_show(struct kobject *kobj,
457 				    struct kobj_attribute *attr, char *buf)
458 {
459 	int order = to_thpsize(kobj)->order;
460 	const char *output;
461 
462 	if (test_bit(order, &huge_anon_orders_always))
463 		output = "[always] inherit madvise never";
464 	else if (test_bit(order, &huge_anon_orders_inherit))
465 		output = "always [inherit] madvise never";
466 	else if (test_bit(order, &huge_anon_orders_madvise))
467 		output = "always inherit [madvise] never";
468 	else
469 		output = "always inherit madvise [never]";
470 
471 	return sysfs_emit(buf, "%s\n", output);
472 }
473 
474 static ssize_t thpsize_enabled_store(struct kobject *kobj,
475 				     struct kobj_attribute *attr,
476 				     const char *buf, size_t count)
477 {
478 	int order = to_thpsize(kobj)->order;
479 	ssize_t ret = count;
480 
481 	if (sysfs_streq(buf, "always")) {
482 		spin_lock(&huge_anon_orders_lock);
483 		clear_bit(order, &huge_anon_orders_inherit);
484 		clear_bit(order, &huge_anon_orders_madvise);
485 		set_bit(order, &huge_anon_orders_always);
486 		spin_unlock(&huge_anon_orders_lock);
487 	} else if (sysfs_streq(buf, "inherit")) {
488 		spin_lock(&huge_anon_orders_lock);
489 		clear_bit(order, &huge_anon_orders_always);
490 		clear_bit(order, &huge_anon_orders_madvise);
491 		set_bit(order, &huge_anon_orders_inherit);
492 		spin_unlock(&huge_anon_orders_lock);
493 	} else if (sysfs_streq(buf, "madvise")) {
494 		spin_lock(&huge_anon_orders_lock);
495 		clear_bit(order, &huge_anon_orders_always);
496 		clear_bit(order, &huge_anon_orders_inherit);
497 		set_bit(order, &huge_anon_orders_madvise);
498 		spin_unlock(&huge_anon_orders_lock);
499 	} else if (sysfs_streq(buf, "never")) {
500 		spin_lock(&huge_anon_orders_lock);
501 		clear_bit(order, &huge_anon_orders_always);
502 		clear_bit(order, &huge_anon_orders_inherit);
503 		clear_bit(order, &huge_anon_orders_madvise);
504 		spin_unlock(&huge_anon_orders_lock);
505 	} else
506 		ret = -EINVAL;
507 
508 	return ret;
509 }
510 
511 static struct kobj_attribute thpsize_enabled_attr =
512 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
513 
514 static struct attribute *thpsize_attrs[] = {
515 	&thpsize_enabled_attr.attr,
516 	NULL,
517 };
518 
519 static const struct attribute_group thpsize_attr_group = {
520 	.attrs = thpsize_attrs,
521 };
522 
523 static const struct kobj_type thpsize_ktype = {
524 	.release = &thpsize_release,
525 	.sysfs_ops = &kobj_sysfs_ops,
526 };
527 
528 static struct thpsize *thpsize_create(int order, struct kobject *parent)
529 {
530 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
531 	struct thpsize *thpsize;
532 	int ret;
533 
534 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
535 	if (!thpsize)
536 		return ERR_PTR(-ENOMEM);
537 
538 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
539 				   "hugepages-%lukB", size);
540 	if (ret) {
541 		kfree(thpsize);
542 		return ERR_PTR(ret);
543 	}
544 
545 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
546 	if (ret) {
547 		kobject_put(&thpsize->kobj);
548 		return ERR_PTR(ret);
549 	}
550 
551 	thpsize->order = order;
552 	return thpsize;
553 }
554 
555 static void thpsize_release(struct kobject *kobj)
556 {
557 	kfree(to_thpsize(kobj));
558 }
559 
560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
561 {
562 	int err;
563 	struct thpsize *thpsize;
564 	unsigned long orders;
565 	int order;
566 
567 	/*
568 	 * Default to setting PMD-sized THP to inherit the global setting and
569 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
570 	 * constant so we have to do this here.
571 	 */
572 	huge_anon_orders_inherit = BIT(PMD_ORDER);
573 
574 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 	if (unlikely(!*hugepage_kobj)) {
576 		pr_err("failed to create transparent hugepage kobject\n");
577 		return -ENOMEM;
578 	}
579 
580 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 	if (err) {
582 		pr_err("failed to register transparent hugepage group\n");
583 		goto delete_obj;
584 	}
585 
586 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 	if (err) {
588 		pr_err("failed to register transparent hugepage group\n");
589 		goto remove_hp_group;
590 	}
591 
592 	orders = THP_ORDERS_ALL_ANON;
593 	order = highest_order(orders);
594 	while (orders) {
595 		thpsize = thpsize_create(order, *hugepage_kobj);
596 		if (IS_ERR(thpsize)) {
597 			pr_err("failed to create thpsize for order %d\n", order);
598 			err = PTR_ERR(thpsize);
599 			goto remove_all;
600 		}
601 		list_add(&thpsize->node, &thpsize_list);
602 		order = next_order(&orders, order);
603 	}
604 
605 	return 0;
606 
607 remove_all:
608 	hugepage_exit_sysfs(*hugepage_kobj);
609 	return err;
610 remove_hp_group:
611 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
612 delete_obj:
613 	kobject_put(*hugepage_kobj);
614 	return err;
615 }
616 
617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 	struct thpsize *thpsize, *tmp;
620 
621 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
622 		list_del(&thpsize->node);
623 		kobject_put(&thpsize->kobj);
624 	}
625 
626 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
627 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
628 	kobject_put(hugepage_kobj);
629 }
630 #else
631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
632 {
633 	return 0;
634 }
635 
636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 }
639 #endif /* CONFIG_SYSFS */
640 
641 static int __init thp_shrinker_init(void)
642 {
643 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
644 	if (!huge_zero_page_shrinker)
645 		return -ENOMEM;
646 
647 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
648 						 SHRINKER_MEMCG_AWARE |
649 						 SHRINKER_NONSLAB,
650 						 "thp-deferred_split");
651 	if (!deferred_split_shrinker) {
652 		shrinker_free(huge_zero_page_shrinker);
653 		return -ENOMEM;
654 	}
655 
656 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
657 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
658 	shrinker_register(huge_zero_page_shrinker);
659 
660 	deferred_split_shrinker->count_objects = deferred_split_count;
661 	deferred_split_shrinker->scan_objects = deferred_split_scan;
662 	shrinker_register(deferred_split_shrinker);
663 
664 	return 0;
665 }
666 
667 static void __init thp_shrinker_exit(void)
668 {
669 	shrinker_free(huge_zero_page_shrinker);
670 	shrinker_free(deferred_split_shrinker);
671 }
672 
673 static int __init hugepage_init(void)
674 {
675 	int err;
676 	struct kobject *hugepage_kobj;
677 
678 	if (!has_transparent_hugepage()) {
679 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
680 		return -EINVAL;
681 	}
682 
683 	/*
684 	 * hugepages can't be allocated by the buddy allocator
685 	 */
686 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
687 	/*
688 	 * we use page->mapping and page->index in second tail page
689 	 * as list_head: assuming THP order >= 2
690 	 */
691 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
692 
693 	err = hugepage_init_sysfs(&hugepage_kobj);
694 	if (err)
695 		goto err_sysfs;
696 
697 	err = khugepaged_init();
698 	if (err)
699 		goto err_slab;
700 
701 	err = thp_shrinker_init();
702 	if (err)
703 		goto err_shrinker;
704 
705 	/*
706 	 * By default disable transparent hugepages on smaller systems,
707 	 * where the extra memory used could hurt more than TLB overhead
708 	 * is likely to save.  The admin can still enable it through /sys.
709 	 */
710 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
711 		transparent_hugepage_flags = 0;
712 		return 0;
713 	}
714 
715 	err = start_stop_khugepaged();
716 	if (err)
717 		goto err_khugepaged;
718 
719 	return 0;
720 err_khugepaged:
721 	thp_shrinker_exit();
722 err_shrinker:
723 	khugepaged_destroy();
724 err_slab:
725 	hugepage_exit_sysfs(hugepage_kobj);
726 err_sysfs:
727 	return err;
728 }
729 subsys_initcall(hugepage_init);
730 
731 static int __init setup_transparent_hugepage(char *str)
732 {
733 	int ret = 0;
734 	if (!str)
735 		goto out;
736 	if (!strcmp(str, "always")) {
737 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
738 			&transparent_hugepage_flags);
739 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
740 			  &transparent_hugepage_flags);
741 		ret = 1;
742 	} else if (!strcmp(str, "madvise")) {
743 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
744 			  &transparent_hugepage_flags);
745 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
746 			&transparent_hugepage_flags);
747 		ret = 1;
748 	} else if (!strcmp(str, "never")) {
749 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
750 			  &transparent_hugepage_flags);
751 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
752 			  &transparent_hugepage_flags);
753 		ret = 1;
754 	}
755 out:
756 	if (!ret)
757 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
758 	return ret;
759 }
760 __setup("transparent_hugepage=", setup_transparent_hugepage);
761 
762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
763 {
764 	if (likely(vma->vm_flags & VM_WRITE))
765 		pmd = pmd_mkwrite(pmd, vma);
766 	return pmd;
767 }
768 
769 #ifdef CONFIG_MEMCG
770 static inline
771 struct deferred_split *get_deferred_split_queue(struct folio *folio)
772 {
773 	struct mem_cgroup *memcg = folio_memcg(folio);
774 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
775 
776 	if (memcg)
777 		return &memcg->deferred_split_queue;
778 	else
779 		return &pgdat->deferred_split_queue;
780 }
781 #else
782 static inline
783 struct deferred_split *get_deferred_split_queue(struct folio *folio)
784 {
785 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
786 
787 	return &pgdat->deferred_split_queue;
788 }
789 #endif
790 
791 void folio_prep_large_rmappable(struct folio *folio)
792 {
793 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
794 	INIT_LIST_HEAD(&folio->_deferred_list);
795 	folio_set_large_rmappable(folio);
796 }
797 
798 static inline bool is_transparent_hugepage(struct folio *folio)
799 {
800 	if (!folio_test_large(folio))
801 		return false;
802 
803 	return is_huge_zero_page(&folio->page) ||
804 		folio_test_large_rmappable(folio);
805 }
806 
807 static unsigned long __thp_get_unmapped_area(struct file *filp,
808 		unsigned long addr, unsigned long len,
809 		loff_t off, unsigned long flags, unsigned long size)
810 {
811 	loff_t off_end = off + len;
812 	loff_t off_align = round_up(off, size);
813 	unsigned long len_pad, ret, off_sub;
814 
815 	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
816 		return 0;
817 
818 	if (off_end <= off_align || (off_end - off_align) < size)
819 		return 0;
820 
821 	len_pad = len + size;
822 	if (len_pad < len || (off + len_pad) < off)
823 		return 0;
824 
825 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
826 					      off >> PAGE_SHIFT, flags);
827 
828 	/*
829 	 * The failure might be due to length padding. The caller will retry
830 	 * without the padding.
831 	 */
832 	if (IS_ERR_VALUE(ret))
833 		return 0;
834 
835 	/*
836 	 * Do not try to align to THP boundary if allocation at the address
837 	 * hint succeeds.
838 	 */
839 	if (ret == addr)
840 		return addr;
841 
842 	off_sub = (off - ret) & (size - 1);
843 
844 	if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
845 	    !off_sub)
846 		return ret + size;
847 
848 	ret += off_sub;
849 	return ret;
850 }
851 
852 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
853 		unsigned long len, unsigned long pgoff, unsigned long flags)
854 {
855 	unsigned long ret;
856 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
857 
858 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
859 	if (ret)
860 		return ret;
861 
862 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
863 }
864 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
865 
866 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
867 			struct page *page, gfp_t gfp)
868 {
869 	struct vm_area_struct *vma = vmf->vma;
870 	struct folio *folio = page_folio(page);
871 	pgtable_t pgtable;
872 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
873 	vm_fault_t ret = 0;
874 
875 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
876 
877 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
878 		folio_put(folio);
879 		count_vm_event(THP_FAULT_FALLBACK);
880 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
881 		return VM_FAULT_FALLBACK;
882 	}
883 	folio_throttle_swaprate(folio, gfp);
884 
885 	pgtable = pte_alloc_one(vma->vm_mm);
886 	if (unlikely(!pgtable)) {
887 		ret = VM_FAULT_OOM;
888 		goto release;
889 	}
890 
891 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
892 	/*
893 	 * The memory barrier inside __folio_mark_uptodate makes sure that
894 	 * clear_huge_page writes become visible before the set_pmd_at()
895 	 * write.
