1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 static struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 static void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 99 { 100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 101 return READ_ONCE(huge_zero_page); 102 103 if (!get_huge_zero_page()) 104 return NULL; 105 106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 107 put_huge_zero_page(); 108 109 return READ_ONCE(huge_zero_page); 110 } 111 112 void mm_put_huge_zero_page(struct mm_struct *mm) 113 { 114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 115 put_huge_zero_page(); 116 } 117 118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 /* we can free zero page only if last reference remains */ 122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 123 } 124 125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 126 struct shrink_control *sc) 127 { 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 129 struct page *zero_page = xchg(&huge_zero_page, NULL); 130 BUG_ON(zero_page == NULL); 131 __free_pages(zero_page, compound_order(zero_page)); 132 return HPAGE_PMD_NR; 133 } 134 135 return 0; 136 } 137 138 static struct shrinker huge_zero_page_shrinker = { 139 .count_objects = shrink_huge_zero_page_count, 140 .scan_objects = shrink_huge_zero_page_scan, 141 .seeks = DEFAULT_SEEKS, 142 }; 143 144 #ifdef CONFIG_SYSFS 145 146 static ssize_t triple_flag_store(struct kobject *kobj, 147 struct kobj_attribute *attr, 148 const char *buf, size_t count, 149 enum transparent_hugepage_flag enabled, 150 enum transparent_hugepage_flag deferred, 151 enum transparent_hugepage_flag req_madv) 152 { 153 if (!memcmp("defer", buf, 154 min(sizeof("defer")-1, count))) { 155 if (enabled == deferred) 156 return -EINVAL; 157 clear_bit(enabled, &transparent_hugepage_flags); 158 clear_bit(req_madv, &transparent_hugepage_flags); 159 set_bit(deferred, &transparent_hugepage_flags); 160 } else if (!memcmp("always", buf, 161 min(sizeof("always")-1, count))) { 162 clear_bit(deferred, &transparent_hugepage_flags); 163 clear_bit(req_madv, &transparent_hugepage_flags); 164 set_bit(enabled, &transparent_hugepage_flags); 165 } else if (!memcmp("madvise", buf, 166 min(sizeof("madvise")-1, count))) { 167 clear_bit(enabled, &transparent_hugepage_flags); 168 clear_bit(deferred, &transparent_hugepage_flags); 169 set_bit(req_madv, &transparent_hugepage_flags); 170 } else if (!memcmp("never", buf, 171 min(sizeof("never")-1, count))) { 172 clear_bit(enabled, &transparent_hugepage_flags); 173 clear_bit(req_madv, &transparent_hugepage_flags); 174 clear_bit(deferred, &transparent_hugepage_flags); 175 } else 176 return -EINVAL; 177 178 return count; 179 } 180 181 static ssize_t enabled_show(struct kobject *kobj, 182 struct kobj_attribute *attr, char *buf) 183 { 184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 185 return sprintf(buf, "[always] madvise never\n"); 186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 187 return sprintf(buf, "always [madvise] never\n"); 188 else 189 return sprintf(buf, "always madvise [never]\n"); 190 } 191 192 static ssize_t enabled_store(struct kobject *kobj, 193 struct kobj_attribute *attr, 194 const char *buf, size_t count) 195 { 196 ssize_t ret; 197 198 ret = triple_flag_store(kobj, attr, buf, count, 199 TRANSPARENT_HUGEPAGE_FLAG, 200 TRANSPARENT_HUGEPAGE_FLAG, 201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 202 203 if (ret > 0) { 204 int err = start_stop_khugepaged(); 205 if (err) 206 ret = err; 207 } 208 209 return ret; 210 } 211 static struct kobj_attribute enabled_attr = 212 __ATTR(enabled, 0644, enabled_show, enabled_store); 213 214 ssize_t single_hugepage_flag_show(struct kobject *kobj, 215 struct kobj_attribute *attr, char *buf, 216 enum transparent_hugepage_flag flag) 217 { 218 return sprintf(buf, "%d\n", 219 !!test_bit(flag, &transparent_hugepage_flags)); 220 } 221 222 ssize_t single_hugepage_flag_store(struct kobject *kobj, 223 struct kobj_attribute *attr, 224 const char *buf, size_t count, 225 enum transparent_hugepage_flag flag) 226 { 227 unsigned long value; 228 int ret; 229 230 ret = kstrtoul(buf, 10, &value); 231 if (ret < 0) 232 return ret; 233 if (value > 1) 234 return -EINVAL; 235 236 if (value) 237 set_bit(flag, &transparent_hugepage_flags); 238 else 239 clear_bit(flag, &transparent_hugepage_flags); 240 241 return count; 242 } 243 244 /* 245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 247 * memory just to allocate one more hugepage. 248 */ 249 static ssize_t defrag_show(struct kobject *kobj, 250 struct kobj_attribute *attr, char *buf) 251 { 252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 253 return sprintf(buf, "[always] defer madvise never\n"); 254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 255 return sprintf(buf, "always [defer] madvise never\n"); 256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 257 return sprintf(buf, "always defer [madvise] never\n"); 258 else 259 return sprintf(buf, "always defer madvise [never]\n"); 260 261 } 262 static ssize_t defrag_store(struct kobject *kobj, 263 struct kobj_attribute *attr, 264 const char *buf, size_t count) 265 { 266 return triple_flag_store(kobj, attr, buf, count, 267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 270 } 271 static struct kobj_attribute defrag_attr = 272 __ATTR(defrag, 0644, defrag_show, defrag_store); 273 274 static ssize_t use_zero_page_show(struct kobject *kobj, 275 struct kobj_attribute *attr, char *buf) 276 { 277 return single_hugepage_flag_show(kobj, attr, buf, 278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 279 } 280 static ssize_t use_zero_page_store(struct kobject *kobj, 281 struct kobj_attribute *attr, const char *buf, size_t count) 282 { 283 return single_hugepage_flag_store(kobj, attr, buf, count, 284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 285 } 286 static struct kobj_attribute use_zero_page_attr = 287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 288 289 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 290 struct kobj_attribute *attr, char *buf) 291 { 292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 293 } 294 static struct kobj_attribute hpage_pmd_size_attr = 295 __ATTR_RO(hpage_pmd_size); 296 297 #ifdef CONFIG_DEBUG_VM 298 static ssize_t debug_cow_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return single_hugepage_flag_show(kobj, attr, buf, 302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 303 } 304 static ssize_t debug_cow_store(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 const char *buf, size_t count) 307 { 308 return single_hugepage_flag_store(kobj, attr, buf, count, 309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 310 } 311 static struct kobj_attribute debug_cow_attr = 312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 313 #endif /* CONFIG_DEBUG_VM */ 314 315 static struct attribute *hugepage_attr[] = { 316 &enabled_attr.attr, 317 &defrag_attr.attr, 318 &use_zero_page_attr.attr, 319 &hpage_pmd_size_attr.attr, 320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 321 &shmem_enabled_attr.attr, 322 #endif 323 #ifdef CONFIG_DEBUG_VM 324 &debug_cow_attr.attr, 325 #endif 326 NULL, 327 }; 328 329 static struct attribute_group hugepage_attr_group = { 330 .attrs = hugepage_attr, 331 }; 332 333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 334 { 335 int err; 336 337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 338 if (unlikely(!