1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/backing-dev.h> 21 #include <linux/dax.h> 22 #include <linux/mm_types.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 #include <linux/pgalloc_tag.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 static bool split_underused_thp = true; 77 78 static atomic_t huge_zero_refcount; 79 struct folio *huge_zero_folio __read_mostly; 80 unsigned long huge_zero_pfn __read_mostly = ~0UL; 81 unsigned long huge_anon_orders_always __read_mostly; 82 unsigned long huge_anon_orders_madvise __read_mostly; 83 unsigned long huge_anon_orders_inherit __read_mostly; 84 static bool anon_orders_configured __initdata; 85 86 static inline bool file_thp_enabled(struct vm_area_struct *vma) 87 { 88 struct inode *inode; 89 90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 91 return false; 92 93 if (!vma->vm_file) 94 return false; 95 96 inode = file_inode(vma->vm_file); 97 98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); 99 } 100 101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 102 unsigned long vm_flags, 103 unsigned long tva_flags, 104 unsigned long orders) 105 { 106 bool smaps = tva_flags & TVA_SMAPS; 107 bool in_pf = tva_flags & TVA_IN_PF; 108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 109 unsigned long supported_orders; 110 111 /* Check the intersection of requested and supported orders. */ 112 if (vma_is_anonymous(vma)) 113 supported_orders = THP_ORDERS_ALL_ANON; 114 else if (vma_is_special_huge(vma)) 115 supported_orders = THP_ORDERS_ALL_SPECIAL; 116 else 117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 118 119 orders &= supported_orders; 120 if (!orders) 121 return 0; 122 123 if (!vma->vm_mm) /* vdso */ 124 return 0; 125 126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags)) 127 return 0; 128 129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 130 if (vma_is_dax(vma)) 131 return in_pf ? orders : 0; 132 133 /* 134 * khugepaged special VMA and hugetlb VMA. 135 * Must be checked after dax since some dax mappings may have 136 * VM_MIXEDMAP set. 137 */ 138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 139 return 0; 140 141 /* 142 * Check alignment for file vma and size for both file and anon vma by 143 * filtering out the unsuitable orders. 144 * 145 * Skip the check for page fault. Huge fault does the check in fault 146 * handlers. 147 */ 148 if (!in_pf) { 149 int order = highest_order(orders); 150 unsigned long addr; 151 152 while (orders) { 153 addr = vma->vm_end - (PAGE_SIZE << order); 154 if (thp_vma_suitable_order(vma, addr, order)) 155 break; 156 order = next_order(&orders, order); 157 } 158 159 if (!orders) 160 return 0; 161 } 162 163 /* 164 * Enabled via shmem mount options or sysfs settings. 165 * Must be done before hugepage flags check since shmem has its 166 * own flags. 167 */ 168 if (!in_pf && shmem_file(vma->vm_file)) 169 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 170 vma, vma->vm_pgoff, 0, 171 !enforce_sysfs); 172 173 if (!vma_is_anonymous(vma)) { 174 /* 175 * Enforce sysfs THP requirements as necessary. Anonymous vmas 176 * were already handled in thp_vma_allowable_orders(). 177 */ 178 if (enforce_sysfs && 179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 180 !hugepage_global_always()))) 181 return 0; 182 183 /* 184 * Trust that ->huge_fault() handlers know what they are doing 185 * in fault path. 186 */ 187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 188 return orders; 189 /* Only regular file is valid in collapse path */ 190 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 191 return orders; 192 return 0; 193 } 194 195 if (vma_is_temporary_stack(vma)) 196 return 0; 197 198 /* 199 * THPeligible bit of smaps should show 1 for proper VMAs even 200 * though anon_vma is not initialized yet. 201 * 202 * Allow page fault since anon_vma may be not initialized until 203 * the first page fault. 204 */ 205 if (!vma->anon_vma) 206 return (smaps || in_pf) ? orders : 0; 207 208 return orders; 209 } 210 211 static bool get_huge_zero_page(void) 212 { 213 struct folio *zero_folio; 214 retry: 215 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 216 return true; 217 218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 219 HPAGE_PMD_ORDER); 220 if (!zero_folio) { 221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 222 return false; 223 } 224 /* Ensure zero folio won't have large_rmappable flag set. */ 225 folio_clear_large_rmappable(zero_folio); 226 preempt_disable(); 227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 228 preempt_enable(); 229 folio_put(zero_folio); 230 goto retry; 231 } 232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 233 234 /* We take additional reference here. It will be put back by shrinker */ 235 atomic_set(&huge_zero_refcount, 2); 236 preempt_enable(); 237 count_vm_event(THP_ZERO_PAGE_ALLOC); 238 return true; 239 } 240 241 static void put_huge_zero_page(void) 242 { 243 /* 244 * Counter should never go to zero here. Only shrinker can put 245 * last reference. 246 */ 247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 248 } 249 250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 251 { 252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 253 return READ_ONCE(huge_zero_folio); 254 255 if (!get_huge_zero_page()) 256 return NULL; 257 258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 259 put_huge_zero_page(); 260 261 return READ_ONCE(huge_zero_folio); 262 } 263 264 void mm_put_huge_zero_folio(struct mm_struct *mm) 265 { 266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 267 put_huge_zero_page(); 268 } 269 270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 271 struct shrink_control *sc) 272 { 273 /* we can free zero page only if last reference remains */ 274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 275 } 276 277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 278 struct shrink_control *sc) 279 { 280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 282 BUG_ON(zero_folio == NULL); 283 WRITE_ONCE(huge_zero_pfn, ~0UL); 284 folio_put(zero_folio); 285 return HPAGE_PMD_NR; 286 } 287 288 return 0; 289 } 290 291 static struct shrinker *huge_zero_page_shrinker; 292 293 #ifdef CONFIG_SYSFS 294 static ssize_t enabled_show(struct kobject *kobj, 295 struct kobj_attribute *attr, char *buf) 296 { 297 const char *output; 298 299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 300 output = "[always] madvise never"; 301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 302 &transparent_hugepage_flags)) 303 output = "always [madvise] never"; 304 else 305 output = "always madvise [never]"; 306 307 return sysfs_emit(buf, "%s\n", output); 308 } 309 310 static ssize_t enabled_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 ssize_t ret = count; 315 316 if (sysfs_streq(buf, "always")) { 317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 319 } else if (sysfs_streq(buf, "madvise")) { 320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 322 } else if (sysfs_streq(buf, "never")) { 323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 325 } else 326 ret = -EINVAL; 327 328 if (ret > 0) { 329 int err = start_stop_khugepaged(); 330 if (err) 331 ret = err; 332 } 333 return ret; 334 } 335 336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 337 338 ssize_t single_hugepage_flag_show(struct kobject *kobj, 339 struct kobj_attribute *attr, char *buf, 340 enum transparent_hugepage_flag flag) 341 { 342 return sysfs_emit(buf, "%d\n", 343 !!test_bit(flag, &transparent_hugepage_flags)); 344 } 345 346 ssize_t single_hugepage_flag_store(struct kobject *kobj, 347 struct kobj_attribute *attr, 348 const char *buf, size_t count, 349 enum transparent_hugepage_flag flag) 350 { 351 unsigned long value; 352 int ret; 353 354 ret = kstrtoul(buf, 10, &value); 355 if (ret < 0) 356 return ret; 357 if (value > 1) 358 return -EINVAL; 359 360 if (value) 361 set_bit(flag, &transparent_hugepage_flags); 362 else 363 clear_bit(flag, &transparent_hugepage_flags); 364 365 return count; 366 } 367 368 static ssize_t defrag_show(struct kobject *kobj, 369 struct kobj_attribute *attr, char *buf) 370 { 371 const char *output; 372 373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 374 &transparent_hugepage_flags)) 375 output = "[always] defer defer+madvise madvise never"; 376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 377 &transparent_hugepage_flags)) 378 output = "always [defer] defer+madvise madvise never"; 379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 380 &transparent_hugepage_flags)) 381 output = "always defer [defer+madvise] madvise never"; 382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 383 &transparent_hugepage_flags)) 384 output = "always defer defer+madvise [madvise] never"; 385 else 386 output = "always defer defer+madvise madvise [never]"; 387 388 return sysfs_emit(buf, "%s\n", output); 389 } 390 391 static ssize_t defrag_store(struct kobject *kobj, 392 struct kobj_attribute *attr, 393 const char *buf, size_t count) 394 { 395 if (sysfs_streq(buf, "always")) { 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 400 } else if (sysfs_streq(buf, "defer+madvise")) { 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 405 } else if (sysfs_streq(buf, "defer")) { 406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 410 } else if (sysfs_streq(buf, "madvise")) { 411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 415 } else if (sysfs_streq(buf, "never")) { 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 420 } else 421 return -EINVAL; 422 423 return count; 424 } 425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 426 427 static ssize_t use_zero_page_show(struct kobject *kobj, 428 struct kobj_attribute *attr, char *buf) 429 { 430 return single_hugepage_flag_show(kobj, attr, buf, 431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 432 } 433 static ssize_t use_zero_page_store(struct kobject *kobj, 434 struct kobj_attribute *attr, const char *buf, size_t count) 435 { 436 return single_hugepage_flag_store(kobj, attr, buf, count, 437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 438 } 439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 440 441 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 442 struct kobj_attribute *attr, char *buf) 443 { 444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 445 } 446 static struct kobj_attribute hpage_pmd_size_attr = 447 __ATTR_RO(hpage_pmd_size); 448 449 static ssize_t split_underused_thp_show(struct kobject *kobj, 450 struct kobj_attribute *attr, char *buf) 451 { 452 return sysfs_emit(buf, "%d\n", split_underused_thp); 453 } 454 455 static ssize_t split_underused_thp_store(struct kobject *kobj, 456 struct kobj_attribute *attr, 457 const char *buf, size_t count) 458 { 459 int err = kstrtobool(buf, &split_underused_thp); 460 461 if (err < 0) 462 return err; 463 464 return count; 465 } 466 467 static struct kobj_attribute split_underused_thp_attr = __ATTR( 468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); 469 470 static struct attribute *hugepage_attr[] = { 471 &enabled_attr.attr, 472 &defrag_attr.attr, 473 &use_zero_page_attr.attr, 474 &hpage_pmd_size_attr.attr, 475 #ifdef CONFIG_SHMEM 476 &shmem_enabled_attr.attr, 477 #endif 478 &split_underused_thp_attr.attr, 479 NULL, 480 }; 481 482 static const struct attribute_group hugepage_attr_group = { 483 .attrs = hugepage_attr, 484 }; 485 486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 487 static void thpsize_release(struct kobject *kobj); 488 static DEFINE_SPINLOCK(huge_anon_orders_lock); 489 static LIST_HEAD(thpsize_list); 490 491 static ssize_t anon_enabled_show(struct kobject *kobj, 492 struct kobj_attribute *attr, char *buf) 493 { 494 int order = to_thpsize(kobj)->order; 495 const char *output; 496 497 if (test_bit(order, &huge_anon_orders_always)) 498 output = "[always] inherit madvise never"; 499 else if (test_bit(order, &huge_anon_orders_inherit)) 500 output = "always [inherit] madvise never"; 501 else if (test_bit(order, &huge_anon_orders_madvise)) 502 output = "always inherit [madvise] never"; 503 else 504 output = "always inherit madvise [never]"; 505 506 return sysfs_emit(buf, "%s\n", output); 507 } 508 509 static ssize_t anon_enabled_store(struct kobject *kobj, 510 struct kobj_attribute *attr, 511 const char *buf, size_t count) 512 { 513 int order = to_thpsize(kobj)->order; 514 ssize_t ret = count; 515 516 if (sysfs_streq(buf, "always")) { 517 spin_lock(&huge_anon_orders_lock); 518 clear_bit(order, &huge_anon_orders_inherit); 519 clear_bit(order, &huge_anon_orders_madvise); 520 set_bit(order, &huge_anon_orders_always); 521 spin_unlock(&huge_anon_orders_lock); 522 } else if (sysfs_streq(buf, "inherit")) { 523 spin_lock(&huge_anon_orders_lock); 524 clear_bit(order, &huge_anon_orders_always); 525 clear_bit(order, &huge_anon_orders_madvise); 526 set_bit(order, &huge_anon_orders_inherit); 527 spin_unlock(&huge_anon_orders_lock); 528 } else if (sysfs_streq(buf, "madvise")) { 529 spin_lock(&huge_anon_orders_lock); 530 clear_bit(order, &huge_anon_orders_always); 531 clear_bit(order, &huge_anon_orders_inherit); 532 set_bit(order, &huge_anon_orders_madvise); 533 spin_unlock(&huge_anon_orders_lock); 534 } else if (sysfs_streq(buf, "never")) { 535 spin_lock(&huge_anon_orders_lock); 536 clear_bit(order, &huge_anon_orders_always); 537 clear_bit(order, &huge_anon_orders_inherit); 538 clear_bit(order, &huge_anon_orders_madvise); 539 spin_unlock(&huge_anon_orders_lock); 540 } else 541 ret = -EINVAL; 542 543 if (ret > 0) { 544 int err; 545 546 err = start_stop_khugepaged(); 547 if (err) 548 ret = err; 549 } 550 return ret; 551 } 552 553 static struct kobj_attribute anon_enabled_attr = 554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); 555 556 static struct attribute *anon_ctrl_attrs[] = { 557 &anon_enabled_attr.attr, 558 NULL, 559 }; 560 561 static const struct attribute_group anon_ctrl_attr_grp = { 562 .attrs = anon_ctrl_attrs, 563 }; 564 565 static struct attribute *file_ctrl_attrs[] = { 566 #ifdef CONFIG_SHMEM 567 &thpsize_shmem_enabled_attr.attr, 568 #endif 569 NULL, 570 }; 571 572 static const struct attribute_group file_ctrl_attr_grp = { 573 .attrs = file_ctrl_attrs, 574 }; 575 576 static struct attribute *any_ctrl_attrs[] = { 577 NULL, 578 }; 579 580 static const struct attribute_group any_ctrl_attr_grp = { 581 .attrs = any_ctrl_attrs, 582 }; 583 584 static const struct kobj_type thpsize_ktype = { 585 .release = &thpsize_release, 586 .sysfs_ops = &kobj_sysfs_ops, 587 }; 588 589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 590 591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 592 { 593 unsigned long sum = 0; 594 int cpu; 595 596 for_each_possible_cpu(cpu) { 597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 598 599 sum += this->stats[order][item]; 600 } 601 602 return sum; 603 } 604 605 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 606 static ssize_t _name##_show(struct kobject *kobj, \ 607 struct kobj_attribute *attr, char *buf) \ 608 { \ 609 int order = to_thpsize(kobj)->order; \ 610 \ 611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 612 } \ 613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 614 615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT); 619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN); 620 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 621 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 622 #ifdef CONFIG_SHMEM 623 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 624 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 625 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 626 #endif 627 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 628 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 629 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 630 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); 631 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); 632 633 static struct attribute *anon_stats_attrs[] = { 634 &anon_fault_alloc_attr.attr, 635 &anon_fault_fallback_attr.attr, 636 &anon_fault_fallback_charge_attr.attr, 637 #ifndef CONFIG_SHMEM 638 &zswpout_attr.attr, 639 &swpin_attr.attr, 640 &swpout_attr.attr, 641 &swpout_fallback_attr.attr, 642 #endif 643 &split_deferred_attr.attr, 644 &nr_anon_attr.attr, 645 &nr_anon_partially_mapped_attr.attr, 646 NULL, 647 }; 648 649 static struct attribute_group anon_stats_attr_grp = { 650 .name = "stats", 651 .attrs = anon_stats_attrs, 652 }; 653 654 static struct attribute *file_stats_attrs[] = { 655 #ifdef CONFIG_SHMEM 656 &shmem_alloc_attr.attr, 657 &shmem_fallback_attr.attr, 658 &shmem_fallback_charge_attr.attr, 659 #endif 660 NULL, 661 }; 662 663 static struct attribute_group file_stats_attr_grp = { 664 .name = "stats", 665 .attrs = file_stats_attrs, 666 }; 667 668 static struct attribute *any_stats_attrs[] = { 669 #ifdef CONFIG_SHMEM 670 &zswpout_attr.attr, 671 &swpin_attr.attr, 672 &swpout_attr.attr, 673 &swpout_fallback_attr.attr, 674 #endif 675 &split_attr.attr, 676 &split_failed_attr.attr, 677 NULL, 678 }; 679 680 static struct attribute_group any_stats_attr_grp = { 681 .name = "stats", 682 .attrs = any_stats_attrs, 683 }; 684 685 static int sysfs_add_group(struct kobject *kobj, 686 const struct attribute_group *grp) 687 { 688 int ret = -ENOENT; 689 690 /* 691 * If the group is named, try to merge first, assuming the subdirectory 692 * was already created. This avoids the warning emitted by 693 * sysfs_create_group() if the directory already exists. 