896 	 */
897 	__folio_mark_uptodate(folio);
898 
899 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
900 	if (unlikely(!pmd_none(*vmf->pmd))) {
901 		goto unlock_release;
902 	} else {
903 		pmd_t entry;
904 
905 		ret = check_stable_address_space(vma->vm_mm);
906 		if (ret)
907 			goto unlock_release;
908 
909 		/* Deliver the page fault to userland */
910 		if (userfaultfd_missing(vma)) {
911 			spin_unlock(vmf->ptl);
912 			folio_put(folio);
913 			pte_free(vma->vm_mm, pgtable);
914 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
915 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
916 			return ret;
917 		}
918 
919 		entry = mk_huge_pmd(page, vma->vm_page_prot);
920 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
921 		folio_add_new_anon_rmap(folio, vma, haddr);
922 		folio_add_lru_vma(folio, vma);
923 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
924 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
925 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
926 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
927 		mm_inc_nr_ptes(vma->vm_mm);
928 		spin_unlock(vmf->ptl);
929 		count_vm_event(THP_FAULT_ALLOC);
930 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
931 	}
932 
933 	return 0;
934 unlock_release:
935 	spin_unlock(vmf->ptl);
936 release:
937 	if (pgtable)
938 		pte_free(vma->vm_mm, pgtable);
939 	folio_put(folio);
940 	return ret;
941 
942 }
943 
944 /*
945  * always: directly stall for all thp allocations
946  * defer: wake kswapd and fail if not immediately available
947  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
948  *		  fail if not immediately available
949  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
950  *	    available
951  * never: never stall for any thp allocation
952  */
953 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
954 {
955 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
956 
957 	/* Always do synchronous compaction */
958 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
959 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
960 
961 	/* Kick kcompactd and fail quickly */
962 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
963 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
964 
965 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
966 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
967 		return GFP_TRANSHUGE_LIGHT |
968 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
969 					__GFP_KSWAPD_RECLAIM);
970 
971 	/* Only do synchronous compaction if madvised */
972 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
973 		return GFP_TRANSHUGE_LIGHT |
974 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
975 
976 	return GFP_TRANSHUGE_LIGHT;
977 }
978 
979 /* Caller must hold page table lock. */
980 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
981 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
982 		struct page *zero_page)
983 {
984 	pmd_t entry;
985 	if (!pmd_none(*pmd))
986 		return;
987 	entry = mk_pmd(zero_page, vma->vm_page_prot);
988 	entry = pmd_mkhuge(entry);
989 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
990 	set_pmd_at(mm, haddr, pmd, entry);
991 	mm_inc_nr_ptes(mm);
992 }
993 
994 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
995 {
996 	struct vm_area_struct *vma = vmf->vma;
997 	gfp_t gfp;
998 	struct folio *folio;
999 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1000 
1001 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1002 		return VM_FAULT_FALLBACK;
1003 	if (unlikely(anon_vma_prepare(vma)))
1004 		return VM_FAULT_OOM;
1005 	khugepaged_enter_vma(vma, vma->vm_flags);
1006 
1007 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1008 			!mm_forbids_zeropage(vma->vm_mm) &&
1009 			transparent_hugepage_use_zero_page()) {
1010 		pgtable_t pgtable;
1011 		struct page *zero_page;
1012 		vm_fault_t ret;
1013 		pgtable = pte_alloc_one(vma->vm_mm);
1014 		if (unlikely(!pgtable))
1015 			return VM_FAULT_OOM;
1016 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1017 		if (unlikely(!zero_page)) {
1018 			pte_free(vma->vm_mm, pgtable);
1019 			count_vm_event(THP_FAULT_FALLBACK);
1020 			return VM_FAULT_FALLBACK;
1021 		}
1022 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1023 		ret = 0;
1024 		if (pmd_none(*vmf->pmd)) {
1025 			ret = check_stable_address_space(vma->vm_mm);
1026 			if (ret) {
1027 				spin_unlock(vmf->ptl);
1028 				pte_free(vma->vm_mm, pgtable);
1029 			} else if (userfaultfd_missing(vma)) {
1030 				spin_unlock(vmf->ptl);
1031 				pte_free(vma->vm_mm, pgtable);
1032 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1033 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1034 			} else {
1035 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1036 						   haddr, vmf->pmd, zero_page);
1037 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1038 				spin_unlock(vmf->ptl);
1039 			}
1040 		} else {
1041 			spin_unlock(vmf->ptl);
1042 			pte_free(vma->vm_mm, pgtable);
1043 		}
1044 		return ret;
1045 	}
1046 	gfp = vma_thp_gfp_mask(vma);
1047 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1048 	if (unlikely(!folio)) {
1049 		count_vm_event(THP_FAULT_FALLBACK);
1050 		return VM_FAULT_FALLBACK;
1051 	}
1052 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1053 }
1054 
1055 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1056 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1057 		pgtable_t pgtable)
1058 {
1059 	struct mm_struct *mm = vma->vm_mm;
1060 	pmd_t entry;
1061 	spinlock_t *ptl;
1062 
1063 	ptl = pmd_lock(mm, pmd);
1064 	if (!pmd_none(*pmd)) {
1065 		if (write) {
1066 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1067 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1068 				goto out_unlock;
1069 			}
1070 			entry = pmd_mkyoung(*pmd);
1071 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1073 				update_mmu_cache_pmd(vma, addr, pmd);
1074 		}
1075 
1076 		goto out_unlock;
1077 	}
1078 
1079 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1080 	if (pfn_t_devmap(pfn))
1081 		entry = pmd_mkdevmap(entry);
1082 	if (write) {
1083 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1084 		entry = maybe_pmd_mkwrite(entry, vma);
1085 	}
1086 
1087 	if (pgtable) {
1088 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1089 		mm_inc_nr_ptes(mm);
1090 		pgtable = NULL;
1091 	}
1092 
1093 	set_pmd_at(mm, addr, pmd, entry);
1094 	update_mmu_cache_pmd(vma, addr, pmd);
1095 
1096 out_unlock:
1097 	spin_unlock(ptl);
1098 	if (pgtable)
1099 		pte_free(mm, pgtable);
1100 }
1101 
1102 /**
1103  * vmf_insert_pfn_pmd - insert a pmd size pfn
1104  * @vmf: Structure describing the fault
1105  * @pfn: pfn to insert
1106  * @write: whether it's a write fault
1107  *
1108  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1109  *
1110  * Return: vm_fault_t value.
1111  */
1112 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1113 {
1114 	unsigned long addr = vmf->address & PMD_MASK;
1115 	struct vm_area_struct *vma = vmf->vma;
1116 	pgprot_t pgprot = vma->vm_page_prot;
1117 	pgtable_t pgtable = NULL;
1118 
1119 	/*
1120 	 * If we had pmd_special, we could avoid all these restrictions,
1121 	 * but we need to be consistent with PTEs and architectures that
1122 	 * can't support a 'special' bit.
1123 	 */
1124 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1125 			!pfn_t_devmap(pfn));
1126 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1127 						(VM_PFNMAP|VM_MIXEDMAP));
1128 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1129 
1130 	if (addr < vma->vm_start || addr >= vma->vm_end)
1131 		return VM_FAULT_SIGBUS;
1132 
1133 	if (arch_needs_pgtable_deposit()) {
1134 		pgtable = pte_alloc_one(vma->vm_mm);
1135 		if (!pgtable)
1136 			return VM_FAULT_OOM;
1137 	}
1138 
1139 	track_pfn_insert(vma, &pgprot, pfn);
1140 
1141 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1142 	return VM_FAULT_NOPAGE;
1143 }
1144 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1145 
1146 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1147 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1148 {
1149 	if (likely(vma->vm_flags & VM_WRITE))
1150 		pud = pud_mkwrite(pud);
1151 	return pud;
1152 }
1153 
1154 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1155 		pud_t *pud, pfn_t pfn, bool write)
1156 {
1157 	struct mm_struct *mm = vma->vm_mm;
1158 	pgprot_t prot = vma->vm_page_prot;
1159 	pud_t entry;
1160 	spinlock_t *ptl;
1161 
1162 	ptl = pud_lock(mm, pud);
1163 	if (!pud_none(*pud)) {
1164 		if (write) {
1165 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1166 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1167 				goto out_unlock;
1168 			}
1169 			entry = pud_mkyoung(*pud);
1170 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1171 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1172 				update_mmu_cache_pud(vma, addr, pud);
1173 		}
1174 		goto out_unlock;
1175 	}
1176 
1177 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1178 	if (pfn_t_devmap(pfn))
1179 		entry = pud_mkdevmap(entry);
1180 	if (write) {
1181 		entry = pud_mkyoung(pud_mkdirty(entry));
1182 		entry = maybe_pud_mkwrite(entry, vma);
1183 	}
1184 	set_pud_at(mm, addr, pud, entry);
1185 	update_mmu_cache_pud(vma, addr, pud);
1186 
1187 out_unlock:
1188 	spin_unlock(ptl);
1189 }
1190 
1191 /**
1192  * vmf_insert_pfn_pud - insert a pud size pfn
1193  * @vmf: Structure describing the fault
1194  * @pfn: pfn to insert
1195  * @write: whether it's a write fault
1196  *
1197  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1198  *
1199  * Return: vm_fault_t value.
1200  */
1201 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1202 {
1203 	unsigned long addr = vmf->address & PUD_MASK;
1204 	struct vm_area_struct *vma = vmf->vma;
1205 	pgprot_t pgprot = vma->vm_page_prot;
1206 
1207 	/*
1208 	 * If we had pud_special, we could avoid all these restrictions,
1209 	 * but we need to be consistent with PTEs and architectures that
1210 	 * can't support a 'special' bit.
1211 	 */
1212 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1213 			!pfn_t_devmap(pfn));
1214 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1215 						(VM_PFNMAP|VM_MIXEDMAP));
1216 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1217 
1218 	if (addr < vma->vm_start || addr >= vma->vm_end)
1219 		return VM_FAULT_SIGBUS;
1220 
1221 	track_pfn_insert(vma, &pgprot, pfn);
1222 
1223 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1224 	return VM_FAULT_NOPAGE;
1225 }
1226 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1227 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1228 
1229 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1230 		      pmd_t *pmd, bool write)
1231 {
1232 	pmd_t _pmd;
1233 
1234 	_pmd = pmd_mkyoung(*pmd);
1235 	if (write)
1236 		_pmd = pmd_mkdirty(_pmd);
1237 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1238 				  pmd, _pmd, write))
1239 		update_mmu_cache_pmd(vma, addr, pmd);
1240 }
1241 
1242 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1243 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1244 {
1245 	unsigned long pfn = pmd_pfn(*pmd);
1246 	struct mm_struct *mm = vma->vm_mm;
1247 	struct page *page;
1248 	int ret;
1249 
1250 	assert_spin_locked(pmd_lockptr(mm, pmd));
1251 
1252 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1253 		return NULL;
1254 
1255 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1256 		/* pass */;
1257 	else
1258 		return NULL;
1259 
1260 	if (flags & FOLL_TOUCH)
1261 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1262 
1263 	/*
1264 	 * device mapped pages can only be returned if the
1265 	 * caller will manage the page reference count.