*hugepage_kobj)) { 339 pr_err("failed to create transparent hugepage kobject\n"); 340 return -ENOMEM; 341 } 342 343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 344 if (err) { 345 pr_err("failed to register transparent hugepage group\n"); 346 goto delete_obj; 347 } 348 349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 350 if (err) { 351 pr_err("failed to register transparent hugepage group\n"); 352 goto remove_hp_group; 353 } 354 355 return 0; 356 357 remove_hp_group: 358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 359 delete_obj: 360 kobject_put(*hugepage_kobj); 361 return err; 362 } 363 364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 365 { 366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 368 kobject_put(hugepage_kobj); 369 } 370 #else 371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 372 { 373 return 0; 374 } 375 376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 377 { 378 } 379 #endif /* CONFIG_SYSFS */ 380 381 static int __init hugepage_init(void) 382 { 383 int err; 384 struct kobject *hugepage_kobj; 385 386 if (!has_transparent_hugepage()) { 387 transparent_hugepage_flags = 0; 388 return -EINVAL; 389 } 390 391 /* 392 * hugepages can't be allocated by the buddy allocator 393 */ 394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 395 /* 396 * we use page->mapping and page->index in second tail page 397 * as list_head: assuming THP order >= 2 398 */ 399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 400 401 err = hugepage_init_sysfs(&hugepage_kobj); 402 if (err) 403 goto err_sysfs; 404 405 err = khugepaged_init(); 406 if (err) 407 goto err_slab; 408 409 err = register_shrinker(&huge_zero_page_shrinker); 410 if (err) 411 goto err_hzp_shrinker; 412 err = register_shrinker(&deferred_split_shrinker); 413 if (err) 414 goto err_split_shrinker; 415 416 /* 417 * By default disable transparent hugepages on smaller systems, 418 * where the extra memory used could hurt more than TLB overhead 419 * is likely to save. The admin can still enable it through /sys. 420 */ 421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 422 transparent_hugepage_flags = 0; 423 return 0; 424 } 425 426 err = start_stop_khugepaged(); 427 if (err) 428 goto err_khugepaged; 429 430 return 0; 431 err_khugepaged: 432 unregister_shrinker(&deferred_split_shrinker); 433 err_split_shrinker: 434 unregister_shrinker(&huge_zero_page_shrinker); 435 err_hzp_shrinker: 436 khugepaged_destroy(); 437 err_slab: 438 hugepage_exit_sysfs(hugepage_kobj); 439 err_sysfs: 440 return err; 441 } 442 subsys_initcall(hugepage_init); 443 444 static int __init setup_transparent_hugepage(char *str) 445 { 446 int ret = 0; 447 if (!str) 448 goto out; 449 if (!strcmp(str, "always")) { 450 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 451 &transparent_hugepage_flags); 452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 453 &transparent_hugepage_flags); 454 ret = 1; 455 } else if (!strcmp(str, "madvise")) { 456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 457 &transparent_hugepage_flags); 458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 459 &transparent_hugepage_flags); 460 ret = 1; 461 } else if (!strcmp(str, "never")) { 462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 463 &transparent_hugepage_flags); 464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 465 &transparent_hugepage_flags); 466 ret = 1; 467 } 468 out: 469 if (!ret) 470 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 471 return ret; 472 } 473 __setup("transparent_hugepage=", setup_transparent_hugepage); 474 475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 476 { 477 if (likely(vma->vm_flags & VM_WRITE)) 478 pmd = pmd_mkwrite(pmd); 479 return pmd; 480 } 481 482 static inline struct list_head *page_deferred_list(struct page *page) 483 { 484 /* 485 * ->lru in the tail pages is occupied by compound_head. 486 * Let's use ->mapping + ->index in the second tail page as list_head. 487 */ 488 return (struct list_head *)&page[2].mapping; 489 } 490 491 void prep_transhuge_page(struct page *page) 492 { 493 /* 494 * we use page->mapping and page->indexlru in second tail page 495 * as list_head: assuming THP order >= 2 496 */ 497 498 INIT_LIST_HEAD(page_deferred_list(page)); 499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 500 } 501 502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 503 loff_t off, unsigned long flags, unsigned long size) 504 { 505 unsigned long addr; 506 loff_t off_end = off + len; 507 loff_t off_align = round_up(off, size); 508 unsigned long len_pad; 509 510 if (off_end <= off_align || (off_end - off_align) < size) 511 return 0; 512 513 len_pad = len + size; 514 if (len_pad < len || (off + len_pad) < off) 515 return 0; 516 517 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 518 off >> PAGE_SHIFT, flags); 519 if (IS_ERR_VALUE(addr)) 520 return 0; 521 522 addr += (off - addr) & (size - 1); 523 return addr; 524 } 525 526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 527 unsigned long len, unsigned long pgoff, unsigned long flags) 528 { 529 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 530 531 if (addr) 532 goto out; 533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 534 goto out; 535 536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 537 if (addr) 538 return addr; 539 540 out: 541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 542 } 543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 544 545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 546 gfp_t gfp) 547 { 548 struct vm_area_struct *vma = vmf->vma; 549 struct mem_cgroup *memcg; 550 pgtable_t pgtable; 551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 552 553 VM_BUG_ON_PAGE(!PageCompound(page), page); 554 555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 556 put_page(page); 557 count_vm_event(THP_FAULT_FALLBACK); 558 return VM_FAULT_FALLBACK; 559 } 560 561 pgtable = pte_alloc_one(vma->vm_mm, haddr); 562 if (unlikely(!pgtable)) { 563 mem_cgroup_cancel_charge(page, memcg, true); 564 put_page(page); 565 return VM_FAULT_OOM; 566 } 567 568 clear_huge_page(page, haddr, HPAGE_PMD_NR); 569 /* 570 * The memory barrier inside __SetPageUptodate makes sure that 571 * clear_huge_page writes become visible before the set_pmd_at() 572 * write. 573 */ 574 __SetPageUptodate(page); 575 576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 577 if (unlikely(!pmd_none(*vmf->pmd))) { 578 spin_unlock(vmf->ptl); 579 mem_cgroup_cancel_charge(page, memcg, true); 580 put_page(page); 581 pte_free(vma->vm_mm, pgtable); 582 } else { 583 pmd_t entry; 584 585 /* Deliver the page fault to userland */ 586 if (userfaultfd_missing(vma)) { 587 int ret; 588 589 spin_unlock(vmf->ptl); 590 mem_cgroup_cancel_charge(page, memcg, true); 591 put_page(page); 592 pte_free(vma->vm_mm, pgtable); 593 ret = handle_userfault(vmf, VM_UFFD_MISSING); 594 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 595 return ret; 596 } 597 598 entry = mk_huge_pmd(page, vma->vm_page_prot); 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 600 page_add_new_anon_rmap(page, vma, haddr, true); 601 mem_cgroup_commit_charge(page, memcg, false, true); 602 lru_cache_add_active_or_unevictable(page, vma); 603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 606 atomic_long_inc(&vma->vm_mm->nr_ptes); 607 spin_unlock(vmf->ptl); 608 count_vm_event(THP_FAULT_ALLOC); 609 } 610 611 return 0; 612 } 613 614 /* 615 * If THP defrag is set to always then directly reclaim/compact as necessary 616 * If set to defer then do only background reclaim/compact and defer to khugepaged 617 * If set to madvise and the VMA is flagged then directly reclaim/compact 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's 619 */ 620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 621 { 622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 623 624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 625 &transparent_hugepage_flags) && vma_madvised) 626 return GFP_TRANSHUGE; 627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 628 &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 631 &transparent_hugepage_flags)) 632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 633 634 return GFP_TRANSHUGE_LIGHT; 635 } 636 637 /* Caller must hold page table lock. */ 638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 640 struct page *zero_page) 641 { 642 pmd_t entry; 643 if (!pmd_none(*pmd)) 644 return false; 645 entry = mk_pmd(zero_page, vma->vm_page_prot); 646 entry = pmd_mkhuge(entry); 647 if (pgtable) 648 pgtable_trans_huge_deposit(mm, pmd, pgtable); 649 set_pmd_at(mm, haddr, pmd, entry); 650 atomic_long_inc(&mm->nr_ptes); 651 return true; 652 } 653 654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 655 { 656 struct vm_area_struct *vma = vmf->vma; 657 gfp_t gfp; 658 struct page *page; 659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 660 661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 662 return VM_FAULT_FALLBACK; 663 if (unlikely(anon_vma_prepare(vma))) 664 return VM_FAULT_OOM; 665 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 666 return VM_FAULT_OOM; 667 if (!