xref: /linux/mm/huge_memory.c (revision 80fa3300b7e5d738365698052d999ea71bb24723)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (sysfs_streq(buf, "always")) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (sysfs_streq(buf, "madvise")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "never")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else
190 		ret = -EINVAL;
191 
192 	if (ret > 0) {
193 		int err = start_stop_khugepaged();
194 		if (err)
195 			ret = err;
196 	}
197 	return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 	__ATTR(enabled, 0644, enabled_show, enabled_store);
201 
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 				struct kobj_attribute *attr, char *buf,
204 				enum transparent_hugepage_flag flag)
205 {
206 	return sprintf(buf, "%d\n",
207 		       !!test_bit(flag, &transparent_hugepage_flags));
208 }
209 
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 				 struct kobj_attribute *attr,
212 				 const char *buf, size_t count,
213 				 enum transparent_hugepage_flag flag)
214 {
215 	unsigned long value;
216 	int ret;
217 
218 	ret = kstrtoul(buf, 10, &value);
219 	if (ret < 0)
220 		return ret;
221 	if (value > 1)
222 		return -EINVAL;
223 
224 	if (value)
225 		set_bit(flag, &transparent_hugepage_flags);
226 	else
227 		clear_bit(flag, &transparent_hugepage_flags);
228 
229 	return count;
230 }
231 
232 static ssize_t defrag_show(struct kobject *kobj,
233 			   struct kobj_attribute *attr, char *buf)
234 {
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245 
246 static ssize_t defrag_store(struct kobject *kobj,
247 			    struct kobj_attribute *attr,
248 			    const char *buf, size_t count)
249 {
250 	if (sysfs_streq(buf, "always")) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (sysfs_streq(buf, "defer+madvise")) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (sysfs_streq(buf, "defer")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "never")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 	__ATTR(defrag, 0644, defrag_show, defrag_store);
282 
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 		struct kobj_attribute *attr, char *buf)
285 {
286 	return single_hugepage_flag_show(kobj, attr, buf,
287 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 		struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 	return single_hugepage_flag_store(kobj, attr, buf, count,
293 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 		struct kobj_attribute *attr, char *buf)
300 {
301 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 	__ATTR_RO(hpage_pmd_size);
305 
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 				struct kobj_attribute *attr, char *buf)
309 {
310 	return single_hugepage_flag_show(kobj, attr, buf,
311 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 			       struct kobj_attribute *attr,
315 			       const char *buf, size_t count)
316 {
317 	return single_hugepage_flag_store(kobj, attr, buf, count,
318 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static struct kobj_attribute debug_cow_attr =
321 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
323 
324 static struct attribute *hugepage_attr[] = {
325 	&enabled_attr.attr,
326 	&defrag_attr.attr,
327 	&use_zero_page_attr.attr,
328 	&hpage_pmd_size_attr.attr,
329 #ifdef CONFIG_SHMEM
330 	&shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333 	&debug_cow_attr.attr,
334 #endif
335 	NULL,
336 };
337 
338 static const struct attribute_group hugepage_attr_group = {
339 	.attrs = hugepage_attr,
340 };
341 
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 {
344 	int err;
345 
346 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 	if (unlikely(!*hugepage_kobj)) {
348 		pr_err("failed to create transparent hugepage kobject\n");
349 		return -ENOMEM;
350 	}
351 
352 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 	if (err) {
354 		pr_err("failed to register transparent hugepage group\n");
355 		goto delete_obj;
356 	}
357 
358 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 	if (err) {
360 		pr_err("failed to register transparent hugepage group\n");
361 		goto remove_hp_group;
362 	}
363 
364 	return 0;
365 
366 remove_hp_group:
367 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369 	kobject_put(*hugepage_kobj);
370 	return err;
371 }
372 
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 {
375 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 	kobject_put(hugepage_kobj);
378 }
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381 {
382 	return 0;
383 }
384 
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386 {
387 }
388 #endif /* CONFIG_SYSFS */
389 
390 static int __init hugepage_init(void)
391 {
392 	int err;
393 	struct kobject *hugepage_kobj;
394 
395 	if (!has_transparent_hugepage()) {
396 		transparent_hugepage_flags = 0;
397 		return -EINVAL;
398 	}
399 
400 	/*
401 	 * hugepages can't be allocated by the buddy allocator
402 	 */
403 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 	/*
405 	 * we use page->mapping and page->index in second tail page
406 	 * as list_head: assuming THP order >= 2
407 	 */
408 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409 
410 	err = hugepage_init_sysfs(&hugepage_kobj);
411 	if (err)
412 		goto err_sysfs;
413 
414 	err = khugepaged_init();
415 	if (err)
416 		goto err_slab;
417 
418 	err = register_shrinker(&huge_zero_page_shrinker);
419 	if (err)
420 		goto err_hzp_shrinker;
421 	err = register_shrinker(&deferred_split_shrinker);
422 	if (err)
423 		goto err_split_shrinker;
424 
425 	/*
426 	 * By default disable transparent hugepages on smaller systems,
427 	 * where the extra memory used could hurt more than TLB overhead
428 	 * is likely to save.  The admin can still enable it through /sys.
429 	 */
430 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 		transparent_hugepage_flags = 0;
432 		return 0;
433 	}
434 
435 	err = start_stop_khugepaged();
436 	if (err)
437 		goto err_khugepaged;
438 
439 	return 0;
440 err_khugepaged:
441 	unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443 	unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445 	khugepaged_destroy();
446 err_slab:
447 	hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449 	return err;
450 }
451 subsys_initcall(hugepage_init);
452 
453 static int __init setup_transparent_hugepage(char *str)
454 {
455 	int ret = 0;
456 	if (!str)
457 		goto out;
458 	if (!strcmp(str, "always")) {
459 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 			&transparent_hugepage_flags);
461 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 			  &transparent_hugepage_flags);
463 		ret = 1;
464 	} else if (!strcmp(str, "madvise")) {
465 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 			  &transparent_hugepage_flags);
467 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 			&transparent_hugepage_flags);
469 		ret = 1;
470 	} else if (!strcmp(str, "never")) {
471 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 			  &transparent_hugepage_flags);
473 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 			  &transparent_hugepage_flags);
475 		ret = 1;
476 	}
477 out:
478 	if (!ret)
479 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 	return ret;
481 }
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
483 
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 {
486 	if (likely(vma->vm_flags & VM_WRITE))
487 		pmd = pmd_mkwrite(pmd);
488 	return pmd;
489 }
490 
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493 {
494 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496 
497 	if (memcg)
498 		return &memcg->deferred_split_queue;
499 	else
500 		return &pgdat->deferred_split_queue;
501 }
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506 
507 	return &pgdat->deferred_split_queue;
508 }
509 #endif
510 
511 void prep_transhuge_page(struct page *page)
512 {
513 	/*
514 	 * we use page->mapping and page->indexlru in second tail page
515 	 * as list_head: assuming THP order >= 2
516 	 */
517 
518 	INIT_LIST_HEAD(page_deferred_list(page));
519 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 }
521 
522 bool is_transparent_hugepage(struct page *page)
523 {
524 	if (!PageCompound(page))
525 		return false;
526 
527 	page = compound_head(page);
528 	return is_huge_zero_page(page) ||
529 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530 }
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532 
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 		unsigned long addr, unsigned long len,
535 		loff_t off, unsigned long flags, unsigned long size)
536 {
537 	loff_t off_end = off + len;
538 	loff_t off_align = round_up(off, size);
539 	unsigned long len_pad, ret;
540 
541 	if (off_end <= off_align || (off_end - off_align) < size)
542 		return 0;
543 
544 	len_pad = len + size;
545 	if (len_pad < len || (off + len_pad) < off)
546 		return 0;
547 
548 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 					      off >> PAGE_SHIFT, flags);
550 
551 	/*
552 	 * The failure might be due to length padding. The caller will retry
553 	 * without the padding.
554 	 */
555 	if (IS_ERR_VALUE(ret))
556 		return 0;
557 
558 	/*
559 	 * Do not try to align to THP boundary if allocation at the address
560 	 * hint succeeds.
561 	 */
562 	if (ret == addr)
563 		return addr;
564 
565 	ret += (off - ret) & (size - 1);
566 	return ret;
567 }
568 
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 		unsigned long len, unsigned long pgoff, unsigned long flags)
571 {
572 	unsigned long ret;
573 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574 
575 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 		goto out;
577 
578 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 	if (ret)
580 		return ret;
581 out:
582 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583 }
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585 
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 			struct page *page, gfp_t gfp)
588 {
589 	struct vm_area_struct *vma = vmf->vma;
590 	pgtable_t pgtable;
591 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
592 	vm_fault_t ret = 0;
593 
594 	VM_BUG_ON_PAGE(!PageCompound(page), page);
595 
596 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
597 		put_page(page);
598 		count_vm_event(THP_FAULT_FALLBACK);
599 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
600 		return VM_FAULT_FALLBACK;
601 	}
602 	cgroup_throttle_swaprate(page, gfp);
603 
604 	pgtable = pte_alloc_one(vma->vm_mm);
605 	if (unlikely(!pgtable)) {
606 		ret = VM_FAULT_OOM;
607 		goto release;
608 	}
609 
610 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 	/*
612 	 * The memory barrier inside __SetPageUptodate makes sure that
613 	 * clear_huge_page writes become visible before the set_pmd_at()
614 	 * write.