694 */ 695 if (grp->name) 696 ret = sysfs_merge_group(kobj, grp); 697 if (ret) 698 ret = sysfs_create_group(kobj, grp); 699 700 return ret; 701 } 702 703 static struct thpsize *thpsize_create(int order, struct kobject *parent) 704 { 705 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 706 struct thpsize *thpsize; 707 int ret = -ENOMEM; 708 709 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 710 if (!thpsize) 711 goto err; 712 713 thpsize->order = order; 714 715 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 716 "hugepages-%lukB", size); 717 if (ret) { 718 kfree(thpsize); 719 goto err; 720 } 721 722 723 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); 724 if (ret) 725 goto err_put; 726 727 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); 728 if (ret) 729 goto err_put; 730 731 if (BIT(order) & THP_ORDERS_ALL_ANON) { 732 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); 733 if (ret) 734 goto err_put; 735 736 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); 737 if (ret) 738 goto err_put; 739 } 740 741 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { 742 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); 743 if (ret) 744 goto err_put; 745 746 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); 747 if (ret) 748 goto err_put; 749 } 750 751 return thpsize; 752 err_put: 753 kobject_put(&thpsize->kobj); 754 err: 755 return ERR_PTR(ret); 756 } 757 758 static void thpsize_release(struct kobject *kobj) 759 { 760 kfree(to_thpsize(kobj)); 761 } 762 763 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 764 { 765 int err; 766 struct thpsize *thpsize; 767 unsigned long orders; 768 int order; 769 770 /* 771 * Default to setting PMD-sized THP to inherit the global setting and 772 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 773 * constant so we have to do this here. 774 */ 775 if (!anon_orders_configured) 776 huge_anon_orders_inherit = BIT(PMD_ORDER); 777 778 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 779 if (unlikely(!*hugepage_kobj)) { 780 pr_err("failed to create transparent hugepage kobject\n"); 781 return -ENOMEM; 782 } 783 784 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 785 if (err) { 786 pr_err("failed to register transparent hugepage group\n"); 787 goto delete_obj; 788 } 789 790 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 791 if (err) { 792 pr_err("failed to register transparent hugepage group\n"); 793 goto remove_hp_group; 794 } 795 796 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; 797 order = highest_order(orders); 798 while (orders) { 799 thpsize = thpsize_create(order, *hugepage_kobj); 800 if (IS_ERR(thpsize)) { 801 pr_err("failed to create thpsize for order %d\n", order); 802 err = PTR_ERR(thpsize); 803 goto remove_all; 804 } 805 list_add(&thpsize->node, &thpsize_list); 806 order = next_order(&orders, order); 807 } 808 809 return 0; 810 811 remove_all: 812 hugepage_exit_sysfs(*hugepage_kobj); 813 return err; 814 remove_hp_group: 815 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 816 delete_obj: 817 kobject_put(*hugepage_kobj); 818 return err; 819 } 820 821 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 822 { 823 struct thpsize *thpsize, *tmp; 824 825 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 826 list_del(&thpsize->node); 827 kobject_put(&thpsize->kobj); 828 } 829 830 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 831 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 832 kobject_put(hugepage_kobj); 833 } 834 #else 835 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 836 { 837 return 0; 838 } 839 840 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 841 { 842 } 843 #endif /* CONFIG_SYSFS */ 844 845 static int __init thp_shrinker_init(void) 846 { 847 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 848 if (!huge_zero_page_shrinker) 849 return -ENOMEM; 850 851 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 852 SHRINKER_MEMCG_AWARE | 853 SHRINKER_NONSLAB, 854 "thp-deferred_split"); 855 if (!deferred_split_shrinker) { 856 shrinker_free(huge_zero_page_shrinker); 857 return -ENOMEM; 858 } 859 860 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 861 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 862 shrinker_register(huge_zero_page_shrinker); 863 864 deferred_split_shrinker->count_objects = deferred_split_count; 865 deferred_split_shrinker->scan_objects = deferred_split_scan; 866 shrinker_register(deferred_split_shrinker); 867 868 return 0; 869 } 870 871 static void __init thp_shrinker_exit(void) 872 { 873 shrinker_free(huge_zero_page_shrinker); 874 shrinker_free(deferred_split_shrinker); 875 } 876 877 static int __init hugepage_init(void) 878 { 879 int err; 880 struct kobject *hugepage_kobj; 881 882 if (!has_transparent_hugepage()) { 883 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 884 return -EINVAL; 885 } 886 887 /* 888 * hugepages can't be allocated by the buddy allocator 889 */ 890 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 891 892 err = hugepage_init_sysfs(&hugepage_kobj); 893 if (err) 894 goto err_sysfs; 895 896 err = khugepaged_init(); 897 if (err) 898 goto err_slab; 899 900 err = thp_shrinker_init(); 901 if (err) 902 goto err_shrinker; 903 904 /* 905 * By default disable transparent hugepages on smaller systems, 906 * where the extra memory used could hurt more than TLB overhead 907 * is likely to save. The admin can still enable it through /sys. 908 */ 909 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 910 transparent_hugepage_flags = 0; 911 return 0; 912 } 913 914 err = start_stop_khugepaged(); 915 if (err) 916 goto err_khugepaged; 917 918 return 0; 919 err_khugepaged: 920 thp_shrinker_exit(); 921 err_shrinker: 922 khugepaged_destroy(); 923 err_slab: 924 hugepage_exit_sysfs(hugepage_kobj); 925 err_sysfs: 926 return err; 927 } 928 subsys_initcall(hugepage_init); 929 930 static int __init setup_transparent_hugepage(char *str) 931 { 932 int ret = 0; 933 if (!str) 934 goto out; 935 if (!strcmp(str, "always")) { 936 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 937 &transparent_hugepage_flags); 938 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 939 &transparent_hugepage_flags); 940 ret = 1; 941 } else if (!strcmp(str, "madvise")) { 942 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 943 &transparent_hugepage_flags); 944 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 945 &transparent_hugepage_flags); 946 ret = 1; 947 } else if (!strcmp(str, "never")) { 948 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 949 &transparent_hugepage_flags); 950 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 951 &transparent_hugepage_flags); 952 ret = 1; 953 } 954 out: 955 if (!ret) 956 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 957 return ret; 958 } 959 __setup("transparent_hugepage=", setup_transparent_hugepage); 960 961 static char str_dup[PAGE_SIZE] __initdata; 962 static int __init setup_thp_anon(char *str) 963 { 964 char *token, *range, *policy, *subtoken; 965 unsigned long always, inherit, madvise; 966 char *start_size, *end_size; 967 int start, end, nr; 968 char *p; 969 970 if (!str || strlen(str) + 1 > PAGE_SIZE) 971 goto err; 972 strscpy(str_dup, str); 973 974 always = huge_anon_orders_always; 975 madvise = huge_anon_orders_madvise; 976 inherit = huge_anon_orders_inherit; 977 p = str_dup; 978 while ((token = strsep(&p, ";")) != NULL) { 979 range = strsep(&token, ":"); 980 policy = token; 981 982 if (!policy) 983 goto err; 984 985 while ((subtoken = strsep(&range, ",")) != NULL) { 986 if (strchr(subtoken, '-')) { 987 start_size = strsep(&subtoken, "-"); 988 end_size = subtoken; 989 990 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON); 991 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON); 992 } else { 993 start_size = end_size = subtoken; 994 start = end = get_order_from_str(subtoken, 995 THP_ORDERS_ALL_ANON); 996 } 997 998 if (start == -EINVAL) { 999 pr_err("invalid size %s in thp_anon boot parameter\n", start_size); 1000 goto err; 1001 } 1002 1003 if (end == -EINVAL) { 1004 pr_err("invalid size %s in thp_anon boot parameter\n", end_size); 1005 goto err; 1006 } 1007 1008 if (start < 0 || end < 0 || start > end) 1009 goto err; 1010 1011 nr = end - start + 1; 1012 if (!strcmp(policy, "always")) { 1013 bitmap_set(&always, start, nr); 1014 bitmap_clear(&inherit, start, nr); 1015 bitmap_clear(&madvise, start, nr); 1016 } else if (!strcmp(policy, "madvise")) { 1017 bitmap_set(&madvise, start, nr); 1018 bitmap_clear(&inherit, start, nr); 1019 bitmap_clear(&always, start, nr); 1020 } else if (!strcmp(policy, "inherit")) { 1021 bitmap_set(&inherit, start, nr); 1022 bitmap_clear(&madvise, start, nr); 1023 bitmap_clear(&always, start, nr); 1024 } else if (!strcmp(policy, "never")) { 1025 bitmap_clear(&inherit, start, nr); 1026 bitmap_clear(&madvise, start, nr); 1027 bitmap_clear(&always, start, nr); 1028 } else { 1029 pr_err("invalid policy %s in thp_anon boot parameter\n", policy); 1030 goto err; 1031 } 1032 } 1033 } 1034 1035 huge_anon_orders_always = always; 1036 huge_anon_orders_madvise = madvise; 1037 huge_anon_orders_inherit = inherit; 1038 anon_orders_configured = true; 1039 return 1; 1040 1041 err: 1042 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); 1043 return 0; 1044 } 1045 __setup("thp_anon=", setup_thp_anon); 1046 1047 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 1048 { 1049 if (likely(vma->vm_flags & VM_WRITE)) 1050 pmd = pmd_mkwrite(pmd, vma); 1051 return pmd; 1052 } 1053 1054 #ifdef CONFIG_MEMCG 1055 static inline 1056 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1057 { 1058 struct mem_cgroup *memcg = folio_memcg(folio); 1059 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1060 1061 if (memcg) 1062 return &memcg->deferred_split_queue; 1063 else 1064 return &pgdat->deferred_split_queue; 1065 } 1066 #else 1067 static inline 1068 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1069 { 1070 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1071 1072 return &pgdat->deferred_split_queue; 1073 } 1074 #endif 1075 1076 static inline bool is_transparent_hugepage(const struct folio *folio) 1077 { 1078 if (!folio_test_large(folio)) 1079 return false; 1080 1081 return is_huge_zero_folio(folio) || 1082 folio_test_large_rmappable(folio); 1083 } 1084 1085 static unsigned long __thp_get_unmapped_area(struct file *filp, 1086 unsigned long addr, unsigned long len, 1087 loff_t off, unsigned long flags, unsigned long size, 1088 vm_flags_t vm_flags) 1089 { 1090 loff_t off_end = off + len; 1091 loff_t off_align = round_up(off, size); 1092 unsigned long len_pad, ret, off_sub; 1093 1094 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 1095 return 0; 1096 1097 if (off_end <= off_align || (off_end - off_align) < size) 1098 return 0; 1099 1100 len_pad = len + size; 1101 if (len_pad < len || (off + len_pad) < off) 1102 return 0; 1103 1104 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 1105 off >> PAGE_SHIFT, flags, vm_flags); 1106 1107 /* 1108 * The failure might be due to length padding. The caller will retry 1109 * without the padding. 1110 */ 1111 if (IS_ERR_VALUE(ret)) 1112 return 0; 1113 1114 /* 1115 * Do not try to align to THP boundary if allocation at the address 1116 * hint succeeds. 1117 */ 1118 if (ret == addr) 1119 return addr; 1120 1121 off_sub = (off - ret) & (size - 1); 1122 1123 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 1124 return ret + size; 1125 1126 ret += off_sub; 1127 return ret; 1128 } 1129 1130 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 1131 unsigned long len, unsigned long pgoff, unsigned long flags, 1132 vm_flags_t vm_flags) 1133 { 1134 unsigned long ret; 1135 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 1136 1137 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 1138 if (ret) 1139 return ret; 1140 1141 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 1142 vm_flags); 1143 } 1144 1145 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 1146 unsigned long len, unsigned long pgoff, unsigned long flags) 1147 { 1148 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 1149 } 1150 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 1151 1152 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, 1153 unsigned long addr) 1154 { 1155 gfp_t gfp = vma_thp_gfp_mask(vma); 1156 const int order = HPAGE_PMD_ORDER; 1157 struct folio *folio; 1158 1159 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); 1160 1161 if (unlikely(!folio)) { 1162 count_vm_event(THP_FAULT_FALLBACK); 1163 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1164 return NULL; 1165 } 1166 1167 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1168 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 1169 folio_put(folio); 1170 count_vm_event(THP_FAULT_FALLBACK); 1171 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 1172 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1173 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 1174 return NULL; 1175 } 1176 folio_throttle_swaprate(folio, gfp); 1177 1178 /* 1179 * When a folio is not zeroed during allocation (__GFP_ZERO not used), 1180 * folio_zero_user() is used to make sure that the page corresponding 1181 * to the faulting address will be hot in the cache after zeroing. 1182 */ 1183 if (!alloc_zeroed()) 1184 folio_zero_user(folio, addr); 1185 /* 1186 * The memory barrier inside __folio_mark_uptodate makes sure that 1187 * folio_zero_user writes become visible before the set_pmd_at() 1188 * write. 