xref: /linux/mm/huge_memory.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49 
50 /*
51  * By default, transparent hugepage support is disabled in order to avoid
52  * risking an increased memory footprint for applications that are not
53  * guaranteed to benefit from it. When transparent hugepage support is
54  * enabled, it is for all mappings, and khugepaged scans all mappings.
55  * Defrag is invoked by khugepaged hugepage allocations and by page faults
56  * for all hugepage allocations.
57  */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 
69 static struct shrinker *deferred_split_shrinker;
70 static unsigned long deferred_split_count(struct shrinker *shrink,
71 					  struct shrink_control *sc);
72 static unsigned long deferred_split_scan(struct shrinker *shrink,
73 					 struct shrink_control *sc);
74 
75 static atomic_t huge_zero_refcount;
76 struct page *huge_zero_page __read_mostly;
77 unsigned long huge_zero_pfn __read_mostly = ~0UL;
78 unsigned long huge_anon_orders_always __read_mostly;
79 unsigned long huge_anon_orders_madvise __read_mostly;
80 unsigned long huge_anon_orders_inherit __read_mostly;
81 
82 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
83 					 unsigned long vm_flags, bool smaps,
84 					 bool in_pf, bool enforce_sysfs,
85 					 unsigned long orders)
86 {
87 	/* Check the intersection of requested and supported orders. */
88 	orders &= vma_is_anonymous(vma) ?
89 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
90 	if (!orders)
91 		return 0;
92 
93 	if (!vma->vm_mm)		/* vdso */
94 		return 0;
95 
96 	/*
97 	 * Explicitly disabled through madvise or prctl, or some
98 	 * architectures may disable THP for some mappings, for
99 	 * example, s390 kvm.
100 	 * */
101 	if ((vm_flags & VM_NOHUGEPAGE) ||
102 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
103 		return 0;
104 	/*
105 	 * If the hardware/firmware marked hugepage support disabled.
106 	 */
107 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
108 		return 0;
109 
110 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
111 	if (vma_is_dax(vma))
112 		return in_pf ? orders : 0;
113 
114 	/*
115 	 * khugepaged special VMA and hugetlb VMA.
116 	 * Must be checked after dax since some dax mappings may have
117 	 * VM_MIXEDMAP set.
118 	 */
119 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
120 		return 0;
121 
122 	/*
123 	 * Check alignment for file vma and size for both file and anon vma by
124 	 * filtering out the unsuitable orders.
125 	 *
126 	 * Skip the check for page fault. Huge fault does the check in fault
127 	 * handlers.
128 	 */
129 	if (!in_pf) {
130 		int order = highest_order(orders);
131 		unsigned long addr;
132 
133 		while (orders) {
134 			addr = vma->vm_end - (PAGE_SIZE << order);
135 			if (thp_vma_suitable_order(vma, addr, order))
136 				break;
137 			order = next_order(&orders, order);
138 		}
139 
140 		if (!orders)
141 			return 0;
142 	}
143 
144 	/*
145 	 * Enabled via shmem mount options or sysfs settings.
146 	 * Must be done before hugepage flags check since shmem has its
147 	 * own flags.
148 	 */
149 	if (!in_pf && shmem_file(vma->vm_file))
150 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
151 				     !enforce_sysfs, vma->vm_mm, vm_flags)
152 			? orders : 0;
153 
154 	if (!vma_is_anonymous(vma)) {
155 		/*
156 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
157 		 * were already handled in thp_vma_allowable_orders().
158 		 */
159 		if (enforce_sysfs &&
160 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
161 						    !hugepage_global_always())))
162 			return 0;
163 
164 		/*
165 		 * Trust that ->huge_fault() handlers know what they are doing
166 		 * in fault path.
167 		 */
168 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
169 			return orders;
170 		/* Only regular file is valid in collapse path */
171 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
172 			return orders;
173 		return 0;
174 	}
175 
176 	if (vma_is_temporary_stack(vma))
177 		return 0;
178 
179 	/*
180 	 * THPeligible bit of smaps should show 1 for proper VMAs even
181 	 * though anon_vma is not initialized yet.
182 	 *
183 	 * Allow page fault since anon_vma may be not initialized until
184 	 * the first page fault.
185 	 */
186 	if (!vma->anon_vma)
187 		return (smaps || in_pf) ? orders : 0;
188 
189 	return orders;
190 }
191 
192 static bool get_huge_zero_page(void)
193 {
194 	struct page *zero_page;
195 retry:
196 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
197 		return true;
198 
199 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
200 			HPAGE_PMD_ORDER);
201 	if (!zero_page) {
202 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
203 		return false;
204 	}
205 	preempt_disable();
206 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
207 		preempt_enable();
208 		__free_pages(zero_page, compound_order(zero_page));
209 		goto retry;
210 	}
211 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
212 
213 	/* We take additional reference here. It will be put back by shrinker */
214 	atomic_set(&huge_zero_refcount, 2);
215 	preempt_enable();
216 	count_vm_event(THP_ZERO_PAGE_ALLOC);
217 	return true;
218 }
219 
220 static void put_huge_zero_page(void)
221 {
222 	/*
223 	 * Counter should never go to zero here. Only shrinker can put
224 	 * last reference.
225 	 */
226 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
227 }
228 
229 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
230 {
231 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
232 		return READ_ONCE(huge_zero_page);
233 
234 	if (!get_huge_zero_page())
235 		return NULL;
236 
237 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
238 		put_huge_zero_page();
239 
240 	return READ_ONCE(huge_zero_page);
241 }
242 
243 void mm_put_huge_zero_page(struct mm_struct *mm)
244 {
245 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
246 		put_huge_zero_page();
247 }
248 
249 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
250 					struct shrink_control *sc)
251 {
252 	/* we can free zero page only if last reference remains */
253 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
254 }
255 
256 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
257 				       struct shrink_control *sc)
258 {
259 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
260 		struct page *zero_page = xchg(&huge_zero_page, NULL);
261 		BUG_ON(zero_page == NULL);
262 		WRITE_ONCE(huge_zero_pfn, ~0UL);
263 		__free_pages(zero_page, compound_order(zero_page));
264 		return HPAGE_PMD_NR;
265 	}
266 
267 	return 0;
268 }
269 
270 static struct shrinker *huge_zero_page_shrinker;
271 
272 #ifdef CONFIG_SYSFS
273 static ssize_t enabled_show(struct kobject *kobj,
274 			    struct kobj_attribute *attr, char *buf)
275 {
276 	const char *output;
277 
278 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
279 		output = "[always] madvise never";
280 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
281 			  &transparent_hugepage_flags))
282 		output = "always [madvise] never";
283 	else
284 		output = "always madvise [never]";
285 
286 	return sysfs_emit(buf, "%s\n", output);
287 }
288 
289 static ssize_t enabled_store(struct kobject *kobj,
290 			     struct kobj_attribute *attr,
291 			     const char *buf, size_t count)
292 {
293 	ssize_t ret = count;
294 
295 	if (sysfs_streq(buf, "always")) {
296 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
298 	} else if (sysfs_streq(buf, "madvise")) {
299 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
300 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 	} else if (sysfs_streq(buf, "never")) {
302 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
303 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
304 	} else
305 		ret = -EINVAL;
306 
307 	if (ret > 0) {
308 		int err = start_stop_khugepaged();
309 		if (err)
310 			ret = err;
311 	}
312 	return ret;
313 }
314 
315 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
316 
317 ssize_t single_hugepage_flag_show(struct kobject *kobj,
318 				  struct kobj_attribute *attr, char *buf,
319 				  enum transparent_hugepage_flag flag)
320 {
321 	return sysfs_emit(buf, "%d\n",
322 			  !!test_bit(flag, &transparent_hugepage_flags));
323 }
324 
325 ssize_t single_hugepage_flag_store(struct kobject *kobj,
326 				 struct kobj_attribute *attr,
327 				 const char *buf, size_t count,
328 				 enum transparent_hugepage_flag flag)
329 {
330 	unsigned long value;
331 	int ret;
332 
333 	ret = kstrtoul(buf, 10, &value);
334 	if (ret < 0)
335 		return ret;
336 	if (value > 1)
337 		return -EINVAL;
338 
339 	if (value)
340 		set_bit(flag, &transparent_hugepage_flags);
341 	else
342 		clear_bit(flag, &transparent_hugepage_flags);
343 
344 	return count;
345 }
346 
347 static ssize_t defrag_show(struct kobject *kobj,
348 			   struct kobj_attribute *attr, char *buf)
349 {
350 	const char *output;
351 
352 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
353 		     &transparent_hugepage_flags))
354 		output = "[always] defer defer+madvise madvise never";
355 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
356 			  &transparent_hugepage_flags))
357 		output = "always [defer] defer+madvise madvise never";
358 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
359 			  &transparent_hugepage_flags))
360 		output = "always defer [defer+madvise] madvise never";
361 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
362 			  &transparent_hugepage_flags))
363 		output = "always defer defer+madvise [madvise] never";
364 	else
365 		output = "always defer defer+madvise madvise [never]";
366 
367 	return sysfs_emit(buf, "%s\n", output);
368 }
369 
370 static ssize_t defrag_store(struct kobject *kobj,
371 			    struct kobj_attribute *attr,
372 			    const char *buf, size_t count)
373 {
374 	if (sysfs_streq(buf, "always")) {
375 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
376 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
377 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
378 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
379 	} else if (sysfs_streq(buf, "defer+madvise")) {
380 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
381 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
382 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
383 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
384 	} else if (sysfs_streq(buf, "defer")) {
385 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
386 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
387 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
388 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
389 	} else if (sysfs_streq(buf, "madvise")) {
390 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
391 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
392 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
393 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 	} else if (sysfs_streq(buf, "never")) {
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 	} else
400 		return -EINVAL;
401 
402 	return count;
403 }
404 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
405 
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 				  struct kobj_attribute *attr, char *buf)
408 {
409 	return single_hugepage_flag_show(kobj, attr, buf,
410 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 		struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 	return single_hugepage_flag_store(kobj, attr, buf, count,
416 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
419 
420 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
421 				   struct kobj_attribute *attr, char *buf)
422 {
423 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
424 }
425 static struct kobj_attribute hpage_pmd_size_attr =
426 	__ATTR_RO(hpage_pmd_size);
427 
428 static struct attribute *hugepage_attr[] = {
429 	&enabled_attr.attr,
430 	&defrag_attr.attr,
431 	&use_zero_page_attr.attr,
432 	&hpage_pmd_size_attr.attr,
433 #ifdef CONFIG_SHMEM
434 	&shmem_enabled_attr.attr,
435 #endif
436 	NULL,
437 };
438 
439 static const struct attribute_group hugepage_attr_group = {
440 	.attrs = hugepage_attr,
441 };
442 
443 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
444 static void thpsize_release(struct kobject *kobj);
445 static DEFINE_SPINLOCK(huge_anon_orders_lock);
446 static LIST_HEAD(thpsize_list);
447 
448 struct thpsize {
449 	struct kobject kobj;
450 	struct list_head node;
451 	int order;
452 };
453 
454 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
455 
456 static ssize_t thpsize_enabled_show(struct kobject *kobj,
457 				    struct kobj_attribute *attr, char *buf)
458 {
459 	int order = to_thpsize(kobj)->order;
460 	const char *output;
461 
462 	if (test_bit(order, &huge_anon_orders_always))
463 		output = "[always] inherit madvise never";
464 	else if (test_bit(order, &huge_anon_orders_inherit))
465 		output = "always [inherit] madvise never";
466 	else if (test_bit(order, &huge_anon_orders_madvise))
467 		output = "always inherit [madvise] never";
468 	else
469 		output = "always inherit madvise [never]";
470 
471 	return sysfs_emit(buf, "%s\n", output);
472 }
473 
474 static ssize_t thpsize_enabled_store(struct kobject *kobj,
475 				     struct kobj_attribute *attr,
476 				     const char *buf, size_t count)
477 {
478 	int order = to_thpsize(kobj)->order;
479 	ssize_t ret = count;
480 
481 	if (sysfs_streq(buf, "always")) {
482 		spin_lock(&huge_anon_orders_lock);
483 		clear_bit(order, &huge_anon_orders_inherit);
484 		clear_bit(order, &huge_anon_orders_madvise);
485 		set_bit(order, &huge_anon_orders_always);
486 		spin_unlock(&huge_anon_orders_lock);
487 	} else if (sysfs_streq(buf, "inherit")) {
488 		spin_lock(&huge_anon_orders_lock);
489 		clear_bit(order, &huge_anon_orders_always);
490 		clear_bit(order, &huge_anon_orders_madvise);
491 		set_bit(order, &huge_anon_orders_inherit);
492 		spin_unlock(&huge_anon_orders_lock);
493 	} else if (sysfs_streq(buf, "madvise")) {
494 		spin_lock(&huge_anon_orders_lock);
495 		clear_bit(order, &huge_anon_orders_always);
496 		clear_bit(order, &huge_anon_orders_inherit);
497 		set_bit(order, &huge_anon_orders_madvise);
498 		spin_unlock(&huge_anon_orders_lock);
499 	} else if (sysfs_streq(buf, "never")) {
500 		spin_lock(&huge_anon_orders_lock);
501 		clear_bit(order, &huge_anon_orders_always);
502 		clear_bit(order, &huge_anon_orders_inherit);
503 		clear_bit(order, &huge_anon_orders_madvise);
504 		spin_unlock(&huge_anon_orders_lock);
505 	} else
506 		ret = -EINVAL;
507 
508 	return ret;
509 }
510 
511 static struct kobj_attribute thpsize_enabled_attr =
512 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
513 
514 static struct attribute *thpsize_attrs[] = {
515 	&thpsize_enabled_attr.attr,
516 	NULL,
517 };
518 
519 static const struct attribute_group thpsize_attr_group = {
520 	.attrs = thpsize_attrs,
521 };
522 
523 static const struct kobj_type thpsize_ktype = {
524 	.release = &thpsize_release,
525 	.sysfs_ops = &kobj_sysfs_ops,
526 };
527 
528 static struct thpsize *thpsize_create(int order, struct kobject *parent)
529 {
530 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
531 	struct thpsize *thpsize;
532 	int ret;
533 
534 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
535 	if (!thpsize)
536 		return ERR_PTR(-ENOMEM);
537 
538 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
539 				   "hugepages-%lukB", size);
540 	if (ret) {
541 		kfree(thpsize);
542 		return ERR_PTR(ret);
543 	}
544 
545 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
546 	if (ret) {
547 		kobject_put(&thpsize->kobj);
548 		return ERR_PTR(ret);
549 	}
550 
551 	thpsize->order = order;
552 	return thpsize;
553 }
554 
555 static void thpsize_release(struct kobject *kobj)
556 {
557 	kfree(to_thpsize(kobj));
558 }
559 
560 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
561 {
562 	int err;
563 	struct thpsize *thpsize;
564 	unsigned long orders;
565 	int order;
566 
567 	/*
568 	 * Default to setting PMD-sized THP to inherit the global setting and
569 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
570 	 * constant so we have to do this here.
