1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/coredump.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/oom.h> 34 #include <linux/numa.h> 35 #include <linux/page_owner.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 /* The addr is used to check if the vma size fits */ 68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 69 70 if (!transhuge_vma_suitable(vma, addr)) 71 return false; 72 if (vma_is_anonymous(vma)) 73 return __transparent_hugepage_enabled(vma); 74 if (vma_is_shmem(vma)) 75 return shmem_huge_enabled(vma); 76 77 return false; 78 } 79 80 static struct page *get_huge_zero_page(void) 81 { 82 struct page *zero_page; 83 retry: 84 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 85 return READ_ONCE(huge_zero_page); 86 87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 88 HPAGE_PMD_ORDER); 89 if (!zero_page) { 90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 91 return NULL; 92 } 93 count_vm_event(THP_ZERO_PAGE_ALLOC); 94 preempt_disable(); 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 96 preempt_enable(); 97 __free_pages(zero_page, compound_order(zero_page)); 98 goto retry; 99 } 100 101 /* We take additional reference here. It will be put back by shrinker */ 102 atomic_set(&huge_zero_refcount, 2); 103 preempt_enable(); 104 return READ_ONCE(huge_zero_page); 105 } 106 107 static void put_huge_zero_page(void) 108 { 109 /* 110 * Counter should never go to zero here. Only shrinker can put 111 * last reference. 112 */ 113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 114 } 115 116 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 117 { 118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 119 return READ_ONCE(huge_zero_page); 120 121 if (!get_huge_zero_page()) 122 return NULL; 123 124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 125 put_huge_zero_page(); 126 127 return READ_ONCE(huge_zero_page); 128 } 129 130 void mm_put_huge_zero_page(struct mm_struct *mm) 131 { 132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 133 put_huge_zero_page(); 134 } 135 136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 137 struct shrink_control *sc) 138 { 139 /* we can free zero page only if last reference remains */ 140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 141 } 142 143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 144 struct shrink_control *sc) 145 { 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 147 struct page *zero_page = xchg(&huge_zero_page, NULL); 148 BUG_ON(zero_page == NULL); 149 __free_pages(zero_page, compound_order(zero_page)); 150 return HPAGE_PMD_NR; 151 } 152 153 return 0; 154 } 155 156 static struct shrinker huge_zero_page_shrinker = { 157 .count_objects = shrink_huge_zero_page_count, 158 .scan_objects = shrink_huge_zero_page_scan, 159 .seeks = DEFAULT_SEEKS, 160 }; 161 162 #ifdef CONFIG_SYSFS 163 static ssize_t enabled_show(struct kobject *kobj, 164 struct kobj_attribute *attr, char *buf) 165 { 166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "[always] madvise never\n"); 168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 169 return sprintf(buf, "always [madvise] never\n"); 170 else 171 return sprintf(buf, "always madvise [never]\n"); 172 } 173 174 static ssize_t enabled_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 ssize_t ret = count; 179 180 if (sysfs_streq(buf, "always")) { 181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 183 } else if (sysfs_streq(buf, "madvise")) { 184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 186 } else if (sysfs_streq(buf, "never")) { 187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 189 } else 190 ret = -EINVAL; 191 192 if (ret > 0) { 193 int err = start_stop_khugepaged(); 194 if (err) 195 ret = err; 196 } 197 return ret; 198 } 199 static struct kobj_attribute enabled_attr = 200 __ATTR(enabled, 0644, enabled_show, enabled_store); 201 202 ssize_t single_hugepage_flag_show(struct kobject *kobj, 203 struct kobj_attribute *attr, char *buf, 204 enum transparent_hugepage_flag flag) 205 { 206 return sprintf(buf, "%d\n", 207 !!test_bit(flag, &transparent_hugepage_flags)); 208 } 209 210 ssize_t single_hugepage_flag_store(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 const char *buf, size_t count, 213 enum transparent_hugepage_flag flag) 214 { 215 unsigned long value; 216 int ret; 217 218 ret = kstrtoul(buf, 10, &value); 219 if (ret < 0) 220 return ret; 221 if (value > 1) 222 return -EINVAL; 223 224 if (value) 225 set_bit(flag, &transparent_hugepage_flags); 226 else 227 clear_bit(flag, &transparent_hugepage_flags); 228 229 return count; 230 } 231 232 static ssize_t defrag_show(struct kobject *kobj, 233 struct kobj_attribute *attr, char *buf) 234 { 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 238 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 240 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 242 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 243 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 244 } 245 246 static ssize_t defrag_store(struct kobject *kobj, 247 struct kobj_attribute *attr, 248 const char *buf, size_t count) 249 { 250 if (sysfs_streq(buf, "always")) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 255 } else if (sysfs_streq(buf, "defer+madvise")) { 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 } else if (sysfs_streq(buf, "defer")) { 261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 } else if (sysfs_streq(buf, "madvise")) { 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else if (sysfs_streq(buf, "never")) { 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 275 } else 276 return -EINVAL; 277 278 return count; 279 } 280 static struct kobj_attribute defrag_attr = 281 __ATTR(defrag, 0644, defrag_show, defrag_store); 282 283 static ssize_t use_zero_page_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf) 285 { 286 return single_hugepage_flag_show(kobj, attr, buf, 287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 288 } 289 static ssize_t use_zero_page_store(struct kobject *kobj, 290 struct kobj_attribute *attr, const char *buf, size_t count) 291 { 292 return single_hugepage_flag_store(kobj, attr, buf, count, 293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 294 } 295 static struct kobj_attribute use_zero_page_attr = 296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 297 298 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 302 } 303 static struct kobj_attribute hpage_pmd_size_attr = 304 __ATTR_RO(hpage_pmd_size); 305 306 static struct attribute *hugepage_attr[] = { 307 &enabled_attr.attr, 308 &defrag_attr.attr, 309 &use_zero_page_attr.attr, 310 &hpage_pmd_size_attr.attr, 311 #ifdef CONFIG_SHMEM 312 &shmem_enabled_attr.attr, 313 #endif 314 NULL, 315 }; 316 317 static const struct attribute_group hugepage_attr_group = { 318 .attrs = hugepage_attr, 319 }; 320 321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 322 { 323 int err; 324 325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 326 if (unlikely(!*hugepage_kobj)) { 327 pr_err("failed to create transparent hugepage kobject\n"); 328 return -ENOMEM; 329 } 330 331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 332 if (err) { 333 pr_err("failed to register transparent hugepage group\n"); 334 goto delete_obj; 335 } 336 337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 338 if (err) { 339 pr_err("failed to register transparent hugepage group\n"); 340 goto remove_hp_group; 341 } 342 343 return 0; 344 345 remove_hp_group: 346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 347 delete_obj: 348 kobject_put(*hugepage_kobj); 349 return err; 350 } 351 352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 353 { 354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 356 kobject_put(hugepage_kobj); 357 } 358 #else 359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 360 { 361 return 0; 362 } 363 364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 365 { 366 } 367 #endif /* CONFIG_SYSFS */ 368 369 static int __init hugepage_init(void) 370 { 371 int err; 372 struct kobject *hugepage_kobj; 373 374 if (!has_transparent_hugepage()) { 375 transparent_hugepage_flags = 0; 376 return -EINVAL; 377 } 378 379 /* 380 * hugepages can't be allocated by the buddy allocator 381 */ 382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 383 /* 384 * we use page->mapping and page->index in second tail page 385 * as list_head: assuming THP order >= 2 386 */ 387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 388 389 err = hugepage_init_sysfs(&hugepage_kobj); 390 if (err) 391 goto err_sysfs; 392 393 err = khugepaged_init(); 394 if (err) 395 goto err_slab; 396 397 err = register_shrinker(&huge_zero_page_shrinker); 398 if (err) 399 goto err_hzp_shrinker; 400 err = register_shrinker(&deferred_split_shrinker); 401 if (err) 402 goto err_split_shrinker; 403 404 /* 405 * By default disable transparent hugepages on smaller systems, 406 * where the extra memory used could hurt more than TLB overhead 407 * is likely to save. The admin can still enable it through /sys. 408 */ 409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 410 transparent_hugepage_flags = 0; 411 return 0; 412 } 413 414 err = start_stop_khugepaged(); 415 if (err) 416 goto err_khugepaged; 417 418 return 0; 419 err_khugepaged: 420 unregister_shrinker(&deferred_split_shrinker); 421 err_split_shrinker: 422 unregister_shrinker(&huge_zero_page_shrinker); 423 err_hzp_shrinker: 424 khugepaged_destroy(); 425 err_slab: 426 hugepage_exit_sysfs(hugepage_kobj); 427 err_sysfs: 428 return err; 429 } 430 subsys_initcall(hugepage_init); 431 432 static int __init setup_transparent_hugepage(char *str) 433 { 434 int ret = 0; 435 if (!str) 436 goto out; 437 if (!strcmp(str, "always")) { 438 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 439 &transparent_hugepage_flags); 440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 441 &transparent_hugepage_flags); 442 ret = 1; 443 } else if (!strcmp(str, "madvise")) { 444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 445 &transparent_hugepage_flags); 446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 447 &transparent_hugepage_flags); 448 ret = 1; 449 } else if (!strcmp(str, "never")) { 450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 451 &transparent_hugepage_flags); 452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 453 &transparent_hugepage_flags); 454 ret = 1; 455 } 456 out: 457 if (!ret) 458 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 459 return ret; 460 } 461 __setup("transparent_hugepage=", setup_transparent_hugepage); 462 463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 464 { 465 if (likely(vma->vm_flags & VM_WRITE)) 466 pmd = pmd_mkwrite(pmd); 467 return pmd; 468 } 469 470 #ifdef CONFIG_MEMCG 471 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 472 { 473 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 475 476 if (memcg) 477 return &memcg->deferred_split_queue; 478 else 479 return &pgdat->deferred_split_queue; 480 } 481 #else 482 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 483 { 484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 485 486 return &pgdat->deferred_split_queue; 487 } 488 #endif 489 490 void prep_transhuge_page(struct page *page) 491 { 492 /* 493 * we use page->mapping and page->indexlru in second tail page 494 * as list_head: assuming THP order >= 2 495 */ 496 497 INIT_LIST_HEAD(page_deferred_list(page)); 498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 499 } 500 501 bool is_transparent_hugepage(struct page *page) 502 { 503 if (!PageCompound(page)) 504 return false; 505 506 page = compound_head(page); 507 return is_huge_zero_page(page) || 508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 509 } 510 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 511 512 static unsigned long __thp_get_unmapped_area(struct file *filp, 513 unsigned long addr, unsigned long len, 514 loff_t off, unsigned long flags, unsigned long size) 515 { 516 loff_t off_end = off + len; 517 loff_t off_align = round_up(off, size); 518 unsigned long len_pad, ret; 519 520 if (off_end <= off_align || (off_end - off_align) < size) 521 return 0; 522 523 len_pad = len + size; 524 if (len_pad < len || (off + len_pad) < off) 525 return 0; 526 527 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 528 off >> PAGE_SHIFT, flags); 529 530 /* 531 * The failure might be due to length padding. The caller will retry 532 * without the padding. 