1266 	 */
1267 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1268 		return ERR_PTR(-EEXIST);
1269 
1270 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1271 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1272 	if (!*pgmap)
1273 		return ERR_PTR(-EFAULT);
1274 	page = pfn_to_page(pfn);
1275 	ret = try_grab_page(page, flags);
1276 	if (ret)
1277 		page = ERR_PTR(ret);
1278 
1279 	return page;
1280 }
1281 
1282 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1283 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1284 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1285 {
1286 	spinlock_t *dst_ptl, *src_ptl;
1287 	struct page *src_page;
1288 	struct folio *src_folio;
1289 	pmd_t pmd;
1290 	pgtable_t pgtable = NULL;
1291 	int ret = -ENOMEM;
1292 
1293 	/* Skip if can be re-fill on fault */
1294 	if (!vma_is_anonymous(dst_vma))
1295 		return 0;
1296 
1297 	pgtable = pte_alloc_one(dst_mm);
1298 	if (unlikely(!pgtable))
1299 		goto out;
1300 
1301 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1302 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1303 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1304 
1305 	ret = -EAGAIN;
1306 	pmd = *src_pmd;
1307 
1308 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1309 	if (unlikely(is_swap_pmd(pmd))) {
1310 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1311 
1312 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1313 		if (!is_readable_migration_entry(entry)) {
1314 			entry = make_readable_migration_entry(
1315 							swp_offset(entry));
1316 			pmd = swp_entry_to_pmd(entry);
1317 			if (pmd_swp_soft_dirty(*src_pmd))
1318 				pmd = pmd_swp_mksoft_dirty(pmd);
1319 			if (pmd_swp_uffd_wp(*src_pmd))
1320 				pmd = pmd_swp_mkuffd_wp(pmd);
1321 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1322 		}
1323 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1324 		mm_inc_nr_ptes(dst_mm);
1325 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1326 		if (!userfaultfd_wp(dst_vma))
1327 			pmd = pmd_swp_clear_uffd_wp(pmd);
1328 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1329 		ret = 0;
1330 		goto out_unlock;
1331 	}
1332 #endif
1333 
1334 	if (unlikely(!pmd_trans_huge(pmd))) {
1335 		pte_free(dst_mm, pgtable);
1336 		goto out_unlock;
1337 	}
1338 	/*
1339 	 * When page table lock is held, the huge zero pmd should not be
1340 	 * under splitting since we don't split the page itself, only pmd to
1341 	 * a page table.
1342 	 */
1343 	if (is_huge_zero_pmd(pmd)) {
1344 		/*
1345 		 * get_huge_zero_page() will never allocate a new page here,
1346 		 * since we already have a zero page to copy. It just takes a
1347 		 * reference.
1348 		 */
1349 		mm_get_huge_zero_page(dst_mm);
1350 		goto out_zero_page;
1351 	}
1352 
1353 	src_page = pmd_page(pmd);
1354 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1355 	src_folio = page_folio(src_page);
1356 
1357 	folio_get(src_folio);
1358 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1359 		/* Page maybe pinned: split and retry the fault on PTEs. */
1360 		folio_put(src_folio);
1361 		pte_free(dst_mm, pgtable);
1362 		spin_unlock(src_ptl);
1363 		spin_unlock(dst_ptl);
1364 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1365 		return -EAGAIN;
1366 	}
1367 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1368 out_zero_page:
1369 	mm_inc_nr_ptes(dst_mm);
1370 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1371 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1372 	if (!userfaultfd_wp(dst_vma))
1373 		pmd = pmd_clear_uffd_wp(pmd);
1374 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1375 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1376 
1377 	ret = 0;
1378 out_unlock:
1379 	spin_unlock(src_ptl);
1380 	spin_unlock(dst_ptl);
1381 out:
1382 	return ret;
1383 }
1384 
1385 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1386 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1387 		      pud_t *pud, bool write)
1388 {
1389 	pud_t _pud;
1390 
1391 	_pud = pud_mkyoung(*pud);
1392 	if (write)
1393 		_pud = pud_mkdirty(_pud);
1394 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1395 				  pud, _pud, write))
1396 		update_mmu_cache_pud(vma, addr, pud);
1397 }
1398 
1399 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1400 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1401 {
1402 	unsigned long pfn = pud_pfn(*pud);
1403 	struct mm_struct *mm = vma->vm_mm;
1404 	struct page *page;
1405 	int ret;
1406 
1407 	assert_spin_locked(pud_lockptr(mm, pud));
1408 
1409 	if (flags & FOLL_WRITE && !pud_write(*pud))
1410 		return NULL;
1411 
1412 	if (pud_present(*pud) && pud_devmap(*pud))
1413 		/* pass */;
1414 	else
1415 		return NULL;
1416 
1417 	if (flags & FOLL_TOUCH)
1418 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1419 
1420 	/*
1421 	 * device mapped pages can only be returned if the
1422 	 * caller will manage the page reference count.
1423 	 *
1424 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1425 	 */
1426 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1427 		return ERR_PTR(-EEXIST);
1428 
1429 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1430 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1431 	if (!*pgmap)
1432 		return ERR_PTR(-EFAULT);
1433 	page = pfn_to_page(pfn);
1434 
1435 	ret = try_grab_page(page, flags);
1436 	if (ret)
1437 		page = ERR_PTR(ret);
1438 
1439 	return page;
1440 }
1441 
1442 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1443 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1444 		  struct vm_area_struct *vma)
1445 {
1446 	spinlock_t *dst_ptl, *src_ptl;
1447 	pud_t pud;
1448 	int ret;
1449 
1450 	dst_ptl = pud_lock(dst_mm, dst_pud);
1451 	src_ptl = pud_lockptr(src_mm, src_pud);
1452 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1453 
1454 	ret = -EAGAIN;
1455 	pud = *src_pud;
1456 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1457 		goto out_unlock;
1458 
1459 	/*
1460 	 * When page table lock is held, the huge zero pud should not be
1461 	 * under splitting since we don't split the page itself, only pud to
1462 	 * a page table.
1463 	 */
1464 	if (is_huge_zero_pud(pud)) {
1465 		/* No huge zero pud yet */
1466 	}
1467 
1468 	/*
1469 	 * TODO: once we support anonymous pages, use
1470 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1471 	 */
1472 	pudp_set_wrprotect(src_mm, addr, src_pud);
1473 	pud = pud_mkold(pud_wrprotect(pud));
1474 	set_pud_at(dst_mm, addr, dst_pud, pud);
1475 
1476 	ret = 0;
1477 out_unlock:
1478 	spin_unlock(src_ptl);
1479 	spin_unlock(dst_ptl);
1480 	return ret;
1481 }
1482 
1483 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1484 {
1485 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1486 
1487 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1488 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1489 		goto unlock;
1490 
1491 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1492 unlock:
1493 	spin_unlock(vmf->ptl);
1494 }
1495 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1496 
1497 void huge_pmd_set_accessed(struct vm_fault *vmf)
1498 {
1499 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1500 
1501 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1502 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1503 		goto unlock;
1504 
1505 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1506 
1507 unlock:
1508 	spin_unlock(vmf->ptl);
1509 }
1510 
1511 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1512 {
1513 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1514 	struct vm_area_struct *vma = vmf->vma;
1515 	struct folio *folio;
1516 	struct page *page;
1517 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1518 	pmd_t orig_pmd = vmf->orig_pmd;
1519 
1520 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1521 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1522 
1523 	if (is_huge_zero_pmd(orig_pmd))
1524 		goto fallback;
1525 
1526 	spin_lock(vmf->ptl);
1527 
1528 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1529 		spin_unlock(vmf->ptl);
1530 		return 0;
1531 	}
1532 
1533 	page = pmd_page(orig_pmd);
1534 	folio = page_folio(page);
1535 	VM_BUG_ON_PAGE(!PageHead(page), page);
1536 
1537 	/* Early check when only holding the PT lock. */
1538 	if (PageAnonExclusive(page))
1539 		goto reuse;
1540 
1541 	if (!folio_trylock(folio)) {
1542 		folio_get(folio);
1543 		spin_unlock(vmf->ptl);
1544 		folio_lock(folio);
1545 		spin_lock(vmf->ptl);
1546 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1547 			spin_unlock(vmf->ptl);
1548 			folio_unlock(folio);
1549 			folio_put(folio);
1550 			return 0;
1551 		}
1552 		folio_put(folio);
1553 	}
1554 
1555 	/* Recheck after temporarily dropping the PT lock. */
1556 	if (PageAnonExclusive(page)) {
1557 		folio_unlock(folio);
1558 		goto reuse;
1559 	}
1560 
1561 	/*
1562 	 * See do_wp_page(): we can only reuse the folio exclusively if
1563 	 * there are no additional references. Note that we always drain
1564 	 * the LRU cache immediately after adding a THP.
1565 	 */
1566 	if (folio_ref_count(folio) >
1567 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1568 		goto unlock_fallback;
1569 	if (folio_test_swapcache(folio))
1570 		folio_free_swap(folio);
1571 	if (folio_ref_count(folio) == 1) {
1572 		pmd_t entry;
1573 
1574 		folio_move_anon_rmap(folio, vma);
1575 		SetPageAnonExclusive(page);
1576 		folio_unlock(folio);
1577 reuse:
1578 		if (unlikely(unshare)) {
1579 			spin_unlock(vmf->ptl);
1580 			return 0;
1581 		}
1582 		entry = pmd_mkyoung(orig_pmd);
1583 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1584 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1585 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586 		spin_unlock(vmf->ptl);
1587 		return 0;
1588 	}
1589 
1590 unlock_fallback:
1591 	folio_unlock(folio);
1592 	spin_unlock(vmf->ptl);
1593 fallback:
1594 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1595 	return VM_FAULT_FALLBACK;
1596 }
1597 
1598 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1599 					   unsigned long addr, pmd_t pmd)
1600 {
1601 	struct page *page;
1602 
1603 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1604 		return false;
1605 
1606 	/* Don't touch entries that are not even readable (NUMA hinting). */
1607 	if (pmd_protnone(pmd))
1608 		return false;
1609 
1610 	/* Do we need write faults for softdirty tracking? */
1611 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1612 		return false;
1613 
1614 	/* Do we need write faults for uffd-wp tracking? */
1615 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1616 		return false;
1617 
1618 	if (!(vma->vm_flags & VM_SHARED)) {
1619 		/* See can_change_pte_writable(). */
1620 		page = vm_normal_page_pmd(vma, addr, pmd);
1621 		return page && PageAnon(page) && PageAnonExclusive(page);
1622 	}
1623 
1624 	/* See can_change_pte_writable(). */
1625 	return pmd_dirty(pmd);
1626 }
1627 
1628 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1629 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1630 					struct vm_area_struct *vma,
1631 					unsigned int flags)
1632 {
1633 	/* If the pmd is writable, we can write to the page. */
1634 	if (pmd_write(pmd))
1635 		return true;
1636 
1637 	/* Maybe FOLL_FORCE is set to override it? */
1638 	if (!(flags & FOLL_FORCE))
1639 		return false;
1640 
1641 	/* But FOLL_FORCE has no effect on shared mappings */
1642 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1643 		return false;
1644 
1645 	/* ... or read-only private ones */
1646 	if (!(vma->vm_flags & VM_MAYWRITE))
1647 		return false;
1648 
1649 	/* ... or already writable ones that just need to take a write fault */
1650 	if (vma->vm_flags & VM_WRITE)
1651 		return false;
1652 
1653 	/*
1654 	 * See can_change_pte_writable(): we broke COW and could map the page
1655 	 * writable if we have an exclusive anonymous page ...
1656 	 */
1657 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1658 		return false;
1659 
1660 	/* ... and a write-fault isn't required for other reasons. */
1661 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1662 		return false;
1663 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1664 }
1665 
1666 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1667 				   unsigned long addr,
1668 				   pmd_t *pmd,
1669 				   unsigned int flags)
1670 {
1671 	struct mm_struct *mm = vma->vm_mm;
1672 	struct page *page;
1673 	int ret;
1674 
1675 	assert_spin_locked(pmd_lockptr(mm, pmd));
1676 
1677 	page = pmd_page(*pmd);
1678 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1679 
1680 	if ((flags & FOLL_WRITE) &&
1681 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1682 		return NULL;
1683 
1684 	/* Avoid dumping huge zero page */
1685 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1686 		return ERR_PTR(-EFAULT);
1687 
1688 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1689 		return NULL;
1690 
1691 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1692 		return ERR_PTR(-EMLINK);
1693 
1694 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1695 			!PageAnonExclusive(page), page);
1696 
1697 	ret = try_grab_page(page, flags);
1698 	if (ret)
1699 		return ERR_PTR(ret);
1700 
1701 	if (flags & FOLL_TOUCH)
1702 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1703 
1704 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1705 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1706 
1707 	return page;
1708 }
1709 
1710 /* NUMA hinting page fault entry point for trans huge pmds */
1711 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1712 {
1713 	struct vm_area_struct *vma = vmf->vma;
1714 	pmd_t oldpmd = vmf->orig_pmd;
1715 	pmd_t pmd;
1716 	struct folio *folio;
1717 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1718 	int nid = NUMA_NO_NODE;
1719 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1720 	bool migrated = false, writable = false;
1721 	int flags = 0;
1722 
1723 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1724 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1725 		spin_unlock(vmf->ptl);
1726 		goto out;
1727 	}
1728 
1729 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1730 
1731 	/*
1732 	 * Detect now whether the PMD could be writable; this information
1733 	 * is only valid while holding the PT lock.