(vmf->flags & FAULT_FLAG_WRITE) && 668 !mm_forbids_zeropage(vma->vm_mm) && 669 transparent_hugepage_use_zero_page()) { 670 pgtable_t pgtable; 671 struct page *zero_page; 672 bool set; 673 int ret; 674 pgtable = pte_alloc_one(vma->vm_mm, haddr); 675 if (unlikely(!pgtable)) 676 return VM_FAULT_OOM; 677 zero_page = mm_get_huge_zero_page(vma->vm_mm); 678 if (unlikely(!zero_page)) { 679 pte_free(vma->vm_mm, pgtable); 680 count_vm_event(THP_FAULT_FALLBACK); 681 return VM_FAULT_FALLBACK; 682 } 683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 684 ret = 0; 685 set = false; 686 if (pmd_none(*vmf->pmd)) { 687 if (userfaultfd_missing(vma)) { 688 spin_unlock(vmf->ptl); 689 ret = handle_userfault(vmf, VM_UFFD_MISSING); 690 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 691 } else { 692 set_huge_zero_page(pgtable, vma->vm_mm, vma, 693 haddr, vmf->pmd, zero_page); 694 spin_unlock(vmf->ptl); 695 set = true; 696 } 697 } else 698 spin_unlock(vmf->ptl); 699 if (!set) 700 pte_free(vma->vm_mm, pgtable); 701 return ret; 702 } 703 gfp = alloc_hugepage_direct_gfpmask(vma); 704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 705 if (unlikely(!page)) { 706 count_vm_event(THP_FAULT_FALLBACK); 707 return VM_FAULT_FALLBACK; 708 } 709 prep_transhuge_page(page); 710 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 711 } 712 713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 715 { 716 struct mm_struct *mm = vma->vm_mm; 717 pmd_t entry; 718 spinlock_t *ptl; 719 720 ptl = pmd_lock(mm, pmd); 721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 722 if (pfn_t_devmap(pfn)) 723 entry = pmd_mkdevmap(entry); 724 if (write) { 725 entry = pmd_mkyoung(pmd_mkdirty(entry)); 726 entry = maybe_pmd_mkwrite(entry, vma); 727 } 728 set_pmd_at(mm, addr, pmd, entry); 729 update_mmu_cache_pmd(vma, addr, pmd); 730 spin_unlock(ptl); 731 } 732 733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 734 pmd_t *pmd, pfn_t pfn, bool write) 735 { 736 pgprot_t pgprot = vma->vm_page_prot; 737 /* 738 * If we had pmd_special, we could avoid all these restrictions, 739 * but we need to be consistent with PTEs and architectures that 740 * can't support a 'special' bit. 741 */ 742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 744 (VM_PFNMAP|VM_MIXEDMAP)); 745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 746 BUG_ON(!pfn_t_devmap(pfn)); 747 748 if (addr < vma->vm_start || addr >= vma->vm_end) 749 return VM_FAULT_SIGBUS; 750 751 track_pfn_insert(vma, &pgprot, pfn); 752 753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 754 return VM_FAULT_NOPAGE; 755 } 756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 757 758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 759 pmd_t *pmd) 760 { 761 pmd_t _pmd; 762 763 /* 764 * We should set the dirty bit only for FOLL_WRITE but for now 765 * the dirty bit in the pmd is meaningless. And if the dirty 766 * bit will become meaningful and we'll only set it with 767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 768 * set the young bit, instead of the current set_pmd_at. 769 */ 770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 772 pmd, _pmd, 1)) 773 update_mmu_cache_pmd(vma, addr, pmd); 774 } 775 776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 777 pmd_t *pmd, int flags) 778 { 779 unsigned long pfn = pmd_pfn(*pmd); 780 struct mm_struct *mm = vma->vm_mm; 781 struct dev_pagemap *pgmap; 782 struct page *page; 783 784 assert_spin_locked(pmd_lockptr(mm, pmd)); 785 786 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 787 return NULL; 788 789 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 790 /* pass */; 791 else 792 return NULL; 793 794 if (flags & FOLL_TOUCH) 795 touch_pmd(vma, addr, pmd); 796 797 /* 798 * device mapped pages can only be returned if the 799 * caller will manage the page reference count. 800 */ 801 if (!(flags & FOLL_GET)) 802 return ERR_PTR(-EEXIST); 803 804 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 805 pgmap = get_dev_pagemap(pfn, NULL); 806 if (!pgmap) 807 return ERR_PTR(-EFAULT); 808 page = pfn_to_page(pfn); 809 get_page(page); 810 put_dev_pagemap(pgmap); 811 812 return page; 813 } 814 815 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 816 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 817 struct vm_area_struct *vma) 818 { 819 spinlock_t *dst_ptl, *src_ptl; 820 struct page *src_page; 821 pmd_t pmd; 822 pgtable_t pgtable = NULL; 823 int ret = -ENOMEM; 824 825 /* Skip if can be re-fill on fault */ 826 if (!vma_is_anonymous(vma)) 827 return 0; 828 829 pgtable = pte_alloc_one(dst_mm, addr); 830 if (unlikely(!pgtable)) 831 goto out; 832 833 dst_ptl = pmd_lock(dst_mm, dst_pmd); 834 src_ptl = pmd_lockptr(src_mm, src_pmd); 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 836 837 ret = -EAGAIN; 838 pmd = *src_pmd; 839 if (unlikely(!pmd_trans_huge(pmd))) { 840 pte_free(dst_mm, pgtable); 841 goto out_unlock; 842 } 843 /* 844 * When page table lock is held, the huge zero pmd should not be 845 * under splitting since we don't split the page itself, only pmd to 846 * a page table. 847 */ 848 if (is_huge_zero_pmd(pmd)) { 849 struct page *zero_page; 850 /* 851 * get_huge_zero_page() will never allocate a new page here, 852 * since we already have a zero page to copy. It just takes a 853 * reference. 854 */ 855 zero_page = mm_get_huge_zero_page(dst_mm); 856 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 857 zero_page); 858 ret = 0; 859 goto out_unlock; 860 } 861 862 src_page = pmd_page(pmd); 863 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 864 get_page(src_page); 865 page_dup_rmap(src_page, true); 866 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 867 atomic_long_inc(&dst_mm->nr_ptes); 868 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 869 870 pmdp_set_wrprotect(src_mm, addr, src_pmd); 871 pmd = pmd_mkold(pmd_wrprotect(pmd)); 872 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 873 874 ret = 0; 875 out_unlock: 876 spin_unlock(src_ptl); 877 spin_unlock(dst_ptl); 878 out: 879 return ret; 880 } 881 882 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 883 { 884 pmd_t entry; 885 unsigned long haddr; 886 887 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 888 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 889 goto unlock; 890 891 entry = pmd_mkyoung(orig_pmd); 892 haddr = vmf->address & HPAGE_PMD_MASK; 893 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, 894 vmf->flags & FAULT_FLAG_WRITE)) 895 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 896 897 unlock: 898 spin_unlock(vmf->ptl); 899 } 900 901 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 902 struct page *page) 903 { 904 struct vm_area_struct *vma = vmf->vma; 905 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 906 struct mem_cgroup *memcg; 907 pgtable_t pgtable; 908 pmd_t _pmd; 909 int ret = 0, i; 910 struct page **pages; 911 unsigned long mmun_start; /* For mmu_notifiers */ 912 unsigned long mmun_end; /* For mmu_notifiers */ 913 914 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 915 GFP_KERNEL); 916 if (unlikely(!pages)) { 917 ret |= VM_FAULT_OOM; 918 goto out; 919 } 920 921 for (i = 0; i < HPAGE_PMD_NR; i++) { 922 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 923 __GFP_OTHER_NODE, vma, 924 vmf->address, page_to_nid(page)); 925 if (unlikely(!pages[i] || 926 mem_cgroup_try_charge(pages[i], vma->vm_mm, 927 GFP_KERNEL, &memcg, false))) { 928 if (pages[i]) 929 put_page(pages[i]); 930 while (--i >= 0) { 931 memcg = (void *)page_private(pages[i]); 932 set_page_private(pages[i], 0); 933 mem_cgroup_cancel_charge(pages[i], memcg, 934 false); 935 put_page(pages[i]); 936 } 937 kfree(pages); 938 ret |= VM_FAULT_OOM; 939 goto out; 940 } 941 set_page_private(pages[i], (unsigned long)memcg); 942 } 943 944 for (i = 0; i < HPAGE_PMD_NR; i++) { 945 copy_user_highpage(pages[i], page + i, 946 haddr + PAGE_SIZE * i, vma); 947 __SetPageUptodate(pages[i]); 948 cond_resched(); 949 } 950 951 mmun_start = haddr; 952 mmun_end = haddr + HPAGE_PMD_SIZE; 953 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 954 955 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 956 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 957 goto out_free_pages; 958 VM_BUG_ON_PAGE(!PageHead(page), page); 959 960 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 961 /* leave pmd empty until pte is filled */ 962 963 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 964 pmd_populate(vma->vm_mm, &_pmd, pgtable); 965 966 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 967 pte_t entry; 968 entry = mk_pte(pages[i], vma->vm_page_prot); 969 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 970 memcg = (void *)page_private(pages[i]); 971 set_page_private(pages[i], 0); 972 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 973 mem_cgroup_commit_charge(pages[i], memcg, false, false); 974 lru_cache_add_active_or_unevictable(pages[i], vma); 975 vmf->pte = pte_offset_map(&_pmd, haddr); 976 VM_BUG_ON(!pte_none(*vmf->pte)); 977 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 978 pte_unmap(vmf->pte); 979 } 980 kfree(pages); 981 982 smp_wmb(); /* make pte