533 */ 534 if (IS_ERR_VALUE(ret)) 535 return 0; 536 537 /* 538 * Do not try to align to THP boundary if allocation at the address 539 * hint succeeds. 540 */ 541 if (ret == addr) 542 return addr; 543 544 ret += (off - ret) & (size - 1); 545 return ret; 546 } 547 548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 549 unsigned long len, unsigned long pgoff, unsigned long flags) 550 { 551 unsigned long ret; 552 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 553 554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 555 goto out; 556 557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 558 if (ret) 559 return ret; 560 out: 561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 562 } 563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 564 565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 566 struct page *page, gfp_t gfp) 567 { 568 struct vm_area_struct *vma = vmf->vma; 569 pgtable_t pgtable; 570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 571 vm_fault_t ret = 0; 572 573 VM_BUG_ON_PAGE(!PageCompound(page), page); 574 575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 576 put_page(page); 577 count_vm_event(THP_FAULT_FALLBACK); 578 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 579 return VM_FAULT_FALLBACK; 580 } 581 cgroup_throttle_swaprate(page, gfp); 582 583 pgtable = pte_alloc_one(vma->vm_mm); 584 if (unlikely(!pgtable)) { 585 ret = VM_FAULT_OOM; 586 goto release; 587 } 588 589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 590 /* 591 * The memory barrier inside __SetPageUptodate makes sure that 592 * clear_huge_page writes become visible before the set_pmd_at() 593 * write. 594 */ 595 __SetPageUptodate(page); 596 597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 598 if (unlikely(!pmd_none(*vmf->pmd))) { 599 goto unlock_release; 600 } else { 601 pmd_t entry; 602 603 ret = check_stable_address_space(vma->vm_mm); 604 if (ret) 605 goto unlock_release; 606 607 /* Deliver the page fault to userland */ 608 if (userfaultfd_missing(vma)) { 609 vm_fault_t ret2; 610 611 spin_unlock(vmf->ptl); 612 put_page(page); 613 pte_free(vma->vm_mm, pgtable); 614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 616 return ret2; 617 } 618 619 entry = mk_huge_pmd(page, vma->vm_page_prot); 620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 621 page_add_new_anon_rmap(page, vma, haddr, true); 622 lru_cache_add_inactive_or_unevictable(page, vma); 623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 626 mm_inc_nr_ptes(vma->vm_mm); 627 spin_unlock(vmf->ptl); 628 count_vm_event(THP_FAULT_ALLOC); 629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 630 } 631 632 return 0; 633 unlock_release: 634 spin_unlock(vmf->ptl); 635 release: 636 if (pgtable) 637 pte_free(vma->vm_mm, pgtable); 638 put_page(page); 639 return ret; 640 641 } 642 643 /* 644 * always: directly stall for all thp allocations 645 * defer: wake kswapd and fail if not immediately available 646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 647 * fail if not immediately available 648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 649 * available 650 * never: never stall for any thp allocation 651 */ 652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 653 { 654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 655 656 /* Always do synchronous compaction */ 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 659 660 /* Kick kcompactd and fail quickly */ 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 663 664 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 666 return GFP_TRANSHUGE_LIGHT | 667 (vma_madvised ? __GFP_DIRECT_RECLAIM : 668 __GFP_KSWAPD_RECLAIM); 669 670 /* Only do synchronous compaction if madvised */ 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 672 return GFP_TRANSHUGE_LIGHT | 673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 674 675 return GFP_TRANSHUGE_LIGHT; 676 } 677 678 /* Caller must hold page table lock. */ 679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 681 struct page *zero_page) 682 { 683 pmd_t entry; 684 if (!pmd_none(*pmd)) 685 return false; 686 entry = mk_pmd(zero_page, vma->vm_page_prot); 687 entry = pmd_mkhuge(entry); 688 if (pgtable) 689 pgtable_trans_huge_deposit(mm, pmd, pgtable); 690 set_pmd_at(mm, haddr, pmd, entry); 691 mm_inc_nr_ptes(mm); 692 return true; 693 } 694 695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 696 { 697 struct vm_area_struct *vma = vmf->vma; 698 gfp_t gfp; 699 struct page *page; 700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 701 702 if (!transhuge_vma_suitable(vma, haddr)) 703 return VM_FAULT_FALLBACK; 704 if (unlikely(anon_vma_prepare(vma))) 705 return VM_FAULT_OOM; 706 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 707 return VM_FAULT_OOM; 708 if (!(vmf->flags & FAULT_FLAG_WRITE) && 709 !mm_forbids_zeropage(vma->vm_mm) && 710 transparent_hugepage_use_zero_page()) { 711 pgtable_t pgtable; 712 struct page *zero_page; 713 vm_fault_t ret; 714 pgtable = pte_alloc_one(vma->vm_mm); 715 if (unlikely(!pgtable)) 716 return VM_FAULT_OOM; 717 zero_page = mm_get_huge_zero_page(vma->vm_mm); 718 if (unlikely(!zero_page)) { 719 pte_free(vma->vm_mm, pgtable); 720 count_vm_event(THP_FAULT_FALLBACK); 721 return VM_FAULT_FALLBACK; 722 } 723 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 724 ret = 0; 725 if (pmd_none(*vmf->pmd)) { 726 ret = check_stable_address_space(vma->vm_mm); 727 if (ret) { 728 spin_unlock(vmf->ptl); 729 pte_free(vma->vm_mm, pgtable); 730 } else if (userfaultfd_missing(vma)) { 731 spin_unlock(vmf->ptl); 732 pte_free(vma->vm_mm, pgtable); 733 ret = handle_userfault(vmf, VM_UFFD_MISSING); 734 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 735 } else { 736 set_huge_zero_page(pgtable, vma->vm_mm, vma, 737 haddr, vmf->pmd, zero_page); 738 spin_unlock(vmf->ptl); 739 } 740 } else { 741 spin_unlock(vmf->ptl); 742 pte_free(vma->vm_mm, pgtable); 743 } 744 return ret; 745 } 746 gfp = alloc_hugepage_direct_gfpmask(vma); 747 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 748 if (unlikely(!page)) { 749 count_vm_event(THP_FAULT_FALLBACK); 750 return VM_FAULT_FALLBACK; 751 } 752 prep_transhuge_page(page); 753 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 754 } 755 756 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 757 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 758 pgtable_t pgtable) 759 { 760 struct mm_struct *mm = vma->vm_mm; 761 pmd_t entry; 762 spinlock_t *ptl; 763 764 ptl = pmd_lock(mm, pmd); 765 if (!pmd_none(*pmd)) { 766 if (write) { 767 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 768 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 769 goto out_unlock; 770 } 771 entry = pmd_mkyoung(*pmd); 772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 773 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 774 update_mmu_cache_pmd(vma, addr, pmd); 775 } 776 777 goto out_unlock; 778 } 779 780 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 781 if (pfn_t_devmap(pfn)) 782 entry = pmd_mkdevmap(entry); 783 if (write) { 784 entry = pmd_mkyoung(pmd_mkdirty(entry)); 785 entry = maybe_pmd_mkwrite(entry, vma); 786 } 787 788 if (pgtable) { 789 pgtable_trans_huge_deposit(mm, pmd, pgtable); 790 mm_inc_nr_ptes(mm); 791 pgtable = NULL; 792 } 793 794 set_pmd_at(mm, addr, pmd, entry); 795 update_mmu_cache_pmd(vma, addr, pmd); 796 797 out_unlock: 798 spin_unlock(ptl); 799 if (pgtable) 800 pte_free(mm, pgtable); 801 } 802 803 /** 804 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 805 * @vmf: Structure describing the fault 806 * @pfn: pfn to insert 807 * @pgprot: page protection to use 808 * @write: whether it's a write fault 809 * 810 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 811 * also consult the vmf_insert_mixed_prot() documentation when 812 * @pgprot != @vmf->vma->vm_page_prot. 813 * 814 * Return: vm_fault_t value. 815 */ 816 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 817 pgprot_t pgprot, bool write) 818 { 819 unsigned long addr = vmf->address & PMD_MASK; 820 struct vm_area_struct *vma = vmf->vma; 821 pgtable_t pgtable = NULL; 822 823 /* 824 * If we had pmd_special, we could avoid all these restrictions, 825 * but we need to be consistent with PTEs and architectures that 826 * can't support a 'special' bit. 827 */ 828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 829 !pfn_t_devmap(pfn)); 830 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 831 (VM_PFNMAP|VM_MIXEDMAP)); 832 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 833 834 if (addr < vma->vm_start || addr >= vma->vm_end) 835 return VM_FAULT_SIGBUS; 836 837 if (arch_needs_pgtable_deposit()) { 838 pgtable = pte_alloc_one(vma->vm_mm); 839 if (!pgtable) 840 return VM_FAULT_OOM; 841 } 842 843 track_pfn_insert(vma, &pgprot, pfn); 844 845 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 846 return VM_FAULT_NOPAGE; 847 } 848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 849 850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 851 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 852 { 853 if (likely(vma->vm_flags & VM_WRITE)) 854 pud = pud_mkwrite(pud); 855 return pud; 856 } 857 858 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 859 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 860 { 861 struct mm_struct *mm = vma->vm_mm; 862 pud_t entry; 863 spinlock_t *ptl; 864 865 ptl = pud_lock(mm, pud); 866 if (!pud_none(*pud)) { 867 if (write) { 868 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 869 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 870 goto out_unlock; 871 } 872 entry = pud_mkyoung(*pud); 873 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 874 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 875 update_mmu_cache_pud(vma, addr, pud); 876 } 877 goto out_unlock; 878 } 879 880 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 881 if (pfn_t_devmap(pfn)) 882 entry = pud_mkdevmap(entry); 883 if (write) { 884 entry = pud_mkyoung(pud_mkdirty(entry)); 885 entry = maybe_pud_mkwrite(entry, vma); 886 } 887 set_pud_at(mm, addr, pud, entry); 888 update_mmu_cache_pud(vma, addr, pud); 889 890 out_unlock: 891 spin_unlock(ptl); 892 } 893 894 /** 895 * vmf_insert_pfn_pud_prot - insert a pud size pfn 896 * @vmf: Structure describing the fault 897 * @pfn: pfn to insert 898 * @pgprot: page protection to use 899 * @write: whether it's a write fault 900 * 901 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 902 * also consult the vmf_insert_mixed_prot() documentation when 903 * @pgprot != @vmf->vma->vm_page_prot. 904 * 905 * Return: vm_fault_t value. 