1734 	 */
1735 	writable = pmd_write(pmd);
1736 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1737 	    can_change_pmd_writable(vma, vmf->address, pmd))
1738 		writable = true;
1739 
1740 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1741 	if (!folio)
1742 		goto out_map;
1743 
1744 	/* See similar comment in do_numa_page for explanation */
1745 	if (!writable)
1746 		flags |= TNF_NO_GROUP;
1747 
1748 	nid = folio_nid(folio);
1749 	/*
1750 	 * For memory tiering mode, cpupid of slow memory page is used
1751 	 * to record page access time.  So use default value.
1752 	 */
1753 	if (node_is_toptier(nid))
1754 		last_cpupid = folio_last_cpupid(folio);
1755 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1756 	if (target_nid == NUMA_NO_NODE) {
1757 		folio_put(folio);
1758 		goto out_map;
1759 	}
1760 
1761 	spin_unlock(vmf->ptl);
1762 	writable = false;
1763 
1764 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1765 	if (migrated) {
1766 		flags |= TNF_MIGRATED;
1767 		nid = target_nid;
1768 	} else {
1769 		flags |= TNF_MIGRATE_FAIL;
1770 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1771 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1772 			spin_unlock(vmf->ptl);
1773 			goto out;
1774 		}
1775 		goto out_map;
1776 	}
1777 
1778 out:
1779 	if (nid != NUMA_NO_NODE)
1780 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1781 
1782 	return 0;
1783 
1784 out_map:
1785 	/* Restore the PMD */
1786 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1787 	pmd = pmd_mkyoung(pmd);
1788 	if (writable)
1789 		pmd = pmd_mkwrite(pmd, vma);
1790 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1791 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1792 	spin_unlock(vmf->ptl);
1793 	goto out;
1794 }
1795 
1796 /*
1797  * Return true if we do MADV_FREE successfully on entire pmd page.
1798  * Otherwise, return false.
1799  */
1800 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1801 		pmd_t *pmd, unsigned long addr, unsigned long next)
1802 {
1803 	spinlock_t *ptl;
1804 	pmd_t orig_pmd;
1805 	struct folio *folio;
1806 	struct mm_struct *mm = tlb->mm;
1807 	bool ret = false;
1808 
1809 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1810 
1811 	ptl = pmd_trans_huge_lock(pmd, vma);
1812 	if (!ptl)
1813 		goto out_unlocked;
1814 
1815 	orig_pmd = *pmd;
1816 	if (is_huge_zero_pmd(orig_pmd))
1817 		goto out;
1818 
1819 	if (unlikely(!pmd_present(orig_pmd))) {
1820 		VM_BUG_ON(thp_migration_supported() &&
1821 				  !is_pmd_migration_entry(orig_pmd));
1822 		goto out;
1823 	}
1824 
1825 	folio = pfn_folio(pmd_pfn(orig_pmd));
1826 	/*
1827 	 * If other processes are mapping this folio, we couldn't discard
1828 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1829 	 */
1830 	if (folio_estimated_sharers(folio) != 1)
1831 		goto out;
1832 
1833 	if (!folio_trylock(folio))
1834 		goto out;
1835 
1836 	/*
1837 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1838 	 * will deactivate only them.
1839 	 */
1840 	if (next - addr != HPAGE_PMD_SIZE) {
1841 		folio_get(folio);
1842 		spin_unlock(ptl);
1843 		split_folio(folio);
1844 		folio_unlock(folio);
1845 		folio_put(folio);
1846 		goto out_unlocked;
1847 	}
1848 
1849 	if (folio_test_dirty(folio))
1850 		folio_clear_dirty(folio);
1851 	folio_unlock(folio);
1852 
1853 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1854 		pmdp_invalidate(vma, addr, pmd);
1855 		orig_pmd = pmd_mkold(orig_pmd);
1856 		orig_pmd = pmd_mkclean(orig_pmd);
1857 
1858 		set_pmd_at(mm, addr, pmd, orig_pmd);
1859 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1860 	}
1861 
1862 	folio_mark_lazyfree(folio);
1863 	ret = true;
1864 out:
1865 	spin_unlock(ptl);
1866 out_unlocked:
1867 	return ret;
1868 }
1869 
1870 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1871 {
1872 	pgtable_t pgtable;
1873 
1874 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1875 	pte_free(mm, pgtable);
1876 	mm_dec_nr_ptes(mm);
1877 }
1878 
1879 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1880 		 pmd_t *pmd, unsigned long addr)
1881 {
1882 	pmd_t orig_pmd;
1883 	spinlock_t *ptl;
1884 
1885 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1886 
1887 	ptl = __pmd_trans_huge_lock(pmd, vma);
1888 	if (!ptl)
1889 		return 0;
1890 	/*
1891 	 * For architectures like ppc64 we look at deposited pgtable
1892 	 * when calling pmdp_huge_get_and_clear. So do the
1893 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1894 	 * operations.
1895 	 */
1896 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1897 						tlb->fullmm);
1898 	arch_check_zapped_pmd(vma, orig_pmd);
1899 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1900 	if (vma_is_special_huge(vma)) {
1901 		if (arch_needs_pgtable_deposit())
1902 			zap_deposited_table(tlb->mm, pmd);
1903 		spin_unlock(ptl);
1904 	} else if (is_huge_zero_pmd(orig_pmd)) {
1905 		zap_deposited_table(tlb->mm, pmd);
1906 		spin_unlock(ptl);
1907 	} else {
1908 		struct page *page = NULL;
1909 		int flush_needed = 1;
1910 
1911 		if (pmd_present(orig_pmd)) {
1912 			page = pmd_page(orig_pmd);
1913 			folio_remove_rmap_pmd(page_folio(page), page, vma);
1914 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1915 			VM_BUG_ON_PAGE(!PageHead(page), page);
1916 		} else if (thp_migration_supported()) {
1917 			swp_entry_t entry;
1918 
1919 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1920 			entry = pmd_to_swp_entry(orig_pmd);
1921 			page = pfn_swap_entry_to_page(entry);
1922 			flush_needed = 0;
1923 		} else
1924 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1925 
1926 		if (PageAnon(page)) {
1927 			zap_deposited_table(tlb->mm, pmd);
1928 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1929 		} else {
1930 			if (arch_needs_pgtable_deposit())
1931 				zap_deposited_table(tlb->mm, pmd);
1932 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1933 		}
1934 
1935 		spin_unlock(ptl);
1936 		if (flush_needed)
1937 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1938 	}
1939 	return 1;
1940 }
1941 
1942 #ifndef pmd_move_must_withdraw
1943 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1944 					 spinlock_t *old_pmd_ptl,
1945 					 struct vm_area_struct *vma)
1946 {
1947 	/*
1948 	 * With split pmd lock we also need to move preallocated
1949 	 * PTE page table if new_pmd is on different PMD page table.
1950 	 *
1951 	 * We also don't deposit and withdraw tables for file pages.
1952 	 */
1953 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1954 }
1955 #endif
1956 
1957 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1958 {
1959 #ifdef CONFIG_MEM_SOFT_DIRTY
1960 	if (unlikely(is_pmd_migration_entry(pmd)))
1961 		pmd = pmd_swp_mksoft_dirty(pmd);
1962 	else if (pmd_present(pmd))
1963 		pmd = pmd_mksoft_dirty(pmd);
1964 #endif
1965 	return pmd;
1966 }
1967 
1968 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1969 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1970 {
1971 	spinlock_t *old_ptl, *new_ptl;
1972 	pmd_t pmd;
1973 	struct mm_struct *mm = vma->vm_mm;
1974 	bool force_flush = false;
1975 
1976 	/*
1977 	 * The destination pmd shouldn't be established, free_pgtables()
1978 	 * should have released it; but move_page_tables() might have already
1979 	 * inserted a page table, if racing against shmem/file collapse.
1980 	 */
1981 	if (!pmd_none(*new_pmd)) {
1982 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1983 		return false;
1984 	}
1985 
1986 	/*
1987 	 * We don't have to worry about the ordering of src and dst
1988 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1989 	 */
1990 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1991 	if (old_ptl) {
1992 		new_ptl = pmd_lockptr(mm, new_pmd);
1993 		if (new_ptl != old_ptl)
1994 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1995 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1996 		if (pmd_present(pmd))
1997 			force_flush = true;
1998 		VM_BUG_ON(!pmd_none(*new_pmd));
1999 
2000 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2001 			pgtable_t pgtable;
2002 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2003 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2004 		}
2005 		pmd = move_soft_dirty_pmd(pmd);
2006 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2007 		if (force_flush)
2008 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2009 		if (new_ptl != old_ptl)
2010 			spin_unlock(new_ptl);
2011 		spin_unlock(old_ptl);
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 /*
2018  * Returns
2019  *  - 0 if PMD could not be locked
2020  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2021  *      or if prot_numa but THP migration is not supported
2022  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2023  */
2024 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2025 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2026 		    unsigned long cp_flags)
2027 {
2028 	struct mm_struct *mm = vma->vm_mm;
2029 	spinlock_t *ptl;
2030 	pmd_t oldpmd, entry;
2031 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2032 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2033 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2034 	int ret = 1;
2035 
2036 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2037 
2038 	if (prot_numa && !thp_migration_supported())
2039 		return 1;
2040 
2041 	ptl = __pmd_trans_huge_lock(pmd, vma);
2042 	if (!ptl)
2043 		return 0;
2044 
2045 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2046 	if (is_swap_pmd(*pmd)) {
2047 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2048 		struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2049 		pmd_t newpmd;
2050 
2051 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2052 		if (is_writable_migration_entry(entry)) {
2053 			/*
2054 			 * A protection check is difficult so
2055 			 * just be safe and disable write
2056 			 */
2057 			if (folio_test_anon(folio))
2058 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2059 			else
2060 				entry = make_readable_migration_entry(swp_offset(entry));
2061 			newpmd = swp_entry_to_pmd(entry);
2062 			if (pmd_swp_soft_dirty(*pmd))
2063 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2064 		} else {
2065 			newpmd = *pmd;
2066 		}
2067 
2068 		if (uffd_wp)
2069 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2070 		else if (uffd_wp_resolve)
2071 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2072 		if (!pmd_same(*pmd, newpmd))
2073 			set_pmd_at(mm, addr, pmd, newpmd);
2074 		goto unlock;
2075 	}
2076 #endif
2077 
2078 	if (prot_numa) {
2079 		struct folio *folio;
2080 		bool toptier;
2081 		/*
2082 		 * Avoid trapping faults against the zero page. The read-only
2083 		 * data is likely to be read-cached on the local CPU and
2084 		 * local/remote hits to the zero page are not interesting.
2085 		 */
2086 		if (is_huge_zero_pmd(*pmd))
2087 			goto unlock;
2088 
2089 		if (pmd_protnone(*pmd))
2090 			goto unlock;
2091 
2092 		folio = page_folio(pmd_page(*pmd));
2093 		toptier = node_is_toptier(folio_nid(folio));
2094 		/*
2095 		 * Skip scanning top tier node if normal numa
2096 		 * balancing is disabled
2097 		 */
2098 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2099 		    toptier)
2100 			goto unlock;
2101 
2102 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2103 		    !toptier)
2104 			folio_xchg_access_time(folio,
2105 					       jiffies_to_msecs(jiffies));
2106 	}
2107 	/*
2108 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2109 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2110 	 * which is also under mmap_read_lock(mm):
2111 	 *
2112 	 *	CPU0:				CPU1:
2113 	 *				change_huge_pmd(prot_numa=1)
2114 	 *				 pmdp_huge_get_and_clear_notify()
2115 	 * madvise_dontneed()
2116 	 *  zap_pmd_range()
2117 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2118 	 *   // skip the pmd
2119 	 *				 set_pmd_at();
2120 	 *				 // pmd is re-established
2121 	 *
2122 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2123 	 * which may break userspace.