visible before pmd */ 983 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 984 page_remove_rmap(page, true); 985 spin_unlock(vmf->ptl); 986 987 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 988 989 ret |= VM_FAULT_WRITE; 990 put_page(page); 991 992 out: 993 return ret; 994 995 out_free_pages: 996 spin_unlock(vmf->ptl); 997 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 998 for (i = 0; i < HPAGE_PMD_NR; i++) { 999 memcg = (void *)page_private(pages[i]); 1000 set_page_private(pages[i], 0); 1001 mem_cgroup_cancel_charge(pages[i], memcg, false); 1002 put_page(pages[i]); 1003 } 1004 kfree(pages); 1005 goto out; 1006 } 1007 1008 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1009 { 1010 struct vm_area_struct *vma = vmf->vma; 1011 struct page *page = NULL, *new_page; 1012 struct mem_cgroup *memcg; 1013 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1014 unsigned long mmun_start; /* For mmu_notifiers */ 1015 unsigned long mmun_end; /* For mmu_notifiers */ 1016 gfp_t huge_gfp; /* for allocation and charge */ 1017 int ret = 0; 1018 1019 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1020 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1021 if (is_huge_zero_pmd(orig_pmd)) 1022 goto alloc; 1023 spin_lock(vmf->ptl); 1024 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1025 goto out_unlock; 1026 1027 page = pmd_page(orig_pmd); 1028 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1029 /* 1030 * We can only reuse the page if nobody else maps the huge page or it's 1031 * part. 1032 */ 1033 if (page_trans_huge_mapcount(page, NULL) == 1) { 1034 pmd_t entry; 1035 entry = pmd_mkyoung(orig_pmd); 1036 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1037 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1038 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1039 ret |= VM_FAULT_WRITE; 1040 goto out_unlock; 1041 } 1042 get_page(page); 1043 spin_unlock(vmf->ptl); 1044 alloc: 1045 if (transparent_hugepage_enabled(vma) && 1046 !transparent_hugepage_debug_cow()) { 1047 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1048 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1049 } else 1050 new_page = NULL; 1051 1052 if (likely(new_page)) { 1053 prep_transhuge_page(new_page); 1054 } else { 1055 if (!page) { 1056 split_huge_pmd(vma, vmf->pmd, vmf->address); 1057 ret |= VM_FAULT_FALLBACK; 1058 } else { 1059 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1060 if (ret & VM_FAULT_OOM) { 1061 split_huge_pmd(vma, vmf->pmd, vmf->address); 1062 ret |= VM_FAULT_FALLBACK; 1063 } 1064 put_page(page); 1065 } 1066 count_vm_event(THP_FAULT_FALLBACK); 1067 goto out; 1068 } 1069 1070 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1071 huge_gfp, &memcg, true))) { 1072 put_page(new_page); 1073 split_huge_pmd(vma, vmf->pmd, vmf->address); 1074 if (page) 1075 put_page(page); 1076 ret |= VM_FAULT_FALLBACK; 1077 count_vm_event(THP_FAULT_FALLBACK); 1078 goto out; 1079 } 1080 1081 count_vm_event(THP_FAULT_ALLOC); 1082 1083 if (!page) 1084 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1085 else 1086 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1087 __SetPageUptodate(new_page); 1088 1089 mmun_start = haddr; 1090 mmun_end = haddr + HPAGE_PMD_SIZE; 1091 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1092 1093 spin_lock(vmf->ptl); 1094 if (page) 1095 put_page(page); 1096 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1097 spin_unlock(vmf->ptl); 1098 mem_cgroup_cancel_charge(new_page, memcg, true); 1099 put_page(new_page); 1100 goto out_mn; 1101 } else { 1102 pmd_t entry; 1103 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1104 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1105 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1106 page_add_new_anon_rmap(new_page, vma, haddr, true); 1107 mem_cgroup_commit_charge(new_page, memcg, false, true); 1108 lru_cache_add_active_or_unevictable(new_page, vma); 1109 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1110 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1111 if (!page) { 1112 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1113 } else { 1114 VM_BUG_ON_PAGE(!PageHead(page), page); 1115 page_remove_rmap(page, true); 1116 put_page(page); 1117 } 1118 ret |= VM_FAULT_WRITE; 1119 } 1120 spin_unlock(vmf->ptl); 1121 out_mn: 1122 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1123 out: 1124 return ret; 1125 out_unlock: 1126 spin_unlock(vmf->ptl); 1127 return ret; 1128 } 1129 1130 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1131 unsigned long addr, 1132 pmd_t *pmd, 1133 unsigned int flags) 1134 { 1135 struct mm_struct *mm = vma->vm_mm; 1136 struct page *page = NULL; 1137 1138 assert_spin_locked(pmd_lockptr(mm, pmd)); 1139 1140 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1141 goto out; 1142 1143 /* Avoid dumping huge zero page */ 1144 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1145 return ERR_PTR(-EFAULT); 1146 1147 /* Full NUMA hinting faults to serialise migration in fault paths */ 1148 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1149 goto out; 1150 1151 page = pmd_page(*pmd); 1152 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1153 if (flags & FOLL_TOUCH) 1154 touch_pmd(vma, addr, pmd); 1155 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1156 /* 1157 * We don't mlock() pte-mapped THPs. This way we can avoid 1158 * leaking mlocked pages into non-VM_LOCKED VMAs. 1159 * 1160 * For anon THP: 1161 * 1162 * In most cases the pmd is the only mapping of the page as we 1163 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1164 * writable private mappings in populate_vma_page_range(). 1165 * 1166 * The only scenario when we have the page shared here is if we 1167 * mlocking read-only mapping shared over fork(). We skip 1168 * mlocking such pages. 1169 * 1170 * For file THP: 1171 * 1172 * We can expect PageDoubleMap() to be stable under page lock: 1173 * for file pages we set it in page_add_file_rmap(), which 1174 * requires page to be locked. 1175 */ 1176 1177 if (PageAnon(page) && compound_mapcount(page) != 1) 1178 goto skip_mlock; 1179 if (PageDoubleMap(page) || !page->mapping) 1180 goto skip_mlock; 1181 if (!trylock_page(page)) 1182 goto skip_mlock; 1183 lru_add_drain(); 1184 if (page->mapping && !PageDoubleMap(page)) 1185 mlock_vma_page(page); 1186 unlock_page(page); 1187 } 1188 skip_mlock: 1189 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1190 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1191 if (flags & FOLL_GET) 1192 get_page(page); 1193 1194 out: 1195 return page; 1196 } 1197 1198 /* NUMA hinting page fault entry point for trans huge pmds */ 1199 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1200 { 1201 struct vm_area_struct *vma = vmf->vma; 1202 struct anon_vma *anon_vma = NULL; 1203 struct page *page; 1204 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1205 int page_nid = -1, this_nid = numa_node_id(); 1206 int target_nid, last_cpupid = -1; 1207 bool page_locked; 1208 bool migrated = false; 1209 bool was_writable; 1210 int flags = 0; 1211 1212 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1213 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1214 goto out_unlock; 1215 1216 /* 1217 * If there are potential migrations, wait for completion and retry 1218 * without disrupting NUMA hinting information. Do not relock and 1219 * check_same as the page may no longer be mapped. 1220 */ 1221 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1222 page = pmd_page(*vmf->pmd); 1223 spin_unlock(vmf->ptl); 1224 wait_on_page_locked(page); 1225 goto out; 1226 } 1227 1228 page = pmd_page(pmd); 1229 BUG_ON(is_huge_zero_page(page)); 1230 page_nid = page_to_nid(page); 1231 last_cpupid = page_cpupid_last(page); 1232 count_vm_numa_event(NUMA_HINT_FAULTS); 1233 if (page_nid == this_nid) { 1234 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1235 flags |= TNF_FAULT_LOCAL; 1236 } 1237 1238 /* See similar comment in do_numa_page for explanation */ 1239 if (!pmd_write(pmd)) 1240 flags |= TNF_NO_GROUP; 1241 1242 /* 1243 * Acquire the page lock to serialise THP migrations but avoid dropping 1244 * page_table_lock if at all possible 1245 */ 1246 page_locked = trylock_page(page); 1247 target_nid = mpol_misplaced(page, vma, haddr); 1248 if (target_nid == -1) { 1249 /* If the page was locked, there are no parallel migrations */ 1250 if (page_locked) 1251 goto clear_pmdnuma; 1252 } 1253 1254 /* Migration could have started since the pmd_trans_migrating check */ 1255 if (!page_locked) { 1256 spin_unlock(vmf->ptl); 1257 wait_on_page_locked(page); 1258 page_nid = -1; 1259 goto out; 1260 } 1261 1262 /* 1263 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1264 * to serialises splits 1265 */ 1266 get_page(page); 1267 spin_unlock(vmf->ptl); 1268 anon_vma = page_lock_anon_vma_read(page); 1269 1270 /* Confirm the PMD did not change while page_table_lock was released */ 1271 spin_lock(vmf->ptl); 1272 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1273 unlock_page(page); 1274 put_page(page); 1275 page_nid = -1; 1276 goto out_unlock; 1277 } 1278 1279 /* Bail if we fail to protect against THP splits for any reason */ 1280 if (unlikely(!anon_vma)) { 1281 put_page(page); 1282 page_nid = -1; 1283 goto clear_pmdnuma; 1284 } 1285 1286 /* 1287 * Migrate the THP to the requested node, returns with page unlocked 1288 * and access rights restored. 