571 	 */
572 	huge_anon_orders_inherit = BIT(PMD_ORDER);
573 
574 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 	if (unlikely(!*hugepage_kobj)) {
576 		pr_err("failed to create transparent hugepage kobject\n");
577 		return -ENOMEM;
578 	}
579 
580 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 	if (err) {
582 		pr_err("failed to register transparent hugepage group\n");
583 		goto delete_obj;
584 	}
585 
586 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 	if (err) {
588 		pr_err("failed to register transparent hugepage group\n");
589 		goto remove_hp_group;
590 	}
591 
592 	orders = THP_ORDERS_ALL_ANON;
593 	order = highest_order(orders);
594 	while (orders) {
595 		thpsize = thpsize_create(order, *hugepage_kobj);
596 		if (IS_ERR(thpsize)) {
597 			pr_err("failed to create thpsize for order %d\n", order);
598 			err = PTR_ERR(thpsize);
599 			goto remove_all;
600 		}
601 		list_add(&thpsize->node, &thpsize_list);
602 		order = next_order(&orders, order);
603 	}
604 
605 	return 0;
606 
607 remove_all:
608 	hugepage_exit_sysfs(*hugepage_kobj);
609 	return err;
610 remove_hp_group:
611 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
612 delete_obj:
613 	kobject_put(*hugepage_kobj);
614 	return err;
615 }
616 
617 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 	struct thpsize *thpsize, *tmp;
620 
621 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
622 		list_del(&thpsize->node);
623 		kobject_put(&thpsize->kobj);
624 	}
625 
626 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
627 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
628 	kobject_put(hugepage_kobj);
629 }
630 #else
631 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
632 {
633 	return 0;
634 }
635 
636 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 }
639 #endif /* CONFIG_SYSFS */
640 
641 static int __init thp_shrinker_init(void)
642 {
643 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
644 	if (!huge_zero_page_shrinker)
645 		return -ENOMEM;
646 
647 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
648 						 SHRINKER_MEMCG_AWARE |
649 						 SHRINKER_NONSLAB,
650 						 "thp-deferred_split");
651 	if (!deferred_split_shrinker) {
652 		shrinker_free(huge_zero_page_shrinker);
653 		return -ENOMEM;
654 	}
655 
656 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
657 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
658 	shrinker_register(huge_zero_page_shrinker);
659 
660 	deferred_split_shrinker->count_objects = deferred_split_count;
661 	deferred_split_shrinker->scan_objects = deferred_split_scan;
662 	shrinker_register(deferred_split_shrinker);
663 
664 	return 0;
665 }
666 
667 static void __init thp_shrinker_exit(void)
668 {
669 	shrinker_free(huge_zero_page_shrinker);
670 	shrinker_free(deferred_split_shrinker);
671 }
672 
673 static int __init hugepage_init(void)
674 {
675 	int err;
676 	struct kobject *hugepage_kobj;
677 
678 	if (!has_transparent_hugepage()) {
679 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
680 		return -EINVAL;
681 	}
682 
683 	/*
684 	 * hugepages can't be allocated by the buddy allocator
685 	 */
686 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
687 	/*
688 	 * we use page->mapping and page->index in second tail page
689 	 * as list_head: assuming THP order >= 2
690 	 */
691 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
692 
693 	err = hugepage_init_sysfs(&hugepage_kobj);
694 	if (err)
695 		goto err_sysfs;
696 
697 	err = khugepaged_init();
698 	if (err)
699 		goto err_slab;
700 
701 	err = thp_shrinker_init();
702 	if (err)
703 		goto err_shrinker;
704 
705 	/*
706 	 * By default disable transparent hugepages on smaller systems,
707 	 * where the extra memory used could hurt more than TLB overhead
708 	 * is likely to save.  The admin can still enable it through /sys.
709 	 */
710 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
711 		transparent_hugepage_flags = 0;
712 		return 0;
713 	}
714 
715 	err = start_stop_khugepaged();
716 	if (err)
717 		goto err_khugepaged;
718 
719 	return 0;
720 err_khugepaged:
721 	thp_shrinker_exit();
722 err_shrinker:
723 	khugepaged_destroy();
724 err_slab:
725 	hugepage_exit_sysfs(hugepage_kobj);
726 err_sysfs:
727 	return err;
728 }
729 subsys_initcall(hugepage_init);
730 
731 static int __init setup_transparent_hugepage(char *str)
732 {
733 	int ret = 0;
734 	if (!str)
735 		goto out;
736 	if (!strcmp(str, "always")) {
737 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
738 			&transparent_hugepage_flags);
739 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
740 			  &transparent_hugepage_flags);
741 		ret = 1;
742 	} else if (!strcmp(str, "madvise")) {
743 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
744 			  &transparent_hugepage_flags);
745 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
746 			&transparent_hugepage_flags);
747 		ret = 1;
748 	} else if (!strcmp(str, "never")) {
749 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
750 			  &transparent_hugepage_flags);
751 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
752 			  &transparent_hugepage_flags);
753 		ret = 1;
754 	}
755 out:
756 	if (!ret)
757 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
758 	return ret;
759 }
760 __setup("transparent_hugepage=", setup_transparent_hugepage);
761 
762 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
763 {
764 	if (likely(vma->vm_flags & VM_WRITE))
765 		pmd = pmd_mkwrite(pmd, vma);
766 	return pmd;
767 }
768 
769 #ifdef CONFIG_MEMCG
770 static inline
771 struct deferred_split *get_deferred_split_queue(struct folio *folio)
772 {
773 	struct mem_cgroup *memcg = folio_memcg(folio);
774 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
775 
776 	if (memcg)
777 		return &memcg->deferred_split_queue;
778 	else
779 		return &pgdat->deferred_split_queue;
780 }
781 #else
782 static inline
783 struct deferred_split *get_deferred_split_queue(struct folio *folio)
784 {
785 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
786 
787 	return &pgdat->deferred_split_queue;
788 }
789 #endif
790 
791 void folio_prep_large_rmappable(struct folio *folio)
792 {
793 	if (!folio || !folio_test_large(folio))
794 		return;
795 	if (folio_order(folio) > 1)
796 		INIT_LIST_HEAD(&folio->_deferred_list);
797 	folio_set_large_rmappable(folio);
798 }
799 
800 static inline bool is_transparent_hugepage(struct folio *folio)
801 {
802 	if (!folio_test_large(folio))
803 		return false;
804 
805 	return is_huge_zero_page(&folio->page) ||
806 		folio_test_large_rmappable(folio);
807 }
808 
809 static unsigned long __thp_get_unmapped_area(struct file *filp,
810 		unsigned long addr, unsigned long len,
811 		loff_t off, unsigned long flags, unsigned long size)
812 {
813 	loff_t off_end = off + len;
814 	loff_t off_align = round_up(off, size);
815 	unsigned long len_pad, ret, off_sub;
816 
817 	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
818 		return 0;
819 
820 	if (off_end <= off_align || (off_end - off_align) < size)
821 		return 0;
822 
823 	len_pad = len + size;
824 	if (len_pad < len || (off + len_pad) < off)
825 		return 0;
826 
827 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
828 					      off >> PAGE_SHIFT, flags);
829 
830 	/*
831 	 * The failure might be due to length padding. The caller will retry
832 	 * without the padding.
833 	 */
834 	if (IS_ERR_VALUE(ret))
835 		return 0;
836 
837 	/*
838 	 * Do not try to align to THP boundary if allocation at the address
839 	 * hint succeeds.
840 	 */
841 	if (ret == addr)
842 		return addr;
843 
844 	off_sub = (off - ret) & (size - 1);
845 
846 	if (current->mm->get_unmapped_area == arch_get_unmapped_area_topdown &&
847 	    !off_sub)
848 		return ret + size;
849 
850 	ret += off_sub;
851 	return ret;
852 }
853 
854 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
855 		unsigned long len, unsigned long pgoff, unsigned long flags)
856 {
857 	unsigned long ret;
858 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
859 
860 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
861 	if (ret)
862 		return ret;
863 
864 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
865 }
866 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
867 
868 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
869 			struct page *page, gfp_t gfp)
870 {
871 	struct vm_area_struct *vma = vmf->vma;
872 	struct folio *folio = page_folio(page);
873 	pgtable_t pgtable;
874 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
875 	vm_fault_t ret = 0;
876 
877 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
878 
879 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
880 		folio_put(folio);
881 		count_vm_event(THP_FAULT_FALLBACK);
882 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
883 		return VM_FAULT_FALLBACK;
884 	}
885 	folio_throttle_swaprate(folio, gfp);
886 
887 	pgtable = pte_alloc_one(vma->vm_mm);
888 	if (unlikely(!pgtable)) {
889 		ret = VM_FAULT_OOM;
890 		goto release;
891 	}
892 
893 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
894 	/*
895 	 * The memory barrier inside __folio_mark_uptodate makes sure that
896 	 * clear_huge_page writes become visible before the set_pmd_at()
897 	 * write.
898 	 */
899 	__folio_mark_uptodate(folio);
900 
901 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
902 	if (unlikely(!pmd_none(*vmf->pmd))) {
903 		goto unlock_release;
904 	} else {
905 		pmd_t entry;
906 
907 		ret = check_stable_address_space(vma->vm_mm);
908 		if (ret)
909 			goto unlock_release;
910 
911 		/* Deliver the page fault to userland */
912 		if (userfaultfd_missing(vma)) {
913 			spin_unlock(vmf->ptl);
914 			folio_put(folio);
915 			pte_free(vma->vm_mm, pgtable);
916 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
917 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
918 			return ret;
919 		}
920 
921 		entry = mk_huge_pmd(page, vma->vm_page_prot);
922 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
923 		folio_add_new_anon_rmap(folio, vma, haddr);
924 		folio_add_lru_vma(folio, vma);
925 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
926 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
927 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
928 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
929 		mm_inc_nr_ptes(vma->vm_mm);
930 		spin_unlock(vmf->ptl);
931 		count_vm_event(THP_FAULT_ALLOC);
932 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
933 	}
934 
935 	return 0;
936 unlock_release:
937 	spin_unlock(vmf->ptl);
938 release:
939 	if (pgtable)
940 		pte_free(vma->vm_mm, pgtable);
941 	folio_put(folio);
942 	return ret;
943 
944 }
945 
946 /*
947  * always: directly stall for all thp allocations
948  * defer: wake kswapd and fail if not immediately available
949  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
950  *		  fail if not immediately available
951  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
952  *	    available
953  * never: never stall for any thp allocation
954  */
955 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
956 {
957 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
958 
959 	/* Always do synchronous compaction */
960 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
961 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
962 
963 	/* Kick kcompactd and fail quickly */
964 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
965 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
966 
967 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
968 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
969 		return GFP_TRANSHUGE_LIGHT |
970 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
971 					__GFP_KSWAPD_RECLAIM);
972 
973 	/* Only do synchronous compaction if madvised */
974 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
975 		return GFP_TRANSHUGE_LIGHT |
976 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
977 
978 	return GFP_TRANSHUGE_LIGHT;
979 }
980 
981 /* Caller must hold page table lock. */
982 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
983 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
984 		struct page *zero_page)
985 {
986 	pmd_t entry;
987 	if (!pmd_none(*pmd))
988 		return;
989 	entry = mk_pmd(zero_page, vma->vm_page_prot);
990 	entry = pmd_mkhuge(entry);
991 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
992 	set_pmd_at(mm, haddr, pmd, entry);
993 	mm_inc_nr_ptes(mm);
994 }
995 
996 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
997 {
998 	struct vm_area_struct *vma = vmf->vma;
999 	gfp_t gfp;
1000 	struct folio *folio;
1001 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1002 
1003 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1004 		return VM_FAULT_FALLBACK;
1005 	if (unlikely(anon_vma_prepare(vma)))
1006 		return VM_FAULT_OOM;
1007 	khugepaged_enter_vma(vma, vma->vm_flags);
1008 
1009 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1010 			!mm_forbids_zeropage(vma->vm_mm) &&
1011 			transparent_hugepage_use_zero_page()) {
1012 		pgtable_t pgtable;
1013 		struct page *zero_page;
1014 		vm_fault_t ret;
1015 		pgtable = pte_alloc_one(vma->vm_mm);
1016 		if (unlikely(!pgtable))
1017 			return VM_FAULT_OOM;
1018 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1019 		if (unlikely(!zero_page)) {
1020 			pte_free(vma->vm_mm, pgtable);
1021 			count_vm_event(THP_FAULT_FALLBACK);
1022 			return VM_FAULT_FALLBACK;
1023 		}
1024 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1025 		ret = 0;
1026 		if (pmd_none(*vmf->pmd)) {
1027 			ret = check_stable_address_space(vma->vm_mm);
1028 			if (ret) {
1029 				spin_unlock(vmf->ptl);
1030 				pte_free(vma->vm_mm, pgtable);
1031 			} else if (userfaultfd_missing(vma)) {
1032 				spin_unlock(vmf->ptl);
1033 				pte_free(vma->vm_mm, pgtable);
1034 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1035 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1036 			} else {
1037 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1038 						   haddr, vmf->pmd, zero_page);
1039 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1040 				spin_unlock(vmf->ptl);
1041 			}
1042 		} else {
1043 			spin_unlock(vmf->ptl);
1044 			pte_free(vma->vm_mm, pgtable);
1045 		}
1046 		return ret;
1047 	}
1048 	gfp = vma_thp_gfp_mask(vma);
1049 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1050 	if (unlikely(!folio)) {
1051 		count_vm_event(THP_FAULT_FALLBACK);
1052 		return VM_FAULT_FALLBACK;
1053 	}
1054 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1055 }
1056 
1057 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1058 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1059 		pgtable_t pgtable)
1060 {
1061 	struct mm_struct *mm = vma->vm_mm;
1062 	pmd_t entry;
1063 	spinlock_t *ptl;
1064 
1065 	ptl = pmd_lock(mm, pmd);
1066 	if (!pmd_none(*pmd)) {
1067 		if (write) {
1068 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1069 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1070 				goto out_unlock;
1071 			}
1072 			entry = pmd_mkyoung(*pmd);
1073 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1074 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1075 				update_mmu_cache_pmd(vma, addr, pmd);
1076 		}
1077 
1078 		goto out_unlock;
1079 	}
1080 
1081 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1082 	if (pfn_t_devmap(pfn))
1083 		entry = pmd_mkdevmap(entry);
1084 	if (write) {
1085 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1086 		entry = maybe_pmd_mkwrite(entry, vma);
1087 	}
1088 
1089 	if (pgtable) {
1090 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1091 		mm_inc_nr_ptes(mm);
1092 		pgtable = NULL;
1093 	}
1094 
1095 	set_pmd_at(mm, addr, pmd, entry);
1096 	update_mmu_cache_pmd(vma, addr, pmd);
1097 
1098 out_unlock:
1099 	spin_unlock(ptl);
1100 	if (pgtable)
1101 		pte_free(mm, pgtable);
1102 }
1103 
1104 /**
1105  * vmf_insert_pfn_pmd - insert a pmd size pfn
1106  * @vmf: Structure describing the fault
1107  * @pfn: pfn to insert
1108  * @write: whether it's a write fault
1109  *
1110  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1111  *
1112  * Return: vm_fault_t value.