1189 */ 1190 __folio_mark_uptodate(folio); 1191 return folio; 1192 } 1193 1194 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd, 1195 struct vm_area_struct *vma, unsigned long haddr) 1196 { 1197 pmd_t entry; 1198 1199 entry = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1200 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1201 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1202 folio_add_lru_vma(folio, vma); 1203 set_pmd_at(vma->vm_mm, haddr, pmd, entry); 1204 update_mmu_cache_pmd(vma, haddr, pmd); 1205 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1206 count_vm_event(THP_FAULT_ALLOC); 1207 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1208 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1209 } 1210 1211 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1212 { 1213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1214 struct vm_area_struct *vma = vmf->vma; 1215 struct folio *folio; 1216 pgtable_t pgtable; 1217 vm_fault_t ret = 0; 1218 1219 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1220 if (unlikely(!folio)) 1221 return VM_FAULT_FALLBACK; 1222 1223 pgtable = pte_alloc_one(vma->vm_mm); 1224 if (unlikely(!pgtable)) { 1225 ret = VM_FAULT_OOM; 1226 goto release; 1227 } 1228 1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1230 if (unlikely(!pmd_none(*vmf->pmd))) { 1231 goto unlock_release; 1232 } else { 1233 ret = check_stable_address_space(vma->vm_mm); 1234 if (ret) 1235 goto unlock_release; 1236 1237 /* Deliver the page fault to userland */ 1238 if (userfaultfd_missing(vma)) { 1239 spin_unlock(vmf->ptl); 1240 folio_put(folio); 1241 pte_free(vma->vm_mm, pgtable); 1242 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1243 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1244 return ret; 1245 } 1246 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1247 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1248 mm_inc_nr_ptes(vma->vm_mm); 1249 deferred_split_folio(folio, false); 1250 spin_unlock(vmf->ptl); 1251 } 1252 1253 return 0; 1254 unlock_release: 1255 spin_unlock(vmf->ptl); 1256 release: 1257 if (pgtable) 1258 pte_free(vma->vm_mm, pgtable); 1259 folio_put(folio); 1260 return ret; 1261 1262 } 1263 1264 /* 1265 * always: directly stall for all thp allocations 1266 * defer: wake kswapd and fail if not immediately available 1267 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1268 * fail if not immediately available 1269 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1270 * available 1271 * never: never stall for any thp allocation 1272 */ 1273 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1274 { 1275 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1276 1277 /* Always do synchronous compaction */ 1278 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1279 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1280 1281 /* Kick kcompactd and fail quickly */ 1282 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1283 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1284 1285 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1286 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1287 return GFP_TRANSHUGE_LIGHT | 1288 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1289 __GFP_KSWAPD_RECLAIM); 1290 1291 /* Only do synchronous compaction if madvised */ 1292 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1293 return GFP_TRANSHUGE_LIGHT | 1294 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1295 1296 return GFP_TRANSHUGE_LIGHT; 1297 } 1298 1299 /* Caller must hold page table lock. */ 1300 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1301 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1302 struct folio *zero_folio) 1303 { 1304 pmd_t entry; 1305 if (!pmd_none(*pmd)) 1306 return; 1307 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1308 entry = pmd_mkhuge(entry); 1309 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1310 set_pmd_at(mm, haddr, pmd, entry); 1311 mm_inc_nr_ptes(mm); 1312 } 1313 1314 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1315 { 1316 struct vm_area_struct *vma = vmf->vma; 1317 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1318 vm_fault_t ret; 1319 1320 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1321 return VM_FAULT_FALLBACK; 1322 ret = vmf_anon_prepare(vmf); 1323 if (ret) 1324 return ret; 1325 khugepaged_enter_vma(vma, vma->vm_flags); 1326 1327 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1328 !mm_forbids_zeropage(vma->vm_mm) && 1329 transparent_hugepage_use_zero_page()) { 1330 pgtable_t pgtable; 1331 struct folio *zero_folio; 1332 vm_fault_t ret; 1333 1334 pgtable = pte_alloc_one(vma->vm_mm); 1335 if (unlikely(!pgtable)) 1336 return VM_FAULT_OOM; 1337 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1338 if (unlikely(!zero_folio)) { 1339 pte_free(vma->vm_mm, pgtable); 1340 count_vm_event(THP_FAULT_FALLBACK); 1341 return VM_FAULT_FALLBACK; 1342 } 1343 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1344 ret = 0; 1345 if (pmd_none(*vmf->pmd)) { 1346 ret = check_stable_address_space(vma->vm_mm); 1347 if (ret) { 1348 spin_unlock(vmf->ptl); 1349 pte_free(vma->vm_mm, pgtable); 1350 } else if (userfaultfd_missing(vma)) { 1351 spin_unlock(vmf->ptl); 1352 pte_free(vma->vm_mm, pgtable); 1353 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1354 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1355 } else { 1356 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1357 haddr, vmf->pmd, zero_folio); 1358 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1359 spin_unlock(vmf->ptl); 1360 } 1361 } else { 1362 spin_unlock(vmf->ptl); 1363 pte_free(vma->vm_mm, pgtable); 1364 } 1365 return ret; 1366 } 1367 1368 return __do_huge_pmd_anonymous_page(vmf); 1369 } 1370 1371 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1372 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1373 pgtable_t pgtable) 1374 { 1375 struct mm_struct *mm = vma->vm_mm; 1376 pmd_t entry; 1377 spinlock_t *ptl; 1378 1379 ptl = pmd_lock(mm, pmd); 1380 if (!pmd_none(*pmd)) { 1381 if (write) { 1382 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1383 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1384 goto out_unlock; 1385 } 1386 entry = pmd_mkyoung(*pmd); 1387 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1388 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1389 update_mmu_cache_pmd(vma, addr, pmd); 1390 } 1391 1392 goto out_unlock; 1393 } 1394 1395 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1396 if (pfn_t_devmap(pfn)) 1397 entry = pmd_mkdevmap(entry); 1398 else 1399 entry = pmd_mkspecial(entry); 1400 if (write) { 1401 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1402 entry = maybe_pmd_mkwrite(entry, vma); 1403 } 1404 1405 if (pgtable) { 1406 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1407 mm_inc_nr_ptes(mm); 1408 pgtable = NULL; 1409 } 1410 1411 set_pmd_at(mm, addr, pmd, entry); 1412 update_mmu_cache_pmd(vma, addr, pmd); 1413 1414 out_unlock: 1415 spin_unlock(ptl); 1416 if (pgtable) 1417 pte_free(mm, pgtable); 1418 } 1419 1420 /** 1421 * vmf_insert_pfn_pmd - insert a pmd size pfn 1422 * @vmf: Structure describing the fault 1423 * @pfn: pfn to insert 1424 * @write: whether it's a write fault 1425 * 1426 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1427 * 1428 * Return: vm_fault_t value. 1429 */ 1430 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1431 { 1432 unsigned long addr = vmf->address & PMD_MASK; 1433 struct vm_area_struct *vma = vmf->vma; 1434 pgprot_t pgprot = vma->vm_page_prot; 1435 pgtable_t pgtable = NULL; 1436 1437 /* 1438 * If we had pmd_special, we could avoid all these restrictions, 1439 * but we need to be consistent with PTEs and architectures that 1440 * can't support a 'special' bit. 1441 */ 1442 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1443 !pfn_t_devmap(pfn)); 1444 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1445 (VM_PFNMAP|VM_MIXEDMAP)); 1446 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1447 1448 if (addr < vma->vm_start || addr >= vma->vm_end) 1449 return VM_FAULT_SIGBUS; 1450 1451 if (arch_needs_pgtable_deposit()) { 1452 pgtable = pte_alloc_one(vma->vm_mm); 1453 if (!pgtable) 1454 return VM_FAULT_OOM; 1455 } 1456 1457 track_pfn_insert(vma, &pgprot, pfn); 1458 1459 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1460 return VM_FAULT_NOPAGE; 1461 } 1462 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1463 1464 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1465 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1466 { 1467 if (likely(vma->vm_flags & VM_WRITE)) 1468 pud = pud_mkwrite(pud); 1469 return pud; 1470 } 1471 1472 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1473 pud_t *pud, pfn_t pfn, bool write) 1474 { 1475 struct mm_struct *mm = vma->vm_mm; 1476 pgprot_t prot = vma->vm_page_prot; 1477 pud_t entry; 1478 spinlock_t *ptl; 1479 1480 ptl = pud_lock(mm, pud); 1481 if (!pud_none(*pud)) { 1482 if (write) { 1483 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn))) 1484 goto out_unlock; 1485 entry = pud_mkyoung(*pud); 1486 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1487 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1488 update_mmu_cache_pud(vma, addr, pud); 1489 } 1490 goto out_unlock; 1491 } 1492 1493 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1494 if (pfn_t_devmap(pfn)) 1495 entry = pud_mkdevmap(entry); 1496 else 1497 entry = pud_mkspecial(entry); 1498 if (write) { 1499 entry = pud_mkyoung(pud_mkdirty(entry)); 1500 entry = maybe_pud_mkwrite(entry, vma); 1501 } 1502 set_pud_at(mm, addr, pud, entry); 1503 update_mmu_cache_pud(vma, addr, pud); 1504 1505 out_unlock: 1506 spin_unlock(ptl); 1507 } 1508 1509 /** 1510 * vmf_insert_pfn_pud - insert a pud size pfn 1511 * @vmf: Structure describing the fault 1512 * @pfn: pfn to insert 1513 * @write: whether it's a write fault 1514 * 1515 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1516 * 1517 * Return: vm_fault_t value. 1518 */ 1519 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1520 { 1521 unsigned long addr = vmf->address & PUD_MASK; 1522 struct vm_area_struct *vma = vmf->vma; 1523 pgprot_t pgprot = vma->vm_page_prot; 1524 1525 /* 1526 * If we had pud_special, we could avoid all these restrictions, 1527 * but we need to be consistent with PTEs and architectures that 1528 * can't support a 'special' bit. 1529 */ 1530 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1531 !pfn_t_devmap(pfn)); 1532 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1533 (VM_PFNMAP|VM_MIXEDMAP)); 1534 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1535 1536 if (addr < vma->vm_start || addr >= vma->vm_end) 1537 return VM_FAULT_SIGBUS; 1538 1539 track_pfn_insert(vma, &pgprot, pfn); 1540 1541 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1542 return VM_FAULT_NOPAGE; 1543 } 1544 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1545 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1546 1547 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1548 pmd_t *pmd, bool write) 1549 { 1550 pmd_t _pmd; 1551 1552 _pmd = pmd_mkyoung(*pmd); 1553 if (write) 1554 _pmd = pmd_mkdirty(_pmd); 1555 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1556 pmd, _pmd, write)) 1557 update_mmu_cache_pmd(vma, addr, pmd); 1558 } 1559 1560 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1561 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1562 { 1563 unsigned long pfn = pmd_pfn(*pmd); 1564 struct mm_struct *mm = vma->vm_mm; 1565 struct page *page; 1566 int ret; 1567 1568 assert_spin_locked(pmd_lockptr(mm, pmd)); 1569 1570 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1571 return NULL; 1572 1573 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1574 /* pass */; 1575 else 1576 return NULL; 1577 1578 if (flags & FOLL_TOUCH) 1579 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1580 1581 /* 1582 * device mapped pages can only be returned if the 1583 * caller will manage the page reference count. 1584 */ 1585 if (!(flags & (FOLL_GET | FOLL_PIN))) 1586 return ERR_PTR(-EEXIST); 1587 1588 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1589 *pgmap = get_dev_pagemap(pfn, *pgmap); 1590 if (!*pgmap) 1591 return ERR_PTR(-EFAULT); 1592 page = pfn_to_page(pfn); 1593 ret = try_grab_folio(page_folio(page), 1, flags); 1594 if (ret) 1595 page = ERR_PTR(ret); 1596 1597 return page; 1598 } 1599 1600 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1601 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1602 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1603 { 1604 spinlock_t *dst_ptl, *src_ptl; 1605 struct page *src_page; 1606 struct folio *src_folio; 1607 pmd_t pmd; 1608 pgtable_t pgtable = NULL; 1609 int ret = -ENOMEM; 1610 1611 pmd = pmdp_get_lockless(src_pmd); 1612 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) { 1613 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1614 src_ptl = pmd_lockptr(src_mm, src_pmd); 1615 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1616 /* 1617 * No need to recheck the pmd, it can't change with write 1618 * mmap lock held here. 1619 * 1620 * Meanwhile, making sure it's not a CoW VMA with writable 1621 * mapping, otherwise it means either the anon page wrongly 1622 * applied special bit, or we made the PRIVATE mapping be 1623 * able to wrongly write to the backend MMIO. 1624 */ 1625 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); 1626 goto set_pmd; 1627 } 1628 1629 /* Skip if can be re-fill on fault */ 1630 if (!vma_is_anonymous(dst_vma)) 1631 return 0; 1632 1633 pgtable = pte_alloc_one(dst_mm); 1634 if (unlikely(!pgtable)) 1635 goto out; 1636 1637 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1638 src_ptl = pmd_lockptr(src_mm, src_pmd); 1639 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1640 1641 ret = -EAGAIN; 1642 pmd = *src_pmd; 1643 1644 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1645 if (unlikely(is_swap_pmd(pmd))) { 1646 swp_entry_t entry = pmd_to_swp_entry(pmd); 1647 1648 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1649 if (!is_readable_migration_entry(entry)) { 1650 entry = make_readable_migration_entry( 1651 swp_offset(entry)); 1652 pmd = swp_entry_to_pmd(entry); 1653 if (pmd_swp_soft_dirty(*src_pmd)) 1654 pmd = pmd_swp_mksoft_dirty(pmd); 1655 if (pmd_swp_uffd_wp(*src_pmd)) 1656 pmd = pmd_swp_mkuffd_wp(pmd); 1657 set_pmd_at(src_mm, addr, src_pmd, pmd); 1658 } 1659 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1660 mm_inc_nr_ptes(dst_mm); 1661 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1662 if (!userfaultfd_wp(dst_vma)) 1663 pmd = pmd_swp_clear_uffd_wp(pmd); 1664 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1665 ret = 0; 1666 goto out_unlock; 1667 } 1668 #endif 1669 1670 if (unlikely(!pmd_trans_huge(pmd))) { 1671 pte_free(dst_mm, pgtable); 1672 goto out_unlock; 1673 } 1674 /* 1675 * When page table lock is held, the huge zero pmd should not be 1676 * under splitting since we don't split the page itself, only pmd to 1677 * a page table. 1678 */ 1679 if (is_huge_zero_pmd(pmd)) { 1680 /* 1681 * mm_get_huge_zero_folio() will never allocate a new 1682 * folio here, since we already have a zero page to 1683 * copy. It just takes a reference. 