1289 */ 1290 spin_unlock(vmf->ptl); 1291 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1292 vmf->pmd, pmd, vmf->address, page, target_nid); 1293 if (migrated) { 1294 flags |= TNF_MIGRATED; 1295 page_nid = target_nid; 1296 } else 1297 flags |= TNF_MIGRATE_FAIL; 1298 1299 goto out; 1300 clear_pmdnuma: 1301 BUG_ON(!PageLocked(page)); 1302 was_writable = pmd_write(pmd); 1303 pmd = pmd_modify(pmd, vma->vm_page_prot); 1304 pmd = pmd_mkyoung(pmd); 1305 if (was_writable) 1306 pmd = pmd_mkwrite(pmd); 1307 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1308 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1309 unlock_page(page); 1310 out_unlock: 1311 spin_unlock(vmf->ptl); 1312 1313 out: 1314 if (anon_vma) 1315 page_unlock_anon_vma_read(anon_vma); 1316 1317 if (page_nid != -1) 1318 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1319 vmf->flags); 1320 1321 return 0; 1322 } 1323 1324 /* 1325 * Return true if we do MADV_FREE successfully on entire pmd page. 1326 * Otherwise, return false. 1327 */ 1328 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1329 pmd_t *pmd, unsigned long addr, unsigned long next) 1330 { 1331 spinlock_t *ptl; 1332 pmd_t orig_pmd; 1333 struct page *page; 1334 struct mm_struct *mm = tlb->mm; 1335 bool ret = false; 1336 1337 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1338 1339 ptl = pmd_trans_huge_lock(pmd, vma); 1340 if (!ptl) 1341 goto out_unlocked; 1342 1343 orig_pmd = *pmd; 1344 if (is_huge_zero_pmd(orig_pmd)) 1345 goto out; 1346 1347 page = pmd_page(orig_pmd); 1348 /* 1349 * If other processes are mapping this page, we couldn't discard 1350 * the page unless they all do MADV_FREE so let's skip the page. 1351 */ 1352 if (page_mapcount(page) != 1) 1353 goto out; 1354 1355 if (!trylock_page(page)) 1356 goto out; 1357 1358 /* 1359 * If user want to discard part-pages of THP, split it so MADV_FREE 1360 * will deactivate only them. 1361 */ 1362 if (next - addr != HPAGE_PMD_SIZE) { 1363 get_page(page); 1364 spin_unlock(ptl); 1365 split_huge_page(page); 1366 put_page(page); 1367 unlock_page(page); 1368 goto out_unlocked; 1369 } 1370 1371 if (PageDirty(page)) 1372 ClearPageDirty(page); 1373 unlock_page(page); 1374 1375 if (PageActive(page)) 1376 deactivate_page(page); 1377 1378 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1379 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1380 tlb->fullmm); 1381 orig_pmd = pmd_mkold(orig_pmd); 1382 orig_pmd = pmd_mkclean(orig_pmd); 1383 1384 set_pmd_at(mm, addr, pmd, orig_pmd); 1385 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1386 } 1387 ret = true; 1388 out: 1389 spin_unlock(ptl); 1390 out_unlocked: 1391 return ret; 1392 } 1393 1394 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1395 { 1396 pgtable_t pgtable; 1397 1398 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1399 pte_free(mm, pgtable); 1400 atomic_long_dec(&mm->nr_ptes); 1401 } 1402 1403 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1404 pmd_t *pmd, unsigned long addr) 1405 { 1406 pmd_t orig_pmd; 1407 spinlock_t *ptl; 1408 1409 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1410 1411 ptl = __pmd_trans_huge_lock(pmd, vma); 1412 if (!ptl) 1413 return 0; 1414 /* 1415 * For architectures like ppc64 we look at deposited pgtable 1416 * when calling pmdp_huge_get_and_clear. So do the 1417 * pgtable_trans_huge_withdraw after finishing pmdp related 1418 * operations. 1419 */ 1420 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1421 tlb->fullmm); 1422 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1423 if (vma_is_dax(vma)) { 1424 spin_unlock(ptl); 1425 if (is_huge_zero_pmd(orig_pmd)) 1426 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1427 } else if (is_huge_zero_pmd(orig_pmd)) { 1428 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1429 atomic_long_dec(&tlb->mm->nr_ptes); 1430 spin_unlock(ptl); 1431 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1432 } else { 1433 struct page *page = pmd_page(orig_pmd); 1434 page_remove_rmap(page, true); 1435 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1436 VM_BUG_ON_PAGE(!PageHead(page), page); 1437 if (PageAnon(page)) { 1438 pgtable_t pgtable; 1439 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1440 pte_free(tlb->mm, pgtable); 1441 atomic_long_dec(&tlb->mm->nr_ptes); 1442 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1443 } else { 1444 if (arch_needs_pgtable_deposit()) 1445 zap_deposited_table(tlb->mm, pmd); 1446 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1447 } 1448 spin_unlock(ptl); 1449 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1450 } 1451 return 1; 1452 } 1453 1454 #ifndef pmd_move_must_withdraw 1455 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1456 spinlock_t *old_pmd_ptl, 1457 struct vm_area_struct *vma) 1458 { 1459 /* 1460 * With split pmd lock we also need to move preallocated 1461 * PTE page table if new_pmd is on different PMD page table. 1462 * 1463 * We also don't deposit and withdraw tables for file pages. 1464 */ 1465 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1466 } 1467 #endif 1468 1469 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1470 unsigned long new_addr, unsigned long old_end, 1471 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1472 { 1473 spinlock_t *old_ptl, *new_ptl; 1474 pmd_t pmd; 1475 struct mm_struct *mm = vma->vm_mm; 1476 bool force_flush = false; 1477 1478 if ((old_addr & ~HPAGE_PMD_MASK) || 1479 (new_addr & ~HPAGE_PMD_MASK) || 1480 old_end - old_addr < HPAGE_PMD_SIZE) 1481 return false; 1482 1483 /* 1484 * The destination pmd shouldn't be established, free_pgtables() 1485 * should have release it. 1486 */ 1487 if (WARN_ON(!pmd_none(*new_pmd))) { 1488 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1489 return false; 1490 } 1491 1492 /* 1493 * We don't have to worry about the ordering of src and dst 1494 * ptlocks because exclusive mmap_sem prevents deadlock. 1495 */ 1496 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1497 if (old_ptl) { 1498 new_ptl = pmd_lockptr(mm, new_pmd); 1499 if (new_ptl != old_ptl) 1500 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1501 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1502 if (pmd_present(pmd) && pmd_dirty(pmd)) 1503 force_flush = true; 1504 VM_BUG_ON(!pmd_none(*new_pmd)); 1505 1506 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1507 pgtable_t pgtable; 1508 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1509 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1510 } 1511 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1512 if (new_ptl != old_ptl) 1513 spin_unlock(new_ptl); 1514 if (force_flush) 1515 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1516 else 1517 *need_flush = true; 1518 spin_unlock(old_ptl); 1519 return true; 1520 } 1521 return false; 1522 } 1523 1524 /* 1525 * Returns 1526 * - 0 if PMD could not be locked 1527 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1528 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1529 */ 1530 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1531 unsigned long addr, pgprot_t newprot, int prot_numa) 1532 { 1533 struct mm_struct *mm = vma->vm_mm; 1534 spinlock_t *ptl; 1535 int ret = 0; 1536 1537 ptl = __pmd_trans_huge_lock(pmd, vma); 1538 if (ptl) { 1539 pmd_t entry; 1540 bool preserve_write = prot_numa && pmd_write(*pmd); 1541 ret = 1; 1542 1543 /* 1544 * Avoid trapping faults against the zero page. The read-only 1545 * data is likely to be read-cached on the local CPU and 1546 * local/remote hits to the zero page are not interesting. 