1113  */
1114 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1115 {
1116 	unsigned long addr = vmf->address & PMD_MASK;
1117 	struct vm_area_struct *vma = vmf->vma;
1118 	pgprot_t pgprot = vma->vm_page_prot;
1119 	pgtable_t pgtable = NULL;
1120 
1121 	/*
1122 	 * If we had pmd_special, we could avoid all these restrictions,
1123 	 * but we need to be consistent with PTEs and architectures that
1124 	 * can't support a 'special' bit.
1125 	 */
1126 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1127 			!pfn_t_devmap(pfn));
1128 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1129 						(VM_PFNMAP|VM_MIXEDMAP));
1130 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1131 
1132 	if (addr < vma->vm_start || addr >= vma->vm_end)
1133 		return VM_FAULT_SIGBUS;
1134 
1135 	if (arch_needs_pgtable_deposit()) {
1136 		pgtable = pte_alloc_one(vma->vm_mm);
1137 		if (!pgtable)
1138 			return VM_FAULT_OOM;
1139 	}
1140 
1141 	track_pfn_insert(vma, &pgprot, pfn);
1142 
1143 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1144 	return VM_FAULT_NOPAGE;
1145 }
1146 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1147 
1148 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1149 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1150 {
1151 	if (likely(vma->vm_flags & VM_WRITE))
1152 		pud = pud_mkwrite(pud);
1153 	return pud;
1154 }
1155 
1156 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1157 		pud_t *pud, pfn_t pfn, bool write)
1158 {
1159 	struct mm_struct *mm = vma->vm_mm;
1160 	pgprot_t prot = vma->vm_page_prot;
1161 	pud_t entry;
1162 	spinlock_t *ptl;
1163 
1164 	ptl = pud_lock(mm, pud);
1165 	if (!pud_none(*pud)) {
1166 		if (write) {
1167 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1168 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1169 				goto out_unlock;
1170 			}
1171 			entry = pud_mkyoung(*pud);
1172 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1173 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1174 				update_mmu_cache_pud(vma, addr, pud);
1175 		}
1176 		goto out_unlock;
1177 	}
1178 
1179 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1180 	if (pfn_t_devmap(pfn))
1181 		entry = pud_mkdevmap(entry);
1182 	if (write) {
1183 		entry = pud_mkyoung(pud_mkdirty(entry));
1184 		entry = maybe_pud_mkwrite(entry, vma);
1185 	}
1186 	set_pud_at(mm, addr, pud, entry);
1187 	update_mmu_cache_pud(vma, addr, pud);
1188 
1189 out_unlock:
1190 	spin_unlock(ptl);
1191 }
1192 
1193 /**
1194  * vmf_insert_pfn_pud - insert a pud size pfn
1195  * @vmf: Structure describing the fault
1196  * @pfn: pfn to insert
1197  * @write: whether it's a write fault
1198  *
1199  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1200  *
1201  * Return: vm_fault_t value.
1202  */
1203 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1204 {
1205 	unsigned long addr = vmf->address & PUD_MASK;
1206 	struct vm_area_struct *vma = vmf->vma;
1207 	pgprot_t pgprot = vma->vm_page_prot;
1208 
1209 	/*
1210 	 * If we had pud_special, we could avoid all these restrictions,
1211 	 * but we need to be consistent with PTEs and architectures that
1212 	 * can't support a 'special' bit.
1213 	 */
1214 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1215 			!pfn_t_devmap(pfn));
1216 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1217 						(VM_PFNMAP|VM_MIXEDMAP));
1218 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1219 
1220 	if (addr < vma->vm_start || addr >= vma->vm_end)
1221 		return VM_FAULT_SIGBUS;
1222 
1223 	track_pfn_insert(vma, &pgprot, pfn);
1224 
1225 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1226 	return VM_FAULT_NOPAGE;
1227 }
1228 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1229 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1230 
1231 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1232 		      pmd_t *pmd, bool write)
1233 {
1234 	pmd_t _pmd;
1235 
1236 	_pmd = pmd_mkyoung(*pmd);
1237 	if (write)
1238 		_pmd = pmd_mkdirty(_pmd);
1239 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1240 				  pmd, _pmd, write))
1241 		update_mmu_cache_pmd(vma, addr, pmd);
1242 }
1243 
1244 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1245 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1246 {
1247 	unsigned long pfn = pmd_pfn(*pmd);
1248 	struct mm_struct *mm = vma->vm_mm;
1249 	struct page *page;
1250 	int ret;
1251 
1252 	assert_spin_locked(pmd_lockptr(mm, pmd));
1253 
1254 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1255 		return NULL;
1256 
1257 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1258 		/* pass */;
1259 	else
1260 		return NULL;
1261 
1262 	if (flags & FOLL_TOUCH)
1263 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1264 
1265 	/*
1266 	 * device mapped pages can only be returned if the
1267 	 * caller will manage the page reference count.
1268 	 */
1269 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1270 		return ERR_PTR(-EEXIST);
1271 
1272 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1273 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1274 	if (!*pgmap)
1275 		return ERR_PTR(-EFAULT);
1276 	page = pfn_to_page(pfn);
1277 	ret = try_grab_page(page, flags);
1278 	if (ret)
1279 		page = ERR_PTR(ret);
1280 
1281 	return page;
1282 }
1283 
1284 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1285 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1286 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1287 {
1288 	spinlock_t *dst_ptl, *src_ptl;
1289 	struct page *src_page;
1290 	struct folio *src_folio;
1291 	pmd_t pmd;
1292 	pgtable_t pgtable = NULL;
1293 	int ret = -ENOMEM;
1294 
1295 	/* Skip if can be re-fill on fault */
1296 	if (!vma_is_anonymous(dst_vma))
1297 		return 0;
1298 
1299 	pgtable = pte_alloc_one(dst_mm);
1300 	if (unlikely(!pgtable))
1301 		goto out;
1302 
1303 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1304 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1305 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1306 
1307 	ret = -EAGAIN;
1308 	pmd = *src_pmd;
1309 
1310 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1311 	if (unlikely(is_swap_pmd(pmd))) {
1312 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1313 
1314 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1315 		if (!is_readable_migration_entry(entry)) {
1316 			entry = make_readable_migration_entry(
1317 							swp_offset(entry));
1318 			pmd = swp_entry_to_pmd(entry);
1319 			if (pmd_swp_soft_dirty(*src_pmd))
1320 				pmd = pmd_swp_mksoft_dirty(pmd);
1321 			if (pmd_swp_uffd_wp(*src_pmd))
1322 				pmd = pmd_swp_mkuffd_wp(pmd);
1323 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1324 		}
1325 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1326 		mm_inc_nr_ptes(dst_mm);
1327 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1328 		if (!userfaultfd_wp(dst_vma))
1329 			pmd = pmd_swp_clear_uffd_wp(pmd);
1330 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1331 		ret = 0;
1332 		goto out_unlock;
1333 	}
1334 #endif
1335 
1336 	if (unlikely(!pmd_trans_huge(pmd))) {
1337 		pte_free(dst_mm, pgtable);
1338 		goto out_unlock;
1339 	}
1340 	/*
1341 	 * When page table lock is held, the huge zero pmd should not be
1342 	 * under splitting since we don't split the page itself, only pmd to
1343 	 * a page table.
1344 	 */
1345 	if (is_huge_zero_pmd(pmd)) {
1346 		/*
1347 		 * get_huge_zero_page() will never allocate a new page here,
1348 		 * since we already have a zero page to copy. It just takes a
1349 		 * reference.
1350 		 */
1351 		mm_get_huge_zero_page(dst_mm);
1352 		goto out_zero_page;
1353 	}
1354 
1355 	src_page = pmd_page(pmd);
1356 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1357 	src_folio = page_folio(src_page);
1358 
1359 	folio_get(src_folio);
1360 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1361 		/* Page maybe pinned: split and retry the fault on PTEs. */
1362 		folio_put(src_folio);
1363 		pte_free(dst_mm, pgtable);
1364 		spin_unlock(src_ptl);
1365 		spin_unlock(dst_ptl);
1366 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1367 		return -EAGAIN;
1368 	}
1369 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1370 out_zero_page:
1371 	mm_inc_nr_ptes(dst_mm);
1372 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1373 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1374 	if (!userfaultfd_wp(dst_vma))
1375 		pmd = pmd_clear_uffd_wp(pmd);
1376 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1377 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1378 
1379 	ret = 0;
1380 out_unlock:
1381 	spin_unlock(src_ptl);
1382 	spin_unlock(dst_ptl);
1383 out:
1384 	return ret;
1385 }
1386 
1387 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1388 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1389 		      pud_t *pud, bool write)
1390 {
1391 	pud_t _pud;
1392 
1393 	_pud = pud_mkyoung(*pud);
1394 	if (write)
1395 		_pud = pud_mkdirty(_pud);
1396 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1397 				  pud, _pud, write))
1398 		update_mmu_cache_pud(vma, addr, pud);
1399 }
1400 
1401 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1402 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1403 {
1404 	unsigned long pfn = pud_pfn(*pud);
1405 	struct mm_struct *mm = vma->vm_mm;
1406 	struct page *page;
1407 	int ret;
1408 
1409 	assert_spin_locked(pud_lockptr(mm, pud));
1410 
1411 	if (flags & FOLL_WRITE && !pud_write(*pud))
1412 		return NULL;
1413 
1414 	if (pud_present(*pud) && pud_devmap(*pud))
1415 		/* pass */;
1416 	else
1417 		return NULL;
1418 
1419 	if (flags & FOLL_TOUCH)
1420 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1421 
1422 	/*
1423 	 * device mapped pages can only be returned if the
1424 	 * caller will manage the page reference count.
1425 	 *
1426 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1427 	 */
1428 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1429 		return ERR_PTR(-EEXIST);
1430 
1431 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1432 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1433 	if (!*pgmap)
1434 		return ERR_PTR(-EFAULT);
1435 	page = pfn_to_page(pfn);
1436 
1437 	ret = try_grab_page(page, flags);
1438 	if (ret)
1439 		page = ERR_PTR(ret);
1440 
1441 	return page;
1442 }
1443 
1444 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1445 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1446 		  struct vm_area_struct *vma)
1447 {
1448 	spinlock_t *dst_ptl, *src_ptl;
1449 	pud_t pud;
1450 	int ret;
1451 
1452 	dst_ptl = pud_lock(dst_mm, dst_pud);
1453 	src_ptl = pud_lockptr(src_mm, src_pud);
1454 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1455 
1456 	ret = -EAGAIN;
1457 	pud = *src_pud;
1458 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1459 		goto out_unlock;
1460 
1461 	/*
1462 	 * When page table lock is held, the huge zero pud should not be
1463 	 * under splitting since we don't split the page itself, only pud to
1464 	 * a page table.
1465 	 */
1466 	if (is_huge_zero_pud(pud)) {
1467 		/* No huge zero pud yet */
1468 	}
1469 
1470 	/*
1471 	 * TODO: once we support anonymous pages, use
1472 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1473 	 */
1474 	pudp_set_wrprotect(src_mm, addr, src_pud);
1475 	pud = pud_mkold(pud_wrprotect(pud));
1476 	set_pud_at(dst_mm, addr, dst_pud, pud);
1477 
1478 	ret = 0;
1479 out_unlock:
1480 	spin_unlock(src_ptl);
1481 	spin_unlock(dst_ptl);
1482 	return ret;
1483 }
1484 
1485 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1486 {
1487 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1488 
1489 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1490 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1491 		goto unlock;
1492 
1493 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1494 unlock:
1495 	spin_unlock(vmf->ptl);
1496 }
1497 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1498 
1499 void huge_pmd_set_accessed(struct vm_fault *vmf)
1500 {
1501 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1502 
1503 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1504 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1505 		goto unlock;
1506 
1507 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1508 
1509 unlock:
1510 	spin_unlock(vmf->ptl);
1511 }
1512 
1513 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1514 {
1515 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1516 	struct vm_area_struct *vma = vmf->vma;
1517 	struct folio *folio;
1518 	struct page *page;
1519 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1520 	pmd_t orig_pmd = vmf->orig_pmd;
1521 
1522 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1523 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1524 
1525 	if (is_huge_zero_pmd(orig_pmd))
1526 		goto fallback;
1527 
1528 	spin_lock(vmf->ptl);
1529 
1530 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1531 		spin_unlock(vmf->ptl);
1532 		return 0;
1533 	}
1534 
1535 	page = pmd_page(orig_pmd);
1536 	folio = page_folio(page);
1537 	VM_BUG_ON_PAGE(!PageHead(page), page);
1538 
1539 	/* Early check when only holding the PT lock. */
1540 	if (PageAnonExclusive(page))
1541 		goto reuse;
1542 
1543 	if (!folio_trylock(folio)) {
1544 		folio_get(folio);
1545 		spin_unlock(vmf->ptl);
1546 		folio_lock(folio);
1547 		spin_lock(vmf->ptl);
1548 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1549 			spin_unlock(vmf->ptl);
1550 			folio_unlock(folio);
1551 			folio_put(folio);
1552 			return 0;
1553 		}
1554 		folio_put(folio);
1555 	}
1556 
1557 	/* Recheck after temporarily dropping the PT lock. */
1558 	if (PageAnonExclusive(page)) {
1559 		folio_unlock(folio);
1560 		goto reuse;
1561 	}
1562 
1563 	/*
1564 	 * See do_wp_page(): we can only reuse the folio exclusively if
1565 	 * there are no additional references. Note that we always drain
1566 	 * the LRU cache immediately after adding a THP.