906 */ 907 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 908 pgprot_t pgprot, bool write) 909 { 910 unsigned long addr = vmf->address & PUD_MASK; 911 struct vm_area_struct *vma = vmf->vma; 912 913 /* 914 * If we had pud_special, we could avoid all these restrictions, 915 * but we need to be consistent with PTEs and architectures that 916 * can't support a 'special' bit. 917 */ 918 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 919 !pfn_t_devmap(pfn)); 920 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 921 (VM_PFNMAP|VM_MIXEDMAP)); 922 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 923 924 if (addr < vma->vm_start || addr >= vma->vm_end) 925 return VM_FAULT_SIGBUS; 926 927 track_pfn_insert(vma, &pgprot, pfn); 928 929 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 930 return VM_FAULT_NOPAGE; 931 } 932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 933 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 934 935 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 936 pmd_t *pmd, int flags) 937 { 938 pmd_t _pmd; 939 940 _pmd = pmd_mkyoung(*pmd); 941 if (flags & FOLL_WRITE) 942 _pmd = pmd_mkdirty(_pmd); 943 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 944 pmd, _pmd, flags & FOLL_WRITE)) 945 update_mmu_cache_pmd(vma, addr, pmd); 946 } 947 948 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 949 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 950 { 951 unsigned long pfn = pmd_pfn(*pmd); 952 struct mm_struct *mm = vma->vm_mm; 953 struct page *page; 954 955 assert_spin_locked(pmd_lockptr(mm, pmd)); 956 957 /* 958 * When we COW a devmap PMD entry, we split it into PTEs, so we should 959 * not be in this function with `flags & FOLL_COW` set. 960 */ 961 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 962 963 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 964 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 965 (FOLL_PIN | FOLL_GET))) 966 return NULL; 967 968 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 969 return NULL; 970 971 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 972 /* pass */; 973 else 974 return NULL; 975 976 if (flags & FOLL_TOUCH) 977 touch_pmd(vma, addr, pmd, flags); 978 979 /* 980 * device mapped pages can only be returned if the 981 * caller will manage the page reference count. 982 */ 983 if (!(flags & (FOLL_GET | FOLL_PIN))) 984 return ERR_PTR(-EEXIST); 985 986 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 987 *pgmap = get_dev_pagemap(pfn, *pgmap); 988 if (!*pgmap) 989 return ERR_PTR(-EFAULT); 990 page = pfn_to_page(pfn); 991 if (!try_grab_page(page, flags)) 992 page = ERR_PTR(-ENOMEM); 993 994 return page; 995 } 996 997 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 999 struct vm_area_struct *vma) 1000 { 1001 spinlock_t *dst_ptl, *src_ptl; 1002 struct page *src_page; 1003 pmd_t pmd; 1004 pgtable_t pgtable = NULL; 1005 int ret = -ENOMEM; 1006 1007 /* Skip if can be re-fill on fault */ 1008 if (!vma_is_anonymous(vma)) 1009 return 0; 1010 1011 pgtable = pte_alloc_one(dst_mm); 1012 if (unlikely(!pgtable)) 1013 goto out; 1014 1015 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1016 src_ptl = pmd_lockptr(src_mm, src_pmd); 1017 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1018 1019 ret = -EAGAIN; 1020 pmd = *src_pmd; 1021 1022 /* 1023 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 1024 * does not have the VM_UFFD_WP, which means that the uffd 1025 * fork event is not enabled. 1026 */ 1027 if (!(vma->vm_flags & VM_UFFD_WP)) 1028 pmd = pmd_clear_uffd_wp(pmd); 1029 1030 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1031 if (unlikely(is_swap_pmd(pmd))) { 1032 swp_entry_t entry = pmd_to_swp_entry(pmd); 1033 1034 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1035 if (is_write_migration_entry(entry)) { 1036 make_migration_entry_read(&entry); 1037 pmd = swp_entry_to_pmd(entry); 1038 if (pmd_swp_soft_dirty(*src_pmd)) 1039 pmd = pmd_swp_mksoft_dirty(pmd); 1040 set_pmd_at(src_mm, addr, src_pmd, pmd); 1041 } 1042 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1043 mm_inc_nr_ptes(dst_mm); 1044 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1045 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1046 ret = 0; 1047 goto out_unlock; 1048 } 1049 #endif 1050 1051 if (unlikely(!pmd_trans_huge(pmd))) { 1052 pte_free(dst_mm, pgtable); 1053 goto out_unlock; 1054 } 1055 /* 1056 * When page table lock is held, the huge zero pmd should not be 1057 * under splitting since we don't split the page itself, only pmd to 1058 * a page table. 1059 */ 1060 if (is_huge_zero_pmd(pmd)) { 1061 struct page *zero_page; 1062 /* 1063 * get_huge_zero_page() will never allocate a new page here, 1064 * since we already have a zero page to copy. It just takes a 1065 * reference. 1066 */ 1067 zero_page = mm_get_huge_zero_page(dst_mm); 1068 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1069 zero_page); 1070 ret = 0; 1071 goto out_unlock; 1072 } 1073 1074 src_page = pmd_page(pmd); 1075 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1076 1077 /* 1078 * If this page is a potentially pinned page, split and retry the fault 1079 * with smaller page size. Normally this should not happen because the 1080 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1081 * best effort that the pinned pages won't be replaced by another 1082 * random page during the coming copy-on-write. 1083 */ 1084 if (unlikely(is_cow_mapping(vma->vm_flags) && 1085 atomic_read(&src_mm->has_pinned) && 1086 page_maybe_dma_pinned(src_page))) { 1087 pte_free(dst_mm, pgtable); 1088 spin_unlock(src_ptl); 1089 spin_unlock(dst_ptl); 1090 __split_huge_pmd(vma, src_pmd, addr, false, NULL); 1091 return -EAGAIN; 1092 } 1093 1094 get_page(src_page); 1095 page_dup_rmap(src_page, true); 1096 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1097 mm_inc_nr_ptes(dst_mm); 1098 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1099 1100 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1101 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1102 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1103 1104 ret = 0; 1105 out_unlock: 1106 spin_unlock(src_ptl); 1107 spin_unlock(dst_ptl); 1108 out: 1109 return ret; 1110 } 1111 1112 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1113 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1114 pud_t *pud, int flags) 1115 { 1116 pud_t _pud; 1117 1118 _pud = pud_mkyoung(*pud); 1119 if (flags & FOLL_WRITE) 1120 _pud = pud_mkdirty(_pud); 1121 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1122 pud, _pud, flags & FOLL_WRITE)) 1123 update_mmu_cache_pud(vma, addr, pud); 1124 } 1125 1126 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1127 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1128 { 1129 unsigned long pfn = pud_pfn(*pud); 1130 struct mm_struct *mm = vma->vm_mm; 1131 struct page *page; 1132 1133 assert_spin_locked(pud_lockptr(mm, pud)); 1134 1135 if (flags & FOLL_WRITE && !pud_write(*pud)) 1136 return NULL; 1137 1138 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1139 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1140 (FOLL_PIN | FOLL_GET))) 1141 return NULL; 1142 1143 if (pud_present(*pud) && pud_devmap(*pud)) 1144 /* pass */; 1145 else 1146 return NULL; 1147 1148 if (flags & FOLL_TOUCH) 1149 touch_pud(vma, addr, pud, flags); 1150 1151 /* 1152 * device mapped pages can only be returned if the 1153 * caller will manage the page reference count. 1154 * 1155 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1156 */ 1157 if (!(flags & (FOLL_GET | FOLL_PIN))) 1158 return ERR_PTR(-EEXIST); 1159 1160 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1161 *pgmap = get_dev_pagemap(pfn, *pgmap); 1162 if (!*pgmap) 1163 return ERR_PTR(-EFAULT); 1164 page = pfn_to_page(pfn); 1165 if (!try_grab_page(page, flags)) 1166 page = ERR_PTR(-ENOMEM); 1167 1168 return page; 1169 } 1170 1171 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1172 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1173 struct vm_area_struct *vma) 1174 { 1175 spinlock_t *dst_ptl, *src_ptl; 1176 pud_t pud; 1177 int ret; 1178 1179 dst_ptl = pud_lock(dst_mm, dst_pud); 1180 src_ptl = pud_lockptr(src_mm, src_pud); 1181 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1182 1183 ret = -EAGAIN; 1184 pud = *src_pud; 1185 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1186 goto out_unlock; 1187 1188 /* 1189 * When page table lock is held, the huge zero pud should not be 1190 * under splitting since we don't split the page itself, only pud to 1191 * a page table. 