2124 	 *
2125 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2126 	 * dirty/young flags set by hardware.
2127 	 */
2128 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2129 
2130 	entry = pmd_modify(oldpmd, newprot);
2131 	if (uffd_wp)
2132 		entry = pmd_mkuffd_wp(entry);
2133 	else if (uffd_wp_resolve)
2134 		/*
2135 		 * Leave the write bit to be handled by PF interrupt
2136 		 * handler, then things like COW could be properly
2137 		 * handled.
2138 		 */
2139 		entry = pmd_clear_uffd_wp(entry);
2140 
2141 	/* See change_pte_range(). */
2142 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2143 	    can_change_pmd_writable(vma, addr, entry))
2144 		entry = pmd_mkwrite(entry, vma);
2145 
2146 	ret = HPAGE_PMD_NR;
2147 	set_pmd_at(mm, addr, pmd, entry);
2148 
2149 	if (huge_pmd_needs_flush(oldpmd, entry))
2150 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2151 unlock:
2152 	spin_unlock(ptl);
2153 	return ret;
2154 }
2155 
2156 #ifdef CONFIG_USERFAULTFD
2157 /*
2158  * The PT lock for src_pmd and the mmap_lock for reading are held by
2159  * the caller, but it must return after releasing the page_table_lock.
2160  * Just move the page from src_pmd to dst_pmd if possible.
2161  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2162  * repeated by the caller, or other errors in case of failure.
2163  */
2164 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2165 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2166 			unsigned long dst_addr, unsigned long src_addr)
2167 {
2168 	pmd_t _dst_pmd, src_pmdval;
2169 	struct page *src_page;
2170 	struct folio *src_folio;
2171 	struct anon_vma *src_anon_vma;
2172 	spinlock_t *src_ptl, *dst_ptl;
2173 	pgtable_t src_pgtable;
2174 	struct mmu_notifier_range range;
2175 	int err = 0;
2176 
2177 	src_pmdval = *src_pmd;
2178 	src_ptl = pmd_lockptr(mm, src_pmd);
2179 
2180 	lockdep_assert_held(src_ptl);
2181 	mmap_assert_locked(mm);
2182 
2183 	/* Sanity checks before the operation */
2184 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2185 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2186 		spin_unlock(src_ptl);
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (!pmd_trans_huge(src_pmdval)) {
2191 		spin_unlock(src_ptl);
2192 		if (is_pmd_migration_entry(src_pmdval)) {
2193 			pmd_migration_entry_wait(mm, &src_pmdval);
2194 			return -EAGAIN;
2195 		}
2196 		return -ENOENT;
2197 	}
2198 
2199 	src_page = pmd_page(src_pmdval);
2200 	if (unlikely(!PageAnonExclusive(src_page))) {
2201 		spin_unlock(src_ptl);
2202 		return -EBUSY;
2203 	}
2204 
2205 	src_folio = page_folio(src_page);
2206 	folio_get(src_folio);
2207 	spin_unlock(src_ptl);
2208 
2209 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2210 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2211 				src_addr + HPAGE_PMD_SIZE);
2212 	mmu_notifier_invalidate_range_start(&range);
2213 
2214 	folio_lock(src_folio);
2215 
2216 	/*
2217 	 * split_huge_page walks the anon_vma chain without the page
2218 	 * lock. Serialize against it with the anon_vma lock, the page
2219 	 * lock is not enough.
2220 	 */
2221 	src_anon_vma = folio_get_anon_vma(src_folio);
2222 	if (!src_anon_vma) {
2223 		err = -EAGAIN;
2224 		goto unlock_folio;
2225 	}
2226 	anon_vma_lock_write(src_anon_vma);
2227 
2228 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2229 	double_pt_lock(src_ptl, dst_ptl);
2230 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2231 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2232 		err = -EAGAIN;
2233 		goto unlock_ptls;
2234 	}
2235 	if (folio_maybe_dma_pinned(src_folio) ||
2236 	    !PageAnonExclusive(&src_folio->page)) {
2237 		err = -EBUSY;
2238 		goto unlock_ptls;
2239 	}
2240 
2241 	if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2242 	    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2243 		err = -EBUSY;
2244 		goto unlock_ptls;
2245 	}
2246 
2247 	folio_move_anon_rmap(src_folio, dst_vma);
2248 	WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2249 
2250 	src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2251 	/* Folio got pinned from under us. Put it back and fail the move. */
2252 	if (folio_maybe_dma_pinned(src_folio)) {
2253 		set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2254 		err = -EBUSY;
2255 		goto unlock_ptls;
2256 	}
2257 
2258 	_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2259 	/* Follow mremap() behavior and treat the entry dirty after the move */
2260 	_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2261 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2262 
2263 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2264 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2265 unlock_ptls:
2266 	double_pt_unlock(src_ptl, dst_ptl);
2267 	anon_vma_unlock_write(src_anon_vma);
2268 	put_anon_vma(src_anon_vma);
2269 unlock_folio:
2270 	/* unblock rmap walks */
2271 	folio_unlock(src_folio);
2272 	mmu_notifier_invalidate_range_end(&range);
2273 	folio_put(src_folio);
2274 	return err;
2275 }
2276 #endif /* CONFIG_USERFAULTFD */
2277 
2278 /*
2279  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2280  *
2281  * Note that if it returns page table lock pointer, this routine returns without
2282  * unlocking page table lock. So callers must unlock it.
2283  */
2284 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2285 {
2286 	spinlock_t *ptl;
2287 	ptl = pmd_lock(vma->vm_mm, pmd);
2288 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2289 			pmd_devmap(*pmd)))
2290 		return ptl;
2291 	spin_unlock(ptl);
2292 	return NULL;
2293 }
2294 
2295 /*
2296  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2297  *
2298  * Note that if it returns page table lock pointer, this routine returns without
2299  * unlocking page table lock. So callers must unlock it.
2300  */
2301 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2302 {
2303 	spinlock_t *ptl;
2304 
2305 	ptl = pud_lock(vma->vm_mm, pud);
2306 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2307 		return ptl;
2308 	spin_unlock(ptl);
2309 	return NULL;
2310 }
2311 
2312 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2313 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314 		 pud_t *pud, unsigned long addr)
2315 {
2316 	spinlock_t *ptl;
2317 
2318 	ptl = __pud_trans_huge_lock(pud, vma);
2319 	if (!ptl)
2320 		return 0;
2321 
2322 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2323 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2324 	if (vma_is_special_huge(vma)) {
2325 		spin_unlock(ptl);
2326 		/* No zero page support yet */
2327 	} else {
2328 		/* No support for anonymous PUD pages yet */
2329 		BUG();
2330 	}
2331 	return 1;
2332 }
2333 
2334 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2335 		unsigned long haddr)
2336 {
2337 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2338 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2339 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2340 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2341 
2342 	count_vm_event(THP_SPLIT_PUD);
2343 
2344 	pudp_huge_clear_flush(vma, haddr, pud);
2345 }
2346 
2347 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2348 		unsigned long address)
2349 {
2350 	spinlock_t *ptl;
2351 	struct mmu_notifier_range range;
2352 
2353 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2354 				address & HPAGE_PUD_MASK,
2355 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2356 	mmu_notifier_invalidate_range_start(&range);
2357 	ptl = pud_lock(vma->vm_mm, pud);
2358 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2359 		goto out;
2360 	__split_huge_pud_locked(vma, pud, range.start);
2361 
2362 out:
2363 	spin_unlock(ptl);
2364 	mmu_notifier_invalidate_range_end(&range);
2365 }
2366 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2367 
2368 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2369 		unsigned long haddr, pmd_t *pmd)
2370 {
2371 	struct mm_struct *mm = vma->vm_mm;
2372 	pgtable_t pgtable;
2373 	pmd_t _pmd, old_pmd;
2374 	unsigned long addr;
2375 	pte_t *pte;
2376 	int i;
2377 
2378 	/*
2379 	 * Leave pmd empty until pte is filled note that it is fine to delay
2380 	 * notification until mmu_notifier_invalidate_range_end() as we are
2381 	 * replacing a zero pmd write protected page with a zero pte write
2382 	 * protected page.
2383 	 *
2384 	 * See Documentation/mm/mmu_notifier.rst
2385 	 */
2386 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2387 
2388 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2389 	pmd_populate(mm, &_pmd, pgtable);
2390 
2391 	pte = pte_offset_map(&_pmd, haddr);
2392 	VM_BUG_ON(!pte);
2393 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2394 		pte_t entry;
2395 
2396 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2397 		entry = pte_mkspecial(entry);
2398 		if (pmd_uffd_wp(old_pmd))
2399 			entry = pte_mkuffd_wp(entry);
2400 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2401 		set_pte_at(mm, addr, pte, entry);
2402 		pte++;
2403 	}
2404 	pte_unmap(pte - 1);
2405 	smp_wmb(); /* make pte visible before pmd */
2406 	pmd_populate(mm, pmd, pgtable);
2407 }
2408 
2409 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2410 		unsigned long haddr, bool freeze)
2411 {
2412 	struct mm_struct *mm = vma->vm_mm;
2413 	struct folio *folio;
2414 	struct page *page;
2415 	pgtable_t pgtable;
2416 	pmd_t old_pmd, _pmd;
2417 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2418 	bool anon_exclusive = false, dirty = false;
2419 	unsigned long addr;
2420 	pte_t *pte;
2421 	int i;
2422 
2423 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2424 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2425 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2426 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2427 				&& !pmd_devmap(*pmd));
2428 
2429 	count_vm_event(THP_SPLIT_PMD);
2430 
2431 	if (!vma_is_anonymous(vma)) {
2432 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2433 		/*
2434 		 * We are going to unmap this huge page. So
2435 		 * just go ahead and zap it
2436 		 */
2437 		if (arch_needs_pgtable_deposit())
2438 			zap_deposited_table(mm, pmd);
2439 		if (vma_is_special_huge(vma))
2440 			return;
2441 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2442 			swp_entry_t entry;
2443 
2444 			entry = pmd_to_swp_entry(old_pmd);
2445 			page = pfn_swap_entry_to_page(entry);
2446 		} else {
2447 			page = pmd_page(old_pmd);
2448 			folio = page_folio(page);
2449 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2450 				folio_mark_dirty(folio);
2451 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2452 				folio_set_referenced(folio);
2453 			folio_remove_rmap_pmd(folio, page, vma);
2454 			folio_put(folio);
2455 		}
2456 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2457 		return;
2458 	}
2459 
2460 	if (is_huge_zero_pmd(*pmd)) {
2461 		/*
2462 		 * FIXME: Do we want to invalidate secondary mmu by calling
2463 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2464 		 * inside __split_huge_pmd() ?
2465 		 *
2466 		 * We are going from a zero huge page write protected to zero
2467 		 * small page also write protected so it does not seems useful
2468 		 * to invalidate secondary mmu at this time.
2469 		 */
2470 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2471 	}
2472 
2473 	/*
2474 	 * Up to this point the pmd is present and huge and userland has the
2475 	 * whole access to the hugepage during the split (which happens in
2476 	 * place). If we overwrite the pmd with the not-huge version pointing
2477 	 * to the pte here (which of course we could if all CPUs were bug
2478 	 * free), userland could trigger a small page size TLB miss on the
2479 	 * small sized TLB while the hugepage TLB entry is still established in
2480 	 * the huge TLB. Some CPU doesn't like that.
2481 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2482 	 * 383 on page 105. Intel should be safe but is also warns that it's
2483 	 * only safe if the permission and cache attributes of the two entries
2484 	 * loaded in the two TLB is identical (which should be the case here).
2485 	 * But it is generally safer to never allow small and huge TLB entries
2486 	 * for the same virtual address to be loaded simultaneously. So instead
2487 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2488 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2489 	 * must remain set at all times on the pmd until the split is complete
2490 	 * for this pmd), then we flush the SMP TLB and finally we write the
2491 	 * non-huge version of the pmd entry with pmd_populate.