1567 	 */
1568 	if (folio_ref_count(folio) >
1569 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1570 		goto unlock_fallback;
1571 	if (folio_test_swapcache(folio))
1572 		folio_free_swap(folio);
1573 	if (folio_ref_count(folio) == 1) {
1574 		pmd_t entry;
1575 
1576 		folio_move_anon_rmap(folio, vma);
1577 		SetPageAnonExclusive(page);
1578 		folio_unlock(folio);
1579 reuse:
1580 		if (unlikely(unshare)) {
1581 			spin_unlock(vmf->ptl);
1582 			return 0;
1583 		}
1584 		entry = pmd_mkyoung(orig_pmd);
1585 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1586 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1587 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1588 		spin_unlock(vmf->ptl);
1589 		return 0;
1590 	}
1591 
1592 unlock_fallback:
1593 	folio_unlock(folio);
1594 	spin_unlock(vmf->ptl);
1595 fallback:
1596 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1597 	return VM_FAULT_FALLBACK;
1598 }
1599 
1600 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1601 					   unsigned long addr, pmd_t pmd)
1602 {
1603 	struct page *page;
1604 
1605 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1606 		return false;
1607 
1608 	/* Don't touch entries that are not even readable (NUMA hinting). */
1609 	if (pmd_protnone(pmd))
1610 		return false;
1611 
1612 	/* Do we need write faults for softdirty tracking? */
1613 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1614 		return false;
1615 
1616 	/* Do we need write faults for uffd-wp tracking? */
1617 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1618 		return false;
1619 
1620 	if (!(vma->vm_flags & VM_SHARED)) {
1621 		/* See can_change_pte_writable(). */
1622 		page = vm_normal_page_pmd(vma, addr, pmd);
1623 		return page && PageAnon(page) && PageAnonExclusive(page);
1624 	}
1625 
1626 	/* See can_change_pte_writable(). */
1627 	return pmd_dirty(pmd);
1628 }
1629 
1630 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1631 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1632 					struct vm_area_struct *vma,
1633 					unsigned int flags)
1634 {
1635 	/* If the pmd is writable, we can write to the page. */
1636 	if (pmd_write(pmd))
1637 		return true;
1638 
1639 	/* Maybe FOLL_FORCE is set to override it? */
1640 	if (!(flags & FOLL_FORCE))
1641 		return false;
1642 
1643 	/* But FOLL_FORCE has no effect on shared mappings */
1644 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1645 		return false;
1646 
1647 	/* ... or read-only private ones */
1648 	if (!(vma->vm_flags & VM_MAYWRITE))
1649 		return false;
1650 
1651 	/* ... or already writable ones that just need to take a write fault */
1652 	if (vma->vm_flags & VM_WRITE)
1653 		return false;
1654 
1655 	/*
1656 	 * See can_change_pte_writable(): we broke COW and could map the page
1657 	 * writable if we have an exclusive anonymous page ...
1658 	 */
1659 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1660 		return false;
1661 
1662 	/* ... and a write-fault isn't required for other reasons. */
1663 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1664 		return false;
1665 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1666 }
1667 
1668 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1669 				   unsigned long addr,
1670 				   pmd_t *pmd,
1671 				   unsigned int flags)
1672 {
1673 	struct mm_struct *mm = vma->vm_mm;
1674 	struct page *page;
1675 	int ret;
1676 
1677 	assert_spin_locked(pmd_lockptr(mm, pmd));
1678 
1679 	page = pmd_page(*pmd);
1680 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1681 
1682 	if ((flags & FOLL_WRITE) &&
1683 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1684 		return NULL;
1685 
1686 	/* Avoid dumping huge zero page */
1687 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1688 		return ERR_PTR(-EFAULT);
1689 
1690 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1691 		return NULL;
1692 
1693 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1694 		return ERR_PTR(-EMLINK);
1695 
1696 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1697 			!PageAnonExclusive(page), page);
1698 
1699 	ret = try_grab_page(page, flags);
1700 	if (ret)
1701 		return ERR_PTR(ret);
1702 
1703 	if (flags & FOLL_TOUCH)
1704 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1705 
1706 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1707 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1708 
1709 	return page;
1710 }
1711 
1712 /* NUMA hinting page fault entry point for trans huge pmds */
1713 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1714 {
1715 	struct vm_area_struct *vma = vmf->vma;
1716 	pmd_t oldpmd = vmf->orig_pmd;
1717 	pmd_t pmd;
1718 	struct folio *folio;
1719 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1720 	int nid = NUMA_NO_NODE;
1721 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1722 	bool migrated = false, writable = false;
1723 	int flags = 0;
1724 
1725 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1726 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1727 		spin_unlock(vmf->ptl);
1728 		goto out;
1729 	}
1730 
1731 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1732 
1733 	/*
1734 	 * Detect now whether the PMD could be writable; this information
1735 	 * is only valid while holding the PT lock.
1736 	 */
1737 	writable = pmd_write(pmd);
1738 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1739 	    can_change_pmd_writable(vma, vmf->address, pmd))
1740 		writable = true;
1741 
1742 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1743 	if (!folio)
1744 		goto out_map;
1745 
1746 	/* See similar comment in do_numa_page for explanation */
1747 	if (!writable)
1748 		flags |= TNF_NO_GROUP;
1749 
1750 	nid = folio_nid(folio);
1751 	/*
1752 	 * For memory tiering mode, cpupid of slow memory page is used
1753 	 * to record page access time.  So use default value.
1754 	 */
1755 	if (node_is_toptier(nid))
1756 		last_cpupid = folio_last_cpupid(folio);
1757 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1758 	if (target_nid == NUMA_NO_NODE) {
1759 		folio_put(folio);
1760 		goto out_map;
1761 	}
1762 
1763 	spin_unlock(vmf->ptl);
1764 	writable = false;
1765 
1766 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1767 	if (migrated) {
1768 		flags |= TNF_MIGRATED;
1769 		nid = target_nid;
1770 	} else {
1771 		flags |= TNF_MIGRATE_FAIL;
1772 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1773 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1774 			spin_unlock(vmf->ptl);
1775 			goto out;
1776 		}
1777 		goto out_map;
1778 	}
1779 
1780 out:
1781 	if (nid != NUMA_NO_NODE)
1782 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1783 
1784 	return 0;
1785 
1786 out_map:
1787 	/* Restore the PMD */
1788 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1789 	pmd = pmd_mkyoung(pmd);
1790 	if (writable)
1791 		pmd = pmd_mkwrite(pmd, vma);
1792 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1793 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1794 	spin_unlock(vmf->ptl);
1795 	goto out;
1796 }
1797 
1798 /*
1799  * Return true if we do MADV_FREE successfully on entire pmd page.
1800  * Otherwise, return false.
1801  */
1802 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1803 		pmd_t *pmd, unsigned long addr, unsigned long next)
1804 {
1805 	spinlock_t *ptl;
1806 	pmd_t orig_pmd;
1807 	struct folio *folio;
1808 	struct mm_struct *mm = tlb->mm;
1809 	bool ret = false;
1810 
1811 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1812 
1813 	ptl = pmd_trans_huge_lock(pmd, vma);
1814 	if (!ptl)
1815 		goto out_unlocked;
1816 
1817 	orig_pmd = *pmd;
1818 	if (is_huge_zero_pmd(orig_pmd))
1819 		goto out;
1820 
1821 	if (unlikely(!pmd_present(orig_pmd))) {
1822 		VM_BUG_ON(thp_migration_supported() &&
1823 				  !is_pmd_migration_entry(orig_pmd));
1824 		goto out;
1825 	}
1826 
1827 	folio = pfn_folio(pmd_pfn(orig_pmd));
1828 	/*
1829 	 * If other processes are mapping this folio, we couldn't discard
1830 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1831 	 */
1832 	if (folio_estimated_sharers(folio) != 1)
1833 		goto out;
1834 
1835 	if (!folio_trylock(folio))
1836 		goto out;
1837 
1838 	/*
1839 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1840 	 * will deactivate only them.
1841 	 */
1842 	if (next - addr != HPAGE_PMD_SIZE) {
1843 		folio_get(folio);
1844 		spin_unlock(ptl);
1845 		split_folio(folio);
1846 		folio_unlock(folio);
1847 		folio_put(folio);
1848 		goto out_unlocked;
1849 	}
1850 
1851 	if (folio_test_dirty(folio))
1852 		folio_clear_dirty(folio);
1853 	folio_unlock(folio);
1854 
1855 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1856 		pmdp_invalidate(vma, addr, pmd);
1857 		orig_pmd = pmd_mkold(orig_pmd);
1858 		orig_pmd = pmd_mkclean(orig_pmd);
1859 
1860 		set_pmd_at(mm, addr, pmd, orig_pmd);
1861 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1862 	}
1863 
1864 	folio_mark_lazyfree(folio);
1865 	ret = true;
1866 out:
1867 	spin_unlock(ptl);
1868 out_unlocked:
1869 	return ret;
1870 }
1871 
1872 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1873 {
1874 	pgtable_t pgtable;
1875 
1876 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1877 	pte_free(mm, pgtable);
1878 	mm_dec_nr_ptes(mm);
1879 }
1880 
1881 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1882 		 pmd_t *pmd, unsigned long addr)
1883 {
1884 	pmd_t orig_pmd;
1885 	spinlock_t *ptl;
1886 
1887 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1888 
1889 	ptl = __pmd_trans_huge_lock(pmd, vma);
1890 	if (!ptl)
1891 		return 0;
1892 	/*
1893 	 * For architectures like ppc64 we look at deposited pgtable
1894 	 * when calling pmdp_huge_get_and_clear. So do the
1895 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1896 	 * operations.
1897 	 */
1898 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1899 						tlb->fullmm);
1900 	arch_check_zapped_pmd(vma, orig_pmd);
1901 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1902 	if (vma_is_special_huge(vma)) {
1903 		if (arch_needs_pgtable_deposit())
1904 			zap_deposited_table(tlb->mm, pmd);
1905 		spin_unlock(ptl);
1906 	} else if (is_huge_zero_pmd(orig_pmd)) {
1907 		zap_deposited_table(tlb->mm, pmd);
1908 		spin_unlock(ptl);
1909 	} else {
1910 		struct folio *folio = NULL;
1911 		int flush_needed = 1;
1912 
1913 		if (pmd_present(orig_pmd)) {
1914 			struct page *page = pmd_page(orig_pmd);
1915 
1916 			folio = page_folio(page);
1917 			folio_remove_rmap_pmd(folio, page, vma);
1918 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1919 			VM_BUG_ON_PAGE(!PageHead(page), page);
1920 		} else if (thp_migration_supported()) {
1921 			swp_entry_t entry;
1922 
1923 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1924 			entry = pmd_to_swp_entry(orig_pmd);
1925 			folio = pfn_swap_entry_folio(entry);
1926 			flush_needed = 0;
1927 		} else
1928 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1929 
1930 		if (folio_test_anon(folio)) {
1931 			zap_deposited_table(tlb->mm, pmd);
1932 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1933 		} else {
1934 			if (arch_needs_pgtable_deposit())
1935 				zap_deposited_table(tlb->mm, pmd);
1936 			add_mm_counter(tlb->mm, mm_counter_file(folio),
1937 				       -HPAGE_PMD_NR);
1938 		}
1939 
1940 		spin_unlock(ptl);
1941 		if (flush_needed)
1942 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
1943 	}
1944 	return 1;
1945 }
1946 
1947 #ifndef pmd_move_must_withdraw
1948 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1949 					 spinlock_t *old_pmd_ptl,
1950 					 struct vm_area_struct *vma)
1951 {
1952 	/*
1953 	 * With split pmd lock we also need to move preallocated
1954 	 * PTE page table if new_pmd is on different PMD page table.
1955 	 *
1956 	 * We also don't deposit and withdraw tables for file pages.
1957 	 */
1958 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1959 }
1960 #endif
1961 
1962 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1963 {
1964 #ifdef CONFIG_MEM_SOFT_DIRTY
1965 	if (unlikely(is_pmd_migration_entry(pmd)))
1966 		pmd = pmd_swp_mksoft_dirty(pmd);
1967 	else if (pmd_present(pmd))
1968 		pmd = pmd_mksoft_dirty(pmd);
1969 #endif
1970 	return pmd;
1971 }
1972 
1973 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1974 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1975 {
1976 	spinlock_t *old_ptl, *new_ptl;
1977 	pmd_t pmd;
1978 	struct mm_struct *mm = vma->vm_mm;
1979 	bool force_flush = false;
1980 
1981 	/*
1982 	 * The destination pmd shouldn't be established, free_pgtables()
1983 	 * should have released it; but move_page_tables() might have already
1984 	 * inserted a page table, if racing against shmem/file collapse.