615 	 */
616 	__SetPageUptodate(page);
617 
618 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619 	if (unlikely(!pmd_none(*vmf->pmd))) {
620 		goto unlock_release;
621 	} else {
622 		pmd_t entry;
623 
624 		ret = check_stable_address_space(vma->vm_mm);
625 		if (ret)
626 			goto unlock_release;
627 
628 		/* Deliver the page fault to userland */
629 		if (userfaultfd_missing(vma)) {
630 			vm_fault_t ret2;
631 
632 			spin_unlock(vmf->ptl);
633 			put_page(page);
634 			pte_free(vma->vm_mm, pgtable);
635 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 			return ret2;
638 		}
639 
640 		entry = mk_huge_pmd(page, vma->vm_page_prot);
641 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642 		page_add_new_anon_rmap(page, vma, haddr, true);
643 		lru_cache_add_active_or_unevictable(page, vma);
644 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
645 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
646 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647 		mm_inc_nr_ptes(vma->vm_mm);
648 		spin_unlock(vmf->ptl);
649 		count_vm_event(THP_FAULT_ALLOC);
650 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651 	}
652 
653 	return 0;
654 unlock_release:
655 	spin_unlock(vmf->ptl);
656 release:
657 	if (pgtable)
658 		pte_free(vma->vm_mm, pgtable);
659 	put_page(page);
660 	return ret;
661 
662 }
663 
664 /*
665  * always: directly stall for all thp allocations
666  * defer: wake kswapd and fail if not immediately available
667  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668  *		  fail if not immediately available
669  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
670  *	    available
671  * never: never stall for any thp allocation
672  */
673 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
674 {
675 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
676 
677 	/* Always do synchronous compaction */
678 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
680 
681 	/* Kick kcompactd and fail quickly */
682 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
684 
685 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
686 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687 		return GFP_TRANSHUGE_LIGHT |
688 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
689 					__GFP_KSWAPD_RECLAIM);
690 
691 	/* Only do synchronous compaction if madvised */
692 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 		return GFP_TRANSHUGE_LIGHT |
694 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
695 
696 	return GFP_TRANSHUGE_LIGHT;
697 }
698 
699 /* Caller must hold page table lock. */
700 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702 		struct page *zero_page)
703 {
704 	pmd_t entry;
705 	if (!pmd_none(*pmd))
706 		return false;
707 	entry = mk_pmd(zero_page, vma->vm_page_prot);
708 	entry = pmd_mkhuge(entry);
709 	if (pgtable)
710 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
711 	set_pmd_at(mm, haddr, pmd, entry);
712 	mm_inc_nr_ptes(mm);
713 	return true;
714 }
715 
716 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
717 {
718 	struct vm_area_struct *vma = vmf->vma;
719 	gfp_t gfp;
720 	struct page *page;
721 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
722 
723 	if (!transhuge_vma_suitable(vma, haddr))
724 		return VM_FAULT_FALLBACK;
725 	if (unlikely(anon_vma_prepare(vma)))
726 		return VM_FAULT_OOM;
727 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
728 		return VM_FAULT_OOM;
729 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
730 			!mm_forbids_zeropage(vma->vm_mm) &&
731 			transparent_hugepage_use_zero_page()) {
732 		pgtable_t pgtable;
733 		struct page *zero_page;
734 		bool set;
735 		vm_fault_t ret;
736 		pgtable = pte_alloc_one(vma->vm_mm);
737 		if (unlikely(!pgtable))
738 			return VM_FAULT_OOM;
739 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
740 		if (unlikely(!zero_page)) {
741 			pte_free(vma->vm_mm, pgtable);
742 			count_vm_event(THP_FAULT_FALLBACK);
743 			return VM_FAULT_FALLBACK;
744 		}
745 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
746 		ret = 0;
747 		set = false;
748 		if (pmd_none(*vmf->pmd)) {
749 			ret = check_stable_address_space(vma->vm_mm);
750 			if (ret) {
751 				spin_unlock(vmf->ptl);
752 			} else if (userfaultfd_missing(vma)) {
753 				spin_unlock(vmf->ptl);
754 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
755 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
756 			} else {
757 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
758 						   haddr, vmf->pmd, zero_page);
759 				spin_unlock(vmf->ptl);
760 				set = true;
761 			}
762 		} else
763 			spin_unlock(vmf->ptl);
764 		if (!set)
765 			pte_free(vma->vm_mm, pgtable);
766 		return ret;
767 	}
768 	gfp = alloc_hugepage_direct_gfpmask(vma);
769 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
770 	if (unlikely(!page)) {
771 		count_vm_event(THP_FAULT_FALLBACK);
772 		return VM_FAULT_FALLBACK;
773 	}
774 	prep_transhuge_page(page);
775 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
776 }
777 
778 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
779 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
780 		pgtable_t pgtable)
781 {
782 	struct mm_struct *mm = vma->vm_mm;
783 	pmd_t entry;
784 	spinlock_t *ptl;
785 
786 	ptl = pmd_lock(mm, pmd);
787 	if (!pmd_none(*pmd)) {
788 		if (write) {
789 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
790 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
791 				goto out_unlock;
792 			}
793 			entry = pmd_mkyoung(*pmd);
794 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
795 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
796 				update_mmu_cache_pmd(vma, addr, pmd);
797 		}
798 
799 		goto out_unlock;
800 	}
801 
802 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
803 	if (pfn_t_devmap(pfn))
804 		entry = pmd_mkdevmap(entry);
805 	if (write) {
806 		entry = pmd_mkyoung(pmd_mkdirty(entry));
807 		entry = maybe_pmd_mkwrite(entry, vma);
808 	}
809 
810 	if (pgtable) {
811 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
812 		mm_inc_nr_ptes(mm);
813 		pgtable = NULL;
814 	}
815 
816 	set_pmd_at(mm, addr, pmd, entry);
817 	update_mmu_cache_pmd(vma, addr, pmd);
818 
819 out_unlock:
820 	spin_unlock(ptl);
821 	if (pgtable)
822 		pte_free(mm, pgtable);
823 }
824 
825 /**
826  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
827  * @vmf: Structure describing the fault
828  * @pfn: pfn to insert
829  * @pgprot: page protection to use
830  * @write: whether it's a write fault
831  *
832  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
833  * also consult the vmf_insert_mixed_prot() documentation when
834  * @pgprot != @vmf->vma->vm_page_prot.
835  *
836  * Return: vm_fault_t value.
837  */
838 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
839 				   pgprot_t pgprot, bool write)
840 {
841 	unsigned long addr = vmf->address & PMD_MASK;
842 	struct vm_area_struct *vma = vmf->vma;
843 	pgtable_t pgtable = NULL;
844 
845 	/*
846 	 * If we had pmd_special, we could avoid all these restrictions,
847 	 * but we need to be consistent with PTEs and architectures that
848 	 * can't support a 'special' bit.
849 	 */
850 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
851 			!pfn_t_devmap(pfn));
852 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
853 						(VM_PFNMAP|VM_MIXEDMAP));
854 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
855 
856 	if (addr < vma->vm_start || addr >= vma->vm_end)
857 		return VM_FAULT_SIGBUS;
858 
859 	if (arch_needs_pgtable_deposit()) {
860 		pgtable = pte_alloc_one(vma->vm_mm);
861 		if (!pgtable)
862 			return VM_FAULT_OOM;
863 	}
864 
865 	track_pfn_insert(vma, &pgprot, pfn);
866 
867 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
868 	return VM_FAULT_NOPAGE;
869 }
870 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
871 
872 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
873 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
874 {
875 	if (likely(vma->vm_flags & VM_WRITE))
876 		pud = pud_mkwrite(pud);
877 	return pud;
878 }
879 
880 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
881 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
882 {
883 	struct mm_struct *mm = vma->vm_mm;
884 	pud_t entry;
885 	spinlock_t *ptl;
886 
887 	ptl = pud_lock(mm, pud);
888 	if (!pud_none(*pud)) {
889 		if (write) {
890 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
891 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
892 				goto out_unlock;
893 			}
894 			entry = pud_mkyoung(*pud);
895 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
896 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
897 				update_mmu_cache_pud(vma, addr, pud);
898 		}
899 		goto out_unlock;
900 	}
901 
902 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
903 	if (pfn_t_devmap(pfn))
904 		entry = pud_mkdevmap(entry);
905 	if (write) {
906 		entry = pud_mkyoung(pud_mkdirty(entry));
907 		entry = maybe_pud_mkwrite(entry, vma);
908 	}
909 	set_pud_at(mm, addr, pud, entry);
910 	update_mmu_cache_pud(vma, addr, pud);
911 
912 out_unlock:
913 	spin_unlock(ptl);
914 }
915 
916 /**
917  * vmf_insert_pfn_pud_prot - insert a pud size pfn
918  * @vmf: Structure describing the fault
919  * @pfn: pfn to insert
920  * @pgprot: page protection to use
921  * @write: whether it's a write fault
922  *
923  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
924  * also consult the vmf_insert_mixed_prot() documentation when
925  * @pgprot != @vmf->vma->vm_page_prot.
926  *
927  * Return: vm_fault_t value.
928  */
929 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
930 				   pgprot_t pgprot, bool write)
931 {
932 	unsigned long addr = vmf->address & PUD_MASK;
933 	struct vm_area_struct *vma = vmf->vma;
934 
935 	/*
936 	 * If we had pud_special, we could avoid all these restrictions,
937 	 * but we need to be consistent with PTEs and architectures that
938 	 * can't support a 'special' bit.
939 	 */
940 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
941 			!pfn_t_devmap(pfn));
942 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
943 						(VM_PFNMAP|VM_MIXEDMAP));
944 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
945 
946 	if (addr < vma->vm_start || addr >= vma->vm_end)
947 		return VM_FAULT_SIGBUS;
948 
949 	track_pfn_insert(vma, &pgprot, pfn);
950 
951 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
952 	return VM_FAULT_NOPAGE;
953 }
954 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
955 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
956 
957 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
958 		pmd_t *pmd, int flags)
959 {
960 	pmd_t _pmd;
961 
962 	_pmd = pmd_mkyoung(*pmd);
963 	if (flags & FOLL_WRITE)
964 		_pmd = pmd_mkdirty(_pmd);
965 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
966 				pmd, _pmd, flags & FOLL_WRITE))
967 		update_mmu_cache_pmd(vma, addr, pmd);
968 }
969 
970 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
971 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
972 {
973 	unsigned long pfn = pmd_pfn(*pmd);
974 	struct mm_struct *mm = vma->vm_mm;
975 	struct page *page;
976 
977 	assert_spin_locked(pmd_lockptr(mm, pmd));
978 
979 	/*
980 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
981 	 * not be in this function with `flags & FOLL_COW` set.
982 	 */
983 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
984 
985 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
986 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
987 			 (FOLL_PIN | FOLL_GET)))
988 		return NULL;
989 
990 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
991 		return NULL;
992 
993 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
994 		/* pass */;
995 	else
996 		return NULL;
997 
998 	if (flags & FOLL_TOUCH)
999 		touch_pmd(vma, addr, pmd, flags);
1000 
1001 	/*
1002 	 * device mapped pages can only be returned if the
1003 	 * caller will manage the page reference count.