1547 */ 1548 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1549 spin_unlock(ptl); 1550 return ret; 1551 } 1552 1553 if (!prot_numa || !pmd_protnone(*pmd)) { 1554 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1555 entry = pmd_modify(entry, newprot); 1556 if (preserve_write) 1557 entry = pmd_mkwrite(entry); 1558 ret = HPAGE_PMD_NR; 1559 set_pmd_at(mm, addr, pmd, entry); 1560 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1561 pmd_write(entry)); 1562 } 1563 spin_unlock(ptl); 1564 } 1565 1566 return ret; 1567 } 1568 1569 /* 1570 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1571 * 1572 * Note that if it returns page table lock pointer, this routine returns without 1573 * unlocking page table lock. So callers must unlock it. 1574 */ 1575 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1576 { 1577 spinlock_t *ptl; 1578 ptl = pmd_lock(vma->vm_mm, pmd); 1579 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1580 return ptl; 1581 spin_unlock(ptl); 1582 return NULL; 1583 } 1584 1585 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1586 unsigned long haddr, pmd_t *pmd) 1587 { 1588 struct mm_struct *mm = vma->vm_mm; 1589 pgtable_t pgtable; 1590 pmd_t _pmd; 1591 int i; 1592 1593 /* leave pmd empty until pte is filled */ 1594 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1595 1596 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1597 pmd_populate(mm, &_pmd, pgtable); 1598 1599 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1600 pte_t *pte, entry; 1601 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1602 entry = pte_mkspecial(entry); 1603 pte = pte_offset_map(&_pmd, haddr); 1604 VM_BUG_ON(!pte_none(*pte)); 1605 set_pte_at(mm, haddr, pte, entry); 1606 pte_unmap(pte); 1607 } 1608 smp_wmb(); /* make pte visible before pmd */ 1609 pmd_populate(mm, pmd, pgtable); 1610 } 1611 1612 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1613 unsigned long haddr, bool freeze) 1614 { 1615 struct mm_struct *mm = vma->vm_mm; 1616 struct page *page; 1617 pgtable_t pgtable; 1618 pmd_t _pmd; 1619 bool young, write, dirty, soft_dirty; 1620 unsigned long addr; 1621 int i; 1622 1623 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1624 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1625 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1626 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1627 1628 count_vm_event(THP_SPLIT_PMD); 1629 1630 if (!vma_is_anonymous(vma)) { 1631 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1632 /* 1633 * We are going to unmap this huge page. So 1634 * just go ahead and zap it 1635 */ 1636 if (arch_needs_pgtable_deposit()) 1637 zap_deposited_table(mm, pmd); 1638 if (vma_is_dax(vma)) 1639 return; 1640 page = pmd_page(_pmd); 1641 if (!PageReferenced(page) && pmd_young(_pmd)) 1642 SetPageReferenced(page); 1643 page_remove_rmap(page, true); 1644 put_page(page); 1645 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1646 return; 1647 } else if (is_huge_zero_pmd(*pmd)) { 1648 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1649 } 1650 1651 page = pmd_page(*pmd); 1652 VM_BUG_ON_PAGE(!page_count(page), page); 1653 page_ref_add(page, HPAGE_PMD_NR - 1); 1654 write = pmd_write(*pmd); 1655 young = pmd_young(*pmd); 1656 dirty = pmd_dirty(*pmd); 1657 soft_dirty = pmd_soft_dirty(*pmd); 1658 1659 pmdp_huge_split_prepare(vma, haddr, pmd); 1660 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1661 pmd_populate(mm, &_pmd, pgtable); 1662 1663 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1664 pte_t entry, *pte; 1665 /* 1666 * Note that NUMA hinting access restrictions are not 1667 * transferred to avoid any possibility of altering 1668 * permissions across VMAs. 1669 */ 1670 if (freeze) { 1671 swp_entry_t swp_entry; 1672 swp_entry = make_migration_entry(page + i, write); 1673 entry = swp_entry_to_pte(swp_entry); 1674 if (soft_dirty) 1675 entry = pte_swp_mksoft_dirty(entry); 1676 } else { 1677 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1678 entry = maybe_mkwrite(entry, vma); 1679 if (!write) 1680 entry = pte_wrprotect(entry); 1681 if (!young) 1682 entry = pte_mkold(entry); 1683 if (soft_dirty) 1684 entry = pte_mksoft_dirty(entry); 1685 } 1686 if (dirty) 1687 SetPageDirty(page + i); 1688 pte = pte_offset_map(&_pmd, addr); 1689 BUG_ON(!pte_none(*pte)); 1690 set_pte_at(mm, addr, pte, entry); 1691 atomic_inc(&page[i]._mapcount); 1692 pte_unmap(pte); 1693 } 1694 1695 /* 1696 * Set PG_double_map before dropping compound_mapcount to avoid 1697 * false-negative page_mapped(). 1698 */ 1699 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1700 for (i = 0; i < HPAGE_PMD_NR; i++) 1701 atomic_inc(&page[i]._mapcount); 1702 } 1703 1704 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1705 /* Last compound_mapcount is gone. */ 1706 __dec_node_page_state(page, NR_ANON_THPS); 1707 if (TestClearPageDoubleMap(page)) { 1708 /* No need in mapcount reference anymore */ 1709 for (i = 0; i < HPAGE_PMD_NR; i++) 1710 atomic_dec(&page[i]._mapcount); 1711 } 1712 } 1713 1714 smp_wmb(); /* make pte visible before pmd */ 1715 /* 1716 * Up to this point the pmd is present and huge and userland has the 1717 * whole access to the hugepage during the split (which happens in 1718 * place). If we overwrite the pmd with the not-huge version pointing 1719 * to the pte here (which of course we could if all CPUs were bug 1720 * free), userland could trigger a small page size TLB miss on the 1721 * small sized TLB while the hugepage TLB entry is still established in 1722 * the huge TLB. Some CPU doesn't like that. 1723 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1724 * 383 on page 93. Intel should be safe but is also warns that it's 1725 * only safe if the permission and cache attributes of the two entries 1726 * loaded in the two TLB is identical (which should be the case here). 1727 * But it is generally safer to never allow small and huge TLB entries 1728 * for the same virtual address to be loaded simultaneously. So instead 1729 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1730 * current pmd notpresent (atomically because here the pmd_trans_huge 1731 * and pmd_trans_splitting must remain set at all times on the pmd 1732 * until the split is complete for this pmd), then we flush the SMP TLB 1733 * and finally we write the non-huge version of the pmd entry with 1734 * pmd_populate. 1735 */ 1736 pmdp_invalidate(vma, haddr, pmd); 1737 pmd_populate(mm, pmd, pgtable); 1738 1739 if (freeze) { 1740 for (i = 0; i < HPAGE_PMD_NR; i++) { 1741 page_remove_rmap(page + i, false); 1742 put_page(page + i); 1743 } 1744 } 1745 } 1746 1747 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1748 unsigned long address, bool freeze, struct page *page) 1749 { 1750 spinlock_t *ptl; 1751 struct mm_struct *mm = vma->vm_mm; 1752 unsigned long haddr = address & HPAGE_PMD_MASK; 1753 1754 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 1755 ptl = pmd_lock(mm, pmd); 1756 1757 /* 1758 * If caller asks to setup a migration entries, we need a page to check 1759 * pmd against. Otherwise we can end up replacing wrong page. 1760 */ 1761 VM_BUG_ON(freeze && !page); 1762 if (page && page != pmd_page(*pmd)) 1763 goto out; 1764 1765 if (pmd_trans_huge(*pmd)) { 1766 page = pmd_page(*pmd); 1767 if (PageMlocked(page)) 1768 clear_page_mlock(page); 1769 } else if (!pmd_devmap(*pmd)) 1770 goto out; 1771 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 1772 out: 1773 spin_unlock(ptl); 1774 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 1775 } 1776 1777 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 1778 bool freeze, struct page *page) 1779 { 1780 pgd_t *pgd; 1781 pud_t *pud; 1782 pmd_t *pmd; 1783 1784 pgd = pgd_offset(vma->vm_mm, address); 1785 if (!pgd_present(*pgd)) 1786 return; 1787 1788 pud = pud_offset(pgd, address); 1789 if (!pud_present(*pud)) 1790 return; 1791 1792 pmd = pmd_offset(pud, address); 1793 1794 __split_huge_pmd(vma, pmd, address, freeze, page); 1795 } 1796 1797 void vma_adjust_trans_huge(struct vm_area_struct *vma, 1798 unsigned long start, 1799 unsigned long end, 1800 long adjust_next) 1801 { 1802 /* 1803 * If the new start address isn't hpage aligned and it could 1804 * previously contain an hugepage: check if we need to split 1805 * an huge pmd. 1806 */ 1807 if (start & ~HPAGE_PMD_MASK && 1808 (start & HPAGE_PMD_MASK) >= vma->vm_start && 1809 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1810 split_huge_pmd_address(vma, start, false, NULL); 1811 1812 /* 1813 * If the new end address isn't hpage aligned and it could 1814 * previously contain an hugepage: check if we need to split 1815 * an huge pmd. 1816 */ 1817 if (end & ~HPAGE_PMD_MASK && 1818 (end & HPAGE_PMD_MASK) >= vma->vm_start && 1819 