2492 	 */
2493 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2494 
2495 	pmd_migration = is_pmd_migration_entry(old_pmd);
2496 	if (unlikely(pmd_migration)) {
2497 		swp_entry_t entry;
2498 
2499 		entry = pmd_to_swp_entry(old_pmd);
2500 		page = pfn_swap_entry_to_page(entry);
2501 		write = is_writable_migration_entry(entry);
2502 		if (PageAnon(page))
2503 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2504 		young = is_migration_entry_young(entry);
2505 		dirty = is_migration_entry_dirty(entry);
2506 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2507 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2508 	} else {
2509 		page = pmd_page(old_pmd);
2510 		folio = page_folio(page);
2511 		if (pmd_dirty(old_pmd)) {
2512 			dirty = true;
2513 			folio_set_dirty(folio);
2514 		}
2515 		write = pmd_write(old_pmd);
2516 		young = pmd_young(old_pmd);
2517 		soft_dirty = pmd_soft_dirty(old_pmd);
2518 		uffd_wp = pmd_uffd_wp(old_pmd);
2519 
2520 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2521 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2522 
2523 		/*
2524 		 * Without "freeze", we'll simply split the PMD, propagating the
2525 		 * PageAnonExclusive() flag for each PTE by setting it for
2526 		 * each subpage -- no need to (temporarily) clear.
2527 		 *
2528 		 * With "freeze" we want to replace mapped pages by
2529 		 * migration entries right away. This is only possible if we
2530 		 * managed to clear PageAnonExclusive() -- see
2531 		 * set_pmd_migration_entry().
2532 		 *
2533 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2534 		 * only and let try_to_migrate_one() fail later.
2535 		 *
2536 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2537 		 */
2538 		anon_exclusive = PageAnonExclusive(page);
2539 		if (freeze && anon_exclusive &&
2540 		    folio_try_share_anon_rmap_pmd(folio, page))
2541 			freeze = false;
2542 		if (!freeze) {
2543 			rmap_t rmap_flags = RMAP_NONE;
2544 
2545 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2546 			if (anon_exclusive)
2547 				rmap_flags |= RMAP_EXCLUSIVE;
2548 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2549 						 vma, haddr, rmap_flags);
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * Withdraw the table only after we mark the pmd entry invalid.
2555 	 * This's critical for some architectures (Power).
2556 	 */
2557 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2558 	pmd_populate(mm, &_pmd, pgtable);
2559 
2560 	pte = pte_offset_map(&_pmd, haddr);
2561 	VM_BUG_ON(!pte);
2562 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2563 		pte_t entry;
2564 		/*
2565 		 * Note that NUMA hinting access restrictions are not
2566 		 * transferred to avoid any possibility of altering
2567 		 * permissions across VMAs.
2568 		 */
2569 		if (freeze || pmd_migration) {
2570 			swp_entry_t swp_entry;
2571 			if (write)
2572 				swp_entry = make_writable_migration_entry(
2573 							page_to_pfn(page + i));
2574 			else if (anon_exclusive)
2575 				swp_entry = make_readable_exclusive_migration_entry(
2576 							page_to_pfn(page + i));
2577 			else
2578 				swp_entry = make_readable_migration_entry(
2579 							page_to_pfn(page + i));
2580 			if (young)
2581 				swp_entry = make_migration_entry_young(swp_entry);
2582 			if (dirty)
2583 				swp_entry = make_migration_entry_dirty(swp_entry);
2584 			entry = swp_entry_to_pte(swp_entry);
2585 			if (soft_dirty)
2586 				entry = pte_swp_mksoft_dirty(entry);
2587 			if (uffd_wp)
2588 				entry = pte_swp_mkuffd_wp(entry);
2589 		} else {
2590 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2591 			if (write)
2592 				entry = pte_mkwrite(entry, vma);
2593 			if (!young)
2594 				entry = pte_mkold(entry);
2595 			/* NOTE: this may set soft-dirty too on some archs */
2596 			if (dirty)
2597 				entry = pte_mkdirty(entry);
2598 			if (soft_dirty)
2599 				entry = pte_mksoft_dirty(entry);
2600 			if (uffd_wp)
2601 				entry = pte_mkuffd_wp(entry);
2602 		}
2603 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2604 		set_pte_at(mm, addr, pte, entry);
2605 		pte++;
2606 	}
2607 	pte_unmap(pte - 1);
2608 
2609 	if (!pmd_migration)
2610 		folio_remove_rmap_pmd(folio, page, vma);
2611 	if (freeze)
2612 		put_page(page);
2613 
2614 	smp_wmb(); /* make pte visible before pmd */
2615 	pmd_populate(mm, pmd, pgtable);
2616 }
2617 
2618 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2619 		unsigned long address, bool freeze, struct folio *folio)
2620 {
2621 	spinlock_t *ptl;
2622 	struct mmu_notifier_range range;
2623 
2624 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2625 				address & HPAGE_PMD_MASK,
2626 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2627 	mmu_notifier_invalidate_range_start(&range);
2628 	ptl = pmd_lock(vma->vm_mm, pmd);
2629 
2630 	/*
2631 	 * If caller asks to setup a migration entry, we need a folio to check
2632 	 * pmd against. Otherwise we can end up replacing wrong folio.
2633 	 */
2634 	VM_BUG_ON(freeze && !folio);
2635 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2636 
2637 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2638 	    is_pmd_migration_entry(*pmd)) {
2639 		/*
2640 		 * It's safe to call pmd_page when folio is set because it's
2641 		 * guaranteed that pmd is present.
2642 		 */
2643 		if (folio && folio != page_folio(pmd_page(*pmd)))
2644 			goto out;
2645 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2646 	}
2647 
2648 out:
2649 	spin_unlock(ptl);
2650 	mmu_notifier_invalidate_range_end(&range);
2651 }
2652 
2653 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2654 		bool freeze, struct folio *folio)
2655 {
2656 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2657 
2658 	if (!pmd)
2659 		return;
2660 
2661 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2662 }
2663 
2664 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2665 {
2666 	/*
2667 	 * If the new address isn't hpage aligned and it could previously
2668 	 * contain an hugepage: check if we need to split an huge pmd.
2669 	 */
2670 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2671 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2672 			 ALIGN(address, HPAGE_PMD_SIZE)))
2673 		split_huge_pmd_address(vma, address, false, NULL);
2674 }
2675 
2676 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2677 			     unsigned long start,
2678 			     unsigned long end,
2679 			     long adjust_next)
2680 {
2681 	/* Check if we need to split start first. */
2682 	split_huge_pmd_if_needed(vma, start);
2683 
2684 	/* Check if we need to split end next. */
2685 	split_huge_pmd_if_needed(vma, end);
2686 
2687 	/*
2688 	 * If we're also updating the next vma vm_start,
2689 	 * check if we need to split it.
2690 	 */
2691 	if (adjust_next > 0) {
2692 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2693 		unsigned long nstart = next->vm_start;
2694 		nstart += adjust_next;
2695 		split_huge_pmd_if_needed(next, nstart);
2696 	}
2697 }
2698 
2699 static void unmap_folio(struct folio *folio)
2700 {
2701 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2702 		TTU_SYNC | TTU_BATCH_FLUSH;
2703 
2704 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2705 
2706 	/*
2707 	 * Anon pages need migration entries to preserve them, but file
2708 	 * pages can simply be left unmapped, then faulted back on demand.
2709 	 * If that is ever changed (perhaps for mlock), update remap_page().
2710 	 */
2711 	if (folio_test_anon(folio))
2712 		try_to_migrate(folio, ttu_flags);
2713 	else
2714 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2715 
2716 	try_to_unmap_flush();
2717 }
2718 
2719 static void remap_page(struct folio *folio, unsigned long nr)
2720 {
2721 	int i = 0;
2722 
2723 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2724 	if (!folio_test_anon(folio))
2725 		return;
2726 	for (;;) {
2727 		remove_migration_ptes(folio, folio, true);
2728 		i += folio_nr_pages(folio);
2729 		if (i >= nr)
2730 			break;
2731 		folio = folio_next(folio);
2732 	}
2733 }
2734 
2735 static void lru_add_page_tail(struct page *head, struct page *tail,
2736 		struct lruvec *lruvec, struct list_head *list)
2737 {
2738 	VM_BUG_ON_PAGE(!PageHead(head), head);
2739 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2740 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2741 	lockdep_assert_held(&lruvec->lru_lock);
2742 
2743 	if (list) {
2744 		/* page reclaim is reclaiming a huge page */
2745 		VM_WARN_ON(PageLRU(head));
2746 		get_page(tail);
2747 		list_add_tail(&tail->lru, list);
2748 	} else {
2749 		/* head is still on lru (and we have it frozen) */
2750 		VM_WARN_ON(!PageLRU(head));
2751 		if (PageUnevictable(tail))
2752 			tail->mlock_count = 0;
2753 		else
2754 			list_add_tail(&tail->lru, &head->lru);
2755 		SetPageLRU(tail);
2756 	}
2757 }
2758 
2759 static void __split_huge_page_tail(struct folio *folio, int tail,
2760 		struct lruvec *lruvec, struct list_head *list)
2761 {
2762 	struct page *head = &folio->page;
2763 	struct page *page_tail = head + tail;
2764 	/*
2765 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2766 	 * Don't pass it around before clear_compound_head().
2767 	 */
2768 	struct folio *new_folio = (struct folio *)page_tail;
2769 
2770 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2771 
2772 	/*
2773 	 * Clone page flags before unfreezing refcount.
2774 	 *
2775 	 * After successful get_page_unless_zero() might follow flags change,
2776 	 * for example lock_page() which set PG_waiters.
2777 	 *
2778 	 * Note that for mapped sub-pages of an anonymous THP,
2779 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2780 	 * the migration entry instead from where remap_page() will restore it.
2781 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2782 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2783 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2784 	 */
2785 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2786 	page_tail->flags |= (head->flags &
2787 			((1L << PG_referenced) |
2788 			 (1L << PG_swapbacked) |
2789 			 (1L << PG_swapcache) |
2790 			 (1L << PG_mlocked) |
2791 			 (1L << PG_uptodate) |
2792 			 (1L << PG_active) |
2793 			 (1L << PG_workingset) |
2794 			 (1L << PG_locked) |
2795 			 (1L << PG_unevictable) |
2796 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2797 			 (1L << PG_arch_2) |
2798 			 (1L << PG_arch_3) |
2799 #endif
2800 			 (1L << PG_dirty) |
2801 			 LRU_GEN_MASK | LRU_REFS_MASK));
2802 
2803 	/* ->mapping in first and second tail page is replaced by other uses */
2804 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2805 			page_tail);
2806 	page_tail->mapping = head->mapping;
2807 	page_tail->index = head->index + tail;
2808 
2809 	/*
2810 	 * page->private should not be set in tail pages. Fix up and warn once
2811 	 * if private is unexpectedly set.
2812 	 */
2813 	if (unlikely(page_tail->private)) {
2814 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2815 		page_tail->private = 0;
2816 	}
2817 	if (folio_test_swapcache(folio))
2818 		new_folio->swap.val = folio->swap.val + tail;
2819 
2820 	/* Page flags must be visible before we make the page non-compound. */
2821 	smp_wmb();
2822 
2823 	/*
2824 	 * Clear PageTail before unfreezing page refcount.
2825 	 *
2826 	 * After successful get_page_unless_zero() might follow put_page()
2827 	 * which needs correct compound_head().
2828 	 */
2829 	clear_compound_head(page_tail);
2830 
2831 	/* Finally unfreeze refcount. Additional reference from page cache. */
2832 	page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2833 					  folio_test_swapcache(folio)));
2834 
2835 	if (folio_test_young(folio))
2836 		folio_set_young(new_folio);
2837 	if (folio_test_idle(folio))
2838 		folio_set_idle(new_folio);
2839 
2840 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2841 
2842 	/*
2843 	 * always add to the tail because some iterators expect new
2844 	 * pages to show after the currently processed elements - e.g.