1004 	 */
1005 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1006 		return ERR_PTR(-EEXIST);
1007 
1008 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1009 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1010 	if (!*pgmap)
1011 		return ERR_PTR(-EFAULT);
1012 	page = pfn_to_page(pfn);
1013 	if (!try_grab_page(page, flags))
1014 		page = ERR_PTR(-ENOMEM);
1015 
1016 	return page;
1017 }
1018 
1019 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1020 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1021 		  struct vm_area_struct *vma)
1022 {
1023 	spinlock_t *dst_ptl, *src_ptl;
1024 	struct page *src_page;
1025 	pmd_t pmd;
1026 	pgtable_t pgtable = NULL;
1027 	int ret = -ENOMEM;
1028 
1029 	/* Skip if can be re-fill on fault */
1030 	if (!vma_is_anonymous(vma))
1031 		return 0;
1032 
1033 	pgtable = pte_alloc_one(dst_mm);
1034 	if (unlikely(!pgtable))
1035 		goto out;
1036 
1037 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1038 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1039 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 
1041 	ret = -EAGAIN;
1042 	pmd = *src_pmd;
1043 
1044 	/*
1045 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1046 	 * does not have the VM_UFFD_WP, which means that the uffd
1047 	 * fork event is not enabled.
1048 	 */
1049 	if (!(vma->vm_flags & VM_UFFD_WP))
1050 		pmd = pmd_clear_uffd_wp(pmd);
1051 
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 	if (unlikely(is_swap_pmd(pmd))) {
1054 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055 
1056 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 		if (is_write_migration_entry(entry)) {
1058 			make_migration_entry_read(&entry);
1059 			pmd = swp_entry_to_pmd(entry);
1060 			if (pmd_swp_soft_dirty(*src_pmd))
1061 				pmd = pmd_swp_mksoft_dirty(pmd);
1062 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1063 		}
1064 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1065 		mm_inc_nr_ptes(dst_mm);
1066 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1067 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1068 		ret = 0;
1069 		goto out_unlock;
1070 	}
1071 #endif
1072 
1073 	if (unlikely(!pmd_trans_huge(pmd))) {
1074 		pte_free(dst_mm, pgtable);
1075 		goto out_unlock;
1076 	}
1077 	/*
1078 	 * When page table lock is held, the huge zero pmd should not be
1079 	 * under splitting since we don't split the page itself, only pmd to
1080 	 * a page table.
1081 	 */
1082 	if (is_huge_zero_pmd(pmd)) {
1083 		struct page *zero_page;
1084 		/*
1085 		 * get_huge_zero_page() will never allocate a new page here,
1086 		 * since we already have a zero page to copy. It just takes a
1087 		 * reference.
1088 		 */
1089 		zero_page = mm_get_huge_zero_page(dst_mm);
1090 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1091 				zero_page);
1092 		ret = 0;
1093 		goto out_unlock;
1094 	}
1095 
1096 	src_page = pmd_page(pmd);
1097 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1098 	get_page(src_page);
1099 	page_dup_rmap(src_page, true);
1100 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1101 	mm_inc_nr_ptes(dst_mm);
1102 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1103 
1104 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1105 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1106 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1107 
1108 	ret = 0;
1109 out_unlock:
1110 	spin_unlock(src_ptl);
1111 	spin_unlock(dst_ptl);
1112 out:
1113 	return ret;
1114 }
1115 
1116 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1117 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1118 		pud_t *pud, int flags)
1119 {
1120 	pud_t _pud;
1121 
1122 	_pud = pud_mkyoung(*pud);
1123 	if (flags & FOLL_WRITE)
1124 		_pud = pud_mkdirty(_pud);
1125 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1126 				pud, _pud, flags & FOLL_WRITE))
1127 		update_mmu_cache_pud(vma, addr, pud);
1128 }
1129 
1130 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1131 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1132 {
1133 	unsigned long pfn = pud_pfn(*pud);
1134 	struct mm_struct *mm = vma->vm_mm;
1135 	struct page *page;
1136 
1137 	assert_spin_locked(pud_lockptr(mm, pud));
1138 
1139 	if (flags & FOLL_WRITE && !pud_write(*pud))
1140 		return NULL;
1141 
1142 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1144 			 (FOLL_PIN | FOLL_GET)))
1145 		return NULL;
1146 
1147 	if (pud_present(*pud) && pud_devmap(*pud))
1148 		/* pass */;
1149 	else
1150 		return NULL;
1151 
1152 	if (flags & FOLL_TOUCH)
1153 		touch_pud(vma, addr, pud, flags);
1154 
1155 	/*
1156 	 * device mapped pages can only be returned if the
1157 	 * caller will manage the page reference count.
1158 	 *
1159 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1160 	 */
1161 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1162 		return ERR_PTR(-EEXIST);
1163 
1164 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1165 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1166 	if (!*pgmap)
1167 		return ERR_PTR(-EFAULT);
1168 	page = pfn_to_page(pfn);
1169 	if (!try_grab_page(page, flags))
1170 		page = ERR_PTR(-ENOMEM);
1171 
1172 	return page;
1173 }
1174 
1175 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1176 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1177 		  struct vm_area_struct *vma)
1178 {
1179 	spinlock_t *dst_ptl, *src_ptl;
1180 	pud_t pud;
1181 	int ret;
1182 
1183 	dst_ptl = pud_lock(dst_mm, dst_pud);
1184 	src_ptl = pud_lockptr(src_mm, src_pud);
1185 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1186 
1187 	ret = -EAGAIN;
1188 	pud = *src_pud;
1189 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1190 		goto out_unlock;
1191 
1192 	/*
1193 	 * When page table lock is held, the huge zero pud should not be
1194 	 * under splitting since we don't split the page itself, only pud to
1195 	 * a page table.
1196 	 */
1197 	if (is_huge_zero_pud(pud)) {
1198 		/* No huge zero pud yet */
1199 	}
1200 
1201 	pudp_set_wrprotect(src_mm, addr, src_pud);
1202 	pud = pud_mkold(pud_wrprotect(pud));
1203 	set_pud_at(dst_mm, addr, dst_pud, pud);
1204 
1205 	ret = 0;
1206 out_unlock:
1207 	spin_unlock(src_ptl);
1208 	spin_unlock(dst_ptl);
1209 	return ret;
1210 }
1211 
1212 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1213 {
1214 	pud_t entry;
1215 	unsigned long haddr;
1216 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1217 
1218 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1219 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1220 		goto unlock;
1221 
1222 	entry = pud_mkyoung(orig_pud);
1223 	if (write)
1224 		entry = pud_mkdirty(entry);
1225 	haddr = vmf->address & HPAGE_PUD_MASK;
1226 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1227 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1228 
1229 unlock:
1230 	spin_unlock(vmf->ptl);
1231 }
1232 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1233 
1234 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236 	pmd_t entry;
1237 	unsigned long haddr;
1238 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1239 
1240 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1241 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1242 		goto unlock;
1243 
1244 	entry = pmd_mkyoung(orig_pmd);
1245 	if (write)
1246 		entry = pmd_mkdirty(entry);
1247 	haddr = vmf->address & HPAGE_PMD_MASK;
1248 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1249 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1250 
1251 unlock:
1252 	spin_unlock(vmf->ptl);
1253 }
1254 
1255 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1256 {
1257 	struct vm_area_struct *vma = vmf->vma;
1258 	struct page *page;
1259 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1260 
1261 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1262 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1263 
1264 	if (is_huge_zero_pmd(orig_pmd))
1265 		goto fallback;
1266 
1267 	spin_lock(vmf->ptl);
1268 
1269 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1270 		spin_unlock(vmf->ptl);
1271 		return 0;
1272 	}
1273 
1274 	page = pmd_page(orig_pmd);
1275 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1276 
1277 	/* Lock page for reuse_swap_page() */
1278 	if (!trylock_page(page)) {
1279 		get_page(page);
1280 		spin_unlock(vmf->ptl);
1281 		lock_page(page);
1282 		spin_lock(vmf->ptl);
1283 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1284 			spin_unlock(vmf->ptl);
1285 			unlock_page(page);
1286 			put_page(page);
1287 			return 0;
1288 		}
1289 		put_page(page);
1290 	}
1291 
1292 	/*
1293 	 * We can only reuse the page if nobody else maps the huge page or it's
1294 	 * part.
1295 	 */
1296 	if (reuse_swap_page(page, NULL)) {
1297 		pmd_t entry;
1298 		entry = pmd_mkyoung(orig_pmd);
1299 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1300 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1301 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1302 		unlock_page(page);
1303 		spin_unlock(vmf->ptl);
1304 		return VM_FAULT_WRITE;
1305 	}
1306 
1307 	unlock_page(page);
1308 	spin_unlock(vmf->ptl);
1309 fallback:
1310 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1311 	return VM_FAULT_FALLBACK;
1312 }
1313 
1314 /*
1315  * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1316  * but only after we've gone through a COW cycle and they are dirty.
1317  */
1318 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1319 {
1320 	return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1321 }
1322 
1323 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1324 				   unsigned long addr,
1325 				   pmd_t *pmd,
1326 				   unsigned int flags)
1327 {
1328 	struct mm_struct *mm = vma->vm_mm;
1329 	struct page *page = NULL;
1330 
1331 	assert_spin_locked(pmd_lockptr(mm, pmd));
1332 
1333 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1334 		goto out;
1335 
1336 	/* Avoid dumping huge zero page */
1337 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1338 		return ERR_PTR(-EFAULT);
1339 
1340 	/* Full NUMA hinting faults to serialise migration in fault paths */
1341 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1342 		goto out;
1343 
1344 	page = pmd_page(*pmd);
1345 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1346 
1347 	if (!try_grab_page(page, flags))
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	if (flags & FOLL_TOUCH)
1351 		touch_pmd(vma, addr, pmd, flags);
1352 
1353 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1354 		/*
1355 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1356 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1357 		 *
1358 		 * For anon THP:
1359 		 *
1360 		 * In most cases the pmd is the only mapping of the page as we
1361 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1362 		 * writable private mappings in populate_vma_page_range().
1363 		 *
1364 		 * The only scenario when we have the page shared here is if we
1365 		 * mlocking read-only mapping shared over fork(). We skip
1366 		 * mlocking such pages.
1367 		 *
1368 		 * For file THP:
1369 		 *
1370 		 * We can expect PageDoubleMap() to be stable under page lock:
1371 		 * for file pages we set it in page_add_file_rmap(), which
1372 		 * requires page to be locked.