1192 */ 1193 if (is_huge_zero_pud(pud)) { 1194 /* No huge zero pud yet */ 1195 } 1196 1197 /* Please refer to comments in copy_huge_pmd() */ 1198 if (unlikely(is_cow_mapping(vma->vm_flags) && 1199 atomic_read(&src_mm->has_pinned) && 1200 page_maybe_dma_pinned(pud_page(pud)))) { 1201 spin_unlock(src_ptl); 1202 spin_unlock(dst_ptl); 1203 __split_huge_pud(vma, src_pud, addr); 1204 return -EAGAIN; 1205 } 1206 1207 pudp_set_wrprotect(src_mm, addr, src_pud); 1208 pud = pud_mkold(pud_wrprotect(pud)); 1209 set_pud_at(dst_mm, addr, dst_pud, pud); 1210 1211 ret = 0; 1212 out_unlock: 1213 spin_unlock(src_ptl); 1214 spin_unlock(dst_ptl); 1215 return ret; 1216 } 1217 1218 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1219 { 1220 pud_t entry; 1221 unsigned long haddr; 1222 bool write = vmf->flags & FAULT_FLAG_WRITE; 1223 1224 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1225 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1226 goto unlock; 1227 1228 entry = pud_mkyoung(orig_pud); 1229 if (write) 1230 entry = pud_mkdirty(entry); 1231 haddr = vmf->address & HPAGE_PUD_MASK; 1232 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1233 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1234 1235 unlock: 1236 spin_unlock(vmf->ptl); 1237 } 1238 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1239 1240 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1241 { 1242 pmd_t entry; 1243 unsigned long haddr; 1244 bool write = vmf->flags & FAULT_FLAG_WRITE; 1245 1246 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1247 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1248 goto unlock; 1249 1250 entry = pmd_mkyoung(orig_pmd); 1251 if (write) 1252 entry = pmd_mkdirty(entry); 1253 haddr = vmf->address & HPAGE_PMD_MASK; 1254 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1255 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1256 1257 unlock: 1258 spin_unlock(vmf->ptl); 1259 } 1260 1261 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1262 { 1263 struct vm_area_struct *vma = vmf->vma; 1264 struct page *page; 1265 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1266 1267 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1268 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1269 1270 if (is_huge_zero_pmd(orig_pmd)) 1271 goto fallback; 1272 1273 spin_lock(vmf->ptl); 1274 1275 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1276 spin_unlock(vmf->ptl); 1277 return 0; 1278 } 1279 1280 page = pmd_page(orig_pmd); 1281 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1282 1283 /* Lock page for reuse_swap_page() */ 1284 if (!trylock_page(page)) { 1285 get_page(page); 1286 spin_unlock(vmf->ptl); 1287 lock_page(page); 1288 spin_lock(vmf->ptl); 1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1290 spin_unlock(vmf->ptl); 1291 unlock_page(page); 1292 put_page(page); 1293 return 0; 1294 } 1295 put_page(page); 1296 } 1297 1298 /* 1299 * We can only reuse the page if nobody else maps the huge page or it's 1300 * part. 1301 */ 1302 if (reuse_swap_page(page, NULL)) { 1303 pmd_t entry; 1304 entry = pmd_mkyoung(orig_pmd); 1305 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1306 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1307 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1308 unlock_page(page); 1309 spin_unlock(vmf->ptl); 1310 return VM_FAULT_WRITE; 1311 } 1312 1313 unlock_page(page); 1314 spin_unlock(vmf->ptl); 1315 fallback: 1316 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1317 return VM_FAULT_FALLBACK; 1318 } 1319 1320 /* 1321 * FOLL_FORCE can write to even unwritable pmd's, but only 1322 * after we've gone through a COW cycle and they are dirty. 1323 */ 1324 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1325 { 1326 return pmd_write(pmd) || 1327 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1328 } 1329 1330 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1331 unsigned long addr, 1332 pmd_t *pmd, 1333 unsigned int flags) 1334 { 1335 struct mm_struct *mm = vma->vm_mm; 1336 struct page *page = NULL; 1337 1338 assert_spin_locked(pmd_lockptr(mm, pmd)); 1339 1340 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1341 goto out; 1342 1343 /* Avoid dumping huge zero page */ 1344 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1345 return ERR_PTR(-EFAULT); 1346 1347 /* Full NUMA hinting faults to serialise migration in fault paths */ 1348 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1349 goto out; 1350 1351 page = pmd_page(*pmd); 1352 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1353 1354 if (!try_grab_page(page, flags)) 1355 return ERR_PTR(-ENOMEM); 1356 1357 if (flags & FOLL_TOUCH) 1358 touch_pmd(vma, addr, pmd, flags); 1359 1360 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1361 /* 1362 * We don't mlock() pte-mapped THPs. This way we can avoid 1363 * leaking mlocked pages into non-VM_LOCKED VMAs. 1364 * 1365 * For anon THP: 1366 * 1367 * In most cases the pmd is the only mapping of the page as we 1368 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1369 * writable private mappings in populate_vma_page_range(). 1370 * 1371 * The only scenario when we have the page shared here is if we 1372 * mlocking read-only mapping shared over fork(). We skip 1373 * mlocking such pages. 1374 * 1375 * For file THP: 1376 * 1377 * We can expect PageDoubleMap() to be stable under page lock: 1378 * for file pages we set it in page_add_file_rmap(), which 1379 * requires page to be locked. 1380 */ 1381 1382 if (PageAnon(page) && compound_mapcount(page) != 1) 1383 goto skip_mlock; 1384 if (PageDoubleMap(page) || !page->mapping) 1385 goto skip_mlock; 1386 if (!trylock_page(page)) 1387 goto skip_mlock; 1388 if (page->mapping && !PageDoubleMap(page)) 1389 mlock_vma_page(page); 1390 unlock_page(page); 1391 } 1392 skip_mlock: 1393 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1394 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1395 1396 out: 1397 return page; 1398 } 1399 1400 /* NUMA hinting page fault entry point for trans huge pmds */ 1401 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1402 { 1403 struct vm_area_struct *vma = vmf->vma; 1404 struct anon_vma *anon_vma = NULL; 1405 struct page *page; 1406 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1407 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1408 int target_nid, last_cpupid = -1; 1409 bool page_locked; 1410 bool migrated = false; 1411 bool was_writable; 1412 int flags = 0; 1413 1414 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1415 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1416 goto out_unlock; 1417 1418 /* 1419 * If there are potential migrations, wait for completion and retry 1420 * without disrupting NUMA hinting information. Do not relock and 1421 * check_same as the page may no longer be mapped. 1422 */ 1423 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1424 page = pmd_page(*vmf->pmd); 1425 if (!get_page_unless_zero(page)) 1426 goto out_unlock; 1427 spin_unlock(vmf->ptl); 1428 put_and_wait_on_page_locked(page); 1429 goto out; 1430 } 1431 1432 page = pmd_page(pmd); 1433 BUG_ON(is_huge_zero_page(page)); 1434 page_nid = page_to_nid(page); 1435 last_cpupid = page_cpupid_last(page); 1436 count_vm_numa_event(NUMA_HINT_FAULTS); 1437 if (page_nid == this_nid) { 1438 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1439 flags |= TNF_FAULT_LOCAL; 1440 } 1441 1442 /* See similar comment in do_numa_page for explanation */ 1443 if (!pmd_savedwrite(pmd)) 1444 flags |= TNF_NO_GROUP; 1445 1446 /* 1447 * Acquire the page lock to serialise THP migrations but avoid dropping 1448 * page_table_lock if at all possible 1449 */ 1450 page_locked = trylock_page(page); 1451 target_nid = mpol_misplaced(page, vma, haddr); 1452 if (target_nid == NUMA_NO_NODE) { 1453 /* If the page was locked, there are no parallel migrations */ 1454 if (page_locked) 1455 goto clear_pmdnuma; 1456 } 1457 1458 /* Migration could have started since the pmd_trans_migrating check */ 1459 if (!page_locked) { 1460 page_nid = NUMA_NO_NODE; 1461 if (!get_page_unless_zero(page)) 1462 goto out_unlock; 1463 spin_unlock(vmf->ptl); 1464 put_and_wait_on_page_locked(page); 1465 goto out; 1466 } 1467 1468 /* 1469 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1470 * to serialises splits 1471 */ 1472 get_page(page); 1473 spin_unlock(vmf->ptl); 1474 anon_vma = page_lock_anon_vma_read(page); 1475 1476 /* Confirm the PMD did not change while page_table_lock was released */ 1477 spin_lock(vmf->ptl); 1478 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1479 unlock_page(page); 1480 put_page(page); 1481 page_nid = NUMA_NO_NODE; 1482 goto out_unlock; 1483 } 1484 1485 /* Bail if we fail to protect against THP splits for any reason */ 1486 if (unlikely(!anon_vma)) { 1487 put_page(page); 1488 page_nid = NUMA_NO_NODE; 1489 goto clear_pmdnuma; 1490 } 1491 1492 /* 1493 * Since we took the NUMA fault, we must have observed the !accessible 1494 * bit. Make sure all other CPUs agree with that, to avoid them 1495 * modifying the page we're about to migrate. 1496 * 1497 * Must be done under PTL such that we'll observe the relevant 1498 * inc_tlb_flush_pending(). 1499 * 1500 * We are not sure a pending tlb flush here is for a huge page 1501 * mapping or not. Hence use the tlb range variant 1502 */ 1503 if (mm_tlb_flush_pending(vma->vm_mm)) { 1504 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1505 /* 1506 * change_huge_pmd() released the pmd lock before 1507 * invalidating the secondary MMUs sharing the primary 1508 * MMU pagetables (with ->invalidate_range()). The 1509 * mmu_notifier_invalidate_range_end() (which 1510 * internally calls ->invalidate_range()) in 1511 * change_pmd_range() will run after us, so we can't 1512 * rely on it here and we need an explicit invalidate. 1513 */ 1514 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1515 haddr + HPAGE_PMD_SIZE); 1516 } 1517 1518 /* 1519 * Migrate the THP to the requested node, returns with page unlocked 1520 * and access rights restored. 1521 */ 1522 spin_unlock(vmf->ptl); 1523 1524 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1525 vmf->pmd, pmd, vmf->address, page, target_nid); 1526 if (migrated) { 1527 flags |= TNF_MIGRATED; 1528 page_nid = target_nid; 1529 } else 1530 flags |= TNF_MIGRATE_FAIL; 1531 1532 goto out; 1533 clear_pmdnuma: 1534 BUG_ON(!PageLocked(page)); 1535 was_writable = pmd_savedwrite(pmd); 1536 pmd = pmd_modify(pmd, vma->vm_page_prot); 1537 pmd = pmd_mkyoung(pmd); 1538 if (was_writable) 1539 pmd = pmd_mkwrite(pmd); 1540 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1541 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1542 unlock_page(page); 1543 out_unlock: 1544 spin_unlock(vmf->ptl); 1545 1546 out: 1547 if (anon_vma) 1548 page_unlock_anon_vma_read(anon_vma); 1549 1550 if (page_nid != NUMA_NO_NODE) 1551 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1552 flags); 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * Return true if we do MADV_FREE successfully on entire pmd page. 1559 * Otherwise, return false. 