2845 	 * migrate_pages
2846 	 */
2847 	lru_add_page_tail(head, page_tail, lruvec, list);
2848 }
2849 
2850 static void __split_huge_page(struct page *page, struct list_head *list,
2851 		pgoff_t end)
2852 {
2853 	struct folio *folio = page_folio(page);
2854 	struct page *head = &folio->page;
2855 	struct lruvec *lruvec;
2856 	struct address_space *swap_cache = NULL;
2857 	unsigned long offset = 0;
2858 	unsigned int nr = thp_nr_pages(head);
2859 	int i, nr_dropped = 0;
2860 
2861 	/* complete memcg works before add pages to LRU */
2862 	split_page_memcg(head, nr);
2863 
2864 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2865 		offset = swp_offset(folio->swap);
2866 		swap_cache = swap_address_space(folio->swap);
2867 		xa_lock(&swap_cache->i_pages);
2868 	}
2869 
2870 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2871 	lruvec = folio_lruvec_lock(folio);
2872 
2873 	ClearPageHasHWPoisoned(head);
2874 
2875 	for (i = nr - 1; i >= 1; i--) {
2876 		__split_huge_page_tail(folio, i, lruvec, list);
2877 		/* Some pages can be beyond EOF: drop them from page cache */
2878 		if (head[i].index >= end) {
2879 			struct folio *tail = page_folio(head + i);
2880 
2881 			if (shmem_mapping(head->mapping))
2882 				nr_dropped++;
2883 			else if (folio_test_clear_dirty(tail))
2884 				folio_account_cleaned(tail,
2885 					inode_to_wb(folio->mapping->host));
2886 			__filemap_remove_folio(tail, NULL);
2887 			folio_put(tail);
2888 		} else if (!PageAnon(page)) {
2889 			__xa_store(&head->mapping->i_pages, head[i].index,
2890 					head + i, 0);
2891 		} else if (swap_cache) {
2892 			__xa_store(&swap_cache->i_pages, offset + i,
2893 					head + i, 0);
2894 		}
2895 	}
2896 
2897 	ClearPageCompound(head);
2898 	unlock_page_lruvec(lruvec);
2899 	/* Caller disabled irqs, so they are still disabled here */
2900 
2901 	split_page_owner(head, nr);
2902 
2903 	/* See comment in __split_huge_page_tail() */
2904 	if (PageAnon(head)) {
2905 		/* Additional pin to swap cache */
2906 		if (PageSwapCache(head)) {
2907 			page_ref_add(head, 2);
2908 			xa_unlock(&swap_cache->i_pages);
2909 		} else {
2910 			page_ref_inc(head);
2911 		}
2912 	} else {
2913 		/* Additional pin to page cache */
2914 		page_ref_add(head, 2);
2915 		xa_unlock(&head->mapping->i_pages);
2916 	}
2917 	local_irq_enable();
2918 
2919 	if (nr_dropped)
2920 		shmem_uncharge(head->mapping->host, nr_dropped);
2921 	remap_page(folio, nr);
2922 
2923 	if (folio_test_swapcache(folio))
2924 		split_swap_cluster(folio->swap);
2925 
2926 	for (i = 0; i < nr; i++) {
2927 		struct page *subpage = head + i;
2928 		if (subpage == page)
2929 			continue;
2930 		unlock_page(subpage);
2931 
2932 		/*
2933 		 * Subpages may be freed if there wasn't any mapping
2934 		 * like if add_to_swap() is running on a lru page that
2935 		 * had its mapping zapped. And freeing these pages
2936 		 * requires taking the lru_lock so we do the put_page
2937 		 * of the tail pages after the split is complete.
2938 		 */
2939 		free_page_and_swap_cache(subpage);
2940 	}
2941 }
2942 
2943 /* Racy check whether the huge page can be split */
2944 bool can_split_folio(struct folio *folio, int *pextra_pins)
2945 {
2946 	int extra_pins;
2947 
2948 	/* Additional pins from page cache */
2949 	if (folio_test_anon(folio))
2950 		extra_pins = folio_test_swapcache(folio) ?
2951 				folio_nr_pages(folio) : 0;
2952 	else
2953 		extra_pins = folio_nr_pages(folio);
2954 	if (pextra_pins)
2955 		*pextra_pins = extra_pins;
2956 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2957 }
2958 
2959 /*
2960  * This function splits huge page into normal pages. @page can point to any
2961  * subpage of huge page to split. Split doesn't change the position of @page.
2962  *
2963  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2964  * The huge page must be locked.
2965  *
2966  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2967  *
2968  * Both head page and tail pages will inherit mapping, flags, and so on from
2969  * the hugepage.
2970  *
2971  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2972  * they are not mapped.
2973  *
2974  * Returns 0 if the hugepage is split successfully.
2975  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2976  * us.
2977  */
2978 int split_huge_page_to_list(struct page *page, struct list_head *list)
2979 {
2980 	struct folio *folio = page_folio(page);
2981 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2982 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2983 	struct anon_vma *anon_vma = NULL;
2984 	struct address_space *mapping = NULL;
2985 	int extra_pins, ret;
2986 	pgoff_t end;
2987 	bool is_hzp;
2988 
2989 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2990 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2991 
2992 	is_hzp = is_huge_zero_page(&folio->page);
2993 	if (is_hzp) {
2994 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2995 		return -EBUSY;
2996 	}
2997 
2998 	if (folio_test_writeback(folio))
2999 		return -EBUSY;
3000 
3001 	if (folio_test_anon(folio)) {
3002 		/*
3003 		 * The caller does not necessarily hold an mmap_lock that would
3004 		 * prevent the anon_vma disappearing so we first we take a
3005 		 * reference to it and then lock the anon_vma for write. This
3006 		 * is similar to folio_lock_anon_vma_read except the write lock
3007 		 * is taken to serialise against parallel split or collapse
3008 		 * operations.
3009 		 */
3010 		anon_vma = folio_get_anon_vma(folio);
3011 		if (!anon_vma) {
3012 			ret = -EBUSY;
3013 			goto out;
3014 		}
3015 		end = -1;
3016 		mapping = NULL;
3017 		anon_vma_lock_write(anon_vma);
3018 	} else {
3019 		gfp_t gfp;
3020 
3021 		mapping = folio->mapping;
3022 
3023 		/* Truncated ? */
3024 		if (!mapping) {
3025 			ret = -EBUSY;
3026 			goto out;
3027 		}
3028 
3029 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3030 							GFP_RECLAIM_MASK);
3031 
3032 		if (!filemap_release_folio(folio, gfp)) {
3033 			ret = -EBUSY;
3034 			goto out;
3035 		}
3036 
3037 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3038 		if (xas_error(&xas)) {
3039 			ret = xas_error(&xas);
3040 			goto out;
3041 		}
3042 
3043 		anon_vma = NULL;
3044 		i_mmap_lock_read(mapping);
3045 
3046 		/*
3047 		 *__split_huge_page() may need to trim off pages beyond EOF:
3048 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3049 		 * which cannot be nested inside the page tree lock. So note
3050 		 * end now: i_size itself may be changed at any moment, but
3051 		 * folio lock is good enough to serialize the trimming.
3052 		 */
3053 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3054 		if (shmem_mapping(mapping))
3055 			end = shmem_fallocend(mapping->host, end);
3056 	}
3057 
3058 	/*
3059 	 * Racy check if we can split the page, before unmap_folio() will
3060 	 * split PMDs
3061 	 */
3062 	if (!can_split_folio(folio, &extra_pins)) {
3063 		ret = -EAGAIN;
3064 		goto out_unlock;
3065 	}
3066 
3067 	unmap_folio(folio);
3068 
3069 	/* block interrupt reentry in xa_lock and spinlock */
3070 	local_irq_disable();
3071 	if (mapping) {
3072 		/*
3073 		 * Check if the folio is present in page cache.
3074 		 * We assume all tail are present too, if folio is there.
3075 		 */
3076 		xas_lock(&xas);
3077 		xas_reset(&xas);
3078 		if (xas_load(&xas) != folio)
3079 			goto fail;
3080 	}
3081 
3082 	/* Prevent deferred_split_scan() touching ->_refcount */
3083 	spin_lock(&ds_queue->split_queue_lock);
3084 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3085 		if (!list_empty(&folio->_deferred_list)) {
3086 			ds_queue->split_queue_len--;
3087 			list_del(&folio->_deferred_list);
3088 		}
3089 		spin_unlock(&ds_queue->split_queue_lock);
3090 		if (mapping) {
3091 			int nr = folio_nr_pages(folio);
3092 
3093 			xas_split(&xas, folio, folio_order(folio));
3094 			if (folio_test_pmd_mappable(folio)) {
3095 				if (folio_test_swapbacked(folio)) {
3096 					__lruvec_stat_mod_folio(folio,
3097 							NR_SHMEM_THPS, -nr);
3098 				} else {
3099 					__lruvec_stat_mod_folio(folio,
3100 							NR_FILE_THPS, -nr);
3101 					filemap_nr_thps_dec(mapping);
3102 				}
3103 			}
3104 		}
3105 
3106 		__split_huge_page(page, list, end);
3107 		ret = 0;
3108 	} else {
3109 		spin_unlock(&ds_queue->split_queue_lock);
3110 fail:
3111 		if (mapping)
3112 			xas_unlock(&xas);
3113 		local_irq_enable();
3114 		remap_page(folio, folio_nr_pages(folio));
3115 		ret = -EAGAIN;
3116 	}
3117 
3118 out_unlock:
3119 	if (anon_vma) {
3120 		anon_vma_unlock_write(anon_vma);
3121 		put_anon_vma(anon_vma);
3122 	}
3123 	if (mapping)
3124 		i_mmap_unlock_read(mapping);
3125 out:
3126 	xas_destroy(&xas);
3127 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3128 	return ret;
3129 }
3130 
3131 void folio_undo_large_rmappable(struct folio *folio)
3132 {
3133 	struct deferred_split *ds_queue;
3134 	unsigned long flags;
3135 
3136 	/*
3137 	 * At this point, there is no one trying to add the folio to
3138 	 * deferred_list. If folio is not in deferred_list, it's safe
3139 	 * to check without acquiring the split_queue_lock.
3140 	 */
3141 	if (data_race(list_empty(&folio->_deferred_list)))
3142 		return;
3143 
3144 	ds_queue = get_deferred_split_queue(folio);
3145 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3146 	if (!list_empty(&folio->_deferred_list)) {
3147 		ds_queue->split_queue_len--;
3148 		list_del_init(&folio->_deferred_list);
3149 	}
3150 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3151 }
3152 
3153 void deferred_split_folio(struct folio *folio)
3154 {
3155 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3156 #ifdef CONFIG_MEMCG
3157 	struct mem_cgroup *memcg = folio_memcg(folio);
3158 #endif
3159 	unsigned long flags;
3160 
3161 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3162 
3163 	/*
3164 	 * The try_to_unmap() in page reclaim path might reach here too,
3165 	 * this may cause a race condition to corrupt deferred split queue.
3166 	 * And, if page reclaim is already handling the same folio, it is
3167 	 * unnecessary to handle it again in shrinker.
3168 	 *
3169 	 * Check the swapcache flag to determine if the folio is being
3170 	 * handled by page reclaim since THP swap would add the folio into
3171 	 * swap cache before calling try_to_unmap().
3172 	 */
3173 	if (folio_test_swapcache(folio))
3174 		return;
3175 
3176 	if (!list_empty(&folio->_deferred_list))
3177 		return;
3178 
3179 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3180 	if (list_empty(&folio->_deferred_list)) {
3181 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3182 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3183 		ds_queue->split_queue_len++;
3184 #ifdef CONFIG_MEMCG
3185 		if (memcg)
3186 			set_shrinker_bit(memcg, folio_nid(folio),
3187 					 deferred_split_shrinker->id);
3188 #endif
3189 	}
3190 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3191 }
3192 
3193 static unsigned long deferred_split_count(struct shrinker *shrink,
3194 		struct shrink_control *sc)
3195 {
3196 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3197 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3198 
3199 #ifdef CONFIG_MEMCG
3200 	if (sc->memcg)
3201 		ds_queue = &sc->memcg->deferred_split_queue;
3202 #endif
3203 	return READ_ONCE(ds_queue->split_queue_len);
3204 }
3205 
3206 static unsigned long deferred_split_scan(struct shrinker *shrink,
3207 		struct shrink_control *sc)
3208 {
3209 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3210 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3211 	unsigned long flags;
3212 	LIST_HEAD(list);
3213 	struct folio *folio, *next;
3214 	int split = 0;
3215 
3216 #ifdef CONFIG_MEMCG
3217 	if (sc->memcg)
3218 		ds_queue = &sc->memcg->deferred_split_queue;
3219 #endif
3220 
3221 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3222 	/* Take pin on all head pages to avoid freeing them under us */
3223 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3224 							_deferred_list) {
3225 		if (folio_try_get(folio)) {
3226 			list_move(&folio->_deferred_list, &list);
3227 		} else {
3228 			/* We lost race with folio_put() */
3229 			list_del_init(&folio->_deferred_list);
3230 			ds_queue->split_queue_len--;
3231 		}
3232 		if (!--sc->nr_to_scan)
3233 			break;
3234 	}
3235 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3236 
3237 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3238 		if (!folio_trylock(folio))
3239 			goto next;
3240 		/* split_huge_page() removes page from list on success */
3241 		if (!split_folio(folio))
3242 			split++;
3243 		folio_unlock(folio);
3244 next:
3245 		folio_put(folio);
3246 	}
3247 
3248 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3249 	list_splice_tail(&list, &ds_queue->split_queue);
3250 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3251 
3252 	/*
3253 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3254 	 * This can happen if pages were freed under us.