1373 		 */
1374 
1375 		if (PageAnon(page) && compound_mapcount(page) != 1)
1376 			goto skip_mlock;
1377 		if (PageDoubleMap(page) || !page->mapping)
1378 			goto skip_mlock;
1379 		if (!trylock_page(page))
1380 			goto skip_mlock;
1381 		if (page->mapping && !PageDoubleMap(page))
1382 			mlock_vma_page(page);
1383 		unlock_page(page);
1384 	}
1385 skip_mlock:
1386 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1387 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1388 
1389 out:
1390 	return page;
1391 }
1392 
1393 /* NUMA hinting page fault entry point for trans huge pmds */
1394 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1395 {
1396 	struct vm_area_struct *vma = vmf->vma;
1397 	struct anon_vma *anon_vma = NULL;
1398 	struct page *page;
1399 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1400 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1401 	int target_nid, last_cpupid = -1;
1402 	bool page_locked;
1403 	bool migrated = false;
1404 	bool was_writable;
1405 	int flags = 0;
1406 
1407 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1408 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1409 		goto out_unlock;
1410 
1411 	/*
1412 	 * If there are potential migrations, wait for completion and retry
1413 	 * without disrupting NUMA hinting information. Do not relock and
1414 	 * check_same as the page may no longer be mapped.
1415 	 */
1416 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1417 		page = pmd_page(*vmf->pmd);
1418 		if (!get_page_unless_zero(page))
1419 			goto out_unlock;
1420 		spin_unlock(vmf->ptl);
1421 		put_and_wait_on_page_locked(page);
1422 		goto out;
1423 	}
1424 
1425 	page = pmd_page(pmd);
1426 	BUG_ON(is_huge_zero_page(page));
1427 	page_nid = page_to_nid(page);
1428 	last_cpupid = page_cpupid_last(page);
1429 	count_vm_numa_event(NUMA_HINT_FAULTS);
1430 	if (page_nid == this_nid) {
1431 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1432 		flags |= TNF_FAULT_LOCAL;
1433 	}
1434 
1435 	/* See similar comment in do_numa_page for explanation */
1436 	if (!pmd_savedwrite(pmd))
1437 		flags |= TNF_NO_GROUP;
1438 
1439 	/*
1440 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1441 	 * page_table_lock if at all possible
1442 	 */
1443 	page_locked = trylock_page(page);
1444 	target_nid = mpol_misplaced(page, vma, haddr);
1445 	if (target_nid == NUMA_NO_NODE) {
1446 		/* If the page was locked, there are no parallel migrations */
1447 		if (page_locked)
1448 			goto clear_pmdnuma;
1449 	}
1450 
1451 	/* Migration could have started since the pmd_trans_migrating check */
1452 	if (!page_locked) {
1453 		page_nid = NUMA_NO_NODE;
1454 		if (!get_page_unless_zero(page))
1455 			goto out_unlock;
1456 		spin_unlock(vmf->ptl);
1457 		put_and_wait_on_page_locked(page);
1458 		goto out;
1459 	}
1460 
1461 	/*
1462 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1463 	 * to serialises splits
1464 	 */
1465 	get_page(page);
1466 	spin_unlock(vmf->ptl);
1467 	anon_vma = page_lock_anon_vma_read(page);
1468 
1469 	/* Confirm the PMD did not change while page_table_lock was released */
1470 	spin_lock(vmf->ptl);
1471 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1472 		unlock_page(page);
1473 		put_page(page);
1474 		page_nid = NUMA_NO_NODE;
1475 		goto out_unlock;
1476 	}
1477 
1478 	/* Bail if we fail to protect against THP splits for any reason */
1479 	if (unlikely(!anon_vma)) {
1480 		put_page(page);
1481 		page_nid = NUMA_NO_NODE;
1482 		goto clear_pmdnuma;
1483 	}
1484 
1485 	/*
1486 	 * Since we took the NUMA fault, we must have observed the !accessible
1487 	 * bit. Make sure all other CPUs agree with that, to avoid them
1488 	 * modifying the page we're about to migrate.
1489 	 *
1490 	 * Must be done under PTL such that we'll observe the relevant
1491 	 * inc_tlb_flush_pending().
1492 	 *
1493 	 * We are not sure a pending tlb flush here is for a huge page
1494 	 * mapping or not. Hence use the tlb range variant
1495 	 */
1496 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1497 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1498 		/*
1499 		 * change_huge_pmd() released the pmd lock before
1500 		 * invalidating the secondary MMUs sharing the primary
1501 		 * MMU pagetables (with ->invalidate_range()). The
1502 		 * mmu_notifier_invalidate_range_end() (which
1503 		 * internally calls ->invalidate_range()) in
1504 		 * change_pmd_range() will run after us, so we can't
1505 		 * rely on it here and we need an explicit invalidate.
1506 		 */
1507 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1508 					      haddr + HPAGE_PMD_SIZE);
1509 	}
1510 
1511 	/*
1512 	 * Migrate the THP to the requested node, returns with page unlocked
1513 	 * and access rights restored.
1514 	 */
1515 	spin_unlock(vmf->ptl);
1516 
1517 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1518 				vmf->pmd, pmd, vmf->address, page, target_nid);
1519 	if (migrated) {
1520 		flags |= TNF_MIGRATED;
1521 		page_nid = target_nid;
1522 	} else
1523 		flags |= TNF_MIGRATE_FAIL;
1524 
1525 	goto out;
1526 clear_pmdnuma:
1527 	BUG_ON(!PageLocked(page));
1528 	was_writable = pmd_savedwrite(pmd);
1529 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1530 	pmd = pmd_mkyoung(pmd);
1531 	if (was_writable)
1532 		pmd = pmd_mkwrite(pmd);
1533 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1534 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1535 	unlock_page(page);
1536 out_unlock:
1537 	spin_unlock(vmf->ptl);
1538 
1539 out:
1540 	if (anon_vma)
1541 		page_unlock_anon_vma_read(anon_vma);
1542 
1543 	if (page_nid != NUMA_NO_NODE)
1544 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1545 				flags);
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Return true if we do MADV_FREE successfully on entire pmd page.
1552  * Otherwise, return false.
1553  */
1554 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1555 		pmd_t *pmd, unsigned long addr, unsigned long next)
1556 {
1557 	spinlock_t *ptl;
1558 	pmd_t orig_pmd;
1559 	struct page *page;
1560 	struct mm_struct *mm = tlb->mm;
1561 	bool ret = false;
1562 
1563 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1564 
1565 	ptl = pmd_trans_huge_lock(pmd, vma);
1566 	if (!ptl)
1567 		goto out_unlocked;
1568 
1569 	orig_pmd = *pmd;
1570 	if (is_huge_zero_pmd(orig_pmd))
1571 		goto out;
1572 
1573 	if (unlikely(!pmd_present(orig_pmd))) {
1574 		VM_BUG_ON(thp_migration_supported() &&
1575 				  !is_pmd_migration_entry(orig_pmd));
1576 		goto out;
1577 	}
1578 
1579 	page = pmd_page(orig_pmd);
1580 	/*
1581 	 * If other processes are mapping this page, we couldn't discard
1582 	 * the page unless they all do MADV_FREE so let's skip the page.
1583 	 */
1584 	if (page_mapcount(page) != 1)
1585 		goto out;
1586 
1587 	if (!trylock_page(page))
1588 		goto out;
1589 
1590 	/*
1591 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1592 	 * will deactivate only them.
1593 	 */
1594 	if (next - addr != HPAGE_PMD_SIZE) {
1595 		get_page(page);
1596 		spin_unlock(ptl);
1597 		split_huge_page(page);
1598 		unlock_page(page);
1599 		put_page(page);
1600 		goto out_unlocked;
1601 	}
1602 
1603 	if (PageDirty(page))
1604 		ClearPageDirty(page);
1605 	unlock_page(page);
1606 
1607 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1608 		pmdp_invalidate(vma, addr, pmd);
1609 		orig_pmd = pmd_mkold(orig_pmd);
1610 		orig_pmd = pmd_mkclean(orig_pmd);
1611 
1612 		set_pmd_at(mm, addr, pmd, orig_pmd);
1613 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1614 	}
1615 
1616 	mark_page_lazyfree(page);
1617 	ret = true;
1618 out:
1619 	spin_unlock(ptl);
1620 out_unlocked:
1621 	return ret;
1622 }
1623 
1624 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1625 {
1626 	pgtable_t pgtable;
1627 
1628 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1629 	pte_free(mm, pgtable);
1630 	mm_dec_nr_ptes(mm);
1631 }
1632 
1633 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1634 		 pmd_t *pmd, unsigned long addr)
1635 {
1636 	pmd_t orig_pmd;
1637 	spinlock_t *ptl;
1638 
1639 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1640 
1641 	ptl = __pmd_trans_huge_lock(pmd, vma);
1642 	if (!ptl)
1643 		return 0;
1644 	/*
1645 	 * For architectures like ppc64 we look at deposited pgtable
1646 	 * when calling pmdp_huge_get_and_clear. So do the
1647 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1648 	 * operations.
1649 	 */
1650 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1651 						tlb->fullmm);
1652 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1653 	if (vma_is_special_huge(vma)) {
1654 		if (arch_needs_pgtable_deposit())
1655 			zap_deposited_table(tlb->mm, pmd);
1656 		spin_unlock(ptl);
1657 		if (is_huge_zero_pmd(orig_pmd))
1658 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1659 	} else if (is_huge_zero_pmd(orig_pmd)) {
1660 		zap_deposited_table(tlb->mm, pmd);
1661 		spin_unlock(ptl);
1662 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1663 	} else {
1664 		struct page *page = NULL;
1665 		int flush_needed = 1;
1666 
1667 		if (pmd_present(orig_pmd)) {
1668 			page = pmd_page(orig_pmd);
1669 			page_remove_rmap(page, true);
1670 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671 			VM_BUG_ON_PAGE(!PageHead(page), page);
1672 		} else if (thp_migration_supported()) {
1673 			swp_entry_t entry;
1674 
1675 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676 			entry = pmd_to_swp_entry(orig_pmd);
1677 			page = pfn_to_page(swp_offset(entry));
1678 			flush_needed = 0;
1679 		} else
1680 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1681 
1682 		if (PageAnon(page)) {
1683 			zap_deposited_table(tlb->mm, pmd);
1684 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1685 		} else {
1686 			if (arch_needs_pgtable_deposit())
1687 				zap_deposited_table(tlb->mm, pmd);
1688 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1689 		}
1690 
1691 		spin_unlock(ptl);
1692 		if (flush_needed)
1693 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1694 	}
1695 	return 1;
1696 }
1697 
1698 #ifndef pmd_move_must_withdraw
1699 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700 					 spinlock_t *old_pmd_ptl,
1701 					 struct vm_area_struct *vma)
1702 {
1703 	/*
1704 	 * With split pmd lock we also need to move preallocated
1705 	 * PTE page table if new_pmd is on different PMD page table.
1706 	 *
1707 	 * We also don't deposit and withdraw tables for file pages.