1985 	 */
1986 	if (!pmd_none(*new_pmd)) {
1987 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1988 		return false;
1989 	}
1990 
1991 	/*
1992 	 * We don't have to worry about the ordering of src and dst
1993 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1994 	 */
1995 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1996 	if (old_ptl) {
1997 		new_ptl = pmd_lockptr(mm, new_pmd);
1998 		if (new_ptl != old_ptl)
1999 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2000 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2001 		if (pmd_present(pmd))
2002 			force_flush = true;
2003 		VM_BUG_ON(!pmd_none(*new_pmd));
2004 
2005 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2006 			pgtable_t pgtable;
2007 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2008 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2009 		}
2010 		pmd = move_soft_dirty_pmd(pmd);
2011 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2012 		if (force_flush)
2013 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2014 		if (new_ptl != old_ptl)
2015 			spin_unlock(new_ptl);
2016 		spin_unlock(old_ptl);
2017 		return true;
2018 	}
2019 	return false;
2020 }
2021 
2022 /*
2023  * Returns
2024  *  - 0 if PMD could not be locked
2025  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2026  *      or if prot_numa but THP migration is not supported
2027  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2028  */
2029 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2030 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2031 		    unsigned long cp_flags)
2032 {
2033 	struct mm_struct *mm = vma->vm_mm;
2034 	spinlock_t *ptl;
2035 	pmd_t oldpmd, entry;
2036 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2037 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2038 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2039 	int ret = 1;
2040 
2041 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2042 
2043 	if (prot_numa && !thp_migration_supported())
2044 		return 1;
2045 
2046 	ptl = __pmd_trans_huge_lock(pmd, vma);
2047 	if (!ptl)
2048 		return 0;
2049 
2050 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2051 	if (is_swap_pmd(*pmd)) {
2052 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2053 		struct folio *folio = pfn_swap_entry_folio(entry);
2054 		pmd_t newpmd;
2055 
2056 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2057 		if (is_writable_migration_entry(entry)) {
2058 			/*
2059 			 * A protection check is difficult so
2060 			 * just be safe and disable write
2061 			 */
2062 			if (folio_test_anon(folio))
2063 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2064 			else
2065 				entry = make_readable_migration_entry(swp_offset(entry));
2066 			newpmd = swp_entry_to_pmd(entry);
2067 			if (pmd_swp_soft_dirty(*pmd))
2068 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2069 		} else {
2070 			newpmd = *pmd;
2071 		}
2072 
2073 		if (uffd_wp)
2074 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2075 		else if (uffd_wp_resolve)
2076 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2077 		if (!pmd_same(*pmd, newpmd))
2078 			set_pmd_at(mm, addr, pmd, newpmd);
2079 		goto unlock;
2080 	}
2081 #endif
2082 
2083 	if (prot_numa) {
2084 		struct folio *folio;
2085 		bool toptier;
2086 		/*
2087 		 * Avoid trapping faults against the zero page. The read-only
2088 		 * data is likely to be read-cached on the local CPU and
2089 		 * local/remote hits to the zero page are not interesting.
2090 		 */
2091 		if (is_huge_zero_pmd(*pmd))
2092 			goto unlock;
2093 
2094 		if (pmd_protnone(*pmd))
2095 			goto unlock;
2096 
2097 		folio = page_folio(pmd_page(*pmd));
2098 		toptier = node_is_toptier(folio_nid(folio));
2099 		/*
2100 		 * Skip scanning top tier node if normal numa
2101 		 * balancing is disabled
2102 		 */
2103 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2104 		    toptier)
2105 			goto unlock;
2106 
2107 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2108 		    !toptier)
2109 			folio_xchg_access_time(folio,
2110 					       jiffies_to_msecs(jiffies));
2111 	}
2112 	/*
2113 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2114 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2115 	 * which is also under mmap_read_lock(mm):
2116 	 *
2117 	 *	CPU0:				CPU1:
2118 	 *				change_huge_pmd(prot_numa=1)
2119 	 *				 pmdp_huge_get_and_clear_notify()
2120 	 * madvise_dontneed()
2121 	 *  zap_pmd_range()
2122 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2123 	 *   // skip the pmd
2124 	 *				 set_pmd_at();
2125 	 *				 // pmd is re-established
2126 	 *
2127 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2128 	 * which may break userspace.
2129 	 *
2130 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2131 	 * dirty/young flags set by hardware.
2132 	 */
2133 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2134 
2135 	entry = pmd_modify(oldpmd, newprot);
2136 	if (uffd_wp)
2137 		entry = pmd_mkuffd_wp(entry);
2138 	else if (uffd_wp_resolve)
2139 		/*
2140 		 * Leave the write bit to be handled by PF interrupt
2141 		 * handler, then things like COW could be properly
2142 		 * handled.
2143 		 */
2144 		entry = pmd_clear_uffd_wp(entry);
2145 
2146 	/* See change_pte_range(). */
2147 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2148 	    can_change_pmd_writable(vma, addr, entry))
2149 		entry = pmd_mkwrite(entry, vma);
2150 
2151 	ret = HPAGE_PMD_NR;
2152 	set_pmd_at(mm, addr, pmd, entry);
2153 
2154 	if (huge_pmd_needs_flush(oldpmd, entry))
2155 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2156 unlock:
2157 	spin_unlock(ptl);
2158 	return ret;
2159 }
2160 
2161 #ifdef CONFIG_USERFAULTFD
2162 /*
2163  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2164  * the caller, but it must return after releasing the page_table_lock.
2165  * Just move the page from src_pmd to dst_pmd if possible.
2166  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2167  * repeated by the caller, or other errors in case of failure.
2168  */
2169 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2170 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2171 			unsigned long dst_addr, unsigned long src_addr)
2172 {
2173 	pmd_t _dst_pmd, src_pmdval;
2174 	struct page *src_page;
2175 	struct folio *src_folio;
2176 	struct anon_vma *src_anon_vma;
2177 	spinlock_t *src_ptl, *dst_ptl;
2178 	pgtable_t src_pgtable;
2179 	struct mmu_notifier_range range;
2180 	int err = 0;
2181 
2182 	src_pmdval = *src_pmd;
2183 	src_ptl = pmd_lockptr(mm, src_pmd);
2184 
2185 	lockdep_assert_held(src_ptl);
2186 	vma_assert_locked(src_vma);
2187 	vma_assert_locked(dst_vma);
2188 
2189 	/* Sanity checks before the operation */
2190 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2191 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2192 		spin_unlock(src_ptl);
2193 		return -EINVAL;
2194 	}
2195 
2196 	if (!pmd_trans_huge(src_pmdval)) {
2197 		spin_unlock(src_ptl);
2198 		if (is_pmd_migration_entry(src_pmdval)) {
2199 			pmd_migration_entry_wait(mm, &src_pmdval);
2200 			return -EAGAIN;
2201 		}
2202 		return -ENOENT;
2203 	}
2204 
2205 	src_page = pmd_page(src_pmdval);
2206 
2207 	if (!is_huge_zero_pmd(src_pmdval)) {
2208 		if (unlikely(!PageAnonExclusive(src_page))) {
2209 			spin_unlock(src_ptl);
2210 			return -EBUSY;
2211 		}
2212 
2213 		src_folio = page_folio(src_page);
2214 		folio_get(src_folio);
2215 	} else
2216 		src_folio = NULL;
2217 
2218 	spin_unlock(src_ptl);
2219 
2220 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2221 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2222 				src_addr + HPAGE_PMD_SIZE);
2223 	mmu_notifier_invalidate_range_start(&range);
2224 
2225 	if (src_folio) {
2226 		folio_lock(src_folio);
2227 
2228 		/*
2229 		 * split_huge_page walks the anon_vma chain without the page
2230 		 * lock. Serialize against it with the anon_vma lock, the page
2231 		 * lock is not enough.
2232 		 */
2233 		src_anon_vma = folio_get_anon_vma(src_folio);
2234 		if (!src_anon_vma) {
2235 			err = -EAGAIN;
2236 			goto unlock_folio;
2237 		}
2238 		anon_vma_lock_write(src_anon_vma);
2239 	} else
2240 		src_anon_vma = NULL;
2241 
2242 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2243 	double_pt_lock(src_ptl, dst_ptl);
2244 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2245 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2246 		err = -EAGAIN;
2247 		goto unlock_ptls;
2248 	}
2249 	if (src_folio) {
2250 		if (folio_maybe_dma_pinned(src_folio) ||
2251 		    !PageAnonExclusive(&src_folio->page)) {
2252 			err = -EBUSY;
2253 			goto unlock_ptls;
2254 		}
2255 
2256 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2257 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2258 			err = -EBUSY;
2259 			goto unlock_ptls;
2260 		}
2261 
2262 		folio_move_anon_rmap(src_folio, dst_vma);
2263 		WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2264 
2265 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2266 		/* Folio got pinned from under us. Put it back and fail the move. */
2267 		if (folio_maybe_dma_pinned(src_folio)) {
2268 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2269 			err = -EBUSY;
2270 			goto unlock_ptls;
2271 		}
2272 
2273 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2274 		/* Follow mremap() behavior and treat the entry dirty after the move */
2275 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2276 	} else {
2277 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2278 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2279 	}
2280 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2281 
2282 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2283 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2284 unlock_ptls:
2285 	double_pt_unlock(src_ptl, dst_ptl);
2286 	if (src_anon_vma) {
2287 		anon_vma_unlock_write(src_anon_vma);
2288 		put_anon_vma(src_anon_vma);
2289 	}
2290 unlock_folio:
2291 	/* unblock rmap walks */
2292 	if (src_folio)
2293 		folio_unlock(src_folio);
2294 	mmu_notifier_invalidate_range_end(&range);
2295 	if (src_folio)
2296 		folio_put(src_folio);
2297 	return err;
2298 }
2299 #endif /* CONFIG_USERFAULTFD */
2300 
2301 /*
2302  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2303  *
2304  * Note that if it returns page table lock pointer, this routine returns without
2305  * unlocking page table lock. So callers must unlock it.
2306  */
2307 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2308 {
2309 	spinlock_t *ptl;
2310 	ptl = pmd_lock(vma->vm_mm, pmd);
2311 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2312 			pmd_devmap(*pmd)))
2313 		return ptl;
2314 	spin_unlock(ptl);
2315 	return NULL;
2316 }
2317 
2318 /*
2319  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2320  *
2321  * Note that if it returns page table lock pointer, this routine returns without
2322  * unlocking page table lock. So callers must unlock it.
2323  */
2324 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2325 {
2326 	spinlock_t *ptl;
2327 
2328 	ptl = pud_lock(vma->vm_mm, pud);
2329 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2330 		return ptl;
2331 	spin_unlock(ptl);
2332 	return NULL;
2333 }
2334 
2335 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2336 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2337 		 pud_t *pud, unsigned long addr)
2338 {
2339 	spinlock_t *ptl;
2340 
2341 	ptl = __pud_trans_huge_lock(pud, vma);
2342 	if (!ptl)
2343 		return 0;
2344 
2345 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2346 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2347 	if (vma_is_special_huge(vma)) {
2348 		spin_unlock(ptl);
2349 		/* No zero page support yet */
2350 	} else {
2351 		/* No support for anonymous PUD pages yet */
2352 		BUG();
2353 	}
2354 	return 1;
2355 }
2356 
2357 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2358 		unsigned long haddr)
2359 {
2360 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2361 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2362 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2363 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2364 
2365 	count_vm_event(THP_SPLIT_PUD);
2366 
2367 	pudp_huge_clear_flush(vma, haddr, pud);
2368 }
2369 
2370 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2371 		unsigned long address)
2372 {
2373 	spinlock_t *ptl;
2374 	struct mmu_notifier_range range;
2375 
2376 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2377 				address & HPAGE_PUD_MASK,
2378 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2379 	mmu_notifier_invalidate_range_start(&range);
2380 	ptl = pud_lock(vma->vm_mm, pud);
2381 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2382 		goto out;
2383 	__split_huge_pud_locked(vma, pud, range.start);
2384 
2385 out:
2386 	spin_unlock(ptl);
2387 	mmu_notifier_invalidate_range_end(&range);
2388 }
2389 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2390 
2391 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2392 		unsigned long haddr, pmd_t *pmd)
2393 {
2394 	struct mm_struct *mm = vma->vm_mm;
2395 	pgtable_t pgtable;
2396 	pmd_t _pmd, old_pmd;
2397 	unsigned long addr;
2398 	pte_t *pte;
2399 	int i;
2400 
2401 	/*
2402 	 * Leave pmd empty until pte is filled note that it is fine to delay
2403 	 * notification until mmu_notifier_invalidate_range_end() as we are
2404 	 * replacing a zero pmd write protected page with a zero pte write
2405 	 * protected page.
2406 	 *
2407 	 * See Documentation/mm/mmu_notifier.rst
2408 	 */
2409 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2410 
2411 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2412 	pmd_populate(mm, &_pmd, pgtable);
2413 
2414 	pte = pte_offset_map(&_pmd, haddr);
2415 	VM_BUG_ON(!pte);
2416 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2417 		pte_t entry;
2418 
2419 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2420 		entry = pte_mkspecial(entry);
2421 		if (pmd_uffd_wp(old_pmd))
2422 			entry = pte_mkuffd_wp(entry);
2423 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2424 		set_pte_at(mm, addr, pte, entry);
2425 		pte++;
2426 	}
2427 	pte_unmap(pte - 1);
2428 	smp_wmb(); /* make pte visible before pmd */
2429 	pmd_populate(mm, pmd, pgtable);
2430 }
2431 
2432 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2433 		unsigned long haddr, bool freeze)
2434 {
2435 	struct mm_struct *mm = vma->vm_mm;
2436 	struct folio *folio;
2437 	struct page *page;
2438 	pgtable_t pgtable;
2439 	pmd_t old_pmd, _pmd;
2440 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2441 	bool anon_exclusive = false, dirty = false;
2442 	unsigned long addr;
2443 	pte_t *pte;
2444 	int i;
2445 
2446 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2447 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2448 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2449 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2450 				&& !pmd_devmap(*pmd));
2451 
2452 	count_vm_event(THP_SPLIT_PMD);
2453 
2454 	if (!vma_is_anonymous(vma)) {
2455 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2456 		/*
2457 		 * We are going to unmap this huge page. So
2458 		 * just go ahead and zap it
2459 		 */
2460 		if (arch_needs_pgtable_deposit())
2461 			zap_deposited_table(mm, pmd);
2462 		if (vma_is_special_huge(vma))
2463 			return;
2464 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2465 			swp_entry_t entry;
2466 
2467 			entry = pmd_to_swp_entry(old_pmd);
2468 			folio = pfn_swap_entry_folio(entry);
2469 		} else {
2470 			page = pmd_page(old_pmd);
2471 			folio = page_folio(page);
2472 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2473 				folio_mark_dirty(folio);
2474 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2475 				folio_set_referenced(folio);
2476 			folio_remove_rmap_pmd(folio, page, vma);
2477 			folio_put(folio);
2478 		}
2479 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2480 		return;
2481 	}
2482 
2483 	if (is_huge_zero_pmd(*pmd)) {
2484 		/*
2485 		 * FIXME: Do we want to invalidate secondary mmu by calling
2486 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2487 		 * inside __split_huge_pmd() ?