1684 */ 1685 mm_get_huge_zero_folio(dst_mm); 1686 goto out_zero_page; 1687 } 1688 1689 src_page = pmd_page(pmd); 1690 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1691 src_folio = page_folio(src_page); 1692 1693 folio_get(src_folio); 1694 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1695 /* Page maybe pinned: split and retry the fault on PTEs. */ 1696 folio_put(src_folio); 1697 pte_free(dst_mm, pgtable); 1698 spin_unlock(src_ptl); 1699 spin_unlock(dst_ptl); 1700 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1701 return -EAGAIN; 1702 } 1703 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1704 out_zero_page: 1705 mm_inc_nr_ptes(dst_mm); 1706 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1707 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1708 if (!userfaultfd_wp(dst_vma)) 1709 pmd = pmd_clear_uffd_wp(pmd); 1710 pmd = pmd_wrprotect(pmd); 1711 set_pmd: 1712 pmd = pmd_mkold(pmd); 1713 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1714 1715 ret = 0; 1716 out_unlock: 1717 spin_unlock(src_ptl); 1718 spin_unlock(dst_ptl); 1719 out: 1720 return ret; 1721 } 1722 1723 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1724 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1725 pud_t *pud, bool write) 1726 { 1727 pud_t _pud; 1728 1729 _pud = pud_mkyoung(*pud); 1730 if (write) 1731 _pud = pud_mkdirty(_pud); 1732 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1733 pud, _pud, write)) 1734 update_mmu_cache_pud(vma, addr, pud); 1735 } 1736 1737 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1738 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1739 struct vm_area_struct *vma) 1740 { 1741 spinlock_t *dst_ptl, *src_ptl; 1742 pud_t pud; 1743 int ret; 1744 1745 dst_ptl = pud_lock(dst_mm, dst_pud); 1746 src_ptl = pud_lockptr(src_mm, src_pud); 1747 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1748 1749 ret = -EAGAIN; 1750 pud = *src_pud; 1751 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1752 goto out_unlock; 1753 1754 /* 1755 * TODO: once we support anonymous pages, use 1756 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1757 */ 1758 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { 1759 pudp_set_wrprotect(src_mm, addr, src_pud); 1760 pud = pud_wrprotect(pud); 1761 } 1762 pud = pud_mkold(pud); 1763 set_pud_at(dst_mm, addr, dst_pud, pud); 1764 1765 ret = 0; 1766 out_unlock: 1767 spin_unlock(src_ptl); 1768 spin_unlock(dst_ptl); 1769 return ret; 1770 } 1771 1772 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1773 { 1774 bool write = vmf->flags & FAULT_FLAG_WRITE; 1775 1776 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1777 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1778 goto unlock; 1779 1780 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1781 unlock: 1782 spin_unlock(vmf->ptl); 1783 } 1784 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1785 1786 void huge_pmd_set_accessed(struct vm_fault *vmf) 1787 { 1788 bool write = vmf->flags & FAULT_FLAG_WRITE; 1789 1790 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1791 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1792 goto unlock; 1793 1794 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1795 1796 unlock: 1797 spin_unlock(vmf->ptl); 1798 } 1799 1800 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) 1801 { 1802 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1803 struct vm_area_struct *vma = vmf->vma; 1804 struct mmu_notifier_range range; 1805 struct folio *folio; 1806 vm_fault_t ret = 0; 1807 1808 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1809 if (unlikely(!folio)) 1810 return VM_FAULT_FALLBACK; 1811 1812 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, 1813 haddr + HPAGE_PMD_SIZE); 1814 mmu_notifier_invalidate_range_start(&range); 1815 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1816 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) 1817 goto release; 1818 ret = check_stable_address_space(vma->vm_mm); 1819 if (ret) 1820 goto release; 1821 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); 1822 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1823 goto unlock; 1824 release: 1825 folio_put(folio); 1826 unlock: 1827 spin_unlock(vmf->ptl); 1828 mmu_notifier_invalidate_range_end(&range); 1829 return ret; 1830 } 1831 1832 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1833 { 1834 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1835 struct vm_area_struct *vma = vmf->vma; 1836 struct folio *folio; 1837 struct page *page; 1838 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1839 pmd_t orig_pmd = vmf->orig_pmd; 1840 1841 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1842 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1843 1844 if (is_huge_zero_pmd(orig_pmd)) { 1845 vm_fault_t ret = do_huge_zero_wp_pmd(vmf); 1846 1847 if (!(ret & VM_FAULT_FALLBACK)) 1848 return ret; 1849 1850 /* Fallback to splitting PMD if THP cannot be allocated */ 1851 goto fallback; 1852 } 1853 1854 spin_lock(vmf->ptl); 1855 1856 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1857 spin_unlock(vmf->ptl); 1858 return 0; 1859 } 1860 1861 page = pmd_page(orig_pmd); 1862 folio = page_folio(page); 1863 VM_BUG_ON_PAGE(!PageHead(page), page); 1864 1865 /* Early check when only holding the PT lock. */ 1866 if (PageAnonExclusive(page)) 1867 goto reuse; 1868 1869 if (!folio_trylock(folio)) { 1870 folio_get(folio); 1871 spin_unlock(vmf->ptl); 1872 folio_lock(folio); 1873 spin_lock(vmf->ptl); 1874 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1875 spin_unlock(vmf->ptl); 1876 folio_unlock(folio); 1877 folio_put(folio); 1878 return 0; 1879 } 1880 folio_put(folio); 1881 } 1882 1883 /* Recheck after temporarily dropping the PT lock. */ 1884 if (PageAnonExclusive(page)) { 1885 folio_unlock(folio); 1886 goto reuse; 1887 } 1888 1889 /* 1890 * See do_wp_page(): we can only reuse the folio exclusively if 1891 * there are no additional references. Note that we always drain 1892 * the LRU cache immediately after adding a THP. 1893 */ 1894 if (folio_ref_count(folio) > 1895 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1896 goto unlock_fallback; 1897 if (folio_test_swapcache(folio)) 1898 folio_free_swap(folio); 1899 if (folio_ref_count(folio) == 1) { 1900 pmd_t entry; 1901 1902 folio_move_anon_rmap(folio, vma); 1903 SetPageAnonExclusive(page); 1904 folio_unlock(folio); 1905 reuse: 1906 if (unlikely(unshare)) { 1907 spin_unlock(vmf->ptl); 1908 return 0; 1909 } 1910 entry = pmd_mkyoung(orig_pmd); 1911 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1912 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1913 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1914 spin_unlock(vmf->ptl); 1915 return 0; 1916 } 1917 1918 unlock_fallback: 1919 folio_unlock(folio); 1920 spin_unlock(vmf->ptl); 1921 fallback: 1922 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1923 return VM_FAULT_FALLBACK; 1924 } 1925 1926 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1927 unsigned long addr, pmd_t pmd) 1928 { 1929 struct page *page; 1930 1931 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1932 return false; 1933 1934 /* Don't touch entries that are not even readable (NUMA hinting). */ 1935 if (pmd_protnone(pmd)) 1936 return false; 1937 1938 /* Do we need write faults for softdirty tracking? */ 1939 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1940 return false; 1941 1942 /* Do we need write faults for uffd-wp tracking? */ 1943 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1944 return false; 1945 1946 if (!(vma->vm_flags & VM_SHARED)) { 1947 /* See can_change_pte_writable(). */ 1948 page = vm_normal_page_pmd(vma, addr, pmd); 1949 return page && PageAnon(page) && PageAnonExclusive(page); 1950 } 1951 1952 /* See can_change_pte_writable(). */ 1953 return pmd_dirty(pmd); 1954 } 1955 1956 /* NUMA hinting page fault entry point for trans huge pmds */ 1957 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1958 { 1959 struct vm_area_struct *vma = vmf->vma; 1960 struct folio *folio; 1961 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1962 int nid = NUMA_NO_NODE; 1963 int target_nid, last_cpupid; 1964 pmd_t pmd, old_pmd; 1965 bool writable = false; 1966 int flags = 0; 1967 1968 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1969 old_pmd = pmdp_get(vmf->pmd); 1970 1971 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { 1972 spin_unlock(vmf->ptl); 1973 return 0; 1974 } 1975 1976 pmd = pmd_modify(old_pmd, vma->vm_page_prot); 1977 1978 /* 1979 * Detect now whether the PMD could be writable; this information 1980 * is only valid while holding the PT lock. 1981 */ 1982 writable = pmd_write(pmd); 1983 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1984 can_change_pmd_writable(vma, vmf->address, pmd)) 1985 writable = true; 1986 1987 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1988 if (!folio) 1989 goto out_map; 1990 1991 nid = folio_nid(folio); 1992 1993 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, 1994 &last_cpupid); 1995 if (target_nid == NUMA_NO_NODE) 1996 goto out_map; 1997 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 1998 flags |= TNF_MIGRATE_FAIL; 1999 goto out_map; 2000 } 2001 /* The folio is isolated and isolation code holds a folio reference. */ 2002 spin_unlock(vmf->ptl); 2003 writable = false; 2004 2005 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 2006 flags |= TNF_MIGRATED; 2007 nid = target_nid; 2008 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2009 return 0; 2010 } 2011 2012 flags |= TNF_MIGRATE_FAIL; 2013 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2014 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { 2015 spin_unlock(vmf->ptl); 2016 return 0; 2017 } 2018 out_map: 2019 /* Restore the PMD */ 2020 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); 2021 pmd = pmd_mkyoung(pmd); 2022 if (writable) 2023 pmd = pmd_mkwrite(pmd, vma); 2024 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 2025 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2026 spin_unlock(vmf->ptl); 2027 2028 if (nid != NUMA_NO_NODE) 2029 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2030 return 0; 2031 } 2032 2033 /* 2034 * Return true if we do MADV_FREE successfully on entire pmd page. 2035 * Otherwise, return false. 2036 */ 2037 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2038 pmd_t *pmd, unsigned long addr, unsigned long next) 2039 { 2040 spinlock_t *ptl; 2041 pmd_t orig_pmd; 2042 struct folio *folio; 2043 struct mm_struct *mm = tlb->mm; 2044 bool ret = false; 2045 2046 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2047 2048 ptl = pmd_trans_huge_lock(pmd, vma); 2049 if (!ptl) 2050 goto out_unlocked; 2051 2052 orig_pmd = *pmd; 2053 if (is_huge_zero_pmd(orig_pmd)) 2054 goto out; 2055 2056 if (unlikely(!pmd_present(orig_pmd))) { 2057 VM_BUG_ON(thp_migration_supported() && 2058 !is_pmd_migration_entry(orig_pmd)); 2059 goto out; 2060 } 2061 2062 folio = pmd_folio(orig_pmd); 2063 /* 2064 * If other processes are mapping this folio, we couldn't discard 2065 * the folio unless they all do MADV_FREE so let's skip the folio. 2066 */ 2067 if (folio_likely_mapped_shared(folio)) 2068 goto out; 2069 2070 if (!folio_trylock(folio)) 2071 goto out; 2072 2073 /* 2074 * If user want to discard part-pages of THP, split it so MADV_FREE 2075 * will deactivate only them. 2076 */ 2077 if (next - addr != HPAGE_PMD_SIZE) { 2078 folio_get(folio); 2079 spin_unlock(ptl); 2080 split_folio(folio); 2081 folio_unlock(folio); 2082 folio_put(folio); 2083 goto out_unlocked; 2084 } 2085 2086 if (folio_test_dirty(folio)) 2087 folio_clear_dirty(folio); 2088 folio_unlock(folio); 2089 2090 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 2091 pmdp_invalidate(vma, addr, pmd); 2092 orig_pmd = pmd_mkold(orig_pmd); 2093 orig_pmd = pmd_mkclean(orig_pmd); 2094 2095 set_pmd_at(mm, addr, pmd, orig_pmd); 2096 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2097 } 2098 2099 folio_mark_lazyfree(folio); 2100 ret = true; 2101 out: 2102 spin_unlock(ptl); 2103 out_unlocked: 2104 return ret; 2105 } 2106 2107 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 2108 { 2109 pgtable_t pgtable; 2110 2111 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2112 pte_free(mm, pgtable); 2113 mm_dec_nr_ptes(mm); 2114 } 2115 2116 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2117 pmd_t *pmd, unsigned long addr) 2118 { 2119 pmd_t orig_pmd; 2120 spinlock_t *ptl; 2121 2122 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2123 2124 ptl = __pmd_trans_huge_lock(pmd, vma); 2125 if (!ptl) 2126 return 0; 2127 /* 2128 * For architectures like ppc64 we look at deposited pgtable 2129 * when calling pmdp_huge_get_and_clear. So do the 2130 * pgtable_trans_huge_withdraw after finishing pmdp related 2131 * operations. 2132 */ 2133 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 2134 tlb->fullmm); 2135 arch_check_zapped_pmd(vma, orig_pmd); 2136 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2137 if (vma_is_special_huge(vma)) { 2138 if (arch_needs_pgtable_deposit()) 2139 zap_deposited_table(tlb->mm, pmd); 2140 spin_unlock(ptl); 2141 } else if (is_huge_zero_pmd(orig_pmd)) { 2142 zap_deposited_table(tlb->mm, pmd); 2143 spin_unlock(ptl); 2144 } else { 2145 struct folio *folio = NULL; 2146 int flush_needed = 1; 2147 2148 if (pmd_present(orig_pmd)) { 2149 struct page *page = pmd_page(orig_pmd); 2150 2151 folio = page_folio(page); 2152 folio_remove_rmap_pmd(folio, page, vma); 2153 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2154 VM_BUG_ON_PAGE(!PageHead(page), page); 2155 } else if (thp_migration_supported()) { 2156 swp_entry_t entry; 2157 2158 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 2159 entry = pmd_to_swp_entry(orig_pmd); 2160 folio = pfn_swap_entry_folio(entry); 2161 flush_needed = 0; 2162 } else 2163 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 2164 2165 if (folio_test_anon(folio)) { 2166 zap_deposited_table(tlb->mm, pmd); 2167 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2168 } else { 2169 if (arch_needs_pgtable_deposit()) 2170 zap_deposited_table(tlb->mm, pmd); 2171 add_mm_counter(tlb->mm, mm_counter_file(folio), 2172 -HPAGE_PMD_NR); 2173 } 2174 2175 spin_unlock(ptl); 2176 if (flush_needed) 2177 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 2178 } 2179 return 1; 2180 } 2181 2182 #ifndef pmd_move_must_withdraw 2183 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 2184 spinlock_t *old_pmd_ptl, 2185 struct vm_area_struct *vma) 2186 { 2187 /* 2188 * With split pmd lock we also need to move preallocated 2189 * PTE page table if new_pmd is on different PMD page table. 2190 * 2191 * We also don't deposit and withdraw tables for file pages. 2192 */ 2193 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 2194 } 2195 #endif 2196 2197 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 2198 { 2199 #ifdef CONFIG_MEM_SOFT_DIRTY 2200 if (unlikely(is_pmd_migration_entry(pmd))) 2201 pmd = pmd_swp_mksoft_dirty(pmd); 2202 else if (pmd_present(pmd)) 2203 pmd = pmd_mksoft_dirty(pmd); 2204 #endif 2205 return pmd; 2206 } 2207 2208 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 2209 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 2210 { 2211 spinlock_t *old_ptl, *new_ptl; 2212 pmd_t pmd; 2213 struct mm_struct *mm = vma->vm_mm; 2214 bool force_flush = false; 2215 2216 /* 2217 * The destination pmd shouldn't be established, free_pgtables() 2218 * should have released it; but move_page_tables() might have already 2219 * inserted a page table, if racing against shmem/file collapse. 2220 */ 2221 if (!pmd_none(*new_pmd)) { 2222 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 2223 return false; 2224 } 2225 2226 /* 2227 * We don't have to worry about the ordering of src and dst 2228 * ptlocks because exclusive mmap_lock prevents deadlock. 