1708 	 */
1709 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1710 }
1711 #endif
1712 
1713 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1714 {
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716 	if (unlikely(is_pmd_migration_entry(pmd)))
1717 		pmd = pmd_swp_mksoft_dirty(pmd);
1718 	else if (pmd_present(pmd))
1719 		pmd = pmd_mksoft_dirty(pmd);
1720 #endif
1721 	return pmd;
1722 }
1723 
1724 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725 		  unsigned long new_addr, unsigned long old_end,
1726 		  pmd_t *old_pmd, pmd_t *new_pmd)
1727 {
1728 	spinlock_t *old_ptl, *new_ptl;
1729 	pmd_t pmd;
1730 	struct mm_struct *mm = vma->vm_mm;
1731 	bool force_flush = false;
1732 
1733 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1734 	    (new_addr & ~HPAGE_PMD_MASK) ||
1735 	    old_end - old_addr < HPAGE_PMD_SIZE)
1736 		return false;
1737 
1738 	/*
1739 	 * The destination pmd shouldn't be established, free_pgtables()
1740 	 * should have release it.
1741 	 */
1742 	if (WARN_ON(!pmd_none(*new_pmd))) {
1743 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1744 		return false;
1745 	}
1746 
1747 	/*
1748 	 * We don't have to worry about the ordering of src and dst
1749 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1750 	 */
1751 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1752 	if (old_ptl) {
1753 		new_ptl = pmd_lockptr(mm, new_pmd);
1754 		if (new_ptl != old_ptl)
1755 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1756 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1757 		if (pmd_present(pmd))
1758 			force_flush = true;
1759 		VM_BUG_ON(!pmd_none(*new_pmd));
1760 
1761 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1762 			pgtable_t pgtable;
1763 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1764 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1765 		}
1766 		pmd = move_soft_dirty_pmd(pmd);
1767 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1768 		if (force_flush)
1769 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1770 		if (new_ptl != old_ptl)
1771 			spin_unlock(new_ptl);
1772 		spin_unlock(old_ptl);
1773 		return true;
1774 	}
1775 	return false;
1776 }
1777 
1778 /*
1779  * Returns
1780  *  - 0 if PMD could not be locked
1781  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1782  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1783  */
1784 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1785 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1786 {
1787 	struct mm_struct *mm = vma->vm_mm;
1788 	spinlock_t *ptl;
1789 	pmd_t entry;
1790 	bool preserve_write;
1791 	int ret;
1792 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1793 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1794 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1795 
1796 	ptl = __pmd_trans_huge_lock(pmd, vma);
1797 	if (!ptl)
1798 		return 0;
1799 
1800 	preserve_write = prot_numa && pmd_write(*pmd);
1801 	ret = 1;
1802 
1803 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1804 	if (is_swap_pmd(*pmd)) {
1805 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1806 
1807 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1808 		if (is_write_migration_entry(entry)) {
1809 			pmd_t newpmd;
1810 			/*
1811 			 * A protection check is difficult so
1812 			 * just be safe and disable write
1813 			 */
1814 			make_migration_entry_read(&entry);
1815 			newpmd = swp_entry_to_pmd(entry);
1816 			if (pmd_swp_soft_dirty(*pmd))
1817 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1818 			set_pmd_at(mm, addr, pmd, newpmd);
1819 		}
1820 		goto unlock;
1821 	}
1822 #endif
1823 
1824 	/*
1825 	 * Avoid trapping faults against the zero page. The read-only
1826 	 * data is likely to be read-cached on the local CPU and
1827 	 * local/remote hits to the zero page are not interesting.
1828 	 */
1829 	if (prot_numa && is_huge_zero_pmd(*pmd))
1830 		goto unlock;
1831 
1832 	if (prot_numa && pmd_protnone(*pmd))
1833 		goto unlock;
1834 
1835 	/*
1836 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1837 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1838 	 * which is also under mmap_read_lock(mm):
1839 	 *
1840 	 *	CPU0:				CPU1:
1841 	 *				change_huge_pmd(prot_numa=1)
1842 	 *				 pmdp_huge_get_and_clear_notify()
1843 	 * madvise_dontneed()
1844 	 *  zap_pmd_range()
1845 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1846 	 *   // skip the pmd
1847 	 *				 set_pmd_at();
1848 	 *				 // pmd is re-established
1849 	 *
1850 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1851 	 * which may break userspace.
1852 	 *
1853 	 * pmdp_invalidate() is required to make sure we don't miss
1854 	 * dirty/young flags set by hardware.
1855 	 */
1856 	entry = pmdp_invalidate(vma, addr, pmd);
1857 
1858 	entry = pmd_modify(entry, newprot);
1859 	if (preserve_write)
1860 		entry = pmd_mk_savedwrite(entry);
1861 	if (uffd_wp) {
1862 		entry = pmd_wrprotect(entry);
1863 		entry = pmd_mkuffd_wp(entry);
1864 	} else if (uffd_wp_resolve) {
1865 		/*
1866 		 * Leave the write bit to be handled by PF interrupt
1867 		 * handler, then things like COW could be properly
1868 		 * handled.
1869 		 */
1870 		entry = pmd_clear_uffd_wp(entry);
1871 	}
1872 	ret = HPAGE_PMD_NR;
1873 	set_pmd_at(mm, addr, pmd, entry);
1874 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1875 unlock:
1876 	spin_unlock(ptl);
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1882  *
1883  * Note that if it returns page table lock pointer, this routine returns without
1884  * unlocking page table lock. So callers must unlock it.
1885  */
1886 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1887 {
1888 	spinlock_t *ptl;
1889 	ptl = pmd_lock(vma->vm_mm, pmd);
1890 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1891 			pmd_devmap(*pmd)))
1892 		return ptl;
1893 	spin_unlock(ptl);
1894 	return NULL;
1895 }
1896 
1897 /*
1898  * Returns true if a given pud maps a thp, false otherwise.
1899  *
1900  * Note that if it returns true, this routine returns without unlocking page
1901  * table lock. So callers must unlock it.
1902  */
1903 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1904 {
1905 	spinlock_t *ptl;
1906 
1907 	ptl = pud_lock(vma->vm_mm, pud);
1908 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1909 		return ptl;
1910 	spin_unlock(ptl);
1911 	return NULL;
1912 }
1913 
1914 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1915 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1916 		 pud_t *pud, unsigned long addr)
1917 {
1918 	spinlock_t *ptl;
1919 
1920 	ptl = __pud_trans_huge_lock(pud, vma);
1921 	if (!ptl)
1922 		return 0;
1923 	/*
1924 	 * For architectures like ppc64 we look at deposited pgtable
1925 	 * when calling pudp_huge_get_and_clear. So do the
1926 	 * pgtable_trans_huge_withdraw after finishing pudp related
1927 	 * operations.
1928 	 */
1929 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1930 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1931 	if (vma_is_special_huge(vma)) {
1932 		spin_unlock(ptl);
1933 		/* No zero page support yet */
1934 	} else {
1935 		/* No support for anonymous PUD pages yet */
1936 		BUG();
1937 	}
1938 	return 1;
1939 }
1940 
1941 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1942 		unsigned long haddr)
1943 {
1944 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1945 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1946 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1947 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1948 
1949 	count_vm_event(THP_SPLIT_PUD);
1950 
1951 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1952 }
1953 
1954 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1955 		unsigned long address)
1956 {
1957 	spinlock_t *ptl;
1958 	struct mmu_notifier_range range;
1959 
1960 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1961 				address & HPAGE_PUD_MASK,
1962 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1963 	mmu_notifier_invalidate_range_start(&range);
1964 	ptl = pud_lock(vma->vm_mm, pud);
1965 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1966 		goto out;
1967 	__split_huge_pud_locked(vma, pud, range.start);
1968 
1969 out:
1970 	spin_unlock(ptl);
1971 	/*
1972 	 * No need to double call mmu_notifier->invalidate_range() callback as
1973 	 * the above pudp_huge_clear_flush_notify() did already call it.
1974 	 */
1975 	mmu_notifier_invalidate_range_only_end(&range);
1976 }
1977 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1978 
1979 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1980 		unsigned long haddr, pmd_t *pmd)
1981 {
1982 	struct mm_struct *mm = vma->vm_mm;
1983 	pgtable_t pgtable;
1984 	pmd_t _pmd;
1985 	int i;
1986 
1987 	/*
1988 	 * Leave pmd empty until pte is filled note that it is fine to delay
1989 	 * notification until mmu_notifier_invalidate_range_end() as we are
1990 	 * replacing a zero pmd write protected page with a zero pte write
1991 	 * protected page.
1992 	 *
1993 	 * See Documentation/vm/mmu_notifier.rst
1994 	 */
1995 	pmdp_huge_clear_flush(vma, haddr, pmd);
1996 
1997 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1998 	pmd_populate(mm, &_pmd, pgtable);
1999 
2000 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2001 		pte_t *pte, entry;
2002 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2003 		entry = pte_mkspecial(entry);
2004 		pte = pte_offset_map(&_pmd, haddr);
2005 		VM_BUG_ON(!pte_none(*pte));
2006 		set_pte_at(mm, haddr, pte, entry);
2007 		pte_unmap(pte);
2008 	}
2009 	smp_wmb(); /* make pte visible before pmd */
2010 	pmd_populate(mm, pmd, pgtable);
2011 }
2012 
2013 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2014 		unsigned long haddr, bool freeze)
2015 {
2016 	struct mm_struct *mm = vma->vm_mm;
2017 	struct page *page;
2018 	pgtable_t pgtable;
2019 	pmd_t old_pmd, _pmd;
2020 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2021 	unsigned long addr;
2022 	int i;
2023 
2024 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2025 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2026 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2027 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2028 				&& !pmd_devmap(*pmd));
2029 
2030 	count_vm_event(THP_SPLIT_PMD);
2031 
2032 	if (!vma_is_anonymous(vma)) {
2033 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2034 		/*
2035 		 * We are going to unmap this huge page. So
2036 		 * just go ahead and zap it
2037 		 */
2038 		if (arch_needs_pgtable_deposit())
2039 			zap_deposited_table(mm, pmd);
2040 		if (vma_is_special_huge(vma))
2041 			return;
2042 		page = pmd_page(_pmd);
2043 		if (!PageDirty(page) && pmd_dirty(_pmd))
2044 			set_page_dirty(page);
2045 		if (!PageReferenced(page) && pmd_young(_pmd))
2046 			SetPageReferenced(page);
2047 		page_remove_rmap(page, true);
2048 		put_page(page);
2049 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2050 		return;
2051 	} else if (is_huge_zero_pmd(*pmd)) {
2052 		/*
2053 		 * FIXME: Do we want to invalidate secondary mmu by calling
2054 		 * mmu_notifier_invalidate_range() see comments below inside
2055 		 * __split_huge_pmd() ?