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1820 split_huge_pmd_address(vma, end, false, NULL); 1821 1822 /* 1823 * If we're also updating the vma->vm_next->vm_start, if the new 1824 * vm_next->vm_start isn't page aligned and it could previously 1825 * contain an hugepage: check if we need to split an huge pmd. 1826 */ 1827 if (adjust_next > 0) { 1828 struct vm_area_struct *next = vma->vm_next; 1829 unsigned long nstart = next->vm_start; 1830 nstart += adjust_next << PAGE_SHIFT; 1831 if (nstart & ~HPAGE_PMD_MASK && 1832 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 1833 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 1834 split_huge_pmd_address(next, nstart, false, NULL); 1835 } 1836 } 1837 1838 static void freeze_page(struct page *page) 1839 { 1840 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 1841 TTU_RMAP_LOCKED; 1842 int i, ret; 1843 1844 VM_BUG_ON_PAGE(!PageHead(page), page); 1845 1846 if (PageAnon(page)) 1847 ttu_flags |= TTU_MIGRATION; 1848 1849 /* We only need TTU_SPLIT_HUGE_PMD once */ 1850 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); 1851 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { 1852 /* Cut short if the page is unmapped */ 1853 if (page_count(page) == 1) 1854 return; 1855 1856 ret = try_to_unmap(page + i, ttu_flags); 1857 } 1858 VM_BUG_ON_PAGE(ret, page + i - 1); 1859 } 1860 1861 static void unfreeze_page(struct page *page) 1862 { 1863 int i; 1864 1865 for (i = 0; i < HPAGE_PMD_NR; i++) 1866 remove_migration_ptes(page + i, page + i, true); 1867 } 1868 1869 static void __split_huge_page_tail(struct page *head, int tail, 1870 struct lruvec *lruvec, struct list_head *list) 1871 { 1872 struct page *page_tail = head + tail; 1873 1874 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 1875 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 1876 1877 /* 1878 * tail_page->_refcount is zero and not changing from under us. But 1879 * get_page_unless_zero() may be running from under us on the 1880 * tail_page. If we used atomic_set() below instead of atomic_inc() or 1881 * atomic_add(), we would then run atomic_set() concurrently with 1882 * get_page_unless_zero(), and atomic_set() is implemented in C not 1883 * using locked ops. spin_unlock on x86 sometime uses locked ops 1884 * because of PPro errata 66, 92, so unless somebody can guarantee 1885 * atomic_set() here would be safe on all archs (and not only on x86), 1886 * it's safer to use atomic_inc()/atomic_add(). 1887 */ 1888 if (PageAnon(head)) { 1889 page_ref_inc(page_tail); 1890 } else { 1891 /* Additional pin to radix tree */ 1892 page_ref_add(page_tail, 2); 1893 } 1894 1895 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1896 page_tail->flags |= (head->flags & 1897 ((1L << PG_referenced) | 1898 (1L << PG_swapbacked) | 1899 (1L << PG_mlocked) | 1900 (1L << PG_uptodate) | 1901 (1L << PG_active) | 1902 (1L << PG_locked) | 1903 (1L << PG_unevictable) | 1904 (1L << PG_dirty))); 1905 1906 /* 1907 * After clearing PageTail the gup refcount can be released. 1908 * Page flags also must be visible before we make the page non-compound. 1909 */ 1910 smp_wmb(); 1911 1912 clear_compound_head(page_tail); 1913 1914 if (page_is_young(head)) 1915 set_page_young(page_tail); 1916 if (page_is_idle(head)) 1917 set_page_idle(page_tail); 1918 1919 /* ->mapping in first tail page is compound_mapcount */ 1920 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 1921 page_tail); 1922 page_tail->mapping = head->mapping; 1923 1924 page_tail->index = head->index + tail; 1925 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 1926 lru_add_page_tail(head, page_tail, lruvec, list); 1927 } 1928 1929 static void __split_huge_page(struct page *page, struct list_head *list, 1930 unsigned long flags) 1931 { 1932 struct page *head = compound_head(page); 1933 struct zone *zone = page_zone(head); 1934 struct lruvec *lruvec; 1935 pgoff_t end = -1; 1936 int i; 1937 1938 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 1939 1940 /* complete memcg works before add pages to LRU */ 1941 mem_cgroup_split_huge_fixup(head); 1942 1943 if (!PageAnon(page)) 1944 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 1945 1946 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1947 __split_huge_page_tail(head, i, lruvec, list); 1948 /* Some pages can be beyond i_size: drop them from page cache */ 1949 if (head[i].index >= end) { 1950 __ClearPageDirty(head + i); 1951 __delete_from_page_cache(head + i, NULL); 1952 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 1953 shmem_uncharge(head->mapping->host, 1); 1954 put_page(head + i); 1955 } 1956 } 1957 1958 ClearPageCompound(head); 1959 /* See comment in __split_huge_page_tail() */ 1960 if (PageAnon(head)) { 1961 page_ref_inc(head); 1962 } else { 1963 /* Additional pin to radix tree */ 1964 page_ref_add(head, 2); 1965 spin_unlock(&head->mapping->tree_lock); 1966 } 1967 1968 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 1969 1970 unfreeze_page(head); 1971 1972 for (i = 0; i < HPAGE_PMD_NR; i++) { 1973 struct page *subpage = head + i; 1974 if (subpage == page) 1975 continue; 1976 unlock_page(subpage); 1977 1978 /* 1979 * Subpages may be freed if there wasn't any mapping 1980 * like if add_to_swap() is running on a lru page that 1981 * had its mapping zapped. And freeing these pages 1982 * requires taking the lru_lock so we do the put_page 1983 * of the tail pages after the split is complete. 1984 */ 1985 put_page(subpage); 1986 } 1987 } 1988 1989 int total_mapcount(struct page *page) 1990 { 1991 int i, compound, ret; 1992 1993 VM_BUG_ON_PAGE(PageTail(page), page); 1994 1995 if (likely(!PageCompound(page))) 1996 return atomic_read(&page->_mapcount) + 1; 1997 1998 compound = compound_mapcount(page); 1999 if (PageHuge(page)) 2000 return compound; 2001 ret = compound; 2002 for (i = 0; i < HPAGE_PMD_NR; i++) 2003 ret += atomic_read(&page[i]._mapcount) + 1; 2004 /* File pages has compound_mapcount included in _mapcount */ 2005 if (!PageAnon(page)) 2006 return ret - compound * HPAGE_PMD_NR; 2007 if (PageDoubleMap(page)) 2008 ret -= HPAGE_PMD_NR; 2009 return ret; 2010 } 2011 2012 /* 2013 * This calculates accurately how many mappings a transparent hugepage 2014 * has (unlike page_mapcount() which isn't fully accurate). This full 2015 * accuracy is primarily needed to know if copy-on-write faults can 2016 * reuse the page and change the mapping to read-write instead of 2017 * copying them. At the same time this returns the total_mapcount too. 2018 * 2019 * The function returns the highest mapcount any one of the subpages 2020 * has. If the return value is one, even if different processes are 2021 * mapping different subpages of the transparent hugepage, they can 2022 * all reuse it, because each process is reusing a different subpage. 2023 * 2024 * The total_mapcount is instead counting all virtual mappings of the 2025 * subpages. If the total_mapcount is equal to "one", it tells the 2026 * caller all mappings belong to the same "mm" and in turn the 2027 * anon_vma of the transparent hugepage can become the vma->anon_vma 2028 * local one as no other process may be mapping any of the subpages. 2029 * 2030 * It would be more accurate to replace page_mapcount() with 2031 * page_trans_huge_mapcount(), however we only use 2032 * page_trans_huge_mapcount() in the copy-on-write faults where we 2033 * need full accuracy to avoid breaking page pinning, because 2034 * page_trans_huge_mapcount() is slower than page_mapcount(). 2035 */ 2036 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2037 { 2038 int i, ret, _total_mapcount, mapcount; 2039 2040 /* hugetlbfs shouldn't call it */ 2041 VM_BUG_ON_PAGE(PageHuge(page), page); 2042 2043 if (likely(!PageTransCompound(page))) { 2044 mapcount = atomic_read(&page->_mapcount) + 1; 2045 if (total_mapcount) 2046 *total_mapcount = mapcount; 2047 return mapcount; 2048 } 2049 2050 page = compound_head(page); 2051 2052 _total_mapcount = ret = 0; 2053 for (i = 0; i < HPAGE_PMD_NR; i++) { 2054 mapcount = atomic_read(&page[i]._mapcount) + 1; 2055 ret = max(ret, mapcount); 2056 _total_mapcount += mapcount; 2057 } 2058 if (PageDoubleMap(page)) { 2059 ret -= 1; 2060 _total_mapcount -= HPAGE_PMD_NR; 2061 } 2062 mapcount = compound_mapcount(page); 2063 ret += mapcount; 2064 _total_mapcount += mapcount; 2065 if (total_mapcount) 2066 *total_mapcount = _total_mapcount; 2067 return ret; 2068 } 2069 2070 /* 2071 * This function splits huge page into normal pages. @page can point to any 2072 * subpage of huge page to split. Split doesn't change the position of @page. 2073 * 2074 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2075 * The huge page must be locked. 