2229 */ 2230 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 2231 if (old_ptl) { 2232 new_ptl = pmd_lockptr(mm, new_pmd); 2233 if (new_ptl != old_ptl) 2234 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2235 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2236 if (pmd_present(pmd)) 2237 force_flush = true; 2238 VM_BUG_ON(!pmd_none(*new_pmd)); 2239 2240 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2241 pgtable_t pgtable; 2242 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2243 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2244 } 2245 pmd = move_soft_dirty_pmd(pmd); 2246 set_pmd_at(mm, new_addr, new_pmd, pmd); 2247 if (force_flush) 2248 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2249 if (new_ptl != old_ptl) 2250 spin_unlock(new_ptl); 2251 spin_unlock(old_ptl); 2252 return true; 2253 } 2254 return false; 2255 } 2256 2257 /* 2258 * Returns 2259 * - 0 if PMD could not be locked 2260 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2261 * or if prot_numa but THP migration is not supported 2262 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2263 */ 2264 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2265 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2266 unsigned long cp_flags) 2267 { 2268 struct mm_struct *mm = vma->vm_mm; 2269 spinlock_t *ptl; 2270 pmd_t oldpmd, entry; 2271 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2272 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2273 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2274 int ret = 1; 2275 2276 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2277 2278 if (prot_numa && !thp_migration_supported()) 2279 return 1; 2280 2281 ptl = __pmd_trans_huge_lock(pmd, vma); 2282 if (!ptl) 2283 return 0; 2284 2285 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2286 if (is_swap_pmd(*pmd)) { 2287 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2288 struct folio *folio = pfn_swap_entry_folio(entry); 2289 pmd_t newpmd; 2290 2291 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2292 if (is_writable_migration_entry(entry)) { 2293 /* 2294 * A protection check is difficult so 2295 * just be safe and disable write 2296 */ 2297 if (folio_test_anon(folio)) 2298 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2299 else 2300 entry = make_readable_migration_entry(swp_offset(entry)); 2301 newpmd = swp_entry_to_pmd(entry); 2302 if (pmd_swp_soft_dirty(*pmd)) 2303 newpmd = pmd_swp_mksoft_dirty(newpmd); 2304 } else { 2305 newpmd = *pmd; 2306 } 2307 2308 if (uffd_wp) 2309 newpmd = pmd_swp_mkuffd_wp(newpmd); 2310 else if (uffd_wp_resolve) 2311 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2312 if (!pmd_same(*pmd, newpmd)) 2313 set_pmd_at(mm, addr, pmd, newpmd); 2314 goto unlock; 2315 } 2316 #endif 2317 2318 if (prot_numa) { 2319 struct folio *folio; 2320 bool toptier; 2321 /* 2322 * Avoid trapping faults against the zero page. The read-only 2323 * data is likely to be read-cached on the local CPU and 2324 * local/remote hits to the zero page are not interesting. 2325 */ 2326 if (is_huge_zero_pmd(*pmd)) 2327 goto unlock; 2328 2329 if (pmd_protnone(*pmd)) 2330 goto unlock; 2331 2332 folio = pmd_folio(*pmd); 2333 toptier = node_is_toptier(folio_nid(folio)); 2334 /* 2335 * Skip scanning top tier node if normal numa 2336 * balancing is disabled 2337 */ 2338 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2339 toptier) 2340 goto unlock; 2341 2342 if (folio_use_access_time(folio)) 2343 folio_xchg_access_time(folio, 2344 jiffies_to_msecs(jiffies)); 2345 } 2346 /* 2347 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2348 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2349 * which is also under mmap_read_lock(mm): 2350 * 2351 * CPU0: CPU1: 2352 * change_huge_pmd(prot_numa=1) 2353 * pmdp_huge_get_and_clear_notify() 2354 * madvise_dontneed() 2355 * zap_pmd_range() 2356 * pmd_trans_huge(*pmd) == 0 (without ptl) 2357 * // skip the pmd 2358 * set_pmd_at(); 2359 * // pmd is re-established 2360 * 2361 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2362 * which may break userspace. 2363 * 2364 * pmdp_invalidate_ad() is required to make sure we don't miss 2365 * dirty/young flags set by hardware. 2366 */ 2367 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2368 2369 entry = pmd_modify(oldpmd, newprot); 2370 if (uffd_wp) 2371 entry = pmd_mkuffd_wp(entry); 2372 else if (uffd_wp_resolve) 2373 /* 2374 * Leave the write bit to be handled by PF interrupt 2375 * handler, then things like COW could be properly 2376 * handled. 2377 */ 2378 entry = pmd_clear_uffd_wp(entry); 2379 2380 /* See change_pte_range(). */ 2381 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2382 can_change_pmd_writable(vma, addr, entry)) 2383 entry = pmd_mkwrite(entry, vma); 2384 2385 ret = HPAGE_PMD_NR; 2386 set_pmd_at(mm, addr, pmd, entry); 2387 2388 if (huge_pmd_needs_flush(oldpmd, entry)) 2389 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2390 unlock: 2391 spin_unlock(ptl); 2392 return ret; 2393 } 2394 2395 /* 2396 * Returns: 2397 * 2398 * - 0: if pud leaf changed from under us 2399 * - 1: if pud can be skipped 2400 * - HPAGE_PUD_NR: if pud was successfully processed 2401 */ 2402 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2403 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2404 pud_t *pudp, unsigned long addr, pgprot_t newprot, 2405 unsigned long cp_flags) 2406 { 2407 struct mm_struct *mm = vma->vm_mm; 2408 pud_t oldpud, entry; 2409 spinlock_t *ptl; 2410 2411 tlb_change_page_size(tlb, HPAGE_PUD_SIZE); 2412 2413 /* NUMA balancing doesn't apply to dax */ 2414 if (cp_flags & MM_CP_PROT_NUMA) 2415 return 1; 2416 2417 /* 2418 * Huge entries on userfault-wp only works with anonymous, while we 2419 * don't have anonymous PUDs yet. 2420 */ 2421 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) 2422 return 1; 2423 2424 ptl = __pud_trans_huge_lock(pudp, vma); 2425 if (!ptl) 2426 return 0; 2427 2428 /* 2429 * Can't clear PUD or it can race with concurrent zapping. See 2430 * change_huge_pmd(). 2431 */ 2432 oldpud = pudp_invalidate(vma, addr, pudp); 2433 entry = pud_modify(oldpud, newprot); 2434 set_pud_at(mm, addr, pudp, entry); 2435 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); 2436 2437 spin_unlock(ptl); 2438 return HPAGE_PUD_NR; 2439 } 2440 #endif 2441 2442 #ifdef CONFIG_USERFAULTFD 2443 /* 2444 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2445 * the caller, but it must return after releasing the page_table_lock. 2446 * Just move the page from src_pmd to dst_pmd if possible. 2447 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2448 * repeated by the caller, or other errors in case of failure. 2449 */ 2450 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2451 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2452 unsigned long dst_addr, unsigned long src_addr) 2453 { 2454 pmd_t _dst_pmd, src_pmdval; 2455 struct page *src_page; 2456 struct folio *src_folio; 2457 struct anon_vma *src_anon_vma; 2458 spinlock_t *src_ptl, *dst_ptl; 2459 pgtable_t src_pgtable; 2460 struct mmu_notifier_range range; 2461 int err = 0; 2462 2463 src_pmdval = *src_pmd; 2464 src_ptl = pmd_lockptr(mm, src_pmd); 2465 2466 lockdep_assert_held(src_ptl); 2467 vma_assert_locked(src_vma); 2468 vma_assert_locked(dst_vma); 2469 2470 /* Sanity checks before the operation */ 2471 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2472 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2473 spin_unlock(src_ptl); 2474 return -EINVAL; 2475 } 2476 2477 if (!pmd_trans_huge(src_pmdval)) { 2478 spin_unlock(src_ptl); 2479 if (is_pmd_migration_entry(src_pmdval)) { 2480 pmd_migration_entry_wait(mm, &src_pmdval); 2481 return -EAGAIN; 2482 } 2483 return -ENOENT; 2484 } 2485 2486 src_page = pmd_page(src_pmdval); 2487 2488 if (!is_huge_zero_pmd(src_pmdval)) { 2489 if (unlikely(!PageAnonExclusive(src_page))) { 2490 spin_unlock(src_ptl); 2491 return -EBUSY; 2492 } 2493 2494 src_folio = page_folio(src_page); 2495 folio_get(src_folio); 2496 } else 2497 src_folio = NULL; 2498 2499 spin_unlock(src_ptl); 2500 2501 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2502 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2503 src_addr + HPAGE_PMD_SIZE); 2504 mmu_notifier_invalidate_range_start(&range); 2505 2506 if (src_folio) { 2507 folio_lock(src_folio); 2508 2509 /* 2510 * split_huge_page walks the anon_vma chain without the page 2511 * lock. Serialize against it with the anon_vma lock, the page 2512 * lock is not enough. 2513 */ 2514 src_anon_vma = folio_get_anon_vma(src_folio); 2515 if (!src_anon_vma) { 2516 err = -EAGAIN; 2517 goto unlock_folio; 2518 } 2519 anon_vma_lock_write(src_anon_vma); 2520 } else 2521 src_anon_vma = NULL; 2522 2523 dst_ptl = pmd_lockptr(mm, dst_pmd); 2524 double_pt_lock(src_ptl, dst_ptl); 2525 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2526 !pmd_same(*dst_pmd, dst_pmdval))) { 2527 err = -EAGAIN; 2528 goto unlock_ptls; 2529 } 2530 if (src_folio) { 2531 if (folio_maybe_dma_pinned(src_folio) || 2532 !PageAnonExclusive(&src_folio->page)) { 2533 err = -EBUSY; 2534 goto unlock_ptls; 2535 } 2536 2537 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2538 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2539 err = -EBUSY; 2540 goto unlock_ptls; 2541 } 2542 2543 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2544 /* Folio got pinned from under us. Put it back and fail the move. */ 2545 if (folio_maybe_dma_pinned(src_folio)) { 2546 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2547 err = -EBUSY; 2548 goto unlock_ptls; 2549 } 2550 2551 folio_move_anon_rmap(src_folio, dst_vma); 2552 src_folio->index = linear_page_index(dst_vma, dst_addr); 2553 2554 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2555 /* Follow mremap() behavior and treat the entry dirty after the move */ 2556 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2557 } else { 2558 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2559 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2560 } 2561 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2562 2563 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2564 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2565 unlock_ptls: 2566 double_pt_unlock(src_ptl, dst_ptl); 2567 if (src_anon_vma) { 2568 anon_vma_unlock_write(src_anon_vma); 2569 put_anon_vma(src_anon_vma); 2570 } 2571 unlock_folio: 2572 /* unblock rmap walks */ 2573 if (src_folio) 2574 folio_unlock(src_folio); 2575 mmu_notifier_invalidate_range_end(&range); 2576 if (src_folio) 2577 folio_put(src_folio); 2578 return err; 2579 } 2580 #endif /* CONFIG_USERFAULTFD */ 2581 2582 /* 2583 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2584 * 2585 * Note that if it returns page table lock pointer, this routine returns without 2586 * unlocking page table lock. So callers must unlock it. 2587 */ 2588 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2589 { 2590 spinlock_t *ptl; 2591 ptl = pmd_lock(vma->vm_mm, pmd); 2592 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2593 pmd_devmap(*pmd))) 2594 return ptl; 2595 spin_unlock(ptl); 2596 return NULL; 2597 } 2598 2599 /* 2600 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2601 * 2602 * Note that if it returns page table lock pointer, this routine returns without 2603 * unlocking page table lock. So callers must unlock it. 2604 */ 2605 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2606 { 2607 spinlock_t *ptl; 2608 2609 ptl = pud_lock(vma->vm_mm, pud); 2610 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2611 return ptl; 2612 spin_unlock(ptl); 2613 return NULL; 2614 } 2615 2616 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2617 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2618 pud_t *pud, unsigned long addr) 2619 { 2620 spinlock_t *ptl; 2621 pud_t orig_pud; 2622 2623 ptl = __pud_trans_huge_lock(pud, vma); 2624 if (!ptl) 2625 return 0; 2626 2627 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2628 arch_check_zapped_pud(vma, orig_pud); 2629 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2630 if (vma_is_special_huge(vma)) { 2631 spin_unlock(ptl); 2632 /* No zero page support yet */ 2633 } else { 2634 /* No support for anonymous PUD pages yet */ 2635 BUG(); 2636 } 2637 return 1; 2638 } 2639 2640 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2641 unsigned long haddr) 2642 { 2643 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2644 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2645 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2646 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2647 2648 count_vm_event(THP_SPLIT_PUD); 2649 2650 pudp_huge_clear_flush(vma, haddr, pud); 2651 } 2652 2653 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2654 unsigned long address) 2655 { 2656 spinlock_t *ptl; 2657 struct mmu_notifier_range range; 2658 2659 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2660 address & HPAGE_PUD_MASK, 2661 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2662 mmu_notifier_invalidate_range_start(&range); 2663 ptl = pud_lock(vma->vm_mm, pud); 2664 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2665 goto out; 2666 __split_huge_pud_locked(vma, pud, range.start); 2667 2668 out: 2669 spin_unlock(ptl); 2670 mmu_notifier_invalidate_range_end(&range); 2671 } 2672 #else 2673 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2674 unsigned long address) 2675 { 2676 } 2677 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2678 2679 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2680 unsigned long haddr, pmd_t *pmd) 2681 { 2682 struct mm_struct *mm = vma->vm_mm; 2683 pgtable_t pgtable; 2684 pmd_t _pmd, old_pmd; 2685 unsigned long addr; 2686 pte_t *pte; 2687 int i; 2688 2689 /* 2690 * Leave pmd empty until pte is filled note that it is fine to delay 2691 * notification until mmu_notifier_invalidate_range_end() as we are 2692 * replacing a zero pmd write protected page with a zero pte write 2693 * protected page. 2694 * 2695 * See Documentation/mm/mmu_notifier.rst 2696 */ 2697 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2698 2699 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2700 pmd_populate(mm, &_pmd, pgtable); 2701 2702 pte = pte_offset_map(&_pmd, haddr); 2703 VM_BUG_ON(!pte); 2704 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2705 pte_t entry; 2706 2707 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2708 entry = pte_mkspecial(entry); 2709 if (pmd_uffd_wp(old_pmd)) 2710 entry = pte_mkuffd_wp(entry); 2711 VM_BUG_ON(!pte_none(ptep_get(pte))); 2712 set_pte_at(mm, addr, pte, entry); 2713 pte++; 2714 } 2715 pte_unmap(pte - 1); 2716 smp_wmb(); /* make pte visible before pmd */ 2717 pmd_populate(mm, pmd, pgtable); 2718 } 2719 2720 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2721 unsigned long haddr, bool freeze) 2722 { 2723 struct mm_struct *mm = vma->vm_mm; 2724 struct folio *folio; 2725 struct page *page; 2726 pgtable_t pgtable; 2727 pmd_t old_pmd, _pmd; 2728 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2729 bool anon_exclusive = false, dirty = false; 2730 unsigned long addr; 2731 pte_t *pte; 2732 int i; 2733 2734 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2735 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2736 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2737 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2738 && !pmd_devmap(*pmd)); 2739 2740 count_vm_event(THP_SPLIT_PMD); 2741 2742 if (!vma_is_anonymous(vma)) { 2743 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2744 /* 2745 * We are going to unmap this huge page. So 2746 * just go ahead and zap it 2747 */ 2748 if (arch_needs_pgtable_deposit()) 2749 zap_deposited_table(mm, pmd); 2750 if (vma_is_special_huge(vma)) 2751 return; 2752 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2753 swp_entry_t entry; 2754 2755 entry = pmd_to_swp_entry(old_pmd); 2756 folio = pfn_swap_entry_folio(entry); 2757 } else { 2758 page = pmd_page(old_pmd); 2759 folio = page_folio(page); 2760 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2761 folio_mark_dirty(folio); 2762 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2763 folio_set_referenced(folio); 2764 folio_remove_rmap_pmd(folio, page, vma); 2765 folio_put(folio); 2766 } 2767 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2768 return; 2769 } 2770 2771 if (is_huge_zero_pmd(*pmd)) { 2772 /* 2773 * FIXME: Do we want to invalidate secondary mmu by calling 2774 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2775 * inside __split_huge_pmd() ? 