1560 */ 1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1562 pmd_t *pmd, unsigned long addr, unsigned long next) 1563 { 1564 spinlock_t *ptl; 1565 pmd_t orig_pmd; 1566 struct page *page; 1567 struct mm_struct *mm = tlb->mm; 1568 bool ret = false; 1569 1570 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1571 1572 ptl = pmd_trans_huge_lock(pmd, vma); 1573 if (!ptl) 1574 goto out_unlocked; 1575 1576 orig_pmd = *pmd; 1577 if (is_huge_zero_pmd(orig_pmd)) 1578 goto out; 1579 1580 if (unlikely(!pmd_present(orig_pmd))) { 1581 VM_BUG_ON(thp_migration_supported() && 1582 !is_pmd_migration_entry(orig_pmd)); 1583 goto out; 1584 } 1585 1586 page = pmd_page(orig_pmd); 1587 /* 1588 * If other processes are mapping this page, we couldn't discard 1589 * the page unless they all do MADV_FREE so let's skip the page. 1590 */ 1591 if (page_mapcount(page) != 1) 1592 goto out; 1593 1594 if (!trylock_page(page)) 1595 goto out; 1596 1597 /* 1598 * If user want to discard part-pages of THP, split it so MADV_FREE 1599 * will deactivate only them. 1600 */ 1601 if (next - addr != HPAGE_PMD_SIZE) { 1602 get_page(page); 1603 spin_unlock(ptl); 1604 split_huge_page(page); 1605 unlock_page(page); 1606 put_page(page); 1607 goto out_unlocked; 1608 } 1609 1610 if (PageDirty(page)) 1611 ClearPageDirty(page); 1612 unlock_page(page); 1613 1614 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1615 pmdp_invalidate(vma, addr, pmd); 1616 orig_pmd = pmd_mkold(orig_pmd); 1617 orig_pmd = pmd_mkclean(orig_pmd); 1618 1619 set_pmd_at(mm, addr, pmd, orig_pmd); 1620 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1621 } 1622 1623 mark_page_lazyfree(page); 1624 ret = true; 1625 out: 1626 spin_unlock(ptl); 1627 out_unlocked: 1628 return ret; 1629 } 1630 1631 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1632 { 1633 pgtable_t pgtable; 1634 1635 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1636 pte_free(mm, pgtable); 1637 mm_dec_nr_ptes(mm); 1638 } 1639 1640 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1641 pmd_t *pmd, unsigned long addr) 1642 { 1643 pmd_t orig_pmd; 1644 spinlock_t *ptl; 1645 1646 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1647 1648 ptl = __pmd_trans_huge_lock(pmd, vma); 1649 if (!ptl) 1650 return 0; 1651 /* 1652 * For architectures like ppc64 we look at deposited pgtable 1653 * when calling pmdp_huge_get_and_clear. So do the 1654 * pgtable_trans_huge_withdraw after finishing pmdp related 1655 * operations. 1656 */ 1657 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1658 tlb->fullmm); 1659 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1660 if (vma_is_special_huge(vma)) { 1661 if (arch_needs_pgtable_deposit()) 1662 zap_deposited_table(tlb->mm, pmd); 1663 spin_unlock(ptl); 1664 if (is_huge_zero_pmd(orig_pmd)) 1665 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1666 } else if (is_huge_zero_pmd(orig_pmd)) { 1667 zap_deposited_table(tlb->mm, pmd); 1668 spin_unlock(ptl); 1669 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1670 } else { 1671 struct page *page = NULL; 1672 int flush_needed = 1; 1673 1674 if (pmd_present(orig_pmd)) { 1675 page = pmd_page(orig_pmd); 1676 page_remove_rmap(page, true); 1677 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1678 VM_BUG_ON_PAGE(!PageHead(page), page); 1679 } else if (thp_migration_supported()) { 1680 swp_entry_t entry; 1681 1682 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1683 entry = pmd_to_swp_entry(orig_pmd); 1684 page = pfn_to_page(swp_offset(entry)); 1685 flush_needed = 0; 1686 } else 1687 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1688 1689 if (PageAnon(page)) { 1690 zap_deposited_table(tlb->mm, pmd); 1691 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1692 } else { 1693 if (arch_needs_pgtable_deposit()) 1694 zap_deposited_table(tlb->mm, pmd); 1695 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1696 } 1697 1698 spin_unlock(ptl); 1699 if (flush_needed) 1700 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1701 } 1702 return 1; 1703 } 1704 1705 #ifndef pmd_move_must_withdraw 1706 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1707 spinlock_t *old_pmd_ptl, 1708 struct vm_area_struct *vma) 1709 { 1710 /* 1711 * With split pmd lock we also need to move preallocated 1712 * PTE page table if new_pmd is on different PMD page table. 1713 * 1714 * We also don't deposit and withdraw tables for file pages. 1715 */ 1716 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1717 } 1718 #endif 1719 1720 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1721 { 1722 #ifdef CONFIG_MEM_SOFT_DIRTY 1723 if (unlikely(is_pmd_migration_entry(pmd))) 1724 pmd = pmd_swp_mksoft_dirty(pmd); 1725 else if (pmd_present(pmd)) 1726 pmd = pmd_mksoft_dirty(pmd); 1727 #endif 1728 return pmd; 1729 } 1730 1731 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1732 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1733 { 1734 spinlock_t *old_ptl, *new_ptl; 1735 pmd_t pmd; 1736 struct mm_struct *mm = vma->vm_mm; 1737 bool force_flush = false; 1738 1739 /* 1740 * The destination pmd shouldn't be established, free_pgtables() 1741 * should have release it. 1742 */ 1743 if (WARN_ON(!pmd_none(*new_pmd))) { 1744 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1745 return false; 1746 } 1747 1748 /* 1749 * We don't have to worry about the ordering of src and dst 1750 * ptlocks because exclusive mmap_lock prevents deadlock. 1751 */ 1752 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1753 if (old_ptl) { 1754 new_ptl = pmd_lockptr(mm, new_pmd); 1755 if (new_ptl != old_ptl) 1756 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1757 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1758 if (pmd_present(pmd)) 1759 force_flush = true; 1760 VM_BUG_ON(!pmd_none(*new_pmd)); 1761 1762 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1763 pgtable_t pgtable; 1764 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1765 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1766 } 1767 pmd = move_soft_dirty_pmd(pmd); 1768 set_pmd_at(mm, new_addr, new_pmd, pmd); 1769 if (force_flush) 1770 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1771 if (new_ptl != old_ptl) 1772 spin_unlock(new_ptl); 1773 spin_unlock(old_ptl); 1774 return true; 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * Returns 1781 * - 0 if PMD could not be locked 1782 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1783 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1784 */ 1785 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1786 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1787 { 1788 struct mm_struct *mm = vma->vm_mm; 1789 spinlock_t *ptl; 1790 pmd_t entry; 1791 bool preserve_write; 1792 int ret; 1793 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1794 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1795 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1796 1797 ptl = __pmd_trans_huge_lock(pmd, vma); 1798 if (!ptl) 1799 return 0; 1800 1801 preserve_write = prot_numa && pmd_write(*pmd); 1802 ret = 1; 1803 1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1805 if (is_swap_pmd(*pmd)) { 1806 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1807 1808 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1809 if (is_write_migration_entry(entry)) { 1810 pmd_t newpmd; 1811 /* 1812 * A protection check is difficult so 1813 * just be safe and disable write 1814 */ 1815 make_migration_entry_read(&entry); 1816 newpmd = swp_entry_to_pmd(entry); 1817 if (pmd_swp_soft_dirty(*pmd)) 1818 newpmd = pmd_swp_mksoft_dirty(newpmd); 1819 set_pmd_at(mm, addr, pmd, newpmd); 1820 } 1821 goto unlock; 1822 } 1823 #endif 1824 1825 /* 1826 * Avoid trapping faults against the zero page. The read-only 1827 * data is likely to be read-cached on the local CPU and 1828 * local/remote hits to the zero page are not interesting. 1829 */ 1830 if (prot_numa && is_huge_zero_pmd(*pmd)) 1831 goto unlock; 1832 1833 if (prot_numa && pmd_protnone(*pmd)) 1834 goto unlock; 1835 1836 /* 1837 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1838 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1839 * which is also under mmap_read_lock(mm): 1840 * 1841 * CPU0: CPU1: 1842 * change_huge_pmd(prot_numa=1) 1843 * pmdp_huge_get_and_clear_notify() 1844 * madvise_dontneed() 1845 * zap_pmd_range() 1846 * pmd_trans_huge(*pmd) == 0 (without ptl) 1847 * // skip the pmd 1848 * set_pmd_at(); 1849 * // pmd is re-established 1850 * 1851 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1852 * which may break userspace. 1853 * 1854 * pmdp_invalidate() is required to make sure we don't miss 1855 * dirty/young flags set by hardware. 1856 */ 1857 entry = pmdp_invalidate(vma, addr, pmd); 1858 1859 entry = pmd_modify(entry, newprot); 1860 if (preserve_write) 1861 entry = pmd_mk_savedwrite(entry); 1862 if (uffd_wp) { 1863 entry = pmd_wrprotect(entry); 1864 entry = pmd_mkuffd_wp(entry); 1865 } else if (uffd_wp_resolve) { 1866 /* 1867 * Leave the write bit to be handled by PF interrupt 1868 * handler, then things like COW could be properly 1869 * handled. 1870 */ 1871 entry = pmd_clear_uffd_wp(entry); 1872 } 1873 ret = HPAGE_PMD_NR; 1874 set_pmd_at(mm, addr, pmd, entry); 1875 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1876 unlock: 1877 spin_unlock(ptl); 1878 return ret; 1879 } 1880 1881 /* 1882 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1883 * 1884 * Note that if it returns page table lock pointer, this routine returns without 1885 * unlocking page table lock. So callers must unlock it. 1886 */ 1887 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1888 { 1889 spinlock_t *ptl; 1890 ptl = pmd_lock(vma->vm_mm, pmd); 1891 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1892 pmd_devmap(*pmd))) 1893 return ptl; 1894 spin_unlock(ptl); 1895 return NULL; 1896 } 1897 1898 /* 1899 * Returns true if a given pud maps a thp, false otherwise. 1900 * 1901 * Note that if it returns true, this routine returns without unlocking page 1902 * table lock. So callers must unlock it. 1903 */ 1904 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1905 { 1906 spinlock_t *ptl; 1907 1908 ptl = pud_lock(vma->vm_mm, pud); 1909 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1910 return ptl; 1911 spin_unlock(ptl); 1912 return NULL; 1913 } 1914 1915 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1916 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1917 pud_t *pud, unsigned long addr) 1918 { 1919 spinlock_t *ptl; 1920 1921 ptl = __pud_trans_huge_lock(pud, vma); 1922 if (!ptl) 1923 return 0; 1924 /* 1925 * For architectures like ppc64 we look at deposited pgtable 1926 * when calling pudp_huge_get_and_clear. So do the 1927 * pgtable_trans_huge_withdraw after finishing pudp related 1928 * operations. 