3255 	 */
3256 	if (!split && list_empty(&ds_queue->split_queue))
3257 		return SHRINK_STOP;
3258 	return split;
3259 }
3260 
3261 #ifdef CONFIG_DEBUG_FS
3262 static void split_huge_pages_all(void)
3263 {
3264 	struct zone *zone;
3265 	struct page *page;
3266 	struct folio *folio;
3267 	unsigned long pfn, max_zone_pfn;
3268 	unsigned long total = 0, split = 0;
3269 
3270 	pr_debug("Split all THPs\n");
3271 	for_each_zone(zone) {
3272 		if (!managed_zone(zone))
3273 			continue;
3274 		max_zone_pfn = zone_end_pfn(zone);
3275 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3276 			int nr_pages;
3277 
3278 			page = pfn_to_online_page(pfn);
3279 			if (!page || PageTail(page))
3280 				continue;
3281 			folio = page_folio(page);
3282 			if (!folio_try_get(folio))
3283 				continue;
3284 
3285 			if (unlikely(page_folio(page) != folio))
3286 				goto next;
3287 
3288 			if (zone != folio_zone(folio))
3289 				goto next;
3290 
3291 			if (!folio_test_large(folio)
3292 				|| folio_test_hugetlb(folio)
3293 				|| !folio_test_lru(folio))
3294 				goto next;
3295 
3296 			total++;
3297 			folio_lock(folio);
3298 			nr_pages = folio_nr_pages(folio);
3299 			if (!split_folio(folio))
3300 				split++;
3301 			pfn += nr_pages - 1;
3302 			folio_unlock(folio);
3303 next:
3304 			folio_put(folio);
3305 			cond_resched();
3306 		}
3307 	}
3308 
3309 	pr_debug("%lu of %lu THP split\n", split, total);
3310 }
3311 
3312 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3313 {
3314 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3315 		    is_vm_hugetlb_page(vma);
3316 }
3317 
3318 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3319 				unsigned long vaddr_end)
3320 {
3321 	int ret = 0;
3322 	struct task_struct *task;
3323 	struct mm_struct *mm;
3324 	unsigned long total = 0, split = 0;
3325 	unsigned long addr;
3326 
3327 	vaddr_start &= PAGE_MASK;
3328 	vaddr_end &= PAGE_MASK;
3329 
3330 	/* Find the task_struct from pid */
3331 	rcu_read_lock();
3332 	task = find_task_by_vpid(pid);
3333 	if (!task) {
3334 		rcu_read_unlock();
3335 		ret = -ESRCH;
3336 		goto out;
3337 	}
3338 	get_task_struct(task);
3339 	rcu_read_unlock();
3340 
3341 	/* Find the mm_struct */
3342 	mm = get_task_mm(task);
3343 	put_task_struct(task);
3344 
3345 	if (!mm) {
3346 		ret = -EINVAL;
3347 		goto out;
3348 	}
3349 
3350 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3351 		 pid, vaddr_start, vaddr_end);
3352 
3353 	mmap_read_lock(mm);
3354 	/*
3355 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3356 	 * table filled with PTE-mapped THPs, each of which is distinct.
3357 	 */
3358 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3359 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3360 		struct page *page;
3361 		struct folio *folio;
3362 
3363 		if (!vma)
3364 			break;
3365 
3366 		/* skip special VMA and hugetlb VMA */
3367 		if (vma_not_suitable_for_thp_split(vma)) {
3368 			addr = vma->vm_end;
3369 			continue;
3370 		}
3371 
3372 		/* FOLL_DUMP to ignore special (like zero) pages */
3373 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3374 
3375 		if (IS_ERR_OR_NULL(page))
3376 			continue;
3377 
3378 		folio = page_folio(page);
3379 		if (!is_transparent_hugepage(folio))
3380 			goto next;
3381 
3382 		total++;
3383 		if (!can_split_folio(folio, NULL))
3384 			goto next;
3385 
3386 		if (!folio_trylock(folio))
3387 			goto next;
3388 
3389 		if (!split_folio(folio))
3390 			split++;
3391 
3392 		folio_unlock(folio);
3393 next:
3394 		folio_put(folio);
3395 		cond_resched();
3396 	}
3397 	mmap_read_unlock(mm);
3398 	mmput(mm);
3399 
3400 	pr_debug("%lu of %lu THP split\n", split, total);
3401 
3402 out:
3403 	return ret;
3404 }
3405 
3406 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3407 				pgoff_t off_end)
3408 {
3409 	struct filename *file;
3410 	struct file *candidate;
3411 	struct address_space *mapping;
3412 	int ret = -EINVAL;
3413 	pgoff_t index;
3414 	int nr_pages = 1;
3415 	unsigned long total = 0, split = 0;
3416 
3417 	file = getname_kernel(file_path);
3418 	if (IS_ERR(file))
3419 		return ret;
3420 
3421 	candidate = file_open_name(file, O_RDONLY, 0);
3422 	if (IS_ERR(candidate))
3423 		goto out;
3424 
3425 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3426 		 file_path, off_start, off_end);
3427 
3428 	mapping = candidate->f_mapping;
3429 
3430 	for (index = off_start; index < off_end; index += nr_pages) {
3431 		struct folio *folio = filemap_get_folio(mapping, index);
3432 
3433 		nr_pages = 1;
3434 		if (IS_ERR(folio))
3435 			continue;
3436 
3437 		if (!folio_test_large(folio))
3438 			goto next;
3439 
3440 		total++;
3441 		nr_pages = folio_nr_pages(folio);
3442 
3443 		if (!folio_trylock(folio))
3444 			goto next;
3445 
3446 		if (!split_folio(folio))
3447 			split++;
3448 
3449 		folio_unlock(folio);
3450 next:
3451 		folio_put(folio);
3452 		cond_resched();
3453 	}
3454 
3455 	filp_close(candidate, NULL);
3456 	ret = 0;
3457 
3458 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3459 out:
3460 	putname(file);
3461 	return ret;
3462 }
3463 
3464 #define MAX_INPUT_BUF_SZ 255
3465 
3466 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3467 				size_t count, loff_t *ppops)
3468 {
3469 	static DEFINE_MUTEX(split_debug_mutex);
3470 	ssize_t ret;
3471 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3472 	char input_buf[MAX_INPUT_BUF_SZ];
3473 	int pid;
3474 	unsigned long vaddr_start, vaddr_end;
3475 
3476 	ret = mutex_lock_interruptible(&split_debug_mutex);
3477 	if (ret)
3478 		return ret;
3479 
3480 	ret = -EFAULT;
3481 
3482 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3483 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3484 		goto out;
3485 
3486 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3487 
3488 	if (input_buf[0] == '/') {
3489 		char *tok;
3490 		char *buf = input_buf;
3491 		char file_path[MAX_INPUT_BUF_SZ];
3492 		pgoff_t off_start = 0, off_end = 0;
3493 		size_t input_len = strlen(input_buf);
3494 
3495 		tok = strsep(&buf, ",");
3496 		if (tok) {
3497 			strcpy(file_path, tok);
3498 		} else {
3499 			ret = -EINVAL;
3500 			goto out;
3501 		}
3502 
3503 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3504 		if (ret != 2) {
3505 			ret = -EINVAL;
3506 			goto out;
3507 		}
3508 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3509 		if (!ret)
3510 			ret = input_len;
3511 
3512 		goto out;
3513 	}
3514 
3515 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3516 	if (ret == 1 && pid == 1) {
3517 		split_huge_pages_all();
3518 		ret = strlen(input_buf);
3519 		goto out;
3520 	} else if (ret != 3) {
3521 		ret = -EINVAL;
3522 		goto out;
3523 	}
3524 
3525 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3526 	if (!ret)
3527 		ret = strlen(input_buf);
3528 out:
3529 	mutex_unlock(&split_debug_mutex);
3530 	return ret;
3531 
3532 }
3533 
3534 static const struct file_operations split_huge_pages_fops = {
3535 	.owner	 = THIS_MODULE,
3536 	.write	 = split_huge_pages_write,
3537 	.llseek  = no_llseek,
3538 };
3539 
3540 static int __init split_huge_pages_debugfs(void)
3541 {
3542 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3543 			    &split_huge_pages_fops);
3544 	return 0;
3545 }
3546 late_initcall(split_huge_pages_debugfs);
3547 #endif
3548 
3549 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3550 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3551 		struct page *page)
3552 {
3553 	struct folio *folio = page_folio(page);
3554 	struct vm_area_struct *vma = pvmw->vma;
3555 	struct mm_struct *mm = vma->vm_mm;
3556 	unsigned long address = pvmw->address;
3557 	bool anon_exclusive;
3558 	pmd_t pmdval;
3559 	swp_entry_t entry;
3560 	pmd_t pmdswp;
3561 
3562 	if (!(pvmw->pmd && !pvmw->pte))
3563 		return 0;
3564 
3565 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3566 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3567 
3568 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3569 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3570 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3571 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3572 		return -EBUSY;
3573 	}
3574 
3575 	if (pmd_dirty(pmdval))
3576 		folio_mark_dirty(folio);
3577 	if (pmd_write(pmdval))
3578 		entry = make_writable_migration_entry(page_to_pfn(page));
3579 	else if (anon_exclusive)
3580 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3581 	else
3582 		entry = make_readable_migration_entry(page_to_pfn(page));
3583 	if (pmd_young(pmdval))
3584 		entry = make_migration_entry_young(entry);
3585 	if (pmd_dirty(pmdval))
3586 		entry = make_migration_entry_dirty(entry);
3587 	pmdswp = swp_entry_to_pmd(entry);
3588 	if (pmd_soft_dirty(pmdval))
3589 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3590 	if (pmd_uffd_wp(pmdval))
3591 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3592 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3593 	folio_remove_rmap_pmd(folio, page, vma);
3594 	folio_put(folio);
3595 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3596 
3597 	return 0;
3598 }
3599 
3600 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3601 {
3602 	struct folio *folio = page_folio(new);
3603 	struct vm_area_struct *vma = pvmw->vma;
3604 	struct mm_struct *mm = vma->vm_mm;
3605 	unsigned long address = pvmw->address;
3606 	unsigned long haddr = address & HPAGE_PMD_MASK;
3607 	pmd_t pmde;
3608 	swp_entry_t entry;
3609 
3610 	if (!(pvmw->pmd && !pvmw->pte))
3611 		return;
3612 
3613 	entry = pmd_to_swp_entry(*pvmw->pmd);
3614 	folio_get(folio);
3615 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3616 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3617 		pmde = pmd_mksoft_dirty(pmde);
3618 	if (is_writable_migration_entry(entry))
3619 		pmde = pmd_mkwrite(pmde, vma);
3620 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3621 		pmde = pmd_mkuffd_wp(pmde);
3622 	if (!is_migration_entry_young(entry))
3623 		pmde = pmd_mkold(pmde);
3624 	/* NOTE: this may contain setting soft-dirty on some archs */
3625 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3626 		pmde = pmd_mkdirty(pmde);
3627 
3628 	if (folio_test_anon(folio)) {
3629 		rmap_t rmap_flags = RMAP_NONE;
3630 
3631 		if (!is_readable_migration_entry(entry))
3632 			rmap_flags |= RMAP_EXCLUSIVE;
3633 
3634 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3635 	} else {
3636 		folio_add_file_rmap_pmd(folio, new, vma);
3637 	}
3638 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3639 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3640 
3641 	/* No need to invalidate - it was non-present before */
3642 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3643 	trace_remove_migration_pmd(address, pmd_val(pmde));
3644 }
3645 #endif
3646