2776 * 2777 * We are going from a zero huge page write protected to zero 2778 * small page also write protected so it does not seems useful 2779 * to invalidate secondary mmu at this time. 2780 */ 2781 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2782 } 2783 2784 pmd_migration = is_pmd_migration_entry(*pmd); 2785 if (unlikely(pmd_migration)) { 2786 swp_entry_t entry; 2787 2788 old_pmd = *pmd; 2789 entry = pmd_to_swp_entry(old_pmd); 2790 page = pfn_swap_entry_to_page(entry); 2791 write = is_writable_migration_entry(entry); 2792 if (PageAnon(page)) 2793 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2794 young = is_migration_entry_young(entry); 2795 dirty = is_migration_entry_dirty(entry); 2796 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2797 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2798 } else { 2799 /* 2800 * Up to this point the pmd is present and huge and userland has 2801 * the whole access to the hugepage during the split (which 2802 * happens in place). If we overwrite the pmd with the not-huge 2803 * version pointing to the pte here (which of course we could if 2804 * all CPUs were bug free), userland could trigger a small page 2805 * size TLB miss on the small sized TLB while the hugepage TLB 2806 * entry is still established in the huge TLB. Some CPU doesn't 2807 * like that. See 2808 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2809 * 383 on page 105. Intel should be safe but is also warns that 2810 * it's only safe if the permission and cache attributes of the 2811 * two entries loaded in the two TLB is identical (which should 2812 * be the case here). But it is generally safer to never allow 2813 * small and huge TLB entries for the same virtual address to be 2814 * loaded simultaneously. So instead of doing "pmd_populate(); 2815 * flush_pmd_tlb_range();" we first mark the current pmd 2816 * notpresent (atomically because here the pmd_trans_huge must 2817 * remain set at all times on the pmd until the split is 2818 * complete for this pmd), then we flush the SMP TLB and finally 2819 * we write the non-huge version of the pmd entry with 2820 * pmd_populate. 2821 */ 2822 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2823 page = pmd_page(old_pmd); 2824 folio = page_folio(page); 2825 if (pmd_dirty(old_pmd)) { 2826 dirty = true; 2827 folio_set_dirty(folio); 2828 } 2829 write = pmd_write(old_pmd); 2830 young = pmd_young(old_pmd); 2831 soft_dirty = pmd_soft_dirty(old_pmd); 2832 uffd_wp = pmd_uffd_wp(old_pmd); 2833 2834 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2835 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2836 2837 /* 2838 * Without "freeze", we'll simply split the PMD, propagating the 2839 * PageAnonExclusive() flag for each PTE by setting it for 2840 * each subpage -- no need to (temporarily) clear. 2841 * 2842 * With "freeze" we want to replace mapped pages by 2843 * migration entries right away. This is only possible if we 2844 * managed to clear PageAnonExclusive() -- see 2845 * set_pmd_migration_entry(). 2846 * 2847 * In case we cannot clear PageAnonExclusive(), split the PMD 2848 * only and let try_to_migrate_one() fail later. 2849 * 2850 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2851 */ 2852 anon_exclusive = PageAnonExclusive(page); 2853 if (freeze && anon_exclusive && 2854 folio_try_share_anon_rmap_pmd(folio, page)) 2855 freeze = false; 2856 if (!freeze) { 2857 rmap_t rmap_flags = RMAP_NONE; 2858 2859 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2860 if (anon_exclusive) 2861 rmap_flags |= RMAP_EXCLUSIVE; 2862 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2863 vma, haddr, rmap_flags); 2864 } 2865 } 2866 2867 /* 2868 * Withdraw the table only after we mark the pmd entry invalid. 2869 * This's critical for some architectures (Power). 2870 */ 2871 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2872 pmd_populate(mm, &_pmd, pgtable); 2873 2874 pte = pte_offset_map(&_pmd, haddr); 2875 VM_BUG_ON(!pte); 2876 2877 /* 2878 * Note that NUMA hinting access restrictions are not transferred to 2879 * avoid any possibility of altering permissions across VMAs. 2880 */ 2881 if (freeze || pmd_migration) { 2882 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2883 pte_t entry; 2884 swp_entry_t swp_entry; 2885 2886 if (write) 2887 swp_entry = make_writable_migration_entry( 2888 page_to_pfn(page + i)); 2889 else if (anon_exclusive) 2890 swp_entry = make_readable_exclusive_migration_entry( 2891 page_to_pfn(page + i)); 2892 else 2893 swp_entry = make_readable_migration_entry( 2894 page_to_pfn(page + i)); 2895 if (young) 2896 swp_entry = make_migration_entry_young(swp_entry); 2897 if (dirty) 2898 swp_entry = make_migration_entry_dirty(swp_entry); 2899 entry = swp_entry_to_pte(swp_entry); 2900 if (soft_dirty) 2901 entry = pte_swp_mksoft_dirty(entry); 2902 if (uffd_wp) 2903 entry = pte_swp_mkuffd_wp(entry); 2904 2905 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2906 set_pte_at(mm, addr, pte + i, entry); 2907 } 2908 } else { 2909 pte_t entry; 2910 2911 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2912 if (write) 2913 entry = pte_mkwrite(entry, vma); 2914 if (!young) 2915 entry = pte_mkold(entry); 2916 /* NOTE: this may set soft-dirty too on some archs */ 2917 if (dirty) 2918 entry = pte_mkdirty(entry); 2919 if (soft_dirty) 2920 entry = pte_mksoft_dirty(entry); 2921 if (uffd_wp) 2922 entry = pte_mkuffd_wp(entry); 2923 2924 for (i = 0; i < HPAGE_PMD_NR; i++) 2925 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2926 2927 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2928 } 2929 pte_unmap(pte); 2930 2931 if (!pmd_migration) 2932 folio_remove_rmap_pmd(folio, page, vma); 2933 if (freeze) 2934 put_page(page); 2935 2936 smp_wmb(); /* make pte visible before pmd */ 2937 pmd_populate(mm, pmd, pgtable); 2938 } 2939 2940 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 2941 pmd_t *pmd, bool freeze, struct folio *folio) 2942 { 2943 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio)); 2944 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 2945 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2946 VM_BUG_ON(freeze && !folio); 2947 2948 /* 2949 * When the caller requests to set up a migration entry, we 2950 * require a folio to check the PMD against. Otherwise, there 2951 * is a risk of replacing the wrong folio. 2952 */ 2953 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2954 is_pmd_migration_entry(*pmd)) { 2955 if (folio && folio != pmd_folio(*pmd)) 2956 return; 2957 __split_huge_pmd_locked(vma, pmd, address, freeze); 2958 } 2959 } 2960 2961 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2962 unsigned long address, bool freeze, struct folio *folio) 2963 { 2964 spinlock_t *ptl; 2965 struct mmu_notifier_range range; 2966 2967 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2968 address & HPAGE_PMD_MASK, 2969 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2970 mmu_notifier_invalidate_range_start(&range); 2971 ptl = pmd_lock(vma->vm_mm, pmd); 2972 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio); 2973 spin_unlock(ptl); 2974 mmu_notifier_invalidate_range_end(&range); 2975 } 2976 2977 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2978 bool freeze, struct folio *folio) 2979 { 2980 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2981 2982 if (!pmd) 2983 return; 2984 2985 __split_huge_pmd(vma, pmd, address, freeze, folio); 2986 } 2987 2988 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2989 { 2990 /* 2991 * If the new address isn't hpage aligned and it could previously 2992 * contain an hugepage: check if we need to split an huge pmd. 2993 */ 2994 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2995 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2996 ALIGN(address, HPAGE_PMD_SIZE))) 2997 split_huge_pmd_address(vma, address, false, NULL); 2998 } 2999 3000 void vma_adjust_trans_huge(struct vm_area_struct *vma, 3001 unsigned long start, 3002 unsigned long end, 3003 long adjust_next) 3004 { 3005 /* Check if we need to split start first. */ 3006 split_huge_pmd_if_needed(vma, start); 3007 3008 /* Check if we need to split end next. */ 3009 split_huge_pmd_if_needed(vma, end); 3010 3011 /* 3012 * If we're also updating the next vma vm_start, 3013 * check if we need to split it. 3014 */ 3015 if (adjust_next > 0) { 3016 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 3017 unsigned long nstart = next->vm_start; 3018 nstart += adjust_next; 3019 split_huge_pmd_if_needed(next, nstart); 3020 } 3021 } 3022 3023 static void unmap_folio(struct folio *folio) 3024 { 3025 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 3026 TTU_BATCH_FLUSH; 3027 3028 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3029 3030 if (folio_test_pmd_mappable(folio)) 3031 ttu_flags |= TTU_SPLIT_HUGE_PMD; 3032 3033 /* 3034 * Anon pages need migration entries to preserve them, but file 3035 * pages can simply be left unmapped, then faulted back on demand. 3036 * If that is ever changed (perhaps for mlock), update remap_page(). 3037 */ 3038 if (folio_test_anon(folio)) 3039 try_to_migrate(folio, ttu_flags); 3040 else 3041 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 3042 3043 try_to_unmap_flush(); 3044 } 3045 3046 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 3047 unsigned long addr, pmd_t *pmdp, 3048 struct folio *folio) 3049 { 3050 struct mm_struct *mm = vma->vm_mm; 3051 int ref_count, map_count; 3052 pmd_t orig_pmd = *pmdp; 3053 3054 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd)) 3055 return false; 3056 3057 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 3058 3059 /* 3060 * Syncing against concurrent GUP-fast: 3061 * - clear PMD; barrier; read refcount 3062 * - inc refcount; barrier; read PMD 3063 */ 3064 smp_mb(); 3065 3066 ref_count = folio_ref_count(folio); 3067 map_count = folio_mapcount(folio); 3068 3069 /* 3070 * Order reads for folio refcount and dirty flag 3071 * (see comments in __remove_mapping()). 3072 */ 3073 smp_rmb(); 3074 3075 /* 3076 * If the folio or its PMD is redirtied at this point, or if there 3077 * are unexpected references, we will give up to discard this folio 3078 * and remap it. 3079 * 3080 * The only folio refs must be one from isolation plus the rmap(s). 3081 */ 3082 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) || 3083 ref_count != map_count + 1) { 3084 set_pmd_at(mm, addr, pmdp, orig_pmd); 3085 return false; 3086 } 3087 3088 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 3089 zap_deposited_table(mm, pmdp); 3090 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 3091 if (vma->vm_flags & VM_LOCKED) 3092 mlock_drain_local(); 3093 folio_put(folio); 3094 3095 return true; 3096 } 3097 3098 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 3099 pmd_t *pmdp, struct folio *folio) 3100 { 3101 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 3102 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3103 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 3104 3105 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) 3106 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 3107 3108 return false; 3109 } 3110 3111 static void remap_page(struct folio *folio, unsigned long nr, int flags) 3112 { 3113 int i = 0; 3114 3115 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 3116 if (!folio_test_anon(folio)) 3117 return; 3118 for (;;) { 3119 remove_migration_ptes(folio, folio, RMP_LOCKED | flags); 3120 i += folio_nr_pages(folio); 3121 if (i >= nr) 3122 break; 3123 folio = folio_next(folio); 3124 } 3125 } 3126 3127 static void lru_add_page_tail(struct folio *folio, struct page *tail, 3128 struct lruvec *lruvec, struct list_head *list) 3129 { 3130 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3131 VM_BUG_ON_FOLIO(PageLRU(tail), folio); 3132 lockdep_assert_held(&lruvec->lru_lock); 3133 3134 if (list) { 3135 /* page reclaim is reclaiming a huge page */ 3136 VM_WARN_ON(folio_test_lru(folio)); 3137 get_page(tail); 3138 list_add_tail(&tail->lru, list); 3139 } else { 3140 /* head is still on lru (and we have it frozen) */ 3141 VM_WARN_ON(!folio_test_lru(folio)); 3142 if (folio_test_unevictable(folio)) 3143 tail->mlock_count = 0; 3144 else 3145 list_add_tail(&tail->lru, &folio->lru); 3146 SetPageLRU(tail); 3147 } 3148 } 3149 3150 static void __split_huge_page_tail(struct folio *folio, int tail, 3151 struct lruvec *lruvec, struct list_head *list, 3152 unsigned int new_order) 3153 { 3154 struct page *head = &folio->page; 3155 struct page *page_tail = head + tail; 3156 /* 3157 * Careful: new_folio is not a "real" folio before we cleared PageTail. 3158 * Don't pass it around before clear_compound_head(). 3159 */ 3160 struct folio *new_folio = (struct folio *)page_tail; 3161 3162 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 3163 3164 /* 3165 * Clone page flags before unfreezing refcount. 3166 * 3167 * After successful get_page_unless_zero() might follow flags change, 3168 * for example lock_page() which set PG_waiters. 3169 * 3170 * Note that for mapped sub-pages of an anonymous THP, 3171 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 3172 * the migration entry instead from where remap_page() will restore it. 3173 * We can still have PG_anon_exclusive set on effectively unmapped and 3174 * unreferenced sub-pages of an anonymous THP: we can simply drop 3175 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 3176 */ 3177 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 3178 page_tail->flags |= (head->flags & 3179 ((1L << PG_referenced) | 3180 (1L << PG_swapbacked) | 3181 (1L << PG_swapcache) | 3182 (1L << PG_mlocked) | 3183 (1L << PG_uptodate) | 3184 (1L << PG_active) | 3185 (1L << PG_workingset) | 3186 (1L << PG_locked) | 3187 (1L << PG_unevictable) | 3188 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 3189 (1L << PG_arch_2) | 3190 #endif 3191 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 3192 (1L << PG_arch_3) | 3193 #endif 3194 (1L << PG_dirty) | 3195 LRU_GEN_MASK | LRU_REFS_MASK)); 3196 3197 /* ->mapping in first and second tail page is replaced by other uses */ 3198 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 3199 page_tail); 3200 new_folio->mapping = folio->mapping; 3201 new_folio->index = folio->index + tail; 3202 3203 /* 3204 * page->private should not be set in tail pages. Fix up and warn once 3205 * if private is unexpectedly set. 3206 */ 3207 if (unlikely(page_tail->private)) { 3208 VM_WARN_ON_ONCE_PAGE(true, page_tail); 3209 page_tail->private = 0; 3210 } 3211 if (folio_test_swapcache(folio)) 3212 new_folio->swap.val = folio->swap.val + tail; 3213 3214 /* Page flags must be visible before we make the page non-compound. */ 3215 smp_wmb(); 3216 3217 /* 3218 * Clear PageTail before unfreezing page refcount. 3219 * 3220 * After successful get_page_unless_zero() might follow put_page() 3221 * which needs correct compound_head(). 