1929 */ 1930 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1931 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1932 if (vma_is_special_huge(vma)) { 1933 spin_unlock(ptl); 1934 /* No zero page support yet */ 1935 } else { 1936 /* No support for anonymous PUD pages yet */ 1937 BUG(); 1938 } 1939 return 1; 1940 } 1941 1942 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1943 unsigned long haddr) 1944 { 1945 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1946 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1947 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1948 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1949 1950 count_vm_event(THP_SPLIT_PUD); 1951 1952 pudp_huge_clear_flush_notify(vma, haddr, pud); 1953 } 1954 1955 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1956 unsigned long address) 1957 { 1958 spinlock_t *ptl; 1959 struct mmu_notifier_range range; 1960 1961 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1962 address & HPAGE_PUD_MASK, 1963 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1964 mmu_notifier_invalidate_range_start(&range); 1965 ptl = pud_lock(vma->vm_mm, pud); 1966 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1967 goto out; 1968 __split_huge_pud_locked(vma, pud, range.start); 1969 1970 out: 1971 spin_unlock(ptl); 1972 /* 1973 * No need to double call mmu_notifier->invalidate_range() callback as 1974 * the above pudp_huge_clear_flush_notify() did already call it. 1975 */ 1976 mmu_notifier_invalidate_range_only_end(&range); 1977 } 1978 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1979 1980 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1981 unsigned long haddr, pmd_t *pmd) 1982 { 1983 struct mm_struct *mm = vma->vm_mm; 1984 pgtable_t pgtable; 1985 pmd_t _pmd; 1986 int i; 1987 1988 /* 1989 * Leave pmd empty until pte is filled note that it is fine to delay 1990 * notification until mmu_notifier_invalidate_range_end() as we are 1991 * replacing a zero pmd write protected page with a zero pte write 1992 * protected page. 1993 * 1994 * See Documentation/vm/mmu_notifier.rst 1995 */ 1996 pmdp_huge_clear_flush(vma, haddr, pmd); 1997 1998 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1999 pmd_populate(mm, &_pmd, pgtable); 2000 2001 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2002 pte_t *pte, entry; 2003 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2004 entry = pte_mkspecial(entry); 2005 pte = pte_offset_map(&_pmd, haddr); 2006 VM_BUG_ON(!pte_none(*pte)); 2007 set_pte_at(mm, haddr, pte, entry); 2008 pte_unmap(pte); 2009 } 2010 smp_wmb(); /* make pte visible before pmd */ 2011 pmd_populate(mm, pmd, pgtable); 2012 } 2013 2014 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2015 unsigned long haddr, bool freeze) 2016 { 2017 struct mm_struct *mm = vma->vm_mm; 2018 struct page *page; 2019 pgtable_t pgtable; 2020 pmd_t old_pmd, _pmd; 2021 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2022 unsigned long addr; 2023 int i; 2024 2025 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2026 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2027 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2028 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2029 && !pmd_devmap(*pmd)); 2030 2031 count_vm_event(THP_SPLIT_PMD); 2032 2033 if (!vma_is_anonymous(vma)) { 2034 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2035 /* 2036 * We are going to unmap this huge page. So 2037 * just go ahead and zap it 2038 */ 2039 if (arch_needs_pgtable_deposit()) 2040 zap_deposited_table(mm, pmd); 2041 if (vma_is_special_huge(vma)) 2042 return; 2043 page = pmd_page(_pmd); 2044 if (!PageDirty(page) && pmd_dirty(_pmd)) 2045 set_page_dirty(page); 2046 if (!PageReferenced(page) && pmd_young(_pmd)) 2047 SetPageReferenced(page); 2048 page_remove_rmap(page, true); 2049 put_page(page); 2050 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2051 return; 2052 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) { 2053 /* 2054 * FIXME: Do we want to invalidate secondary mmu by calling 2055 * mmu_notifier_invalidate_range() see comments below inside 2056 * __split_huge_pmd() ? 2057 * 2058 * We are going from a zero huge page write protected to zero 2059 * small page also write protected so it does not seems useful 2060 * to invalidate secondary mmu at this time. 2061 */ 2062 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2063 } 2064 2065 /* 2066 * Up to this point the pmd is present and huge and userland has the 2067 * whole access to the hugepage during the split (which happens in 2068 * place). If we overwrite the pmd with the not-huge version pointing 2069 * to the pte here (which of course we could if all CPUs were bug 2070 * free), userland could trigger a small page size TLB miss on the 2071 * small sized TLB while the hugepage TLB entry is still established in 2072 * the huge TLB. Some CPU doesn't like that. 2073 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2074 * 383 on page 105. Intel should be safe but is also warns that it's 2075 * only safe if the permission and cache attributes of the two entries 2076 * loaded in the two TLB is identical (which should be the case here). 2077 * But it is generally safer to never allow small and huge TLB entries 2078 * for the same virtual address to be loaded simultaneously. So instead 2079 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2080 * current pmd notpresent (atomically because here the pmd_trans_huge 2081 * must remain set at all times on the pmd until the split is complete 2082 * for this pmd), then we flush the SMP TLB and finally we write the 2083 * non-huge version of the pmd entry with pmd_populate. 2084 */ 2085 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2086 2087 pmd_migration = is_pmd_migration_entry(old_pmd); 2088 if (unlikely(pmd_migration)) { 2089 swp_entry_t entry; 2090 2091 entry = pmd_to_swp_entry(old_pmd); 2092 page = pfn_to_page(swp_offset(entry)); 2093 write = is_write_migration_entry(entry); 2094 young = false; 2095 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2096 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2097 } else { 2098 page = pmd_page(old_pmd); 2099 if (pmd_dirty(old_pmd)) 2100 SetPageDirty(page); 2101 write = pmd_write(old_pmd); 2102 young = pmd_young(old_pmd); 2103 soft_dirty = pmd_soft_dirty(old_pmd); 2104 uffd_wp = pmd_uffd_wp(old_pmd); 2105 } 2106 VM_BUG_ON_PAGE(!page_count(page), page); 2107 page_ref_add(page, HPAGE_PMD_NR - 1); 2108 2109 /* 2110 * Withdraw the table only after we mark the pmd entry invalid. 2111 * This's critical for some architectures (Power). 2112 */ 2113 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2114 pmd_populate(mm, &_pmd, pgtable); 2115 2116 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2117 pte_t entry, *pte; 2118 /* 2119 * Note that NUMA hinting access restrictions are not 2120 * transferred to avoid any possibility of altering 2121 * permissions across VMAs. 2122 */ 2123 if (freeze || pmd_migration) { 2124 swp_entry_t swp_entry; 2125 swp_entry = make_migration_entry(page + i, write); 2126 entry = swp_entry_to_pte(swp_entry); 2127 if (soft_dirty) 2128 entry = pte_swp_mksoft_dirty(entry); 2129 if (uffd_wp) 2130 entry = pte_swp_mkuffd_wp(entry); 2131 } else { 2132 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2133 entry = maybe_mkwrite(entry, vma); 2134 if (!write) 2135 entry = pte_wrprotect(entry); 2136 if (!young) 2137 entry = pte_mkold(entry); 2138 if (soft_dirty) 2139 entry = pte_mksoft_dirty(entry); 2140 if (uffd_wp) 2141 entry = pte_mkuffd_wp(entry); 2142 } 2143 pte = pte_offset_map(&_pmd, addr); 2144 BUG_ON(!pte_none(*pte)); 2145 set_pte_at(mm, addr, pte, entry); 2146 if (!pmd_migration) 2147 atomic_inc(&page[i]._mapcount); 2148 pte_unmap(pte); 2149 } 2150 2151 if (!pmd_migration) { 2152 /* 2153 * Set PG_double_map before dropping compound_mapcount to avoid 2154 * false-negative page_mapped(). 2155 */ 2156 if (compound_mapcount(page) > 1 && 2157 !TestSetPageDoubleMap(page)) { 2158 for (i = 0; i < HPAGE_PMD_NR; i++) 2159 atomic_inc(&page[i]._mapcount); 2160 } 2161 2162 lock_page_memcg(page); 2163 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2164 /* Last compound_mapcount is gone. */ 2165 __dec_lruvec_page_state(page, NR_ANON_THPS); 2166 if (TestClearPageDoubleMap(page)) { 2167 /* No need in mapcount reference anymore */ 2168 for (i = 0; i < HPAGE_PMD_NR; i++) 2169 atomic_dec(&page[i]._mapcount); 2170 } 2171 } 2172 unlock_page_memcg(page); 2173 } 2174 2175 smp_wmb(); /* make pte visible before pmd */ 2176 pmd_populate(mm, pmd, pgtable); 2177 2178 if (freeze) { 2179 for (i = 0; i < HPAGE_PMD_NR; i++) { 2180 page_remove_rmap(page + i, false); 2181 put_page(page + i); 2182 } 2183 } 2184 } 2185 2186 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2187 unsigned long address, bool freeze, struct page *page) 2188 { 2189 spinlock_t *ptl; 2190 struct mmu_notifier_range range; 2191 bool was_locked = false; 2192 pmd_t _pmd; 2193 2194 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2195 address & HPAGE_PMD_MASK, 2196 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2197 mmu_notifier_invalidate_range_start(&range); 2198 ptl = pmd_lock(vma->vm_mm, pmd); 2199 2200 /* 2201 * If caller asks to setup a migration entries, we need a page to check 2202 * pmd against. Otherwise we can end up replacing wrong page. 2203 */ 2204 VM_BUG_ON(freeze && !page); 2205 if (page) { 2206 VM_WARN_ON_ONCE(!PageLocked(page)); 2207 was_locked = true; 2208 if (page != pmd_page(*pmd)) 2209 goto out; 2210 } 2211 2212 repeat: 2213 if (pmd_trans_huge(*pmd)) { 2214 if (!page) { 2215 page = pmd_page(*pmd); 2216 if (unlikely(!trylock_page(page))) { 2217 get_page(page); 2218 _pmd = *pmd; 2219 spin_unlock(ptl); 2220 lock_page(page); 2221 spin_lock(ptl); 2222 if (unlikely(!pmd_same(*pmd, _pmd))) { 2223 unlock_page(page); 2224 put_page(page); 2225 page = NULL; 2226 goto repeat; 2227 } 2228 put_page(page); 2229 } 2230 } 2231 if (PageMlocked(page)) 2232 clear_page_mlock(page); 2233 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2234 goto out; 2235 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2236 out: 2237 spin_unlock(ptl); 2238 if (!was_locked && page) 2239 unlock_page(page); 2240 /* 2241 * No need to double call mmu_notifier->invalidate_range() callback. 2242 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2243 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2244 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2245 * fault will trigger a flush_notify before pointing to a new page 2246 * (it is fine if the secondary mmu keeps pointing to the old zero 2247 * page in the meantime) 2248 * 3) Split a huge pmd into pte pointing to the same page. No need 2249 * to invalidate secondary tlb entry they are all still valid. 