2056 		 *
2057 		 * We are going from a zero huge page write protected to zero
2058 		 * small page also write protected so it does not seems useful
2059 		 * to invalidate secondary mmu at this time.
2060 		 */
2061 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2062 	}
2063 
2064 	/*
2065 	 * Up to this point the pmd is present and huge and userland has the
2066 	 * whole access to the hugepage during the split (which happens in
2067 	 * place). If we overwrite the pmd with the not-huge version pointing
2068 	 * to the pte here (which of course we could if all CPUs were bug
2069 	 * free), userland could trigger a small page size TLB miss on the
2070 	 * small sized TLB while the hugepage TLB entry is still established in
2071 	 * the huge TLB. Some CPU doesn't like that.
2072 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2073 	 * 383 on page 93. Intel should be safe but is also warns that it's
2074 	 * only safe if the permission and cache attributes of the two entries
2075 	 * loaded in the two TLB is identical (which should be the case here).
2076 	 * But it is generally safer to never allow small and huge TLB entries
2077 	 * for the same virtual address to be loaded simultaneously. So instead
2078 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2079 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2080 	 * must remain set at all times on the pmd until the split is complete
2081 	 * for this pmd), then we flush the SMP TLB and finally we write the
2082 	 * non-huge version of the pmd entry with pmd_populate.
2083 	 */
2084 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2085 
2086 	pmd_migration = is_pmd_migration_entry(old_pmd);
2087 	if (unlikely(pmd_migration)) {
2088 		swp_entry_t entry;
2089 
2090 		entry = pmd_to_swp_entry(old_pmd);
2091 		page = pfn_to_page(swp_offset(entry));
2092 		write = is_write_migration_entry(entry);
2093 		young = false;
2094 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2095 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2096 	} else {
2097 		page = pmd_page(old_pmd);
2098 		if (pmd_dirty(old_pmd))
2099 			SetPageDirty(page);
2100 		write = pmd_write(old_pmd);
2101 		young = pmd_young(old_pmd);
2102 		soft_dirty = pmd_soft_dirty(old_pmd);
2103 		uffd_wp = pmd_uffd_wp(old_pmd);
2104 	}
2105 	VM_BUG_ON_PAGE(!page_count(page), page);
2106 	page_ref_add(page, HPAGE_PMD_NR - 1);
2107 
2108 	/*
2109 	 * Withdraw the table only after we mark the pmd entry invalid.
2110 	 * This's critical for some architectures (Power).
2111 	 */
2112 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2113 	pmd_populate(mm, &_pmd, pgtable);
2114 
2115 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2116 		pte_t entry, *pte;
2117 		/*
2118 		 * Note that NUMA hinting access restrictions are not
2119 		 * transferred to avoid any possibility of altering
2120 		 * permissions across VMAs.
2121 		 */
2122 		if (freeze || pmd_migration) {
2123 			swp_entry_t swp_entry;
2124 			swp_entry = make_migration_entry(page + i, write);
2125 			entry = swp_entry_to_pte(swp_entry);
2126 			if (soft_dirty)
2127 				entry = pte_swp_mksoft_dirty(entry);
2128 			if (uffd_wp)
2129 				entry = pte_swp_mkuffd_wp(entry);
2130 		} else {
2131 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2132 			entry = maybe_mkwrite(entry, vma);
2133 			if (!write)
2134 				entry = pte_wrprotect(entry);
2135 			if (!young)
2136 				entry = pte_mkold(entry);
2137 			if (soft_dirty)
2138 				entry = pte_mksoft_dirty(entry);
2139 			if (uffd_wp)
2140 				entry = pte_mkuffd_wp(entry);
2141 		}
2142 		pte = pte_offset_map(&_pmd, addr);
2143 		BUG_ON(!pte_none(*pte));
2144 		set_pte_at(mm, addr, pte, entry);
2145 		atomic_inc(&page[i]._mapcount);
2146 		pte_unmap(pte);
2147 	}
2148 
2149 	/*
2150 	 * Set PG_double_map before dropping compound_mapcount to avoid
2151 	 * false-negative page_mapped().
2152 	 */
2153 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2154 		for (i = 0; i < HPAGE_PMD_NR; i++)
2155 			atomic_inc(&page[i]._mapcount);
2156 	}
2157 
2158 	lock_page_memcg(page);
2159 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2160 		/* Last compound_mapcount is gone. */
2161 		__dec_lruvec_page_state(page, NR_ANON_THPS);
2162 		if (TestClearPageDoubleMap(page)) {
2163 			/* No need in mapcount reference anymore */
2164 			for (i = 0; i < HPAGE_PMD_NR; i++)
2165 				atomic_dec(&page[i]._mapcount);
2166 		}
2167 	}
2168 	unlock_page_memcg(page);
2169 
2170 	smp_wmb(); /* make pte visible before pmd */
2171 	pmd_populate(mm, pmd, pgtable);
2172 
2173 	if (freeze) {
2174 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2175 			page_remove_rmap(page + i, false);
2176 			put_page(page + i);
2177 		}
2178 	}
2179 }
2180 
2181 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2182 		unsigned long address, bool freeze, struct page *page)
2183 {
2184 	spinlock_t *ptl;
2185 	struct mmu_notifier_range range;
2186 	bool was_locked = false;
2187 	pmd_t _pmd;
2188 
2189 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2190 				address & HPAGE_PMD_MASK,
2191 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2192 	mmu_notifier_invalidate_range_start(&range);
2193 	ptl = pmd_lock(vma->vm_mm, pmd);
2194 
2195 	/*
2196 	 * If caller asks to setup a migration entries, we need a page to check
2197 	 * pmd against. Otherwise we can end up replacing wrong page.
2198 	 */
2199 	VM_BUG_ON(freeze && !page);
2200 	if (page) {
2201 		VM_WARN_ON_ONCE(!PageLocked(page));
2202 		was_locked = true;
2203 		if (page != pmd_page(*pmd))
2204 			goto out;
2205 	}
2206 
2207 repeat:
2208 	if (pmd_trans_huge(*pmd)) {
2209 		if (!page) {
2210 			page = pmd_page(*pmd);
2211 			if (unlikely(!trylock_page(page))) {
2212 				get_page(page);
2213 				_pmd = *pmd;
2214 				spin_unlock(ptl);
2215 				lock_page(page);
2216 				spin_lock(ptl);
2217 				if (unlikely(!pmd_same(*pmd, _pmd))) {
2218 					unlock_page(page);
2219 					put_page(page);
2220 					page = NULL;
2221 					goto repeat;
2222 				}
2223 				put_page(page);
2224 			}
2225 		}
2226 		if (PageMlocked(page))
2227 			clear_page_mlock(page);
2228 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2229 		goto out;
2230 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2231 out:
2232 	spin_unlock(ptl);
2233 	if (!was_locked && page)
2234 		unlock_page(page);
2235 	/*
2236 	 * No need to double call mmu_notifier->invalidate_range() callback.
2237 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2238 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2239 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2240 	 *    fault will trigger a flush_notify before pointing to a new page
2241 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2242 	 *    page in the meantime)
2243 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2244 	 *     to invalidate secondary tlb entry they are all still valid.
2245 	 *     any further changes to individual pte will notify. So no need
2246 	 *     to call mmu_notifier->invalidate_range()
2247 	 */
2248 	mmu_notifier_invalidate_range_only_end(&range);
2249 }
2250 
2251 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2252 		bool freeze, struct page *page)
2253 {
2254 	pgd_t *pgd;
2255 	p4d_t *p4d;
2256 	pud_t *pud;
2257 	pmd_t *pmd;
2258 
2259 	pgd = pgd_offset(vma->vm_mm, address);
2260 	if (!pgd_present(*pgd))
2261 		return;
2262 
2263 	p4d = p4d_offset(pgd, address);
2264 	if (!p4d_present(*p4d))
2265 		return;
2266 
2267 	pud = pud_offset(p4d, address);
2268 	if (!pud_present(*pud))
2269 		return;
2270 
2271 	pmd = pmd_offset(pud, address);
2272 
2273 	__split_huge_pmd(vma, pmd, address, freeze, page);
2274 }
2275 
2276 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2277 			     unsigned long start,
2278 			     unsigned long end,
2279 			     long adjust_next)
2280 {
2281 	/*
2282 	 * If the new start address isn't hpage aligned and it could
2283 	 * previously contain an hugepage: check if we need to split
2284 	 * an huge pmd.
2285 	 */
2286 	if (start & ~HPAGE_PMD_MASK &&
2287 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2288 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2289 		split_huge_pmd_address(vma, start, false, NULL);
2290 
2291 	/*
2292 	 * If the new end address isn't hpage aligned and it could
2293 	 * previously contain an hugepage: check if we need to split
2294 	 * an huge pmd.
2295 	 */
2296 	if (end & ~HPAGE_PMD_MASK &&
2297 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2298 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2299 		split_huge_pmd_address(vma, end, false, NULL);
2300 
2301 	/*
2302 	 * If we're also updating the vma->vm_next->vm_start, if the new
2303 	 * vm_next->vm_start isn't page aligned and it could previously
2304 	 * contain an hugepage: check if we need to split an huge pmd.
2305 	 */
2306 	if (adjust_next > 0) {
2307 		struct vm_area_struct *next = vma->vm_next;
2308 		unsigned long nstart = next->vm_start;
2309 		nstart += adjust_next << PAGE_SHIFT;
2310 		if (nstart & ~HPAGE_PMD_MASK &&
2311 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2312 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2313 			split_huge_pmd_address(next, nstart, false, NULL);
2314 	}
2315 }
2316 
2317 static void unmap_page(struct page *page)
2318 {
2319 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2320 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2321 	bool unmap_success;
2322 
2323 	VM_BUG_ON_PAGE(!PageHead(page), page);
2324 
2325 	if (PageAnon(page))
2326 		ttu_flags |= TTU_SPLIT_FREEZE;
2327 
2328 	unmap_success = try_to_unmap(page, ttu_flags);
2329 	VM_BUG_ON_PAGE(!unmap_success, page);
2330 }
2331 
2332 static void remap_page(struct page *page)
2333 {
2334 	int i;
2335 	if (PageTransHuge(page)) {
2336 		remove_migration_ptes(page, page, true);
2337 	} else {
2338 		for (i = 0; i < HPAGE_PMD_NR; i++)
2339 			remove_migration_ptes(page + i, page + i, true);
2340 	}
2341 }
2342 
2343 static void __split_huge_page_tail(struct page *head, int tail,
2344 		struct lruvec *lruvec, struct list_head *list)
2345 {
2346 	struct page *page_tail = head + tail;
2347 
2348 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2349 
2350 	/*
2351 	 * Clone page flags before unfreezing refcount.