2488 		 *
2489 		 * We are going from a zero huge page write protected to zero
2490 		 * small page also write protected so it does not seems useful
2491 		 * to invalidate secondary mmu at this time.
2492 		 */
2493 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2494 	}
2495 
2496 	/*
2497 	 * Up to this point the pmd is present and huge and userland has the
2498 	 * whole access to the hugepage during the split (which happens in
2499 	 * place). If we overwrite the pmd with the not-huge version pointing
2500 	 * to the pte here (which of course we could if all CPUs were bug
2501 	 * free), userland could trigger a small page size TLB miss on the
2502 	 * small sized TLB while the hugepage TLB entry is still established in
2503 	 * the huge TLB. Some CPU doesn't like that.
2504 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2505 	 * 383 on page 105. Intel should be safe but is also warns that it's
2506 	 * only safe if the permission and cache attributes of the two entries
2507 	 * loaded in the two TLB is identical (which should be the case here).
2508 	 * But it is generally safer to never allow small and huge TLB entries
2509 	 * for the same virtual address to be loaded simultaneously. So instead
2510 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2511 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2512 	 * must remain set at all times on the pmd until the split is complete
2513 	 * for this pmd), then we flush the SMP TLB and finally we write the
2514 	 * non-huge version of the pmd entry with pmd_populate.
2515 	 */
2516 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2517 
2518 	pmd_migration = is_pmd_migration_entry(old_pmd);
2519 	if (unlikely(pmd_migration)) {
2520 		swp_entry_t entry;
2521 
2522 		entry = pmd_to_swp_entry(old_pmd);
2523 		page = pfn_swap_entry_to_page(entry);
2524 		write = is_writable_migration_entry(entry);
2525 		if (PageAnon(page))
2526 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2527 		young = is_migration_entry_young(entry);
2528 		dirty = is_migration_entry_dirty(entry);
2529 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2530 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2531 	} else {
2532 		page = pmd_page(old_pmd);
2533 		folio = page_folio(page);
2534 		if (pmd_dirty(old_pmd)) {
2535 			dirty = true;
2536 			folio_set_dirty(folio);
2537 		}
2538 		write = pmd_write(old_pmd);
2539 		young = pmd_young(old_pmd);
2540 		soft_dirty = pmd_soft_dirty(old_pmd);
2541 		uffd_wp = pmd_uffd_wp(old_pmd);
2542 
2543 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2544 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2545 
2546 		/*
2547 		 * Without "freeze", we'll simply split the PMD, propagating the
2548 		 * PageAnonExclusive() flag for each PTE by setting it for
2549 		 * each subpage -- no need to (temporarily) clear.
2550 		 *
2551 		 * With "freeze" we want to replace mapped pages by
2552 		 * migration entries right away. This is only possible if we
2553 		 * managed to clear PageAnonExclusive() -- see
2554 		 * set_pmd_migration_entry().
2555 		 *
2556 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2557 		 * only and let try_to_migrate_one() fail later.
2558 		 *
2559 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2560 		 */
2561 		anon_exclusive = PageAnonExclusive(page);
2562 		if (freeze && anon_exclusive &&
2563 		    folio_try_share_anon_rmap_pmd(folio, page))
2564 			freeze = false;
2565 		if (!freeze) {
2566 			rmap_t rmap_flags = RMAP_NONE;
2567 
2568 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2569 			if (anon_exclusive)
2570 				rmap_flags |= RMAP_EXCLUSIVE;
2571 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2572 						 vma, haddr, rmap_flags);
2573 		}
2574 	}
2575 
2576 	/*
2577 	 * Withdraw the table only after we mark the pmd entry invalid.
2578 	 * This's critical for some architectures (Power).
2579 	 */
2580 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2581 	pmd_populate(mm, &_pmd, pgtable);
2582 
2583 	pte = pte_offset_map(&_pmd, haddr);
2584 	VM_BUG_ON(!pte);
2585 
2586 	/*
2587 	 * Note that NUMA hinting access restrictions are not transferred to
2588 	 * avoid any possibility of altering permissions across VMAs.
2589 	 */
2590 	if (freeze || pmd_migration) {
2591 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2592 			pte_t entry;
2593 			swp_entry_t swp_entry;
2594 
2595 			if (write)
2596 				swp_entry = make_writable_migration_entry(
2597 							page_to_pfn(page + i));
2598 			else if (anon_exclusive)
2599 				swp_entry = make_readable_exclusive_migration_entry(
2600 							page_to_pfn(page + i));
2601 			else
2602 				swp_entry = make_readable_migration_entry(
2603 							page_to_pfn(page + i));
2604 			if (young)
2605 				swp_entry = make_migration_entry_young(swp_entry);
2606 			if (dirty)
2607 				swp_entry = make_migration_entry_dirty(swp_entry);
2608 			entry = swp_entry_to_pte(swp_entry);
2609 			if (soft_dirty)
2610 				entry = pte_swp_mksoft_dirty(entry);
2611 			if (uffd_wp)
2612 				entry = pte_swp_mkuffd_wp(entry);
2613 
2614 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2615 			set_pte_at(mm, addr, pte + i, entry);
2616 		}
2617 	} else {
2618 		pte_t entry;
2619 
2620 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2621 		if (write)
2622 			entry = pte_mkwrite(entry, vma);
2623 		if (!young)
2624 			entry = pte_mkold(entry);
2625 		/* NOTE: this may set soft-dirty too on some archs */
2626 		if (dirty)
2627 			entry = pte_mkdirty(entry);
2628 		if (soft_dirty)
2629 			entry = pte_mksoft_dirty(entry);
2630 		if (uffd_wp)
2631 			entry = pte_mkuffd_wp(entry);
2632 
2633 		for (i = 0; i < HPAGE_PMD_NR; i++)
2634 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2635 
2636 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2637 	}
2638 	pte_unmap(pte);
2639 
2640 	if (!pmd_migration)
2641 		folio_remove_rmap_pmd(folio, page, vma);
2642 	if (freeze)
2643 		put_page(page);
2644 
2645 	smp_wmb(); /* make pte visible before pmd */
2646 	pmd_populate(mm, pmd, pgtable);
2647 }
2648 
2649 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2650 		unsigned long address, bool freeze, struct folio *folio)
2651 {
2652 	spinlock_t *ptl;
2653 	struct mmu_notifier_range range;
2654 
2655 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2656 				address & HPAGE_PMD_MASK,
2657 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2658 	mmu_notifier_invalidate_range_start(&range);
2659 	ptl = pmd_lock(vma->vm_mm, pmd);
2660 
2661 	/*
2662 	 * If caller asks to setup a migration entry, we need a folio to check
2663 	 * pmd against. Otherwise we can end up replacing wrong folio.
2664 	 */
2665 	VM_BUG_ON(freeze && !folio);
2666 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2667 
2668 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2669 	    is_pmd_migration_entry(*pmd)) {
2670 		/*
2671 		 * It's safe to call pmd_page when folio is set because it's
2672 		 * guaranteed that pmd is present.
2673 		 */
2674 		if (folio && folio != page_folio(pmd_page(*pmd)))
2675 			goto out;
2676 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2677 	}
2678 
2679 out:
2680 	spin_unlock(ptl);
2681 	mmu_notifier_invalidate_range_end(&range);
2682 }
2683 
2684 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2685 		bool freeze, struct folio *folio)
2686 {
2687 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2688 
2689 	if (!pmd)
2690 		return;
2691 
2692 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2693 }
2694 
2695 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2696 {
2697 	/*
2698 	 * If the new address isn't hpage aligned and it could previously
2699 	 * contain an hugepage: check if we need to split an huge pmd.
2700 	 */
2701 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2702 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2703 			 ALIGN(address, HPAGE_PMD_SIZE)))
2704 		split_huge_pmd_address(vma, address, false, NULL);
2705 }
2706 
2707 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2708 			     unsigned long start,
2709 			     unsigned long end,
2710 			     long adjust_next)
2711 {
2712 	/* Check if we need to split start first. */
2713 	split_huge_pmd_if_needed(vma, start);
2714 
2715 	/* Check if we need to split end next. */
2716 	split_huge_pmd_if_needed(vma, end);
2717 
2718 	/*
2719 	 * If we're also updating the next vma vm_start,
2720 	 * check if we need to split it.
2721 	 */
2722 	if (adjust_next > 0) {
2723 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2724 		unsigned long nstart = next->vm_start;
2725 		nstart += adjust_next;
2726 		split_huge_pmd_if_needed(next, nstart);
2727 	}
2728 }
2729 
2730 static void unmap_folio(struct folio *folio)
2731 {
2732 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2733 		TTU_BATCH_FLUSH;
2734 
2735 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2736 
2737 	if (folio_test_pmd_mappable(folio))
2738 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
2739 
2740 	/*
2741 	 * Anon pages need migration entries to preserve them, but file
2742 	 * pages can simply be left unmapped, then faulted back on demand.
2743 	 * If that is ever changed (perhaps for mlock), update remap_page().
2744 	 */
2745 	if (folio_test_anon(folio))
2746 		try_to_migrate(folio, ttu_flags);
2747 	else
2748 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2749 
2750 	try_to_unmap_flush();
2751 }
2752 
2753 static void remap_page(struct folio *folio, unsigned long nr)
2754 {
2755 	int i = 0;
2756 
2757 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2758 	if (!folio_test_anon(folio))
2759 		return;
2760 	for (;;) {
2761 		remove_migration_ptes(folio, folio, true);
2762 		i += folio_nr_pages(folio);
2763 		if (i >= nr)
2764 			break;
2765 		folio = folio_next(folio);
2766 	}
2767 }
2768 
2769 static void lru_add_page_tail(struct page *head, struct page *tail,
2770 		struct lruvec *lruvec, struct list_head *list)
2771 {
2772 	VM_BUG_ON_PAGE(!PageHead(head), head);
2773 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2774 	lockdep_assert_held(&lruvec->lru_lock);
2775 
2776 	if (list) {
2777 		/* page reclaim is reclaiming a huge page */
2778 		VM_WARN_ON(PageLRU(head));
2779 		get_page(tail);
2780 		list_add_tail(&tail->lru, list);
2781 	} else {
2782 		/* head is still on lru (and we have it frozen) */
2783 		VM_WARN_ON(!PageLRU(head));
2784 		if (PageUnevictable(tail))
2785 			tail->mlock_count = 0;
2786 		else
2787 			list_add_tail(&tail->lru, &head->lru);
2788 		SetPageLRU(tail);
2789 	}
2790 }
2791 
2792 static void __split_huge_page_tail(struct folio *folio, int tail,
2793 		struct lruvec *lruvec, struct list_head *list,
2794 		unsigned int new_order)
2795 {
2796 	struct page *head = &folio->page;
2797 	struct page *page_tail = head + tail;
2798 	/*
2799 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2800 	 * Don't pass it around before clear_compound_head().
2801 	 */
2802 	struct folio *new_folio = (struct folio *)page_tail;
2803 
2804 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2805 
2806 	/*
2807 	 * Clone page flags before unfreezing refcount.
2808 	 *
2809 	 * After successful get_page_unless_zero() might follow flags change,
2810 	 * for example lock_page() which set PG_waiters.
2811 	 *
2812 	 * Note that for mapped sub-pages of an anonymous THP,
2813 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2814 	 * the migration entry instead from where remap_page() will restore it.
2815 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2816 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2817 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2818 	 */
2819 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2820 	page_tail->flags |= (head->flags &
2821 			((1L << PG_referenced) |
2822 			 (1L << PG_swapbacked) |
2823 			 (1L << PG_swapcache) |
2824 			 (1L << PG_mlocked) |
2825 			 (1L << PG_uptodate) |
2826 			 (1L << PG_active) |
2827 			 (1L << PG_workingset) |
2828 			 (1L << PG_locked) |
2829 			 (1L << PG_unevictable) |
2830 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2831 			 (1L << PG_arch_2) |
2832 			 (1L << PG_arch_3) |
2833 #endif
2834 			 (1L << PG_dirty) |
2835 			 LRU_GEN_MASK | LRU_REFS_MASK));
2836 
2837 	/* ->mapping in first and second tail page is replaced by other uses */
2838 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2839 			page_tail);
2840 	page_tail->mapping = head->mapping;
2841 	page_tail->index = head->index + tail;
2842 
2843 	/*
2844 	 * page->private should not be set in tail pages. Fix up and warn once
2845 	 * if private is unexpectedly set.
2846 	 */
2847 	if (unlikely(page_tail->private)) {
2848 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2849 		page_tail->private = 0;
2850 	}
2851 	if (folio_test_swapcache(folio))
2852 		new_folio->swap.val = folio->swap.val + tail;
2853 
2854 	/* Page flags must be visible before we make the page non-compound. */
2855 	smp_wmb();
2856 
2857 	/*
2858 	 * Clear PageTail before unfreezing page refcount.
2859 	 *
2860 	 * After successful get_page_unless_zero() might follow put_page()
2861 	 * which needs correct compound_head().
2862 	 */
2863 	clear_compound_head(page_tail);
2864 	if (new_order) {
2865 		prep_compound_page(page_tail, new_order);
2866 		folio_prep_large_rmappable(new_folio);
2867 	}
2868 
2869 	/* Finally unfreeze refcount. Additional reference from page cache. */
2870 	page_ref_unfreeze(page_tail,
2871 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
2872 			     folio_nr_pages(new_folio) : 0));
2873 
2874 	if (folio_test_young(folio))
2875 		folio_set_young(new_folio);
2876 	if (folio_test_idle(folio))
2877 		folio_set_idle(new_folio);
2878 
2879 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2880 
2881 	/*
2882 	 * always add to the tail because some iterators expect new
2883 	 * pages to show after the currently processed elements - e.g.