3222 */ 3223 clear_compound_head(page_tail); 3224 if (new_order) { 3225 prep_compound_page(page_tail, new_order); 3226 folio_set_large_rmappable(new_folio); 3227 } 3228 3229 /* Finally unfreeze refcount. Additional reference from page cache. */ 3230 page_ref_unfreeze(page_tail, 3231 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 3232 folio_nr_pages(new_folio) : 0)); 3233 3234 if (folio_test_young(folio)) 3235 folio_set_young(new_folio); 3236 if (folio_test_idle(folio)) 3237 folio_set_idle(new_folio); 3238 3239 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 3240 3241 /* 3242 * always add to the tail because some iterators expect new 3243 * pages to show after the currently processed elements - e.g. 3244 * migrate_pages 3245 */ 3246 lru_add_page_tail(folio, page_tail, lruvec, list); 3247 } 3248 3249 static void __split_huge_page(struct page *page, struct list_head *list, 3250 pgoff_t end, unsigned int new_order) 3251 { 3252 struct folio *folio = page_folio(page); 3253 struct page *head = &folio->page; 3254 struct lruvec *lruvec; 3255 struct address_space *swap_cache = NULL; 3256 unsigned long offset = 0; 3257 int i, nr_dropped = 0; 3258 unsigned int new_nr = 1 << new_order; 3259 int order = folio_order(folio); 3260 unsigned int nr = 1 << order; 3261 3262 /* complete memcg works before add pages to LRU */ 3263 split_page_memcg(head, order, new_order); 3264 3265 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 3266 offset = swap_cache_index(folio->swap); 3267 swap_cache = swap_address_space(folio->swap); 3268 xa_lock(&swap_cache->i_pages); 3269 } 3270 3271 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 3272 lruvec = folio_lruvec_lock(folio); 3273 3274 ClearPageHasHWPoisoned(head); 3275 3276 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 3277 struct folio *tail; 3278 __split_huge_page_tail(folio, i, lruvec, list, new_order); 3279 tail = page_folio(head + i); 3280 /* Some pages can be beyond EOF: drop them from page cache */ 3281 if (tail->index >= end) { 3282 if (shmem_mapping(folio->mapping)) 3283 nr_dropped++; 3284 else if (folio_test_clear_dirty(tail)) 3285 folio_account_cleaned(tail, 3286 inode_to_wb(folio->mapping->host)); 3287 __filemap_remove_folio(tail, NULL); 3288 folio_put(tail); 3289 } else if (!folio_test_anon(folio)) { 3290 __xa_store(&folio->mapping->i_pages, tail->index, 3291 tail, 0); 3292 } else if (swap_cache) { 3293 __xa_store(&swap_cache->i_pages, offset + i, 3294 tail, 0); 3295 } 3296 } 3297 3298 if (!new_order) 3299 ClearPageCompound(head); 3300 else { 3301 struct folio *new_folio = (struct folio *)head; 3302 3303 folio_set_order(new_folio, new_order); 3304 } 3305 unlock_page_lruvec(lruvec); 3306 /* Caller disabled irqs, so they are still disabled here */ 3307 3308 split_page_owner(head, order, new_order); 3309 pgalloc_tag_split(folio, order, new_order); 3310 3311 /* See comment in __split_huge_page_tail() */ 3312 if (folio_test_anon(folio)) { 3313 /* Additional pin to swap cache */ 3314 if (folio_test_swapcache(folio)) { 3315 folio_ref_add(folio, 1 + new_nr); 3316 xa_unlock(&swap_cache->i_pages); 3317 } else { 3318 folio_ref_inc(folio); 3319 } 3320 } else { 3321 /* Additional pin to page cache */ 3322 folio_ref_add(folio, 1 + new_nr); 3323 xa_unlock(&folio->mapping->i_pages); 3324 } 3325 local_irq_enable(); 3326 3327 if (nr_dropped) 3328 shmem_uncharge(folio->mapping->host, nr_dropped); 3329 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0); 3330 3331 /* 3332 * set page to its compound_head when split to non order-0 pages, so 3333 * we can skip unlocking it below, since PG_locked is transferred to 3334 * the compound_head of the page and the caller will unlock it. 3335 */ 3336 if (new_order) 3337 page = compound_head(page); 3338 3339 for (i = 0; i < nr; i += new_nr) { 3340 struct page *subpage = head + i; 3341 struct folio *new_folio = page_folio(subpage); 3342 if (subpage == page) 3343 continue; 3344 folio_unlock(new_folio); 3345 3346 /* 3347 * Subpages may be freed if there wasn't any mapping 3348 * like if add_to_swap() is running on a lru page that 3349 * had its mapping zapped. And freeing these pages 3350 * requires taking the lru_lock so we do the put_page 3351 * of the tail pages after the split is complete. 3352 */ 3353 free_page_and_swap_cache(subpage); 3354 } 3355 } 3356 3357 /* Racy check whether the huge page can be split */ 3358 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 3359 { 3360 int extra_pins; 3361 3362 /* Additional pins from page cache */ 3363 if (folio_test_anon(folio)) 3364 extra_pins = folio_test_swapcache(folio) ? 3365 folio_nr_pages(folio) : 0; 3366 else 3367 extra_pins = folio_nr_pages(folio); 3368 if (pextra_pins) 3369 *pextra_pins = extra_pins; 3370 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 3371 caller_pins; 3372 } 3373 3374 /* 3375 * This function splits a large folio into smaller folios of order @new_order. 3376 * @page can point to any page of the large folio to split. The split operation 3377 * does not change the position of @page. 3378 * 3379 * Prerequisites: 3380 * 3381 * 1) The caller must hold a reference on the @page's owning folio, also known 3382 * as the large folio. 3383 * 3384 * 2) The large folio must be locked. 3385 * 3386 * 3) The folio must not be pinned. Any unexpected folio references, including 3387 * GUP pins, will result in the folio not getting split; instead, the caller 3388 * will receive an -EAGAIN. 3389 * 3390 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3391 * supported for non-file-backed folios, because folio->_deferred_list, which 3392 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3393 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3394 * since they do not use _deferred_list. 3395 * 3396 * After splitting, the caller's folio reference will be transferred to @page, 3397 * resulting in a raised refcount of @page after this call. The other pages may 3398 * be freed if they are not mapped. 3399 * 3400 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3401 * 3402 * Pages in @new_order will inherit the mapping, flags, and so on from the 3403 * huge page. 3404 * 3405 * Returns 0 if the huge page was split successfully. 3406 * 3407 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3408 * the folio was concurrently removed from the page cache. 3409 * 3410 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3411 * under writeback, if fs-specific folio metadata cannot currently be 3412 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3413 * truncation). 3414 * 3415 * Callers should ensure that the order respects the address space mapping 3416 * min-order if one is set for non-anonymous folios. 3417 * 3418 * Returns -EINVAL when trying to split to an order that is incompatible 3419 * with the folio. Splitting to order 0 is compatible with all folios. 3420 */ 3421 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3422 unsigned int new_order) 3423 { 3424 struct folio *folio = page_folio(page); 3425 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3426 /* reset xarray order to new order after split */ 3427 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3428 bool is_anon = folio_test_anon(folio); 3429 struct address_space *mapping = NULL; 3430 struct anon_vma *anon_vma = NULL; 3431 int order = folio_order(folio); 3432 int extra_pins, ret; 3433 pgoff_t end; 3434 bool is_hzp; 3435 3436 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3437 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3438 3439 if (new_order >= folio_order(folio)) 3440 return -EINVAL; 3441 3442 if (is_anon) { 3443 /* order-1 is not supported for anonymous THP. */ 3444 if (new_order == 1) { 3445 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3446 return -EINVAL; 3447 } 3448 } else if (new_order) { 3449 /* Split shmem folio to non-zero order not supported */ 3450 if (shmem_mapping(folio->mapping)) { 3451 VM_WARN_ONCE(1, 3452 "Cannot split shmem folio to non-0 order"); 3453 return -EINVAL; 3454 } 3455 /* 3456 * No split if the file system does not support large folio. 3457 * Note that we might still have THPs in such mappings due to 3458 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3459 * does not actually support large folios properly. 3460 */ 3461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3462 !mapping_large_folio_support(folio->mapping)) { 3463 VM_WARN_ONCE(1, 3464 "Cannot split file folio to non-0 order"); 3465 return -EINVAL; 3466 } 3467 } 3468 3469 /* Only swapping a whole PMD-mapped folio is supported */ 3470 if (folio_test_swapcache(folio) && new_order) 3471 return -EINVAL; 3472 3473 is_hzp = is_huge_zero_folio(folio); 3474 if (is_hzp) { 3475 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3476 return -EBUSY; 3477 } 3478 3479 if (folio_test_writeback(folio)) 3480 return -EBUSY; 3481 3482 if (is_anon) { 3483 /* 3484 * The caller does not necessarily hold an mmap_lock that would 3485 * prevent the anon_vma disappearing so we first we take a 3486 * reference to it and then lock the anon_vma for write. This 3487 * is similar to folio_lock_anon_vma_read except the write lock 3488 * is taken to serialise against parallel split or collapse 3489 * operations. 3490 */ 3491 anon_vma = folio_get_anon_vma(folio); 3492 if (!anon_vma) { 3493 ret = -EBUSY; 3494 goto out; 3495 } 3496 end = -1; 3497 mapping = NULL; 3498 anon_vma_lock_write(anon_vma); 3499 } else { 3500 unsigned int min_order; 3501 gfp_t gfp; 3502 3503 mapping = folio->mapping; 3504 3505 /* Truncated ? */ 3506 if (!mapping) { 3507 ret = -EBUSY; 3508 goto out; 3509 } 3510 3511 min_order = mapping_min_folio_order(folio->mapping); 3512 if (new_order < min_order) { 3513 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u", 3514 min_order); 3515 ret = -EINVAL; 3516 goto out; 3517 } 3518 3519 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3520 GFP_RECLAIM_MASK); 3521 3522 if (!filemap_release_folio(folio, gfp)) { 3523 ret = -EBUSY; 3524 goto out; 3525 } 3526 3527 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3528 if (xas_error(&xas)) { 3529 ret = xas_error(&xas); 3530 goto out; 3531 } 3532 3533 anon_vma = NULL; 3534 i_mmap_lock_read(mapping); 3535 3536 /* 3537 *__split_huge_page() may need to trim off pages beyond EOF: 3538 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3539 * which cannot be nested inside the page tree lock. So note 3540 * end now: i_size itself may be changed at any moment, but 3541 * folio lock is good enough to serialize the trimming. 3542 */ 3543 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3544 if (shmem_mapping(mapping)) 3545 end = shmem_fallocend(mapping->host, end); 3546 } 3547 3548 /* 3549 * Racy check if we can split the page, before unmap_folio() will 3550 * split PMDs 3551 */ 3552 if (!can_split_folio(folio, 1, &extra_pins)) { 3553 ret = -EAGAIN; 3554 goto out_unlock; 3555 } 3556 3557 unmap_folio(folio); 3558 3559 /* block interrupt reentry in xa_lock and spinlock */ 3560 local_irq_disable(); 3561 if (mapping) { 3562 /* 3563 * Check if the folio is present in page cache. 3564 * We assume all tail are present too, if folio is there. 3565 */ 3566 xas_lock(&xas); 3567 xas_reset(&xas); 3568 if (xas_load(&xas) != folio) 3569 goto fail; 3570 } 3571 3572 /* Prevent deferred_split_scan() touching ->_refcount */ 3573 spin_lock(&ds_queue->split_queue_lock); 3574 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3575 if (folio_order(folio) > 1 && 3576 !list_empty(&folio->_deferred_list)) { 3577 ds_queue->split_queue_len--; 3578 if (folio_test_partially_mapped(folio)) { 3579 __folio_clear_partially_mapped(folio); 3580 mod_mthp_stat(folio_order(folio), 3581 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3582 } 3583 /* 3584 * Reinitialize page_deferred_list after removing the 3585 * page from the split_queue, otherwise a subsequent 3586 * split will see list corruption when checking the 3587 * page_deferred_list. 3588 */ 3589 list_del_init(&folio->_deferred_list); 3590 } 3591 spin_unlock(&ds_queue->split_queue_lock); 3592 if (mapping) { 3593 int nr = folio_nr_pages(folio); 3594 3595 xas_split(&xas, folio, folio_order(folio)); 3596 if (folio_test_pmd_mappable(folio) && 3597 new_order < HPAGE_PMD_ORDER) { 3598 if (folio_test_swapbacked(folio)) { 3599 __lruvec_stat_mod_folio(folio, 3600 NR_SHMEM_THPS, -nr); 3601 } else { 3602 __lruvec_stat_mod_folio(folio, 3603 NR_FILE_THPS, -nr); 3604 filemap_nr_thps_dec(mapping); 3605 } 3606 } 3607 } 3608 3609 if (is_anon) { 3610 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 3611 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order)); 3612 } 3613 __split_huge_page(page, list, end, new_order); 3614 ret = 0; 3615 } else { 3616 spin_unlock(&ds_queue->split_queue_lock); 3617 fail: 3618 if (mapping) 3619 xas_unlock(&xas); 3620 local_irq_enable(); 3621 remap_page(folio, folio_nr_pages(folio), 0); 3622 ret = -EAGAIN; 3623 } 3624 3625 out_unlock: 3626 if (anon_vma) { 3627 anon_vma_unlock_write(anon_vma); 3628 put_anon_vma(anon_vma); 3629 } 3630 if (mapping) 3631 i_mmap_unlock_read(mapping); 3632 out: 3633 xas_destroy(&xas); 3634 if (order == HPAGE_PMD_ORDER) 3635 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3636 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3637 return ret; 3638 } 3639 3640 int min_order_for_split(struct folio *folio) 3641 { 3642 if (folio_test_anon(folio)) 3643 return 0; 3644 3645 if (!folio->mapping) { 3646 if (folio_test_pmd_mappable(folio)) 3647 count_vm_event(THP_SPLIT_PAGE_FAILED); 3648 return -EBUSY; 3649 } 3650 3651 return mapping_min_folio_order(folio->mapping); 3652 } 3653 3654 int split_folio_to_list(struct folio *folio, struct list_head *list) 3655 { 3656 int ret = min_order_for_split(folio); 3657 3658 if (ret < 0) 3659 return ret; 3660 3661 return split_huge_page_to_list_to_order(&folio->page, list, ret); 3662 } 3663 3664 /* 3665 * __folio_unqueue_deferred_split() is not to be called directly: 3666 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h 3667 * limits its calls to those folios which may have a _deferred_list for 3668 * queueing THP splits, and that list is (racily observed to be) non-empty. 3669 * 3670 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is 3671 * zero: because even when split_queue_lock is held, a non-empty _deferred_list 3672 * might be in use on deferred_split_scan()'s unlocked on-stack list. 3673 * 3674 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is 3675 * therefore important to unqueue deferred split before changing folio memcg. 3676 */ 3677 bool __folio_unqueue_deferred_split(struct folio *folio) 3678 { 3679 struct deferred_split *ds_queue; 3680 unsigned long flags; 3681 bool unqueued = false; 3682 3683 WARN_ON_ONCE(folio_ref_count(folio)); 3684 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio)); 3685 3686 ds_queue = get_deferred_split_queue(folio); 3687 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3688 if (!list_empty(&folio->_deferred_list)) { 3689 ds_queue->split_queue_len--; 3690 if (folio_test_partially_mapped(folio)) { 3691 __folio_clear_partially_mapped(folio); 3692 mod_mthp_stat(folio_order(folio), 3693 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3694 } 3695 list_del_init(&folio->_deferred_list); 3696 unqueued = true; 3697 } 3698 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3699 3700 return unqueued; /* useful for debug warnings */ 3701 } 3702 3703 /* partially_mapped=false won't clear PG_partially_mapped folio flag */ 3704 void deferred_split_folio(struct folio *folio, bool partially_mapped) 3705 { 3706 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3707 #ifdef CONFIG_MEMCG 3708 struct mem_cgroup *memcg = folio_memcg(folio); 3709 #endif 3710 unsigned long flags; 3711 3712 /* 3713 * Order 1 folios have no space for a deferred list, but we also 3714 * won't waste much memory by not adding them to the deferred list. 3715 */ 3716 if (folio_order(folio) <= 1) 3717 return; 3718 3719 if (!partially_mapped && !split_underused_thp) 3720 return; 3721 3722 /* 3723 * Exclude swapcache: originally to avoid a corrupt deferred split 3724 * queue. Nowadays that is fully prevented by mem_cgroup_swapout(); 3725 * but if page reclaim is already handling the same folio, it is 3726 * unnecessary to handle it again in the shrinker, so excluding 3727 * swapcache here may still be a useful optimization. 