2076 * 2077 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2078 * 2079 * Both head page and tail pages will inherit mapping, flags, and so on from 2080 * the hugepage. 2081 * 2082 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2083 * they are not mapped. 2084 * 2085 * Returns 0 if the hugepage is split successfully. 2086 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2087 * us. 2088 */ 2089 int split_huge_page_to_list(struct page *page, struct list_head *list) 2090 { 2091 struct page *head = compound_head(page); 2092 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2093 struct anon_vma *anon_vma = NULL; 2094 struct address_space *mapping = NULL; 2095 int count, mapcount, extra_pins, ret; 2096 bool mlocked; 2097 unsigned long flags; 2098 2099 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2100 VM_BUG_ON_PAGE(!PageLocked(page), page); 2101 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2102 VM_BUG_ON_PAGE(!PageCompound(page), page); 2103 2104 if (PageAnon(head)) { 2105 /* 2106 * The caller does not necessarily hold an mmap_sem that would 2107 * prevent the anon_vma disappearing so we first we take a 2108 * reference to it and then lock the anon_vma for write. This 2109 * is similar to page_lock_anon_vma_read except the write lock 2110 * is taken to serialise against parallel split or collapse 2111 * operations. 2112 */ 2113 anon_vma = page_get_anon_vma(head); 2114 if (!anon_vma) { 2115 ret = -EBUSY; 2116 goto out; 2117 } 2118 extra_pins = 0; 2119 mapping = NULL; 2120 anon_vma_lock_write(anon_vma); 2121 } else { 2122 mapping = head->mapping; 2123 2124 /* Truncated ? */ 2125 if (!mapping) { 2126 ret = -EBUSY; 2127 goto out; 2128 } 2129 2130 /* Addidional pins from radix tree */ 2131 extra_pins = HPAGE_PMD_NR; 2132 anon_vma = NULL; 2133 i_mmap_lock_read(mapping); 2134 } 2135 2136 /* 2137 * Racy check if we can split the page, before freeze_page() will 2138 * split PMDs 2139 */ 2140 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2141 ret = -EBUSY; 2142 goto out_unlock; 2143 } 2144 2145 mlocked = PageMlocked(page); 2146 freeze_page(head); 2147 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2148 2149 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2150 if (mlocked) 2151 lru_add_drain(); 2152 2153 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2154 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2155 2156 if (mapping) { 2157 void **pslot; 2158 2159 spin_lock(&mapping->tree_lock); 2160 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2161 page_index(head)); 2162 /* 2163 * Check if the head page is present in radix tree. 2164 * We assume all tail are present too, if head is there. 2165 */ 2166 if (radix_tree_deref_slot_protected(pslot, 2167 &mapping->tree_lock) != head) 2168 goto fail; 2169 } 2170 2171 /* Prevent deferred_split_scan() touching ->_refcount */ 2172 spin_lock(&pgdata->split_queue_lock); 2173 count = page_count(head); 2174 mapcount = total_mapcount(head); 2175 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2176 if (!list_empty(page_deferred_list(head))) { 2177 pgdata->split_queue_len--; 2178 list_del(page_deferred_list(head)); 2179 } 2180 if (mapping) 2181 __dec_node_page_state(page, NR_SHMEM_THPS); 2182 spin_unlock(&pgdata->split_queue_lock); 2183 __split_huge_page(page, list, flags); 2184 ret = 0; 2185 } else { 2186 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2187 pr_alert("total_mapcount: %u, page_count(): %u\n", 2188 mapcount, count); 2189 if (PageTail(page)) 2190 dump_page(head, NULL); 2191 dump_page(page, "total_mapcount(head) > 0"); 2192 BUG(); 2193 } 2194 spin_unlock(&pgdata->split_queue_lock); 2195 fail: if (mapping) 2196 spin_unlock(&mapping->tree_lock); 2197 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2198 unfreeze_page(head); 2199 ret = -EBUSY; 2200 } 2201 2202 out_unlock: 2203 if (anon_vma) { 2204 anon_vma_unlock_write(anon_vma); 2205 put_anon_vma(anon_vma); 2206 } 2207 if (mapping) 2208 i_mmap_unlock_read(mapping); 2209 out: 2210 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2211 return ret; 2212 } 2213 2214 void free_transhuge_page(struct page *page) 2215 { 2216 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2217 unsigned long flags; 2218 2219 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2220 if (!list_empty(page_deferred_list(page))) { 2221 pgdata->split_queue_len--; 2222 list_del(page_deferred_list(page)); 2223 } 2224 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2225 free_compound_page(page); 2226 } 2227 2228 void deferred_split_huge_page(struct page *page) 2229 { 2230 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2231 unsigned long flags; 2232 2233 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2234 2235 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2236 if (list_empty(page_deferred_list(page))) { 2237 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2238 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2239 pgdata->split_queue_len++; 2240 } 2241 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2242 } 2243 2244 static unsigned long deferred_split_count(struct shrinker *shrink, 2245 struct shrink_control *sc) 2246 { 2247 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2248 return ACCESS_ONCE(pgdata->split_queue_len); 2249 } 2250 2251 static unsigned long deferred_split_scan(struct shrinker *shrink, 2252 struct shrink_control *sc) 2253 { 2254 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2255 unsigned long flags; 2256 LIST_HEAD(list), *pos, *next; 2257 struct page *page; 2258 int split = 0; 2259 2260 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2261 /* Take pin on all head pages to avoid freeing them under us */ 2262 list_for_each_safe(pos, next, &pgdata->split_queue) { 2263 page = list_entry((void *)pos, struct page, mapping); 2264 page = compound_head(page); 2265 if (get_page_unless_zero(page)) { 2266 list_move(page_deferred_list(page), &list); 2267 } else { 2268 /* We lost race with put_compound_page() */ 2269 list_del_init(page_deferred_list(page)); 2270 pgdata->split_queue_len--; 2271 } 2272 if (!--sc->nr_to_scan) 2273 break; 2274 } 2275 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2276 2277 list_for_each_safe(pos, next, &list) { 2278 page = list_entry((void *)pos, struct page, mapping); 2279 lock_page(page); 2280 /* split_huge_page() removes page from list on success */ 2281 if (!split_huge_page(page)) 2282 split++; 2283 unlock_page(page); 2284 put_page(page); 2285 } 2286 2287 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2288 list_splice_tail(&list, &pgdata->split_queue); 2289 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2290 2291 /* 2292 * Stop shrinker if we didn't split any page, but the queue is empty. 2293 * This can happen if pages were freed under us. 2294 */ 2295 if (!split && list_empty(&pgdata->split_queue)) 2296 return SHRINK_STOP; 2297 return split; 2298 } 2299 2300 static struct shrinker deferred_split_shrinker = { 2301 .count_objects = deferred_split_count, 2302 .scan_objects = deferred_split_scan, 2303 .seeks = DEFAULT_SEEKS, 2304 .flags = SHRINKER_NUMA_AWARE, 2305 }; 2306 2307 #ifdef CONFIG_DEBUG_FS 2308 static int split_huge_pages_set(void *data, u64 val) 2309 { 2310 struct zone *zone; 2311 struct page *page; 2312 unsigned long pfn, max_zone_pfn; 2313 unsigned long total = 0, split = 0; 2314 2315 if (val != 1) 2316 return -EINVAL; 2317 2318 for_each_populated_zone(zone) { 2319 max_zone_pfn = zone_end_pfn(zone); 2320 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2321 if (!pfn_valid(pfn)) 2322 continue; 2323 2324 page = pfn_to_page(pfn); 2325 if (!get_page_unless_zero(page)) 2326 continue; 2327 2328 if (zone != page_zone(page)) 2329 goto next; 2330 2331 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2332 goto next; 2333 2334 total++; 2335 lock_page(page); 2336 if (!split_huge_page(page)) 2337 split++; 2338 unlock_page(page); 2339 next: 2340 put_page(page); 2341 } 2342 } 2343 2344 pr_info("%lu of %lu THP split\n", split, total); 2345 2346 return 0; 2347 } 2348 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2349 "%llu\n"); 2350 2351 static int __init split_huge_pages_debugfs(void) 2352 { 2353 void *ret; 2354 2355 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2356 &split_huge_pages_fops); 2357 if (!ret) 2358 pr_warn("Failed to create split_huge_pages in debugfs"); 2359 return 0; 2360 } 2361 late_initcall(split_huge_pages_debugfs); 2362 #endif 2363