2884 	 * migrate_pages
2885 	 */
2886 	lru_add_page_tail(head, page_tail, lruvec, list);
2887 }
2888 
2889 static void __split_huge_page(struct page *page, struct list_head *list,
2890 		pgoff_t end, unsigned int new_order)
2891 {
2892 	struct folio *folio = page_folio(page);
2893 	struct page *head = &folio->page;
2894 	struct lruvec *lruvec;
2895 	struct address_space *swap_cache = NULL;
2896 	unsigned long offset = 0;
2897 	int i, nr_dropped = 0;
2898 	unsigned int new_nr = 1 << new_order;
2899 	int order = folio_order(folio);
2900 	unsigned int nr = 1 << order;
2901 
2902 	/* complete memcg works before add pages to LRU */
2903 	split_page_memcg(head, order, new_order);
2904 
2905 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2906 		offset = swp_offset(folio->swap);
2907 		swap_cache = swap_address_space(folio->swap);
2908 		xa_lock(&swap_cache->i_pages);
2909 	}
2910 
2911 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2912 	lruvec = folio_lruvec_lock(folio);
2913 
2914 	ClearPageHasHWPoisoned(head);
2915 
2916 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
2917 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
2918 		/* Some pages can be beyond EOF: drop them from page cache */
2919 		if (head[i].index >= end) {
2920 			struct folio *tail = page_folio(head + i);
2921 
2922 			if (shmem_mapping(folio->mapping))
2923 				nr_dropped++;
2924 			else if (folio_test_clear_dirty(tail))
2925 				folio_account_cleaned(tail,
2926 					inode_to_wb(folio->mapping->host));
2927 			__filemap_remove_folio(tail, NULL);
2928 			folio_put(tail);
2929 		} else if (!PageAnon(page)) {
2930 			__xa_store(&folio->mapping->i_pages, head[i].index,
2931 					head + i, 0);
2932 		} else if (swap_cache) {
2933 			__xa_store(&swap_cache->i_pages, offset + i,
2934 					head + i, 0);
2935 		}
2936 	}
2937 
2938 	if (!new_order)
2939 		ClearPageCompound(head);
2940 	else {
2941 		struct folio *new_folio = (struct folio *)head;
2942 
2943 		folio_set_order(new_folio, new_order);
2944 	}
2945 	unlock_page_lruvec(lruvec);
2946 	/* Caller disabled irqs, so they are still disabled here */
2947 
2948 	split_page_owner(head, order, new_order);
2949 
2950 	/* See comment in __split_huge_page_tail() */
2951 	if (folio_test_anon(folio)) {
2952 		/* Additional pin to swap cache */
2953 		if (folio_test_swapcache(folio)) {
2954 			folio_ref_add(folio, 1 + new_nr);
2955 			xa_unlock(&swap_cache->i_pages);
2956 		} else {
2957 			folio_ref_inc(folio);
2958 		}
2959 	} else {
2960 		/* Additional pin to page cache */
2961 		folio_ref_add(folio, 1 + new_nr);
2962 		xa_unlock(&folio->mapping->i_pages);
2963 	}
2964 	local_irq_enable();
2965 
2966 	if (nr_dropped)
2967 		shmem_uncharge(folio->mapping->host, nr_dropped);
2968 	remap_page(folio, nr);
2969 
2970 	if (folio_test_swapcache(folio))
2971 		split_swap_cluster(folio->swap);
2972 
2973 	/*
2974 	 * set page to its compound_head when split to non order-0 pages, so
2975 	 * we can skip unlocking it below, since PG_locked is transferred to
2976 	 * the compound_head of the page and the caller will unlock it.
2977 	 */
2978 	if (new_order)
2979 		page = compound_head(page);
2980 
2981 	for (i = 0; i < nr; i += new_nr) {
2982 		struct page *subpage = head + i;
2983 		struct folio *new_folio = page_folio(subpage);
2984 		if (subpage == page)
2985 			continue;
2986 		folio_unlock(new_folio);
2987 
2988 		/*
2989 		 * Subpages may be freed if there wasn't any mapping
2990 		 * like if add_to_swap() is running on a lru page that
2991 		 * had its mapping zapped. And freeing these pages
2992 		 * requires taking the lru_lock so we do the put_page
2993 		 * of the tail pages after the split is complete.
2994 		 */
2995 		free_page_and_swap_cache(subpage);
2996 	}
2997 }
2998 
2999 /* Racy check whether the huge page can be split */
3000 bool can_split_folio(struct folio *folio, int *pextra_pins)
3001 {
3002 	int extra_pins;
3003 
3004 	/* Additional pins from page cache */
3005 	if (folio_test_anon(folio))
3006 		extra_pins = folio_test_swapcache(folio) ?
3007 				folio_nr_pages(folio) : 0;
3008 	else
3009 		extra_pins = folio_nr_pages(folio);
3010 	if (pextra_pins)
3011 		*pextra_pins = extra_pins;
3012 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
3013 }
3014 
3015 /*
3016  * This function splits huge page into pages in @new_order. @page can point to
3017  * any subpage of huge page to split. Split doesn't change the position of
3018  * @page.
3019  *
3020  * NOTE: order-1 anonymous folio is not supported because _deferred_list,
3021  * which is used by partially mapped folios, is stored in subpage 2 and an
3022  * order-1 folio only has subpage 0 and 1. File-backed order-1 folios are OK,
3023  * since they do not use _deferred_list.
3024  *
3025  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3026  * The huge page must be locked.
3027  *
3028  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3029  *
3030  * Pages in new_order will inherit mapping, flags, and so on from the hugepage.
3031  *
3032  * GUP pin and PG_locked transferred to @page or the compound page @page belongs
3033  * to. Rest subpages can be freed if they are not mapped.
3034  *
3035  * Returns 0 if the hugepage is split successfully.
3036  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3037  * us.
3038  */
3039 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3040 				     unsigned int new_order)
3041 {
3042 	struct folio *folio = page_folio(page);
3043 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3044 	/* reset xarray order to new order after split */
3045 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3046 	struct anon_vma *anon_vma = NULL;
3047 	struct address_space *mapping = NULL;
3048 	int extra_pins, ret;
3049 	pgoff_t end;
3050 	bool is_hzp;
3051 
3052 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3053 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3054 
3055 	if (new_order >= folio_order(folio))
3056 		return -EINVAL;
3057 
3058 	/* Cannot split anonymous THP to order-1 */
3059 	if (new_order == 1 && folio_test_anon(folio)) {
3060 		VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3061 		return -EINVAL;
3062 	}
3063 
3064 	if (new_order) {
3065 		/* Only swapping a whole PMD-mapped folio is supported */
3066 		if (folio_test_swapcache(folio))
3067 			return -EINVAL;
3068 		/* Split shmem folio to non-zero order not supported */
3069 		if (shmem_mapping(folio->mapping)) {
3070 			VM_WARN_ONCE(1,
3071 				"Cannot split shmem folio to non-0 order");
3072 			return -EINVAL;
3073 		}
3074 		/* No split if the file system does not support large folio */
3075 		if (!mapping_large_folio_support(folio->mapping)) {
3076 			VM_WARN_ONCE(1,
3077 				"Cannot split file folio to non-0 order");
3078 			return -EINVAL;
3079 		}
3080 	}
3081 
3082 
3083 	is_hzp = is_huge_zero_page(&folio->page);
3084 	if (is_hzp) {
3085 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3086 		return -EBUSY;
3087 	}
3088 
3089 	if (folio_test_writeback(folio))
3090 		return -EBUSY;
3091 
3092 	if (folio_test_anon(folio)) {
3093 		/*
3094 		 * The caller does not necessarily hold an mmap_lock that would
3095 		 * prevent the anon_vma disappearing so we first we take a
3096 		 * reference to it and then lock the anon_vma for write. This
3097 		 * is similar to folio_lock_anon_vma_read except the write lock
3098 		 * is taken to serialise against parallel split or collapse
3099 		 * operations.
3100 		 */
3101 		anon_vma = folio_get_anon_vma(folio);
3102 		if (!anon_vma) {
3103 			ret = -EBUSY;
3104 			goto out;
3105 		}
3106 		end = -1;
3107 		mapping = NULL;
3108 		anon_vma_lock_write(anon_vma);
3109 	} else {
3110 		gfp_t gfp;
3111 
3112 		mapping = folio->mapping;
3113 
3114 		/* Truncated ? */
3115 		if (!mapping) {
3116 			ret = -EBUSY;
3117 			goto out;
3118 		}
3119 
3120 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3121 							GFP_RECLAIM_MASK);
3122 
3123 		if (!filemap_release_folio(folio, gfp)) {
3124 			ret = -EBUSY;
3125 			goto out;
3126 		}
3127 
3128 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3129 		if (xas_error(&xas)) {
3130 			ret = xas_error(&xas);
3131 			goto out;
3132 		}
3133 
3134 		anon_vma = NULL;
3135 		i_mmap_lock_read(mapping);
3136 
3137 		/*
3138 		 *__split_huge_page() may need to trim off pages beyond EOF:
3139 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3140 		 * which cannot be nested inside the page tree lock. So note
3141 		 * end now: i_size itself may be changed at any moment, but
3142 		 * folio lock is good enough to serialize the trimming.
3143 		 */
3144 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3145 		if (shmem_mapping(mapping))
3146 			end = shmem_fallocend(mapping->host, end);
3147 	}
3148 
3149 	/*
3150 	 * Racy check if we can split the page, before unmap_folio() will
3151 	 * split PMDs
3152 	 */
3153 	if (!can_split_folio(folio, &extra_pins)) {
3154 		ret = -EAGAIN;
3155 		goto out_unlock;
3156 	}
3157 
3158 	unmap_folio(folio);
3159 
3160 	/* block interrupt reentry in xa_lock and spinlock */
3161 	local_irq_disable();
3162 	if (mapping) {
3163 		/*
3164 		 * Check if the folio is present in page cache.
3165 		 * We assume all tail are present too, if folio is there.
3166 		 */
3167 		xas_lock(&xas);
3168 		xas_reset(&xas);
3169 		if (xas_load(&xas) != folio)
3170 			goto fail;
3171 	}
3172 
3173 	/* Prevent deferred_split_scan() touching ->_refcount */
3174 	spin_lock(&ds_queue->split_queue_lock);
3175 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3176 		if (folio_order(folio) > 1 &&
3177 		    !list_empty(&folio->_deferred_list)) {
3178 			ds_queue->split_queue_len--;
3179 			/*
3180 			 * Reinitialize page_deferred_list after removing the
3181 			 * page from the split_queue, otherwise a subsequent
3182 			 * split will see list corruption when checking the
3183 			 * page_deferred_list.
3184 			 */
3185 			list_del_init(&folio->_deferred_list);
3186 		}
3187 		spin_unlock(&ds_queue->split_queue_lock);
3188 		if (mapping) {
3189 			int nr = folio_nr_pages(folio);
3190 
3191 			xas_split(&xas, folio, folio_order(folio));
3192 			if (folio_test_pmd_mappable(folio) &&
3193 			    new_order < HPAGE_PMD_ORDER) {
3194 				if (folio_test_swapbacked(folio)) {
3195 					__lruvec_stat_mod_folio(folio,
3196 							NR_SHMEM_THPS, -nr);
3197 				} else {
3198 					__lruvec_stat_mod_folio(folio,
3199 							NR_FILE_THPS, -nr);
3200 					filemap_nr_thps_dec(mapping);
3201 				}
3202 			}
3203 		}
3204 
3205 		__split_huge_page(page, list, end, new_order);
3206 		ret = 0;
3207 	} else {
3208 		spin_unlock(&ds_queue->split_queue_lock);
3209 fail:
3210 		if (mapping)
3211 			xas_unlock(&xas);
3212 		local_irq_enable();
3213 		remap_page(folio, folio_nr_pages(folio));
3214 		ret = -EAGAIN;
3215 	}
3216 
3217 out_unlock:
3218 	if (anon_vma) {
3219 		anon_vma_unlock_write(anon_vma);
3220 		put_anon_vma(anon_vma);
3221 	}
3222 	if (mapping)
3223 		i_mmap_unlock_read(mapping);
3224 out:
3225 	xas_destroy(&xas);
3226 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3227 	return ret;
3228 }
3229 
3230 void folio_undo_large_rmappable(struct folio *folio)
3231 {
3232 	struct deferred_split *ds_queue;
3233 	unsigned long flags;
3234 
3235 	if (folio_order(folio) <= 1)
3236 		return;
3237 
3238 	/*
3239 	 * At this point, there is no one trying to add the folio to
3240 	 * deferred_list. If folio is not in deferred_list, it's safe
3241 	 * to check without acquiring the split_queue_lock.
3242 	 */
3243 	if (data_race(list_empty(&folio->_deferred_list)))
3244 		return;
3245 
3246 	ds_queue = get_deferred_split_queue(folio);
3247 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3248 	if (!list_empty(&folio->_deferred_list)) {
3249 		ds_queue->split_queue_len--;
3250 		list_del_init(&folio->_deferred_list);
3251 	}
3252 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3253 }
3254 
3255 void deferred_split_folio(struct folio *folio)
3256 {
3257 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3258 #ifdef CONFIG_MEMCG
3259 	struct mem_cgroup *memcg = folio_memcg(folio);
3260 #endif
3261 	unsigned long flags;
3262 
3263 	/*
3264 	 * Order 1 folios have no space for a deferred list, but we also
3265 	 * won't waste much memory by not adding them to the deferred list.
3266 	 */
3267 	if (folio_order(folio) <= 1)
3268 		return;
3269 
3270 	/*
3271 	 * The try_to_unmap() in page reclaim path might reach here too,
3272 	 * this may cause a race condition to corrupt deferred split queue.
3273 	 * And, if page reclaim is already handling the same folio, it is
3274 	 * unnecessary to handle it again in shrinker.
3275 	 *
3276 	 * Check the swapcache flag to determine if the folio is being
3277 	 * handled by page reclaim since THP swap would add the folio into
3278 	 * swap cache before calling try_to_unmap().