2250 * any further changes to individual pte will notify. So no need 2251 * to call mmu_notifier->invalidate_range() 2252 */ 2253 mmu_notifier_invalidate_range_only_end(&range); 2254 } 2255 2256 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2257 bool freeze, struct page *page) 2258 { 2259 pgd_t *pgd; 2260 p4d_t *p4d; 2261 pud_t *pud; 2262 pmd_t *pmd; 2263 2264 pgd = pgd_offset(vma->vm_mm, address); 2265 if (!pgd_present(*pgd)) 2266 return; 2267 2268 p4d = p4d_offset(pgd, address); 2269 if (!p4d_present(*p4d)) 2270 return; 2271 2272 pud = pud_offset(p4d, address); 2273 if (!pud_present(*pud)) 2274 return; 2275 2276 pmd = pmd_offset(pud, address); 2277 2278 __split_huge_pmd(vma, pmd, address, freeze, page); 2279 } 2280 2281 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2282 unsigned long start, 2283 unsigned long end, 2284 long adjust_next) 2285 { 2286 /* 2287 * If the new start address isn't hpage aligned and it could 2288 * previously contain an hugepage: check if we need to split 2289 * an huge pmd. 2290 */ 2291 if (start & ~HPAGE_PMD_MASK && 2292 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2293 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2294 split_huge_pmd_address(vma, start, false, NULL); 2295 2296 /* 2297 * If the new end address isn't hpage aligned and it could 2298 * previously contain an hugepage: check if we need to split 2299 * an huge pmd. 2300 */ 2301 if (end & ~HPAGE_PMD_MASK && 2302 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2303 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2304 split_huge_pmd_address(vma, end, false, NULL); 2305 2306 /* 2307 * If we're also updating the vma->vm_next->vm_start, if the new 2308 * vm_next->vm_start isn't hpage aligned and it could previously 2309 * contain an hugepage: check if we need to split an huge pmd. 2310 */ 2311 if (adjust_next > 0) { 2312 struct vm_area_struct *next = vma->vm_next; 2313 unsigned long nstart = next->vm_start; 2314 nstart += adjust_next; 2315 if (nstart & ~HPAGE_PMD_MASK && 2316 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2317 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2318 split_huge_pmd_address(next, nstart, false, NULL); 2319 } 2320 } 2321 2322 static void unmap_page(struct page *page) 2323 { 2324 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2325 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2326 bool unmap_success; 2327 2328 VM_BUG_ON_PAGE(!PageHead(page), page); 2329 2330 if (PageAnon(page)) 2331 ttu_flags |= TTU_SPLIT_FREEZE; 2332 2333 unmap_success = try_to_unmap(page, ttu_flags); 2334 VM_BUG_ON_PAGE(!unmap_success, page); 2335 } 2336 2337 static void remap_page(struct page *page, unsigned int nr) 2338 { 2339 int i; 2340 if (PageTransHuge(page)) { 2341 remove_migration_ptes(page, page, true); 2342 } else { 2343 for (i = 0; i < nr; i++) 2344 remove_migration_ptes(page + i, page + i, true); 2345 } 2346 } 2347 2348 static void __split_huge_page_tail(struct page *head, int tail, 2349 struct lruvec *lruvec, struct list_head *list) 2350 { 2351 struct page *page_tail = head + tail; 2352 2353 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2354 2355 /* 2356 * Clone page flags before unfreezing refcount. 2357 * 2358 * After successful get_page_unless_zero() might follow flags change, 2359 * for exmaple lock_page() which set PG_waiters. 2360 */ 2361 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2362 page_tail->flags |= (head->flags & 2363 ((1L << PG_referenced) | 2364 (1L << PG_swapbacked) | 2365 (1L << PG_swapcache) | 2366 (1L << PG_mlocked) | 2367 (1L << PG_uptodate) | 2368 (1L << PG_active) | 2369 (1L << PG_workingset) | 2370 (1L << PG_locked) | 2371 (1L << PG_unevictable) | 2372 #ifdef CONFIG_64BIT 2373 (1L << PG_arch_2) | 2374 #endif 2375 (1L << PG_dirty))); 2376 2377 /* ->mapping in first tail page is compound_mapcount */ 2378 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2379 page_tail); 2380 page_tail->mapping = head->mapping; 2381 page_tail->index = head->index + tail; 2382 2383 /* Page flags must be visible before we make the page non-compound. */ 2384 smp_wmb(); 2385 2386 /* 2387 * Clear PageTail before unfreezing page refcount. 2388 * 2389 * After successful get_page_unless_zero() might follow put_page() 2390 * which needs correct compound_head(). 2391 */ 2392 clear_compound_head(page_tail); 2393 2394 /* Finally unfreeze refcount. Additional reference from page cache. */ 2395 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2396 PageSwapCache(head))); 2397 2398 if (page_is_young(head)) 2399 set_page_young(page_tail); 2400 if (page_is_idle(head)) 2401 set_page_idle(page_tail); 2402 2403 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2404 2405 /* 2406 * always add to the tail because some iterators expect new 2407 * pages to show after the currently processed elements - e.g. 2408 * migrate_pages 2409 */ 2410 lru_add_page_tail(head, page_tail, lruvec, list); 2411 } 2412 2413 static void __split_huge_page(struct page *page, struct list_head *list, 2414 pgoff_t end, unsigned long flags) 2415 { 2416 struct page *head = compound_head(page); 2417 pg_data_t *pgdat = page_pgdat(head); 2418 struct lruvec *lruvec; 2419 struct address_space *swap_cache = NULL; 2420 unsigned long offset = 0; 2421 unsigned int nr = thp_nr_pages(head); 2422 int i; 2423 2424 lruvec = mem_cgroup_page_lruvec(head, pgdat); 2425 2426 /* complete memcg works before add pages to LRU */ 2427 mem_cgroup_split_huge_fixup(head); 2428 2429 if (PageAnon(head) && PageSwapCache(head)) { 2430 swp_entry_t entry = { .val = page_private(head) }; 2431 2432 offset = swp_offset(entry); 2433 swap_cache = swap_address_space(entry); 2434 xa_lock(&swap_cache->i_pages); 2435 } 2436 2437 for (i = nr - 1; i >= 1; i--) { 2438 __split_huge_page_tail(head, i, lruvec, list); 2439 /* Some pages can be beyond i_size: drop them from page cache */ 2440 if (head[i].index >= end) { 2441 ClearPageDirty(head + i); 2442 __delete_from_page_cache(head + i, NULL); 2443 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2444 shmem_uncharge(head->mapping->host, 1); 2445 put_page(head + i); 2446 } else if (!PageAnon(page)) { 2447 __xa_store(&head->mapping->i_pages, head[i].index, 2448 head + i, 0); 2449 } else if (swap_cache) { 2450 __xa_store(&swap_cache->i_pages, offset + i, 2451 head + i, 0); 2452 } 2453 } 2454 2455 ClearPageCompound(head); 2456 2457 split_page_owner(head, nr); 2458 2459 /* See comment in __split_huge_page_tail() */ 2460 if (PageAnon(head)) { 2461 /* Additional pin to swap cache */ 2462 if (PageSwapCache(head)) { 2463 page_ref_add(head, 2); 2464 xa_unlock(&swap_cache->i_pages); 2465 } else { 2466 page_ref_inc(head); 2467 } 2468 } else { 2469 /* Additional pin to page cache */ 2470 page_ref_add(head, 2); 2471 xa_unlock(&head->mapping->i_pages); 2472 } 2473 2474 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 2475 2476 remap_page(head, nr); 2477 2478 if (PageSwapCache(head)) { 2479 swp_entry_t entry = { .val = page_private(head) }; 2480 2481 split_swap_cluster(entry); 2482 } 2483 2484 for (i = 0; i < nr; i++) { 2485 struct page *subpage = head + i; 2486 if (subpage == page) 2487 continue; 2488 unlock_page(subpage); 2489 2490 /* 2491 * Subpages may be freed if there wasn't any mapping 2492 * like if add_to_swap() is running on a lru page that 2493 * had its mapping zapped. And freeing these pages 2494 * requires taking the lru_lock so we do the put_page 2495 * of the tail pages after the split is complete. 2496 */ 2497 put_page(subpage); 2498 } 2499 } 2500 2501 int total_mapcount(struct page *page) 2502 { 2503 int i, compound, nr, ret; 2504 2505 VM_BUG_ON_PAGE(PageTail(page), page); 2506 2507 if (likely(!PageCompound(page))) 2508 return atomic_read(&page->_mapcount) + 1; 2509 2510 compound = compound_mapcount(page); 2511 nr = compound_nr(page); 2512 if (PageHuge(page)) 2513 return compound; 2514 ret = compound; 2515 for (i = 0; i < nr; i++) 2516 ret += atomic_read(&page[i]._mapcount) + 1; 2517 /* File pages has compound_mapcount included in _mapcount */ 2518 if (!PageAnon(page)) 2519 return ret - compound * nr; 2520 if (PageDoubleMap(page)) 2521 ret -= nr; 2522 return ret; 2523 } 2524 2525 /* 2526 * This calculates accurately how many mappings a transparent hugepage 2527 * has (unlike page_mapcount() which isn't fully accurate). This full 2528 * accuracy is primarily needed to know if copy-on-write faults can 2529 * reuse the page and change the mapping to read-write instead of 2530 * copying them. At the same time this returns the total_mapcount too. 2531 * 2532 * The function returns the highest mapcount any one of the subpages 2533 * has. If the return value is one, even if different processes are 2534 * mapping different subpages of the transparent hugepage, they can 2535 * all reuse it, because each process is reusing a different subpage. 2536 * 2537 * The total_mapcount is instead counting all virtual mappings of the 2538 * subpages. If the total_mapcount is equal to "one", it tells the 2539 * caller all mappings belong to the same "mm" and in turn the 2540 * anon_vma of the transparent hugepage can become the vma->anon_vma 2541 * local one as no other process may be mapping any of the subpages. 2542 * 2543 * It would be more accurate to replace page_mapcount() with 2544 * page_trans_huge_mapcount(), however we only use 2545 * page_trans_huge_mapcount() in the copy-on-write faults where we 2546 * need full accuracy to avoid breaking page pinning, because 2547 * page_trans_huge_mapcount() is slower than page_mapcount(). 2548 */ 2549 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2550 { 2551 int i, ret, _total_mapcount, mapcount; 2552 2553 /* hugetlbfs shouldn't call it */ 2554 VM_BUG_ON_PAGE(PageHuge(page), page); 2555 2556 if (likely(!PageTransCompound(page))) { 2557 mapcount = atomic_read(&page->_mapcount) + 1; 2558 if (total_mapcount) 2559 *total_mapcount = mapcount; 2560 return mapcount; 2561 } 2562 2563 page = compound_head(page); 2564 2565 _total_mapcount = ret = 0; 2566 for (i = 0; i < thp_nr_pages(page); i++) { 2567 mapcount = atomic_read(&page[i]._mapcount) + 1; 2568 ret = max(ret, mapcount); 2569 _total_mapcount += mapcount; 2570 } 2571 if (PageDoubleMap(page)) { 2572 ret -= 1; 2573 _total_mapcount -= thp_nr_pages(page); 2574 } 2575 mapcount = compound_mapcount(page); 2576 ret += mapcount; 2577 _total_mapcount += mapcount; 2578 if (total_mapcount) 2579 *total_mapcount = _total_mapcount; 2580 return ret; 2581 } 2582 2583 /* Racy check whether the huge page can be split */ 2584 bool can_split_huge_page(struct page *page, int *pextra_pins) 2585 { 2586 int extra_pins; 2587 2588 /* Additional pins from page cache */ 2589 if (PageAnon(page)) 2590 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2591 else 2592 extra_pins = thp_nr_pages(page); 2593 if (pextra_pins) 2594 *pextra_pins = extra_pins; 2595 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2596 } 2597 2598 /* 2599 * This function splits huge page into normal pages. @page can point to any 2600 * subpage of huge page to split. Split doesn't change the position of @page. 2601 * 2602 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2603 * The huge page must be locked. 2604 * 2605 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2606 * 2607 * Both head page and tail pages will inherit mapping, flags, and so on from 2608 * the hugepage. 2609 * 2610 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2611 * they are not mapped. 2612 * 2613 * Returns 0 if the hugepage is split successfully. 