2352 	 *
2353 	 * After successful get_page_unless_zero() might follow flags change,
2354 	 * for exmaple lock_page() which set PG_waiters.
2355 	 */
2356 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2357 	page_tail->flags |= (head->flags &
2358 			((1L << PG_referenced) |
2359 			 (1L << PG_swapbacked) |
2360 			 (1L << PG_swapcache) |
2361 			 (1L << PG_mlocked) |
2362 			 (1L << PG_uptodate) |
2363 			 (1L << PG_active) |
2364 			 (1L << PG_workingset) |
2365 			 (1L << PG_locked) |
2366 			 (1L << PG_unevictable) |
2367 			 (1L << PG_dirty)));
2368 
2369 	/* ->mapping in first tail page is compound_mapcount */
2370 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2371 			page_tail);
2372 	page_tail->mapping = head->mapping;
2373 	page_tail->index = head->index + tail;
2374 
2375 	/* Page flags must be visible before we make the page non-compound. */
2376 	smp_wmb();
2377 
2378 	/*
2379 	 * Clear PageTail before unfreezing page refcount.
2380 	 *
2381 	 * After successful get_page_unless_zero() might follow put_page()
2382 	 * which needs correct compound_head().
2383 	 */
2384 	clear_compound_head(page_tail);
2385 
2386 	/* Finally unfreeze refcount. Additional reference from page cache. */
2387 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2388 					  PageSwapCache(head)));
2389 
2390 	if (page_is_young(head))
2391 		set_page_young(page_tail);
2392 	if (page_is_idle(head))
2393 		set_page_idle(page_tail);
2394 
2395 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2396 
2397 	/*
2398 	 * always add to the tail because some iterators expect new
2399 	 * pages to show after the currently processed elements - e.g.
2400 	 * migrate_pages
2401 	 */
2402 	lru_add_page_tail(head, page_tail, lruvec, list);
2403 }
2404 
2405 static void __split_huge_page(struct page *page, struct list_head *list,
2406 		pgoff_t end, unsigned long flags)
2407 {
2408 	struct page *head = compound_head(page);
2409 	pg_data_t *pgdat = page_pgdat(head);
2410 	struct lruvec *lruvec;
2411 	struct address_space *swap_cache = NULL;
2412 	unsigned long offset = 0;
2413 	int i;
2414 
2415 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2416 
2417 	/* complete memcg works before add pages to LRU */
2418 	mem_cgroup_split_huge_fixup(head);
2419 
2420 	if (PageAnon(head) && PageSwapCache(head)) {
2421 		swp_entry_t entry = { .val = page_private(head) };
2422 
2423 		offset = swp_offset(entry);
2424 		swap_cache = swap_address_space(entry);
2425 		xa_lock(&swap_cache->i_pages);
2426 	}
2427 
2428 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2429 		__split_huge_page_tail(head, i, lruvec, list);
2430 		/* Some pages can be beyond i_size: drop them from page cache */
2431 		if (head[i].index >= end) {
2432 			ClearPageDirty(head + i);
2433 			__delete_from_page_cache(head + i, NULL);
2434 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2435 				shmem_uncharge(head->mapping->host, 1);
2436 			put_page(head + i);
2437 		} else if (!PageAnon(page)) {
2438 			__xa_store(&head->mapping->i_pages, head[i].index,
2439 					head + i, 0);
2440 		} else if (swap_cache) {
2441 			__xa_store(&swap_cache->i_pages, offset + i,
2442 					head + i, 0);
2443 		}
2444 	}
2445 
2446 	ClearPageCompound(head);
2447 
2448 	split_page_owner(head, HPAGE_PMD_ORDER);
2449 
2450 	/* See comment in __split_huge_page_tail() */
2451 	if (PageAnon(head)) {
2452 		/* Additional pin to swap cache */
2453 		if (PageSwapCache(head)) {
2454 			page_ref_add(head, 2);
2455 			xa_unlock(&swap_cache->i_pages);
2456 		} else {
2457 			page_ref_inc(head);
2458 		}
2459 	} else {
2460 		/* Additional pin to page cache */
2461 		page_ref_add(head, 2);
2462 		xa_unlock(&head->mapping->i_pages);
2463 	}
2464 
2465 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2466 
2467 	remap_page(head);
2468 
2469 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2470 		struct page *subpage = head + i;
2471 		if (subpage == page)
2472 			continue;
2473 		unlock_page(subpage);
2474 
2475 		/*
2476 		 * Subpages may be freed if there wasn't any mapping
2477 		 * like if add_to_swap() is running on a lru page that
2478 		 * had its mapping zapped. And freeing these pages
2479 		 * requires taking the lru_lock so we do the put_page
2480 		 * of the tail pages after the split is complete.
2481 		 */
2482 		put_page(subpage);
2483 	}
2484 }
2485 
2486 int total_mapcount(struct page *page)
2487 {
2488 	int i, compound, ret;
2489 
2490 	VM_BUG_ON_PAGE(PageTail(page), page);
2491 
2492 	if (likely(!PageCompound(page)))
2493 		return atomic_read(&page->_mapcount) + 1;
2494 
2495 	compound = compound_mapcount(page);
2496 	if (PageHuge(page))
2497 		return compound;
2498 	ret = compound;
2499 	for (i = 0; i < HPAGE_PMD_NR; i++)
2500 		ret += atomic_read(&page[i]._mapcount) + 1;
2501 	/* File pages has compound_mapcount included in _mapcount */
2502 	if (!PageAnon(page))
2503 		return ret - compound * HPAGE_PMD_NR;
2504 	if (PageDoubleMap(page))
2505 		ret -= HPAGE_PMD_NR;
2506 	return ret;
2507 }
2508 
2509 /*
2510  * This calculates accurately how many mappings a transparent hugepage
2511  * has (unlike page_mapcount() which isn't fully accurate). This full
2512  * accuracy is primarily needed to know if copy-on-write faults can
2513  * reuse the page and change the mapping to read-write instead of
2514  * copying them. At the same time this returns the total_mapcount too.
2515  *
2516  * The function returns the highest mapcount any one of the subpages
2517  * has. If the return value is one, even if different processes are
2518  * mapping different subpages of the transparent hugepage, they can
2519  * all reuse it, because each process is reusing a different subpage.
2520  *
2521  * The total_mapcount is instead counting all virtual mappings of the
2522  * subpages. If the total_mapcount is equal to "one", it tells the
2523  * caller all mappings belong to the same "mm" and in turn the
2524  * anon_vma of the transparent hugepage can become the vma->anon_vma
2525  * local one as no other process may be mapping any of the subpages.
2526  *
2527  * It would be more accurate to replace page_mapcount() with
2528  * page_trans_huge_mapcount(), however we only use
2529  * page_trans_huge_mapcount() in the copy-on-write faults where we
2530  * need full accuracy to avoid breaking page pinning, because
2531  * page_trans_huge_mapcount() is slower than page_mapcount().
2532  */
2533 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2534 {
2535 	int i, ret, _total_mapcount, mapcount;
2536 
2537 	/* hugetlbfs shouldn't call it */
2538 	VM_BUG_ON_PAGE(PageHuge(page), page);
2539 
2540 	if (likely(!PageTransCompound(page))) {
2541 		mapcount = atomic_read(&page->_mapcount) + 1;
2542 		if (total_mapcount)
2543 			*total_mapcount = mapcount;
2544 		return mapcount;
2545 	}
2546 
2547 	page = compound_head(page);
2548 
2549 	_total_mapcount = ret = 0;
2550 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2551 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2552 		ret = max(ret, mapcount);
2553 		_total_mapcount += mapcount;
2554 	}
2555 	if (PageDoubleMap(page)) {
2556 		ret -= 1;
2557 		_total_mapcount -= HPAGE_PMD_NR;
2558 	}
2559 	mapcount = compound_mapcount(page);
2560 	ret += mapcount;
2561 	_total_mapcount += mapcount;
2562 	if (total_mapcount)
2563 		*total_mapcount = _total_mapcount;
2564 	return ret;
2565 }
2566 
2567 /* Racy check whether the huge page can be split */
2568 bool can_split_huge_page(struct page *page, int *pextra_pins)
2569 {
2570 	int extra_pins;
2571 
2572 	/* Additional pins from page cache */
2573 	if (PageAnon(page))
2574 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2575 	else
2576 		extra_pins = HPAGE_PMD_NR;
2577 	if (pextra_pins)
2578 		*pextra_pins = extra_pins;
2579 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2580 }
2581 
2582 /*
2583  * This function splits huge page into normal pages. @page can point to any
2584  * subpage of huge page to split. Split doesn't change the position of @page.
2585  *
2586  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2587  * The huge page must be locked.
2588  *
2589  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2590  *
2591  * Both head page and tail pages will inherit mapping, flags, and so on from
2592  * the hugepage.
2593  *
2594  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2595  * they are not mapped.
2596  *
2597  * Returns 0 if the hugepage is split successfully.
2598  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2599  * us.
2600  */
2601 int split_huge_page_to_list(struct page *page, struct list_head *list)
2602 {
2603 	struct page *head = compound_head(page);
2604 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2605 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2606 	struct anon_vma *anon_vma = NULL;
2607 	struct address_space *mapping = NULL;
2608 	int count, mapcount, extra_pins, ret;
2609 	unsigned long flags;
2610 	pgoff_t end;
2611 
2612 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2613 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2614 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2615 
2616 	if (PageWriteback(head))
2617 		return -EBUSY;
2618 
2619 	if (PageAnon(head)) {
2620 		/*
2621 		 * The caller does not necessarily hold an mmap_lock that would
2622 		 * prevent the anon_vma disappearing so we first we take a
2623 		 * reference to it and then lock the anon_vma for write. This
2624 		 * is similar to page_lock_anon_vma_read except the write lock
2625 		 * is taken to serialise against parallel split or collapse
2626 		 * operations.