3279 	 */
3280 	if (folio_test_swapcache(folio))
3281 		return;
3282 
3283 	if (!list_empty(&folio->_deferred_list))
3284 		return;
3285 
3286 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3287 	if (list_empty(&folio->_deferred_list)) {
3288 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3289 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3290 		ds_queue->split_queue_len++;
3291 #ifdef CONFIG_MEMCG
3292 		if (memcg)
3293 			set_shrinker_bit(memcg, folio_nid(folio),
3294 					 deferred_split_shrinker->id);
3295 #endif
3296 	}
3297 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3298 }
3299 
3300 static unsigned long deferred_split_count(struct shrinker *shrink,
3301 		struct shrink_control *sc)
3302 {
3303 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3304 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3305 
3306 #ifdef CONFIG_MEMCG
3307 	if (sc->memcg)
3308 		ds_queue = &sc->memcg->deferred_split_queue;
3309 #endif
3310 	return READ_ONCE(ds_queue->split_queue_len);
3311 }
3312 
3313 static unsigned long deferred_split_scan(struct shrinker *shrink,
3314 		struct shrink_control *sc)
3315 {
3316 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3317 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3318 	unsigned long flags;
3319 	LIST_HEAD(list);
3320 	struct folio *folio, *next;
3321 	int split = 0;
3322 
3323 #ifdef CONFIG_MEMCG
3324 	if (sc->memcg)
3325 		ds_queue = &sc->memcg->deferred_split_queue;
3326 #endif
3327 
3328 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3329 	/* Take pin on all head pages to avoid freeing them under us */
3330 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3331 							_deferred_list) {
3332 		if (folio_try_get(folio)) {
3333 			list_move(&folio->_deferred_list, &list);
3334 		} else {
3335 			/* We lost race with folio_put() */
3336 			list_del_init(&folio->_deferred_list);
3337 			ds_queue->split_queue_len--;
3338 		}
3339 		if (!--sc->nr_to_scan)
3340 			break;
3341 	}
3342 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3343 
3344 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3345 		if (!folio_trylock(folio))
3346 			goto next;
3347 		/* split_huge_page() removes page from list on success */
3348 		if (!split_folio(folio))
3349 			split++;
3350 		folio_unlock(folio);
3351 next:
3352 		folio_put(folio);
3353 	}
3354 
3355 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3356 	list_splice_tail(&list, &ds_queue->split_queue);
3357 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3358 
3359 	/*
3360 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3361 	 * This can happen if pages were freed under us.
3362 	 */
3363 	if (!split && list_empty(&ds_queue->split_queue))
3364 		return SHRINK_STOP;
3365 	return split;
3366 }
3367 
3368 #ifdef CONFIG_DEBUG_FS
3369 static void split_huge_pages_all(void)
3370 {
3371 	struct zone *zone;
3372 	struct page *page;
3373 	struct folio *folio;
3374 	unsigned long pfn, max_zone_pfn;
3375 	unsigned long total = 0, split = 0;
3376 
3377 	pr_debug("Split all THPs\n");
3378 	for_each_zone(zone) {
3379 		if (!managed_zone(zone))
3380 			continue;
3381 		max_zone_pfn = zone_end_pfn(zone);
3382 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3383 			int nr_pages;
3384 
3385 			page = pfn_to_online_page(pfn);
3386 			if (!page || PageTail(page))
3387 				continue;
3388 			folio = page_folio(page);
3389 			if (!folio_try_get(folio))
3390 				continue;
3391 
3392 			if (unlikely(page_folio(page) != folio))
3393 				goto next;
3394 
3395 			if (zone != folio_zone(folio))
3396 				goto next;
3397 
3398 			if (!folio_test_large(folio)
3399 				|| folio_test_hugetlb(folio)
3400 				|| !folio_test_lru(folio))
3401 				goto next;
3402 
3403 			total++;
3404 			folio_lock(folio);
3405 			nr_pages = folio_nr_pages(folio);
3406 			if (!split_folio(folio))
3407 				split++;
3408 			pfn += nr_pages - 1;
3409 			folio_unlock(folio);
3410 next:
3411 			folio_put(folio);
3412 			cond_resched();
3413 		}
3414 	}
3415 
3416 	pr_debug("%lu of %lu THP split\n", split, total);
3417 }
3418 
3419 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3420 {
3421 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3422 		    is_vm_hugetlb_page(vma);
3423 }
3424 
3425 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3426 				unsigned long vaddr_end, unsigned int new_order)
3427 {
3428 	int ret = 0;
3429 	struct task_struct *task;
3430 	struct mm_struct *mm;
3431 	unsigned long total = 0, split = 0;
3432 	unsigned long addr;
3433 
3434 	vaddr_start &= PAGE_MASK;
3435 	vaddr_end &= PAGE_MASK;
3436 
3437 	/* Find the task_struct from pid */
3438 	rcu_read_lock();
3439 	task = find_task_by_vpid(pid);
3440 	if (!task) {
3441 		rcu_read_unlock();
3442 		ret = -ESRCH;
3443 		goto out;
3444 	}
3445 	get_task_struct(task);
3446 	rcu_read_unlock();
3447 
3448 	/* Find the mm_struct */
3449 	mm = get_task_mm(task);
3450 	put_task_struct(task);
3451 
3452 	if (!mm) {
3453 		ret = -EINVAL;
3454 		goto out;
3455 	}
3456 
3457 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3458 		 pid, vaddr_start, vaddr_end);
3459 
3460 	mmap_read_lock(mm);
3461 	/*
3462 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3463 	 * table filled with PTE-mapped THPs, each of which is distinct.
3464 	 */
3465 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3466 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3467 		struct page *page;
3468 		struct folio *folio;
3469 
3470 		if (!vma)
3471 			break;
3472 
3473 		/* skip special VMA and hugetlb VMA */
3474 		if (vma_not_suitable_for_thp_split(vma)) {
3475 			addr = vma->vm_end;
3476 			continue;
3477 		}
3478 
3479 		/* FOLL_DUMP to ignore special (like zero) pages */
3480 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3481 
3482 		if (IS_ERR_OR_NULL(page))
3483 			continue;
3484 
3485 		folio = page_folio(page);
3486 		if (!is_transparent_hugepage(folio))
3487 			goto next;
3488 
3489 		if (new_order >= folio_order(folio))
3490 			goto next;
3491 
3492 		total++;
3493 		/*
3494 		 * For folios with private, split_huge_page_to_list_to_order()
3495 		 * will try to drop it before split and then check if the folio
3496 		 * can be split or not. So skip the check here.
3497 		 */
3498 		if (!folio_test_private(folio) &&
3499 		    !can_split_folio(folio, NULL))
3500 			goto next;
3501 
3502 		if (!folio_trylock(folio))
3503 			goto next;
3504 
3505 		if (!split_folio_to_order(folio, new_order))
3506 			split++;
3507 
3508 		folio_unlock(folio);
3509 next:
3510 		folio_put(folio);
3511 		cond_resched();
3512 	}
3513 	mmap_read_unlock(mm);
3514 	mmput(mm);
3515 
3516 	pr_debug("%lu of %lu THP split\n", split, total);
3517 
3518 out:
3519 	return ret;
3520 }
3521 
3522 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3523 				pgoff_t off_end, unsigned int new_order)
3524 {
3525 	struct filename *file;
3526 	struct file *candidate;
3527 	struct address_space *mapping;
3528 	int ret = -EINVAL;
3529 	pgoff_t index;
3530 	int nr_pages = 1;
3531 	unsigned long total = 0, split = 0;
3532 
3533 	file = getname_kernel(file_path);
3534 	if (IS_ERR(file))
3535 		return ret;
3536 
3537 	candidate = file_open_name(file, O_RDONLY, 0);
3538 	if (IS_ERR(candidate))
3539 		goto out;
3540 
3541 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3542 		 file_path, off_start, off_end);
3543 
3544 	mapping = candidate->f_mapping;
3545 
3546 	for (index = off_start; index < off_end; index += nr_pages) {
3547 		struct folio *folio = filemap_get_folio(mapping, index);
3548 
3549 		nr_pages = 1;
3550 		if (IS_ERR(folio))
3551 			continue;
3552 
3553 		if (!folio_test_large(folio))
3554 			goto next;
3555 
3556 		total++;
3557 		nr_pages = folio_nr_pages(folio);
3558 
3559 		if (new_order >= folio_order(folio))
3560 			goto next;
3561 
3562 		if (!folio_trylock(folio))
3563 			goto next;
3564 
3565 		if (!split_folio_to_order(folio, new_order))
3566 			split++;
3567 
3568 		folio_unlock(folio);
3569 next:
3570 		folio_put(folio);
3571 		cond_resched();
3572 	}
3573 
3574 	filp_close(candidate, NULL);
3575 	ret = 0;
3576 
3577 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3578 out:
3579 	putname(file);
3580 	return ret;
3581 }
3582 
3583 #define MAX_INPUT_BUF_SZ 255
3584 
3585 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3586 				size_t count, loff_t *ppops)
3587 {
3588 	static DEFINE_MUTEX(split_debug_mutex);
3589 	ssize_t ret;
3590 	/*
3591 	 * hold pid, start_vaddr, end_vaddr, new_order or
3592 	 * file_path, off_start, off_end, new_order
3593 	 */
3594 	char input_buf[MAX_INPUT_BUF_SZ];
3595 	int pid;
3596 	unsigned long vaddr_start, vaddr_end;
3597 	unsigned int new_order = 0;
3598 
3599 	ret = mutex_lock_interruptible(&split_debug_mutex);
3600 	if (ret)
3601 		return ret;
3602 
3603 	ret = -EFAULT;
3604 
3605 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3606 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3607 		goto out;
3608 
3609 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3610 
3611 	if (input_buf[0] == '/') {
3612 		char *tok;
3613 		char *buf = input_buf;
3614 		char file_path[MAX_INPUT_BUF_SZ];
3615 		pgoff_t off_start = 0, off_end = 0;
3616 		size_t input_len = strlen(input_buf);
3617 
3618 		tok = strsep(&buf, ",");
3619 		if (tok) {
3620 			strcpy(file_path, tok);
3621 		} else {
3622 			ret = -EINVAL;
3623 			goto out;
3624 		}
3625 
3626 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
3627 		if (ret != 2 && ret != 3) {
3628 			ret = -EINVAL;
3629 			goto out;
3630 		}
3631 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
3632 		if (!ret)
3633 			ret = input_len;
3634 
3635 		goto out;
3636 	}
3637 
3638 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
3639 	if (ret == 1 && pid == 1) {
3640 		split_huge_pages_all();
3641 		ret = strlen(input_buf);
3642 		goto out;
3643 	} else if (ret != 3 && ret != 4) {
3644 		ret = -EINVAL;
3645 		goto out;
3646 	}
3647 
3648 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
3649 	if (!ret)
3650 		ret = strlen(input_buf);
3651 out:
3652 	mutex_unlock(&split_debug_mutex);
3653 	return ret;
3654 
3655 }
3656 
3657 static const struct file_operations split_huge_pages_fops = {
3658 	.owner	 = THIS_MODULE,
3659 	.write	 = split_huge_pages_write,
3660 	.llseek  = no_llseek,
3661 };
3662 
3663 static int __init split_huge_pages_debugfs(void)
3664 {
3665 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3666 			    &split_huge_pages_fops);
3667 	return 0;
3668 }
3669 late_initcall(split_huge_pages_debugfs);
3670 #endif
3671 
3672 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3673 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3674 		struct page *page)
3675 {
3676 	struct folio *folio = page_folio(page);
3677 	struct vm_area_struct *vma = pvmw->vma;
3678 	struct mm_struct *mm = vma->vm_mm;
3679 	unsigned long address = pvmw->address;
3680 	bool anon_exclusive;
3681 	pmd_t pmdval;
3682 	swp_entry_t entry;
3683 	pmd_t pmdswp;
3684 
3685 	if (!(pvmw->pmd && !pvmw->pte))
3686 		return 0;
3687 
3688 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3689 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3690 
3691 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3692 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3693 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3694 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3695 		return -EBUSY;
3696 	}
3697 
3698 	if (pmd_dirty(pmdval))
3699 		folio_mark_dirty(folio);
3700 	if (pmd_write(pmdval))
3701 		entry = make_writable_migration_entry(page_to_pfn(page));
3702 	else if (anon_exclusive)
3703 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3704 	else
3705 		entry = make_readable_migration_entry(page_to_pfn(page));
3706 	if (pmd_young(pmdval))
3707 		entry = make_migration_entry_young(entry);
3708 	if (pmd_dirty(pmdval))
3709 		entry = make_migration_entry_dirty(entry);
3710 	pmdswp = swp_entry_to_pmd(entry);
3711 	if (pmd_soft_dirty(pmdval))
3712 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3713 	if (pmd_uffd_wp(pmdval))
3714 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3715 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3716 	folio_remove_rmap_pmd(folio, page, vma);
3717 	folio_put(folio);
3718 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3719 
3720 	return 0;
3721 }
3722 
3723 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3724 {
3725 	struct folio *folio = page_folio(new);
3726 	struct vm_area_struct *vma = pvmw->vma;
3727 	struct mm_struct *mm = vma->vm_mm;
3728 	unsigned long address = pvmw->address;
3729 	unsigned long haddr = address & HPAGE_PMD_MASK;
3730 	pmd_t pmde;
3731 	swp_entry_t entry;
3732 
3733 	if (!(pvmw->pmd && !pvmw->pte))
3734 		return;
3735 
3736 	entry = pmd_to_swp_entry(*pvmw->pmd);
3737 	folio_get(folio);
3738 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3739 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3740 		pmde = pmd_mksoft_dirty(pmde);
3741 	if (is_writable_migration_entry(entry))
3742 		pmde = pmd_mkwrite(pmde, vma);
3743 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3744 		pmde = pmd_mkuffd_wp(pmde);
3745 	if (!is_migration_entry_young(entry))
3746 		pmde = pmd_mkold(pmde);
3747 	/* NOTE: this may contain setting soft-dirty on some archs */
3748 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3749 		pmde = pmd_mkdirty(pmde);
3750 
3751 	if (folio_test_anon(folio)) {
3752 		rmap_t rmap_flags = RMAP_NONE;
3753 
3754 		if (!is_readable_migration_entry(entry))
3755 			rmap_flags |= RMAP_EXCLUSIVE;
3756 
3757 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3758 	} else {
3759 		folio_add_file_rmap_pmd(folio, new, vma);
3760 	}
3761 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3762 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3763 
3764 	/* No need to invalidate - it was non-present before */
3765 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3766 	trace_remove_migration_pmd(address, pmd_val(pmde));
3767 }
3768 #endif
3769