3728 */ 3729 if (folio_test_swapcache(folio)) 3730 return; 3731 3732 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3733 if (partially_mapped) { 3734 if (!folio_test_partially_mapped(folio)) { 3735 __folio_set_partially_mapped(folio); 3736 if (folio_test_pmd_mappable(folio)) 3737 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3738 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 3739 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); 3740 3741 } 3742 } else { 3743 /* partially mapped folios cannot become non-partially mapped */ 3744 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); 3745 } 3746 if (list_empty(&folio->_deferred_list)) { 3747 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3748 ds_queue->split_queue_len++; 3749 #ifdef CONFIG_MEMCG 3750 if (memcg) 3751 set_shrinker_bit(memcg, folio_nid(folio), 3752 deferred_split_shrinker->id); 3753 #endif 3754 } 3755 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3756 } 3757 3758 static unsigned long deferred_split_count(struct shrinker *shrink, 3759 struct shrink_control *sc) 3760 { 3761 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3762 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3763 3764 #ifdef CONFIG_MEMCG 3765 if (sc->memcg) 3766 ds_queue = &sc->memcg->deferred_split_queue; 3767 #endif 3768 return READ_ONCE(ds_queue->split_queue_len); 3769 } 3770 3771 static bool thp_underused(struct folio *folio) 3772 { 3773 int num_zero_pages = 0, num_filled_pages = 0; 3774 void *kaddr; 3775 int i; 3776 3777 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) 3778 return false; 3779 3780 for (i = 0; i < folio_nr_pages(folio); i++) { 3781 kaddr = kmap_local_folio(folio, i * PAGE_SIZE); 3782 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) { 3783 num_zero_pages++; 3784 if (num_zero_pages > khugepaged_max_ptes_none) { 3785 kunmap_local(kaddr); 3786 return true; 3787 } 3788 } else { 3789 /* 3790 * Another path for early exit once the number 3791 * of non-zero filled pages exceeds threshold. 3792 */ 3793 num_filled_pages++; 3794 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) { 3795 kunmap_local(kaddr); 3796 return false; 3797 } 3798 } 3799 kunmap_local(kaddr); 3800 } 3801 return false; 3802 } 3803 3804 static unsigned long deferred_split_scan(struct shrinker *shrink, 3805 struct shrink_control *sc) 3806 { 3807 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3808 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3809 unsigned long flags; 3810 LIST_HEAD(list); 3811 struct folio *folio, *next, *prev = NULL; 3812 int split = 0, removed = 0; 3813 3814 #ifdef CONFIG_MEMCG 3815 if (sc->memcg) 3816 ds_queue = &sc->memcg->deferred_split_queue; 3817 #endif 3818 3819 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3820 /* Take pin on all head pages to avoid freeing them under us */ 3821 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3822 _deferred_list) { 3823 if (folio_try_get(folio)) { 3824 list_move(&folio->_deferred_list, &list); 3825 } else { 3826 /* We lost race with folio_put() */ 3827 if (folio_test_partially_mapped(folio)) { 3828 __folio_clear_partially_mapped(folio); 3829 mod_mthp_stat(folio_order(folio), 3830 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3831 } 3832 list_del_init(&folio->_deferred_list); 3833 ds_queue->split_queue_len--; 3834 } 3835 if (!--sc->nr_to_scan) 3836 break; 3837 } 3838 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3839 3840 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3841 bool did_split = false; 3842 bool underused = false; 3843 3844 if (!folio_test_partially_mapped(folio)) { 3845 underused = thp_underused(folio); 3846 if (!underused) 3847 goto next; 3848 } 3849 if (!folio_trylock(folio)) 3850 goto next; 3851 if (!split_folio(folio)) { 3852 did_split = true; 3853 if (underused) 3854 count_vm_event(THP_UNDERUSED_SPLIT_PAGE); 3855 split++; 3856 } 3857 folio_unlock(folio); 3858 next: 3859 /* 3860 * split_folio() removes folio from list on success. 3861 * Only add back to the queue if folio is partially mapped. 3862 * If thp_underused returns false, or if split_folio fails 3863 * in the case it was underused, then consider it used and 3864 * don't add it back to split_queue. 3865 */ 3866 if (did_split) { 3867 ; /* folio already removed from list */ 3868 } else if (!folio_test_partially_mapped(folio)) { 3869 list_del_init(&folio->_deferred_list); 3870 removed++; 3871 } else { 3872 /* 3873 * That unlocked list_del_init() above would be unsafe, 3874 * unless its folio is separated from any earlier folios 3875 * left on the list (which may be concurrently unqueued) 3876 * by one safe folio with refcount still raised. 3877 */ 3878 swap(folio, prev); 3879 } 3880 if (folio) 3881 folio_put(folio); 3882 } 3883 3884 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3885 list_splice_tail(&list, &ds_queue->split_queue); 3886 ds_queue->split_queue_len -= removed; 3887 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3888 3889 if (prev) 3890 folio_put(prev); 3891 3892 /* 3893 * Stop shrinker if we didn't split any page, but the queue is empty. 3894 * This can happen if pages were freed under us. 3895 */ 3896 if (!split && list_empty(&ds_queue->split_queue)) 3897 return SHRINK_STOP; 3898 return split; 3899 } 3900 3901 #ifdef CONFIG_DEBUG_FS 3902 static void split_huge_pages_all(void) 3903 { 3904 struct zone *zone; 3905 struct page *page; 3906 struct folio *folio; 3907 unsigned long pfn, max_zone_pfn; 3908 unsigned long total = 0, split = 0; 3909 3910 pr_debug("Split all THPs\n"); 3911 for_each_zone(zone) { 3912 if (!managed_zone(zone)) 3913 continue; 3914 max_zone_pfn = zone_end_pfn(zone); 3915 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3916 int nr_pages; 3917 3918 page = pfn_to_online_page(pfn); 3919 if (!page || PageTail(page)) 3920 continue; 3921 folio = page_folio(page); 3922 if (!folio_try_get(folio)) 3923 continue; 3924 3925 if (unlikely(page_folio(page) != folio)) 3926 goto next; 3927 3928 if (zone != folio_zone(folio)) 3929 goto next; 3930 3931 if (!folio_test_large(folio) 3932 || folio_test_hugetlb(folio) 3933 || !folio_test_lru(folio)) 3934 goto next; 3935 3936 total++; 3937 folio_lock(folio); 3938 nr_pages = folio_nr_pages(folio); 3939 if (!split_folio(folio)) 3940 split++; 3941 pfn += nr_pages - 1; 3942 folio_unlock(folio); 3943 next: 3944 folio_put(folio); 3945 cond_resched(); 3946 } 3947 } 3948 3949 pr_debug("%lu of %lu THP split\n", split, total); 3950 } 3951 3952 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3953 { 3954 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3955 is_vm_hugetlb_page(vma); 3956 } 3957 3958 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3959 unsigned long vaddr_end, unsigned int new_order) 3960 { 3961 int ret = 0; 3962 struct task_struct *task; 3963 struct mm_struct *mm; 3964 unsigned long total = 0, split = 0; 3965 unsigned long addr; 3966 3967 vaddr_start &= PAGE_MASK; 3968 vaddr_end &= PAGE_MASK; 3969 3970 task = find_get_task_by_vpid(pid); 3971 if (!task) { 3972 ret = -ESRCH; 3973 goto out; 3974 } 3975 3976 /* Find the mm_struct */ 3977 mm = get_task_mm(task); 3978 put_task_struct(task); 3979 3980 if (!mm) { 3981 ret = -EINVAL; 3982 goto out; 3983 } 3984 3985 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3986 pid, vaddr_start, vaddr_end); 3987 3988 mmap_read_lock(mm); 3989 /* 3990 * always increase addr by PAGE_SIZE, since we could have a PTE page 3991 * table filled with PTE-mapped THPs, each of which is distinct. 3992 */ 3993 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3994 struct vm_area_struct *vma = vma_lookup(mm, addr); 3995 struct folio_walk fw; 3996 struct folio *folio; 3997 struct address_space *mapping; 3998 unsigned int target_order = new_order; 3999 4000 if (!vma) 4001 break; 4002 4003 /* skip special VMA and hugetlb VMA */ 4004 if (vma_not_suitable_for_thp_split(vma)) { 4005 addr = vma->vm_end; 4006 continue; 4007 } 4008 4009 folio = folio_walk_start(&fw, vma, addr, 0); 4010 if (!folio) 4011 continue; 4012 4013 if (!is_transparent_hugepage(folio)) 4014 goto next; 4015 4016 if (!folio_test_anon(folio)) { 4017 mapping = folio->mapping; 4018 target_order = max(new_order, 4019 mapping_min_folio_order(mapping)); 4020 } 4021 4022 if (target_order >= folio_order(folio)) 4023 goto next; 4024 4025 total++; 4026 /* 4027 * For folios with private, split_huge_page_to_list_to_order() 4028 * will try to drop it before split and then check if the folio 4029 * can be split or not. So skip the check here. 4030 */ 4031 if (!folio_test_private(folio) && 4032 !can_split_folio(folio, 0, NULL)) 4033 goto next; 4034 4035 if (!folio_trylock(folio)) 4036 goto next; 4037 folio_get(folio); 4038 folio_walk_end(&fw, vma); 4039 4040 if (!folio_test_anon(folio) && folio->mapping != mapping) 4041 goto unlock; 4042 4043 if (!split_folio_to_order(folio, target_order)) 4044 split++; 4045 4046 unlock: 4047 4048 folio_unlock(folio); 4049 folio_put(folio); 4050 4051 cond_resched(); 4052 continue; 4053 next: 4054 folio_walk_end(&fw, vma); 4055 cond_resched(); 4056 } 4057 mmap_read_unlock(mm); 4058 mmput(mm); 4059 4060 pr_debug("%lu of %lu THP split\n", split, total); 4061 4062 out: 4063 return ret; 4064 } 4065 4066 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 4067 pgoff_t off_end, unsigned int new_order) 4068 { 4069 struct filename *file; 4070 struct file *candidate; 4071 struct address_space *mapping; 4072 int ret = -EINVAL; 4073 pgoff_t index; 4074 int nr_pages = 1; 4075 unsigned long total = 0, split = 0; 4076 unsigned int min_order; 4077 unsigned int target_order; 4078 4079 file = getname_kernel(file_path); 4080 if (IS_ERR(file)) 4081 return ret; 4082 4083 candidate = file_open_name(file, O_RDONLY, 0); 4084 if (IS_ERR(candidate)) 4085 goto out; 4086 4087 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 4088 file_path, off_start, off_end); 4089 4090 mapping = candidate->f_mapping; 4091 min_order = mapping_min_folio_order(mapping); 4092 target_order = max(new_order, min_order); 4093 4094 for (index = off_start; index < off_end; index += nr_pages) { 4095 struct folio *folio = filemap_get_folio(mapping, index); 4096 4097 nr_pages = 1; 4098 if (IS_ERR(folio)) 4099 continue; 4100 4101 if (!folio_test_large(folio)) 4102 goto next; 4103 4104 total++; 4105 nr_pages = folio_nr_pages(folio); 4106 4107 if (target_order >= folio_order(folio)) 4108 goto next; 4109 4110 if (!folio_trylock(folio)) 4111 goto next; 4112 4113 if (folio->mapping != mapping) 4114 goto unlock; 4115 4116 if (!split_folio_to_order(folio, target_order)) 4117 split++; 4118 4119 unlock: 4120 folio_unlock(folio); 4121 next: 4122 folio_put(folio); 4123 cond_resched(); 4124 } 4125 4126 filp_close(candidate, NULL); 4127 ret = 0; 4128 4129 pr_debug("%lu of %lu file-backed THP split\n", split, total); 4130 out: 4131 putname(file); 4132 return ret; 4133 } 4134 4135 #define MAX_INPUT_BUF_SZ 255 4136 4137 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 4138 size_t count, loff_t *ppops) 4139 { 4140 static DEFINE_MUTEX(split_debug_mutex); 4141 ssize_t ret; 4142 /* 4143 * hold pid, start_vaddr, end_vaddr, new_order or 4144 * file_path, off_start, off_end, new_order 4145 */ 4146 char input_buf[MAX_INPUT_BUF_SZ]; 4147 int pid; 4148 unsigned long vaddr_start, vaddr_end; 4149 unsigned int new_order = 0; 4150 4151 ret = mutex_lock_interruptible(&split_debug_mutex); 4152 if (ret) 4153 return ret; 4154 4155 ret = -EFAULT; 4156 4157 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 4158 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 4159 goto out; 4160 4161 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 4162 4163 if (input_buf[0] == '/') { 4164 char *tok; 4165 char *buf = input_buf; 4166 char file_path[MAX_INPUT_BUF_SZ]; 4167 pgoff_t off_start = 0, off_end = 0; 4168 size_t input_len = strlen(input_buf); 4169 4170 tok = strsep(&buf, ","); 4171 if (tok) { 4172 strscpy(file_path, tok); 4173 } else { 4174 ret = -EINVAL; 4175 goto out; 4176 } 4177 4178 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 4179 if (ret != 2 && ret != 3) { 4180 ret = -EINVAL; 4181 goto out; 4182 } 4183 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 4184 if (!ret) 4185 ret = input_len; 4186 4187 goto out; 4188 } 4189 4190 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 4191 if (ret == 1 && pid == 1) { 4192 split_huge_pages_all(); 4193 ret = strlen(input_buf); 4194 goto out; 4195 } else if (ret != 3 && ret != 4) { 4196 ret = -EINVAL; 4197 goto out; 4198 } 4199 4200 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 4201 if (!ret) 4202 ret = strlen(input_buf); 4203 out: 4204 mutex_unlock(&split_debug_mutex); 4205 return ret; 4206 4207 } 4208 4209 static const struct file_operations split_huge_pages_fops = { 4210 .owner = THIS_MODULE, 4211 .write = split_huge_pages_write, 4212 }; 4213 4214 static int __init split_huge_pages_debugfs(void) 4215 { 4216 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 4217 &split_huge_pages_fops); 4218 return 0; 4219 } 4220 late_initcall(split_huge_pages_debugfs); 4221 #endif 4222 4223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 4224 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 4225 struct page *page) 4226 { 4227 struct folio *folio = page_folio(page); 4228 struct vm_area_struct *vma = pvmw->vma; 4229 struct mm_struct *mm = vma->vm_mm; 4230 unsigned long address = pvmw->address; 4231 bool anon_exclusive; 4232 pmd_t pmdval; 4233 swp_entry_t entry; 4234 pmd_t pmdswp; 4235 4236 if (!(pvmw->pmd && !pvmw->pte)) 4237 return 0; 4238 4239 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 4240 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 4241 4242 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 4243 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 4244 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 4245 set_pmd_at(mm, address, pvmw->pmd, pmdval); 4246 return -EBUSY; 4247 } 4248 4249 if (pmd_dirty(pmdval)) 4250 folio_mark_dirty(folio); 4251 if (pmd_write(pmdval)) 4252 entry = make_writable_migration_entry(page_to_pfn(page)); 4253 else if (anon_exclusive) 4254 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 4255 else 4256 entry = make_readable_migration_entry(page_to_pfn(page)); 4257 if (pmd_young(pmdval)) 4258 entry = make_migration_entry_young(entry); 4259 if (pmd_dirty(pmdval)) 4260 entry = make_migration_entry_dirty(entry); 4261 pmdswp = swp_entry_to_pmd(entry); 4262 if (pmd_soft_dirty(pmdval)) 4263 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 4264 if (pmd_uffd_wp(pmdval)) 4265 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 4266 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 4267 folio_remove_rmap_pmd(folio, page, vma); 4268 folio_put(folio); 4269 trace_set_migration_pmd(address, pmd_val(pmdswp)); 4270 4271 return 0; 4272 } 4273 4274 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 4275 { 4276 struct folio *folio = page_folio(new); 4277 struct vm_area_struct *vma = pvmw->vma; 4278 struct mm_struct *mm = vma->vm_mm; 4279 unsigned long address = pvmw->address; 4280 unsigned long haddr = address & HPAGE_PMD_MASK; 4281 pmd_t pmde; 4282 swp_entry_t entry; 4283 4284 if (!(pvmw->pmd && !pvmw->pte)) 4285 return; 4286 4287 entry = pmd_to_swp_entry(*pvmw->pmd); 4288 folio_get(folio); 4289 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 4290 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4291 pmde = pmd_mksoft_dirty(pmde); 4292 if (is_writable_migration_entry(entry)) 4293 pmde = pmd_mkwrite(pmde, vma); 4294 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4295 pmde = pmd_mkuffd_wp(pmde); 4296 if (!is_migration_entry_young(entry)) 4297 pmde = pmd_mkold(pmde); 4298 /* NOTE: this may contain setting soft-dirty on some archs */ 4299 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 4300 pmde = pmd_mkdirty(pmde); 4301 4302 if (folio_test_anon(folio)) { 4303 rmap_t rmap_flags = RMAP_NONE; 4304 4305 if (!is_readable_migration_entry(entry)) 4306 rmap_flags |= RMAP_EXCLUSIVE; 4307 4308 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 4309 } else { 4310 folio_add_file_rmap_pmd(folio, new, vma); 4311 } 4312 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 4313 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 4314 4315 /* No need to invalidate - it was non-present before */ 4316 update_mmu_cache_pmd(vma, address, pvmw->pmd); 4317 trace_remove_migration_pmd(address, pmd_val(pmde)); 4318 } 4319 #endif 4320