2627 		 */
2628 		anon_vma = page_get_anon_vma(head);
2629 		if (!anon_vma) {
2630 			ret = -EBUSY;
2631 			goto out;
2632 		}
2633 		end = -1;
2634 		mapping = NULL;
2635 		anon_vma_lock_write(anon_vma);
2636 	} else {
2637 		mapping = head->mapping;
2638 
2639 		/* Truncated ? */
2640 		if (!mapping) {
2641 			ret = -EBUSY;
2642 			goto out;
2643 		}
2644 
2645 		anon_vma = NULL;
2646 		i_mmap_lock_read(mapping);
2647 
2648 		/*
2649 		 *__split_huge_page() may need to trim off pages beyond EOF:
2650 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2651 		 * which cannot be nested inside the page tree lock. So note
2652 		 * end now: i_size itself may be changed at any moment, but
2653 		 * head page lock is good enough to serialize the trimming.
2654 		 */
2655 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2656 	}
2657 
2658 	/*
2659 	 * Racy check if we can split the page, before unmap_page() will
2660 	 * split PMDs
2661 	 */
2662 	if (!can_split_huge_page(head, &extra_pins)) {
2663 		ret = -EBUSY;
2664 		goto out_unlock;
2665 	}
2666 
2667 	unmap_page(head);
2668 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2669 
2670 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2671 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2672 
2673 	if (mapping) {
2674 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2675 
2676 		/*
2677 		 * Check if the head page is present in page cache.
2678 		 * We assume all tail are present too, if head is there.
2679 		 */
2680 		xa_lock(&mapping->i_pages);
2681 		if (xas_load(&xas) != head)
2682 			goto fail;
2683 	}
2684 
2685 	/* Prevent deferred_split_scan() touching ->_refcount */
2686 	spin_lock(&ds_queue->split_queue_lock);
2687 	count = page_count(head);
2688 	mapcount = total_mapcount(head);
2689 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2690 		if (!list_empty(page_deferred_list(head))) {
2691 			ds_queue->split_queue_len--;
2692 			list_del(page_deferred_list(head));
2693 		}
2694 		spin_unlock(&ds_queue->split_queue_lock);
2695 		if (mapping) {
2696 			if (PageSwapBacked(head))
2697 				__dec_node_page_state(head, NR_SHMEM_THPS);
2698 			else
2699 				__dec_node_page_state(head, NR_FILE_THPS);
2700 		}
2701 
2702 		__split_huge_page(page, list, end, flags);
2703 		if (PageSwapCache(head)) {
2704 			swp_entry_t entry = { .val = page_private(head) };
2705 
2706 			ret = split_swap_cluster(entry);
2707 		} else
2708 			ret = 0;
2709 	} else {
2710 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2711 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2712 					mapcount, count);
2713 			if (PageTail(page))
2714 				dump_page(head, NULL);
2715 			dump_page(page, "total_mapcount(head) > 0");
2716 			BUG();
2717 		}
2718 		spin_unlock(&ds_queue->split_queue_lock);
2719 fail:		if (mapping)
2720 			xa_unlock(&mapping->i_pages);
2721 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2722 		remap_page(head);
2723 		ret = -EBUSY;
2724 	}
2725 
2726 out_unlock:
2727 	if (anon_vma) {
2728 		anon_vma_unlock_write(anon_vma);
2729 		put_anon_vma(anon_vma);
2730 	}
2731 	if (mapping)
2732 		i_mmap_unlock_read(mapping);
2733 out:
2734 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2735 	return ret;
2736 }
2737 
2738 void free_transhuge_page(struct page *page)
2739 {
2740 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2741 	unsigned long flags;
2742 
2743 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2744 	if (!list_empty(page_deferred_list(page))) {
2745 		ds_queue->split_queue_len--;
2746 		list_del(page_deferred_list(page));
2747 	}
2748 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2749 	free_compound_page(page);
2750 }
2751 
2752 void deferred_split_huge_page(struct page *page)
2753 {
2754 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2755 #ifdef CONFIG_MEMCG
2756 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2757 #endif
2758 	unsigned long flags;
2759 
2760 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2761 
2762 	/*
2763 	 * The try_to_unmap() in page reclaim path might reach here too,
2764 	 * this may cause a race condition to corrupt deferred split queue.
2765 	 * And, if page reclaim is already handling the same page, it is
2766 	 * unnecessary to handle it again in shrinker.
2767 	 *
2768 	 * Check PageSwapCache to determine if the page is being
2769 	 * handled by page reclaim since THP swap would add the page into
2770 	 * swap cache before calling try_to_unmap().
2771 	 */
2772 	if (PageSwapCache(page))
2773 		return;
2774 
2775 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2776 	if (list_empty(page_deferred_list(page))) {
2777 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2778 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2779 		ds_queue->split_queue_len++;
2780 #ifdef CONFIG_MEMCG
2781 		if (memcg)
2782 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2783 					       deferred_split_shrinker.id);
2784 #endif
2785 	}
2786 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2787 }
2788 
2789 static unsigned long deferred_split_count(struct shrinker *shrink,
2790 		struct shrink_control *sc)
2791 {
2792 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2793 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2794 
2795 #ifdef CONFIG_MEMCG
2796 	if (sc->memcg)
2797 		ds_queue = &sc->memcg->deferred_split_queue;
2798 #endif
2799 	return READ_ONCE(ds_queue->split_queue_len);
2800 }
2801 
2802 static unsigned long deferred_split_scan(struct shrinker *shrink,
2803 		struct shrink_control *sc)
2804 {
2805 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2806 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2807 	unsigned long flags;
2808 	LIST_HEAD(list), *pos, *next;
2809 	struct page *page;
2810 	int split = 0;
2811 
2812 #ifdef CONFIG_MEMCG
2813 	if (sc->memcg)
2814 		ds_queue = &sc->memcg->deferred_split_queue;
2815 #endif
2816 
2817 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2818 	/* Take pin on all head pages to avoid freeing them under us */
2819 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2820 		page = list_entry((void *)pos, struct page, mapping);
2821 		page = compound_head(page);
2822 		if (get_page_unless_zero(page)) {
2823 			list_move(page_deferred_list(page), &list);
2824 		} else {
2825 			/* We lost race with put_compound_page() */
2826 			list_del_init(page_deferred_list(page));
2827 			ds_queue->split_queue_len--;
2828 		}
2829 		if (!--sc->nr_to_scan)
2830 			break;
2831 	}
2832 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2833 
2834 	list_for_each_safe(pos, next, &list) {
2835 		page = list_entry((void *)pos, struct page, mapping);
2836 		if (!trylock_page(page))
2837 			goto next;
2838 		/* split_huge_page() removes page from list on success */
2839 		if (!split_huge_page(page))
2840 			split++;
2841 		unlock_page(page);
2842 next:
2843 		put_page(page);
2844 	}
2845 
2846 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2847 	list_splice_tail(&list, &ds_queue->split_queue);
2848 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2849 
2850 	/*
2851 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2852 	 * This can happen if pages were freed under us.
2853 	 */
2854 	if (!split && list_empty(&ds_queue->split_queue))
2855 		return SHRINK_STOP;
2856 	return split;
2857 }
2858 
2859 static struct shrinker deferred_split_shrinker = {
2860 	.count_objects = deferred_split_count,
2861 	.scan_objects = deferred_split_scan,
2862 	.seeks = DEFAULT_SEEKS,
2863 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2864 		 SHRINKER_NONSLAB,
2865 };
2866 
2867 #ifdef CONFIG_DEBUG_FS
2868 static int split_huge_pages_set(void *data, u64 val)
2869 {
2870 	struct zone *zone;
2871 	struct page *page;
2872 	unsigned long pfn, max_zone_pfn;
2873 	unsigned long total = 0, split = 0;
2874 
2875 	if (val != 1)
2876 		return -EINVAL;
2877 
2878 	for_each_populated_zone(zone) {
2879 		max_zone_pfn = zone_end_pfn(zone);
2880 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2881 			if (!pfn_valid(pfn))
2882 				continue;
2883 
2884 			page = pfn_to_page(pfn);
2885 			if (!get_page_unless_zero(page))
2886 				continue;
2887 
2888 			if (zone != page_zone(page))
2889 				goto next;
2890 
2891 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2892 				goto next;
2893 
2894 			total++;
2895 			lock_page(page);
2896 			if (!split_huge_page(page))
2897 				split++;
2898 			unlock_page(page);
2899 next:
2900 			put_page(page);
2901 		}
2902 	}
2903 
2904 	pr_info("%lu of %lu THP split\n", split, total);
2905 
2906 	return 0;
2907 }
2908 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2909 		"%llu\n");
2910 
2911 static int __init split_huge_pages_debugfs(void)
2912 {
2913 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2914 			    &split_huge_pages_fops);
2915 	return 0;
2916 }
2917 late_initcall(split_huge_pages_debugfs);
2918 #endif
2919 
2920 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2921 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2922 		struct page *page)
2923 {
2924 	struct vm_area_struct *vma = pvmw->vma;
2925 	struct mm_struct *mm = vma->vm_mm;
2926 	unsigned long address = pvmw->address;
2927 	pmd_t pmdval;
2928 	swp_entry_t entry;
2929 	pmd_t pmdswp;
2930 
2931 	if (!(pvmw->pmd && !pvmw->pte))
2932 		return;
2933 
2934 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2935 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2936 	if (pmd_dirty(pmdval))
2937 		set_page_dirty(page);
2938 	entry = make_migration_entry(page, pmd_write(pmdval));
2939 	pmdswp = swp_entry_to_pmd(entry);
2940 	if (pmd_soft_dirty(pmdval))
2941 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2942 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2943 	page_remove_rmap(page, true);
2944 	put_page(page);
2945 }
2946 
2947 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2948 {
2949 	struct vm_area_struct *vma = pvmw->vma;
2950 	struct mm_struct *mm = vma->vm_mm;
2951 	unsigned long address = pvmw->address;
2952 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2953 	pmd_t pmde;
2954 	swp_entry_t entry;
2955 
2956 	if (!(pvmw->pmd && !pvmw->pte))
2957 		return;
2958 
2959 	entry = pmd_to_swp_entry(*pvmw->pmd);
2960 	get_page(new);
2961 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2962 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2963 		pmde = pmd_mksoft_dirty(pmde);
2964 	if (is_write_migration_entry(entry))
2965 		pmde = maybe_pmd_mkwrite(pmde, vma);
2966 
2967 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2968 	if (PageAnon(new))
2969 		page_add_anon_rmap(new, vma, mmun_start, true);
2970 	else
2971 		page_add_file_rmap(new, true);
2972 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2973 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2974 		mlock_vma_page(new);
2975 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2976 }
2977 #endif
2978