2614 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2615 * us. 2616 */ 2617 int split_huge_page_to_list(struct page *page, struct list_head *list) 2618 { 2619 struct page *head = compound_head(page); 2620 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2621 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2622 struct anon_vma *anon_vma = NULL; 2623 struct address_space *mapping = NULL; 2624 int count, mapcount, extra_pins, ret; 2625 unsigned long flags; 2626 pgoff_t end; 2627 2628 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2629 VM_BUG_ON_PAGE(!PageLocked(head), head); 2630 VM_BUG_ON_PAGE(!PageCompound(head), head); 2631 2632 if (PageWriteback(head)) 2633 return -EBUSY; 2634 2635 if (PageAnon(head)) { 2636 /* 2637 * The caller does not necessarily hold an mmap_lock that would 2638 * prevent the anon_vma disappearing so we first we take a 2639 * reference to it and then lock the anon_vma for write. This 2640 * is similar to page_lock_anon_vma_read except the write lock 2641 * is taken to serialise against parallel split or collapse 2642 * operations. 2643 */ 2644 anon_vma = page_get_anon_vma(head); 2645 if (!anon_vma) { 2646 ret = -EBUSY; 2647 goto out; 2648 } 2649 end = -1; 2650 mapping = NULL; 2651 anon_vma_lock_write(anon_vma); 2652 } else { 2653 mapping = head->mapping; 2654 2655 /* Truncated ? */ 2656 if (!mapping) { 2657 ret = -EBUSY; 2658 goto out; 2659 } 2660 2661 anon_vma = NULL; 2662 i_mmap_lock_read(mapping); 2663 2664 /* 2665 *__split_huge_page() may need to trim off pages beyond EOF: 2666 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2667 * which cannot be nested inside the page tree lock. So note 2668 * end now: i_size itself may be changed at any moment, but 2669 * head page lock is good enough to serialize the trimming. 2670 */ 2671 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2672 } 2673 2674 /* 2675 * Racy check if we can split the page, before unmap_page() will 2676 * split PMDs 2677 */ 2678 if (!can_split_huge_page(head, &extra_pins)) { 2679 ret = -EBUSY; 2680 goto out_unlock; 2681 } 2682 2683 unmap_page(head); 2684 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2685 2686 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2687 spin_lock_irqsave(&pgdata->lru_lock, flags); 2688 2689 if (mapping) { 2690 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2691 2692 /* 2693 * Check if the head page is present in page cache. 2694 * We assume all tail are present too, if head is there. 2695 */ 2696 xa_lock(&mapping->i_pages); 2697 if (xas_load(&xas) != head) 2698 goto fail; 2699 } 2700 2701 /* Prevent deferred_split_scan() touching ->_refcount */ 2702 spin_lock(&ds_queue->split_queue_lock); 2703 count = page_count(head); 2704 mapcount = total_mapcount(head); 2705 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2706 if (!list_empty(page_deferred_list(head))) { 2707 ds_queue->split_queue_len--; 2708 list_del(page_deferred_list(head)); 2709 } 2710 spin_unlock(&ds_queue->split_queue_lock); 2711 if (mapping) { 2712 if (PageSwapBacked(head)) 2713 __dec_node_page_state(head, NR_SHMEM_THPS); 2714 else 2715 __dec_node_page_state(head, NR_FILE_THPS); 2716 } 2717 2718 __split_huge_page(page, list, end, flags); 2719 ret = 0; 2720 } else { 2721 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2722 pr_alert("total_mapcount: %u, page_count(): %u\n", 2723 mapcount, count); 2724 if (PageTail(page)) 2725 dump_page(head, NULL); 2726 dump_page(page, "total_mapcount(head) > 0"); 2727 BUG(); 2728 } 2729 spin_unlock(&ds_queue->split_queue_lock); 2730 fail: if (mapping) 2731 xa_unlock(&mapping->i_pages); 2732 spin_unlock_irqrestore(&pgdata->lru_lock, flags); 2733 remap_page(head, thp_nr_pages(head)); 2734 ret = -EBUSY; 2735 } 2736 2737 out_unlock: 2738 if (anon_vma) { 2739 anon_vma_unlock_write(anon_vma); 2740 put_anon_vma(anon_vma); 2741 } 2742 if (mapping) 2743 i_mmap_unlock_read(mapping); 2744 out: 2745 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2746 return ret; 2747 } 2748 2749 void free_transhuge_page(struct page *page) 2750 { 2751 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2752 unsigned long flags; 2753 2754 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2755 if (!list_empty(page_deferred_list(page))) { 2756 ds_queue->split_queue_len--; 2757 list_del(page_deferred_list(page)); 2758 } 2759 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2760 free_compound_page(page); 2761 } 2762 2763 void deferred_split_huge_page(struct page *page) 2764 { 2765 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2766 #ifdef CONFIG_MEMCG 2767 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2768 #endif 2769 unsigned long flags; 2770 2771 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2772 2773 /* 2774 * The try_to_unmap() in page reclaim path might reach here too, 2775 * this may cause a race condition to corrupt deferred split queue. 2776 * And, if page reclaim is already handling the same page, it is 2777 * unnecessary to handle it again in shrinker. 2778 * 2779 * Check PageSwapCache to determine if the page is being 2780 * handled by page reclaim since THP swap would add the page into 2781 * swap cache before calling try_to_unmap(). 2782 */ 2783 if (PageSwapCache(page)) 2784 return; 2785 2786 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2787 if (list_empty(page_deferred_list(page))) { 2788 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2789 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2790 ds_queue->split_queue_len++; 2791 #ifdef CONFIG_MEMCG 2792 if (memcg) 2793 memcg_set_shrinker_bit(memcg, page_to_nid(page), 2794 deferred_split_shrinker.id); 2795 #endif 2796 } 2797 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2798 } 2799 2800 static unsigned long deferred_split_count(struct shrinker *shrink, 2801 struct shrink_control *sc) 2802 { 2803 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2804 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2805 2806 #ifdef CONFIG_MEMCG 2807 if (sc->memcg) 2808 ds_queue = &sc->memcg->deferred_split_queue; 2809 #endif 2810 return READ_ONCE(ds_queue->split_queue_len); 2811 } 2812 2813 static unsigned long deferred_split_scan(struct shrinker *shrink, 2814 struct shrink_control *sc) 2815 { 2816 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2817 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2818 unsigned long flags; 2819 LIST_HEAD(list), *pos, *next; 2820 struct page *page; 2821 int split = 0; 2822 2823 #ifdef CONFIG_MEMCG 2824 if (sc->memcg) 2825 ds_queue = &sc->memcg->deferred_split_queue; 2826 #endif 2827 2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2829 /* Take pin on all head pages to avoid freeing them under us */ 2830 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2831 page = list_entry((void *)pos, struct page, mapping); 2832 page = compound_head(page); 2833 if (get_page_unless_zero(page)) { 2834 list_move(page_deferred_list(page), &list); 2835 } else { 2836 /* We lost race with put_compound_page() */ 2837 list_del_init(page_deferred_list(page)); 2838 ds_queue->split_queue_len--; 2839 } 2840 if (!--sc->nr_to_scan) 2841 break; 2842 } 2843 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2844 2845 list_for_each_safe(pos, next, &list) { 2846 page = list_entry((void *)pos, struct page, mapping); 2847 if (!trylock_page(page)) 2848 goto next; 2849 /* split_huge_page() removes page from list on success */ 2850 if (!split_huge_page(page)) 2851 split++; 2852 unlock_page(page); 2853 next: 2854 put_page(page); 2855 } 2856 2857 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2858 list_splice_tail(&list, &ds_queue->split_queue); 2859 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2860 2861 /* 2862 * Stop shrinker if we didn't split any page, but the queue is empty. 2863 * This can happen if pages were freed under us. 2864 */ 2865 if (!split && list_empty(&ds_queue->split_queue)) 2866 return SHRINK_STOP; 2867 return split; 2868 } 2869 2870 static struct shrinker deferred_split_shrinker = { 2871 .count_objects = deferred_split_count, 2872 .scan_objects = deferred_split_scan, 2873 .seeks = DEFAULT_SEEKS, 2874 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2875 SHRINKER_NONSLAB, 2876 }; 2877 2878 #ifdef CONFIG_DEBUG_FS 2879 static int split_huge_pages_set(void *data, u64 val) 2880 { 2881 struct zone *zone; 2882 struct page *page; 2883 unsigned long pfn, max_zone_pfn; 2884 unsigned long total = 0, split = 0; 2885 2886 if (val != 1) 2887 return -EINVAL; 2888 2889 for_each_populated_zone(zone) { 2890 max_zone_pfn = zone_end_pfn(zone); 2891 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2892 if (!pfn_valid(pfn)) 2893 continue; 2894 2895 page = pfn_to_page(pfn); 2896 if (!get_page_unless_zero(page)) 2897 continue; 2898 2899 if (zone != page_zone(page)) 2900 goto next; 2901 2902 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2903 goto next; 2904 2905 total++; 2906 lock_page(page); 2907 if (!split_huge_page(page)) 2908 split++; 2909 unlock_page(page); 2910 next: 2911 put_page(page); 2912 } 2913 } 2914 2915 pr_info("%lu of %lu THP split\n", split, total); 2916 2917 return 0; 2918 } 2919 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2920 "%llu\n"); 2921 2922 static int __init split_huge_pages_debugfs(void) 2923 { 2924 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2925 &split_huge_pages_fops); 2926 return 0; 2927 } 2928 late_initcall(split_huge_pages_debugfs); 2929 #endif 2930 2931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2932 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2933 struct page *page) 2934 { 2935 struct vm_area_struct *vma = pvmw->vma; 2936 struct mm_struct *mm = vma->vm_mm; 2937 unsigned long address = pvmw->address; 2938 pmd_t pmdval; 2939 swp_entry_t entry; 2940 pmd_t pmdswp; 2941 2942 if (!(pvmw->pmd && !pvmw->pte)) 2943 return; 2944 2945 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2946 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 2947 if (pmd_dirty(pmdval)) 2948 set_page_dirty(page); 2949 entry = make_migration_entry(page, pmd_write(pmdval)); 2950 pmdswp = swp_entry_to_pmd(entry); 2951 if (pmd_soft_dirty(pmdval)) 2952 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2953 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2954 page_remove_rmap(page, true); 2955 put_page(page); 2956 } 2957 2958 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2959 { 2960 struct vm_area_struct *vma = pvmw->vma; 2961 struct mm_struct *mm = vma->vm_mm; 2962 unsigned long address = pvmw->address; 2963 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2964 pmd_t pmde; 2965 swp_entry_t entry; 2966 2967 if (!(pvmw->pmd && !pvmw->pte)) 2968 return; 2969 2970 entry = pmd_to_swp_entry(*pvmw->pmd); 2971 get_page(new); 2972 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 2973 if (pmd_swp_soft_dirty(*pvmw->pmd)) 2974 pmde = pmd_mksoft_dirty(pmde); 2975 if (is_write_migration_entry(entry)) 2976 pmde = maybe_pmd_mkwrite(pmde, vma); 2977 2978 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 2979 if (PageAnon(new)) 2980 page_add_anon_rmap(new, vma, mmun_start, true); 2981 else 2982 page_add_file_rmap(new, true); 2983 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 2984 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 2985 mlock_vma_page(new); 2986 update_mmu_cache_pmd(vma, address, pvmw->pmd); 2987 } 2988 #endif 2989